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ON THE ASPHERICITY OF
ONE-POINT UNIONS OF CONES

KATSUYA EDA AND KAZUHIRO KAWAMURA

ABSTRACT. We prove that the one-point union of two copies
of the cone over the Hawaiian earring is aspherical.

1. INTRODUCTION AND DEFINITIONS

The one-point union CH vV C'H of two copies of the cone over
the Hawaiian earring H is not simply connected [9]. This is a well-
known example of a non-contractible one-point union of two con-
tractible spaces [15, p. 59]. The non-triviality of its fundamental
group follows from the presentation of the group given by H. B.
Griffiths in [10], a flaw in which was remedied in [13]. Another
proof was suggested by R. H. Fox in his review of [9] and is proved
in detail in [3, Theorem 2].

On the other hand, the Hawaiian earring and, more generally,
every planar or one-dimensional space are aspherical in the sense
that all homotopy groups of dimension at least 2 is trivial [17], [2],
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64 K. EDA AND K. KAWAMURA

and [1]. In [4], the authors constructed a 2-dimensional, simply-
connected, cell-like Peano continuum SC(S') such that the sec-
ond homotopy group m2(SC(S')) is non-trivial. In [5], the au-
thors demonstrated variants of SC(S!)- construction which, on one
hand, produces a space homotopy equivalent to SC(S') [5, The-
orem 4.3(2)] and, on the other hand, produces a space homotopy
equivalent to CHVCH [5, Theorem 4.3(3)]. This leads to a question
of whether the space CH vV CH is aspherical. The present paper
answers this question in the affirmative.
For a Hausdorff space X, C'X denotes the cone over X

CX =X x[0,1]/X x {1},

with the quotient topology. The peak point of CX is the point
represented by X x {1}, and is denoted by p. The space X is iden-
tified with the subspace X x {0}. Let Xy and X; be two Hausdorff
spaces with two points og € Xg and 01 € X;. For ¢ = 0,1, the peak
point of CX; is denoted by p;. The one-point union C Xy VvV C X is
the space obtained from the topological sum C' Xy @® C'X; with the
points og and o7 being identified with a point o.

Theorem 1.1. Let Xy and X1 be one-dimensional compact metric
spaces. Then 7, (C Xy V CXy) is trivial for each n > 2.

Consequently, we have an answer to the question above.

Corollary 1.2. Let Hy and Hy be copies of the Hawaiian earring
H. Then m,(CHy Vv CH,) is trivial for each n > 2.

Since the cone construction makes a space contractible, it does
not seem that “the coning” adds any complexity to one-point unions.

Question 1.3. Let Xy and X; be path-connected (Hausdorff)
spaces such that the n-th homotopy group m,(Xo VvV X;) is trivial.
Then is the group m,(C Xy V CX1) also trivial?

At the time of this writing, we can answer the above question
only for n = 2.

Theorem 1.4. Let Xg and X1 be path-connected Hausdorff spaces
such that the second homotopy group me(Xo V Xy) is trivial. Then
the group me(C Xy V CXy) is also trivial.

All spaces are assumed to be Hausdorff and all maps are assumed
to be continuous unless otherwise stated. The word “components”
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means “path-connected components.” The reader is referred to [15]
for undefined notions.

2. PROOFS OF THEOREMS 1.1 AND 1.4

Let K be a polyhedron with a triangulation 7. By abuse of no-
tation, the subcomplex of T that defines a subpolyhedron L of K
is denoted by the same symbol L. For an n-dimensional PL sub-
manifold @ of S™ (with the standard triangulation), the manifold
boundary of @) coincides with the topological boundary of @) in S™
and is denoted by 9Q. Also, Int@Q = Q \ 0Q.

The following result seems to be well known and a proof is pro-
vided for completeness of the argument. Let n be an integer such
that n > 2. Note that, for n = 2, we make no assumption on the
space X other than its path-connectivity.

