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A CONVENIENT CATEGORY FOR DIRECTED

HOMOTOPY

L. FAJSTRUP AND J. ROSICKÝ∗

Abstract. We propose a convenient category for directed ho-
motopy consisting of preordered topological spaces generated by
cubes. Its main advantage is that, like the category of topological
spaces generated by simplices suggested by J. H. Smith, it is locally
presentable.

1. Introduction

We propose a convenient category for doing directed homotopy whose
main advantage is its local presentability. It is based on the suggestion
of J. H. Smith to use ∆-generated topological spaces as a convenient
category for usual homotopy. His suggestion was written down by D.
Dugger [7] but it turns out that it is not clear how to prove that the
resulting category is locally presentable. We will present the missing
proof and, in fact, we prove a more general result saying that for each
fibre-small topological category K and each small full subcategory I,
the category KI of I-generated objects in K is locally presentable. In
the case of J. H. Smith, we take as K the category Top of topological
spaces and continuous maps and as I the full subcategory consisting of
simplices ∆n, n = 0, 1, . . . , n, . . . . Recall that a category K is topologi-
cal if it is equipped with a faithful functor U : K → Set to the category
of sets such that one can mimick the formation of ”initially generated
topological spaces” (see [2]). The category d-Space of d-spaces (in
the sense of [11]) is topological and its full subcategory generated by
suitably ordered cubes is our proposed convenient category for directed
homotopy.
The idea of suitably generated topological spaces is quite old and

goes back to [18] and [17] where the aim was to get a cartesian closed
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2 L. FAJSTRUP AND J. ROSICKÝ

replacement ofTop. The classical choice of I is the category of compact
Hausdorff spaces. The insight of Smith is that the smallness of I makes
TopI locally presentable. By [18] 3.3, Top∆ is even cartesian closed.

2. Locally presentable categories

A category K is locally λ-presentable (where λ is a regular cardinal) if
it is cocomplete and has a setA of λ-presentable objects such that every
object of K is a λ-directed colimit of objects from A. A category which
is locally λ-presentable for some regular cardinal λ is called locally pre-
sentable. Recall that an object K is λ-presentable if its hom-functor
hom(K,−) : K → Set preserves λ-filtered colimits. We will say that K
is presentable if it is λ-presentable for some regular cardinal λ. A useful
characterization is that a category K is locally presentable if and only
if it is cocomplete and has a small dense full subcategory consisting of
presentable objects (see [3], 1.20).
A distinguished advantage of locally presentable categories are the

following two results. Recall that, given morphisms f : A → B and
g : C → D in a category K, we write

f�g (f ⊥ g)

if, in each commutative square

A
u //

f

��

C

g

��
B v

// D

there is a (unique) diagonal d : B → C with df = u and gd = v.
For a class H of morphisms of K we put

H� = {g|f�g for each f ∈ H},
�H = {f |f�g for each g ∈ H},

H⊥ = {g|f ⊥ g for each f ∈ H},
⊥H = {f |f ⊥ g for each g ∈ H}.

The smallest class of morphisms of K containing isomorphisms and
being closed under transfinite compositions and pushouts of morphisms
from H is denoted as cof(H) while the smallest class of morphisms of
K closed under all colimits (in the category K→ of morphisms of K)
and containing H is denoted as colim(H).
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Given two classes L and R of morphisms of K, the pair (L,R) is
called a weak factorization system if

(1) R = L�, L = �R

and

(2) any morphism h of K has a factorization h = gf with f ∈ L
and g ∈ R.

The pair (L,R) is called a factorization system if condition (1) is re-
placed by

(1’) R = L⊥, L = ⊥R.

While the first result below can be found in [4] (or [1]), we are not
aware of any published proof of the second one.

Theorem 2.1. Let K be a locally presentable category and C a set of
morphisms of K. Then (cof(C), C�) is a weak factorization system in
K.

Theorem 2.2. Let K be a locally presentable category and C a set of
morphisms of K. Then (colim(C), C⊥) is a factorization system in K.

Proof. It is easy to see (and well known) that

colim(C) ⊆ ⊥(C⊥).

