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Abstract
For every stable model category M with a certain extra

structure, we produce an associated model structure on the
pro-category pro-M and a spectral sequence, analogous to
the Atiyah-Hirzebruch spectral sequence, with reasonably good
convergence properties for computing in the homotopy cat-
egory of pro-M. Our motivating example is the category of
pro-spectra.

The extra structure referred to above is a t-model struc-
ture. This is a rigidification of the usual notion of a t-structure
on a triangulated category. A t-model structure is a proper
simplicial stable model category M with a t-structure on its
homotopy category together with an additional factorization
axiom.

1. Introduction

Recent efforts to understand the homotopy theory of pro-objects have resulted
in several different model structures on pro-categories, such as the strict model
structure [7] [19], the π∗-model structure on pro-spaces [17], and the π∗-model
structure on pro-spectra [20]. The arguments required for establishing these model
structures are similar, yet the published proofs are distinct and have an ad hoc
flavor. In the accompanying paper [11] we develop a general framework of filtered
model categories for giving model structures on pro-categories.

In this paper we explore a particular class of filtered model structures on sta-
ble model categories. These filtered model structures arise from t-structures on the
homotopy category of the stable model category (recall that such a homotopy cat-
egory is a triangulated category).

More precisely, we work with a t-model structure. This is a proper simplicial stable
model category with a t-structure on its homotopy category together with a certain
kind of lift of the t-structure to the model category itself. This “rigidification” of
the t-structure is expressed in terms of an additional factorization axiom for the
model category.

If M is a t-model category, then we produce a model structure on the category
pro-M (see Theorem 6.3). We show that the associated homotopy category P of
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pro-M has a t-structure (see Proposition 9.4). One important property of this t-
structure is that an object lies in P>n for all n if and only if it is contractible
(see Proposition 9.4 again). This property has at least two important consequences.
First, it allows us to construct an Atiyah-Hirzebruch type spectral sequence with
reasonable convergence properties (see Theorem 10.3). Second, it allows us to prove
results for detecting weak equivalences analogous to the Whitehead theorem (see
Theorem 9.13).

Although our main interest in t-model structures is to produce model structures
on pro-categories, the notion of a t-model structure is likely to be useful in other
contexts. Motivic homotopy theory [23] is a combination of ideas from homotopy
theory and from motivic algebraic geometry. Since model categories are important
in homotopy theory and since t-structures are important in the study of motives,
the interaction between these two notions is probably useful in motivic homotopy
theory. See [22] for a possible example.

One specific example of a model structure on a pro-category obtained from a
t-model structure is the π∗-model structure for pro-spectra. It is obtained from
any reasonable model category of spectra, where the t-structure on the homotopy
category of spectra is given by Postnikov sections. The original motivation for this
paper was an extension of this model structure to a category of pro-G-spectra when
G is a profinite group. That extension is treated in a separate paper [10].

Another example is the H∗-model structure on the category of pro-chain com-
plexes of modules over a unital ring, in which weak equivalences are detected by
pro-homology groups. This model structure for pro-chain complexes is obtained
from the projective model structure on the category of chain complexes equipped
with the standard t-structure on its derived category.

1.1. π∗-model structure on pro-spectra
We provide a summary of our results for the π∗-model structure on pro-spectra.

There are similar results for the H∗-model structure on pro-chain complexes.
We remind the reader that the theorems that appear later are much more general.

The pro-categorical terminology is established in Section 5.

Definition 1.1. A map f of pro-spectra is a π∗-weak equivalence if:
1. f is an essentially levelwise m-equivalence for some m, and
2. πnf is a pro-isomorphism of pro-groups for all integers n.

We acknowledge that the first condition above appears unnatural at first glance.
However, we suspect that it is not possible to construct a model structure on pro-
spectra if this condition is not included. In fact, the definition that appears later
is different (see Definition 6.2). Here we have given a more concrete equivalent
reformulation (see Theorem 9.13).

Theorem 1.2 (Theorem 6.3). There is a model structure on the category of pro-
spectra in which the weak equivalences are the π∗-weak equivalences.

The cofibrations in this model structure are, up to isomorphism, the levelwise
cofibrations. The fibrations are more complicated to describe. Section 6 contains a
reasonably concrete characterization of the fibrations.
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One of the key observations about this model structure is that the map X →
{PnX} from a spectrum to its Postnikov tower is a π∗-weak equivalence. In fact,
Postnikov towers are the key ingredient in constructing fibrant replacements.

One of the main uses of the previous theorem is the construction of an Atiyah-
Hirzebruch spectral sequence for pro-spectra.

Theorem 1.3 (Theorem 10.3). Let X and Y be pro-spectra. There is a spectral
sequence with

Ep,q
2 = Hp(X;Y q).

The spectral sequence converges conditionally to [X,Y ]p+q if:

1. X is uniformly bounded below (i.e., there exists an integer N such that πnXs =
0 for all n 6 N and all s), or

2. X is essentially levelwise bounded below (i.e., for each s, there exists an integer
N such that πnXs = 0 for n 6 N) and Y is a constant pro-spectrum.

In the above theorem, the notation [X,Y ]p+q refers to weak homotopy classes
of maps of degree p + q from X to Y in the homotopy category of pro-spectra.
The E2-term Hp(X;Y q) is singular cohomology of the pro-spectrum X with coeffi-
cients in the pro-abelian group Y q = π−qY . Recall that the p-th cohomology group
Hp(X;A) of a pro-spectrum X with coefficients in an abelian group A is defined
to be colimsH

p(Xs; A). The definition in the general case is obtained from Defini-
tion 2.13 and Propositions 8.4 and 9.11.

1.2. Summary
We summarize the contents of the paper by section.
We give a short review of the basic properties of t-structures in Section 2, assum-

ing no prior knowledge of t-structures. In Section 3, starting with a t-structure on
the homotopy category of a stable model category M, we produce a filtration on
the class of morphisms in M. We reformulate some basic properties of t-structures
in this language. In Section 4 we introduce t-model categories.

The rest of the paper is concerned with pro-categories. The basic theory of pro-
categories is briefly reviewed in Section 5. We also review the strict model structure
and discuss its mapping spaces. In Section 6 we show that a t-model category gives
rise to a filtered model category, and we use this to give a model structure on
its pro-category. For reasons that will be apparent later, a model structure on a
pro-category obtained in this way is called an H∗-model structure. We describe
the cofibrations and fibrations of H∗-model structures in some detail and discuss
Quillen equivalences between pro-categories with H∗-model structures. We then
introduce functorial towers of truncation functors in Section 7. They are used to
form fibrant replacements and also to construct the Atiyah-Hirzebruch spectral
sequence. We next describe the weak homotopy type of mapping spaces in H∗-
model structures in Section 8. This is used in Section 9 to give a t-structure on
the homotopy category of an H∗-model structure. Under reasonable assumptions,
we identify the heart of this t-structure. In Section 10 we construct an Atiyah-
Hirzebruch spectral sequence for triangulated categories with a t-structure. The
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spectral sequence has reasonably good convergence properties when applied to the
t-structure on the homotopy category of an H∗-model structure.

The last two sections of the paper are devoted to multiplicative structures on
pro-categories. In Section 11 we give some basic results concerning the interaction
of tensor structures and pro-categories. In Section 12 we discuss tensor model cat-
egories and show that we get a partially defined tensor product for some objects in
the homotopy category. At the very end, we consider multiplicative structures on
the Atiyah-Hirzebruch spectral sequence constructed in Section 10.

1.3. Conventions
We assume that the reader is familiar with model categories. The reference [15]

is particularly relevant because of its emphasis on stable model categories, and [14]
is also suitable.

We also assume that the reader has a certain practical familiarity with pro-
categories. Although a brief review is given in Section 5, see [2], [7], or [17] for
additional background.

We use homological grading when working with triangulated categories and t-
structures. This disagrees with the more common cohomological grading (see [3] for
example), but it is more convenient from the perspective of stable homotopy theory.
To emphasize the notational distinction, we use lower subscripts instead of upper
subscripts.

Throughout the paper,M is a proper simplicial stable model category. We always
assume that M has functorial factorizations, even though the model structure on
pro-M does not necessarily have functorial factorizations. We let D stand for the
homotopy category of M because the notation Ho(M) is too cumbersome for our
purposes. Finally, P stands for the homotopy category of pro-M.

The simplicial assumption on M is probably not necessary for any of our main
results, but it is a very convenient hypothesis. Most of the results go through with
a weakening of this assumption; see [9, Sec. 5] for more details. On the other hand,
the properness assumption on M is essential for the existence of model structures
on pro-M; see [19] for an explanation.

If C is any category containing objects X and Y , then C(X,Y ) denotes the set
of morphisms from X to Y . Occasionally we will use the notation [X, Y ] for the set
of morphisms in a homotopy category; in this case, the context makes the precise
meaning clear.

2. t-structures

In this section we give a short review of the theory of t-structures on triangulated
categories. We only discuss the aspects that are relevant to this work. The original
source for this material is [3], but we refer to [12] whenever possible. We assume
the reader has a working knowledge of triangulated categories.

Let D be a triangulated category, and let Σ denote the shift functor such that
distinguished triangles are of the form A → B → C → ΣA.
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Definition 2.1. A t-structure on D consists of two strictly full subcategories D>0

and D60 such that

1. D>0 is closed under Σ, and D60 is closed under Σ−1.

2. For every object X in D, there is a distinguished triangle

X ′ → X → X ′′ → ΣX ′

such that X ′ ∈ D>0 and X ′′ ∈ Σ−1D60.

3. D(X, Y ) = 0 whenever X ∈ D>0 and Y ∈ Σ−1D60.

The reader who is already familiar with t-structures should keep in mind that
we are using homological grading, not cohomological grading.

Recall that a subcategory is strictly full if it is full and if it is closed under
isomorphisms.

In any t-structure, there are two Z-graded families of strictly full subcategories
defined by D>n = ΣnD>0 and D6n = ΣnD60 for any integer n. By part (1) of
Definition 2.1, the categories D>n are a decreasing filtration in the sense that D>n+1

is contained in D>n, and the categories D6n are an increasing filtration in the sense
that D6n is contained in D6n+1. Note that parts (2) and (3) of Definition 2.1 can
now be rewritten in terms of D6−1 instead of Σ−1D60.

Example 2.2. Let D be the derived category of chain complexes of modules over a
ring. The standard t-structure on D [12, IV.4.3] is given by

D>n = {X | Hi(X) = 0 for i < n}

D6n = {X | Hi(X) = 0 for i > n}.
The shift functor is defined by (ΣX)n = Xn−1, and the differential (ΣX)n+1 →
(ΣX)n is equal to the negative of the differential Xn → Xn−1.

Example 2.3. Let D be the homotopy category of spectra. The Postnikov t-struc-
ture on D is given by

D>n = {X |πi(X) = 0 for i < n}

D6n = {X |πi(X) = 0 for i > n}.
The proof of this fact is classical stable homotopy theory. The main point is to
show that [X,Y ] = 0 when X is (−1)-connected (i.e., πiX = 0 for i < 0) and Y is
0-coconnected (i.e., πiY = 0 for i > 0). See [21, Prop. 3.6], for example.

The two strictly full subcategories D>n and D6n−1 of a t-structure determine
each other as follows.

Lemma 2.4. An object X is in D>n if and only if D(X, Y ) = 0 for all Y in D6n−1,
and an object Y is in D6n−1 if and only if D(X, Y ) = 0 for all X in D>n.

Proof. We prove the first claim; the proof for the second claim is similar. One
direction follows immediately from part (3) of Definition 2.1.
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For the other direction, suppose that D(X, Y ) = 0 for all Y in D6n−1. Part (2) of
Definition 2.1 says that we can find a distinguished triangle X ′ → X → X ′′ → ΣX ′

such that X ′ belongs to D>n and X ′′ belongs to D6n−1. Now apply D(−, X ′′) to
obtain a long exact sequence. Since X ′ and ΣX ′ are both in D>n, it follows that
D(X,X ′′) and D(X ′′, X ′′) are isomorphic. But our assumption implies that the first
group is zero, so the second group is also zero. Thus X ′′ is isomorphic to 0, and
X ′ → X is an isomorphism.

The next corollary follows immediately from Lemma 2.4.

