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1. Introduction 

In  [4] and [5] certain structural features of the category ~5 of groups and 
homomorphisms were discussed. Thus for example it was shown in [4] (see 
also [1 ] ) tha t  an H-object  {i.e. object with multiplication having a two-sided 
unit) in ~ is just an abclian group and the H-structure is just tha t  given by  
the group multiplication. I t  follows therefore tha t  every group-homombrphism 
between abelian groups is primitive with respect to their (unique) _H-structure; 
in other words, in the category ~ every map between H_-objects preserves 
the H-structure.  I t  was also shown in [4] tha t  in the canonical factoriza- 
tion 1) (F') of the canonical homomorphism u from the free product  of n 
groups to their direct product, all maps except the first are isomorphisms (the 
first is thus equivalent to ~ itself and hence an epimorphism). 

I t  is the object of this paper  to prove these and other results in a more 
general framework than  tha t  of the particular category ~ .  In  this way we make 
them available in other categories, particularly in categories of interest in 
topology; we are also able to avail ourselves of the formal duahty  principle to 
deduce results for comultiphcative structures. The feature of the category ~5 
which we abstract  in this paper  is just tha t  ® is a category of _M-objects (i.e. 
objects with multiplication, no further axioms being required) of another 
category (namely, the category ~ of based sets and based functions), together 
with those maps in ~ between the appropriate M-objects which are primitive 
(or homomorphie) with respect to the given_M-structures. I t  is also of importance 
that  ~b is, so to say, closed with respect to direct products in ~ .  Many other 
categories, of course, possess these properties of ®, some being also derived 
from the category ~ ,  others from different categories which share with ~ the 
property of admitt ing direct products. 

The general notion, then, is tha t  of an underlying category ~ and a category 
of M-objects of ~ and primitive maps. Such a category ~ we describe as a 

primitive category or, more fully, an M.primitive category over ~. I f  we restrict 

* This research was partly supported by the U.S. Department of Army through its 
European Research Office. 

1) See [3], § 4, or [4]. 
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the structures in ~ by inserting that  the appropriate axioms be satisfied (see 
[2]) we then get the notions of H-primitive categories, G-primitive categories, 
etc. Examples of such categories are, of course, numerous. Thus groups, semi- 
groups, abelian groups, nilpotent groups -- and full subcategories of these --  
constitute examples of categories to which our theorems are applicable; in all 
these cases the underlying category is ~ .  The topological categories ~ and ~h 
(see [2]) are underlying categories for the primitive categories of topological 
groups and H-spaces respectively. The category of Lie groups and the category 
of algebraic groups provide further examples of primitive categories. The dual 
notion may be exemplified by the category of H'-spaces and primitive classes, 
which is an l~-primitive category over ~h; and by the category of free groups 
with preferred free generating sets, and homomorphisms between such free 
groups mapping preferred generator to preferred generator or identity element. 
This latter example is a ~-primitive category over ~ii ; and it is pointed out in 
Theorem 4.16 tha t  it is indeed category isomorphic to ~ .  Thus we have a 
very  curious "dual i ty"  between ~ and ~ in which ~5 is the primitive category 
consisting of all G-objects in ~ and ~ is tile primitive category consisting of all 
~-objects in ~5. Although we do not mention explicitly the duals of the theo- 
rems we prove in this paper, we do point out explicitly in sections 4 and 5 how 
the duality relations between ~ and ~ enables us to pair off certain dual 
features of these two categories. 

Section 2 collects together certain preliminary results needed in the sequel. 
The proofs of the propositions enunciated are all rendered very simple by the 
application of the "presentation" theorem (Theorem 4.10 of [2 ]) ; one proof from 
first principles (that of Proposition 2.1) is given by  way of illustrative contrast. 

Section 3 opens with the precise definition of a primitive category, but  the 
theorems in the section are confined to the case of commutative structures. 
In particular it turns out that  the process of taking G-structures is in a sense 
idempotent. Thus if ~ is the complete ~) G-primitive category over ~, ~ the 
complete G-primitive category over ~D, and ~: the complete G-primitive 
category over ~, then ~ is essentially just the complete C G-primitive category 
over ~ (i.e., the category of "commutat ive groups" in ~); and ~: coincides 
with ~. We also describe in this section the relation of the notions of commu- 
tat ive category to that  of additive category. 

In  section 4 we develop the elementary parts of the general theory of 
m-primitive categories. In the first place we are concerned with the transport  
of structure from a category to a primitive category ~ over ~. In  particular 
left-equalizers and intersections - - m o r e  generally, inverse limits --  are 
preserved in the passage from ~ to ~ provided ~ is big enough, i.e., provided 
tha t  the objects 'in question in ~ lie, with their structure maps, in 9 .  Thus 
if ~D is complete left-equalizers and inverse limits are preserved; but, in general, 
right equalizers and direct limits are not. The situation is, naturally, reversed 
in the dual case. 

~) I.e., if ~ contains all the multiplicative objects of (~ of the sort considered. 
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We tu rn  our a t tent ion next  in section 4 to the question of the behaviour  of 
epimorphisms s a) in a primitive category.  I t  turns  out  (Theorems 4.5 and 4.6) t h a t  
epimorphisms enjoy properties in primitive categories which they  do no t  
possess in a rb i t r a ry  categories. We do not  succeed in proving t h a t  the  direct  
p roduc t  of right-equalizers is the  right-equalizer of the direct  products  of the 
maps concerned (in a primitive category) wi thout  an  addit ional  hypothesis  
which is verified in the cases which are familiar to us. I n  part icular  we are led to 
introduce the notions of a strong epimorphism in the primitive ca tegory 
over ¢ ;  this is an epimorphism in ~ having a r ight  inverse in ¢.  Such epi- 
morphisms enjoy special properties and in the primitive categories over 
mentioned above all epimorphisms are strong. We then assume t h a t  the 
category ~ is in fact  an I -ca tegory  (see [2]) and obtain  theorems mot iva ted  by  
known properties of the category ~ of groups (Theorems 4.12 and 4.15); and 
close the section by  proving the  dual i ty  theorem (Theorem 4.16) for the 
categories ~5 and ~ a l ready referred to. 

Section 5 is devoted to proving Theorem 2.3 of [5] in the  general context  
of the theory  of primitive categories (in [5] i t  was a theorem abou t  ~) .  I n  
part icular  we remark  tha t  in [5] we were content  to observe tha t  the  factoriza- 
t ion (F) of the canonical map ~¢ : A l * • • • * A~-+ A 1 x • • • x An in ~ bonsists 
of epimorphisms. I n  the more general context  of this paper  we stress t h a t  the 
maps  of the factorizat ion are, in fact, s trong epimorphisms. 

The final section is concerned with the t ransfer  of h o m o t o p y  functors  to 
primitive categories. Here our main  concern is to  effect the  transfer  and to 
show tha t  the factorizat ion (F) is h o m o t o p y  invar iant  in a complete primitive 
category ~ over a category ¢ with homotopy.  

I n  the course of the paper we give a few applications of the results: we 
emphasize tha t  these applications are given largely to provide evidence of the 
relevance of the results outside the  category ~5 and  of the possibility of 
providing a common proof of assertions which are dual  in the sense of [1 ]. 

2. Prel iminary results 

I n  this section we list certain useful pre l iminary  definitions and  results 
before we pass to primitive categories. Le t  ~ be a ca tegory  (with zero maps) 
admit t ing  (finite) direct products ;  t ha t  is, in the  terminology of [2], ~ is a 
D-category.  We should recall the canonical maps  d = d A--  {1, l} : A ~ A x A 
(the diagonal map)  and v = TA, B = {Ps, Pi} : A x B -~ B x A (the reverse map). 

Now let (A1, nh), (A s, ms) be two M-objects and  let (A, m) be their direct 
product  (see [2], Theorem 4.8 et seq.). Thus A = A 1 x A s and m : A 1 x A s x 
x A l x A  S - ~ A  I x A  s i s g i v e n b y  

m = {m l (p l  x Pl), mg(p~ x p~)}. 

