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ON THE ASPHERICITY OF

ONE-POINT UNIONS OF CONES

KATSUYA EDA AND KAZUHIRO KAWAMURA

Abstract. We prove that the one-point union of two copies
of the cone over the Hawaiian earring is aspherical.

1. Introduction and definitions

The one-point union 𝐶ℍ ∨ 𝐶ℍ of two copies of the cone over
the Hawaiian earring ℍ is not simply connected [9]. This is a well-
known example of a non-contractible one-point union of two con-
tractible spaces [15, p. 59]. The non-triviality of its fundamental
group follows from the presentation of the group given by H. B.
Griffiths in [10], a flaw in which was remedied in [13]. Another
proof was suggested by R. H. Fox in his review of [9] and is proved
in detail in [3, Theorem 2].

On the other hand, the Hawaiian earring and, more generally,
every planar or one-dimensional space are aspherical in the sense
that all homotopy groups of dimension at least 2 is trivial [17], [2],
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and [1]. In [4], the authors constructed a 2-dimensional, simply-
connected, cell-like Peano continuum 𝑆𝐶(𝕊1) such that the sec-
ond homotopy group 𝜋2(𝑆𝐶(𝕊1)) is non-trivial. In [5], the au-
thors demonstrated variants of 𝑆𝐶(𝕊1)- construction which, on one
hand, produces a space homotopy equivalent to 𝑆𝐶(𝕊1) [5, The-
orem 4.3(2)] and, on the other hand, produces a space homotopy
equivalent to 𝐶ℍ∨𝐶ℍ [5, Theorem 4.3(3)]. This leads to a question
of whether the space 𝐶ℍ ∨ 𝐶ℍ is aspherical. The present paper
answers this question in the affirmative.

For a Hausdorff space 𝑋, 𝐶𝑋 denotes the cone over 𝑋

𝐶𝑋 = 𝑋 × [0, 1]/𝑋 × {1},
with the quotient topology. The peak point of 𝐶𝑋 is the point
represented by 𝑋 ×{1}, and is denoted by 𝑝. The space 𝑋 is iden-
tified with the subspace 𝑋 ×{0}. Let 𝑋0 and 𝑋1 be two Hausdorff
spaces with two points 𝑜0 ∈ 𝑋0 and 𝑜1 ∈ 𝑋1. For 𝑖 = 0, 1, the peak
point of 𝐶𝑋𝑖 is denoted by 𝑝𝑖. The one-point union 𝐶𝑋0 ∨𝐶𝑋1 is
the space obtained from the topological sum 𝐶𝑋0 ⊕𝐶𝑋1 with the
points 𝑜0 and 𝑜1 being identified with a point 𝑜.

Theorem 1.1. Let 𝑋0 and 𝑋1 be one-dimensional compact metric
spaces. Then 𝜋𝑛(𝐶𝑋0 ∨ 𝐶𝑋1) is trivial for each 𝑛 ≥ 2.

Consequently, we have an answer to the question above.

Corollary 1.2. Let ℍ0 and ℍ1 be copies of the Hawaiian earring
ℍ. Then 𝜋𝑛(𝐶ℍ0 ∨ 𝐶ℍ1) is trivial for each 𝑛 ≥ 2.

Since the cone construction makes a space contractible, it does
not seem that “the coning” adds any complexity to one-point unions.

Question 1.3. Let 𝑋0 and 𝑋1 be path-connected (Hausdorff)
spaces such that the 𝑛-th homotopy group 𝜋𝑛(𝑋0 ∨𝑋1) is trivial.
Then is the group 𝜋𝑛(𝐶𝑋0 ∨ 𝐶𝑋1) also trivial?

At the time of this writing, we can answer the above question
only for 𝑛 = 2.

Theorem 1.4. Let 𝑋0 and 𝑋1 be path-connected Hausdorff spaces
such that the second homotopy group 𝜋2(𝑋0 ∨𝑋1) is trivial. Then
the group 𝜋2(𝐶𝑋0 ∨ 𝐶𝑋1) is also trivial.

All spaces are assumed to be Hausdorff and all maps are assumed
to be continuous unless otherwise stated. The word “components”
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means “path-connected components.” The reader is referred to [15]
for undefined notions.

2. Proofs of theorems 1.1 and 1.4

Let 𝐾 be a polyhedron with a triangulation 𝒯 . By abuse of no-
tation, the subcomplex of 𝒯 that defines a subpolyhedron 𝐿 of 𝐾
is denoted by the same symbol 𝐿. For an 𝑛-dimensional PL sub-
manifold 𝑄 of 𝕊𝑛 (with the standard triangulation), the manifold
boundary of 𝑄 coincides with the topological boundary of 𝑄 in 𝕊𝑛
and is denoted by ∂𝑄. Also, Int𝑄 = 𝑄 ∖ ∂𝑄.

The following result seems to be well known and a proof is pro-
vided for completeness of the argument. Let 𝑛 be an integer such
that 𝑛 ≥ 2. Note that, for 𝑛 = 2, we make no assumption on the
space 𝑋 other than its path-connectivity.