Corollary 2.5.

1. The zero object 0 belongs to both D>n and D6n for every n.
2. An object that is both in D>n and in D6n−1 is isomorphic to 0.
3. The subcategories D>n and D6n of D are closed under retract.

Corollary 2.6. Let X → Y → Z → ΣX be a distinguished triangle.

1. If X and Z belong to D>n, then so does Y .
2. If X and Z belong to D6n, then so does Y .
3. If X belongs to D>n−1 and Y belongs to D>n, then Z belongs to D>n.
4. If X belongs to D6n−1 and Y belongs to D6n, then Z belongs to D6n.
5. If Y belongs to D>n and Z belongs to D>n+1, then X belongs to D>n.
6. If Y belongs to D6n and Z belongs to D6n+1, then X belongs to D6n.

Proof. The first two claims follow immediately from Lemma 2.4. The other claims
follow from the first two; we illustrate with the fifth statement.

We have an exact triangle

Σ−1Z → X → Y → Z

in which both Σ−1Z and Y belong to D>n. The result now follows from the first
claim.

We now give a key lemma about t-structures.

Lemma 2.7. Let X ′ → X → X ′′ → ΣX ′ and Y ′ → Y → Y ′′ → ΣY ′ be two distin-
guished triangles with X ′ and Y ′ in D>n and X ′′ and Y ′′ in D6n−1. Let f : X → Y
be a map in D. Then there are unique maps f ′ : X ′ → Y ′ and f ′′ : X ′′ → Y ′′ such
that there is a commutative diagram

X ′ //

f ′

²²

X

f

²²

// X ′′

f ′′

²²

// ΣX ′

Σf ′

²²
Y ′ // Y // Y ′′ // ΣY ′.

Proof. By part (3) of Definition 2.1, we have that D(X ′, Y ′′) = 0. Hence there
exists a map f ′ : X ′ → Y ′ making the left square commute, and then also a map
f ′′ : X ′′ → Y ′′ such that we get a map of distinguished triangles.
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Now we have to show that f ′ and f ′′ are unique. Let j be the map Y ′ → Y .
There is an exact sequence

D(X ′, Σ−1Y ′′) //D(X ′, Y ′)
j∗ //D(X ′, Y ).

The left group is trivial by part (3) of Definition 2.1 since Σ−1Y ′′ belongs to D6n−1.
Therefore, j∗ is injective, so f ′ is unique. A similar argument involving the map
X → X ′′ shows that f ′′ is also unique.

The importance of Lemma 2.7 is expressed in the following proposition.

Proposition 2.8. There are truncation functors τ>n and τ6n from D into D>n

and D6n respectively together with natural transformations εn : τ>n → 1, ηn : 1 →
τ6n, and τ6n−1 → Στ>n such that

τ>nX → X → τ6n−1X → Στ>nX

is a distinguished triangle for all X. Up to canonical isomorphism, these properties
determine the truncation functors uniquely.

Notation 2.9. We usually write X>n and X6n for τ>nX and τ6nX respectively.

The functors τ>n and τ6n enjoy many useful properties. Most of the claims in
the next two paragraphs are proved in [12, Sec. IV.4]; the rest follow easily. In any
case, they are easily verifiable directly for Examples 2.2 and 2.3.

The functors τ>n and τ6m commute (up to natural isomorphism) for all n and
m. If m > n, then τ>nτ>m and τ>mτ>n are both naturally isomorphic to τ>m, while
τ6nτ6m and τ6mτ6n are both naturally isomorphic to τ6n. Also, Σnτ>0 is naturally
isomorphic to τ>nΣn, and Σnτ60 is naturally isomorphic to τ6nΣn. Both τ6n−1τ>n

and τ>nτ6n−1 are isomorphic to the zero functor.

2.1. Hearts and cohomology

Definition 2.10. The heart H(D) of a t-structure D is the full subcategory D>0 ∩
D60 of D.

For any t-structure, the heart H(D) is an abelian category [12, Sec. IV.4].

Definition 2.11. The n-th homology functor Hn associated to a t-structure is
defined to be the functor τ60τ>0Σ−n.

The homology functorHn is a covariant functor D → H(D). The following lemma
is proved in [12, Thm. IV.4.11a].

Lemma 2.12. Let X → Y → Z → ΣX be a distinguished triangle. There is a long
exact sequence

· · · → HkX → HkY → HkZ → Hk−1X → · · ·
in the abelian category H(D).

Definition 2.13. Let E be an object in the heart H(D). The n-th cohomology
functor Hn(−; E) with E-coefficients is D(−,ΣnE).
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The functor Hn(−;E) is a contravariant functor fromD to the category of abelian
groups. The following lemma follows immediately from formal properties of trian-
gulated categories.

Lemma 2.14. Let X → Y → Z → ΣX be a distinguished triangle, and let E belong
to H(D). There is a long exact sequence

· · · → Hk(X; E) → Hk(Y ;E) → Hk(Z; E) → Hk+1(X;E) → · · ·
in the abelian category H(D).

Example 2.15. Let D be the triangulated category of chain complexes with the
standard t-structure (see Example 2.2). The heart of D is isomorphic to the category
of abelian groups. The n-th homology HnX of a chain complex X is the usual n-th
homology

ker(Xn → Xn−1)/im(Xn+1 → Xn)

of X. For any abelian group E, the n-th cohomology with E-coefficients of a chain
complex X is the n-th hyperext group Extn(X,E).

Example 2.16. Let D be the category of spectra with the Postnikov t-structure. The
heart of this t-structure is the full subcategory of Eilenberg-MacLane spectra (in
degree 0). This category is equivalent to the category of abelian groups. The n-th
homology functorHn is the usual nth stable homotopy group functor πn. When E is
an abelian group, n-th cohomology with E-coefficients is n-th singular cohomology
with coefficients in E.

The following lemma says that the layers in the towers obtained from the two
sequences of truncation functors are easily described in terms of the homology
functors.

Lemma 2.17. For every integer n and every X in D, there are distinguished tri-
angles

X>n+1 → X>n → ΣnHnX → ΣX>n+1

and

ΣnHnX → X6n → X6n−1 → Σn+1HnX.

Proof. We construct the first distinguished triangle. The construction of the second
one is similar.

Start with the object X>n of D. There is a distinguished triangle

τ>n+1τ>nX → τ>nX → τ6nτ>nX → Στ>n+1τ>nX.

This is equal to the distinguished triangle

τ>n+1X → τ>nX → ΣnHnX → Στ>n+1X.

The following lemma tells us when homology and cohomology theories detect
trivial objects. It is also proved in [12, IV.4.11(b)].
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Lemma 2.18. Let D be a triangulated category equipped with a t-structure such
that ∩nD>n consists only of the objects isomorphic to 0. Assume that X is in D>m

for some m. Then the following are equivalent:
1. X is isomorphic to 0.
2. Hn(X) = 0 for all n.
3. Hn(X; E) = 0 for all n and all E in H(D).

Proof. Condition (1) implies conditions (2) and (3), so we need to show that either
condition (2) or (3) implies condition (1).

Assuming either condition (2) or (3), we prove by induction on n that X>n → X
is an isomorphism for all n. Our assumption on ∩nD>n then implies condition (1).
Since X is in D>m, the natural map X>n → X is an isomorphism whenever n 6 m;
this is the base case of the induction.

Now suppose for induction that the map X>n → X is an isomorphism. Condi-
tion (2) and the first part of Lemma 2.17 gives that the composition X>n+1 →
X>n → X is an isomorphism.

On the other hand, condition (3) and our inductive assumption implies that
D(X>n, ΣnHnX) is zero. Now apply the functor D(−, ΣnHnX) to the first triangle
in Lemma 2.17 and use part 3 of Definition 2.1 to conclude that

D(ΣnHn(X),ΣnHn(X))

is zero. It follows that Hn(X) is isomorphic to 0. As in the previous paragraph, this
implies that X>n+1 → X is an isomorphism.

3. n-equivalences and co-n-equivalences

From now on, we no longer consider just triangulated categories but rather proper
simplicial stable model categories M (with functorial factorization). We write D
for the homotopy category of M, which is automatically a triangulated category
because M is stable [15, 7.1]. We briefly review the main properties of stable model
categories that we need. See [15, Ch. 7] for more details.

Recall that a stable model category M is pointed. In addition to unreduced
tensors X ⊗K and cotensors Map(K, X), a pointed simplicial model category also
has reduced tensors X ∧ K and reduced cotensors Map∗(K, X) for any
pointed simplicial set K and any object X of M.

The suspension of any object X of M is defined to be X ∧ S1 [15, 6.1.1]. Note
that this construction is homotopically correct only if X is cofibrant. In general,
one must first take a cofibrant replacement for X. In a simplicial stable model
category, suspension is a left Quillen functor that induces an automorphism on D.
Its associated right Quillen functor is reduced cotensor with S1, which is also known
as loops [15, 6.1.1].

The homotopy category of a stable model category is a triangulated category
whose shift functor Σ is the left derived functor of suspension. We use the symbol
Ω for the right derived functor of loops. Note that Ω induces the inverse shift Σ−1

on D. Homotopy cofiber sequences and homotopy fiber sequences are the same, and
they induce the distinguished triangles in the homotopy category.
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SinceM has functorial factorizations, there are functorial constructions of homo-
topy fibers and homotopy cofibers in M. We write hocofib f and hofib f for the
functorial homotopy cofiber and homotopy fiber of a map f . Using the properness
assumption, there are natural maps hofib f → X and Y → hocofib f for any map
f : X → Y . In D, hocofib f is isomorphic to Σhofib f .

These constructions induce functors on the homotopy category D of M. The
functoriality of these constructions is one of the chief advantages of working with
stable model categories rather than just triangulated categories, where homotopy
cofibers and homotopy fibers are only defined up to non-canonical isomorphism.

We now lift the full subcategories given by a t-structure on D to full subcategories
on M.

Definition 3.1. Let M be a proper simplicial stable model category whose homo-
topy category D is equipped with a t-structure. Let M>n be the full subcategory
of M consisting of those objects whose weak homotopy types belong to D>n, and
let M6n be the full subcategory of M consisting of those objects in M whose weak
homotopy types belong to D6n.

Many properties of D>n and D6n from Section 2 carry over to the classes M>n

and M6n. For example, M>n is closed under Σ, and M6n is closed under Ω. Also,
an object X belongs to M>n if and only if ΩnX belongs to M>0 (and similarly for
M6n). Finally, if X belongs to M>n and Y belongs to M6n−1, then D(X,Y ) is
zero.

To explore the interaction between a stable model structure and a t-structure
on its homotopy category, we find it more convenient to work with subclasses of
morphisms associated to the t-structure rather then the subclasses of objects given
by the t-structure.

Definition 3.2. Let M be a proper stable model category whose homotopy cate-
gory D is equipped with a t-structure. The class of n-equivalences in M is

Wn = {f | hofib f ∈M>n} = {f | hocofib f ∈M>n+1}.
The class of co-n-equivalences in M is

coWn = {f | hocofib f ∈M6n} = {f | hofib f ∈M6n−1}.
Example 3.3. Consider the standard t-structure on the derived category of chain
complexes from Example 2.2. A map is an n-equivalence if and only if it induces
a homology isomorphism in degrees strictly less than n and induces a surjection in
degree n. Similarly, a map is a co-n-equivalence if and only if it induces a homology
isomorphism in degrees strictly greater than n and induces an injection in degree
n.

Example 3.4. Let M be a model category of spectra with the Postnikov t-structure
on its homotopy category (see Example 2.3). A map is an n-equivalence if and
only if it induces isomorphisms in homotopy groups below dimension n and induces
a surjection in dimension n. Similarly, a map is a co-n-equivalence if and only if
it induces isomorphisms in homotopy groups above dimension n and induces an
injection in dimension n.
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We now translate many of the results from Section 2 into properties of n-
equivalences and co-n-equivalences.

Lemma 3.5.

1. The class Wn is closed under Σ, and the class coWn is closed under Ω.
2. The class Wn is contained in Wn−1, and the class coWn−1 is contained in

coWn.
3. The classes Wn and coWn contain all weak equivalences.
4. If a map is both an n-equivalence and a co-n-equivalence, then it is a weak

equivalence.
5. The classes Wn and coWn are closed under retract.

