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1. Introduction 

The s tudy of the relations between the homology structure of the base 
space, the total space and the fiber of a fibration offers ample opportunity for 
application of homological algebra. This series of papers develops some of this 
algebra and derives its relations with the geometric situations. 

In this paper the basic notion is that  of a (graded differential) coalgebra A 
over a commutative ring K .  Left and right (graded differential) A-comodules 
are defined as well as a cotensor product A DAB of a right A-comodule A 
and a left A-comodule B.  Using a suitable relative notion of an injective 
resolution the derived functor Cotor A (A, B) (which is a graded K-module) 
is defined. This functor is the target of a spectral sequence {Er(A, A, B),  d r} 
and under some flatness conditions (which are always satisfied if K is a field) 
the term E~(A, A, B) is isomorphic with Cotor R(A)(H (A), H (B)). This 
algebraic apparatus is developed in w w 2-10.  

The contact with geometry is established in the following way. We consider 
a commuting diagram 

E' 9~E 

B ' T B  

of topological spaces and continuous maps. The normalized singular chains of 
B with coefficients in K yield a coalgebra (B; K). We regard (B'; K) as a 
left (B; K)-comodule and for any coefficient K-module C we may regard 
(E; C) as a right (B; K)-comodule. The diagram above then yields a natural 
transformation 

~" :/-/(~'; C) ~ Cotor~"; ~"((~; C), (B'; K)) .  

The main result (Theorem 12.1) asserts that  if the space B is pathwise con- 
nected and simply connected, g is a fibration and :t' is the induced fibration 
by ] then v yields an isomorphism 

1) Supported by Contract NONR 266 (57). 
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H(Er;  C) ~ Cotor c~;K)((E; C), (B'; K)) . (1.1) 

A very important special case is when B'  is a single point. Then g r is the 
fiber F corresponding to the point ](B') of B and (1.1) becomes 

H(F; C) ~ Cotor(S;g~((E; C), K) . (1.2) 

In  w 15 we give a more elaborate relative version of (1.1). In w 18 we show 
that  if C ---- K and suitable flatness conditions hold then both sides of (1.1) 
and (1.2) acquire the structure of graded K-coalgebras and (1.1) and (1.2) 
are isomorphisms of K-eoalgebras. For general C (1.1) and (1.2) are iso- 
morphisms of right eomodules over these coalgebras. Similar considerations 
apply to the terms of  the spectral sequences approximating the right sides of 
(1.1) and (1.2). 

A very important special case has to be at tr ibuted to ADAMS [1]. I f  E is 
the space of paths in B with fixed origin b0 and ~ : E -~ B is the evaluation 
at the end point of each path, the fiber F is the loop space ~2(B). Since E is 
contractible, the isomorphism (1.2) may be reduced to 

and in particular 
H ( D ( B ) ;  C) ~ Cotor~B;~)(C; K) 

H(~2(B); K) ~ Cotor (B; K) (K , K ) .  

(1.3) 

(1.4) 

Starting with the coalgebra (B; K),  -ADAMS has constructed a complex X 
(the co-bar construction) and has shown that  H ( X )  ~ H (~2(B); K) when K 
is a principal ideal integral domain. In our theory X appears as an injective 
resolution which allows to compute Cotor cB; ~ (K, K).  

The definition of Cotor properly belongs to the domain of relative homo- 
logical algebra that  will be treated by  us in a forthcoming publication. How- 
ever, it has been possible without serious loss of space to give here an entirely 
self-contained account. 

2. Coalgebras and eomodules 

Let K denote a commutat ive ring (with unit). We shall consider complexes C 

�9 . .  ~ C . - ~ C . _ I ~  . . .  -->Co-->O 

of K-modules. A morphism ]:  C -~ D will be a family of K-morphisms 
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fn : Cn --~ Dn commuting with the differentiations. The resulting category is 
denoted by D G K .  Any K-module C is regarded as an object of D G K  by 
taking Co ----= C and Cn = 0 for n r 0. In particular K itself is an object 
of D GK.  The tensor product C | D for C, D E D GK is defined in the usual 
way and is again in D GK.  We adopt the usual identifications K | C = C = 
= C |  

A coalgebra A over K (or a K-coalgebra) consists of an object A of D G K  
together with a pair of morphisms 

e : A - ' , . K ,  6 : A ~ A |  

satisfying the identities 

(~ @ A)~ = 1 A .~ -  (A | e)(5, (~ | A)(~ = (A | (~)~. 

A fight A-comodule is an object A of D GK together with a "structure mor- 
phism" 

V : A ~ A |  
satisfying 

(e |  V =  1A, (V |  V =  (A |  V.  

With the obvious morphisms, these right comodules form a category D G A 
(the category of graded differential right eomodules over A). Analogously we 
define the left eomodules and obtain the category A D G. The ring K itself 
is a eoalgebra with e = ~ = 1K and every complex over K is also a comodule. 
Thus the notation D G K is unambiguous. 

All the above can be repeated by  requiring that  all differential operators 
be zero. We then obtain the categories GK,  GA and AG where A is a K- 
coalgebra with zero differentiation. We shall regard G A as a subcategory of 
D G A .  

The category D G A is an additive category with cokernels. I f  A is K-flat 
(i.e., if each An is a fiat K-module) then D G A  is an abehan category. The 
category D G A  is equipped with a natural functor D G A  ~ D G K  obtained 
by neglecting the structure morphism. There is an adjoint functor in the 
opposite direction which to each object C r  assigns the extended 
A-eomodule C | A with the structure morphism V ---- C | ~. More generally, 
if A is a right A-comodule and C is in D G K  then C |  is a right 
A-comodule with the structure morphism 

C | V : C  |  |  |  
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Let A be a right A-comodule and B a left A-comodule. The cotensor product 
A [~A B is defined as the object in D GK which is the kernel of 

i : A | 1 7 4 1 7 4  i : V A | 1 7 4  

Proposition 2.1.  I f  A = C | A is an extended comodule then the mor- 
phism 

j : C | 1 7 4 1 7 4 1 7 4 1 7 4  

establishes an isomorphism 

C |  |  E]AB. 

Proof. Let k = C  |  |  |  |  |  We verify by com- 
putation tha t  

i j = o ,  ~ i = l ~ B ,  i k l = l  i/ i / = o .  

Thus j is a kernel for i. 

Corollary 2 . 2 .  A []  A A = A .  

3. Resolutions 

The funetor Cotor A will be defined as the right derived funetor of the co- 
tensor product, in a suitable relative sense. This relativity is indicated by 
defining the terms "injective" and "exact".  For the purposes of tMs paper 
we choose the injective eomodules to be the direct summands of extended 
eomodules. 

Proposition 3.1.  A right A-comodule A is injective if and only if there 
exists a morphism ] : A | A -+ A of right A-eomodules such tha t  the com- 
position 

A V ~ A |  f~A 
is the identity. 

Proof. I f  A is a direct summand of an extended A-comodule C | A then 
we have morphisms 

A g~C|  h--~A 
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in D G A whose composit ion is the identi ty.  Then define / as the composit ion 

A |  g |  C Q A |  
C | 1 7 4  h 

~ , C |  * A .  

The exact sequences in D G A are defined to be the sequences in D g A which 
are split exact  when viewed in D G K .  

A complex X in D G A will always be assumed to be negative 

X 0 - + X  1 - > . . .  - ~ X  ~ - ~ . . .  

with the usual convent ion X n ~ X _  n. The complex X is said to be in]ective 

if each X ~ is injective in the  tense defined above. A complex X is augmented  
if it is accompanied by  a morphism e : A --> X ~ such tha t  the composit ion 
A -+ X ~ -~ X 1 is zero. We write e : A -> X ,  regarding A as a complex con- 

centra ted in degree zero and  e as a morphism of complexes. The augmented  
complex e : A -~ X is said to be acyclic if the sequence 

0 - ~ A  - + X  ~ - ~ X  1 -~ . . .  - ~ X  ~ -~ . . .  

is exact,  i.e. is split exact  in the category D G K .  I f  e : A  -~ X is bo th  in- 
jective and  acyclic then we say t h a t  ~ : A -+ X is an  in]ective resolution of A .  
The existence of  injective resolutions in the above sense will be shown in w 6. 

The only other  fact  needed here is 

Proposition 3 .2 .  Consider a diagram 

0 - + A  - ~ X  ~ ~ X  1 -~ . . .  - + X  ~ -~ . . .  

