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Abstract. We study the category of algebras over the sphere G-spectrum of
a compact Lie group G. A priori, this category depends on which representa-
tions appear in the underlying universe on which G-spectra are indexed, but
we prove that different universes give rise to equivalent categories of point-
set level algebras. The relevant change of universe functors are defined on
categories of modules over sphere spectra and induce the classical change of
universe functors (which are not equivalences!) on passage to stable homotopy
categories. In particular, we show how to construct equivariant algebras from
nonequivariant algebras by change of universe. This gives a reservoir of equi-
variant examples to which recently developed algebraic techniques in stable
homotopy theory can be applied.

1. Introduction

In [4], Kriz, Mandell, and the authors developed a theory of highly struc-
tured ring, module, and algebra spectra. Although that paper was written non-
equivariantly, its first stated result was the blanket assertion that all of the rest of
its general theoretical results apply verbatim to G-spectra for a compact Lie group
G. An exposition from the equivariant point of view will appear in [10]. We here
begin to explore such highly structured equivariant spectra.

The ground category for the theory of [4] (see also [3]) is the category MS of
S-modules, where S is the sphere spectrum; its derived category DS is obtained by
inverting the weak equivalences and is equivalent to the classical stable homotopy
category. The ground category we are most interested in is the category of SG-
modules, where SG is the sphere G-spectrum indexed on a complete G-universe;
its derived category is equivalent to the Lewis-May equivariant stable homotopy
category [8] (see also [6]).

A G-universe is a countably infinite dimensional real inner product space U with
an action of G through linear isometric isomorphisms such that U is the colimit
of its finite dimensional representations V , the trivial representation occurs in U ,
and each irreducible representation that occurs in U occurs infinitely often. For a
universe U , a G-spectrum E indexed on U is a collection of based G-spaces EV
and suitably compatible homeomorphisms EV −→ ΩW−V EW for V ⊂ W , where
W −V is the orthogonal complement of V in W . We let GS U denote the category
of G-spectra indexed on U and let hGS U be its homotopy category. The associated
“stable homotopy category” h̄GS U is obtained from hGS U by adjoining inverses
to the weak equivalences.

We obtain different stable homotopy categories of G-spectra depending on which
representations occur in U . In fact, Lewis [7] recently proved that the stable homo-
topy categories of G-spectra indexed on universes U and U ′ are equivalent if and
only if the orbits G/H that embed in U are the same as the orbits that embed in U ′.
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If only the trivial representation occurs in U , then we say that U is a trivial universe
and we obtain what are called naive G-spectra. In particular, any nonequivariant
spectrum may be regarded as a naive G-spectrum with trivial G-action. If all irre-
ducible representations occur in U , then we say that U is a complete universe and
we obtain what are called genuine G-spectra, or simply G-spectra. We obtain a
trivial universe UG from a universe U by passing to fixed points.

A crucial feature of the equivariant world is change of universe. A G-linear
isometry f : U −→ U ′ induces a point-set level change of universe functor f∗ :
GS U −→ GS U ′, which in turn induces a functor f∗ : h̄GS U −→ h̄GS U ′ on
stable homotopy categories. For example, there is a change of universe functor
i∗ : GS UG −→ GS U associated with the inclusion i : UG −→ U . When G is
complete, it assigns a genuine G-spectrum to a naive G-spectrum. The point-set
level functors f∗ do not preserve highly structured ring, module, and algebra spec-
tra. We shall obtain new point-set level change of universe functors that do preserve
highly structured ring, module, and algebra spectra and that become equivalent to
the functors f∗ on passage to stable homotopy categories.

We let SU denote the sphere G-spectrum indexed on a G-universe U . When U is
a fixed given complete G-universe, we write SG = SU and S = SUG . Thus SG is the
genuine sphere G-spectrum and S is the nonequivariant sphere spectrum regarded
as a naive G-spectrum with trivial action by G. Let GMSU

denote the category of
SU -modules and let hGMSU

be its homotopy category. Let GDSU
be the derived

category of SU -modules; it is obtained from hGMSU by adjoining inverses to the
weak equivalences, which are the maps of SU -modules that are weak equivalences
of underlying G-spectra. We view the category MS of nonequivariant S-modules
as the full subcategory of G-trivial modules in the category GMS of equivariant
S-modules.