Proof. The first two claims follow from the properties of M>n and M6n stated
after Definition 3.1 and the fact that the functors Σ and Ω commute with the
functors hofib and hocofib up to weak equivalence.

The next two claims follow immediately from parts (1) and (2) of Corollary 2.5,
together with the fact that a map is a weak equivalence if and only if its homotopy
fiber is contractible.

For the fifth claim, let g be a retract of a map f . Then hofib g is a retract of
hofib f because homotopy fibers are functorial. Now we just need to use part (3) of
Corollary 2.5.

Lemma 3.6. Let f : X → Y and g : Y → Z be two maps.

1. If f and g both belong to Wn, then so does gf .
2. If f and g both belong to coWn, then so does gf .
3. If f belongs to Wn−1 and gf belongs to Wn, then g belongs to Wn.
4. If f belongs to coWn−1 and gf belongs to coWn, then g belongs to coWn.
5. If g belongs to Wn+1 and gf belongs to Wn, then f belongs to Wn.
6. If g belongs to coWn+1 and gf belongs to coWn, then f belongs to coWn.

Proof. We have a distinguished triangle

hofib f → hofib gf → hofib g → Σhofib f

in the homotopy category D of M. Corollary 2.6 gives the desired results.

Lemma 3.7. The classes Wn and coWn are both closed under base changes along
fibrations and cobase changes along cofibrations.

Proof. In a proper model structure, the homotopy fiber of a map is weakly equiva-
lent to the homotopy fiber of its base change along a fibration. Similarly, the homo-
topy cofiber of a map is weakly equivalent to the homotopy cofiber of its cobase
change along a cofibration.

The next result gives a general setting in which homology and cohomology func-
tors detect weak equivalences in M.
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Theorem 3.8. Assume that ∩nWn is equal to the class of weak equivalences. Let
f : X → Y be an m-equivalence for some m. The following are equivalent:

1. f is a weak equivalence.
2. Hn(f) is an isomorphism in the heart H(D) for all n.
3. Hn(Y ; E) → Hn(X;E) is an isomorphism for all n and all E in H(D).

Applied to the Postnikov t-structure on spectra from Example 2.3, this is the
usual Whitehead theorem for detecting weak equivalences with stable homotopy
groups or with ordinary cohomology.

Proof. Note first that ∩nWn is equal to the class of weak equivalences if and only
if ∩nD>n consists only of contractible objects. This follows immediately from the
definitions and the fact that a map is a weak equivalence if and only if its homotopy
fiber is contractible.

Now Lemma 2.18 gives the desired result, using the long exact sequences of
Lemmas 2.12 and 2.14.

Remark 3.9. In Theorem 3.8, an additional assumption on the t-structure allows
one to avoid the assumption that f is an m-equivalence. Namely, if both ∩nWn

and ∩ncoWn are equal to the class of weak equivalences, then a map f is a weak
equivalence in M if and only if Hn(f) is an isomorphism for all n; the proof of
[12, IV.4.11] can be easily adapted to show this. Both the standard t-structure on
chain complexes from Example 2.2 and the Postnikov t-structure on spectra from
Example 2.3 satisfy this condition.

Our assumptions in Theorem 3.8 are dictated by the t-structures we consider on
homotopy categories of pro-categories. In that case we have that ∩nWn is equal to
the class of weak equivalences, while ∩ncoWn is never equal to the class of weak
equivalences except in trivial cases. See Lemma 9.5 for more details.

Remark 3.10. Consider the situation of a t-structure on a triangulated category D
that is not associated to a stable model category. Even though homotopy fibers
and homotopy cofibers are not well-defined in D, one can still define classes of
n-equivalences and co-n-equivalences in D as in Definition 3.2. The point is that
homotopy fibers and homotopy cofibers are well-defined up to non-canonical iso-
morphism, and that is good enough for the purposes of Definition 3.2. All of the
lemmas of this section remain true except for Lemma 3.7, which does not make
sense without a model structure.

4. t-model structures

We continue to work in a proper simplicial stable model category M whose
homotopy category D has a t-structure. We need to assume that the t-structure on
D can be rigidified in a certain sense.

Definition 4.1. A t-model structure is a proper simplicial stable model category
M equipped with a t-structure on its triangulated homotopy category D together
with functorial factorizations of maps in M into n-equivalences followed by co-n-
equivalences.
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There is a t-model structure on the category of chain complexes that induces the
standard t-structure of Example 2.2 (except, possibly, for the simplicial structure).
This example is dealt with in greater detail in [9, 5,6]. More importantly for our
applications, all reasonable model categories of spectra have t-model structures
that induce the Postnikov t-structure on the stable homotopy category. To factor
a map into an n-equivalence followed by a co-n-equivalence, apply the small object
argument to the set of maps consisting of all generating acyclic cofibrations and
also generating cofibrations whose cofibers are spheres of dimension greater than n.

Lemma 4.2. The truncation functors τ>n : D → D>n and τ6n : D → D6n can be
lifted to functors τ>n : M→M>n and τ6n : M→M6n. Similarly, the natural
transformations εn : τ>n → 1 and ηn : 1 → τ6n can be lifted to natural transforma-
tions on M such that εn is a natural co-(n− 1)-equivalence, ηn is a natural (n + 1)-
equivalence, and τ>nX

εn−→ X
ηn−1−→ τ6n−1X is a natural homotopy fiber sequence in

M.

Proof. Given any object X ofM, factor the map ∗ → X functorially into an (n− 1)-
equivalence ∗ → X ′ followed by a co-(n− 1)-equivalence X ′ → X. Define τ>nX to
be X ′, and εn(X) to be the natural map X ′ → X. Define τ6nX to be the homotopy
cofiber of εn+1(X) and ηn(X) to be the map X → τ6nX. We have that X ′ belongs
to M>n since ∗ → X ′ is an (n− 1)-equivalence, and τ6nX belongs to M6n since
the co-n-equivalences are defined to have homotopy cofibers in M6n.

Definition 4.3. Let M be a t-model structure. A map in M is an n-cofibration
if it is both a cofibration and an n-equivalence. A map in M is a co-n-fibration if
it is both a fibration and a co-n-equivalence.

Lemma 4.4. The classes of n-cofibrations and co-n-fibrations are closed under
composition and retract.

Proof. This follows immediately from the fact that the classes of cofibrations, fibra-
tions, n-equivalences, and co-n-equivalences are all closed under composition and
retract by part (5) of Lemma 3.5 and parts (1) and (2) of Lemma 3.6.

Lemma 4.5. There is a functorial factorization of maps in M into n-cofibrations
followed by co-n-fibrations.

Proof. We construct a factorization explicitly. Let f : X → Y be a map in M. We
have a natural diagram

X
u //

ÃÃ

ÃÃ@
@@

@@
@@

Z
v //

ÂÂ
∼

ÂÂ@
@@

@@
@@

Y

A ÂÂ

∼
ÂÂ@

@@
@@

@@

∼
?? ??~~~~~~~ ∼ // B

>> >>~~~~~~~

C

∼

?? ??~~~~~~~

obtained as follows. First, factor f into an n-equivalence u : X → Z followed by a
co-n-equivalence v : Z → Y . Next, factor u into a cofibration X → A followed by
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an acyclic fibration A → Z, and factor v into an acyclic cofibration Z → B followed
by a fibration B → Y . Now the composition A → Z → B is a weak equivalence, so
it can be factored into an acyclic cofibration A → C followed by an acyclic fibration
C → B.

The composition X → A → C is a cofibration because it is a composition of two
cofibrations, and it is an n-equivalence by Lemma 3.6.

Similarly, the composition C → B → Y is a co-n-fibration.

We next prove that the classes of n-cofibrations and co-n-fibrations determine
each other via lifting properties.

Lemma 4.6. A map is an n-cofibration if and only if it has the left lifting property
with respect to all co-n-fibrations. A map is a co-n-fibration if and only if it has the
right lifting property with respect to all n-cofibrations.

Proof. Let i be an n-cofibration and p a co-n-fibration. We use the abstract obstruc-
tion theory of [6] to show that there exists a lift B → X in the diagram

A //

i

²²

X

p

²²
B // Y.

A lift exists in the diagram if the obstruction group D(hofib i, hofib p) vanishes [6,
8.4]. By definition, hofib i belongs to M>n, and hofib p belongs to M6n−1. Hence
the obstruction group vanishes because there are only trivial maps in D from objects
in M>n to objects in M6n−1.

Now suppose that a map i has the left lifting property with respect to all co-n-
fibrations. Lemma 4.5 allows us to apply the retract argument and conclude that
i is a retract of an n-cofibration. But n-cofibrations are preserved by retract by
Lemma 4.4, so i is an n-cofibration.

A similar argument shows that if p has the right lifting property with respect to
all n-cofibrations, then p is a co-n-fibration.

Corollary 4.7. The class of n-cofibrations is closed under arbitrary cobase change.
The class of co-n-fibrations is closed under arbitrary base change.

Proof. This follows immediately from Lemma 4.6 together with the facts that
cobase changes preserve left lifting properties and base changes preserve right lifting
properties.

Lemma 4.8. Every acyclic fibration is a co-n-fibration. Every acyclic cofibration is
an n-cofibration. If n > m, then every n-cofibration is an m-cofibration, and every
co-m-fibration is a co-n-fibration.

Proof. This follows from part (2) and (3) of Lemma 3.5.

Lemma 4.9. Let f be a cofibration. Then f is an n-cofibration if and only if f ∧ S1

is an (n + 1)-cofibration.
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Proof. First, − ∧ S1 preserves cofibrations because the model structure on M is
simplicial. Let C be the cofiber of f ; this is also the homotopy cofiber of f because
f is a cofibration. Note that C is cofibrant. Now C ∧ S1 is the cofiber (and also the
homotopy cofiber) of f ∧ S1 because the model structure on M is simplicial. Since
C is cofibrant, C ∧ S1 is homotopically correct and is a model for ΣC in D. Now C
belongs to M>n+1 if and only if C ∧ S1 belongs to M>n+2.

We next show that n-cofibrations interact appropriately with the simplicial struc-
ture. This will be needed to show that our later constructions behave well simpli-
cially.

Proposition 4.10. Suppose that f : A → B is an n-cofibration and i : K → L is a
cofibration of simplicial sets. Then the map

g : A⊗ LqA⊗K B ⊗K → B ⊗ L

is also an n-cofibration.

Proof. The map i is a transfinite composition of cobase changes of maps of the form
∂∆[j] → ∆[j]. Therefore, the map g is a transfinite composition of cobase changes
of maps of the form

A⊗∆[j]qA⊗∂∆[j] B ⊗ ∂∆[j] → B ⊗∆[j].

Since n-cofibrations are characterized by a left lifting property (see Lemma 4.6),
n-cofibrations are preserved by cobase changes and transfinite compositions. There-
fore, we may assume that i is the map ∂∆[j] → ∆[j].

Since M is a simplicial model category and f is a cofibration, g is also a cofibra-
tion. We need only show that g is an n-equivalence.

Let C be the cofiber of the n-cofibration f , so C belongs to M>n+1. Then the
cofiber of g is C ∧ Sj , where the simplicial set Sj is the sphere ∆[j]/∂∆[j] based
at the image of ∂∆[j]. We need to show that C ∧ Sj also belongs to M>n+1. But
C ∧ Sj is a model for ΣjC in D because C is cofibrant, so C ∧ Sj belongs to M>n+1

because M>n+1 is closed under Σ.

Note that the reduced version of Proposition 4.10 also holds. Namely, if f : A →
B is an n-cofibration and i : K → L is a cofibration of pointed simplicial sets, then
the map

A ∧ LqA∧K B ∧K → B ∧ L

is also an n-cofibration. The proof is identical.

Corollary 4.11. Let A → B be an n-cofibration and let X → Y be a co-n-fibration.
The map

f : Map(B, X) → Map(A, X)×Map(A,Y ) Map(B, Y )

is an acyclic fibration of simplicial sets.

Proof. This follows from the lifting property characterization of acyclic fibrations,
adjointness, and Proposition 4.10.
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4.1. Producing t-model categories
We give some elementary results for constructing t-model structures.

