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1. Introduction

In [4] and [5] certain structural features of the category ® of groups and
homomorphisms were discussed. Thus for example it was shown in {4] (see
also {1]) that an H-object (i.e. object with multiplication having a two-sided
unit) in @ is just an abelian group and the H-structure is just that given by
the group multiplication. It follows therefore that every group-homomborphism
between abelian groups is primitive with respect to their (unique) H-structure;
in other words, in the category ® every map between H-objects preserves
the H-structure. It was also shown in [4] that in the canonical factoriza-
tion!) (#’) of the canonical homomorphism » from the free product of =
groups to their direct product, all maps except the first are isomorphisms (the
first is thus equivalent to x itself and hence an epimorphism).

It is the object of this paper to prove these and other results in a more
general framework than that of the particular category ®. In this way we make
them available in other categories, particularly in categories of interest in
topology; we are also able to avail ourselves of the formal duality principle to
deduce results for comultiplicative structures. The feature of the category ®
which we abstract in this paper is just that ® is a category of M-objects (i.e.
objects with multiplication, no further axioms being required) of another
category (namely, the category © of based sets and based functions), together
with those maps in & between the appropriate M-objects which are primitive
(orhomomorphic) with respect to the given M-structures. It is also of importance
that ® is, so to say, closed with respect to direct products in &. Many other
categories, of course, possess these properties of &, some being also derived
from the category &, others from different categories which share with & the
property of admitting direct products.

The general notion, then, is that of an underlying category € and a category
® of M-objects of € and primitive maps. Such a category ® we describe as a
primitive category or, more fully, an M-primitive category over €. If we restrict

* This research was partly supported by the U.S. Department of Army through its

European Research Office.
1) See [3], § 4, or [4].



166 B. Ecgmany and P. J, Hiuron:

the structures in ® by inserting that the appropriate axioms be satisfied (see
[2]) we then get the notions of H-primitive categories, G-primitive categories,
etc. Examples of such categories are, of course, numerous. Thus groups, semi-
groups, abelian groups, nilpotent groups — and full subcategories of these —
constitute examples of categories to which our theorems are applicable; in all
these cases the underlying category is €. The topological categories € and €,
{see [2]} are underlying categories for the primitive categories of topological
groups and H-spaces respectively. The category of Lie groups and the category
of algebraic groups provide further examples of primitive categories. The dual
notion may be exemplified by the category of H'-spaces and primitive classes,
which is an H-primitive category over €,; and by the category of free groups
with preferred free generating sets, and homomorphisms between such free
groups mapping preferred generator to preferred generator or identity element.
This latter example is a G-primitive category over &; and it is pointed out in
Theorem 4.16 that it is indeed category isomorphic to &. Thus we have a
very curious “‘duality” between ® and & in which & is the primitive category
consisting of all G-objects in @ and & is the primitive category consisting of all
G-objects in &. Although we do not mention explicitly the duals of the theo-
rems we prove in this paper, we do point out explicitly in sections 4 and 5 how
the duality relations between & and ® enables us to pair off certain dual
features of these two categories.

Section 2 collects together certain preliminary results needed in the sequel.
The proofs of the propositions enunciated are all rendered very simple by the
application of the “presentation” theorem (Theorem 4.10 of [2]); one proof from
first principles (that of Proposition 2.1) is given by way of illustrative contrast.

Section 3 opens with the precise definition of a primitive category, but the
theorems in the section are confined to the case of commutative structures.
In particular it turns out that the process of taking G-structures is in a sense
idempotent. Thus if ® is the complete?) G-primitive category over €, € the
complete G-primitive category over ®, and § the complete G-primitive
category over €, then € is essentially just the complete C G-primitive category
over € (i.e., the category of “‘commutative groups” in €); and & coincides
with €. We also describe in this section the relation of the notions of commu-
tative category to that of additive category.

In section 4 we develop the elementary parts of the general theory of
M.primitive categories. In the first place we are concerned with the transport
of structure from a category to a primitive category ® over €. In particular
left-equalizers and intersections — more generally, inverse limits — are
preserved in the passage from € to ® provided ® is big enough, i.e., provided
that the objects in question in € lie, with their structure maps, in ®. Thus
i ® is complete left-equalizers and inverse limits are preserved ; but, in general,
right equalizers and direct limits are not. The situation is, naturally, reversed
in the dual case.

2} Le., if ® contains all the multiplicative objects of € of the sort considered.
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We turn our attention next in section 4 to the question of the behaviour of
epimorphisms?®) in a primitive category. It turns out (Theorems 4.5 and 4.6) that
epimorphisms enjoy properties in primitive categories which they do not
possess in arbitrary categories. We do not succeed in proving that the direct
product of right-equalizers is the right-equalizer of the direct products of the
maps concerned (in a primitive category) without an additional hypothesis
which is verified in the cases which are familiar to us. In particular we are led to
introduce the notions of a strong epimorphism in the primitive category ®
over €; this is an epimorphism in ® having a right inverse in €. Such epi-
morphisms enjoy special properties and in the primitive categories over &
mentioned above all epimorphisms are strong. We then assume that the
category ® is in fact an I-category (see [2]) and obtain theorems motivated by
known properties of the category & of groups (Theorems 4.12 and 4.15); and
close the section by proving the duality theorem (Theorem 4.16) for the
categories © and & already referred to.