2a) In view of terminological differences appearing in the litterature we wish to empha- 
size that the terms "monomorphism" and "epimorphism" are used in agreement with [9], 
see also [2, 3]: A map / : X -* Y in the category ~ is a monomorphism if, for all Z ( ~ and 
maps g, h : Z --> X in ~ , /g  ~-/h implies g ~ h; and dually for epimorphisms. 
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Alternatively we m a y  describe m, using different implicit bracketing, by 
m - (m 1 x ms) (1 × z × 1). This is the unique structure on A s × A s which 
makes Pl and Ps primitive, cf. [2], Theorem 4.8. We will often write m = rnl@ m v 
so tha t  the direct product  of (A 1, ml) and (A v m~) is the _M-object (A, m) 
= (A t × As, m 1 ~: ms). We recall tha t  the structure m satisfies any axiom of 
those listed in [2] provided m 1 and m s satisfy tha t  axiom. 

Proposition 2.1. Let (A, m) be an It.object. Then (A × A ,  m @ m) is an 
H_-object; and m : A × A -~ A is primitive i / a n d  only i/ m is associative and 
commutative. 

Pro@ The first assertion is already contained in Corollary 4.12 of [2]. To 
prove the second, we s tudy the diagram 

(2.2) 

A x A x A × A  , A x A  

fn 
A x A  , A 

and must  prove tha t  it is commutat ive if and only if the H-structure m is 
associative and commutative.  Now the commutat iv i ty  of (2.2) expresses 
itself, in component form, by  the equality 

(2.3) m{m{Pi, Ps},m{p3, P4}}=m{m{pl, P3},m{p2, P4}} 
while the associativity of m asserts tha t  

(2.4) m{m{pl, p,}, = m{p. re{p,, P3}} 
and the commuta t iv i ty  of m asserts tha t  

(2.5) m{p~, Pl} = m .  

Thus we must  show tha t  (2.3) holds if and only if both (2.4) and (2.5) hold. 
We deduce (2.4) from (2.3) by composing on the right with {Pl, Ps, 0, Pa} : A × 
x A × A -~ A x A × A × A ; and we deduce (2.5) from (2.3) by  composing 

on the right with {0, pl, p~ ,0} :A  × A - ~ A  x A  × A × A .  In  both cases 
decisive use is made of the fact tha t  m is an H-structure.  

Conversely, suppose tha t  (2.4) and (2.5) hold. Then m is associative so we 
m a y  write ma : A x A x A x A - ~  A for the unique 4-product (see Theorem 
4.13 of [2]); moreover we have to prove tha t  ma(1 × T x 1) = m a, or, equi- 
valent, t)-, tha t  m4{pl, Pa, Ps, Pa} = ma. 

Now m a n  malPl, m { p  v Psi, P,}; for the expression on the right is indeed 
a 4-product. Thus it  is sufficient to show tha t  

{pl, m{p , psi, p4} ps, p4} = {p. m{ps, 
But  

{Pl, m{Ps, P3}, P4} {Pl, Ps, Ps, P4} -~ {P,, re{P3, Ps}, P4} 
= {p. p,} 

by the commutat iv i ty  of m, and so the proposition is completely proved. 
We return now to the s tudy of the direct product (A 1 × A~, m 1 ~ m~) 

= (A, m) of two M.objects (A~, ml), (As, m~). Then, by  Theorem 4.8 of [2] the 



Group-Like Structures. I I I  169 

maps  t I = {1, 0} : A I -+ A1 × A s and  t s = {0, 1} : A s -+ Ax × A s are primit ive;  
so too, of course, are the projections Pl and  Ps- We prove 

Proposi t ion 2.6. I / ( A 1 ,  ml) and (As, ms) are HI-objects, then 

1 = ~ I P 1 +  LsPs = ~ s P s +  h P l  : A I  x A s - + A  1 × A s 

P r o @  Now pi ( t lp l  + t sPs )  -- Pl~1Pl + Pl~sPs, b y  Theorem 4.7 of [2] 

= p~, since pi t1= 1, pl t~= 0, and m is an  H-structure.  

Similarly P2 (tlPl + t2P2)= p~ and the  first equal i ty  follows from the  unique- 
ness p roper ty  of components.  The second equal i ty  is proved similarly 
(without any  assumption of commuta t iv i ty  of m). 

Corollary 2.7. Let O, O' : A 1 × A s ~ B be primit ive  (with respect to some 
l~I-structure on B )  and let 0 ~i = O' ~i, i = 1, 2. Then 0 = 0'. 

Pro@ We have only to observe that ,  by  Theorem 4.7 of [2] and Proposi- 
t ion 2.6, 

(2.8) 0 = Otlpl + Ot~p2. 

We bring together  Proposi t ion 2.1 and (2.8) to prove 
Theorem 2.9. Let (A, m) be an H.ob]ect and let O : A × A -+ A be an H- 

structure on A which is primit ive with respect to the H-structures m @ ~n, m on 
A × A ,  A respectively. Then 0 = m and m is associative and commutative. 

Pro@ I n  the light of Proposi t ion 2.1 it is sufficient to prove t h a t  0 = m. 
Now 

0 = O h P l ÷  Otsps, since 0 is primitive [by (2.8)] 

= Pl ÷ P2, since 0 is an H-s t ruc ture  

= m (see Theorem 3.3 of [2]) . 

We next  introduce a not ion which will be useful in the construct ion of 
primitive maps.  

Definition 2.10. Le t  (A, m) be an  M-object. Then :¢ : X ~ A, fl : Y -+ A 
strongly commutea) if 

(2.11) m~(~ x f l ) =  m(~z x [ I ) : X  x Y ~ A .  

Evident ly  the  condit ion (2.11) is symmetr ical  in ~ and  fl and equivalent  to 

(2.12) m(/? x a ) ~ =  m ( e  x fl): X x Y - + A  ; 

or, al ternatively,  to  the condit ion t h a t  the  elements ~Pl, tiP2 of the M-set 
H ( X  x Y ,  A )  commute :  

(2.13) ~ P l +  t i p s =  t i p s +  °:Pl • 

I t  is plain, for example, t h a t  e, fl s t rongly commute  if m is a commuta t ive  
structure.  We m a y  prove 

Proposition 2.14. (i) I/o~ : X -+ A ,  fl : Y ~ A strongly commute and q) : X 1 -+ X ,  
~o : I71 ~ Y,  then ot qD, fl ~ strongly commute. 

~) We would say that ~¢, fl : X -> A commute if ¢¢ -b fl = fl A- ¢¢; we make no use of 
this notion here. If in Definition 2.10, X = Y and a, fl strongly commute, then certainly 
~, fl commute. 
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(ii) I /  ~ : X ~ A ,  fl : Y -~ A strongly commute and i/  0 : (A, m) -~ (B, n) 
is primitive, then 0 ~, 0 fl strongly commute. 

Proo/. (i) follows immediately from (2.11) since 

~gxfl~=(~x f l ) ( ~ x ~ )  

(ii) follows from (2.13) since, if 0 is primitive, 

O:¢p~+ O ~ps= O(~p~+ tips) .... O(~ps+ ~p~)= O flp~-~ O~p~. 

An important  example of strongly commuting maps is furnished by 

Theorem 2.15. Let (A 1 × As, m 1 @ m2) be the direct product o/ the H_-ob'jects 
(A1, ml), (A2, ms). Then h : A1 -~ A1 × A2, t2 : A2 ~ A1 × A2 strongly commute. 

Proo/. I t  was shown in 2.6 that  h P l +  tsPs = t2P2+ tiP1 (= 1), which is the 
assertion of the theorem. 

The relation of strong commutativity to primitive maps is brought out by 

Theorem 2.16. Let a, fl : (A, m) -~ (B, n) be pr imi t iw  maps o/ M_-objects. 
Then i / n  is associative and ~, fl strongly commute, ct ÷ fl is primitive. 

Proo/. Set ? = ~ ÷ ft. We must show that  the diagram 

A x A  . . . . . . . . . .  B x B  

A " . . . .  B 

is commutative; that  is, that  ? ( P l +  P2) = Y P l +  ?P2 : A × A ~ B.  Now 

Y(Pl+ P2) = (~Z + fl) (Pl+ P2) 

= ~(Pl+ P2) + fl(P~+ P~) 

= (ap1~- ~p~) -l- ( f lP l+ flPu), since ~, fl are primitive 

= c¢P1+ (aPs+ ~Pl) ÷ t ips,  since n is associative 

= ~ P l ÷  (flPl-~- ~Ps) ÷ tiP2, since zt, fl strongly commute 

= ( ~ P l +  tiP1) + ( ~ P s +  tips) 

= (~ + f l)Pl+ (~ + fl)Ps 

= ? P I ÷  ? P s .  