Lemma 2.1. Let X be a path-connected space with base point o
such that m;(X,0) =0 for eachi =2,--- ;n—1. Let P be a compact
n-dimensional PL submanifold of S™ and let f : P — X be a map
such that
(1) for each map g : S* — OP, the composition fog:S' — X
1s null homotopic.

Then the map f admits an extension to a map f :S™ — X.

Proof: Let Py, - -+, Py be the components of P and let {Cj;|j =
0,---1;} be the components of 9P;. We take a sufficiently fine tri-
angulation 7 of S™ such that

(2) each P; is a subpolyhedron with respect to 7, and
(3) no 1-simplex of 7 connects distinct components C;; and
C’i/j"

We define an extension f of f by an induction on the skeleton
70 At the outset, we fix a maximal tree Tij € Cyj C (8]%)(1)
and a vertex v;; € T;; for each C;;. Additionally, we choose and fix
a path p;; from f(vi;) to o. For a 1-simplex with vertices u and v,
(u,v) denotes the 1-simplex endowed with the orientation from w
toward v.

Define f(v) = f(v) for each vertex v € P and f(v) = o for v ¢ P.
For a 1-simplex ¢ ¢ P with vertices vg and vy, we define f on ¢ as
follows:
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(1.1) if N P = (), then let f on ¢ be the constant map ¢, to the
point o, and
(1.2) if vg € Cj; and vy ¢ P, take the unique path gy, in Tj;
from vg to v;; and let f|(vo,v1) be a map defined by the
concatenation (fogqy,)*p;; of the paths fog,, (from f(vg) to
f(vi;)) and p;; (from f(v;) to o). Notice that f(vo) = f(vo)
and f(vi) = o.
Next, we take a 2-simplex o with vertices vy, v1, and vo. If cNP =
(), then let f|o be the constant map c,. Assume that o intersects
with P.

(2.1) If vo,v1 ¢ P and vy € Cjj, then the restriction floo =
f1(vo,v1,v2) is null homotopic because it is represented by
the concatenation ¢, * (f o gy, *pl-j)_l % (f 0 quy *pij). Thus,
floo admits an extension on o.

(2.2) If V0 ¢ P and V1,02 € Cz'j, then let g 0o — CZ']' CPCP
be a map defined by the loop q;ll * (v1,v2) * Qu, at vjj.
Then f|do is a map defined by the path p;jl % (foqu) !t
fl(vi,v2) * (f o qu,) * pij which is freely homotopic to the
map f o (qy," * (v1,v2) * qu,) = f 0 g = 0 by the hypothesis
(1). Hence, f|0o is null homotopic and it extends to a map
on o.

The above completes an extension procedure of f to the 2-skeleton
7@ and thus completes the proof for n = 2. For n > 2, we can
make use of the triviality of m;(X, o) to continue the extension pro-
cess and, at the n-th step, obtain the desired extension f on S*. [

The proof of Theorem 1.1 relies on the following lemma. The
idea of using the monotone-light factorization theorem is due to
M. L. Curtis and M. K. Fort, Jr. [2] and was applied in [6]. A local
dendrite (a dendrite, respectively) is a one-dimensional locally con-
nected compact connected metric space containing at most finitely
many (no, respectively) simple closed curves. A map h: S — T be-
tween compact metric spaces is said to be monotone (light, respec-
tively) if every point inverse of h is connected (zero-dimensional,
respectively).

Lemma 2.2. Let f : N = X be a map of a compact polyhedron N
to a compact metric space X such that dim X < 1. Then there exist
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a compact metric space G and maps m : N — G andl : G — X
such that
(1) f=lom,
(2) the map m is monotone and the map 1 is light, and
(3) the space G has finitely many components, each of which is
a local dendrite or a singleton.