Lemma 2.1. Let 𝑋 be a path-connected space with base point 𝑜
such that 𝜋𝑖(𝑋, 𝑜) = 0 for each 𝑖 = 2, ⋅ ⋅ ⋅ , 𝑛−1. Let 𝑃 be a compact
𝑛-dimensional PL submanifold of 𝕊𝑛 and let 𝑓 : 𝑃 → 𝑋 be a map
such that

(1) for each map 𝑔 : 𝕊1 → ∂𝑃 , the composition 𝑓 ∘ 𝑔 : 𝕊1 → 𝑋
is null homotopic.

Then the map 𝑓 admits an extension to a map 𝑓 : 𝕊𝑛 → 𝑋.

Proof: Let 𝑃0, ⋅ ⋅ ⋅ , 𝑃𝑘 be the components of 𝑃 and let {𝐶𝑖𝑗 ∣𝑗 =
0, ⋅ ⋅ ⋅ 𝑙𝑖} be the components of ∂𝑃𝑖. We take a sufficiently fine tri-
angulation 𝒯 of 𝕊𝑛 such that

(2) each 𝑃𝑖 is a subpolyhedron with respect to 𝒯 , and
(3) no 1-simplex of 𝒯 connects distinct components 𝐶𝑖𝑗 and

𝐶𝑖′𝑗′ .

We define an extension 𝑓 of 𝑓 by an induction on the skeleton
𝒯 (𝑚). At the outset, we fix a maximal tree 𝑇𝑖𝑗 ⊆ 𝐶𝑖𝑗 ⊆ (∂𝑃𝑖)

(1)

and a vertex 𝑣𝑖𝑗 ∈ 𝑇𝑖𝑗 for each 𝐶𝑖𝑗 . Additionally, we choose and fix
a path 𝑝𝑖𝑗 from 𝑓(𝑣𝑖𝑗) to 𝑜. For a 1-simplex with vertices 𝑢 and 𝑣,
(𝑢, 𝑣) denotes the 1-simplex endowed with the orientation from 𝑢
toward 𝑣.

Define 𝑓(𝑣) = 𝑓(𝑣) for each vertex 𝑣 ∈ 𝑃 and 𝑓(𝑣) = 𝑜 for 𝑣 /∈ 𝑃 .
For a 1-simplex 𝜎 /∈ 𝑃 with vertices 𝑣0 and 𝑣1, we define 𝑓 on 𝜎 as
follows:
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(1.1) if 𝜎 ∩𝑃 = ∅, then let 𝑓 on 𝜎 be the constant map 𝑐𝑜 to the
point 𝑜, and

(1.2) if 𝑣0 ∈ 𝐶𝑖𝑗 and 𝑣1 /∈ 𝑃 , take the unique path 𝑞𝑣0 in 𝑇𝑖𝑗

from 𝑣0 to 𝑣𝑖𝑗 and let 𝑓 ∣(𝑣0, 𝑣1) be a map defined by the
concatenation (𝑓 ∘𝑞𝑣0)∗𝑝𝑖𝑗 of the paths 𝑓 ∘𝑞𝑣0 (from 𝑓(𝑣0) to
𝑓(𝑣𝑖𝑗)) and 𝑝𝑖𝑗 (from 𝑓(𝑣𝑖𝑗) to 𝑜). Notice that 𝑓(𝑣0) = 𝑓(𝑣0)
and 𝑓(𝑣1) = 𝑜.

Next, we take a 2-simplex 𝜎 with vertices 𝑣0, 𝑣1, and 𝑣2. If 𝜎∩𝑃 =
∅, then let 𝑓 ∣𝜎 be the constant map 𝑐𝑜. Assume that 𝜎 intersects
with 𝑃 .

(2.1) If 𝑣0, 𝑣1 /∈ 𝑃 and 𝑣2 ∈ 𝐶𝑖𝑗 , then the restriction 𝑓 ∣∂𝜎 =
𝑓 ∣(𝑣0, 𝑣1, 𝑣2) is null homotopic because it is represented by
the concatenation 𝑐𝑜 ∗ (𝑓 ∘ 𝑞𝑣2 ∗ 𝑝𝑖𝑗)−1 ∗ (𝑓 ∘ 𝑞𝑣2 ∗ 𝑝𝑖𝑗). Thus,
𝑓 ∣∂𝜎 admits an extension on 𝜎.

(2.2) If 𝑣0 /∈ 𝑃 and 𝑣1, 𝑣2 ∈ 𝐶𝑖𝑗 , then let 𝑔 : ∂𝜎 → 𝐶𝑖𝑗 ⊂ 𝑃𝑖 ⊂ 𝑃
be a map defined by the loop 𝑞−1

𝑣1 ∗ (𝑣1, 𝑣2) ∗ 𝑞𝑣2 at 𝑣𝑖𝑗 .