It is also easy to see that g : C → D belongs to C⊥ if and only if
it is orthogonal in K ↓ D to each morphism f : (A, vf) → (B, v)
with f ∈ C. By [3], 4.4, it is equivalent to g being injective to a
larger set of morphisms of K ↓ D. Since this larger set is constructed
using pushouts and pushouts in K ↓ D are given by pushouts in K,
g : C → D belongs to C⊥ if and only if it is injective in K ↓ D to each
morphism f : (A, vf) → (B, v) with f ∈ C̄ where C̄ is given as follows
Given f ∈ C, we form the pushout of f and f and consider a unique
morphism f ∗ making the following diagram commutative

A
f //

f

��

B

p2

��
idB

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B p1
//

idB

''PPPPPPPPPPPPPPPPPPPPPPPPPP A∗

f∗

  A
AA

AA
AA

AA
AA

AA
A

B
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Then f ∗ belongs to colim(C) because it is the pushout of f : f → idB

and f : f → idB in K→ and f, idB ∈ colim(C):

B
idB //

idB

��

B

idB

��

A

f
``@@@@@@@

f //

f

��

B
idB

>>||||||||

p2

��
B

idB~~~~
~~

~~
~

p1
// A∗

f∗

  B
BB

BB
BB

B

B
idB

// B

Since C̄ is a set, (cof(C̄), C̄�) is a weak factorization system (by 2.1).
We have shown that

C̄� = C⊥

and

C̄ ⊆ colim(C).

The consequence is that

cof(C̄) ⊆ colim C.

It follows from the fact that each pushout of a morphism f belongs to
colim({f}) (see [13], (the dual of) M13) and a transfinite composition
of morphisms belongs to their colimit closure. In fact, given a smooth
chain of morphisms (fij : Ki → Kj)i<j<λ (i.e., λ is a limit ordinal,
fjkfij = fik for i < j < k and fij : Ki → Kj is a colimit cocone for
any limit ordinal j < λ), let fi : Ki → K be a colimit cocone. Then
f0, which is the transfinite composition of fij is a colimit in K→ of the
chain

K0

idK0 //

f00

��

K0
//

f01

��

K0

f0

��
K0

f01

// K1
// K

Thus we have

cof(C̄) ⊆ ⊥(C⊥).

Conversely
⊥(C⊥) ⊆ �(C⊥) = �(C̄�) = cof(C̄).

We have proved that (colim(C), C⊥) is a factorization system. �
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3. Generated spaces

A functor U : K → Set is called topological if each cone

(fi : X → UAi)i∈I

in Set has a unique U -initial lift (f̄i : A → Ai)i∈I (see [2]). It means
that

(1) UA = X and Uf̄i = fi for each i ∈ I and
(2) given h : UB → X with fih = Uh̄i, h̄i : B → Ai for each i ∈ I

then h = Uh̄ for h̄ : B → A.

Each topological functor is faithful and thus the pair (K, U) is a con-
crete category. Such concrete categories are called topological. The
motivating example of a topological category is Top.

Example 3.1. (1) A preordered set (A,≤) is a set A equipped with
a reflexive and transitive relation ≤. It means that it satisfies the
formulas

(∀x)(x ≤ x)

and
(∀x, y, z)(x ≤ y ∧ y ≤ z → x ≤ z).

Morphisms of preordered sets are isotone maps, ie., maps preserving
the relation ≤. The category of preordered sets is topological. The
U -initial lift of a cone (fi : X → UAi)i∈I is given by putting a ≤ b on
X if and only if fi(a) ≤ fi(b) for each i ∈ I.
(2) An ordered set is a preordered set (A,≤) where ≤ is also anti-

symmetric, i.e., if it satisfies

(∀x, y)(x ≤ y ∧ y ≤ x→ x = y).

The category of ordered sets is not topological because the underlying
functor to sets does not preserve colimits.