Proof: Applying the monotone-light factorization [16, Chap. VIII,
section 4] to the map f, we find a monotone map m : N — G and
a light map | : G — X satisfying conditions (1) and (2). We show
that the space G satisfies condition (3). Since [ is a light map, by [8,
Theorem 3.3.10] and the hypothesis, we see dim G < dim X 40 = 1.
By the monotonicity of m, every component of IV is of the form
m~1(S) where S is a component of G. The space N has finitely
many components and so does (G. Enumerate the components of
G as {G,} and let N; = m~1(G;). Each N; is a component of N
and the restriction m|N; : N; — G; is monotone. By the Hahn-
Mazurkiewicz Theorem, G, as a continuous image of a locally con-
nected compact connected metric space IN;, is locally connected.
Furthermore, by the monotonicity of m|Nj, the induced homomor-
phisms (m|N;)* : HY(G;; Z) — HY(N;;Z) is a monomorphism [12]
to a finitely generated abelian group. Hence, Hl(Gj; Z) is finitely
generated. By [11, section 52], every one-dimensional locally con-
nected compact connected metric space with finitely generated first
Cech cohomology is a local dendrite. Hence, we obtain the desired
conclusion (3). O

f:S* — CXyV CX;. Notice that the set f~1(CXyV CXy \ {o})
consists of at most countably many connected components, each
of which is open in S”. Among these components, at most finitely
many of them meet f~!({po,p1}) and neither of them intersects
both of f~'(po) and f~'(p1).

We construct a map g : S = C Xy V CX; such that

(1) g is homotopic to f, and
(2) g(S") C CXoV CX1\ {po,p1}-

Let us assume, for a moment, that we have the above map ¢g. Since
XV X1 is a strong deformation retract of CXoVCX1\{po,p1}, gis
homotopic to a map from S™ to Xy V X;. Since dim(XyV X;) =1,

Proof of Theorem 1.1: Fix an integer n > 2 and take a map
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mn(Xo V X1) is trivial by [2] and [1] and hence, g is null homotopic.
Consequently, we conclude that f is null homotopic, as desired.

The map ¢g and the homotopy between f and g are defined on
each component of f~1(CXyV CXj \ {o}). If a component O does
not meet f~1({po,p1}), then g|O = f|O and the homotopy Hop :
O x [0,1] = CXoV CXj is given by H(x,t) = f(z) for each point
(x,t) € O x [0,1].

Next, take a component O of f~1(CXoVCX;\{o}) such that ON
F*{po,p1}) # 0. Without loss of generality, we may assume that
ONf~(py) #0=0nNf"1(p1). Take a compact PL submanifold N
of S" such that S*\ O C IntN and NN (f~*({po})NO) = 0. Define
amap fo:S" — CXg by fo(z) = f(z) for x € O and fo(x) =0
otherwise. Let r : CXoVCX;1\{po,p1} = XoV Xi be the standard
retraction which is a homotopy equivalence.

Applying Lemma 2.2 to the composition ro fo|N : N — XoV X7,
we obtain a compact metric space G, a monotone map m : N — G,
and a light map [ : G — Xy V X1 such that r o fo| N =1 om and

(3) the space G has finitely many components G, each of which
is a local dendrite or a singleton.

Let C; = 171 ({0})NG; and note [~ (0) = U; Cj. Since dim C; =
0, the above condition (3) implies that there exists a closed neigh-
borhood D; of C; such that D; is the disjoint union of finitely
many dendrites, each of which intersects with C;. In particular, D;
contains no simple closed curve and hence,

(4) the inclusion i; : D; — G is null homotopic.

Observe that §"\ O C (folN)"({o}) C (ro folN)"'({o}) =
(Iom)~1({0}). There exists a compact PL submanifold P of N with
the components Fy, - - , P such that S \ P is a PL submanifold
and also

(5) S*\ O C (lom)~'({o}) C IntP, (lom)~*({o}) N P; # ) for

each i =0,--- ,k, and each m(F;) is a subset of some D;.