Then 𝑓 ∣∂𝜎 is a map defined by the path 𝑝−1
𝑖𝑗 ∗ (𝑓 ∘ 𝑞𝑣1)−1 ∗

𝑓 ∣(𝑣1, 𝑣2) ∗ (𝑓 ∘ 𝑞𝑣2) ∗ 𝑝𝑖𝑗 which is freely homotopic to the
map 𝑓 ∘ (𝑞−1

𝑣1 ∗ (𝑣1, 𝑣2) ∗ 𝑞𝑣2) ≃ 𝑓 ∘ 𝑔 ≃ 0 by the hypothesis
(1). Hence, 𝑓 ∣∂𝜎 is null homotopic and it extends to a map
on 𝜎.

The above completes an extension procedure of 𝑓 to the 2-skeleton
𝒯 (2) and thus completes the proof for 𝑛 = 2. For 𝑛 > 2, we can
make use of the triviality of 𝜋𝑖(𝑋, 𝑜) to continue the extension pro-
cess and, at the 𝑛-th step, obtain the desired extension 𝑓 on 𝕊𝑛. □

The proof of Theorem 1.1 relies on the following lemma. The
idea of using the monotone-light factorization theorem is due to
M. L. Curtis and M. K. Fort, Jr. [2] and was applied in [6]. A local
dendrite (a dendrite, respectively) is a one-dimensional locally con-
nected compact connected metric space containing at most finitely
many (no, respectively) simple closed curves. A map ℎ : 𝑆 → 𝑇 be-
tween compact metric spaces is said to be monotone (light, respec-
tively) if every point inverse of ℎ is connected (zero-dimensional,
respectively).

Lemma 2.2. Let 𝑓 : 𝑁 → 𝑋 be a map of a compact polyhedron 𝑁
to a compact metric space 𝑋 such that dim𝑋 ≤ 1. Then there exist
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a compact metric space 𝐺 and maps 𝑚 : 𝑁 → 𝐺 and 𝑙 : 𝐺 → 𝑋
such that

(1) 𝑓 = 𝑙 ∘𝑚,
(2) the map 𝑚 is monotone and the map 𝑙 is light, and
(3) the space 𝐺 has finitely many components, each of which is

a local dendrite or a singleton.

Proof: Applying the monotone-light factorization [16, Chap. VIII,
section 4] to the map 𝑓 , we find a monotone map 𝑚 : 𝑁 → 𝐺 and
a light map 𝑙 : 𝐺 → 𝑋 satisfying conditions (1) and (2). We show
that the space 𝐺 satisfies condition (3). Since 𝑙 is a light map, by [8,
Theorem 3.3.10] and the hypothesis, we see dim𝐺 ≤ dim𝑋+0 = 1.
By the monotonicity of 𝑚, every component of 𝑁 is of the form
𝑚−1(𝑆) where 𝑆 is a component of 𝐺. The space 𝑁 has finitely
many components and so does 𝐺. Enumerate the components of
𝐺 as {𝐺𝑗} and let 𝑁𝑗 = 𝑚−1(𝐺𝑗). Each 𝑁𝑗 is a component of 𝑁
and the restriction 𝑚∣𝑁𝑗 : 𝑁𝑗 → 𝐺𝑗 is monotone. By the Hahn-
Mazurkiewicz Theorem, 𝐺𝑗 , as a continuous image of a locally con-
nected compact connected metric space 𝑁𝑗 , is locally connected.
Furthermore, by the monotonicity of 𝑚∣𝑁𝑗 , the induced homomor-

phisms (𝑚∣𝑁𝑗)
∗ : Ȟ1(𝐺𝑗 ;ℤ) → Ȟ1(𝑁𝑗 ;ℤ) is a monomorphism [12]

to a finitely generated abelian group. Hence, Ȟ1(𝐺𝑗 ;ℤ) is finitely
generated. By [11, section 52], every one-dimensional locally con-
nected compact connected metric space with finitely generated first
Čech cohomology is a local dendrite. Hence, we obtain the desired
conclusion (3). □

Proof of Theorem 1.1: Fix an integer 𝑛 ≥ 2 and take a map
𝑓 : 𝕊𝑛 → 𝐶𝑋0 ∨ 𝐶𝑋1. Notice that the set 𝑓−1(𝐶𝑋0 ∨ 𝐶𝑋1 ∖ {𝑜})
consists of at most countably many connected components, each
of which is open in 𝕊𝑛. Among these components, at most finitely
many of them meet 𝑓−1({𝑝0, 𝑝1}) and neither of them intersects
both of 𝑓−1(𝑝0) and 𝑓−1(𝑝1).

We construct a map 𝑔 : 𝕊𝑛 → 𝐶𝑋0 ∨ 𝐶𝑋1 such that

(1) 𝑔 is homotopic to 𝑓 , and
(2) 𝑔(𝕊𝑛) ⊂ 𝐶𝑋0 ∨ 𝐶𝑋1 ∖ {𝑝0, 𝑝1}.

Let us assume, for a moment, that we have the above map 𝑔. Since
𝑋0∨𝑋1 is a strong deformation retract of 𝐶𝑋0∨𝐶𝑋1∖{𝑝0, 𝑝1}, 𝑔 is
homotopic to a map from 𝕊𝑛 to 𝑋0 ∨𝑋1. Since dim(𝑋0 ∨𝑋1) = 1,
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𝜋𝑛(𝑋0∨𝑋1) is trivial by [2] and [1] and hence, 𝑔 is null homotopic.
Consequently, we conclude that 𝑓 is null homotopic, as desired.