All three formulas from the example are strict universal Horn formu-
las and the difference between the first two and the third one is that
antisymmetry uses the equality. It was shown in [16] that this situation
is typical. But one has to use the logic L∞,∞ (see [6]). It means that
one has a class of relation symbols whose arities are arbitrary cardinal
numbers and one uses conjunctions of an arbitrary set of formulas and
quantifications over an arbitrary set of variables. A relational universal
strict Horn theory T without equality then consists of formulas

(∀x)(ϕ(x) → ψ(x))

where x is a set of variables and ϕ, ψ are conjunctions of atomic formu-
las without equality. The category of models of a theory T is denoted
by Mod(T ).
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Theorem 3.2. Each fibre-small topological category K is isomorphic
(as a concrete category) to a category of models of a relational universal
strict Horn theory T without equality.

This result was proved in [16], 5.3. A theory T can consist of a proper
class of formulas. When T is a set, Mod(T ) is locally presentable (see
[3], 5.30). The theory for Top is given by an ultrafilter convergence
(see [16], 5.4) and it was presented by Manes [15]. This theory is not a
set of formulas. The category Top is far from being locally presentable
because it does not have a small dense full subcategory (see [3], 1.24(7))
and no non-discrete space is presentable ([3], 1.14(6)).
A cone (f̄i : A→ Ai)i∈I is U -initial if it satisfies condition (2) above.

Topological functors can be characterized as functors U such that each
cocone (fi : UAi → X)i∈I has a unique U -final lift (f̄i : Ai → A)i∈I
(see [2], 21.9). It means that

(1’) UA = X and Uf̄i = fi for each i ∈ I and
(2’) given h : X → UB with hfi = Uh̄i, h̄i : Ai → B for each i ∈ I

then h = Uh̄ for h̄ : A→ B.

A cocone (f̄i : Ai → A)i∈I is called U -final if it satisfies the condition
(2’).

Definition 3.3. Let (K, U) be a topological category and I a full
subcategory of K. An object K of K is called I-generated if the cocone
(C → K)C∈I consisting of all morphisms from objects of I to K is
U -final.

Let KI denote the full subcategory of K consisting of I-generated
objects. Using the terminology of [2], KI is the final closure of I in K
and I is finally dense in KI .

Remark 3.4. Let I be a full subcategory of Top. A topological space
X is I-generated if it has the property that a subset S ⊆ X is open if
and only if f−1(S) is open for every continuous map f : Z → X with
Z ∈ I. Thus we get I-generated spaces of [7] in this case.
We follow the terminology of [7] although it is somewhat mislead-

ing because, in the classical case of I consisting of compact Hausdorff
spaces, the resulting I-generated spaces are called k-spaces. A com-
pactly generated space should also be weakly Hausdorff (see, e.g., [12]).

Proposition 3.5. Let (K, U) be a topological category and I a full
subcategory. Then KI is coreflective in K and contains I as a dense
subcategory.

Proof. By [2], 21.31, KI is coreflective in K. Since I is finally dense in
KI , it is dense. �
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The coreflector R : K → KI assigns to K the smallest I-generated
object on UK.
A concrete category (K, U) is called fibre-small provided that, for

each set X , there is only a set of objects K in K with UK = X .

Theorem 3.6. Let (K, U) be a fibre-small topological category and let
I be a full small subcategory of K. Then the category KI is locally
presentable.

Proof. By 3.2, K is concretely isomorphic to Mod(T ) where T is a
relational universal strict Horn theory without equality. We can express
T as a union of an increasing chain

T0 ⊆ T1 ⊆ . . . Ti ⊆ . . .

of subsets Ti indexed by all ordinals. The inclusions Ti ⊆ Tj , i ≤ j
induce functors Hij : Mod(Tj) → Mod(Ti) given by reducts. Anal-
ogously, we get functors Hi : Mod(T ) → Mod(Ti) for each i. All
these functors are concrete (i.e., preserve underlying sets) and have
left adjoints

Fij : Mod(Ti) → Mod(Tj)

and
Fi : Mod(Ti) → Mod(T ).