We will also need 

Theorem 2.17. Let (A, m) be an associative M__.object and let :¢ : X--> A ;  
fl, ?:  Y---> A be maps. Then i/ ~ commutes strongly with fl and ? it commutes 
strongly with fl ÷ ?. 
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Proo]. We have 

~ P l +  (fl-.~ Y)P2:  ~Pl-~ ( t iPs+ YP2) 

= (ocPl~- tips) + yi02, 

= (ill02-}- ~Pl) -~ Yi02, 

= t i p s +  (ap~+ ~,p~.), 

= t iPs+ (YP2+ aPl),  

= ( t iPs+ YP2) + ~P l ,  

= (fl + Y)P2+ ap l  • 

since m is associative 

since ~, fl commute strongly 

since a, y commute strongly 

- t i P 2 +  a P l  = ~ P l  - t i P s . ,  

s t i p s+  :¢Pl = ~Pl + s t i p s ,  

and a, s fl strongly commute. 
Theorem 2.19. Let (A, m) be a G_-object with inverse s : A -> A .  Then 

m(s  × s) = s m T  : A × A -+ A . 

Proo/. In  the group H ( A  × A , A ) ,  we have m v = p 2 ÷  pl and r e ( s ×  s) 
s p l +  sp~. Thus the theorem follows from the group identi ty - ( p ~ +  Pl) 

= ( - p : )  + ( - p ~ ) .  

Corollary 2.20. I] (A,  m) is a C G-object then s : A -+ A is primitive.  

The notions of this section are adequately exemplified by  considering the 
case ~ = ~ ,  the category of based sets and based maps. The conclusions are 
then all familiar and elementary, and have, indeed, in many  cases formed the 
basis of the argument  in the general case. As a somewhat less familiar example, 
we consider the application of Corollary 2.7 to the category ~ = ~ of based 
spaces and based homotopy classes of continuous maps. We then deduce that  
if A, B, C are H-spaces and if / : A × B -~ C is a primitive map  (that is, a 
continuous map  whose homotopy class is primitive), then the homotopy  class 
of f is uniquely determined by  those of / IA, / I  B. The same corollary, applied 
to the dual situation, tells us tha t  if A ,  B,  C are H'-spaces, then the homotopy 
class of a primitive map  / : C -~ A V B is uniquely determined by  those of the 
projections of / onto A and B. 

3. Commutative categories 
Let ~ be a D.category and let ~ be a category whose objects are M-objects 

in ~ and whose maps (A, m) -*  (B, n) are precisely the maps A - ~  B in 

SO 

o r  

We close this section by  proving two results on G-objects. 
Theorem 2.18. Let (A, m) be a G-object, with inverse s : A--> A ,  and let 

o~ : X ~ A ,  ~ : Y ~ A strongly commute. Then ~ and s fl strongly commute. 
Proo/. In  the group H ( B ,  A)  the inverse o f / :  B--> A is s]; thus s] = - ] .  

Taking B = X × Y, we have 

~Pl  + t ips  = t ips  + ~Pl  , 
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which are primitive with respect to the M-structures m, n; it contains all 
identities and the zero maps between any  two of its objects (cf. [2], Prop. 4.1 
and the remark preceding it). We impose on 9 the condition tha t  i t  be closed 
with respect to direct products;  by  this we understand tha t  if (A 1, ml), (As, m~) 
belong to 9 ,  then so does (A 1 × As, m 1 @ ms). We remark  tha t  we can now 
give a precise justification for our description of (A I × A s, m I @ ms) as the 
direct product of (A 1, ml) and (As, ms), since it is indeed (together, of course, 
with the projections Pl, Ps) the direct product of (A 1, ml) and (As, ms) in 9 .  
Thus 9 is itself a D-category. We call 9 an M.primit ive category over ~. I f  the 
objects of 9 are all H-objects, we call 9 an H-primit ive category over ~;  
similarly we speak of AIt-primit ive,  G-primitive, C G-primitive, ACH-primi-  
t i r e  categories. I f  9 contains all the M_-objects in ~ it will be called the complete 
~-pr imi t ive  category over ~;  similarly we will speak of complete H-primit ive 
categories, etc. 

In  the next section we will discuss the general theory of primitive categories. 
In  this section we dispose briefly of the commutat ive case, establishing the 
relationship of the theory to tha t  of additive categories. We first prove two 
theorems generalizing familiar properties of the category of abelian groups. 

Theorem 3.1. I]  9 is an ACH-trr imi t ive  category over ~ then (A I × As,  
m,  @ ms) is the inverse product o/ (A1, rn.1) and (As, ms) in 9 ,  the injections being 
e~ : A 1 --+ A 1 × A s ,  $s : A1 -+ AI  × A s. 

Proo/. Let (X, ~) C 9 and let c 9 : Aj -+ X be primitive maps. Then ~1Pl, 
~2Ps, A1 × A~-+ X are primitive. Moreover alP1, ~sP2 strongly commute,  
since ~ is commutative,  so tha t  a l p1÷  asP2 is primitive, since ~ is associative 
(Theorem 2.16). Thus ~1P1+ asP2 : A1 × As -+ X is a map in 9 and 

(3.2) (~lPl ~- asp~)t¢ = ~ , j = 1, 2 ,  

since } is an I-Lstructure. 

I t  remains to show tha t  the map 0 = ~ lP l+  ~sP2 is uniquely characterized 
by  the equations (3.2). This, however, is at tested by Corollary 2.7. 

Theorem 3.1 asserts that ,  in such a category 9 ,  (finite) direct and inverse 
products coincide. I n  such categories therefore all objects carry unique H_-and 
]~-structures. Indeed if ( A , m )  is an object of 9 then m : A × A -~ A is primi- 
t ive (Proposition 2.1) and, of course, m h = m t  s = 1, since m is an H-structure 
in ~. Moreover, m = <1, 1> in view of Theorem 3.1 and Proposition 4.18 of [2], 
so tha t  m is the unique _H-structure on (A, m). Similarly d = {1, 1} :A 
-~ A × A is the unique ]~-structure on (A, m) in 9 .  Moreover it is plain tha t  
m is an ACtI-s t rueture  on (A, m) and d is an ACH-st ructure  on (A, m). 
Indeed if m were a CG-structure in ~ then m would be a C G-structure in 9 
and d would be a CG-structure in 9 ;  the latter remark follows from Corol- 
lary 2.20. 

I t  was observed in [4] that,  in the language of this paper, the category of 
abelian groups is the complete l-I-primitive category over the category of groups. 
We generalize this s ta tement  in Theorem 3.4 below. We first enunciate 
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Proposition 3.3. Let ~ be an H_-primitive category over ~ and let ~ be an 
H-primitive category over ~.  Let (A, m; O) be an object o /~ .  Then 0 = m and m 
is associative and commutative. 

Proo/. This is just a res ta tement  of Theorem 2.9. 
I t  is, further, par t  of the s ta tement  of Proposition 2.1 tha t  (A, m; m) is an 

_H-object of ~ if m is associative and commutat ive ; and it is a trivial observa- 
tion tha t  a map ~b : (A, m) -> (B, n) between ACH-objects  is primitive in 
if and only if ~b, regarded as a map (A, m; m) -~ (B, n; n) is primitive in ~ .  
I t  follows tha t  we m a y  identify ~, by means of the functor (A, m; m) ~ (A, m), 
with a subcategory ~o of ~ which is an ACH-primit ive  category over ~. The 
category ~o is, of course, a full4) subcategory of ~ consisting of A C H-obj ects, and 
only such subcategories may  be identified with an H-primitive category over ~ .  

Theorem 3.4. Let ~ be an l-l-primitive category. Then the I-t-primitive 
categories over ~ are essentially just the/uU A CH-primitive subcategories o/ ~.  

We recall tha t  an additive category is a category OA together with an 
abelian group structure in each H(A,  B), where A, B E 0A, such tha t  A × B - +  
-+ H (A, B) is a functor from 0A × OA to the category of abelian groups. This last 
requirement is equivalent to demanding two-sided distributivity of addition 
with respect to composition of maps. 

Let  us write H~(A,  B), A,  B E ~, for the maps of the category ~ if it is 
desirable to stress the category; and let us permit  ourselves to suppress the 
structure map  from the symbol (A, m) for an object of an M-primitive category 
over ~ if no confusion is to be feared. 

Our aim is, in a certain sense, to identify C G-primitive categories with 
additive categories. We first prove 

Theorem 3.5. Let ~ be a C G-primitive category over a category ~ and let 
A, B be objects o/ ~ .  Then H$ (A, B) receives an abelian group structure/rom 
the C G-structure in B; and ~ together with this abelian group structure in each 
H~ (A, B) constitutes an additive category. 