The map 𝑔 and the homotopy between 𝑓 and 𝑔 are defined on
each component of 𝑓−1(𝐶𝑋0 ∨𝐶𝑋1 ∖ {𝑜}). If a component 𝑂 does
not meet 𝑓−1({𝑝0, 𝑝1}), then 𝑔∣𝑂 = 𝑓 ∣𝑂 and the homotopy 𝐻𝑂 :
𝑂 × [0, 1] → 𝐶𝑋0 ∨ 𝐶𝑋1 is given by 𝐻(𝑥, 𝑡) = 𝑓(𝑥) for each point
(𝑥, 𝑡) ∈ 𝑂 × [0, 1].

Next, take a component 𝑂 of 𝑓−1(𝐶𝑋0∨𝐶𝑋1∖{𝑜}) such that 𝑂∩
𝑓−1({𝑝0, 𝑝1}) ∕= ∅. Without loss of generality, we may assume that
𝑂∩𝑓−1(𝑝0) ∕= ∅ = 𝑂∩𝑓−1(𝑝1). Take a compact PL submanifold 𝑁
of 𝕊𝑛 such that 𝕊𝑛 ∖𝑂 ⊂ Int𝑁 and 𝑁 ∩ (𝑓−1({𝑝0})∩𝑂) = ∅. Define
a map 𝑓𝑂 : 𝕊𝑛 → 𝐶𝑋0 by 𝑓𝑂(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝑂 and 𝑓𝑂(𝑥) = 𝑜
otherwise. Let 𝑟 : 𝐶𝑋0∨𝐶𝑋1 ∖{𝑝0, 𝑝1} → 𝑋0∨𝑋1 be the standard
retraction which is a homotopy equivalence.

Applying Lemma 2.2 to the composition 𝑟∘𝑓𝑂∣𝑁 : 𝑁 → 𝑋0∨𝑋1,
we obtain a compact metric space 𝐺, a monotone map 𝑚 : 𝑁 → 𝐺,
and a light map 𝑙 : 𝐺 → 𝑋0 ∨𝑋1 such that 𝑟 ∘ 𝑓𝑂∣𝑁 = 𝑙 ∘𝑚 and

(3) the space 𝐺 has finitely many components 𝐺𝑗 , each of which
is a local dendrite or a singleton.

Let 𝐶𝑗 = 𝑙−1({𝑜})∩𝐺𝑗 and note 𝑙−1(𝑜) =
∪

𝑗 𝐶𝑗 . Since dim𝐶𝑗 =

0, the above condition (3) implies that there exists a closed neigh-
borhood 𝐷𝑗 of 𝐶𝑗 such that 𝐷𝑗 is the disjoint union of finitely
many dendrites, each of which intersects with 𝐶𝑗 . In particular, 𝐷𝑗

contains no simple closed curve and hence,

(4) the inclusion 𝑖𝑗 : 𝐷𝑗 → 𝐺𝑗 is null homotopic.

Observe that 𝕊𝑛 ∖ 𝑂 ⊆ (𝑓𝑂∣𝑁)−1({𝑜}) ⊆ (𝑟 ∘ 𝑓𝑂∣𝑁)−1({𝑜}) =
(𝑙∘𝑚)−1({𝑜}). There exists a compact PL submanifold 𝑃 of 𝑁 with

the components 𝑃0, ⋅ ⋅ ⋅ , 𝑃𝑘 such that 𝕊𝑛 ∖ 𝑃 is a PL submanifold
and also

(5) 𝕊𝑛 ∖𝑂 ⊆ (𝑙 ∘𝑚)−1({𝑜}) ⊆ Int𝑃 , (𝑙 ∘𝑚)−1({𝑜})∩𝑃𝑖 ∕= ∅ for
each 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑘, and each 𝑚(𝑃𝑖) is a subset of some 𝐷𝑗 .

Then, for each ℎ : 𝕊1 → 𝑃𝑖, the composition 𝑟∘(𝑓𝑂∣𝑃 )∘ℎ = 𝑙∘𝑚∘ℎ is
null homotopic by (4). Since 𝑟 is a homotopy equivalence, the map
(𝑓𝑂∣𝑃 ) ∘ ℎ is null homotopic as well. By Lemma 2.1, 𝑓𝑂∣𝑃 extends
to a map 𝑔0 : 𝕊𝑛 → 𝐶𝑋0 ∖ {𝑝0}. Define 𝑔1 : 𝕊𝑛 → 𝐶𝑋0 ∨ 𝐶𝑋1

by 𝑔1(𝑥) = 𝑔0(𝑥) for 𝑥 ∈ 𝑂 and 𝑔1(𝑥) = 𝑓(𝑥) otherwise. Then

𝑔1 ∣𝑃 = 𝑓 ∣𝑃 . Since 𝑃 and 𝕊𝑛 ∖ 𝑃 are compact PL-submanifolds



ON THE ASPHERICITY OF ONE-POINT UNIONS OF CONES 69

and 𝐶𝑋0 is contractible, we see that 𝑓 and 𝑔1 are homotopic relative
to 𝑃 and 𝑔1(𝑂̄) ∩ {𝑝0, 𝑝1} = ∅.