These left adjoints are also concrete and Fi(A) is given by the U -initial
lift of the cone

f : Ui(A) → U(B)

consisting of all maps f such that f : A → Hi(B) is a morphism in
Mod(Ti). The functors Fij are given in the same way. Since these
left adjoints are concrete, they are faithfull and it immediately follows
from their construction that they are also full. Thus we have expressed
Mod(T ) as a union of an increasing chain of full coreflective subcate-
gories

Mod(T0) ⊆ Mod(T1) ⊆ . . .Mod(Ti) ⊆ . . .

indexed by all ordinals. Moreover, all these coreflective subcategories
are locally presentable.
Let I be a full small subcategory of K. Then there is an ordinal

i such that I ⊆ Mod(Ti). Consequently, KI ⊆ Mod(Ti) and thus
KI is a full coreflective subcategory of a locally presentable Mod(Ti)
having a small dense full subcategory I. Since I is a set, there is a
regular cardinal λ such that all objects from I are λ-presentable in
Mod(Ti) (see [3], 1.16). Since KI is closed under colimits in Mod(Ti),
each object from I is λ-presentable in KI . Hence KI is locally λ-
presentable. �
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Corollary 3.7. Let I be a small full subcategory of Top. Then the
category TopI is locally presentable.

Remark 3.8. Let K be a category such that the coreflective closure
KI of each small full subcategory I of K is locally presentable. Then
K is a union of a chain

K0 ⊆ K1 ⊆ . . .Ki ⊆

of full coreflective subcategories which are locally presentable. It suf-
fices to express K as a union of a chain

I0 ⊆ I1 ⊆ . . .Ii ⊆

of small full subcategories and pass to

KI0 ⊆ KI1 ⊆ . . .KIi ⊆

Theorem 3.9. Let I be a full subcategory of Top containing discs
Dn and spheres Sn, n = 0, 1, . . . . Then the category TopI admits
a cofibrantly generated model structure, where cofibrations and weak
equivalences are the same as in Top.

Proof. Analogous to [12], 2.4.23. �

4. Generated ordered spaces

In order to get our convenient category for directed homotopy, we
have to replace Top by a suitable category of ordered topological
spaces. We have considered two such categories:

• The category PTop of preordered topological spaces. Its ob-
jects are topological spaces whose underlying set is preordered.
Morphisms are continuous maps f s.t. x ≤ y ⇒ f(x) ≤ f(y).

• The category d-Space of topological spaces X with a set of
paths ~P (X) ⊂ XI (see 4.1).

These are all topological categories, i.e., the forgetful functor to Set

is topological, and they are directed. We would like to have directed
loops in the category, i.e., the circle S1 with counterclockwise direction.
In PTop we require transitivity, and hence, a relation relating pairs of
points on the circle eiθ ≤ eiφ when θ ≤ φ, will be the trivial relation in
PTop

In d-Space, [11] the directions are represented in the allowed paths

and not as a relation on the space itself. On a d-space, (X, ~P (X)) the

relation x ≤ y if there is γ ∈ ~P (X) s.t. γ(0) = x and γ(1) = y is gives a
functor from d-Space to PTop. In the other direction, the increasing
continuous maps from ~I to a space in PTop will give a set of dipaths,
hence a functor to d-Space.
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Definition 4.1. The objects in d-Space are pairs (X, ~P (X)), where

X is a topological space and ~P (X) ⊂ XI satisfies

• All constant paths are in ~P (X)

• ~P (X) is closed under concatenation and increasing reparametriza-
tion.

~P (X) is called the set of dipaths or directed paths.

A morphism f : (X, ~P (X)) → (Y, ~P (Y )) is a continuous map f :

X → Y s.t. γ ∈ ~P (X) implies f ◦ γ ∈ ~P (Y )

In d-Space we do have directed circles.

Theorem 4.2. d-Space is a topological category.

Proof. Let T be a relational universal strict Horn theory without equal-
ity giving Top and using relation symbols Rj , j ∈ J . We add a new
continuum-ary relation symbol R whose interpretation is the set of
directed paths. We add to T the following axioms:

(1) (∀x)R(x) where x is the constant,
(2) (∀x, y, z)(

∧

0<i≤ 1

2

zt = xt ∧
∧

0<i≤ 1

2

z 1

2
+i = yi ∧ x1 = y0 ∧ R(x) ∧

R(y) → R(z)),
(3) (∀x)(R(x) → R(xt) where t is an increasing reparametrization,
(4) (∀x)(R(x) → Rj(xa)) where j ∈ J and I satisfies Rj for a.