Proo/. I t  follows from Theorem 4.10 of [2] tha t  H~(A, B) receives an 
abelian group structure from the C G-structure in B. That  Hw (A, B) is a sub- 
group follows from Theorem 2.16 and Corollary 2.20. The right distributive 
law is a triviality; and the left distributive law holds because we are composing 
with primitive maps. 

We turn now to the converse. Let  9A be an additive D-category. Then there 
exists, for each B E 9A, a unique C G-structure m : B × B -~ B inducing the 
given abelian group structure in H(A,  B), A E OA. Let  ~ be the underlying 
category of the additive category 9A and let ~ be the CG-primit ive category 
over ~ whose objects are the CG-objects (B, m). Then we have 

Theorem 3.6. The categories ~ and ~[ coincide in the sense that 

H~ (A, B ) =  H~(A,  B) 
as abelian groups. 

4) Recall that a subcategory ~ of a category 11 is full if ~ contains, with two objects 
A, B of 21 which it contains, all the maps A --> B in 11. 
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Proo/. Since the C G-structure m : B × B -~ B induces the abelian group 
structure in both H~(A, B) and H~t(A, B), and H~(A, B) is a subset of 
Ha(A, B), it remains only to demonstrate the equality of H~)(A, B) and 
H~(A, B) as sets, tha t  is, to show tha t  every map / : A -~ B in ~ is primitive 
with respect to the given structures m : A × A -+ A, m : B × B -+ B. However, 
the commuta t iv i ty  of the diagram 

l×t 
A × A  , B × B  

1 "~ I m 

! 
A , B 

amounts,  in terms of the abelian group structure in H~l (P, Q), P, Q ~ OA, to the 
assertion 

I(Pl + P~) = lPl + lP~, 

which holds by  hypothesis in an additive category. 
The theorems of this section apply, clearly, to categories of abelian groups 

or abelian monoids. Theorem 3.1, for example, generalizes the fact that ,  in the 
category of abelian groups, (finite) inverse and direct products essentially 
coincide; while Theorem 3.4 has the consequence tha t  the H-objects in the 
category ~ of the groups are just the abelian groups. We may  also exemplify 
the theorems by  reference to the category 3 of H_-spaces and primitive maps 
(that is, maps whose homotopy classes are primitive in the category ~h of 
based spaces and based homotopy classes). Let us refer to a pair (A, m), where 
A E 3 and m : A x A -~ A in 3 ,  as a homotopy H-object of 3 if (A, [m]) is an 
H-object  of 0h, where [m] is the homotopy  class of m and 3h is the category 
of H-spaces and primitive homotopy classes 5). Then we infer tha t  the homotopy 
H-objects of 3 are the homotopy-associative, homotopy-commutat ive  H-spaces; 
and in the category of homotopy-associative, homotopy-commutat ive  H-spaces 
inverse and direct products coincide (being just the cartesian product). Dually 
we infer that  the homotopy ]~-objects of 3 '  areS) the homotopy-associative, 
homotopy-commutat ive  H'-spaces;  and in the category of homotopy-asso- 
ciative, homotopy-commutat ive  H'-spaces inverse and direct products coincide 
(being just the disjoint union with base-points identified). We may  also consider 
full subcategories of the ACH-pr imit ive  and ACH-primit ive  categories 
referred to above. In  particular, of course, we obtain the result tha t  inverse and 
direct products coincide in the category of double loop spaces (and primitive 
classes) and in the category of double suspensions (and primitive classes). This 
last category furnishes an example of a category familiar in homotopy theory, 
in which the objects are sets but  the direct product is not the cartesian product 
of the sets. 

5) Thus ~h is the complete H-primitive category over ~:h. 
6) O' is the category of H'-spaees and primitive maps. In talking of H- and H'-spaces 

we revert to the notations and terminology of [1]. 
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4. Primitive categories 

In  this section we develop certain basic notions in the theory of primitive 
categories. We fix once and for all an underlying category q and consider 
primitive categories over ~. We recall tha t  such a category is supposed to he 
closed with respect to direct products;  this assumption is sensible because, 
as remarked, we have a unique natural  process for defining an M-structure 
on the direct product  in ~ of two M-objects, such tha t  the direct product, so 
structured, becomes the direct product  in ;9. Our first observation in this 
section is tha t  an analogous s ta tement  holds for inverse limits (left-equalizers and 
intersections). We will suppose in 4.1--4.4 below tha t  q admits  leftequalizers 

Precisely, let (A, mA), (B, roB) be two objects of ;9 and l e t / , g  : A -+ B be 
maps in ;9, i.e., primitive maps. Let  k : K -+ A be the left-equalizer of / and g 
in ~. Then we recall (cf. [3], prop. 1.10) 

Proposition 4.1. The object K admits a unique M-structure m~ : K × K ~ K 
with respect to which k is primitive. Moreover m K satisfies axion N (N = I ,  I I ,  IV) 
o/ [2, § 4] i / m  A .satisfies axiom, N ;  and m~ is a G_-structure i / m  A and m B are 
G-structures. 

Let  us say tha t  ;9 is admissible if, for any  t, g : A -+ B in ;9, the object 
(K, inK) is in ;9 where k : K -+ A is the left-equalizer of ] and g in ~. ~hen we 
have as a consequence of the proposition above and Prop. 4.1 (if) of [2]. 

Corollary 4.2. 11 ;9 is admissible, le/t equalizers coincide in ~ and ;9; more 
precisely, k : (K, mK) -~ (A, mA) is the le/t-equalizer o I 1, g : A -+ B in ;9 i 1 
k : K -+ A is the le/t-equalizer o/1, g : A -+ B in ~. 

As a further consequence of Proposition 4.1 we have 

Corollary 4.3. The complete M-primitive (H-primitive, A H-primitive, 
G-primitive, CG-primitive, ACH-primit ive)  category over ~ is admissible. 

In  the light of the method of construction of inverse limits (or directly 
from their definition) we may  immediately infer 

Theorem 4.4. / / ; 9  is an admissible M-primitive category over ~ then inverse 
limits coincide in ;9 and ~; that is, i I ~¢ is an aggreqate in ;9 with inverse limit 
[D; d~] in ~, then D may be given a unique M-structure m D such that (D, mD)E ;9, 
each dA, A E d ,  is primitive and [(D, roD) ; d~] is the inverse limit o1 ~¢ in ;9. 

Of course, Proposition 4.1 imphes, as a special case, tha t  kernels are trans- 
ferred from ~ to ;9. I t  is worth remarking tha t  cokernels are not, in general, 
so transferred (for example, if ~ = ~ ,  the category of based sets, and ;9 = ~ ,  
the category of groups, then a homomorphism I : G -+ H has a different eokernel 
according to whether it is regarded as a map in ~ or ~) .  In  particular, maps 
of ;9 with zero kernel in ~) have zero kernel in ~, whereas there can be maps 
of ;9 with zero cokernel in ;9 and non-zero cokernel in ~. This leads to the 
question whether monomorphism8 (epimorphisn~) in ;9 are also monomorphizms 
(epimorphisnw) in ~;  it  is easy to construct examples showing tha t  this is, 
in general, not the case. I t  is, of course, plain that ,  in passing f rom a category 
to an ~-pr imi t ive  category ;9 over ~, any  map  of ;9 which is a monomorphism 
(epimorphism) in ~ is also a monomorphism (epimorphism) in ~). 

~ffath. Ann,  150 12 
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In  the following we concentrate attention on epimorphisms in M-primitive 
(more precisely, H.primit ive)  categories. Our main object is to point out that  
epimorphisms in I-l-primitive categories possess certain special properties not 
enjoyed by epimorphisms in arbitrary categories. We first recall from [3], § 5 
(see also [9]) the concept of a normal epimorphism: the epimorphism e is 
normal if the (right) annihilator of its (left) annihilator is the ideal generated 
by e. Now let us consider two objects A 1, A S of a category ~ and the projection 
Pl : A1 × As -+ AI" Then, in general, Pl is not normal. For its left annihilator 
is the ideal generated by t~:A~-~ A I × A 2. No wif ~ = ~ ,  the category of 
based sets, then the right annihilator of t~ is the projection ~1 of A 1 × A S 
onto the set obtained from A 1 × A 2 by the identification (o, x) = o, x ~ A2, and 
~1 does not factor throughpl unless A 1 is a one-point set. Thus Pl is not normal 
in ~ .  On the other hand we may prove 

Theorem 4.5. Let 5) be an H-primitive category. Then Pl : A1 × ,4 ~ ~ A 1 is 
'normal in 5). 