We iterate this procedure for every component 𝑂 of 𝑓−1(𝐶𝑋0 ∨
𝐶𝑋1 ∖ {𝑜}). The continuity of 𝑓 implies that there are at most
finitely many such components. Carrying out all these procedures,
we obtain the desired map 𝑔 : 𝕊𝑛 → 𝐶𝑋0∨𝐶𝑋1∖{𝑝0, 𝑝1}, satisfying
conditions (1) and (2). □

The next lemma is for the proof of Theorem 1.4.

Lemma 2.3. Let 𝐾0,𝐾1 be disjoint closed subsets of 𝕊2 and 𝑋 be
a path-connected space with a point 𝑜 ∈ 𝑋 specified. There exists a
compact surface 𝑃 ⊂ 𝕊2 with boundary such that

(1) 𝐾0 ⊂ Int𝑃 and 𝐾1 ∩ 𝑃 = ∅,
(2) each component of the boundary ∂𝑃 is a polygonal simple

closed curve, and
(3) for each map 𝑓 : 𝑃 → 𝑋 with 𝑓(𝐾0) = {𝑜}, the restriction

𝑓 ∣∂𝑃 : ∂𝑃 → 𝑋 is null homotopic.

Proof: Take a compact surface 𝑃 satisfying (1) and (2) above
and let 𝑃0, ⋅ ⋅ ⋅ , 𝑃𝑘 be the components of 𝑃 . We may assume that

(4) each component of 𝕊2 ∖ (𝐾0∩𝑃𝑖) contains at most one com-
ponent of 𝕊2 ∖ 𝑃𝑖 for every 𝑖.

Indeed, if a component of 𝕊2 ∖ (𝐾0 ∩ 𝑃𝑖) contains two components
of 𝕊2 ∖ 𝑃𝑖, then by cutting open 𝑃𝑖 along an arc connecting these
components, we have a smaller neighborhood 𝑃 ′

𝑖 ⊂ 𝑃𝑖 of 𝑃𝑖 ∩ 𝐾0

so that these components are contained in a single component of
𝕊2 ∖ 𝑃 ′

𝑖 . Iterating this procedure, we can make 𝑃 satisfy condition
(4).

For a map 𝑓 : 𝑃 → 𝑋 satisfying the hypothesis of (3), we show
that 𝑓 ∣∂𝑃𝑖 is null homotopic for each component 𝑃𝑖, which follows
from

𝑓 ∣𝐶 is null homotopic for each component 𝐶 of ∂𝑃𝑖.

Let 𝑂 be a component of 𝕊2 ∖𝐾0 which intersects with the com-
ponent of 𝕊2 ∖ 𝑃𝑖 whose boundary is equal to 𝐶. The curve 𝐶
divides 𝕊2 into two components. Let 𝑈 be the component of 𝕊2 ∖𝐶
containing Int(𝑃𝑖).



70 K. EDA AND K. KAWAMURA

The closure 𝑈 = 𝑈 ∪ 𝐶 is the closed disk such that 𝑈 ⊃ 𝑃𝑖 ∩𝑂.
Define 𝑔 : 𝑈 → 𝑋 by

𝑔(𝑢) =

{
𝑓(𝑢) for 𝑢 ∈ 𝑃𝑖 ∩𝑂,
𝑜 for 𝑢 ∈ 𝑈 ∖𝑂.

By (4), 𝑔 is actually defined on 𝑈 and is a continuous extension of
𝑓 ∣𝐶 and hence, 𝑓 ∣𝐶 is null homotopic. □

Proof of Theorem 1.4: Let 𝑓 : 𝕊2 → 𝐶𝑋0∨𝐶𝑋1 be a map. As in
the proof of Theorem 1.1, we construct a map 𝑔 : 𝕊2 → 𝐶𝑋0∨𝐶𝑋1

such that

(i) 𝑔(𝕊2) ⊂ 𝐶𝑋0 ∨ 𝐶𝑋1 ∖ {𝑝0, 𝑝1}, and
(ii) 𝑔 ≃ 𝑓 : 𝕊2 → 𝐶𝑋0 ∨ 𝐶𝑋1.

Having constructed such a map 𝑔, the proof is completed as
follows: Let 𝑟 : 𝐶𝑋0 ∨ 𝐶𝑋1 ∖ {𝑝0, 𝑝1} → 𝑋0 ∨𝑋1 be the standard
retraction. Then the hypothesis 𝜋2(𝑋0 ∨ 𝑋1) = 0, together with
(ii), implies 𝑓 ≃ 𝑔 ≃ 𝑟 ∘ 𝑔 ≃ 0.