The categories GDSU and h̄GS U are equivalent, and Lewis’s result shows how
this category depends on U . In contrast, we shall prove the startling fact that the
point-set level categories GMSU , and also their homotopy categories hGMSU , are
independent of U , up to natural equivalence of categories. There is no contradiction:
the relevant change of universe functors do not preserve weak equivalences and so
do not pass to equivalences of derived categories. The point-set level equivalences
of categories preserve rings, modules, and algebras.

Recall that a functor between symmetric monoidal categories is said to be
monoidal if it preserves the given products and unit objects up to isomorphisms
that are suitably compatible with the respective unity, associativity, and commu-
tativity isomorphisms. Such a functor necessarily preserves monoids, commutative
monoids, and objects with actions by monoids. In the category GMSU of SU -
modules, the monoids are the SU -algebras R and the objects with action by R
are the R-modules M . These notions are defined in terms of maps of SU -modules
SU −→ R, R ∧SU

R −→ R, and R ∧SU
M −→ M such that the usual diagrams

commute. See [4, II§§3-4] for discussion and for comparison with the earlier defini-
tions of A∞ and E∞ ring G-spectra; the discussion is given nonequivariantly, but
it applies verbatim equivariantly. We shall prove the following formal result.

Theorem 1.1. Let U and U ′ be G-universes. There is a monoidal equivalence of
categories

IU ′
U : GMSU

−→ GMSU′ .
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Therefore, if R is an SU -algebra and M is an R-module, then IU ′
U R is an SU ′-

algebra and IU ′
U M is an IU ′

U R-module.

By Lewis’s result, the functor IU ′
U cannot induce an equivalence of derived cat-

egories in general. The following result shows that, if there is a G-linear isometry
f : U −→ U ′, then the functor on derived categories induced by IU ′

U becomes equiv-
alent to f∗ : h̄GS U −→ h̄GS U ′ when we forget the module structures. Thus our
new point-set level change of universe equivalences pass to derived categories to
give new models for the homotopical change of universe functors between derived
categories. The details depend on the Quillen model category structures that the
theory of [4] assigns to all categories in sight. We use the term “q-cofibrant” for
Quillen cofibrant objects in a given category.

Theorem 1.2. Let f : U −→ U ′ be a G-linear isometry. Then there is a natural
map α : f∗M −→ IU ′

U M of G-spectra indexed on U ′ that is a homotopy equiva-
lence for every SU -module M in a class ĒSU

of SU -modules that includes all q-
cofibrant SU -modules, all q-cofibrant SU -algebras, and all q-cofibrant commutative
SU -algebras.

Replacing the pair (U,U ′) by the pair (UG, U) for a given complete G-universe
U and replacing f by the inclusion i : UG −→ U , we obtain the following special
cases of the previous two theorems.

Corollary 1.3. There is a monoidal equivalence of categories

IU
UG : GMS −→ GMSG .

Therefore, if R is an S-algebra and M is an R-module, then IU
UGR is an SG-algebra

and IU
UGM is an IU

UGR-module.

Corollary 1.4. There is a natural map α : i∗M −→ IU
UGM of genuine G-spectra

that is a homotopy equivalence for every S-module M in a class ĒS of S-modules
that includes all q-cofibrant S-modules, all q-cofibrant S-algebras, and all q-cofibrant
commutative S-algebras.

We conclude that IU
UG gives a point-set level model for the change of universe

functor i∗ : h̄GS UG −→ h̄GS U that carries highly structured naive G-spectra (or
nonequivariant spectra) to highly structured genuine G-spectra. This has consid-
erable constructive power. A major gap in equivariant stable homotopy theory is
that equivariant infinite loop space theory has not yet been developed for compact
Lie groups: we do not have a recognition principle that allows us to construct G-
spectra, let alone highly structured G-spectra, from space level data. Our results
partially rectify this by showing how to construct highly structured G-spectra from
highly structured spectra.

In a companion paper [1], Benson and Greenlees use the following special case
of the construction to study the ordinary cohomology of the classifying space BG.
For an SG-algebra RG and a G-space X, the function G-spectrum F (X+, RG) is an
SG-algebra, commutative if RG is so, with product induced by the product of RG

and the diagonal on X [4, VII.2.10]. Let Σ∞G denote the suspension G-spectrum
functor.