Proo]. Certainly t~ : Ao -~ A 1 × A~ lies in 5), so that  it is indeed the kernel 
of Pl in 5). We now prove that Pl is the cokernel of t2. Thus let 0 : A 1 × A 2 -+ B 
be a map in 5) such that  Ot~= O. Then 0 is primitive so that, by (2.8), 

0 = Otlpl+ 012p2= (Oh)p1, 

and the theorem is proved. 
We observed in [2] § 7 that  a direct product of epimorphisms is not 

necessarily an epimorphism. Again we indicate the force of the assumption 
of primitivity by showing 

Theorem 4.6. Let 5) be an H-primitive category, and let o~ i : A i --> Bi, i=  1,2, 
be maps in 5). Then :¢1 × ~2 : A1 × As  -+ B1 × B~ is an epimorphism in 5) i/ and 
only i / a l ,  ag. are epimorphisms 7) in 5). 

Proo]. I t  is true in any category that  ~ ,  a~ arc epimorphisms if ~1 × ~2 is an 
epimorphism, so that  it is the converse which merits special attention. Suppose 
that  ~1, a2 are epimorphisms and let O, qD : B 1 × B~ ~ C be maps in 5) such that  
0 ( ~  1 × a 2 ) =  ~0(g I × aS). NOW (~1 × ~2) ti = t i g i '  i = 1, 2, so that  

0 t l ~ l  = ~)t10~1, 0 t2a2  = ~0t2~ 2 • 

But e~, ~ are epimorphisms so that  0 t l=  ~h, 0t2= ~0t~. I t  now follows from 
Corollary 2.7 tha t  0 = ~, whence ~ × ~ is an epimorphism. 

Of particular interest to us among the epimorphisms are the right-equalizers. 
I n  any category the direct product of left-equalizers is the left-equalizer of the 
product maps (cf. [3], Prop. 1.9). On the other hand there certainly are 
categories in which the direct product of right-equalizers is not the right- 
equalizer of the product maps; such a category, for example, is the category ~* 
dual to the category of groups, for in ~5 the free product of kernels is not, in 
general, the kernel of the free product of the maps. 

7) It is true in any e~tegory that ~h × ~ is a monomorphism (isomorphism) if and only 
if e~ end ~ are monomorphisms (isomorphisms). 
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We have  not  succeeded in proving  t ha t  in a pr imi t ive  ca tegory  the  direct  
p roduc t  of r ight-equalizers  is the  r ight-equalizer  of the  p roduc t  maps ,  except  
under  an  addi t ional  hypothesis .  I n  fact  we prove  

Theorem 4.7. Let 9 be an H_.primitive category over ~ and let / i ,  gi : A~ ~ B~ 
be maps in  9 with right-equalizers c i : B l -+ Ci, i ~- 1, 2. Then c 1 x c2 is the right. 
equalizer o/ / i  x /2 and gi x g2 provided either (a) c i x c 2 x c i x c 2 is an  epi- 
morphism in  ~ or (b)  c i x c 2 is normal in  9 .  

Proo/. Certainly c 1 x c 2 is an  ep imorphism in 9 (Theorem 4.6) and  
(c i x e~)(/i x /2)  = (el x c2)(gi x ff~). I t  remains  then  to  show t h a t  if 0: B i x B 2-> D 
is a m a p  in 9 such t h a t  0(/1 x / ~ )  == O(gl x g~), t hen  0 = ~(c 1 x c~) for  some 
T : Ci x C~ ~ D in 9 .  We proceed to  show, wi thou t  invoking hypotheses  (a) 
or (b) t h a t  0 = ~ '  (c i x c~) for  some T '  : C1 x C 2 ~ D in ~. 

Now since 0(/i  x ]2) = O(gi x g~) i t  follows t h a t  O t j i =  Otigi, i = 1, 2. Thus,  
by  hypothesis ,  Oti= qJic~ for some m a p  ~i : Ci -~ D in 9 .  Then  

0 = O h p i +  Ot2p2 

:: q?iclPi + q~2c2p2 

~- m{q)lClPl, q)2c~P2} 

:= m ( ~  i X ~ )  (c i X c2) 

= ~ '  (ci x c~) 

where ~v'= m ( ~ l  x ~ ) .  Now ~ '  is a m a p  in ~ ;  i t  is not  obviously  a m a p  in 9 
unless 9 is an  A C H - p r i m i t i v e  categoryS). To  complete  the  proof  we invoke 
either hypothes is  (a) or hypothes is  (b). Indeed  hypothes is  (a} implies t h a t  ~ '  
is a l ready  itself p r imi t ive ;  for we m a y  invoke the  e lementa ry  

Proposition 4.8. Let (A,  mA) , (B,  mB), (C, mc) be M_-ob]ects in  ~ and let 
: A -+ B,  g : B ~ C be maps in  ~ such that (i) / and g / a r e  primit ive,  and (ii) 

/ x / is an epimorphism. Then g is primitive.  
The conclusion of Theorem 4.7 follows f rom hypothes is  (b) in the  light of 
Proposition 4.9. I / ~  is a normal epimorphism in  9 and ~' is a map  in 

such that o~'e is a map  in  9 ,  then ode --~ ~e where ~ is a map  in  9 .  
For  plainly ~ 'e  ~ = 0 whenever  e ~ = 0 so t h a t  ~ 'e  is a left  mul t ip le  of e 

in  9 .  

Thus  the  proof  of Theorem 4.7 is complete.  Hypothes i s  (a) while appear ing  
artificial and  ve ry  restr ict ive,  is, in fact ,  verified in the  par t icu la r  categories 
considered in this  series of papers ;  i t  holds, of course, whenever  ep imorphisms 
in 9 are also ep imorph isms  in ~.  Hypothes i s  (b), on the  o ther  hand,  is quite 
unrestr ic t ive in the  special case of cokernels, since i t  would be impl ied b y  the  
conclusion of the  theorem.  

Hypothes i s  (a) m a y  be rendered  more  acceptab le  if the  not ion of strong 
epimorphism in 9 is int roduced.  

~) Thus if ~ is an AC H-primitive c~tegory, the conclusion of Theorem 4.7 follows 
without any special assumption (u) or (b). 

12" 
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A map ] : .4 -~ B in 9 is a strong epimorphism in an M-primitive category 9 
if there exists a map  g : B -~ A in ~ w i t h / g  --- 1. Plainly a strong epimorphism 
in 9 is an epimorphism in both ¢ and 9 ;  and direct products of strong epi- 
morphisms are strong epimorphisms. Thus hypothesis (a) is certainly satisfied 
if c 1 and c, are strong epimorphisms. Now since every epimorphism in ¢~ has a 
right inverse and since every epimorphism in ~ is indeed an epimorphism in ~ ,  
all epimorphisms in ¢~ are strong. An important  property of the category 
is thus generalized in the following theorem. 

Theorem 4.10. Let ~ be a category with kernels and let ~ be an admissible 9) 
G-primit ive category over ~.  Then in  9 all strong epimorphisms are normal. 

Proo]. L e t  / : A ~ B be a strong epimorphism in ~ and let g : B -+ A be a 
map  in ~ such tha t  ]g = 1. Then / = / g / ,  whence, / being a primitive map  of 
G-objects , / (1 - g/) = 0. Thus if k : K - >  A is the kernel of ] in ~, 1 - g / =  kq, 
o r  

(4.11) 1 ..... kq + g /  

for some map q : A -~ K in ¢. 
Now k is also the kernel of / in ~ (Proposition 4.1) so that  we prove the 

normali ty of ] by  showing tha t  if 1 : -4 -~ C is a map in ~ such tha t  l k  = 0 then 
1 = m / w i t h  m in ~ .  By (4.11) and the primit ivi ty of 1 we have 

l =  l kq  + l g ] =  l g / =  m /  , 

where m = lg. Finally we invoke Proposition 4.8 to deduce the primit ivi ty 
of m; for / × / certainly is an epimorphism in ¢ since / is a strong epimorphism 
in ~ .  

Thus, in fact, hypotheses (a) and (b) of Theorem 4.7 are both verified if 
c I and c, are strong epimorphisms. We return to strong epimorphisms in the 
next  section; meanwhile (and also in preparation for the next  section) we discuss 
the situation in which a primitive category admits  inverse products. At this 
point we merely recall notations, prove one simple fact  taken from group 
theory, and a second fac t  also taken from group theory and given a purely 
group theoretic proof in [4]. 