0 - - - > A ' - * X ' ~  . . .  -->X"~-~ . . .  

in D G A  in which the  upper  row is exact  and in the lower row X 'n are injective 
for n ~ 0, 1 . . . .  Then there exists a family of  morphisms /~ : X ~ -~ X 'n 

which render  the d iagram commuta t ive .  

As usual the sequence (/~} is defined induct ively using 

Proposition 3 . 3 .  Given an exact  sequence 

. . .  --~ A ,  -~ A,~_x ..+ . . .  - - o o <  n <  oo (3.1) 

in D G A  and  given an  injective comodule B in D G A  the sequence 
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. . .  +- A(A, ,  B) 4- A(A,_ 1, B) +- . . .  

is exact. Here A (A, B) denotes the K-module of all morphisms A -+ B in 
D G A .  

Proof. Without  loss of generality we may assume that  B = C | A 
is an extended comodule. We then have the natural isomorphism 
A ( A , C |  ~ K ( A , C )  where [ : A - ~ C  |  and g : A - + C  determine 
each other as follows 

g = ( c  | ~)/, 1=  (g | 

Since in the category D G K  the sequence (3.1) is split exact, the conclusion 
follows. 

4. Complexes and filtrations 

Let  X be a complex in D G and Y a complex in D G. We then have the 
K-modules 

Tq,, , t (X,  A ,  Y) : (X, ~a Yt)q 

with commuting differential operators 

d' : Tq.s. t ~ Tq_a,s , t ,  d" : Tq, s, t ---> Tq, s_ l , t ,  d "  : Tq, s, t -+ Tq, s,t_ x . 

We convert this "triple" complex into a "single" complex T ( X ,  A,  Y) using 
the direct product as follows: 

T , , ( X , A ,  Y ) = H T q , , . t ( X , A ,  Y), q + s + t = n  

and considering the total differential operator which on each Tq.,,t is 

d = d' + (--1)qd" + ( - -1 )q+ 'd ' .  

Note that  T ( X ,  A, Y) is a complex of K-modules ranging in general from 
- - o o t o  + ~ o .  

Similarly we define 

8q, s , t ( X ,  A,  Y) = Hq(X, []A Y,) 

Sq, v (X ,  A ,  Y) = I1Sq. , . t (X,  A ,  Y) , s + t = p  

S , , ( X , A ,  Y ) = I I S ~ , ~ ( X , A ,  Y ) ,  p + q = n .  
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The differential operators on the complexes Sq,~ and S are given by 
(--1)qd" + (--1)q+'d ~. Thus in a sense S is the homology of T with respect 
to the partial differential operator d'. Clearly 

H , ( S ( X , A ,  Y)) =IIH,(Sq,,~ ( X , A ,  Y)) , q + r = n .  

We define the main filtration of T (A, A, B) by setting 

We then have 

F,,.=IITq,,, t, n=q+s+t, s+t<_r. 

T----Fo m F_~ m ... D F~ D F~_~ D ... 

The filtration is complete [5] because of the direct product used in the 
definition of T.  Further  we find that  

Therefore 

and 

F~,./F~_,,,, = HTq.,,,, p = s + t, 

1 ~ S q  ~ E~,q 

---- H~ (Sq, ~) E~,q 

n = p + q .  

Proposition 4.1.  Let X be an injective complex in DGA and let ~ : B ~ Y 
be an acyclie augmented complex in A D G. Then 

HT (X, A, 7) : H T  (X, A, B) ---> HT  (X, A, Y) 

HS (X, A, 7) : HS (X, A, B) ---> HS (X, A, Y) 

are isomorphisms. 

Proof. In view of the main filtration, the statement for S implies tha t  for 
T.  We now filter the complexes Sq. ~(X, A, B) and Sq(X, A, Y) by  the 
resolution degree of X.  The associated graded objects are then Sq, .(X~, A,  B) 
and Sq, ~(X~, A, Y). Thus it suffices to show that  

gSq . .  (A, A, 7) : HSq,.  (A, A, B) ---)- H~qq,. (A, A, Y) 

is an isomorphism for every injective A.  Without loss of generality we may 
assume that  A is an extended eomodule A = C • A. From 2.1 we deduce 
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that Sq,+(A, A, B) --- Hq(C | B) while Sq. + (A, A,  Y) is the complex 

H. (C | Y0) -~/t.(C | rl) _ ~  . . .  

Since the sequence 
O ~ B.-> yo ~ yx--->... 

is split exact in the category D GK, it remains exact after the application of 
the functor Hq(C | --).  This implies that HSq, + (A, A, 7) is an isomorphism 
as required. 

5. The lunctor Cotor 

Consider A ~ D GA, B �9 A D G and let 

e : A ~ X ,  ~ : B ~ Y  

be injective resolutions. I t  follows from 4.1 that we have isomorphisms 

H T ( X , A , B )  H T ( X , A , ~ I )  H T ( X , A , Y )  H T ( e , A , Y )  H T ( A , A , Y )  

of graded K-modules. Any of these three graded K-modules is denoted by 
Cotor a (A, B). The independence of Cotor a (A, B) of the choice of resolu- 
tions and the functorial properties of Cotor will be established below. 

By 4.1 we also have isomorphisms 

H,S~,, + (X, A,  B) ~ HqS~, + (X, A,  Y) ~ H~S~, + (A, A,  Y) 

and the common value of these K-modules is denoted by 

E~, (A, A, B) q 

2 These are the terms E~, q of the spectral sequences of the main filtration 
applied to the complexes T(X, A, B) or T(X, A, Y) or T(A, A, Y). The 
terms E~, q, r 2 2 of these spectral sequences will be denoted by E~, q (A, A, B). 
We note that Ep,q=-0 unless p ~ 0 and q >= 0. 

The augmentations e and ~ induce morphisms 

e : t t ( A  DAB) ~ Cotor A (A, B) 

e' : Hq(A D a B ) - + E ~ . q ( A , A , B ) .  
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I f  A is injective then we may choose A = X and e and e' are then isomor- 
phisms. Similarly if B is injective. 

Suppose now that  A, A and B have zero differentiation. Then (see w 6) the 
injective resolutions X and Y may be chosen so that  each X s and Y~ has 
zero differentiation. Then in the complex T(X,  A, Y) the differential oper- 
ator d' is identically zero so that  T ( X ,  A ,  Y) coincides with S ( X ,  A ,  Y).  
Thus the spectral sequence collapses and Cotor A (A, B) may be identified 
with E 2(A, A, B). Thus Corer A (A, B) is higraded in the sense that  

Cotor~ (A, B) = HCotorp,q(A,  B), p + q = n 
where 

Cotor~,q (A, B) = E~. q (A, B) = Hq (S~, ~ (X, A, Y)) . 

Let q0 : A -+ A' be a morphism of K-coalgebras. Every A-comodule A may 
then be regarded as a A'-comodule with the structure morphism 

A V ~ , A  | 1 7 4 1 7 4  

A ~-morphism / : A - + A '  for A ~ D G A ,  A ' E D G A '  is defined as a mor- 
phism in D G A '  of A regarded as a A'-comodule. I f  further g : B -+ B' is a 
~-morphism with B �9 A D  G, B' �9 A 'D  G then we readily define the induced 
morphism [ VI r g : A W1A B -~ A ' V] A , B' in D G K.  

Now let 
e' : A' -> X' ~' : B' -+ Y' 

be a A'-injective resolution of A'  �9 D G A ' ,  B' �9 A 'DG.  From 3.1 we deduce 
the existence of ~-morphisms 2': X -->X' and G: Y-+ Y' such that  
Fe  ~ e ' / ,  G~ ---- ~/g. We then have the commutative diagram 

H T  (X,  A ,  B) 

HT(F,qD,g) 1 

H T ( X ' ,  A', B') 

, H T  (X, A, Y) ~ H T ( A ,  A, Y) 

I 1 
H T ( X ' ,  A', Y') , H T ( A ' ,  A', Y') 

where all the horizontal morphisms are isomorphisms. I t  follows that  the 
vertical morphisms are independent of the "liftings" F and G of ] and g. 
There results a morphism 

Cotor~ (/, g): Corer ~ (A, B) -+ Corer TM (A', B') 

defined for a morphism ~0 : A -+ A' and ~v-morphisms [ : A -+ A' ,  g : B -+ B t. 
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I f  A----A' and ~ - 1 A  then we write Cotor A(/ ,g) for Cotor~(/,g), and 
this defines the structure of Corot ~ as a functor. Incidentally, taking ~ ~ 1A, 
/ ~-- 1A, g --~ lS, the argument above shows the independence of Cotor A (A, B) 
of the choice of the resolutions. 