Choose a component 𝑂 of 𝑓−1(𝐶𝑋0 ∨ 𝐶𝑋1 ∖ {𝑜}) such that
𝑂 ∩ 𝑓−1({𝑝0, 𝑝1}) ∕= ∅ and assume, without loss of generality, 𝑂 ∩
𝑓−1({𝑝0}) ∕= ∅. We construct a map 𝑔1 : 𝕊2 → 𝐶𝑋0 ∨ 𝐶𝑋1 such
that

(1) 𝑔1 is homotopic to 𝑓 , and
(2) 𝑔1∣𝕊2 ∖𝑂 = 𝑓 ∣𝕊2 ∖𝑂 and 𝑔1(𝑂) ∩ {𝑝0, 𝑝1} = ∅.
First we apply Lemma 2.3 to 𝐾0 = 𝕊2 ∖ 𝑂,𝐾1 = 𝑓−1({𝑝0}) ∩ 𝑂

and obtain a compact surface 𝑃 with polygonal boundary such that
𝕊2 ∖𝑂 ⊂ Int𝑃 and

(3) for each map 𝜑 : 𝑃 → 𝐶𝑋0 ∖ {𝑝0} with 𝜑(𝕊2 ∖ 𝑂) = {𝑜},
the restriction 𝜑∣∂𝑃 : ∂𝑃 → 𝑋 is null homotopic.

Define 𝑓𝑂 : 𝑃 → 𝐶𝑋0 by

𝑓𝑂(𝑥) =

{
𝑓(𝑥) for 𝑥 ∈ 𝑃 ∩𝑂,
𝑜 for 𝑥 ∈ 𝕊2 ∖𝑂.

Condition (3) above guarantees that 𝑓𝑂 : 𝑃 → 𝐶𝑋0 ∖ {𝑝0} satisfies
hypotheses (1) and (2) of Lemma 2.1 and hence admits an extension
𝑔0 : 𝕊2 → 𝐶𝑋0∖{𝑝0}. Define 𝑔1 : 𝕊2 → 𝐶𝑋0∨𝐶𝑋1 by 𝑔1(𝑥) = 𝑔0(𝑥)
for 𝑥 ∈ 𝑂 and 𝑔1(𝑥) = 𝑓(𝑥) otherwise. Then 𝑔1 ∣𝑃 = 𝑓 ∣𝑃 . Since

𝑃 and 𝕊2 ∖ 𝑃 are compact surfaces and 𝐶𝑋0 is contractible, we see
that 𝑓 and 𝑔1 are homotopic relative to 𝑃 . By the definition, we
also have 𝑔1(𝑂̄) ∩ {𝑝0, 𝑝1} = ∅.
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As in the proof of Theorem 1.1, we obtain the desired map 𝑔 :
𝕊2 → 𝐶𝑋0∨𝐶𝑋1∖{𝑝0, 𝑝1} by iterating the above procedure at most
finitely many times on each component of 𝑓−1(𝐶𝑋0 ∨ 𝐶𝑋1 ∖ {𝑜})
such that 𝑂 ∩ 𝑓−1({𝑝0, 𝑝1}) ∕= ∅. □

For more information on homology and homotopy groups on one-
point unions of cones, see [3] and [7].

3. Remark on Lemma 2.3

The proof of Lemma 2.3 shows the following: for each compact

subset 𝐾0 of ℝ2 and for each neighborhood 𝑈 of 𝐾0, there exists a
compact surface 𝑃 such that

(1) 𝐾0 ⊂ Int𝑃 ⊆ 𝑈 , and
(2) for each map 𝑓 : 𝑃 → 𝑋 with 𝑓(𝐾0) = {𝑜}, the restriction

𝑓 ∣∂𝑃 : ∂𝑃 → 𝑋 is null homotopic.

The following result illustrates that the 3-dimensional analogue
of the above result does not hold. This is the main technical ob-
stacle to answering Question 1.3 in its full generality.

Proposition 3.1. Let 𝑆𝑇 be a solid torus in ℝ3 which contains
Antoine’s necklace 𝐾0 in its interior in the standard way [14, pp.
71-72]. Let 𝑃 be a compact 3-manifold-neighborhood of 𝐾0 in 𝑆𝑇
and 𝑌0 be the quotient space 𝑃/𝐾0 with the quotient map 𝑞 : 𝑃 →
𝑌0. Then, the restriction 𝑞∣∂𝑃 : ∂𝑃 → 𝑌0 is not null-homotopic.

To prove the above, it is convenient to make the following lemma.

Lemma 3.2. Let 𝑋 be a simply-connected PL manifold and 𝑌 be
a connected PL submanifold of 𝑋. Then for each component 𝑍 of
𝑋 ∖ 𝑌 , the topological boundary of 𝑍 is path-connected.