Suppose tha t  9 is a I-I-primitive over ¢ and tha t  ~ is also an I-category 
(thus, in fact, 9 is a DI-category) .  We use the notations of [2], 

q~ : A i - +  A l  * • • • , A,~, i =  1, 2 . . . . .  n 

g ~ : A I * ' " , A , - + A i ,  i =  1 , 2 , . . . , n  

for the injections and projections associated with the inverse product  of n 
objects Ak E 9 ;  we also adopt  the notation 

u : A 1 , . . .  , A,~ -~ A l  x . . .  × An 

for the canonical map  from the inverse to direct product  ((3.34) of [2]). Thus 
is given by  

g q ~ = t t ,  a l l i ,  
or by  

p , u =  ~r~, all i ,  

D) Here it is sufficient that the kernels of maps of ~ belong to ~. 
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or, symmetrical ly,  by  
p ~  q, = (~ ,  

where ~ : A j  -> A i is the  Kronecker  symbol.  We prove 

Theorem 4.12. Let  ~ be an  H - p r i m i t i v e  category. T h e n  

~¢ ~ t l T / : l ~ -  t 2 ~ 2 ~ -  " " " ~ -  t nT~  n : i 1 , • • " * A n ---> A 1 x • • • × A n 

where the bracketing and  the order o/ the s u m m a t i o n  o/ the t i~ t  is arbitrary.  

Moreover u is a strong ep imorphism.  

Proo]. The first assertion is an  immediate  consequence of the following 
generalization of Proposi t ion 2.6. 

Proposition 4.13. Le t  ~ be an  H_-primitive category. T h e n  

1 = h P l ÷  t2P~÷ " " " ÷ t,~p~ : A i × . • • × A n --> A 1 × " " " × A n  

where the bracketing and  the order o/ the s u m m a t i o n  o / t h e  t iPi is arbitrary.  

This proposit ion is proved by  taking any  such sum ~ of the t~pi and showing 
tha t  piR  = Pi, i = 1, 2 . . . . .  n. The details m a y  be omitted.  Finally,  to  prove 
tha t  u is a s trong epimorphism, we observe t h a t  

g ( q l P l +  " " " + qnPn) = g q l P l  + " " " + uq,~p,~ 

= h P l + ' " + t ~ P ~ =  1 ,  

by  proposit ion 4.13, where again the  bracket ing and  the  order  of summat ion  
of the  qiP~ is a rb i t ra ry ;  of course we do no t  here claim t h a t  the value of the  
sum qlPl  ÷ " " " + q~Pn is independent  of the bracket ing and order of summat ion.  
This completes the proof of the theorem. 

Now we assume t h a t  ~ is a D I - c a t e g o r y  admi t t ing  right-equalizers (or, 
what  is the same thing, admit t ing  direct limits). We m a y  then  factorize 

u :  A l ,  A s ,  A a-~ A 1 × A s × A a as 

(4.14) A 1 • A ~ ,  A 3 ~  T ( A  i, As ,  As )  - -~ A i × A s x A a ; 

(see [6] or [3], where nota t ions  are different). We repeat  here the  definition of 
T(A1 ,  As ,  A3) = T and  of the  factor izat ion (4.14) in an  a rb i t ra ry  D I . c a t e g o r y  
with unions. Le t  t~= {1, 0} be the  "embedding"  of Ai in A t × Aj ;  we will 
identify A t × A j  with A~. × Ai so t h a t  the nota t ion  t~ is preferable to  one 
involving components .  Then  T is characterized up to canonical equivalence 
by the conditions (a) there exist maps  fl, j : A i × A¢ -+ T with fll~t~ = fllah a, 
/~12 t  1 : ~ 2 3 t 3  c a _  2 .  ~la 3 - fl2ata, (b) given maps  ~ij : At x Aj --> U with ~212t21 

- -  = 723 2' 713t3 - -  F23 3, there exists a unique map  7 : T -+ U with 

B y  taking U = A i × A ,  × A a and  ~i~--- t,~, the  "embedding"  of A~ x A~ in 
A 1 x A s x A a, we obta in  f rom (b) a unique m a p  u '  : T -~ A 1 x A s × A a with 
u' f l ,~= ti~. We define n"  : A~ • A s * A a -~ T b y  u"  = (fl~, fl,, fla), where 
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We now prove 
Theorem 4.15. I /  ~ is an All-primit ive DI-category with right equalizers, 

then 
~' : T ( A  1, A2, A3) ~ A 1 × As × Aa 

is an equivalence1°). 
Pro@ Since ~ is an epimorphism (Theorem 4.12) so is ~'. Thus it  remains 

only to construct a map  ~7 : A1 × As x A a ~ T in ~ such tha t  ~ '  = 1. We 
define 

since the structures in ~ are associative the map ~ is well-defined. 
We now prove ~ primitive. By Theorem 2.15 t~ and t~ strongly commute, 

so tha t  (Proposition 2.14) t~pl and t~p~ strongly commute and, applying fl12 
on the left, fliP1 and fi2P~ strongly commute. Similarly fliP1 and fi~Pa, f12P2 
and flaps strongly commute. We now apply Theorems 2.16 and 2.17 to deduce 
tha t  fllPl+ ~2P2+ flaP3 is primitive; note tha t  ~ has been assumed AH-  
primitive. 

I t  remains to show tha t  ~ z ' =  1. Now ~tj = (/~1P1+/~P2+ flapa)t~ = flJ 
SO t h a t  ? ~ '  ~12 t2 = ~Tt12t21 = ~ t  1 == HI = i l l2 t2, a n d ,  similarly, ~ '  fll~t~ = filetS. 
Thus, by  corollary 2.7 ~]n' fl~2= fl~2. Similarly ~n'  f i ~ =  fl~3, ~n' fl, s=  fl23, 
so that ,  by  condition (b) above, ~ '  = 1 and the theorem is proved. 

A known ease of this theorem is tha t  of the category ~ (see [4]). I t  is also 
known tha t  the category ~ *  dual to the category of based sets is one in which 
x'  is an equivalence. (In other words in the dual factorization in the category 
the map  corresponding to n' is an equivMenee.) In  fact this second ease is 
indeed an example of Theorem 4.15 in the light of the following theorem which 
expresses a curious "dual i ty"  between the categories ~ and (5. Of course 
is the complete G-primitive category over ~ ; however we also have 

Theorem 4.16. The category ~ is equivalent to the complete G.primitive 
category over ~ .  

Proo[. Kan ' s  theorem ([8], Theorem 3.10 or [4], Theorem 1.6) asserts 
tha t  an AII -objec t  in N is a free group G together with a homomorphism 

: G -~ G * G given on a free set of generators S = {x} by  

(4.17) l~x ---- q~x . q~x ; 

moreover the set S = S ~ (e), where e is the identity of G, is characterized as 
the set of solutions in G of (4.17); or, as we may  say, as the set of primitive 
elements of G with respect to ;u. I t  is plain, further, tha t  (G, ;u) is in fact a 
G-object with inverse n) ~ : G -~ G given by  ~x = x -~, x ~ S. Thus there exists 
a one-to-one correspondence F between objects ~q of ~ and G-objects (F(S) ,  ~u) 
of ~), F(N) being the free group freely generated by  S = ~ - (e), where e is the 
base point of S and is to be identified with the identity of G; the G-structure 
on F(S)  is t ha t  given by  (4.17). 

~0) Theorem 1.1 of [6] enables us to generalize this immediately to more than 3 factors. 
~) Recall tha~ ~ is the inverse with respect to the eomultiplieation #. 
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Theorem 1.9 of [4] may  now be paraphrased as saying that ,  given two 
G-objects ( F ( ~ . q l ) , ~ )  and (F(~z) , /~)  a primitive map  from the first to the 
second is just the unique homomorphism F ( ~ I ) - ~ F ( S 2 )  extending a given 
based function $t -+ S~- I f  we extend the domain of F by  declaring the image, 
F ( ¢ ) ,  of such a based function q~ : ~1 -~ S~ to be the unique homomorphism 
F(~ I ) -+  F(S~) extending (b it is then plain tha t  F is a functor from ~ onto 
the complete G-primitive category over ~ which is one-to-one on objects and 
maps and thus establishes the equivalence of the two categories. 