Then, for each h : St — P;, the composition ro(fo|P)oh = lomoh is
null homotopic by (4). Since r is a homotopy equivalence, the map
(fol|P) o h is null homotopic as well. By Lemma 2.1, fo|P extends
to a map go : S” — CXp \ {po}. Define g; : S" — CXo Vv CX;
by gi(z) = go(x) for x € O and gi(x) = f(x) otherwise. Then
g1|P = f|P. Since P and S™\ P are compact PL-submanifolds
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and C' X is contractible, we see that f and g; are homotopic relative
to P and g1(0) N {po,p1} = 0.

We iterate this procedure for every component O of f~1(C Xy V
CXj \ {o}). The continuity of f implies that there are at most
finitely many such components. Carrying out all these procedures,
we obtain the desired map g : S — CXoVCX1\{po, p1}, satisfying
conditions (1) and (2). O

The next lemma is for the proof of Theorem 1.4.

Lemma 2.3. Let Ko, K1 be disjoint closed subsets of S and X be
a path-connected space with a point o € X specified. There exists a
compact surface P C S? with boundary such that

(1) Ko C IntP and K1 NP =10,

(2) each component of the boundary OP is a polygonal simple
closed curve, and

(3) for each map f: P — X with f(Ko) = {0}, the restriction
fIOP : OP — X is null homotopic.

Proof: Take a compact surface P satisfying (1) and (2) above
and let Py, --- , P, be the components of P. We may assume that

(4) each component of S?\ (KN P;) contains at most one com-
ponent of S?\ P; for every i.

Indeed, if a component of S? \ (Ko N P;) contains two components
of S?\ P;, then by cutting open P; along an arc connecting these
components, we have a smaller neighborhood P/ C P; of P; N K
so that these components are contained in a single component of
S? \ P/. Tterating this procedure, we can make P satisfy condition
(4).

For a map f : P — X satisfying the hypothesis of (3), we show
that f|0F; is null homotopic for each component P;, which follows
from

f|C' is null homotopic for each component C' of OP;.

Let O be a component of S?\ K which intersects with the com-
ponent of S? \ P; whose boundary is equal to C. The curve C
divides S? into two components. Let U be the component of S?\ C
containing Int(F;).
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The closiure U = U UC is the closed disk such that U > P;NO.
Define g : U — X by

| flu) forueP,NO,
g(u)—{o forue U\ O.

By (4), g is actually defined on U and is a continuous extension of
f|C and hence, f|C' is null homotopic. O

Proof of Theorem 1.4: Let f : S* = CXoV CX; be amap. As in
the proof of Theorem 1.1, we construct a map g : S> = CXoVCX;
such that

(1) g(Sg) C CXO 4 CXl \ {p0>p1}a and
(i) g~ f:S? = CXoVCXy.

Having constructed such a map g, the proof is completed as
follows: Let r: CXoV CX1 \ {po,p1} — Xo V X; be the standard
retraction. Then the hypothesis m(Xo vV X7) = 0, together with
(ii), implies f ~g~rog~0.

Choose a component O of f~1(CXy Vv CX; \ {0}) such that
O N f~1({po,p1}) # 0 and assume, without loss of generality, O N
F*{po}) # 0. We construct a map g; : S — CXo V CX; such
that

(1) g1 is homotopic to f, and
(2) 918*\ O = f|S*\ O and ¢1(0) N {po,p1} = 0.

First we apply Lemma 2.3 to Ko = S?\ O, K1 = f~*({po}) N O
and obtain a compact surface P with polygonal boundary such that
S?\ O C IntP and

(3) for each map ¢ : P — CXg \ {po} with »(S?\ O) = {o},
the restriction ¢|0P : 9P — X is null homotopic.

Define fo : P — CXj by

| f(®) forzePnNO,
fo(m_{o for r € S?\ O.