Proof: It suffices to verify the conclusion when dim𝑌 = dim𝑋.
Suppose the topological boundary ∂𝑍 of 𝑍 is not path-connected.
Then we have two points 𝑝 and 𝑞 in ∂𝑍 which are not joined by
arcs in ∂𝑍. We have, on one hand, an arc 𝐴 in 𝑌 connecting 𝑝 and
𝑞 and, on the other hand, an arc 𝐵 in 𝑍 connecting 𝑝 and 𝑞 such
that 𝐴∩𝐵 = {𝑝, 𝑞}. The union 𝐴∪𝐵 is a simple closed curve in 𝑋
which is not null homotopic. This contradicts the assumption. □

Proof of Proposition 3.1: For simplicity, 𝑆𝑇 ∖𝐾0 is regarded as
a subspace of 𝑌0 via the homeomorphism 𝑞∣𝑆𝑇 ∖𝐾0. Let 𝑦0 be the
point with {𝑦0} = 𝑞(𝐾0).
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Suppose that there exists a homotopy 𝐻 : ∂𝑃 ×𝕀 → 𝑌0 such that

𝐻(𝑥, 0) = 𝑥 and 𝐻(𝑥, 1) = 𝑦0 for 𝑥 ∈ ∂𝑃.

Let 𝑆 be a component of ∂𝑃 . By making use of the homotopy
𝐻∣𝑆× 𝕀 between the inclusion 𝑆 → 𝑌0 and the constant map to 𝑦0,
we show that

(∗) there exists a homotopy 𝐻 : 𝑆 × 𝕀 → 𝑃 between the inclu-
sion 𝑆 → 𝑃 to a constant map.

Take the component 𝑂 of (𝐻∣𝑆 × 𝕀)−1(𝑌0 ∖ {𝑦0}) which contains
𝑆 × {0}. Define

𝐻0(𝑥, 𝑡) = 𝐻(𝑥, 𝑡) if (𝑥, 𝑡) ∈ 𝑂, 𝐻0(𝑥, 𝑡) = 𝑦0, otherwise.

Then 𝐻0 is also a homotopy from the inclusion 𝑆 → 𝑌0 to the
constant map. Hence, we assume that 𝑂 := (𝐻∣𝑆 × 𝕀)−1(𝑌0 ∖ {𝑦0})
is connected and let 𝐶 = 𝑆 × 𝕀 ∖𝑂 = (𝐻∣𝑆 × 𝕀)−1({𝑦0}). Then we
have 𝑆 × {0} ⊆ 𝑂 and 𝑆 × {1} ⊆ 𝐶. In the next lemma, 𝐻∣𝑆 × 𝕀
is abbreviated to 𝐻.

Lemma 3.3. Let 𝐶0 be a component of 𝐶. Then there exists a
unique 𝑢 ∈ 𝐾0 such that 𝐻1 : 𝑂 ∪𝐶0 → 𝑃 defined by 𝐻1∣𝑂 = 𝐻∣𝑂
and 𝐻1(𝑥, 𝑡) = 𝑢 for (𝑥, 𝑡) ∈ 𝐶0 is continuous.

Proof: We show that there exists a unique point 𝑢 ∈ 𝐾0 such that
for each sequence {𝑝𝑛} ⊂ 𝑂 with lim𝑛→∞ 𝑝𝑛 ∈ ∂𝐶0, the sequence
{𝐻(𝑝𝑛)} accumulates to 𝑢. It is easily seen that 𝑢 is the desired
point.

To show this by contradiction, suppose there exist two points
𝑎, 𝑏 ∈ ∂𝐶0 and sequences {𝑎𝑛}, {𝑏𝑛} ⊂ 𝑂 such that lim𝑛→∞ 𝑎𝑛 = 𝑎,
lim𝑛→∞ 𝑏𝑛 = 𝑏, and further, lim𝑛→∞𝐻(𝑎𝑛) and lim𝑛→∞𝐻(𝑏𝑛) are
distinct points of 𝐾0. Since 𝐾0 is 0-dimensional, we have open
sets 𝑈 and 𝑉 in 𝑃 such that lim𝑛→∞𝐻(𝑎𝑛) ∈ 𝑈, lim𝑛→∞𝐻(𝑏𝑛) ∈
𝑉 , 𝑈 ∩ 𝑉 = ∅, and 𝐾0 ⊆ 𝑈 ∪ 𝑉 . There exists a PL-manifold-
neighborhood 𝑃1 of 𝐶 such that 𝐻(𝑃1) ⊆ {𝑦0}∪(𝑈 ∖𝐾0)∪(𝑉 ∖𝐾0).
Let 𝑃2 be the component of 𝑃1 containing 𝐶0. Choose 𝑎𝑛 and 𝑏𝑛
so that 𝑎𝑛, 𝑏𝑛 ∈ 𝑃2. Notice that

(♯) there is no arc connecting 𝑎𝑛 and 𝑏𝑛 in 𝑃2 ∩𝑂,

because 𝐻(𝑃2 ∩ 𝑂) ⊆ (𝑈 ∪ 𝑉 ) ∖ 𝐾0. In other words, 𝐶 separates
the connected manifold 𝑃2.