Corollary 1.5. If R is a commutative S-algebra, then F (EG+, IU
UGR) is a com-

mutative SG-algebra. If R is q-cofibrant, then F (EG+, IU
UGR) represents R-Borel
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cohomology on based G-spaces X. Precisely,

[Σ∞(EG×G X)+, R]∗ ∼= [Σ∞G X+, F (EG+, IU
UGR)]∗SG

.

Proof. On the left, we understand maps in the classical stable homotopy category.
On the right, we understand maps in the derived category of SG-modules, which
is equivalent to the Lewis-May stable homotopy category of G-spectra; we denote
maps in the latter category by [−,−]∗G. The first of the following isomorphisms is
standard (e.g. [5, 0.3, 0.7]). The second follows from the natural isomorphism of
functors i∗◦Σ∞ ∼= Σ∞G , the commutation of the suspension G-spectrum functor with
smash products with G-spaces, and adjunction. The third is a direct consequence
of Corollary 1.4 and the cited equivalence of categories.

[Σ∞(EG×G X)+, R]∗ ∼= [i∗Σ∞(EG×X)+, i∗R]∗G
∼= [Σ∞G X+, F (EG+, i∗R)]∗G
∼= [Σ∞G X+, F (EG+, IU

UGR)]∗SG
. ¤

Benson and Greenlees apply this with R taken to be the Eilenberg-MacLane
spectrum Hk associated to a commutative ring k. Such Eilenberg-MacLane spectra
are commutative S-algebras by multiplicative infinite loop space theory [9] and the
theory of [4].

2. Formal results on change of universe

All change of universe functors are obtained as examples of twisted half-smash
products. Let U and U ′ be G-universes and let I (U,U ′) be the space of linear
isometries U −→ U ′, with G acting by conjugation. Let A be a G-space and let
α : A −→ I (U,U ′) be a G-map. The twisted half-smash product is a functor
GS U −→ GS U ′, written AnE on objects; this is an abuse of notation since the
functor depends on α and not just A. Different α give rise to equivalent functors
on passage to derived categories. See [4, I§§2,3] for a summary of the properties
of this functor and [8, Ch. VI] for details of its construction. A new and simpler
construction has been obtained recently by Cole [2].

A G-linear isometry f : U −→ U ′ may be regarded as a G-map {∗} −→ I (U,U ′).
The corresponding twisted half-smash product functor is denoted f∗ : GS U −→
GS U ′. The existence of such a G-linear isometry ensures that I (U,U ′) is a G-
contractible G-space [8, II.1.5], and it follows that different choices of f give rise to
equivalent functors on passage to stable homotopy categories. These are the stan-
dard change of universe functors. However, there is a more canonical choice, namely
I (U,U ′) n E. For reasonable G-spectra, namely tame ones, the G-equivalence
{∗} −→ I (U,U ′) determined by f induces a homotopy equivalence of G-spectra
f∗E −→ I (U,U ′)n E [4, I.2.5]; see also [2].

We now sketch the equivariant versions of the basic definitions of [4, I, II]. The
details are identical with those given there. Fix a universe U . There is a monad L
on the category GS U such that LE = I (U,U)nE. The unit and product of L are
induced by the inclusion of the identity isometry in I (U,U) and by the composition
product I (U,U) × I (U,U) −→ I (U,U). An L-spectrum is an algebra over the
monad L, and a map of L-spectra is a map of algebras over L.

Given two L-spectra M and N , their operadic smash product is the L-spectrum

M ∧L N = I (U ⊕ U,U)nI (U,U)×I (U,U) (M ∧N).
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Here ∧ on the right is the external smash product GS U ×GS U −→ GS (U ⊕U).
The construction is made precise by a coequalizer diagram based on the evident
right action of I (U,U)×I (U,U) on I (U ⊕U,U) and a left action of I (U,U)×
I (U,U) on M ∧ N induced by the actions of I (U,U) on M and N ; the details
are just like those in the following definition. The term “operadic” refers to the
operad L in the category of G-spaces whose jth G-space is L (j) = I (U j , U).
The operadic smash product is associative and commutative, and there is a natural
weak equivalence λ : SU ∧L M −→ M .