This theorem has the effect of explaining "dual"  phenomena in the cate- 
gories ~ and ~ as twin manifestations of a general theorem on primitive 
categories. We have already mentioned tha t  Theorem 4.15 applies both to 
and to ~ ; it yields, in the language of [3], § 5, the fact that ,  for any group G, 
l(G) < 2, and, for any set S ,  l ( S )  ~ 2. A simpler example of this duality is 
provided by  the assertion in Theorem 4.12 tha t  ~ is a strong epimorphism in 
an H-primitive DI-eategory.  As a consequence of this assertion the two 
statements " ~  is a strong epimorphism in ~5", " x  is a strong monomorphism 
in ~ "  may  both be deduced. Again Theorem 4.6 enables us to deduce simul- 
taneously tha t  direct products of epimorphisms in ~5 are epimorphisms and 
inverse products (=  "unions with base point identified") of monomo~phisms 
in ~ are monomorphisms. A less trivial example will be found in the next  
section. 

5. The canonical factorization in G-primitive categories 

Our main purpose in this section is to generalize Theorem 2.3 of [5]. Let  

A ~  ~n ~ ~1 
A 1 *" • • * A ~ =  ~ A ' ~ - I  - - ,  . . . A v +  1 ~" , A v  . . . " A 1 

(5.1) 
= A 1 × " "  × A~ 

be the factorization (F) of [3], Theorem 4.4, where A 1 . . . .  , A~ are objects of 
a DI-ca tegory  11 with left equalizers. Then it was shown in [5] tha t  if 11 = 
then each uv is an epimorphism. Our generalization is as follows. We suppose 

to be a D-category with left-equMizers and take ~ to be an admissible 
G-primitive DI-ca tegory  over ~. We may  thus construct the faetorization (F) 
(5.1) in ~ and we prove 

Theorem 5.2. I n  the [ac tor i za t ion  ( F )  i n  ~ each uv  is  a s t rong  e p i m o r p h i ~ m .  

P r o @  We adopt  the notation of [3,4, 5]. Given strings I , J  C IV 

= (1, 2 , . . . ,  n) with J C I ,  let A b A j  be the associated inverse products and 
let ~} : A I ~ A j ,  q}  : A j  ~ A x be the projections and injections. Then A ~ is the 
inverse limit of the ~-aggregate  ~¢P,P= ( A I ,  zt~ with l l l <  p), and there are 
canonical maps 

~ : A v  ~ A I 

I p _ _  with z~)~x - ~"  Moreover a unique map 

~v : A - -+ A v 
is defined by  

(5.3) ~ ~,= ~ ,  
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where n l  is the project ion A" -~ A I. Since 

(5.4) 2 ~ =  ~ o z ~ + l o ' . .  oz "-1 

it is plainly sufficient to prove tha t  2v is a s trong epimorphism. We will need 
the  relation 
(5.5)  x r zr~:q: r =  qL~LL, where L =  J c~ K ;  

the  proof of this relation will be omitted.  
We  next  consider the  maps  ~ ,  Iit g t; since ~ admits  left-equalizers and, 

hence, intersections, and  since ~ is admissible, we m a y  construct  the  inter- 
section of the  kernels of these part icular  maps  to  obtain  an  object  F t = F t (A~') 
and  monomorphism fit : F t  ~ A ". The m a p  #t  is a m ap  in ~ and is, as we have 
stressed, the  intersection of the  kernels of the  ~ ,  Ill g t, both  as a map  in 
and  as a map  in ~). Note  t h a t F  0 = A~, F~ = 0; and, of course,/ to = 1, #~ = 0; 
and  t h a t  #t  is the intersection of the kernels of the ~ ,  lit = t. 

We will use the  symbol  m for the G-structure in any  object of 9 ;  indeed, 
for simplicity, we will still use the symbol  m even if a k-product  is involved 1~) 
for k < 2. We will use the  symbol  8 for the  inverse th roughout  ~ ; and we will 
use a symbol  like {]j} for the map,  into a direct product ,  with components /~  
and m a y  indicate the  range of ~ in a subsclipt.  

Wi th  these conventions we proceed to  construct  a right-inverse of 2~ in ~. 
As in [5] we order the r-strings for each r and  we define the map (in ~) 

yt, x: Av  ~ AI ,  llI ~ t +  1 
b y  

( 5 . +  : ,  

The n o t a t i o n  { q j ~ } l j l = t + l ,  JC I t  p indicates the m a p  whose components  are 
I p q j ~ j  where J proceeds over the given range in the order laid down for the 

strings. 
We prove next  that ,  if ]J[ = t ÷ 1, 

i r I p __  
(5.7) 7 g K q j ~ j f t  t - -  O, if J 5 K 

K p  if J K 
= q J  ~ J ~ t '  

For,  if L = J / ~  K, 
I I p __ K J p 

~ K q g  ~ J  tZt - -  qZ  ~ L  ~ J  f i t  ' 
b y  (5.5) 

__ ~ K  ~p it  - -  tlL L t~t • 

N o w  if J ([ K then  )L I ~ t so t h a t  ~ / z  t = 0; if J C K  then  L =  J ,  so (5.7) is 
proved.  

Thus,  since z ~  is primitive, 

I p 

= 7t, K l ~ t .  

~) This is legitimate smee our structures are associative, see [2]. 
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I t  follows t h a t  the  maps  ~t,~ #I toge ther  de te rmine  a m a p  

(5.8) 71 : Ft  -+ A ~ (in ~) 

such t h a t  

(5.9) ~ ~1 = Yt, i l t t  • 

(Here we are, of course, invoking the  fact  t h a t  A"  is the inverse l imit  of the  
maps  g ~  in ~ as in ~ . )  

L e t l I l = t + l ; t h e n  

0 .  
Thus  Yt induces 

(5.10) 

wi th  

(5.11) 

We define ~t : AP -~ A" by  

~t : _F~ -~ F~+ 1 

= = ,  + 1  

where qj embeds  A j  in A ~ and  then  define 

(5.12) fl~ = ~ # ~  : F~ -~ A ~ . 

We  nex t  p rove  the  decisive equal i ty  

We  have  to show t h a t  each side of (5.13) composes with }~ to give the  same 
map.  know 

~fm{}, t, 2v/3t} = m { ~ f y  t, ~ 2 P  fit } since ~f is p r imi t ive  

= m{Tt ,  zf~ ,, zz/3t}, b y  (5.9) and  (5.3) 

= m{Tt ,  t la t, ~z~tl~t} b y  (5.12) 

= m { e~/.~,, 8 m { q ~ l . g t } i j  ] =,+l ,  JCI,  rf t(qIJ~m}!jt  = t + l ,  JCi}  b y  (5.7) , 

This expression is equal  to  ~ / x  t, and  thus  (5.13) is established. We  now define 
maps  0t : A~ -+ FI,  0 ~ t g p, b y  

(5.14) 00 = 1, 0~ = a t - x 0 t - 1 ,  t :> 1 . 

We  prove,  b y  induct ion on t, t h a t  

(5.15) 1 = +n{r,0t, ~ fl,0,, 2~ i l l - ,  0t_~ . . . . .  2~ flo0o}. 
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Now m(yo,  2v flo} = 1 b y  (5.13) so (5.15) holds with t = 0. We suppose (5.15) 
established with t = v - 1. Then  

= m{#~O~, Xvfl~_~O~-~ . . . . .  ).VfloOo} b y  (5.13) 

= m{),~_~O~_~,),~/~_~O~_~ . . . . .  2vfl000} by  (5.11) 

= 1, b y  the  inductive hypothesis.  

This establishes (5.15) which we apply  with t = p - 1. Then  

1 = m{~2~_10p_l, /~l~ f lag-105-1 . . . . .  ~io/~000} 

= . . . .  ,  000} 

= m{0, 2vf l ,_xO,_~ . . . . .  2"floOo} since /~v = O 

= ,~Vm{fl,_~O,_~ . . . . .  fl000} since ~Lv is primitive. 

We have thus  constructed a r ight  inverse of 2 v in ¢,  namely  m{f lv_ lO,_ l ,  
. . . .  fl00o}, and the  theorem is proved. 

This theorem has already been established in (6 (see [5] Theorem 2.3), the 
present proof being, of course modeled on tha t  in (6. However  Theorem 5.2 
does enable us, b y  vir tue of Theorem 4.16, to recognize the s ta tement  that ,  
in the factorizat ion (F')  in ~ ,  the maps  "~ are s trong monomorphisms,  as a 
manifestat ion of the same phenomenon as t ha t  described by  Theorem 2.3 
of [5]. 