Lemma 4.12. Assume that D is the homotopy category of a proper simplicial stable
model category M. Let D>0 be a strictly full subcategory of D that is closed under
Σ. Define D>n to be ΣnD>0. Let Wn be defined as in Definition 3.2, and set Fn =
inj C ∩Wn. Let D6n−1 be the full subcategory of D whose objects are isomorphic
to hofib (g) for all g in Fn. If there is a functorial factorization of any map in M
as a map in C ∩Wn followed by a map in Fn, then D>0, D60 is a t-structure on
D, and hence we get a t-model structure on M.

Proof. We verify that and D>0 D60 satisfy the three axioms of a t-structure on D
given in Definition 2.1. Axiom 1 holds since D>0 is closed under Σ. The factorization
applied to ∗ → X (or X → ∗) gives a natural triangle, fulfilling Axiom 2 for a t-
structure.

Now assume that X ∈ D>0 and that Y ∈ D6−1. We can assume that X is cofi-
brant. Factor X → ∗ into a cofibration g : X → Z followed by an acyclic fibration
Z → ∗. We have that g is in C ∩W0 since g is a cofibration with homotopy cofiber
in D>1. By our assumption Y is weakly equivalent to the pullback Y ′ of a fibration
p : E → B with fibrant target having the right lifting property with respect to g.
For any map f : X → Y ′ there are commutative squares

X //

g

²²

Y ′

²²

// E

p

²²
Z

∼ // ∗ // B.

We get that the left square lifts by our assumptions. Hence any map f : X → Y ′

factors through a contractible object. Since X is cofibrant and Y ′ is fibrant we get
that D(X, Y ′) = 0. Hence we conclude that D(X, Y ) = 0 whenever X ∈ D>0 and
Y ∈ D6−1.

Proposition 4.13. Let M be a proper simplicial stable cofibrantly generated model
category with homotopy category D. Let I be a set of generating cofibrations and let J
be a set of generating acyclic cofibrations. Let Kn be subsets of J for n ∈ Z. Let C(n)
be the class of retracts of relative I ∪Kn-cell complexes. Let Wn be the corresponding
class of n-equivalences defined as the class of maps that is the composite of a map
in C(n) followed by an acyclic fibration.

If Wn is equal to ΣnW0 for all n, then the structure defined above is a t-model
structure and C(n) = C ∩Wn.

Proof. We have functorial factorization of any map as a map in C(n) followed by
a map in inj-C(n) [14, 10.5, 11.1.2]. The result follows from Lemma 4.12 by letting
D>0 be the full subcategory of D consisting of objects isomorphic to the homotopy
fibers of maps in W0.
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5. Review of pro-categories

We give a brief review of pro-categories. This section contains mostly standard
material on pro-categories [1] [2] [7].

Definition 5.1. For any category C, the objects of the category pro-C are all cofil-
tering diagrams in C, and

pro-C(X, Y ) = limtcolims C(Xs, Yt).

Composition is defined in the natural way.

A constant pro-object is one indexed by the category with one object and one
(identity) map. Let c : C → pro-C be the functor taking an object X to the constant
pro-object with value X. Note that this functor makes C a full subcategory of pro-C.
The limit functor lim : pro-C → C is the right adjoint of c.

A level map X → Y is a pro-map that is given by a natural transformation
(so X and Y must have the same indexing category); this is a very special kind of
pro-map. Up to pro-isomorphism, every map is a level map [2, App. 3.2].

Let M be a collection of maps in C. A level map g in pro-C is a levelwise M-
map if each gs belongs to M . A pro-map is an essentially levelwise M-map if
it is isomorphic to a levelwise M -map.

We say that a level map is directed (resp. cofinite directed) if its indexing category
is a directed set (resp. cofinite directed set). Recall that a directed indexing set S
is cofinite if for all s ∈ S, the set {t ∈ S | t < s} is finite.

Definition 5.2. A map in pro-C is a special M -map if it is isomorphic to a
cofinite directed level map f = {fs}s∈S with the property that for each s ∈ S, the
map

Msf : Xs → limt<sXt ×limt<sYt Ys

belongs to M .

5.1. Strict model structures
If M is a proper model category, then pro-M has a strict model structure

[7] [19]. The strict cofibrations are the essentially levelwise cofibrations, the
strict weak equivalences are the essentially levelwise weak equivalences, and
the strict fibrations are retracts of special fibrations (see Definition 5.2).

The functors c and lim are a Quillen adjoint pair between M and pro-M. The
right derived functor of lim is holim [7, Rem. 4.2.11]. To see why this is true, recall
that RlimX is defined to be limX̂, where X̂ is a strict fibrant replacement for X.
Now X̂ → ∗ is a special fibration if and only if X̂ is a “Reedy fibrant” diagram [14,
Ch. 15]. This shows that limX̂ is one of the usual models for holimX [5, XI].

Proposition 5.3. Let X be a cofibrant object of pro-M. Let Y be any levelwise
fibrant object of pro-M with strict fibrant replacement Ŷ . Then the homotopically
correct mapping space Map(X, Ŷ ) in the strict model structure is weakly equivalent
to holimtcolimsMap(Xs, Yt).
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Proof. We may reindex Y so that it is cofinite directed and still levelwise fibrant [7,
Thm. 2.1.6]. Since Map(X, Ŷ ) is homotopically correct, it does not matter which
strict fibrant replacement Ŷ we consider. Therefore we may choose one with partic-
ularly good properties. Use the method of [19, Lem. 4.7] to factor the map Y → ∗
into a strict acyclic cofibration Y → Ŷ followed by a special fibration Ŷ → ∗. This
particular construction gives that Y → Ŷ is a levelwise weak equivalence and that
Ŷ is levelwise fibrant.

Define a new pro-space Z by setting Zt = colimsMap(Xs, Ŷt). The map Ŷt →
limu<tŶu is a fibration because Ŷ is strict fibrant. Since finite limits and directed col-
imits of simplicial sets commute, we get that the map Zt → limu<tZu is a fibration,
and Z is a strict fibrant pro-space. Therefore, the simplicial set Map(X, Ŷ ) = limtZt

is weakly equivalent to the simplicial set holimtZt because homotopy limit is the
derived functor of limit.

The map colimsMap(Xs, Yt) → colimsMap(Xs, Ŷt) is a weak equivalence because
Yt → Ŷt is a weak equivalence between fibrant objects. Homotopy limits preserve
levelwise weak equivalences, so the map

holimtcolimsMap(Xs, Yt) → holimtcolimsMap(Xs, Ŷt)

is a weak equivalence.

6. Model structures on pro-categories

The goal of this section is to construct a certain model structure on pro-M when
M is a t-model structure. First, we make a connection between t-model structures
and filtered model structures. A filtered model structure is a highly technical
generalization of a model structure that is useful for producing interesting model
structures on pro-categories [11].

We denote by Fn the class of co-n-fibrations in the t-model structure M, and
we write Cn = C for the class of cofibrations in M. Note that Cn does not really
depend on n and that it is not the class of n-cofibrations. Recall from Definition 3.2
that Wn is the class of n-equivalences.

Proposition 6.1. Let M be a t-model structure. Then (Wn, Cn, Fn) is a proper
simplicial filtered model structure on M, where the indexing set is Z with its usual
ordering.

Proof. We showed in part (2) of Lemma 3.5 that Wn is contained in Wm whenever
n 6 m. The second half of part (2) of Lemma 3.5 implies that Fm is contained in
Fn whenever n > m.

The class inj-C of maps that have the right lifting property with respect to C is
equal to the class of acyclic fibrations, while the class proj-Fn of maps that have
the left lifting property with respect to Fn is equal to the class of n-cofibrations
by Lemma 4.6. These observations are central to verification of the axioms for a
filtered model structure.

The axiom numbers below refer to [11, Sec. 4]. Axiom 4.2 follows from Lem-
ma 3.6. Axiom 4.3 follows from part (5) of Lemma 3.5, Lemma 4.4, and Corollary 4.7.
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The first half of Axiom 4.4 follows from our identification of inj-C and by part (3)
of Lemma 3.5, while the second half is immediate from the description of proj-Fn as
C ∩Wn. The first half of Axiom 4.5 is provided by factorizations into cofibrations
followed by acyclic fibrations, while the second half is Lemma 4.5. For Axiom 4.6, we
can factor an n-equivalence into a cofibration followed by an acyclic fibration; then
the cofibration is necessarily an n-cofibration. Axioms 4.9 and 4.10 are established
in Lemma 3.7. The non-trivial part of Axiom 4.12 is Proposition 4.10.

Definition 6.2. A map in pro-M is an H∗-weak equivalence if it is an essentially
levelwise Wn-equivalence for all n. Let F∞ be the union ∪nFn. A map in pro-M is
an H∗-fibration if it is a retract of a special F∞-map.

A justification for the terminology is given by Theorem 9.13, where we show
that the H∗-weak equivalences can be detected by the homology functors Hn. The
notation F∞ reflects the fact that Fn+1 contains Fn for all integers n.

The cofibrations in pro-M are the essentially levelwise cofibrations. They are the
same as the strict cofibrations (see Section 5.1), so we do not need a new name for
them.

Theorem 6.3. Let M be a t-model structure. The essentially levelwise cofibrations,
H∗-weak equivalences, and H∗-fibrations are a proper simplicial model structure on
pro-M.

This model structure on pro-M is called the H∗-model structure.

Proof. This follows immediately from Proposition 6.1 and [11, Thms. 5.15,5.16].

Theorem 6.3 applied to the Postnikov t-model structure on a category of spectra
gives the model structure on the category of pro-spectra described in the introduc-
tion.

Remark 6.4. A t-structure is constant if D>0 = D>1. Constant t-structures cor-
respond to triangulated localization functors. A localization functor is a functor L
together with a natural transformation η : 1 → L such that Lη(X) = η(LX) and
these maps are isomorphisms for all X ∈ D. The functor τ60 together with the nat-
ural transformation η0 : 1 → τ60 is always a localization functor. It is triangulated
exactly when the t-structure is constant. A constant t-model structure on a model
category M is a functorial left Bousfield localization of M with respect to the class
of maps W0 [14, 3.3.1].

The H∗-model structure associated to a constant t-model structure on a cate-
gory M is the strict model structure on pro-M obtained from the localized model
structure on M.

In order for theH∗-model structure to be useful, one needs a better understanding
of cofibrant objects and fibrant objects. Moreover, an understanding of the H∗-
acyclic cofibrations and H∗-fibrations is also useful. We study these issues next.

Cofibrant objects are easy to describe. They are just essentially levelwise cofibrant
objects.

The following proposition gives useful criteria for detecting H∗-acyclic cofibra-
tions.
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Proposition 6.5. Let f be a map in pro-M. The following are equivalent:
1. f is an H∗-acyclic cofibration.
2. f is an essentially levelwise n-cofibration for every n.
3. f has the left lifting property with respect to all constant pro-maps cX → cY

in which X → Y is a co-m-fibration for some m.

Proof. This follows from [11, Prop. 4.11, 4.12] and the lifting property characteri-
zation of n-cofibrations given in Lemma 4.6.

The H∗-fibrations are more difficult to describe. The H∗-fibrations are strict
fibrations since F∞ is contained in the class of all fibrations. We take the strict
fibrations as our starting point and characterize the H∗-fibrations among them.

Lemma 6.6. Let p : X → Y be a special fibration indexed on a cofinite directed
set S. Then p is a special F∞-map if and only if for each s ∈ S the map ps is a
co-n-fibration for some n.

Proof. We need to show that each Msp : Xs → limt<sXt ×limt<sXt Ys is in F∞ if
and only if each ps is in F∞.

By induction, it suffices to prove that if both Mtp and pt are in F∞ for all t < s,
then Msp is in F∞ if and only if ps is in F∞. We have a pullback diagram

limt<sXt ×limt<sXt Ys //

²²

Ys

²²
limt<sXt

// limt<sYt

in which the lower horizontal map is in F∞ since it is a finite composition of
base changes of the maps Mtp for t < s [11, Lem. 2.3]. Hence its base change
limt<sXt ×limt<sXt Ys → Ys is also in F∞ by Corollary 4.7.