The same procedure applied to the complexes S instead of T yields the 
morphism 

E~.q(f, ~ , g ) :  E~,q(A,  A,  B) - ,  E~,q(A',  A', B ' ) .  

These are of course the morphisms of the terms E 2 of the spectral sequences 
induced by T (F,  ~, G). 

6. Canonical and tapered resolutions 

Given A E D G A consider the sequence 

0 , A  ~7�9 |  l � 9  � 9  

where A | A has A | ~ as structural morphism. Then V is a morphism 
in D G A  and we define 1 as the cokernel of ~7. Since (A | e) ~7 ~ 1A the 
sequence is a split exact sequence in D GK and thus is an exact sequence in 
the sense required here. 

Iterating this procedure, we obtain exact sequences 

0 , A~ �9 Ap | A �9 A~+I �9 0 (6.1) 

where A -~ A ~ p =  O, 1, . . .  Thus setting 

X~ ~- AT | A ,  d~ = k~+l lp 

we obtain an injective resolution V : A -~ X. This is the canonical injective 
resolution of A.  This resolution has many useful properties. In particular, it 
inherits many properties from A and A. For instance, a fact that  we used in 
w 5, if A and A have zero differentiation then so does each Xp. 

The  coalgebra A will be called connected if the morphism e: A -> K induces 
an isomorphism Ao ~ K .  In this case we usually identify A0 and K.  This 
imbedding of K into A is a morphism of K-coalgebras and thus permits us to 
regard K as a left or right A-comodule. 

I f  further A1 ~ 0, then A is called simply connected. More generally A is 
It-connected (k ~_ 0) if it is connected and if A i ~ 0 for 0 < i ~_ k. Thus the 



H o m o l o g y  a n d  f ibra t ions  I Coalgebras ,  co tensor  p roduc t  a n d  i ts  der ived  func to r s  209 

terms "0-connected" and "l-connected" coincide with "connected" and 
"simply connected". 

Proposition 6.1.  I f  the coalgebra A is k-connected then in the canonical 
injective resolution W : A -~ X we have 

( X ~ ) i = 0  if i < ( k +  1)p.  

Indeed, ff A is k-connected and if Ai = 0 for i ~ s, then A~ = (A | A)~ 
for i ~ k +  l q - s ,  so tha t  A ~ = 0  for i ~ k +  l + s .  Thus by induction 
it follows that  A~ -= 0 for i < (k -k 1)p. 

Corollary 6.2. I f  A is connected then 

Cotor A ( A , B ) ~ 0  if n ~ 0  

E~,  ( A , B ) - ~ O  f f  p + q < O  q 

Indeed, if X is the canonical resolution of A then for n ~ 0 

Tn(X, A, B) = 0, Sn(X, A, B) = 0 .  

We shall be particularly interested in the case when A is simply connected. 
In this case the canonical resolution X satisfies 

( X ~ ) ~ = 0  if i < 2 p .  

A complex X with the above property will be called tapered. I f  X and Y are 
tapered complexes then we have 

Tq.s ,  t ( X ,  A ,  Y )  ~--- 0 except when - -  n g s + t ~ 0 

where n = q -~ s ~- t. This implies tha t  the product used to define T~ (X, A, Y) 
is finite. For the main filtration (Fr} of T (X, A, Y) we have 

T,, ----- Fo, n ~ F _ l  D . . .  D F _ n  ~ F _ n _ l  ,~ ~ 0 

Thus the main filtration is finite in each degree. Consequently, the spectral 
sequence converges in the naive sense. 

For a tapered complex X in D G A we define a right A-comodule :~ as follows 

(,~)~ = 2 : ( X ~ ) ~ ,  n = i - -  p .  

14 CMH vol. 40 
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We note tha t  the direct sum is finite. The differential operator is d = d' ~- ( - -1  ) ~ d n 
where 

d" (Xp+I) . d ' :  (X~), -~ (X~)~_x, : (X~)~ -+ , 

Now observe that  for any K-module B,  the complex X | B given by 

O--> X O | B--+ X I | B . ~  . . .  --+ X)* | B--+ . . .  

is again tapered and so we have (X • B) ~. Since the tensor product com- 

mutes with direct sums, this may be identified with X | B. I f  we now take 

B ~--A then the morphisms V P : X r - + X r  | A induce a morphism 

X -+ X | A of complexes, which in turn induce V : x~ -> 2~ | A. This 

converts X into a right A-comodule. 

For any complex Y in A DG, we now observe that  

T ( X ,  A ,  Y)  = T ( X ,  A ,  Y ) .  

I f  Y also is tapered, then 

T ( X ,  A ,  Y )  = T( .X ,  A ,  Y )  = .X []A Y . 

I f  X is a tapered injeetive resolution of A then we have H (A) ---- Cotor ~ (A, A) =~ 

= H ( X  [::]A A) : H(X) .  This yields 

Proposition 6 . 3 .  I f  e : A --> X is a tapered injective resolution of A then 

H (~) : H (A) ~ H ('X) is an isomorphism. 

This fact can of course also be verified directly by filtering 2~ by the reso- 

lution degree of X.  

7. Flatness conditions 

A D G K - m o d u l e  B will be called K-flat if B~ is K-flat for each n. I f  B is 
K-flat and A is any  D G K - m o d u l e  then there is a spectral sequence converging 
to H ( A  | B)  and with TorK(H(A),  H ( B ) )  as term E ~. This will be called 
the Ki~-N~.~ spectral sequence [3, Ch. XVII]. 

Theorem 7.1.  Let  ~ :  A =-~ A' be a morphism of K-coalgebras and 
let / :  A -). A ' ,  g:  B- -+ B'  be ~0-morphisms with A ~ D G A ,  A '  E D G A ' ,  
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B c A D G ,  B' �9 A ' D G .  Assume further that  
H ( ~ o ) : H ( A )  - + H ( A ' ) ,  H([):  H(A)  ~ H(A ' )  
are isomorphisms then 

A, A',  B ,  B' are K-flat. I f  
and H(g) :  H ( B )  --+ H ( B ' )  

Cotor~ (/, g) : Cotor a (A, B) -+ CotorA'(A ', B') 

E2([, ~, g): E2(A,  A ,  B) --> E2(A ', A ' ,  B') 

are isomorphisms. 

Proof. Clearly, the conclusion concerning E ~ implies that  for Cotor. 
Let X and X'  be the canonical resolutions of A and A'. Since the canonical 

resolutions are functorial, the ~o-morphism [ : A  --> A'  yields a ~0-morphism 
F : X -+ X ' .  More precisely, we have the commutative diagrams 

0 , Av  , A v |  , Av+l �9 0 

,'l ,'+li 
0 , A 'v  , A 'v  | A'  , A'v+l , 0 

wi th /v  defined inductively starting with [ : A -~ A' and with Fv = Iv | ~. 
If  H(/v)  is an isomorphism then so is H(/p | cp), by the Kii~II~E~rH spectral 
sequence. Therefore by  the "five lemma", H ( p  ~ also is an isomorphism. 
Hence by  induction it follows that  H([ v) is an isomorphism for every p. 

To show that  E2(f, of, g) is an isomorphism it suffices to show that  

S ( F ,  f ,  9): S ( X ,  A ,  B) -+ S (X ' ,  A',  B') 

is an isomorphism. For this it suffices to show that  

H (Fv D~g):  H (Xv D.4 B) ~ H (X'v El.4, B') 

is an isomorphism. Since Fv  --__ [p | ~o. This reduces to 

H(( /~  |  E]~g) : H ( ( A v  | A) [2].4 B) -> H ( ( A ' v  | A') [-]A,B') . 

By 2.1 this reduces to 

H(/v  | g) : H ( A v  | B) -+ H ( A ' v  | B ' ) .  

The fact that  this is an isomorphism follows again from the Ki)NNETH spectral 
sequence. 
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8. Finiteness conditions 

A DGK-module A will be said to be of finite type  if A~ is finitely K-generated 
for each n. 