As 𝑆 is a surface in 𝑆𝑇 , 𝑆 × 𝕀 is naturally embedded in ℝ3 by
“thickening 𝑆.” Under this embedding, the topological boundary
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of 𝑆 × 𝕀 in ℝ3 is 𝑆 × {0, 1}. We apply Lemma 3.2 to 𝑋 = ℝ3 and
𝑌 = 𝑃2. If 𝑃2 does not intersect with 𝑆×{1}, then the topological
boundary of 𝑃2 in ℝ3 is contained in 𝑂. If 𝑃2 meets ∂𝑃 × {1},
then it contains 𝑆 × {1} and the topological boundary of 𝑃2 in ℝ3

is contained in the disjoint union of 𝑆×{1} and 𝑂. Hence, we have
the following remark:

𝑆 × 𝕀 ∖𝑃2 consists of finitely many components and
the topological boundary of each component in 𝑆×𝕀
is path-connected and is contained in 𝑂.

We have a polygonal arc 𝐴 in 𝑂 which connects 𝑎𝑛 and 𝑏𝑛. There
exist finitely many pairwise disjoint subarcs 𝐵1, . . . , 𝐵𝑟 of 𝐴 such
that the endpoints of each 𝐵𝑗 belong to ∂𝑃2, each 𝐵𝑗 is contained
in the union of 𝑃2 and a unique component of the complement of
𝑃2, and 𝐴 ∖ ∪𝐵𝑗 ⊂ 𝑃2. By the preceding remark, for each 𝐵𝑗 , we
have an arc on the boundary of 𝑃2 which connects the endpoints of
𝐵𝑗 . Hence, we obtain an arc in 𝑃2∩𝑂 connecting 𝑎𝑛 and 𝑏𝑛, which
contradicts (♯). □

Proof of Proposition 3.1 (continued): Applying the above lemma
to each component of 𝐶, we have a map 𝐻𝑆 : 𝑆 × 𝕀 → 𝑃 such that
𝐻𝑆 ∣𝑂 ∪ 𝐶0 is continuous for each component 𝐶0 of 𝐶. To see the
continuity of 𝐻𝑆 on 𝑆 × 𝕀, it suffices to show the following.

(∗∗) Let {𝑝𝑛} be a sequence of 𝐶 such that lim𝑛→∞ 𝑝𝑛 = 𝑝 ∈
𝐶 and let 𝐶𝑛 (𝐶0, respectively) be the component of 𝐶
containing 𝑝𝑛 (𝑝, respectively). Take the unique points
𝑢𝑛 for 𝐶𝑛 and 𝑢 for 𝐶0 as in the previous lemma. Then
lim𝑛→∞ 𝑢𝑛 = 𝑢.

To show the above, we may assume that 𝑝𝑛 ∈ ∂𝐶𝑛 and 𝑝 ∈ ∂𝐶.
By the definition of 𝐻𝑆 , 𝐻𝑆(𝑝𝑛) = 𝑢𝑛 and 𝐻𝑆(𝑝) = 𝑢. By the
continuity of 𝐻𝑆 ∣𝑂 ∪ 𝐶𝑛, we may take 𝑎𝑛 ∈ 𝑂 so close to 𝑝𝑛 that
lim𝑛→∞ 𝑎𝑛 = 𝑝 and lim𝑛→∞𝐻𝑆(𝑎𝑛) = lim𝑛→∞𝐻𝑆(𝑝𝑛). Then,
by the uniqueness of 𝑢, we obtain lim𝑛→∞𝐻𝑆(𝑎𝑛) = 𝑢. Thus,
lim𝑛→∞ 𝑢𝑛 = lim𝑛→∞𝐻𝑆(𝑝𝑛) = lim𝑛→∞𝐻𝑆(𝑎𝑛) = 𝑢. This proves
(∗∗) and hence completes the proof of (∗).

Taking the union 𝐻 := ∪𝐻𝑆 over all components 𝑆 of ∂𝑃 , we
have a homotopy 𝐻 : ∂𝑃 × 𝕀 → 𝑃 such that 𝐻(𝑥, 0) = 𝑥, 𝑥 ∈ ∂𝑃 ,
𝐻(∂𝑃 × {1}) ⊆ 𝐾0. It is easy to see that for each component 𝑃0

of 𝑃 , we have 𝐻(∂𝑃0 × 𝕀) ⊆ 𝑃0.
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By the construction of Antoine’s necklace, there exists a com-
ponent 𝑃0 of 𝑃 such that the inclusion ∂𝑃0 → 𝑃0 is not null-
homotopic. Then there exists a component 𝑆 of ∂𝑃0 such that the
inclusion 𝑆 → 𝑃0 is not null-homotopic. However, the restriction
𝐻∣𝑆 × 𝕀 provides a homotopy between the inclusion 𝑆 → 𝑃0 and a
constant map because 𝐻(𝑆 × {1}), as a connected set of the zero-
dimensional 𝐾0, is a singleton. This contradiction completes the
proof of the proposition. □

For the tame Cantor set 𝐾 in ℝ3, there exists an arbitrarily small
neighborhood 𝑃 of 𝐾 which is the disjoint union of 3-balls. For the
quotient map 𝑞 : 𝑃 → 𝑃/𝐾, the restriction 𝑞∣∂𝑃 : ∂𝑃 → 𝑃/𝐾
is null-homotopic, since the restriction 𝑞∣∂𝑃0 is easily seen to be
null-homotopic for each component 𝑃0 of 𝑃 .

Acknowledgment. The authors express their sincere gratitude
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