An SU -module is an L-spectrum M for which λ is an isomorphism, and a map
of SU -modules is a map of L-spectra between them. For SU -modules M and N ,
M ∧L N is again an SU -module and is denoted M ∧SU N . This smash product
of SU -modules is commutative, associative, and unital, with unit SU . That is, the
category GMSU

of SU -modules is symmetric monoidal under its smash product.
We obtain the homotopy category hGMSU

by identifying homotopic maps of SU -
modules, and we obtain the derived category GDSU

by adjoining formal inverses to
the maps of SU -modules that are weak equivalences as maps of G-spectra . This is
made rigorous by CW-approximation. We emphasize that all of this applies to any
G-universe U .

With motivation exactly as in the definition of the smash product over L , this
leads us inexorably to the following version of our change of universe functors.

Definition 2.1. Fix universes U and U ′ and write L and L′ for the respective
monads in GS U and GS U ′ and L and L ′ for the respective operads of G-spaces.
For an L-spectrum M , define an L′-spectrum IU ′

U M by

IU ′
U M = I (U,U ′)nI (U,U) M.

That is, IU ′
U M is the coequalizer displayed in the diagram

I (U,U ′)n (I (U,U)nM)
γnid //
idnξ

// I (U,U ′)nM // IU ′
U M.

Here ξ : I (U,U)nM −→ M is the given action of L on M . We regard I (U,U ′)×
I (U,U) as a space over I (U,U ′) via the composition product

γ : I (U,U ′)×I (U,U) −→ I (U,U ′),

and there results a natural isomorphism

I (U,U ′)n (I (U,U)nM) ∼= (I (U,U ′)×I (U,U))nM.

This makes sense of the map γ n id in the diagram. The required left action of
I (U ′, U ′) on IU ′

U M is induced by the composition product

γ : I (U ′, U ′)×I (U,U ′) −→ I (U,U ′),

which induces a natural map of coequalizer diagrams on passage to twisted half-
smash products.

We need the following easy observation, in which we do not restrict to universes.

Lemma 2.2. Let U , U ′, and U ′′ be G-inner product spaces. Assume that either U
is nonequivariantly isomorphic to U ′ or U ′ is nonequivariantly isomorphic to U ′′.
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Then the diagram

I (U ′, U ′′)×I (U ′, U ′)×I (U,U ′)
γ×id //
id×γ

// I (U ′, U ′′)×I (U,U ′)
γ // I (U,U ′′)

is a split coequalizer of spaces and therefore a coequalizer of G-spaces. Thus

I (U,U ′′) ∼= I (U ′, U ′′)×I (U ′,U ′) I (U,U ′).

Proof. Define maps

h : I (U,U ′′) −→ I (U ′, U ′′)×I (U,U ′)

and
k : I (U ′, U ′′)×I (U,U ′) −→ I (U ′, U ′′)×I (U ′, U ′)×I (U,U ′)

as follows. If s : U −→ U ′ is an isomorphism, define

h(f) = (f ◦ s−1, s) and k(g′, g) = (g′, g ◦ s−1, s).

If t : U ′ −→ U ′′ is an isomorphism, define

h(f) = (t, t−1 ◦ f) and k(g′, g) = (t, t−1 ◦ g′, g).

In the first case, γ ◦ h = id, (id×γ) ◦ k = id, and (γ × id) ◦ k = h ◦ γ. In the second
case, γ ◦ h = id, (γ × id) ◦ k = id, and (id×γ) ◦ k = h ◦ γ. In either case, this
proves that we have a split coequalizer of spaces. Since coequalizers of G-spaces are
created in the underlying category of spaces, it follows that we have a coequalizer
of G-spaces, although not necessarily a split one. ¤

Let GS U [L] denote the category of L-spectra. Write Σ∞U for the suspension G-
spectrum functor from the category GT of based G-spaces to GS U . This functor
takes values in GS U [L] and in fact in GMSU

[4, II.1.2].

Proposition 2.3. Let U , U ′, and U ′′ be G-universes. Consider the functors

IU ′
U : GS U [L] −→ GS U ′[L′] and Σ∞U : GT −→ GS U [L].

(i) IU ′
U ◦ Σ∞U is naturally isomorphic to Σ∞U ′ .

(ii) IU ′′
U ′ ◦ IU ′

U is naturally isomorphic to IU ′′
U .