The resulting relational universal strict Horn theory axiomatizes d-
spaces. In fact, (1) makes each constant path directed, (2) says that
directed paths are closed under concatenation, (3) says that they are
closed under increasing reparametrization and (4) says that they are
continuous. �

Remark 4.3. (i) A d-space is called saturated if it satisfies the converse
implication to (3):
(5) (∀x)(R(xt) → R(x) where t is an increasing reparametrization

It means that a path is directed whenever some of its increasing repa-
rametrizations is directed. Thus saturated d-spaces also form a topo-
logical category.
(ii) There is, of course, a direct proof of 4.2. By [2], 21.9, it suffices

to see that the forgetful functor U : d-Space → Set satisfies: For any
cocone (fi : UAi → X) there is a unique U-final lift (f̄i : Ai → A), i.e.,
there is a unique d-Space structure on X such that h : X → UB is
a d-morphism whenever h ◦ fi is a d-morphism for all i. The topology
is defined by V open if and only if f−1

i (V ) open for all i. Let ~P (A)
be the closure under concatenation and increasing reparametrization
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of the set of all constant paths and all fi ◦ γ where γ ∈ ~P (Ai). It is not
hard to see, that this is a U -final lift.

Corollary 4.4. Let I be a small full subcategory of d-Space. Then
the category d-SpaceI is locally presentable.

Definition 4.5. Let B be the full subcategory of d-Space with objects
all cubes I1 × I2 × . . . × In where Ik is either the unit interval with
the trivial order (i.e., a ≤ b for all a, b) or the unit interval with the
standard order. The (pre)order on I1 × I2 × . . . × In is the product
relation. The dipaths are the increasing paths wrt. this relation.

Notation 4.6. Let I denote the unit interval with the trivial order
and let ~I denote the unit interval with the standard order.

Corollary 4.7. The category d-SpaceB is locally presentable.

We consider the category d-SpaceB a suitable framework for study-
ing the directed topology problems arising in concurrency. One reason
for this is, that the geometric realization of a cubical complex is in
d-SpaceB. These are geometric models of Higher Dimensional Au-
tomata, see [9]. In [9], the directions on the spaces are given via a local
partial order and not as d-spaces, but the increasing paths wrt. the
local partial order are precisely the dipaths in the d-space structure.
For directed homotopy theory, this category is also suitable:

Definition 4.8. Let f, g : X → Y be d-maps. A d-homotopy [11] is

a d-map H : X × ~I → Y s.t. H(x, 0) = f(x) and H(x, 1) = g(x); the
d-homotopy equivalence relation is the reflexive transitive hull of this
relation. A d-homotopy of dipaths γ, µ with common initial and final
points is a d-map H : ~I × ~I → Y s.t. H(t, 0) = γ(t), H(t, 1) = µ(t)
and H(0, s) = γ(0) = µ(0) and H(1, s) = γ(1) = µ(1).
A dihomotopy [9] is unordered along the homotopy coordinate: H :

X × I → Y . This gives an equivalence relation without closing off.
Dihomotopic dipaths are defined as above - with fixed endpoints.

Since we allowed both the trivially ordered interval and the naturally
ordered interval in B, the category d-SpaceB is convenient for both
kinds of directed homotopy.
Globes have been considered as models for higher dimensional au-

tomata, in [10]. A globe on a non-empty (d-)space X is the unreduced

suspension X × ~I/(x, 1) ∼ ∗1, (x, 0) ∼ ∗0. If X is in d-SpaceB then
clearly so is the globe of X as a coequalizer. The globe of the empty
set is the d-space of two disjoint points, which is also in d-SpaceB
The elementary globes, the globe of an unordered ball, are equivalent

to the globe of an unordered cube, which is in our category.
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5. Dicoverings

In [8], dicoverings, i.e., coverings of directed topological spaces are
introduced as a counterpart of coverings in the undirected case. The
categorical framework there is (subcategories of) locally partially or-
dered spaces. It turns out, that it is not obvious which category, one
should choose to get universal dicoverings. With the framework here,
we have a setting which on the one hand is much more general than
the almost combinatorial one of cubical sets, and on the other hand, it
is not as general as locally partially ordered topological spaces, where
dicovering theory is certainly not well behaved. In [8] we consider di-
coverings with respect to a basepoint, a fixed initial point.