Proposition 8.1.  Assume that  the ring K is noetherian, A is simply con- 
nected, A and B are K-flat and H(A), H(A) and H(B) are of finite type. 
Then Cotor A (A, B) is of finite type. 

ProoL Let  C be any DGK-module with H(C) of finite type. Then 
Tor~ (H~(C), Hm(B)) is finitely generated for each p, n,  m and therefore by 
the KOI~X~TH spectral sequence H (C | B) is of finite type. 

We now consider the construction of the canonical resolution X of A. 
From the exact sequence (6.1) we deduce the exact triangle 

H (A~') -+ H (Ap @ A) 
r.,, , /  

H(AP+I) . 

Thus ff H(A~) is of finite type, then so is H(A~ | A) and consequently also 
H(AP+I). Thus by  induction, H(A~) is of finite type. Since X ~ [-]A B ---- 
---- (A ~ | A) [3a B ~ A ~ | B,  it follows that  H(X "~ DA B) is of finite type. 
As a consequence E~.q(A, A, B) is finitely generated for every p, q. Since 
A is simply connected the convergence of the spectral sequence yields that 
Cotor A (A, B) is of finite type. 

2 9. Calculation of E~, q 

I f  A and B are DGK-modules, then we have the morphism 

H(A) | H(B) ~ H(A | B) . (9.1) 

I f  B and H(B) (or A and H(A)) are K-flat, then it follows from the KOI~N~TH 
spectral sequence that  (9.1) is an isomorphism. Under these conditions we 
shall regard (9.1) as an identification. 

I f  A is a K-coalgebra and if A and H(A) are K-flat, then it follows readily 
that  the mappings 

H(e) : H(A) ~ K, H(O): H(A) --~ H(A | A) = H(A) | H(A) 
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convert H(A) into a K-coalgebra. Similarly, if A is a right A-comodule, then 

H(V) : H(A) -+ H(A | A) = H(A) | H(A) 

converts H (A) into a right H(A)-comodule. Similarly, for left A-comodules. 
Now let A be in DGA and B in ADG. Assume that  A, H(A) ,  B and H(B) 

are K-flat. We then have the exact sequences 

i 
0 ~ A [ ~ A B  ~ A |  , A | 1 7 4  

i' 
0 ~ H ( A )  [-1H(AIH(B) �9 H ( A )  @ H ( B )  ~ H(A)  @ H(A)  | H ( B )  

and we may identify i' with H(i). There results a natural morphism 

H(A [~.4 B) -> H(A) EJIt(A)H(B). (9.2) 

Proposition 9 .1 .  I f  under the conditions above, A is A-injective then H (A) 
is H(A)-injective and (9.2) is an isomorphism. Similarly, if B is A-injective, 
then H(B) is H(A)-injeetive and (9.2) is an isomorphism. 

Proof. I f  A is A-injective then by  3.1 there exists a morphism / : A | A -+ A 
such that  the composition 

A V,  A Q A  [ , A  

is the identity. I t  follows that  the composition 

H(A) H(V) H(A | A) Hi/! A 
KI 

H(A) @ H(A) 

is the identity, so that  H(A) is H(A)-injective. To prove that  (9.2) is an iso- 
morphism, we may replace A by  A | A. Then by  2.1 both sides of (9.2) 
become H(A) | H(B). The case when B is A-injective is entirely similar. 

Now assume that  A, H(A), B and H(B) are K-flat and let e: A -> X be 
2 (A A B) is the homology of an injeetive resolution of A.  Then E~ , .  , , 

H(X~,+I D,t B) ~ H(X~, Z]A B) --+ H(X~_I RA B) 

which b y  9.1 is the homology of 
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H(X~I)  [:]H(A)H(B)-~ H(X~) []H(A)H(B)--~ H(X~_I) [:]H(A)H(B) . (9.3) 

Since the sequence 0 -~ A -~ X 0 _+ X 1 _~ . . .  when regarded as a sequence 
in D GK is split exact, it follows that  the sequence 

H (A) --+ H (X ~ ---~ H (X 1) ---).... (9.4) 

is a split exact sequence of graded K-modules and therefore is an exact se- 
quence in the category DGH(A) .  Since H ( X  n) is H(A)-injeetive, it follows 
that  (9.4) is an injeetive resolution of H(A) in the category D GH(A). Thus 
the homology of (9.3) is Cotor~(.A)(H(A), H(B)).  This yields 

Theorem 9.2. 
isomorphism 

I f  A, H(A) ,  B and H(B) are K-flat, then we have a natural 

E~,~ (A, A, B) ~ CotorH(q~)(H(A), H(B)) .  

The same holds if the hypotheses tha t  B and H(B) are K-fiat are replaced 
by the assumption that  A and H (A) are fiat. In the proof we then use a res- 
olution of B.  

10. Properly filtered comodules 

in  this section we shall assume tha t  the eoalgebra A is K-fiat, i.e. tha t  for 
each p, the funetor | A~ is exact. 

Define the subcomodules S~ A by setting 

/ Aq if q_~ p,  
(S,A)q / 0 if q:>p .  

Then for any right A-comodule A set 

We then have 
S~A ~ V-: (A @ S~A). 

0 ~-S_IA c SoA c . . .  c S~A ~ S~+IA c . . .  

U S~A ~-A  

V S ~ A  c XS, ,A |  u ~ - v - ~ p .  

Generalizing this we define a proper filtration T of A to be a sequence of sub- 
comodules T~ A of A such that  
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0 = T _ I A  c T 0 A  c . . .  T ~ A  c T ~ + I A  c . . .  

U T ~ A = A  

~T T~A c T~A • S~A, u + v = p .  
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The filtration S described above is therefore a proper filtration of A and is 
called the filtration by  coskeletons. 

Since A is K-fiat we find that  V induces morphisms 

T~/T~_I --> T~/T~_I | A~, u + v = p 

from which we deduce, by projection, morphisms 

7~ T~/T~_I ~ To | A~.  

These morphisms are compatible with differentiation provided on the fight 
side we use the differentiation d | A T . Thus, again using K-flatness of  A~, we 
obtain morphisms 

7~. : E~ q(A) -~ Hq(ToA) | A~ q , 

We shall say that  the proper filtration T of A is per/ect if the following two 
conditions hold 

(10.1) The diagrams 

E~,q(A) 7~,q Hq(ToA) | A,  

E~_I,q(A) Hq(ToA) | A,_I 
are commutative. ~-~-~,q 

(10.2) The induced morphisms 

are isomorphisms. 
~ Hq(H~(ToA) | A) 7~,q: E~,q(A) --> 

Proposition 10.1.  Let  A,  A' be right A-comodules with perfect filtrations 
T, T' and let / : A  ~ A' be a morphism compatible with the filtrations. 
Then H(/) : H(A) -+ H(A') is an isomorphism if and only if f induces an 
isomorphism H (To A) ~ H (TIo A'). 

This follows directly from the comparison theorem for spectral sequences 
(Seminaire Cartan 1954/55, Expos6 3). 
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Proposition 10.2. Let A be simply connected and let X be a tapered in- 

jective complex in DGA.  Then the filtration of ~7 by coskeletons is perfect. 

ProoL Since each Xp in injective it is a direct factor of a comodule Cp | A 
where C ~ is in DGK.  Thus adding a direct summand to Xp, we may assume 
tha t  X~ ___ Cp | A for every p. As a consequence we may assume tha t  as a 

graded K-module we have X = C | A. 
This reduces the proof of 10.2 to the following 

Proposition 10.3. Let A be simply connected, let C c GK and let d be a 
differentiation in A = C | A such tha t  A is a right A-comodule with the 
structure morphism V-~ C | ~. Then the filtration of A by coskeletons is 
perfect. 

Proof. First observe t h a t  

Therefore 
S~,A = C | SI, A . 

SoA = C  Q A o = C  

and thus C is a subcomodule of A with a differential operator de. Consider the 
differential operator 

d - ~ - d c |  l |  A. 

For c �9 Cq, 2 c A~ we have 

Vd(c | 2 ) = d V ( c  | 2 ) = d ( c  | ~2). 

Since A1 ---- 0 we have 
2_~ 1 |  modS~_ 2A.  

Therefore rood S~_2 (A | A) we have 

V d(c | 2) = d ( c  | 1 | 2) =_dec | 1 | 1 + (--1)qc | 1 |  

Since the result depends only upon de and dA, we have the same with d re- 

placed by d. Thus we have shown that  

V d y = _ V d y m o d S ~ _ 2 ( A |  for ycS~ ,A .  