(iii) IU
U is naturally isomorphic to the identity functor.

Therefore the functor IU ′
U is an equivalence of categories with inverse IU

U ′ . Moreover,
the functor IU ′

U is continuous and satisfies IU ′
U (M ∧X) ∼= (IU ′

U M)∧X for L-spectra
M and based G-spaces X. In particular, it is homotopy preserving, and IU ′

U and
IU
U ′ induce inverse equivalences of homotopy categories.

Proof. For (i), we view GT as the category of “G-spectra indexed on {0}” and have
that (Σ∞U )(X) is isomorphic to I ({0}, U) n X. By [4, I.2.2(ii)] and the previous
lemma, we find

(IU ′
U ◦Σ∞U )(X) ∼= [I (U,U ′)×I (U,U) I ({0}, U)]nX ∼= I ({0}, U ′)nX ∼= (Σ∞U ′)(X).

For (ii), [4, I.2.2(ii)] and the previous lemma give that

(IU ′′
U ′ ◦ IU ′

U )(M) ∼= [I (U ′, U ′′)×I (U ′,U ′) I (U,U ′)]nI (U,U) M ∼= IU ′′
U M.

Part (iii) is trivial since the relevant coequalizer splits. The topologies on the
Hom sets of our categories are discussed in [4, VII§2]. The claimed continuity is
easily checked, and commutation with smash products with spaces follows from the
analogous property of twisted half-smash products [4, I.2.2(iv)]. ¤
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These conclusions pass from L-spectra to GMSU -modules to give the following
elaboration of Theorem 1.1. Remember that the smash product of SU -modules is
their smash product as L-spectra.

Theorem 2.4. The following statements hold.
(i) IU ′

U SU is canonically isomorphic to SU ′ .
(ii) For L-spectra M and N , there is a natural isomorphism

ω : IU ′
U (M ∧L N) ∼= (IU ′

U M) ∧L ′ (IU ′
U N).

(iii) The following diagram commutes for all L-spectra M :

IU ′
U (SU ∧L M)

ω //

IU′
U λ &&MMMMMMMMMM

SU ′ ∧L ′ (IU ′
U M)

λxxppppppppppp

IU ′
U M.

(iv) M is an SU -module if and only if IU ′
U M is an SU ′-module.

Therefore the functors IU ′
U and IU

U ′ restrict to inverse monoidal equivalences of
categories between GMSU

and GMSU′ that induce inverse monoidal equivalences
of categories between hGMSU and hGMSU′ .

Proof. The isomorphism in (i) is obtained by applying (i) of the previous proposi-
tion to the space S0. For (ii), [4, I.2.2(ii)], Lemma 2.2, and a slight generalization
of its analog [4, I.5.4] give that

IU ′
U (M ∧L N)

= I (U,U ′)nI (U,U) [I (U2, U)nI (U,U)2 (M ∧N)]
∼= [I (U,U ′)×I (U,U) I (U2, U)]nI (U,U)2 (M ∧N)
∼= I (U2, U ′)nI (U,U)2 (M ∧N)

and

(IU ′
U M) ∧L ′ (IU ′

U N)

= I ((U ′)2, U ′)nI (U ′,U ′)2 (I (U,U ′)nI (U,U) M) ∧ (I (U,U ′)nI (U,U) N)
∼= [I ((U ′)2, U ′)×I (U ′,U ′)2 I (U,U ′)2]nI (U,U)2 (M ∧N)
∼= I (U2, U ′)nI (U,U)2 (M ∧N).

Now (iii) is an exercise from the definition of λ in [4, I.8.3] and (iv) follows from
(iii) since λ is an isomorphism if and only if IU ′

U λ is an isomorphism. ¤

3. Homotopical results on change of universe

Obviously, the functor IU ′
U cannot preserve weak equivalences in general. To

obtain a functor GDSU
−→ GDSU′ , we take an SU -module M , construct a weak

equivalence ΓM −→ M , where ΓM is a CW SU -module, and then apply the functor
IU ′
U . This loses the good formal properties that we have just discussed. Moreover,

we see that passage to derived categories in this fashion cannot preserve composition
of functors. Since the functor on derived categories induced by IU