Condition (3) above guarantees that fo : P — CXg \ {po} satisfies
hypotheses (1) and (2) of Lemma 2.1 and hence admits an extension
go : S — CXo\{po}. Define g; : S> = CXoVC X7 by g1(x) = go(2)
for z € O and g1(z) = f(x) otherwise. Then g1 |P = f|P. Since
P and S? \ P are compact surfaces and C' Xy is contractible, we see
that f and g; are homotopic relative to P. By the definition, we
also have g1(O) N {po,p1} = 0.
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As in the proof of Theorem 1.1, we obtain the desired map g :
S? = CXoVCX1\{po,p1} by iterating the above procedure at most
finitely many times on each component of f~1(CXy Vv CX; \ {o})
such that O N f~1({po,p1}) # 0. O

For more information on homology and homotopy groups on one-
point unions of cones, see [3] and [7].

3. REMARK ON LEMMA 2.3

The proof of Lemma 2.3 shows the following: for each compact

subset K of R? and for each neighborhood U of Ky, there exists a
compact surface P such that
(1) Ko C IntP C U, and
(2) for each map f: P — X with f(Ko) = {0}, the restriction
f|OP : 9P — X is null homotopic.

The following result illustrates that the 3-dimensional analogue
of the above result does not hold. This is the main technical ob-
stacle to answering Question 1.3 in its full generality.

Proposition 3.1. Let ST be a solid torus in R® which contains
Antoine’s necklace Ky in its interior in the standard way [14, pp.
71-72]. Let P be a compact 3-manifold-neighborhood of Ky in ST
and Yy be the quotient space P/Ky with the quotient map q : P —
Yo. Then, the restriction q|OP : 9P — Yy is not null-homotopic.

To prove the above, it is convenient to make the following lemma.

Lemma 3.2. Let X be a simply-connected PL manifold and Y be
a connected PL submanifold of X. Then for each component Z of
X\ Y, the topological boundary of Z is path-connected.

Proof: 1t suffices to verify the conclusion when dimY = dim X.
Suppose the topological boundary 97 of Z is not path-connected.
Then we have two points p and ¢ in 0Z which are not joined by
arcs in dZ. We have, on one hand, an arc A in Y connecting p and
g and, on the other hand, an arc B in Z connecting p and ¢ such
that AN B = {p,q}. The union AU B is a simple closed curve in X
which is not null homotopic. This contradicts the assumption. [

Proof of Proposition 3.1: For simplicity, ST \ Ky is regarded as
a subspace of Y via the homeomorphism ¢|ST \ K. Let yo be the
point with {yo} = q(Kp).
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Suppose that there exists a homotopy H : 9P x I — Yj such that
H(z,0)=z and H(z,1)=yy forz e IP.

Let S be a component of dP. By making use of the homotopy
H|S x I between the inclusion S — Y; and the constant map to yo,
we show that

(x) there exists a homotopy H : S x I — P between the inclu-
sion S — P to a constant map.

Take the component O of (H|S x I)~1(Yy \ {yo}) which contains
S x {0}. Define

Ho(z,t) = H(x,t) if (z,t) € O, Hy(z,t) = yo, otherwise.

Then Hj is also a homotopy from the inclusion S — Y{ to the
constant map. Hence, we assume that O := (H|S x I) 71 (Yo \ {y0})
is connected and let C = S x I\ O = (H|S x I)"*({yo}). Then we
have S x {0} C O and S x {1} C C. In the next lemma, H|S x I
is abbreviated to H.

Lemma 3.3. Let Cy be a component of C. Then there exists a
unique u € Ky such that Hy : OUCy — P defined by H;|O = H|O
and Hi(z,t) = u for (x,t) € Cy is continuous.

Proof: We show that there exists a unique point u € Ky such that
for each sequence {p,} C O with lim,,_,o p, € 9Cp, the sequence
{H(pn)} accumulates to u. It is easily seen that u is the desired
point.