Since ( C |  |  V = ( C |  | 1 7 4 1 7 4  1 a =  la  it follows that 

dy -~ dy mod S~,_2A for y c S~,A . 
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Therefore (E ~ (A), d ~ and (E 1 (A), d 1) and E ~ (A) (but not necessarily d 2) 

will be the same for the differential operator d as for d. Thus we may assume 

that  d~--d,  i.e., that  A = C • A  is an extended comodule. In this case 
S v A = C (~ Sr A and the verification that  the filtration is perfect is entirely 
obvious. 

We now note tha t  if A is connected then for any right comodule A, the sub- 
comodule So A consists of all elements a ~ A such that  V a --~ a | 1. From 
the definition of the cotensor product we then see that  

SoA = A DA K .  

I f  T is any proper filtration of A then T0A S0A and therefore we have a 
morphism 

H (ToA) -+ H (A [:]z K ) .  

Composing this with the morphism 

we obtain 
eA, l,; : H (A E]A K) --> Cotor z (A, K) 

fl : H (To A) -+ Cotor a (A, K). 

Theorem 10.4. Let A be a simply connected and K-fiat coalgebra over K,  
let A be a right A-comodule with a perfect filtration T. Then fl is an iso- 
morphism. 

Proof. Let E:A --> X be a tapered injective resolution of and consider 

~: A -+ X.  By 10.2, the filtration of X by coskeletons is perfect. Since 

T~,A c SvA we have that  ~(T~,A) c S v X .  Further, by 6.3, H(~) is an 
isomorphism. Thus 10.1 implies that  ~" induces an isomorphism 

H(ToA) ~ H(So.X). 

However H(SoX) = H(X �89 K) = Cotor a (A, K) and the proof is com- 
plete. 

11. The geometric filtration 

Let A be a simplicial set (i.e. a complete semi-simplicial complex) and let 
K be a commutative ring fixed once and for all. We shall denote by the same 
symbol A the D GK-module of normahzed chains in A with coefficients in K 
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and write H(A) for the homology GK-module. I f  C is any D GK-module then 
we write H (A; C) for H (A | C). 

I f  X is a topological space and S (X) is its total singular simplicial set, then 
we shall frequently write X for S (X). Thus X will denote a space, a simplicial 
set or a D GK-module depending upon the context. 

Given a simplex s in A of dimension n,  we denote by s~ (0 ~ p ~ q g n) the 
simplex of dimension q - -  p obtained from s by applying the face operator 
eq+~ (n - -  q)-times and then the face operator ~0 p-times. We now define 

6 : A - ~ ' A  |  

by the usual ALEXAnDER-WHITNEY formula 

We also define e : A - ~ K  by setting es~--0 if n : > 0  and e s :  1 if n~--0.  
The mappings e, ~ convert A into a K-coalgebra and A | C is a left 
A-eomodule. 

A morphism ] : A -~ B of simplicial sets induces a morphism of K-coalge- 
bras and an/-morphism / | C : A | C -~ B | C of comodules. 

The geometric filtration G of A | C induced by / is defined by setting G~ 
to be the submodule of A | C generated by simplexes s such that  /s  is an 
iterated degeneracy of a simplex of dimension ~ p. This is equivalent with 
the condition t h a t / ( s ' )  be degenerate for any face s' of s of dimension > q. 
To verify tha t  G is a proper filtration of A | C as a left B-comodule, con- 
sider an n-simplex s in A. Then 

\7(s@c)---:,Y, s q | 1 7 4  O ~ q g n .  

Thus ff s @ e �9 G~ and /(s$) is non degenerate then s q | c E G~_q. Thus 

V G~ a X SqB | G~_q 
q 

as required. The morphism 

o : G~/G~-I -~ B | Go 
takes then the form 

8 n ~ (8 | e) = 8~-~ | / ( n - ~ )  | c .  

Now consider a fibration g : E --> B of topological spaces, let M be a sub- 
complex of S(B) with a single 0-simplex b0 E B,  let N be the subcomplex 
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~-I(M) of S(E) and let Q : N -~ M be induced by ~. Then for the geometric 
filtration G of N | C induced by Q we have 

and 
Go----F |  where F : ~ - l ( b o )  

~1 : E 1 (G) --+ M | H (F; C). 

We shall use the following facts, which constitute the basic facts of the com- 
putation of the Serre spectral sequence of a fibration; [10], [9], [2]. 

(11.1) ~1 is an isomorphism. 
(11.2) Each 1-simplex of M defines an automorphism of H (F; C) and 

there results a local coefficient system on M.  I f  in M | H(F; C) this local 
system is used, then 71 commutes with the differentiation. 

I t  follows from the above that  the filtration G of N | C is perfect if the 
local system on M is constant. In particular, this is the case when M has only 
one 1-simplex, i.e. when M is a simply connected coalgebra. 

12. The main results 

Consider a commuting diagram 

g 
E' �9 E 

B' - ~  B 

of simplicial seN. The diagram is then also a commuting diagram of K-coalge- 
bras. In particular, B' may be regarded as a right B-comodule and E | C 
(where C �9 D GK) as a left B-comodule. There results a commuting diagram 

H (E'; c) 

H (E' DE' (E' | C)) ~ Cotor B' (E', E' | C) 

H Cotor ~ (=',a | C) 

H (B' [:Is (E | C)) , Cotor B (B', E | C) 

where ~ ~ ~g = / ~ ' .  There results a morphism 
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3: H(E'; C) ~ CotorB(B ', E | C) 

which is the prime objective of our investigation. 

Theorem 12.1. Consider a commuting diagram of topological spaces 

E'  g~ E 

B' - - ~  B 

where B is (pathwise) connected and simply connected, ~ is a fibration (in the 
sense of Serre) and ~' is the fibratiou induced by [. Then for any commutative 
ring K and any DGK-module C we have 

H (E'; C) ~ Cotor v (B', E | C).  

In the special case when B' is the space consisting of a single point, E' is 
the fiber F of ~ corresponding to b0 = 1(B') as base point. This yields 

Theorem 12.2. I f  g : E -~ B is a fibration with fiber F ~ ~-1 (b0) and if 
the space B is connected and simply connected, then 

H ( F ; C )  ~ C o t o r B ( K , E |  

In both theorems the isomorphisms are instances of the morphism 3. 
I t  should be observed tha t  we could equally well regard C | E as a right 

B-eomodule and B' as a left B-comodule, thereby interchanging the two 
variables in the funetor Cotor B. 

13. Proof of Theorem 12.1 

By considering the pathwise connected components of B ~ separately, we 
may assume without any loss of generality tha t  B' is pathwise connected. We 
select base points b~ E B',  bo E B such that  fb 0 ~ b 0 . Then the fibers 2' ~ z-1 (b0) 
and F '  -~ ~,-1 (b~) may be identified under g. 

Let M be a minimal subcomplex of S(B) relative to b0 as base point. Let 
N ----- ~-1 (M) be the subcomplex of S(E) consisting of all singular simplexes 
s with g(s) in M.  We note (without proof) tha t  we have a commuting diagram 
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k l 
N , S(E) ~ N  

M , S(B) , M  
j h 
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of simplicial maps with the following properties. 
(13.1) ?" and k are inclusions. 
(13.2) hi and lk are identities. 
(13.3) j ,  k, h and 1 induce isomorphisms of homology. 
Similarly we choose a minimal complex in S(B') relative to b~ and obtain 

a diagram as above with "primes". 
Now consider the commuting diagram 

N, k' �9 s(,~') S(E) , N 

o' 1 S(=') ~ S(=) I ol 
M ' - ~  S(B') ~ )  S(B) h" M 

There results a commuting diagram 

H(N';  C) H(k ' ;C)  H(E';C) v CotorB(B, ,E @ C) 

~'1 Cotorh(B ', l | C) 1 (13.4) 

Cotor  M (M', N | C) , Cotor  M (B' ,  N | C) 
CotorM(j, N | C) 

where v' is the morphism resulting from the diagram 

with 

v 
N' ~ N 

M' �9 M 

u = h s ( / ) i ' ,  v = Z s ( g ) k ' .  

(13.5) 

By the isomorphism theorem 7.1, the morphisms in (13.4) except T and T' 
are isomorphisms. Thus v is an isomorphism if and only if v' is an isomorphism. 