We recall t h a t  in [3], § 5, we defined not  only the concept  of length but  
also the concept  of weak length. Thus  in a ca tegory  9A we h a v e / ( A )  < n if there 
exists g :  _T(A) -+ A with ~a) gu~-~=  d = (1, 1 . . . . .  1>: A ~-+ A (see (5.1)); 
while w/(A)  < n if dk  = 0 where k :  K ~  A n is the kernel of ~n-~. However  
Theorems 4.10 and  5.2 enable us to  infer (cf. [3], Theorem 5.11) 

Corollary 5.16. I n  the admissible G.primit ive I.category ~ length and weak 
length coincide. 

This was merely  noted in passing in [5] for the category ~ .  

6. Homotopy systems in primitive categories 14) 

Le t  ~, ~ '  be D-categories and let H : ~ -~ ~ '  be a D-functor .  Then  (see [2]) 
if (A, m) is an  _M-object of ~, ( H A ,  H m )  is an M-object  of ~ '  satisfying all the  
axioms satisfied b y  (A, m). We m a y  prove 

Proposition 6.1. Let H,  K : ~ -+ ~ '  be two D-/unctors and let t : H --> K be a 
natural trans/ormation. T h e n / o r  any  M.ob]ect (A, m) o/ 

tA: H A  ~ K A  
is primitive. 

13) The terminology is here as in [3], § 5: A ~ is the inverse product of n copies of A and 

_T(A) the second object in the factorization (F) : A ~ ~ 7 ~, T (A). 
14) See [3], § 6 for the concept of (left or right) homotopy and homotopy system in a 

general category. 
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Proo[. We recall that ,  for any  objects XI, X~ of ~ and any  D-funetor 
H:  ~ ~ there lsaneqmvalence  0 =  O(H) -~ {Hpl, Hp~} : H ( X  I × X~)-~HX 1 x 
× HX~ in ~ '  such tha t  p~O = Hp~, ] = 1, 2. Then the diagram 

(6.2) 

tx~ x X.~ 
H(X~ X X~) ' K ( X  1 X X~) 

t0 40 
HX~ × HX~ tx, × tx, K X I ×  KX~ 

commutes. For pj(tx × t x , ) O = t x j p j O = t x j H p ~ = K p ~ t x ,  x x  ,, since t is a 
natural  transformation; thus 

p~(tx, × tx~)O = piOtx,×x~. 

In  the light of (6.2), the primit ivi ty of tA is just the assertion that  the 
diagram 

H ( A  × A) l~×~ " K ( A  x A) 

H A  ~A , K A  

commutes;  and this is an immediate consequence of the natural i ty of t. 
Let  (A, mA), (B, roB) be M-objects of ~ and let Q : A ~ P B  be a homotopy 

between primitive maps [, g : A -~ B, where P is the pa th  functor belonging 
to a right homotopy  system on ~. Then by definition P is a D-functor so tha t  
it is meaningful to demand of Q tha t  it be a primitive map. I f  it is we call Q 
a primitive homotopy between the primitive maps [, y. This terminology is 
justified by  the observation tha t  a right homotopy system in ~ is a functor 
P : ~ -+ ~ together with some natural  transformations P -> I ,  I -+ P,  where I 
is the identity functor; and that ,  by  proposition 6.1, the resulting maps 
P A  -~ A, A ~, P A  are primitive for all M-objects (A, m). Let  us express this 
in the 

Corollary 6.3. Let ~ be a primitive category over ~ and let S (P;  t, b, p) 
be a right homotopy system in ~ such that (PA,  Pro) E ~) whenever (A, m) E ~). 
Then S induces a primitive right homotopy system So on ~ by the rule P~ (A, m) 
= (P A, Pm), the natural trans/ormations o /S  o being just those o/S, trans[erred 15) 
to 9 .  

We now recall tha t  a right homotopy system is [aith/ul if P preserves left. 
equalizers, and deduce from corollary 4.2 

Proposition 6.4. Let S be a ]aith/ul right homotopy system in ~ and let 
be an admissible primitive category over ~ such that (P A, Pro) E ~ i~ (A, m) E ~ ,  
where P is the path ]unctor belonging to S. Then the induced primitive right 
homotopy system S~) on ~ is also/aith/ul. 

15) Any further axioms which we wished to impose on our right homotopy system 
(cf. [3], § 6) would equally well transfer from • to ~.  
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We draw attention to the implication of this proposition. The system S~ 
m a y  well fail to have a left adjoint in ~ ; but, if S has a left adjoint in ~, then 
S~ will still be faithful. 

Now it  was shown in [3], § 6 tha t  the faetorization (F) in a category is 
invariant  under faithful right homotopy. To recall the details, let P be a pa th  
functor ~I -+ l l  belonging to some faithful right homotopy  system S. For  any  
objects B 1, B 2 . . . . .  B ,  of 1t let 

F ( B ) :  B ~ B ~-1 . . . . . . .  Bq+l ~ Bq . . . . . . .  B 1 

F ( P B ) :  ( P B )  "---~ (PB)  "-~ . . . . .  (PB)  q+l ~-5" (PB)q . . . . .  (PB)  ~ 

be the F-factorization associated with BI, B~ . . . . .  B~; PB1, PB~ . . . . .  P B ~  
respectively. Then there is a natural  map c f : F ( P B ) - >  P F ( B ) ;  tha t  is, a 
sequence of natural  maps ~q: (PB)q-~  P(Bq), q = 1, 2 . . . . .  n, such tha t  the 
diagram 

~q 

(P B) q+l + (P B)q 

P(Bq+I )  P(~) ~ P(Bq) 

is commutat ive for each q. Moreover the map ~0 has the property tha t  if 
Q~ : A i ~  PB~ is a homotopy between ]i and g~ : A ~  Bi, i = 1, 2 . . . . .  n, 
where A1, A 2 . . . . .  An are objects of ~1, and ]i, gl, Qi induce 

/ q : A q - ~  Bq, gq:Aq-> Bq, Q q : A q - > ( P B ) q ,  

then ~0qQ q is a homotopy between ]q and gq. From this it is an immediate 
consequence tha t  if the maps  /i : Ai  -~ Bi are horaotopy equivalences (with 
respect, to the faithful system S) then so are the maps ]q : Aq -~ Bq and thus 
the faetorization (F) is, in a precise sense, homotopy invariant.  

Now let S be a faithful right homotopy  system on a category ~ and let 
be an admissible primitive category over ~ which is closed with respect to the 
pa th  funetor of S, as in proposition 6.4; suppose further  tha t  ~ is an I-category. 
Then the discussion above is applicable to the induced right homotopy  system 
S~ on ~O and we have proved 

Theorem 6.5. Let ~ be an admissible primitive D I-category over a category 
and let S~ be the primitive right homotopy system on ~ induced by a /a i th /u l  
system S on ~. Then the /actorization (F) in ~ is homotopy invariant with 
respect to S~. 

We may  exemplify this theorem by  considering the factorization (F) in the 
category of group complexes (or c.s.s, groups (see [5])). Then Kan ' s  notion of 
"homotopy  through homomorphisms" or loop homotopy (see [7]) coincides 
precisely with the equivalence relation on maps generated by  the homotopy 
system S~, where the path  functor P in S is just the functor X -~ X x. Certainly 
S is faithful (since P has a left adjoint), so we may  conclude tha t  the factoriza- 
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t ion (F) is h o m o t o p y  invariant ,  in the sense of Kan ,  in the ca tegory  of group 
complexes. 

We note  t ha t  the introduct ion of the h o m o t o p y  system S~ enables us to 
define, in ~ ,  not  only the length and weak length, bu t  also the homotopy-  
length and  weak homotopy- length  of objects of ~ .  The fact  t h a t  the homotopy-  
length and  weak homotopy- leng th  are h o m o t o p y  invariants,  with respect 
to S~, where S is faithful, is an  immediate  consequence of the  h o m o t o p y  
invariance of the  factorizat ion (F) ; however,  as remarked  in [3] § 6, this fact  
follows quite simply f rom the  fact  t h a t  h o m o t o p y  classification is compatible 
with composit ion of maps  and thus  does not  depend on the faithfulness of S. 

Final ly we point  out  t ha t  a l though length and weak length coincide in 
an admissible G-primitive ca tegory  (Corollary 5.16), there is no reason to  
suppose t h a t  homotopy- length  and weak homotopy- length  coincide in such a 
category furnished with a primit ive r ight  h o m o t o p y  system. 
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