Now ps is the composition Xs
Msp−→ limt<sXt ×limt<sXt Ys −→ Ys. If Msp belongs

to F∞, then ps is the composition of two maps in F∞ and is therefore in F∞. On
the other hand, if ps belongs to F∞, then Lemma 3.6 implies that Msp is a co-n-
equivalence for some n. Since Msp was assumed to be a fibration, this means that
Msp is a co-n-fibration and hence in F∞.

We now give a characterization of H∗-fibrations. In order to do this, let coW∞
be the union ∪ncoWn. The notation reminds us that coWn+1 contains coWn for all
integers n.

Proposition 6.7. A map in pro-M is an H∗-fibration if and only if it is a strict
fibration and an essentially levelwise coW∞-map.

Proof. If f : X → Y is a H∗-fibration, then f is a strict fibration since F∞ is con-
tained in the class of all fibrations. Since f is a retract of a special F∞-map by
definition, it is a retract of an essentially levelwise F∞-map because special F∞-
maps are essentially levelwise F∞-maps [11, Lem. 5.14]. Hence f is itself an essen-
tially levelwise F∞-map since retracts preserve essentially levelwise F∞-maps [18,
Cor. 5.6]. Finally, just observe that F∞ is contained in coW∞.
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For the other direction, we may assume that f : X → Y is a levelwise coW∞-
map indexed on a cofinite directed set. Factor f into a levelwise acyclic cofibra-
tion i : X → Z followed by a special fibration p : Z → Y using the method of [19,
Lem. 4.7]. We have that f is a retract of p.

By Lemma 6.6, we just need to show that each map ps is a co-n-fibration for
some n. Each ps is a fibration because special fibrations are levelwise fibrations [11,
Lem. 5.14]. The map ps is a co-n-equivalence for some n by Lemma 3.6 (3) since
psis is fs and is is a weak equivalence.

Finally, we are ready to identify the H∗-fibrant objects.

Definition 6.8. An object X of M is bounded above if it belongs to M6n for
some n, and bounded below if it belongs to M>n for some n.

Proposition 6.9. An object of pro-M is H∗-fibrant if and only if it is strict fibrant
and essentially levelwise bounded above.

Proof. This is immediate from Proposition 6.7, once we note that an object X of
M is bounded above if and only if the map X → ∗ belongs to coW∞.

The following corollary simplifies the construction of H∗-fibrant replacements.

Corollary 6.10. If Y is an essentially levelwise bounded above pro-object, then
there is a strict fibrant replacement Ŷ for Y such that Ŷ is also a H∗-fibrant replace-
ment for Y .

Proof. We may assume that Y is levelwise bounded above and indexed on a cofinite
directed set. Factor the map Y → ∗ into a levelwise acyclic cofibration i : Y → Ŷ
followed by a special fibration p : Ŷ → ∗ using the method of [19, Lem. 4.7]. Since i
is a levelwise weak equivalence, it follows that p is a levelwise coW∞-map and thus
a levelwise F∞-map because it is a levelwise fibration [11, Lem. 5.14]. Hence p is a
special F∞-map by Proposition 6.6, so Ŷ is H∗-fibrant.

6.1. Quillen adjunctions
In this section we give some conditions that guarantee that a Quillen adjunction

between two t-model structures M and M′ gives a Quillen adjunction between the
H∗-model structures on pro-M and pro-M′. We use this to show that the H∗-model
structure on pro-M is stable.

Recall that if F : C → C′ is a functor, then F induces another functor pro-C →
pro-C′ defined by applying F levelwise. We will abuse notation and write F also for
this functor. If G is the right adjoint of F , then the induced functor G : pro-C′ →
pro-C is the right adjoint of F : pro-C → pro-C′.
Proposition 6.11. Let M and M′ be two t-model categories and let L : M→M′

be a left adjoint of R : M′ →M. The following are equivalent:

1. The induced functors L : pro-M→ pro-M′ and R : pro-M′ → pro-M are a
Quillen adjoint pair with respect to the H∗-model structures on pro-M and
pro-M′.
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2. L : M→M′ preserves cofibrations, and for every n′, there is an n such that
L takes n-cofibrations in M to n′-cofibrations in M′.

3. R : M′ →M preserves acyclic fibrations and also preserves the class of maps
that are co-n-fibrations for some n, i.e., R(F ′∞) is contained in F∞.

Proof. This follows from [11, Lem. 3.7], [11, Thm. 6.1], and [11, Prop. 6.2]. Note
that M is a pointed model category, and the classes of n-cofibrations are closed
under retracts and arbitrary small coproducts by Lemma 4.6.

Proposition 6.12. Let M and M′ be two t-model categories, and let L : M→
M′ be a left adjoint of R : M′ →M such that the induced functors L : pro-M→
pro-M′ and R : pro-M′ → pro-M are a Quillen adjoint pair with respect to the
H∗-model structures on pro-M and pro-M′. Assume also that:

1. For every n′, there is an n such that if X → RY is in Wn with X cofibrant in
M and Y fibrant in M′, then the adjoint map LX → Y is in W ′

n′ .

2. For every n, there is an n′ such that if LX → Y is in W ′
n′ with X cofibrant

in M and Y fibrant in M′, then the adjoint map X → RY is in Wn.

Then L and R induce a Quillen equivalence between the H∗-model structures on
pro-M and pro-M′.

Proof. This follows from [11, Thm. 6.3].

For any pro-object X, the suspension X ∧ S1 is defined to be the levelwise sus-
pension of X, and the loops Map∗(S1, X) are defined to be the levelwise loops of
X.

The next theorem says that the H∗-model structure on pro-M is a stable model
structure. In particular, the H∗-homotopy category Ho(pro-M) is a triangulated
category.

Theorem 6.13. The functors − ∧ S1 and Map∗(S1,−) are a Quillen equivalence
from the H∗-model structure on pro-M to itself.

Proof. On M, the functor − ∧ S1 preserves cofibrations because M is a simpli-
cial model category. By Lemma 4.9, − ∧ S1 takes n-cofibrations in M to (n + 1)-
cofibrations. Hence − ∧ S1 is a left Quillen adjoint by Proposition 6.11. The goal of
the rest of the proof is to show that the conditions of Proposition 6.12 are satisfied.

Let g : X → Map∗(S1, Y ) be any map in M with X cofibrant and Y fibrant.
Factor g into a cofibration i : X → Z followed by an acyclic fibration p : Z →
Map∗(S1, Y ). The adjoint map f : X ∧ S1 → Y factors as X ∧ S1 → Z ∧ S1 → Y ,
where the first map is i ∧ S1 and the second is adjoint to p. Note that the second
map is a weak equivalence because M is a stable model category.

Now g is an n-equivalence if and only if i is an n-cofibration. Lemma 4.9 implies
that this occurs if and only if i ∧ S1 is an (n + 1)-cofibration, and this happens if
and only if f is an (n + 1)-equivalence. Thus g is an n-equivalence if and only if f
is an (n + 1)-equivalence, and both conditions of Proposition 6.12 are satisfied.
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7. Functorial towers of truncation functors

Recall that in Lemma 4.2, we showed that there are rigid truncation functors
τ6n : M→M6n and τ>n : M→M>n. Although these functors are well-defined
on the model category M (not just on the homotopy category D), they have a
major defect as defined previously. Namely, there are no natural transformations
τ6n+1 → τ6n and τ>n+1 → τ>n. In this section, we will modify the definition of the
truncation functors so that these natural transformations do exist.

Let X be an object of M. We will define objects T6nX for n > 0 inductively.
When n = 0, factor X → ∗ into a 1-cofibration X → T60X followed by a co-

1-fibration T60X → ∗. The object T60X belongs to M60 by definition of co-1-
equivalences.

To define T61X, factor the map X → T60X into a 2-cofibration X → T61X
followed by a co-2-fibration T61X → T60X. Note that the map T61X → ∗ is a
composition of a co-2-fibration with a co-1-fibration, so it is a co-2-equivalence by
Lemma 3.6. Therefore T61X belongs to M61 as desired.

Inductively, to construct T6nX for n > 0, assume that T6n−1X and a natural
map X → T6n−1X have already been constructed. Factor this map into an (n + 1)-
cofibration X → T6nX followed by a co-(n + 1)-fibration T6nX → T6n−1X.

The construction is summarized by the tower

· · · → T62X → T61X → T60X.

Note that we have not defined T6nX for n < 0. As far as we know, it is not
possible to define T6n for all n so that the desired natural transformations between
these functors exist.

Note also that T6n takes values in fibrant objects, and the natural map T6nX →
T6n−1X is a co-(n + 1)-fibration.

To define T>nX for n > 1, first recall that maps in M have functorial homotopy
fibers. Then T>nX is defined to be the homotopy fiber of the map X → T6n−1X.
As before, we end up with a tower

· · · → T>3X → T>2X → T>1X,

and each T>nX belongs to M>n.
The following lemma shows that T6nX and T>nX have the desired homotopy

types.

Lemma 7.1. The objects T6nX and τ6nX of M are weakly equivalent. Similarly,
the objects T>nX and τ>nX are weakly equivalent.

Proof. There is a homotopy fiber sequence T>nX → X → T6n−1X with the prop-
erty that T6n−1X belongs to M6n−1 and T>nX belongs to M>n. On D, τ6n−1 and
τ>n are the unique functors with this property (see Lemma 2.7). Therefore T6n−1

induces τ6n−1 on D, which means that T6n−1X and τ6n−1X are weakly equiva-
lent for all X. Similarly, T>n induces τ>n on D, so T>nX and τ>nX are weakly
equivalent.
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Lemma 7.2. Let Y be a pro-object indexed by a cofiltered category I. Consider the
pro-object Z indexed on I × N such that Zs,n = T6nYs. The natural map Y → Z is
an H∗-weak equivalence.

Proof. For each s and n, the map Ys → Zs,n has homotopy fiber T>n+1Ys, so this
map is an (n + 1)-equivalence. This shows that the map Y → Z is an essentially
levelwise k-equivalence for all k.

The next result shows how the functors T6n are of tremendous value in con-
structing H∗-fibrant replacements.

Proposition 7.3. Let Y be a pro-object indexed by a cofiltered category I. Con-
sider the pro-object Z indexed on I × N such that Zs,n = T6nYs. A strict fibrant
replacement for Z is an H∗-fibrant replacement for Y .

Proof. In order to construct an H∗-fibrant replacement for Y , Lemma 7.2 says that
we may construct an H∗-fibrant replacement for Z instead. Finally, Corollary 6.10
says that a strict fibrant replacement for Z is the desired H∗-fibrant replacement.

8. Homotopy classes of maps of pro-spectra

We continue to work in a t-model structure M. Recall that D is the homotopy
category of M. Let P be the H∗-homotopy category of pro-M.

The mapping space Map(X,Y ) is related to homotopy classes in the following
way [15, 6.1.2]. For every cofibrant X and H∗-fibrant Y , P(X,Y ) is isomorphic to
π0Map(X, Y ).

Lemma 8.1. When pro-M is equipped with the H∗-model structure, the constant
pro-object functor c : M→ pro-M and the limit functor lim : pro-M→M are a
Quillen adjoint pair.

Proof. Note that c preserves cofibrations and acyclic cofibrations.

Proposition 8.2. The right derived functor Rlim of lim : pro-M→M is given by
RlimY = holims,nT6nYs.

Proof. We may assume that Y is indexed by a cofinite directed set I. Let Z be the
pro-object indexed by I × N such that Zs,n equals T6nYs. Recall from Lemma 7.2
that the natural map Y → Z is an H∗-weak equivalence.

Let Ẑ be a strict fibrant replacement for Z. Corollary 6.10 says that Ẑ is an H∗-
fibrant replacement for Y , so RlimY is equal to limẐ. As observed in Section 5.1,
limẐ is the same as holimZ.

Corollary 8.3. There is a natural isomorphism

P(cX, Y ) ∼= D(X, holimt,nT6nYt)

for all X in M and all Y in pro-M. There is a natural isomorphism

P(cX, cY ) ∼= D(X, holimn→∞T6nY )

for all X and Y in M.
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Consequently, if Y → holimn→∞T6nY is a weak equivalence for all Y in M, then
the homotopy category of M embeds into the H∗-homotopy category on pro-M.