We note tha t  in diagram (13.5), M'  has one 0-simplex, M has one 0-simplex 
and one 1-simplex and the fibers of @ and 0' are both S(F) ,  and are identified 
under v. 

Since the coalgebra M is simply connected we may choose a tapered injective 
resolution of N • C as a left M-comodule 
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c: N |  X 

from which we derive the morphism 

~':Nx C-~X 
of left M-comodules. 

The mapping ~' is then induced by  

#: N' | C ~ M' ~M.X 

defined for any n-simplex s in N' by  

(s@c)=2:e'(sg)|174 O < q < n  

where M' E]M X is regarded as a K-submodule of M' | X.  
In N' | C we consider the geometric filtration G given by  Q' while in 

M' E]MX we consider the filtration R given by the degrees in M' .  Then, if 
s | c e G~ then ~' (s q) is degenerate for q > p so that  ~ (8 | c) E R~. Thus 
is compatible with the filtrations G and R.  By (11.1) we have 

E 1G = M'  @ H ( F ;  C) .  

The terms 0 E ~ , ,  for R are 

M; W]M X 

where M~ has the trivial structure morphism 8 -~ s | 1. Thus M~ as a 
right M-comodule is a direct sum of copies of K .  Consequently we have the 
identification 

! ! 
M~ E]M X ~ M~ | (K DM X) . 

Therefore 
! ! 

EXR ~ My | H ( K  []MX) = M~ | CotorM (K, N | C).  

Consequently, 

where 

is induced by  

EI~- -~M'  @fl 

fl : H (F; C) --> Cotor M (K, N | C) 

F|  , N |  , . ~ .  

Since the geometric filtration G of N | C given by  ~ is perfect and since 
G o ~ F | C, the fact that  fl is an isomorphism follows from 10.4. 
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L e t  

14. Connecting morphisms 

O -~  A '  -~  A -~  A "  -+ O 

be a sequence of  r ight  A-comodules which is exact  in the ord inary  sense, i.e. 
such t h a t  

0 - +  A ' , - +  A , - +  A ~ - +  0 (14.1)  

is exac t  for eve ry  n .  Assume t h a t  A is K-f la t  and t h a t  B is a K-flat  left  
A-comodule.  Then  in the  canonical  resolution of  B ,  the comodules B = are 
K-flat.  Since A V3A X = ---- A | B = i t  follows t h a t  the  sequences 

0 ~ A '  [~]A X n  ~ A [~]A x ~  "--> A "  [-']A x ~  "-+ 0 

are all exact .  Consequent ly  we obta in  an exact  sequence of  D GK-modules  

0 -+ T ( A ' , A , X )  -+ T ( A , A , X )  -+ T ( A " , A , X )  -~  o 

and passing to  homology we obta in  the exact  t r iangle 

0 
Cotor A ( A " ,  B )  ~ Cotor A (A', B) 

Cotor a (A, B) 

(14.2) 

with the  connect ing morphism 0 of  degree - -  1. 
I f  

O ~ B '  -+ B ~ B "  -+ O 

is an exact  sequence as above  of  r ight  A-comodules then  it  follows tha t  in the 
canonical resolutions of  B' ,  B ,  B" we have  the  exac t  sequences 

0 ~ B TM ~ B ~ ~ B "'~ ~ 0 

0 -+ X ''~ ~ X '~ ~ X "~ ~ 0 . 

If, therefore  A and B "  are K-fiat ,  then  B " "  are K-f la t  and i t  follows as above 
tha t  the  sequence 

0 -+ T ( A , A , X ' )  -+ T ( A , A , X )  -+ T ( A , A , X " )  -+ 0 

is exact .  This yields the exac t  t r iangle 
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a 
Cotor A (A, B") �9 Cotor A (A, B') 

Cotor A (A, B) 

The usual formal rules for the two connecting morphisms apply and will not 
be stated here. In  particular, the connecting morphisms commute with the 
morphisms ~ of w 12. Thus, in particular under the conditions of 12.1, if 

0 ---)-C'--)'C ~ C " - + O  

is an exact sequence of D GK-modules, then the triangles 

H (E'; C") �9 H (E'; C') 

H (E'; C) 

and 
Cotor B (B', E • C") �9 Cotor ~ (B', E • C) 

Cotor s (B' ,  E • C) 
are isomorphic. 

Remark. To obtain the exact triangle (14.2), the condition tha t  A and B 
are K-fiat may  be replaced by the condition tha t  the sequence (14.1) be split 
exact. 

15. The relative theorem 

Let  A be a simplicial set, A1, A 2 simplicial subsets of A and let A12 ---- A I n A2. 
For any D G K-module C we have the commuting diagram 

_ 

0 0 0 

, AI~ | C �9 A1 |  C �9 | C - -  � 9  

, A~ |  �9 A | C , (A/A~) | C �9 0 

�9 (AJAI~) | U �9 (A/A1) N C , (A/A1 O A~) | C �9 0 

l l 1 
0 0 0 
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with exact rows and columns. The module 

H (A, A1; C) =- H ((A/A1) | C) 

is the relative homology module, while 

H (A, A 1, A~; C) = H (A, A s , A~; C) ~-- H ((A/A l tj As) | C) 

is the triad homology module. Note that  H(A ,O;C)  = - H ( A ; C )  and 
H (A, A1, As; C) = H (A, A1; C) if As c A 1. 

Note that  if X is a topological space and X1, Xs are subspaces of X then 
S(X1) tJ S(Xs) is a simplicial subset of S ( X  1 U Xs). If  the inclusion 
S(Xt) U S(Xs) --> S(X1 LJ Xs) induces isomorphisms of homology groups 
then the triad (X, XI, X~) is called proper and we then have H (X, X1, Xs; C) = 
= H (X, X 1 [j Xs; C). This is always the case when X2 = X1. Since in our 
notation X and S(X)  frequently are denoted by  the same symbol, we shall 
write X l v X s  for S(X1) tJ S(Xs) so as not to confuse it with S ( X  1 U Xs). 

Consider the commuting diagram 

E~ 

B/r 

D r �9 D 

k ,  E' g�9 E 

, B  ~ �9 B 

(15.1) 

of simplicial sets in which i,  i', ~, k, are inclusions. We then have the com- 
muting diagram 

H (E', E", D'; C) 

H (E' VIB, (E'/E" U D');  C) ~ Cotor B' (E', (E'/E" U D') | C) 

H D,  | C)) Cotor  | C) 

H((B' /B")  [:]~(E/D | G)) , CotorB(B'/B ", E/D | C) 

where ~ 0 = ~ r g = f ~ '  and 

~ : E' ~ B'/B", fl : E'/E" u D' ---> E/D 

are induced by  ~' and g. 

15 ~ vol. 40 
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There results a morphism 

~ : H (E' ,  E" ,  D' ;  C) -> C o t o r ~ ( B ' / B  ", B I D  | C) . (15.2) 

Theorem 15.1. Assume tha t  (15.1) is a diagram of topological spaces and that  
(i) i ,  i', j ,  k, are inclusions, 
(ii) ~ and ~i are fibrations, 
(iii) ~' and u ' i '  are fibrations induced b y / ,  
(iv) ,~" is the fibration induced b y / j ,  
(v) B is pathwise connected and simply connected. 

Then for every D G K - m o d u l e  C,  (15.2) is an isomorphism. 

Proof. From the exact sequences 

0 -+  B" -+ B '  --> B ' / B "  --0. 0 

0 --> E" ~ E '  ---> E ' / B "  -+ 0 

we deduce the commuting diagram with T ---- Cotor B (- - ,  E • C) 

�9 H (E"; C) �9 H (E';  C)  �9 H ( E ' ,  E"; C) �9 H ( E " ;  C)  �9 . . .  

�9 T ( B " )  ~ T ( B ' )  �9 T ( B ' / B " )  , T ( B " )  --* . . .  

Thus 12.1 and the "5 lemma" imply that  

: H ( E ' ,  E";  C) -~  C o t o r B ( B ' / B  ", E | C) 

is an isomorphism. 
We now consider the exact sequences with D" : E" VI D' 

0 -+  E" -~  E '  -~ E ' / E "  --> 0 

0 -~ E " / D "  -~ E ' / D '  -~  E ' / E "  U D '  -~  0 

and have the commuting diagram with T ~ C o t o r B ( B ' / B  ' ,  - -  | C) 

. . .  H ( E " , D " ; C ) - ~ H ( E ' , D ' ; C ) - ~ H ( E ' , E " , D ' ; G ) - ~ H ( E " , D " ; C ) - ~  . . .  