To show this by contradiction, suppose there exist two points
a,b € 9Cy and sequences {a, }, {b,} C O such that lim,, o a,, = a,
lim,, o0 by, = b, and further, lim,,_,o, H(ay,) and lim,_, H(b,) are
distinct points of Ky. Since Ky is 0-dimensional, we have open
sets U and V in P such that lim,, o H(ay,) € U, lim,—o0 H(by) €
V., UNV =0, and Kg C UUYV. There exists a PL-manifold-
neighborhood P; of C such that H(P;) C {yo}U(U\ Ko)U(V\ Kp).
Let P, be the component of P; containing Cy. Choose a,, and b,
so that a,, b, € P5. Notice that

(#) there is no arc connecting a,, and b, in P, N O,

because H(P, N O) C (UUV)\ Ky. In other words, C' separates
the connected manifold Ps.

As S is a surface in ST, S x I is naturally embedded in R? by
“thickening S.” Under this embedding, the topological boundary
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of S xT'in R?is S x {0,1}. We apply Lemma 3.2 to X = R? and
Y = P5. If P» does not intersect with S x {1}, then the topological
boundary of P, in R3 is contained in O. If P meets P x {1},
then it contains S x {1} and the topological boundary of P, in R3
is contained in the disjoint union of S x {1} and O. Hence, we have
the following remark:

S x I'\ P, consists of finitely many components and
the topological boundary of each component in S x 1
is path-connected and is contained in O.

We have a polygonal arc A in O which connects a,, and b,. There
exist finitely many pairwise disjoint subarcs By,..., B, of A such
that the endpoints of each B; belong to 0P, each Bj; is contained
in the union of P» and a unique component of the complement of
P,, and A\ UB;j C P,. By the preceding remark, for each Bj, we
have an arc on the boundary of P, which connects the endpoints of
Bj. Hence, we obtain an arc in P, N O connecting a,, and b,, which
contradicts (f). O

Proof of Proposition 3.1 (continued): Applying the above lemma
to each component of C, we have a map Hg : S x I — P such that
FS|O U Cj is continuous for each component Cy of C. To see the
continuity of Hg on S x I, it suffices to show the following.

(xx) Let {pn} be a sequence of C such that lim, oo p, = p €
C and let C), (Cy, respectively) be the component of C
containing p, (p, respectively). Take the unique points
uy, for C, and u for Cy as in the previous lemma. Then
lim,, 00 Upn = u.

To show the above, we may assume that p, € 9C, and p € 9C.
By the definition of Hg, Hg(pn) = un, and Hg(p) = u. By the
continuity of Hg|O U C,,, we may take a, € O so close to p, that
lim, 400 @y = p and lim, oo Hs(an) = lim, 0o Hs(pn). Then,
by the uniqueness of u, we obtain lim, oo Hs(a,) = u. Thus,
limy, o0 U = limy, o0 Hs(pn) = limy, o0 Hs(an) = u. This proves
(*%) and hence completes the proof of (x).

Taking the union H := UHg over all components S of 0P, we
have a homotopy H : OP x I — P such that H(z,0) = z,z2 € 0P,
H(OP x {1}) C Kp. It is easy to see that for each component P
of P, we have H(0Py x 1) C R.
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By the construction of Antoine’s necklace, there exists a com-
ponent Py of P such that the inclusion 0Py — P, is not null-
homotopic. Then there exists a component S of 0Py such that the
inclusion S — Py is not null-homotopic. However, the restriction
H|S x T provides a homotopy between the inclusion S — Py and a
constant map because H(S x {1}), as a connected set of the zero-
dimensional Ky, is a singleton. This contradiction completes the
proof of the proposition. O

For the tame Cantor set K in R3, there exists an arbitrarily small
neighborhood P of K which is the disjoint union of 3-balls. For the
quotient map ¢ : P — P/K, the restriction ¢|0P : 0P — P/K
is null-homotopic, since the restriction ¢q|0F, is easily seen to be
null-homotopic for each component Fy of P.
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