Proposition 8.4. Let X and Y be objects in pro-M. Let X̂ be a cofibrant replace-
ment of X. The homotopically correct mapping space of maps from X to Y in the
H∗-model structure is weakly equivalent to holimt,ncolimsMap(X̂s, T6nYt).

Proof. This follows by Propositions 5.3 and 7.3.

Let X and Y be objects in pro-M. In general the group P(X,Y ) is quite different
from pro-D(X,Y ). There is not even a canonical map from one to the other. The
next lemma says that under some strong conditions, the homsets in P and pro-D
agree. We choose to use conceptual proofs rather than the higher derived limit
spectral sequence relating P(X, Y ) to higher derived limits of the inverse system
{colimsD(Xs, T6nYt)}t,n of abelian groups.

Lemma 8.5. Let X and Y be two pro-objects such that Xs is in M>n for all s and
Yt is in M6n for all t. Then P(X, Y ) is isomorphic to limtcolimsD(Xs, Yt).

Proof. We may assume that X is cofibrant. By taking a levelwise fibrant replace-
ment, we may assume that each Ys is fibrant. Corollary 6.10 and Proposition 5.3
imply that the homotopically correct mapping space of maps from X to Y is
holimtcolimsMap(Xs, Yt), and we want to compute π0 of this space.

For k > 1, the only map ΣkXs → Yt in D is the trivial map because ΣkXs belongs
to D>n+k while Yt belongs to D6n. Therefore, π0Map(ΣkXs, Yt) = πkMap(Xs, Yt)
is trivial. We have just shown that Map(Xs, Yt) is a homotopy-discrete space.

Filtered colimits preserve homotopy-discrete spaces; moreover, they commute
with π0. Similarly, homotopy limits preserve homotopy-discrete spaces and respect
π0 in the sense that the set of components of a homotopy limit is the ordinary limit of
the sets of components of each space. This implies that π0holimtcolimsMap(Xs, Yt)
is equal to limtcolimsπ0Map(Xs, Yt), which is the desired result.

Corollary 8.6. Let X and Y be two pro-objects such that Xs is in M>n for all s
and Yt is in M6n−1 for all t. Then P(X, Y ) is trivial.

Proof. This follows from Lemma 8.5 and part (3) of Definition 2.1.

Corollary 8.7. If Y is a bounded above object in M and X is any object in pro-M,
then P(X, cY ) is isomorphic to colimsD(Xs, Y ).

Proof. The proof is nearly the same as the proof of Lemma 8.5. We need to com-
pute π0colimsMap(Xs, Y ). We just need to observe that π0 commutes with filtered
colimits.

Since pro-M is a model category, one may consider homotopy limits internal to
pro-M. In other words, given a diagram of pro-objects, one can form the homotopy
limit of this diagram and obtain another pro-object. We will need the following basic
result about homotopy limits of countable towers later when we discuss convergence
of spectral sequences.
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Lemma 8.8. Let M be a simplicial model category, and let D be its homotopy
category. Let X belong to M, and let

· · · → Y 2 → Y 1 → Y 0

be a countable tower in M. There is a natural short exact sequence

lim1
kD(ΣX, Y k) → D(X, holimkY k) → limkD(X, Y k).

Proof. We may assume that X is cofibrant, that each Y k is H∗-fibrant, and that
each map Y k → Y k−1 is an H∗-fibration. We have that Map(X, limkYk) is isomor-
phic to limkMap(X, Yk) since Map(X,−) is right adjoint to tensoring with X. Since
−⊗X sends acyclic cofibrations of simplicial sets to acyclic cofibrations in M, we
get that the tower Map(X,Yk) is a tower of fibrations between fibrant simplicial
sets.

Hence Map(X, limkYk) is equivalent to holimkMap(X, Y k). The claim now follows
by the lim1 short exact sequence for simplicial sets [5, IX.3.1].

9. t-model structure for pro-categories

We now define a t-structure on the H∗-homotopy category P of pro-M.

Definition 9.1. Let (pro-M)60 be the full subcategory of pro-M on all objects
that are H∗-weakly equivalent to a pro-object X such that each Xs belongs toM60.
Let (pro-M)>0 be the full subcategory of pro-M on all objects that are H∗-weakly
equivalent to a pro-object X such that each Xs belongs to M>0.

We define (pro-M)6n and (pro-M)>n to be the subcategories Σn(pro-M)60

and Σn(pro-M)>0 respectively. Recall that here Σ refers to the levelwise suspension
functor on pro-objects.

Lemma 9.2. The subcategory (pro-M)6n is the full subcategory of pro-M on all
objects that are H∗-weakly equivalent to a pro-object X such that each Xs belongs to
M6n. Similarly, the subcategory (pro-M)>n is the full subcategory of pro-M on all
objects that are H∗-weakly equivalent to a pro-object X such that each Xs belongs
to M>n.

Proof. We prove the first claim. The proof of the second claim is similar.
First suppose that X is a pro-object such that each Xs belongs to M6n. Since

Σ−n takesM6n toM60, it follows that Σ−nX belongs toM60 levelwise. Therefore
Σ−nX belongs to (pro-M)60, and X belongs to Σn(pro-M)60.

Now suppose that Y belongs to Σn(pro-M)60. It follows that Σ−nY belongs
to (pro-M)60, so it is H∗-weakly equivalent to a pro-object X such that each Xs

belongs to M60. Note that ΣnX belongs to M6n levelwise. But ΣnX is H∗-weakly
equivalent to Y . This is the desired result.

Definition 9.3. Let P6n be the full subcategory of P on all objects whose H∗-
weak homotopy types belong to (pro-M)6n. Let P>n be the full subcategory of P
on all objects whose H∗-weak homotopy types belong to (pro-M)>n.
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Proposition 9.4. The classes P>0 and P60 are a t-structure on the H∗-homotopy
category P of pro-M. Moreover, ∩nP>n consists only of contractible objects.

Proof. We verify the axioms in Definition 2.1.
For part (1), suppose that X belongs to P>0. We may assume that each Xs

belongs to M>0. Now each ΣXs belongs to M>0, so ΣX belongs to M>0 levelwise.
Thus ΣX lies in P>0. To show that P60 is closed under Σ−1, use the dual argument.

Lemma 9.2 implies that Σ−1P60 is the full subcategory of P on all objects that
are H∗-weakly equivalent to an object X such that each Xs belongs to M6−1. This
will be needed in parts (2) and (3) below.

For part (2), let X be any object in pro-M. Apply the truncation functors τ>0

and τ6−1 to obtain a levelwise homotopy cofiber sequence τ>0X → X → τ6−1X.
Finally, observe that levelwise homotopy cofiber sequences are homotopy cofiber
sequences in the H∗-model structure because levelwise cofibrations are cofibrations.
Note that we need Lemma 9.2 to conclude that τ6−1X belongs to P6−1.

Part (3) is Corollary 8.6, again using Lemma 9.2 to identify P6−1.
For the last claim, suppose that X belongs to ∩nP>n. Fix a value of n. Then

we may assume that each Xs belongs to M>n, so the map X → ∗ is a levelwise
n-equivalence. Thus X → ∗ is an H∗-weak equivalence, so X is contractible.

The subcategory ∩nP>n contains only contractible objects even if ∩nD>n con-
tains non-contractible objects. On the other hand, ∩nP6n contains only contractible
objects if and only if D = D>0.

Lemma 9.5. If all the objects of ∩nP6n are contractible, then D is equal to D>0.

Proof. Assume that there are noncontractible elements Xm ∈M6m in each degree
m. Define a pro-object {Yn} by letting Yn =

∐
m6n Xm and letting the map Yn−1 →

Yn be the canonical map (M has a zero object). Now {Yn} is in ∩n(pro-M)6n, but
{Yn} is noncontractible in pro-M: If there is a weak equivalence between {Yn} and ∗
in P, then for every n there are integers n′ and m such that in the homotopy category
D of M the map (Yn′)6m → (Yn)6m is the zero map. This gives a contradiction
since (Yn′)6m is not contractible in D for any m.

We can now identify the heart H(P) of the t-structure from Proposition 9.4.

Lemma 9.6. The category P60 ∩ P>0 is the H∗-homotopy category of the subcate-
gory pro-(M60 ∩M>0) of pro-M.

Proof. Let X be an object of P60 ∩ P>0. We need to show that X is H∗-weakly
equivalent to an object Y of pro-(M60 ∩M>0).

We may assume that X belongs to M>0 levelwise. If we apply the functors τ>1

and τ60 to X levelwise, we obtain a levelwise homotopy cofiber sequence τ>1X →
X → τ60X. This is a homotopy cofiber sequence in pro-M because cofibrations are
defined to be levelwise cofibrations. Therefore

τ>1X → X → τ60X → Στ>1X

is a distinguished triangle in P. The object τ>1X belongs to both P>1 and to P60, so
it is contractible. This means that the map X → τ60X is an H∗-weak equivalence.
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Finally, τ60X belongs to M60 levelwise by definition of τ60, and it also belongs
to M>0 levelwise because X belongs to M>0 levelwise. Thus, τ60X is the desired
pro-object Y .

As in Definition 3.2, we define an n-equivalence (resp. co-n-equivalence) in
pro-M to be a map whose homotopy fiber belongs to (pro-M)>n (resp. homo-
topy cofiber belongs to (pro-M)6n). By definition, the n-equivalences in pro-M
are different from the levelwise n-equivalences. A similar warning applies to co-n-
equivalences. However, we will show below in Lemma 9.9 that actually they coincide.

Unfortunately, we cannot conclude that pro-M has a t-model structure. Although
we can factor any map in pro-M into an n-equivalence followed by a co-n-equi-
valence, it does not seem to be possible to make this factorization functorial. Absence
of functorial factorizations is a general problem with pro-categories. However, we
will prove a slightly weaker result below in Proposition 9.8.

Lemma 9.7. If f is an essentially levelwise n-equivalence in pro-M, then f is an
n-equivalence in pro-M. If f is an essentially levelwise co-n-equivalence in pro-M,
then f is a co-n-equivalence in pro-M.

Proof. Let f be a levelwise n-equivalence. Homotopy cofibers of pro-maps can
be computed levelwise because cofibrations are defined levelwise. It follows that
hocofib f belongs to M>n+1 levelwise. Lemma 9.2 says that hocofib f belongs to
(pro-M)>n+1. By definition, f is an n-equivalence.

A similar argument proves the second claim.

Proposition 9.8. The H∗-model structure on pro-M and the t-structure on P of
Definition 9.1 are a non-functorial t-model structure on pro-M in the sense that
all the axioms of a t-model structure are satisfied except that the factorizations
in the model structure and the factorizations into n-equivalences followed by co-n-
equivalences might not necessarily be functorial.

Proof. We showed in Theorems 6.3 and 6.13 that the H∗-model structure is sim-
plicial, proper, and stable. We showed in Proposition 9.4 that Definition 9.1 is a
t-structure on P.

It remains only to produce (non-functorial) factorizations into n-equivalences
followed by co-n-equivalences. Let f : X → Y be any map in pro-M, which we may
assume is a levelwise map. Using that the t-model structure on M has functorial
factorizations, we may factor f into a levelwise n-equivalence g : X → Z followed
by a levelwise co-n-equivalence h : Z → Y . Finally, Lemma 9.7 implies that g is an
n-equivalence in pro-M, and h is a co-n-equivalence in pro-M.

Lemma 9.9. A map in pro-M is an n-equivalence if and only if it is an essentially
levelwise n-equivalence. A map in pro-M is a co-n-equivalence if and only if it is
an essentially levelwise co-n-equivalence.

Proof. We prove the first claim. The proof of the second claim is dual.
One direction was already proved in Lemma 9.7. For the other direction, suppose

that f : X → Y is an n-equivalence in pro-M. We may assume that f is a directed
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cofinite level map. Factor f into a levelwise cofibration i : X → Z followed by a
special acyclic fibration p : Z → Y . The map p is anH∗-weak equivalence, so i is also
an n-equivalence in pro-M. Moreover, the map p is a levelwise weak equivalence. The
class of essentially levelwise n-equivalences is closed under composition (the proof
of [19, Lem. 3.5] applies), so it suffices to show that i is an essentially levelwise
n-equivalence.