. . .  , T (E  ~) , T ( E ' )  , T (E ' /E")  , T ( E ' )  + . . .  
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Applying the "5 lemma" again it follows that  H(E',  E", D'; C) -+ T(E'/E") 
is an isomorphism as required. 

16. External products 

Given A and B in D GK we define the permutation morphism 

a : A | 1 7 4  
by the usual formula 

a ( a | 1 7 4  aeA~, ,  b e B q .  

Let A and F be K-coalgebras, let A be a right A-comodule and B a right 
F-comodule. The morphisms 

~A | ~I' 
A |  , K |  

(~A | (~1" A | a | A 
A |  , A |  | 1 7 4  . A | F |  |  

A |  V A |  | 1 7 4 1 7 4  A |  | | 1 7 4  |  

convert A | F into a K-coalgebra and A @ B into a right A | F-co- 
module. Similarly if C is a left A-comodnle and D is a left F-comodule then 
C | D is a left A | F-comodnle. Further we have the commutative diagram 

A Q B |  

1 | 1 7 4  

A | 1 7 4 1 7 4  

V |  
~ A  | 1 7 4 1 7 4  

2 7 | 1 7 4  
, A  | 1 7 4 1 7 4 1 7 4  

where the vertical maps are suitable permutation morphisms. The same dia- 
gram holds with the horizontal arrows replaced by 1 | V and 1 | 27 | 1 | 27. 
This implies a natural transformation 

: (A []A C) | (B DrD)  -~ (A | B) [~A+r(C | D) .  

Proposition 16.1.  If A is A-injective and B is F-injective then A | B is 
A | F-injective and ~ is an isomorphism. 
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Proof. Without any loss of generality we may assume that  A and B are 
extended, i.e. that  A----A' |  B =  B' |  whereA '  and B' a r e D G K -  
modules. Then A |  |  |  |  |  |  |  so that 
A | B is A | F-injective. Further, using 2.1, ~ reduces to 

~: ( A ' |  N ( B '  | 1 7 4  | 1 7 4  

which upon inspection turns out to be a switching isomorphism. 

Proposition 1 6 . 2 .  If  e:  A -+ X is an injective resolution in D G A  and 
: B -+ Y is an injective resolution in D G F then e | V : A | B -~ X | Y 

is an injective resolution in DG (A  | 1"). 

Proot. We recall that  X | Y is defined as the complex 

(X  | Y)'~ = X, XP | Yq , p -+- q = n 

and with the usual derivation operator. I t  is clear from 16.1 tha t  each (X | Y)~ 
is A |  To prove tha t  ~ | t/ is acyclic, we observe that  the con- 
dition that  e : A -+ X is acyclie is easily seen to be equivalent with the con- 
dition that  e : A --> X regarded as a morphism in the category of complexes 
in D G K  is a chain homotopy equivalence. I t  now follows readily that  

A |  e |  x |  X |  

are chain homotopy equivalences and thus e | rj 
equivalence. 

We consider the complexes 

T=T(X| 

T '  = T (X  , A ,  C) , 

We have by 16.1 

also is a chain homotopy 

A |  C |  

T"  = T ( Y ,  I ' ,  D ) .  

T, . , . o  = (X | Y). [3Aer (C | D) 

= X (X , .  | Y , . )  DA+r (C | D) 

= Z ( X , ,  ~AC) | (Y,,, V7rD) 

# 
- -  X T , . , ,  o | T. . , -  o 
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where s' + 8" ~ s.  There results a natural  morphism 

T' | T" ~ T .  

Passing to homology we have 

(16.1) 

H ( T ' )  | H ( T " )  -~ H ( T '  | T") -~ H ( T ) .  (16.2) 

Consequently, we obtain a natural morphism 

Cotor A (A, C) | Cotor r (B, D) ~ Cotor A~r (A | B, C | D) .  (16.3) 

Proposition 16.3.  I f  A and /1 are simply connected and if A, A,  C and 
Cotor A (A, C) are K-flat then (16.3) is an isomorphism. 

Proof. Since A and F are simply connected, the resolutions X and Y may 
be chosen tapered. Then X @ Y is a tapered resolution of A | B.  I t  follows 
that the various products involved in T, T'  and T" are finite. Therefore (16.1) 
is an isomorphism. I t  therefore suffices to show tha t  H ( T ' )  | H ( T " ) - >  
-~ H ( T '  | T") is an isomorphism. For this it suffices to establish that  T'  
and H ( T ' )  are K-flat. The assumption that  Cotor A (A, C) is K-flat yields the 
K-flatness of H ( T ' ) .  I f  we choose X to be the canonical resolution of A,  
then since A and A are K-flat, it follows that  A m and X ~ are K-fiat. Then 
Xn [:]A C ~ A n | C and therefore X n [:]A C also is K-flat. Therefore, with 
this choice of X, T'  is K-fiat. 

I t  should be noted tha t  the morphism (16.3) is associative in the following 
sense. I f  27 is a third K-coalgebra, then the diagram 

Cotor a • Cotor r x Cotor z 

Cotor a | Cotor r| 

�9 CotorAe r | Cotor ~ 

, CotorA|174 ~ 

commutes. For convenience we omitted the variables. The proof of this asso- 
ciative law is omitted. 

We now return to the complexes T,  T' ,  T" above. The main filtrations of 
T' and T" induce a filtration of T' | T" using the usual rule 

F ~ ( T '  | T") -~ X F , , T '  |  , u ~- v = r 

and the morphism (16.1) is compatible with the filtration. There result mor- 
phisms 
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~ : E'~ | E "~ _~ E ~ 

which are compatible with the differentiations. Further the diagram 

g (E t" | E "r) H (~') H (E r) 

T 
E '~+1 | E "~+1 _ ~r+l ~ E ~+1 

commutes. I f  
A ,  1 ~, A ,  B ,  H(A) ,  H(I ' ) ,  H(A) ,  H(B)  (16.4) 

are K-flat then by 9.2 E '~ may be replaced by Cotor H(A), etc. The morphism 
~ then becomes 

CotorR(m(H(A), H (C)) | CotorH(r)(H(B)), (H(D)) -~ 

__> CotormA) | mr) (H(A) | H(B) ,  H(C) | H(D)) . (16.5) 

From 16.3 we know that  (16.5) is an isomorphism if 

H (A) and H (/') are simply connected and H (A), H (A) 

H(C) and Cotor H(A) (H(A) ,  H(C)) are K-flat. (16.6) 

Thus is both (16.4) and (16.6) hold then ~2 is an isomorphism. This implies 
that  ~3 is an isomorphism ff we know that  E ra = H ( E  t'z) is K-flat. By in- 
duction we thus obtain 

Proposition 16.4. I f  H (A) and H (P) are simply connected and if 
A,  F, A ,  B ,  C, H (A), H (T'), H (A), H (B), H (C) and E"r(r>= 2) are K-flat 
then ~r : E,r | E,,r .__> E r is an isomorphism. 

Of course, all the flatness conditions are automatically fulfilled if  K is a field. 

17. The EILENBEBG-ZILBEH Theorem 

Given simplicial sets A and B the product A • B is a simplicial set with 
(A • B)n = An • B . .  The EILE~BERG-ZILBER [8], [4] theorem establishes 
morphisms 

A • B ~ ' , A  | B (17.1) 
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of D G K-modules which have the following properties 

(17.2) ~ and ~ are natural in A, B (and K). 
(17.3) ~ n :  1. 
(17.4) ~ is homotopic to 1 (in a natural fashion). I t  follows that  
(17.5) H(~) is an isomorphism with H(~) as inverse. 