U is still the
identity, we cannot have IU

U ′ ◦ IU ′
U
∼= IU

U : GDSU
−→ GDSU

, as the case U ′ = UG

makes abundantly clear. The point is that, on the level of derived categories,
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(IU
U ′ ◦ IU ′

U )(X) means IU
U ′(ΓIU ′

U ΓX), and, because of the reapproximation in the
middle, this need not and generally will not be equivalent to IU

U ΓX.
Suppose given a G-linear isometry f : U −→ U ′ and consider the composite

α : f∗M −→ I (U,U ′)nM −→ I (U,U ′)nI (U,U) M = IU ′
U M,

where M is an L-spectrum. As we have already pointed out, the first arrow is a
homotopy equivalence when M is tame, for example, when M has the homotopy
type of a G-CW spectrum. We shall prove that the second arrow, and therefore α,
is a homotopy equivalence for a large class of SU -modules.

Fix U for the moment. For a G-spectrum X and j ≥ 0, define an L-spectrum
DjX by

DjX = L (j)nΣj Xj , where L (j) = I (U j , U).
By convention, D0X = SU for any X; D1X = I (U,U)nX is the free L-spectrum
generated by X. If M is a CW L-spectrum, then M is homotopy equivalent to LX
for some G-CW spectrum X [4, I.4.7]. The functor SU ∧L (?) converts L-spectra to
SU -modules [4, II.1.3]. If M is a CW SU -module, then M is homotopy equivalent
to SU ∧L (LX) for some G-CW spectrum X [4, II.1.9].

We repeat the following definition from [4, VII.6.4].

Definition 3.1. Let ESU
be the collection of SU -modules of the form

SU ∧L DjX,

where X is any G-spectrum of the homotopy type of a G-CW spectrum and j ≥
0. Let ĒSU

be the closure of ESU
under finite ∧SU

-products, wedges, pushouts
along cofibrations, colimits of countable sequences of cofibrations, and homotopy
equivalences.

Clearly all SU -modules of the homotopy types of G-CW SU -modules are in ĒSU
.

This class also contains an SU -algebra weakly equivalent to any given SU -algebra.
In fact, there are Quillen model structures on the categories of SU -algebras and of
commutative SU -algebras. Every SU -algebra or commutative SU -algebra is weakly
equivalent to one which is q-cofibrant in the relevant model structure. The following
result is part of the equivariant version of [4, VII.6.5].

Theorem 3.2. The underlying SU -module of a q-cofibrant SU -algebra or commu-
tative SU -algebra is in ĒSU

. Therefore any cell module over a q-cofibrant SU -algebra
or q-cofibrant commutative SU -algebra is in ĒSU

.

The following result is part of the equivariant version of [4, VII.6.6].

Proposition 3.3. The underlying G-spectrum of any SU -module in ĒSU has the
homotopy type of a G-CW spectrum.

Proof of Theorem 1.2. We begin by considering an L-spectrum DjX for a G-CW
spectrum X. In this case, we see by Lemma 2.2 that the second arrow in the
definition of α is

I (U,U ′)n (I (U j , U)nΣj Xj) ∼= [I (U,U ′)×I (U j , U)]nΣj Xj

−→ [I (U,U ′)×I (U,U) I (U j , U)]nΣj Xj ∼= I (U j , U ′)nΣj Xj .

The existence of the G-linear isometry f : U −→ U ′ ensures that I (U j , U ′) and
I (U,U ′) × I (U j , U) are universal principal (G,Σj)-bundles [8, II.2.11, VII.1.3]
and thus that γ : I (U,U ′) × I (U j , U) −→ I (U j , U ′) is a (G × Σj)-homotopy
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equivalence. It follows from the equivariant version of [4, I.2.5] (see also [2]) that
the displayed map is a G-homotopy equivalence. We claim that we can replace
DjX by SU ∧L DjX in this argument. In fact,

SU ∧L DjX ∼= L̃ (j)nXj ,

where
L̃ (j) = I (U2, U)×I (U,U)×I (U,U) I (0, U)×I (U j , U).

By the equivariant version of [4, XI.2.2],

γ : L̃ (j) −→ L (j) = I (U j , U)

is a G × Σj-homotopy equivalence, and the claim follows. Theorem 1.2 follows in
view of the way that ĒSU

is obtained from the SU ∧L DjX. ¤
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