We know that i is an n-cofibration in pro-M, so it has the left lifting property
with respect to all co-n-fibrations. Factor the map i into a levelwise n-cofibration
j : X → W followed by a special co-n-fibration q : W → Z. The map q is a co-n-
fibration in pro-M, so i has the left lifting property with respect to q, by Lemma 4.6.
Thus the retract argument shows that i is a retract of j. But essentially levelwise
n-cofibrations are closed under retract [18, Cor. 5.6], so i is an essentially levelwise
n-cofibration and thus an essentially levelwise n-equivalence.

Lemma 9.10. The strict homotopy category of pro-(M60 ∩M>0) is the same as
the H∗-homotopy category of pro-(M60 ∩M>0).

Proof. In order to compute strict weak homotopy classes from X to Y , one needs
to take a strict cofibrant replacement X̃ of X and a strict fibrant replacement Ŷ of
Y . But X̃ is also an H∗-cofibrant replacement for X, and Corollary 6.10 says that
Ŷ is an H∗-fibrant replacement for Y .

We would like a description of the heart of the t-structure on P. We have not been
able to identify the heart in complete generality. However, in the primary applica-
tions to chain complexes or to spectra, we can identify it using Proposition 9.11.

Proposition 9.11. Suppose that there is a “rigidification” functor K : H(D) →
M60 ∩M>0 such that the composition H(D) →M60 ∩M>0 → H(D) is the iden-
tity. Then the heart H(P) of the H∗-homotopy category on pro-M is equivalent to
the category pro-H(D).

For spectra, the functor K takes an abelian group A to a functorial model for
the Eilenberg-MacLane spectrum HA. For chain complexes, K takes an R-module
A to the chain complex with value A concentrated in degree 0.

Proof. Since K extends to a levelwise functor pro-H(D) → pro-(M60 ∩M>0), this
gives us a functor F : pro-H(D) → H(P) after composition with the usual quotient
functor (because the quotient functor takes pro-(M60 ∩M>0) into both P60 and
P>0).

On the other hand, the quotient functor M60 ∩M>0 → H(D) extends to a
levelwise functor pro-(M60 ∩M>0) → pro-H(D). This functor takes levelwise weak
equivalences to (levelwise) isomorphisms, so the functor factors through the strict
homotopy category of pro-(M60 ∩M>0). Lemma 9.10 implies that the functor also
factors through the H∗-homotopy category of pro-(M60 ∩M>0), which is the same
as H(P) by Lemma 9.6. Thus we obtain a functor G : H(P) → pro-H(D).

It remains to show that F and G are inverse equivalences. The composition FG is
the identity because of the original assumption on K. On the other hand, for every
pro-object X, GFX is levelwise weakly equivalent to X. Thus GF is isomorphic to
the identity.
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Without a rigidification functor, the most we can say is stated in the following
lemma.

Lemma 9.12. The functor G : H(P) → pro-H(D)n, from the proof of Proposi-
tion 9.11, is fully faithful.

Proof. See Lemma 8.5.

As promised in Section 6, we now recharacterize H∗-weak equivalences in terms
of the pro-homology functors Hn.

Theorem 9.13. A map f : X → Y in pro-M is an H∗-weak equivalence if and
only if it is an essentially levelwise m-equivalence for some m and Hn(f) is an
isomorphism in pro-H(D) for all n.

Proof. This is an application of Theorem 3.8 to the H∗-model structure. The
hypothesis of that theorem is proved at the end of Proposition 9.4. We also need
Lemma 9.9 to identify the m-equivalences in pro-M. Finally, we need Lemma 9.12
to recognize that a map g is an isomorphism in H(P) if and only if G(g) is an
isomorphism in pro-H(D) (where G is the functor of Lemma 9.12).

10. The Atiyah-Hirzebruch spectral sequence

In this section we construct a spectral sequence for computing in the homotopy
category of a t-model structure. We will also specialize this construction to the
case of H∗-model structures on pro-categories. Applied to the homotopy category
of spectra with the Postnikov t-structure, we recover the Atiyah-Hirzebruch spectral
sequence for spectra.

Recall from Definition 2.11 that τ6qτ>qY is isomorphic to ΣqHq(Y ), whereHq(Y )
is the q-th homology of Y with values in the heart of the t-structure. Also recall from
Definition 2.13 that H−p(X; E) is the −p-th cohomology of X with E-coefficients,
where E belongs to the heart H(D).

For brevity we write [X,Y ]n instead of D(X, Σ−nY ).

Theorem 10.1. For any X and Y in a t-model category M, there is a spectral
sequence with

E2
p,q = H−p(X;Hq(Y )).

The spectral sequence conditionally converges to [X, Y ]p+q if holimq→∞T>qY is con-
tractible and if X is bounded below.

The construction of the spectral sequence is standard (for example, see [4, Sec.
12] or [13, App. B]). Conditional convergence of spectral sequences is defined in [4,
Defn. 5.10].

To set up the spectral sequence, we only use the t-structure on the homotopy
category, but we use homotopy theory to state the convergence criterion. We are
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using the functors T>q rather than the functors τ>q so that we obtain an actual
tower

· · · → T>q+1Y → T>qY → T>q−1Y → · · ·
whose homotopy limit we can consider. Recall that there are not necessarily maps
τ>q+1Y → τ>qY .

Proof. Consider the filtration

· · · → T>q+1Y → T>qY → T>q−1Y → · · ·
of Y . We have a distinguished triangle

T>q+1Y → T>qY → ΣqHq(Y ) → ΣT>q+1Y

in D by Lemma 2.17. If we apply the functor [X,−]p+q and set D2
p,q = [X, T>qY ]p+q

and E2
p,q = [X, ΣqHq(Y )]p+q, we get an exact couple

D2
(1,−1) // D2

(0,0)}}||
||

||
||

E2

(−2,1)

aaBBBBBBBB

with the bidegrees of the maps indicated. This gives a spectral sequence where dr

has bidegree (−r, r − 1). This follows from the definition of the differentials given
after [4, 0.6].

Now we consider conditional convergence. Recall from [4, 5.10] that we need to
show that the limit limp→−∞D2

p,n−p and the derived limit lim1
p→−∞D2

p,n−p are both
zero, while the map colimp→∞D2

p,n−p → [X, Y ]n is an isomorphism.
For the limit and the derived limit, Lemma 8.8 gives us a short exact sequence

lim1
p→−∞[X, T>n−pY ]n+1 → [X, holimp→−∞T>n−pY ]n → limp→−∞[X, T>n−pY ]n.

The middle group is zero by our assumption, so the first and last groups are also
zero.

For the colimit, we claim that the map colimp→∞D2
p,n−p → [X, Y ]n is an isomor-

phism for all n if and only if colimq→∞[X, T6n−qY ]n is zero for all n. This follows
from the distinguished triangle T>n−pY → Y → T6n−p−1Y → ΣT>n−pY and the
fact that directed colimits of abelian groups respect exact sequences. Under our
assumption, X is weakly equivalent to τ>mX for some m, so [X,T6n−qY ]n is zero
whenever q > −m. Thus colimq→∞[X, T6n−qY ]n is zero.

We now specialize to the homotopy category P of the H∗-model structure on
pro-M. We first give a lemma which shows that one of the conditions in Theo-
rem 10.1 is always satisfied.

Lemma 10.2. For any Y in pro-M, holimq→∞T>qY is contractible in the H∗-
homotopy category P.

Proof. Each map T>q+1Y → T>qY is a fibration, so the homotopy limit is the same
as the ordinary limit limq→∞T>qY . If I is the indexing category for Y , then one
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model for this limit is the pro-object Z indexed by I × N such that Zs,q = T>qYs

[18, 4.1].
The map Zs,q → ∗ is an n-equivalence whenever q > n. This shows that Z → ∗ is

an essentially levelwise n-equivalence for all n, so it is an H∗-weak equivalence.

Theorem 10.3. Let M be a t-model category. Let X and Y be objects in pro-M.
There is a spectral sequence with

E2
p,q = H−p(X;Hq(Y ))

The spectral sequence converges conditionally to P(X, Σ−p−qY ) if:

1. X is uniformly essentially levelwise bounded below (i.e., each Xs belongs to
M>n for some fixed n), or

2. if Y is a constant pro-object and X is essentially levelwise bounded above (i.e.,
each Xs belongs to M>n for some n depending on s).

Recall that the object Hq(Y ) by definition belongs to the heart H(P) of the H∗-
homotopy category. However, when the conditions of Proposition 9.11 are satisfied,
we can also view Hq(Y ) as the object of pro-H(D) obtained by applying Hq to Y
levelwise. When Y is a constant pro-object (i.e., belongs to M, not pro-M), then
Hq(Y ) belongs to H(D).

Proof. The spectral sequence and conditional convergence under the first hypothesis
follow from Theorem 10.1 and Lemma 10.2. Observe that an object X in pro-M is
bounded below (in the sense that it belongs to P>n for some n if and only if X is
uniformly essentially levelwise bounded above); this follows from Lemma 9.2.

As in the last paragraph of the proof of Theorem 10.1, it remains to show
that under the second hypothesis, colimq→∞P(X, Σ−nT6n−qY ) vanishes for all n.
Because Y is a constant pro-object, Corollary 8.7 implies that the colimit is isomor-
phic to

colimq→∞colimsD(Xs, Σ−nT6n−qY ).

Now exchange the colimits. By hypothesis, Xs belongs to M>m for some m. Then
D(Xs, Σ−nT6n−qY ) = 0 for q > −m, so colimq→∞D(Xs, Σ−nT6n−qY ) vanishes for
each s.

11. Tensor structures on pro-categories

In this section we give some basic results about tensor structures on pro-cate-
gories.

Let C be a tensor category. There is a levelwise tensor structure on pro-C
given by letting {Xa} ⊗ {Yb} be the pro-object {Xa ⊗ Yb}. The unit object of pro-C
is the constant pro-object with value the unit object in C. We only consider tensor
structures on pro-C that are levelwise tensor structures inherited from a tensor
structure on C.

If C is a cocomplete category, then pro-C is a cocomplete category [17, 11.1]. We
recall the description of arbitrary direct sums and of coequalizers in pro-C.
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Let A be an indexing set and let Xα ∈ pro-C for α ∈ A be a set of pro-objects in
C. Let Iα be the cofiltered indexing category of the pro-object Xα. The coproduct∐

α∈A Xα in pro-M is the pro-object

{∐α∈A Xα
iα
}

indexed on the cofiltered category
∏

α Iα.
Up to isomorphism we can assume that a coequalizer diagram is given by levelwise

maps {Xa} ⇒ {Ya}. The coequalizer is the pro-object {coeq(Xa ⇒ Ya)} obtained
by forming the coequalizer levelwise in C.

We now consider how direct sums and tensor products interact. Let Y be a
pro-object indexed on J . We have that

∐
α∈A(Xα ⊗ Y ) is the pro-object

{∐α(Xα
iα
⊗ Yjα

)}
indexed on

∏
α(Iα × J). We also have that (

∐
α Xα)⊗ Y is the pro-object

{(∐α Xα
iα

)⊗ Yj}
indexed on (

∏
α Iα)× J . There is a canonical map from

∐
α(Xα ⊗ Y ) to (

∐
α Xα)⊗

Y .

Lemma 11.1. Let C be a cocomplete tensor category. If the tensor product in C
commutes with finite direct sums (coequalizers), then the tensor product in pro-C
also commutes with finite direct sums (coequalizers).

Proof. This follows by cofinality arguments.

The tensor product on pro-C might not commute with arbitrary direct sums
even if C is a closed tensor category. In particular, the tensor structure on pro-C is
typically not closed.

Example 11.2. Let C be a tensor category with arbitrary direct sums. Assume that
the tensor product on C commutes with arbitrary direct sums. Then the tensor
product with a constant pro-object in pro-C respects arbitrary direct sums. In gen-
eral, however, tensor product with a pro-object does not commute with arbitrary
direct sums. Let X be a pro-object indexed on natural numbers. The canonical map
(
∐∞

0 c(I))⊗X → ∐∞
0 (c(I)⊗X) is the map

{∐∞
i=0 Xni}{ni}∈NN → {∐∞

i=0 Xn}n∈N .