Since both sides of (17.1) are K-coalgebras it is natural to ask whether 
and ~l are compatible with the coalgebra structures. The mapping ~ is defined 
by 

$(a,b)=ZaVo | 0<19<0,  ar bEB,, 

and is not compatible with the coalgebra structures. The definition of ~ is 
much more elaborate. Given integers 0 < m g n we denote by (m, n) the set 
of all integers q such tha t  m g q g n.  Consider diagrams 

(0, m) 

co 
(0, r e + n )  , (0, m) X (0, n) 

(0, n) 

where ~1 and z2 are projections, zl~o and ~2o~ are weakly monotone and 
ulo~ ~-u~co is the identity. I f  eo has this property then the points 
o (t), 0 g t _< p -~ q are the vertices of a path in the rectangle with corners 
(0, 0), (m, n) leading from (0, 0) to (m, n) and composed of m ~ n intervals of 
length 1 parallel to one of the axes. The area of the rectangle under the path 
is then an integer k and we denote t(o) = (--1) k. Then ~ is given for 
aeA,~, bEB n by 

the summation extending over all paths o~ from (0, 0) to (m, n) as described 
above. We assert that  

is a morphism of K-coalgebras. (17.6) 

The commutativi ty of the diagram 

A |  ~? ,A |  

K 

is evident. We must show tha t  the diagram 
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A |  ~ , A •  

A N A N B |  6 
l | 1 7 4  

A | 1 7 4 1 7 4  

commutes. Applying ~ | 8 to a | b, a ~ A ~ ,  b E B ,  yields 

Za~o |  T m | 1 7 4  p e ( O , m ) ,  q e ( O , n ) .  

Applying 1 | a | 1 to each term yields 

X 
~,q 

Applying r / |  r/ yields 

( - -  1) ~m-v,q ape | bg | a~  | b~ . 

nt t! ~/~ ~r l! n 
~U S ( - - 1 ) ( m - P ) q t ( o ~ r ) t ( o ~ " ) ( x e ' l o . ) l a ~ o ,  #'2~,'bg) | (:7"/:10) a p , ~ 2 ~ o  bq )  ( 1 7 . 7 )  

la,q mr) a] ~ 

where o '  ranges through all paths from (0, 0) to (p, q) while o" ranges through 
all paths from (0, 0) to ( m - - p ,  n - - q ) .  By translation, the path r may 
be regarded as running from (p, q) to (m, n) and thus we obtain a path 
o = r + o~" from (0, 0) to (m, n). A calculation of areas shows that  

Further  
( - -  1 ) ( m - p ) q t  t = t 

' ' 
' zt2co b q) = (zqo.)a, :rt~tob)~ +q 

7/:1 7gt/ m n :7~t I = t x m T n  " aT,  :r% bq) (zqtoa,  :rt2cov)~+q. 

Thus (17.7) becomes 

h~m+n ,V, Xt(co) (ulo~a, ~2oJb)~ +q | (~l ~ a ,  ~ 0 9  ~,v+q 
~,q m 

where o~ ranges through all the paths from (0, 0) to (m, n) passing through 
(p, q). Fixing r = p + q we obtain this way all paths w. Thus the summa- 
tion above is  

~v'(gl~a, g2wb)~ | (~lo~a, g, wb)~ +n , r c (0, m + n) 
r a} 

which is precisely ~ (a | b). This concludes the proof. 
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Let B' be a simplleial subset of B. The morphism V : A | B -* A • B 
then induces a morphism 

t I ' : A  |  x B / A  • B ' .  

The left side is a left A | B-comodule while the right one is a left A • B- 
comodule. I t  is trivial to see tha t  ~' is an v-morphism of eomodules. Further 
H(~') is an isomorphism. 

18. Cotor as a coalgebra 

Let A be a simplicial set. We then have a commuting diagram 

d 
A , A •  

A |  

where d is the diagonal map. Since H($) and H(~) are inverses of each other, 
we obtain the commuting diagram 

H(A) H(d! H(A • A) 

\ l H ('7) g (~) ",~ 
] 

H(A |  

Assume now tha t  H(A) is K-flat. Then by w 9, H(A) is a K-coalgebra with a 
structure morphism ~ and we have the commuting diagram 

H(A) H(d), - H(A • A) 

0.1 TH( ) 
H(A) |  | A) .  

Since d and ~ are morphisms of coalgebras it follows tha t  H(d) and H(~) 
are also morphisms of K-coalgebras and thus ~H is a morphism of K-coalgebras. 
This is equivalent to the well known fact that  the K-coalgebra H(A) is com- 
mutative. 

I f  A1, A s are simplleial subsets of A and C is in D G K then H (A, A1, A2; C) 
is a left (or right) H(A)-comodule and we have the commuting diagram 
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H (d | C) 
H (A, A,, A~; C) ,H(A xA,A xA,,A xA2;C) 

v .  T | c) 
H (A) @ H (A, A1, A2; C) ----- H (A | (A/A. u A,) | C) 

(18.1) 

where VH is the structure morphism of H(A,  A,, A2; C). I t  follows that  
VH is a morphism of H(A)-comodules. 

We return to diagram (15.1) of simplicial sets and assume throughout this 
section that  

(18.2) There exists a simplicial set M with a single 1-simplex and a mor- 
phism 0 : B -~ M of simplicial sets such that  H(0) is an isomorphism. 

This hypothesis is satisfied if B is the singular simplicial set of a pathwise 
connected and simply connected topological space. 

We have the diagonal maps 

d: B-+ B • B ,  d,: B'/B"-+ B' • B'/B' X B" 

d2: E/D-+ E x E/E x D 

and we consider the diagram 

Cotor~(B'/B ", E /D  | C) 

(18.3) 

C o r o t  d (dl , d 2 | C) 

Cotor s• (B' X B'/B' X B", E X E/E X D | C) 

l Cotor' (Vl, @ C) 

Cotor B| (B' @ (B'/B"), E | E/D | C) 

eotorB (B', E) | Cotor~(B'/B", E/D | C). 

Since H(V), H(~,), H (~2) are isomorphisms it follows from the isomorphism 
theorem 7.1 that  Cotor'(~x, ~ | C) is an isomorphism. From 16.2 we know 
that  ~ is an isomorphism if 

Cotor n (B', E) is K-flat. (lS.4) 

I f  (18.4) holds, then (18.3) yields a morphism 

Cotor~(B'[B ", E/D | C) -~ CotorB (B ', E) | CotorB(B' B ", E/D | C). (18.5) 
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As a special  case o f  (18 .5)  w e  have  

Cotor B (B', E) -~ Cotor B (B,, E) | Cotor B (B', E ) .  (18.6) 

We also have a morphism 

Corot B (B', E) --> K (18.7) 

induced by mapping B, B' and E into a pointlike simplicial set (which has 
one simplex in each dimension). 

I t  is a formal matter  to verify that  (18.6) and (18.7) convert CotorB(B ' , E) 
into a graded K-coalgebra and that  (18.5) converts CotorB(B'/B ", E/D | C) 
into a graded left Cotor B (B', E)-comodule. 

Assume now that  
H(E') is K-flat. (18.8) 

Writing down the appropriate fairly large commuting diagram one easily ob- 
tains that  

To : H (E') -~ Cotor B (B', E) 

is a morphism of graded K-coalgebras and that  

v : H(E' ,  E", D'; C) -~ Cotor B (B'/B", E/D • C) 

is a v0-morphism of graded left comodules. 
In diagram (18.2) we may replace the functor Cotor by the spectral sequence 

functors E r. Then assuming 

H(B), H(B') ,  H(B'/B"), H(E) and Er(B  ' , B , E )  ( r~  2) areK-flat  (18.9) 

we obtain that  E r (B', B, E) is a (graded differential) K-coalgebra and that 
E ~ (B'/B", B,  E/D Q C) is a left E ~ (B', B, E)-comodule. 

Conditions (18.9) together with 9.2 yield isomorphisms 

E ~ (B', B,  E) ~ Cotor H(B) (H(B'),  H(E)) 

E ~ (B'/B", B,  E/D | C) ~ Cotor H(B) (H(B', Bt'), H(E,  D; C)) . 

This yields morphisms (18.5) and (18.6) with B, B', etc. replaced by H(B) ,  
H(B') ,  etc. These morphisms can be obtained from diagram (18.3) by re- 
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placing B, B I, etc. by H(B), H(B'), etc. However, in view of (18.1) the 
following slightly simpler diagram may be used 

Cotor H(B) (H(B', B"), H(E, D; C)) ~ Cotor H(B)| (H(B') | H(B',  B") , 

l H (E) | H (E, D; C) 

Cotor H(s) (H(B'),  H(E)) | Cotor H(B) (H(B', B"), H(E,  D; C)) . 

The horizontal morphism is induced by the structure morphism 

and 
H(B) -~ H(B) | H(B) ,  H(B',  B") -~ H(B') | H(B',  B") 

H (E, D; C) -~ H (E) | H (E, D; C) . 
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