Definition 5.1. Let p : Y → X be a morphism in d-Space, let x0 ∈ X .
Then p is a dicovering wrt. x0 if for all y0 ∈ p−1(x0) and all γ ∈ ~P (X)
with γ(0) = x0, there is a unique lift γ̂ with γ̂(0) = y0:

{0} //
� _

��

Y

p

��
~I

γ̂
>>}

}
}

}
} γ // X

And for all H : I × ~I → X with H(s, 0) = x0, there is a unique lift Ĥ:

(I × {0}, I × {0}) //
� _

��

(Y, y0)

p

��

(I × ~I, I × {0})

Ĥ

66n
n

n
n

n
n

H // (X, x0)

In the present framework however, we will consider lifting properties
wrt. all initial points: Let J be the coequalizer

I

g
--

f

11 I × ~I // J

where f(x) = (0, 0) and g(x) = (x, 0).

Definition 5.2. Let p : Y → X be a morphism in d-Space. Then p
is a dicovering, if for all γ ∈ ~P (X) there is a unique lift γ̂

{0} //
� _

��

Y

p

��
~I

γ̂
>>}

}
}

}
} γ // X
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and for all H : J → X there is a unique lift

∗ //
� _

��

Y

p

��
J

γ̂
??~

~
~

~ γ // X

where ∗ is the point (x, 0) ∈ J.

Hence, a dicovering is a morphism p : Y → X which has the unique
right lifting property with respect to the inclusions C = {0 → ~I, ∗ →
J}. Hence

Proposition 5.3. A morphism p : Y → X in d-Space is a dicovering
if and only if it is in C⊥.

Definition 5.4. A universal dicovering of X ∈ d-SpaceB is a mor-
phism π : X̃ → X such that for any dicovering p : Y → X in d-SpaceB,
there is a unique morphism φ : X̃ → Y such that π = p ◦ φ.

Corollary 5.5. Let X ∈ PTopB. Then there is a universal dicovering
π : X̃ → X, and it is unique.

Proof. This follows from 2.2, since d-SpaceB is locally presentable. Let

0
w

−−→ X̃
u

−−→ X

be the (colim(C), C⊥) factorization of the unique morphism from the
initial object 0 (the empty set) to X . Then u : X̃ → X is a universal
dicovering of X . In fact, each dicovering

v : Y → X

has a unique factorization through u. It suffices to apply the unique
right lifting property to

X̃
u // X

0

OO

// Y

v

OO

�

In [8], we construct a “universal” dicovering π : X̃ → X by endowing
the set of dihomotopy classes of dipaths initiating in a fixed point
x0 with a topology and a local partial order. If all points in X are
reachable by a directed path from x0 and if X is in d-SpaceB the
construction here and the underlying d-space of the locally partially
ordered space X̃ in [8] should coincide, but we do not have a proof of
this yet.
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[3] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories,
Cambridge University Press 1994

[4] T. Beke, Sheafifiable homotopy model categories, Math. Proc. Cambr. Phil.
Soc. 129 (2000), 447-475.

[5] F. Borceux, Handbook of Categorical Algebra, II., Cambridge University
Press 1994.

[6] M. A. Dickmann, Large Infinitary languages, North-Holland 1975.

[7] D. Dugger, Notes on Delta-generated spaces,
http://darkwing.uoregon.edu/∼ddugger.

[8] L. Fajstrup, Dicovering Spaces, Homology Homotopy Appl. 5, 2003, no.2,
pp. 1-17.

[9] L. Fajstrup, E. Goubault and M. Raussen, Algebraic topology and Con-

currency Theoret. Comput. Sci. 2006, vol. 357, nr. 1-3, s. 241-278.

[10] P. Gaucher, E. Goubault, Topological deformation of Higher Dimensional

Automata Homology Homotopy Appl. 5 (2003), no. 2, 39–82 (electronic).

[11] M.Grandis, Directed Homotopy Theory I, Cah. Topol. Géom. Diff. Cat. 44
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