Assume that this map is an isomorphism; then there is an integer n and integers
ni > 0such that

∐∞
i=0 Xni+n+i →

∐∞
i=0 Xi factors through

∐∞
i=0 Xn. Hence the map

is typically not a pro-isomorphism.
In particular, the tensor product on the category of pro-abelian groups does not

respect arbitrary sums.

In a closed tensor category C, the tensor product with any object in C respects
epic maps. The same is true for a tensor product on pro-C, even though the tensor
product is not closed.

Lemma 11.3. Let C be a closed tensor category. Then the tensor product on pro-C
respects epic maps.
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Proof. A pro-map f : X → Y is epic if and only if for any b in the indexing category
B of Y and any two maps Yb ⇒ Z, for some Z ∈ C, which equalize f composed with
the projection to Yb, there is a map Yb′ → Yb which also equalizes the two maps to
Z.

Let f : X → Y be an epic map. Assume that f ⊗ 1W equalizes the two maps
Y ⊗W ⇒ Z where Z is an object in C. Given two maps Yb ⊗Wk ⇒ Z. Assume that
f ⊗ 1W composed with the projection to Yb ⊗Wk equalize the two maps. Then there
is an a and a k′ so that Xa ⊗Wk′ → Yb ⊗Wk equalizes these two maps. We have
that Xa → Yb equalizes the two adjoint maps Yb ⇒ F (Wk′ , Z), where F denote the
inner hom functor. Hence by the assumption that f is epic there is a map Yb′ → Yb

which also equalizes the two maps. Now use the adjunction one more time to get the
conclusion that Yb′ ⊗Wk′ → Yb ⊗Wk equalizes the two maps Yb ⊗Wk ⇒ Z.

One might consider monoids in pro-C. This is a more flexible notion than pro-
objects in the category of pro-(C-monoids). The category of monoids in pro-C is the
category of algebras for the monad TX =

∐
n>0 X⊗n. The category of commutative

monoids in pro-C is the category of algebras for the monad PX =
∐

n>0 X⊗n/Σn.

Lemma 11.4. Let C be a complete and cocomplete closed tensor category. Then the
category of (commutative) monoids in pro-C is complete and cocomplete.

Proof. We can follow [8, II.7]. The proof of Proposition II.7.2 in [8] only uses that
the tensor product commutes with finite colimits and respects epimorphisms. This
holds by Lemmas 11.1 and 11.4. Hence the result follows from [8, II.7.4].

12. Tensor model categories

We give conditions that guarantee that a tensor product on a model category
M induces a tensor product on the homotopy category of M. We also give more
specific conditions for a t-model category which guarantee that the induced tensor
product respects the triangulated structure and the t-structure on its homotopy
category.

The pushout product axiom for cofibrations says that if f : X → Y and
f ′ : X ′ → Y ′ are cofibrations, then the pushout product map

(X ⊗ Y ′)q(X⊗X′) (Y ⊗X ′) → (Y ⊗ Y ′)

is a cofibration, and if in addition f or g is a weak equivalence, then the pushout
product map is also a weak equivalence.

Definition 12.1. A tensor model category M is a model category with a tensor
product such that

1. M satisfies the pushout product axiom for cofibrations, and
2. the functors −⊗ C and C ⊗− take weak equivalences to weak equivalences

for all cofibrant objects C in M.

See Hovey [15, 4.2.6] for more details on tensor model categories. Our definition
is slightly stronger than his. If M is a tensor model category, then there is a tensor
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product on the homotopy category D of M [15, 4.3.2]. The homotopically correct
tensor product is given by first making a cofibrant replacement of at least one of
the two objects and then forming the tensor product.

Let M be a pointed simplicial model category and a symmetric tensor category.
Let ρ be the functor from simplicial sets to M obtained by applying the simplicial
tensorial structure on M to the unit object in M.

Definition 12.2. We say that the tensor structure and the simplicial structure on
M are compatible if there is a natural isomorphism between the simplicial tensorial
structure and the functor Id⊗ ρ, restricted to finite simplicial complexes.

Lemma 12.3. Let M be a simplicial t-model category and a tensor category. If
the tensor product and the simplicial structure are compatible, then the simplicial
structure and the levelwise tensor structure on pro-M with the strict or H∗-model
structures are also compatible.

Proof. For finite simplicial complexes, the simplicial tensorial structure on pro-M
is given by applying the simplicial structure on M levelwise [17, Sec. 16]. Hence
for a finite simplicial set K, we have that X ⊗ ρ(K) is naturally isomorphic to the
simplicial tensor of X with K.

We only consider the most näıve compatibility of the tensor structure and the
triangulated structure on the homotopy category of a stable model category.

Lemma 12.4. Let M be a symmetric tensor model category with a compatible based
simplicial structure. Assume the tensor product respects pushouts. Then there is a
tensor triangulated structure on the homotopy category D in the sense of a nonclosed
version of [16, A.2].

We make use of the following property of a tensor triangulated category in
Proposition 12.11: There are natural isomorphisms (ΣX)⊗ Y → Σ(X ⊗ Y ) and
X ⊗ ΣY → Σ(X ⊗ Y ) such that the following holds. If X → Y → Z → ΣX is a
distinguished triangle, then X ⊗W → Y ⊗W → Z ⊗W → Σ(X ⊗W ) is again a
distinguished triangle, where the last map is Z ⊗W → (ΣX)⊗W → Σ(X ⊗W ),
and similarly when the triangle is tensored by W from the left.

Proof. The unit and associativity conditions stated in [16, A.2] follows from the
corresponding results for the tensor product. The results stated above follows since
the tensor product respects homotopy cofibers by our assumption.

Next we give a compatibility of the tensor structure with respect to the t-model
structure. The conditions are used Proposition 12.11 to get a multiplicative structure
on the Atiyah-Hirzebruch spectral sequence.

Definition 12.5. Let D be a triangulated category. A t-structure D>0 and D60 and
a tensor structure on D are compatible if D>0 is closed under the tensor product.

Thus for all integers i and j we have that if X ∈ D>i and Y ∈ D>j , then X ⊗ Y ∈
D>i+j .



Homology, Homotopy and Applications, vol. 9(1), 2007 434

Remark 12.6. If the t-structure on D is not constant, then the unit object of any
tensor structure compatible with the t-structure on D must be an object in D>0.

Proposition 12.7. Let M be a tensor model category. Then pro-M with the strict
model structure is also a tensor model category. In particular, there is an induced
tensor structure on its homotopy category. If in addition, the simplicial structure
is compatible with the tensor product, then the homotopy category is a triangulated
tensor category.

Proof. The pushout product axiom holds, since the pushout product map can be
defined levelwise.

Let f be a weak equivalence in pro-M. We can assume that f is a levelwise weak
equivalence {fs : Xs → Ys}. We can furthermore assume that the cofibrant object
is a levelwise cofibrant pro-object {Zt} indexed on a directed set T . We get that
{fs} ⊗ {Zt} and {Zt} ⊗ {fs} are levelwise weak equivalences. The last statement
follows from Lemmas 12.3 and 12.4.

We do not get an induced tensor structure on the homotopy category P of pro-M
with the H∗-model structure when M is a t-model category and a tensor model
category. This does not even hold when the t-structure and the tensor structure
on D respect each other. But in this case we do get a tensor product on the full
subcategory of P consisting of objects that are essentially levelwise bounded below.

Definition 12.8. Let M be a t-model category. Let M>−∞ be the full subcate-
gory of M with objects Xsuch that X ∈M>n for some n.

The category pro-M>−∞ is the strictly full subcategory of pro-M consisting of
objects that are essentially levelwise bounded below. It is larger than the category
(pro-M)>−∞.

Lemma 12.9. Let M be a t-model category. Then the category M>−∞ inherits a
t-model structure from M.

The model structure M>−∞ has only finite colimits and limits. The classes
of cofibrations, weak equivalences, and fibrations are all inherited from the full
inclusion functor M>−∞ →M.

Proof. If f : X → Y is a map in M>−∞, and X
g→ Z → Y is a factorization of f

as an n-equivalence followed by a co-n-equivalence in M, then Z is also in M>−∞:
Assume that X ∈M>m for some m. In the homotopy category of M we have a tri-
angle hofib (g) → X

g→ Z. Hence by Corollary 2.6 we have that Z is in D>min{m,n},
so Z ∈M>−∞. A similar argument shows that we have functorial factorizations of
any map in M>−∞ as an acyclic cofibration followed by a fibration and as a cofi-
bration followed by an acyclic fibration. The rest of the t-model category axioms
are inherited from M.

Proposition 12.10. Let M be a t-model category with a tensor model structure
such that the tensor product on D is compatible with the t-structure. Then the
model category pro-M>−∞ is a tensor model category and the tensor product on
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its homotopy category is compatible with the t-structure. If in addition, the simpli-
cial structure and the tensor structure on M are compatible, then Ho (pro-M>−∞)
is a tensor triangulated category.

Proof. Let f be a weak equivalence in pro-M. We can assume that f is a levelwise
map {fs : Xs → Ys} indexed on a directed set S such that for all n there is an sn

such that fs is n-connected for all s > sn [11, 3.2]. We can assume that the cofibrant
object is a pro-object {Zt} indexed on a directed set T such that Zt ∈ D>nt and
each Zt is cofibrant. We use that tensoring with a cofibrant object has the correct
homotopy type. The indexing set {s, t ∈ S × T | conn(fs) + conn(Xt) > n} is cofinal
in S × T . Hence we have that {fs} ⊗ {Zt} is an essentially levelwise n-equivalence
for all n.

The first part of the pushout-product axiom follows by considering two levelwise
cofibrations. When one of the maps is a levelwise acyclic cofibration, we use the
previous paragraph and Lemma 3.7 to show that the pushout-product map is also
a weak equivalence. The last statement follows from Lemmas 12.3 and 12.4.

12.1. Multiplicativity in the Atiyah-Hirzebruch spectral sequence
We show that if Y is a monoid in a tensor triangulated category with a t-structure

that is compatible with the tensor structure, then the Atiyah-Hirzebruch spectral
sequence is multiplicative.

Proposition 12.11. Let D be a symmetric tensor triangulated category with a com-
patible t-structure. Let Y be a monoid in D. Then the spectral sequence in 10.1 is
multiplicative.

Proof. For convenience, let hn denote τ6nτ>n
∼= ΣnHn. It suffices to prove that we

have unique dotted maps

Y>i ⊗ Y>j
f //

²²

Y>i+j

²²
hi(Y )⊗ hj(Y )

g // hi+j(Y )

where f is compatible with the multiplication on Y . Consider the square

Y>i ⊗ Y>j

²²

f // Y>i+j

²²
Y ⊗ Y // Y // Y6i+j−1.

Since Y>i ⊗ Y>j ∈ D>i+j , we get that the map from Y>i ⊗ Y>j to Y6i+j−1 vanishes.
Hence there is a lift to Y>i+j . This lift is unique since the difference of two lifts
factors through Σ−1Y6i+j−1 ∈ D6i+j−2. Hence there is a unique map f . We now
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prove that there is a unique map g between the cohomology. Consider the square

Y>i+1 ⊗ Y>j // Y>i ⊗ Y>j //

²²

Y>i+j

²²
hi(Y )⊗ Y>j

// hi+j(Y ).

Since Y>i+1 ⊗ Y>j ∈ D>i+j+1 and ΣY>i+1 ⊗ Y>j ∈ D>i+j+2, we get that there is
a unique map making the diagram commute. A similar argument with the dis-
tinguished triangle Y>j+1 → Y>j → hj(Y ) → ΣY>j+1 tensored from the right by
hi(Y ) gives a unique map hi(Y )⊗ hj(Y ) → hi+j(Y ) compatible with Y>i ⊗ Y>j →
Y>i+j .

The following remark says that it suffices to consider monoids in the homotopy
category of pro-M with the strict model structure to get a multiplicative structure
on the Atiyah-Hirzebruch spectral sequence of Theorem 10.3.

Remark 12.12. We can apply Theorem 10.1 to the homotopy category of pro-M
with the strict model structure and with the levelwise t-structure. We get a spectral
sequence that is isomorphic to the spectral sequence obtained from P with the
levelwise t-structure. This is seen by inspecting the definition of D2, E2 and the
differentials using Propositions 5.3 and 8.4.
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