Section 5 is devoted to proving Theorem 2.3 of [5] in the general context
of the theory of primitive categories (in [5] it was a theorem about &). In
particular we remark that in [5] we were content to observe that the factoriza-
tion (F) of the canonical map »: 4, % ---x A, 4, X - -+ x 4, in ® btonsists
of epimorphisms. In the more general context of this paper we stress that the
maps of the factorization are, in fact, strong epimorphisms.

The final section is concerned with the transfer of homotopy functors to
primitive categories. Here our main concern is to effect the transfer and to
show that the factorization (¥) is homotopy invariant in a complete primitive
category ® over a category € with homotopy.

In the course of the paper we give a few applications of the results: we
emphasize that these applications are given largely to provide evidence of the
relevance of the results outside the category & and of the possibility of
providing a common proof of assertions which are dual in the sense of [1].

2. Preliminary resulfs

In this section we list certain useful preliminary definitions and results
before we pass to primitive categories. Let € be a category (with zero maps)
admitting (finite) direct products; that is, in the terminology of [2], € is a
D-category. We should recall the canonical mapsd =d = {1,1}: 4 >4 x4
(the diagonal map) and v = 74, g= {ps, 11} : 4 X B— B x A (the reverse map).

Now let (4,, m,), (44, my) be two M-objects and let (4, m) be their direct
product (see [2], Theorem 4.8 et seq.). Thus 4 = 4, x d,and m: 4, x 4, X
x A4y x 4, A; x A, is given by

— m = {my(py X P1), Ma(Py X Do)} -

2a) In view of terminological differences appearing in the litterature we wish to empha-
size that the terms *‘monomorphism” and “‘epimorphism” are used in agreement with [9],
see also {2, 3]: A map f: X — Y in the category € is & monomorphism if, for all Z € € and
maps g, h:Z — X in €, fg = fh implies g = h; and dually for epimorphisms.
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Alternatively we may describe m, using different implicit bracketing, by
m = {my X my) (1 x 7 x 1). This is the unique structure on A4, x 4, which
makes p, and p, primitive, cf. [2], Theorem 4.8. We will often write m = m, 4 m,,
so that the direct product of (4,, m,) and (4,, m,) is the M-object (4, m)
= {4; x 4,3, m; # my). We recall that the structure m satisfies any axiom of
those listed in [2] provided m, and m, satisfy that axiom.

Propesition 2.1. Let (4, m) be an H-object. Then (4 x 4, m #=m) is an
H-object; and m: A x A -~ A is primitive if and only if m is associotive and
commutative.

Proof. The first assertion is already contained in Corollary 4.12 of [2]. To

prove the second, we study the diagram
X 0

AxAdAxAxA—A4 x A

(2.2) maAEm 0

wm

Ax A A

and must prove that it is commutative if and only if the H-structure m is
associative and commutative. Now the commutativity of (2.2) expresses
itself, in component form, by the equality

(2.3) m{m{py, Po}, m{ps, pa}} = m{m{p;, ps}, m{Py, P}
while the associativity of m asserts that

(24) m{m{f’ls Pa} Pa} = m{plv m{ps, fps}}
and the commutativity of m asserts that

(2.5) m{py, Py} =m.

Thus we must show that (2.3) holds if and only if both (2.4) and (2.5) hold.
We deduce (2.4) from (2.3) by composing on the right with {p;, p,, 0, ps}: 4 x
xAxAd+A4AxA4xA4x4; and we deduce (2.5) from (2.3) by composing
on the right with {0, p;, 9, 0}: 4 x4d>4x 4 x 4xA. In both cases
decisive use is made of the fact that m is an H-structure.

Conversely, suppose that (2.4) and {2.5) hold. Then m is associative so we
may write mi: 4 X 4 x 4 X 4 - 4 for the unique 4-product (see Theorem
4.13 of [2]); moreover we have to prove that m*(l x 7 x 1) = m4, or, equi-
valently, that m*{p,, ps, s, Pa} = M.

Now mt= m3{fp1, m{Pg, Pa}, p4}; for the expression on the right is indeed
a 4-product. Thus it is sufficient to show that

{Pv m{Pq, P3} fp4} {P1, D3, P2 04} = {pb m{Pq, D3}, P4)
But

{Pp m{Pg, Ps}, p4} {P1 Py Poy Pa} = {Pl’ m{Ps, Py I’4}

= ‘Pp m{Pa, Ds}, P4}
by the commutativity of m, and so the proposition is completely proved.
We return now to the study of the direct product (4, x 4,, m; 3 m,)
= (4, m) of two M-objects (4,, m,), (4,, my). Then, by Theorem 4.8 of [2] the
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maps ¢ = {1,0}: 4, > 4, x 4, and 1, = {0,1}: 4, > 4, x 4, are primitive;
80 too, of course, are the projections p, and p,. We prove
Proposition 2.6. If (4,, m,) and (4,, m,) are H-objects, then

L=+ taPp= taPat upy: 4y x Ay~ Ay x 4,
Proof. Now p; (604 + taPp) = PrtaPy+ PrigPy, by Theorem 4.7 of 2]
= P, 8ince Pyuy= 1, py1,= 0, and m is an H-structure.

Similarly p, (1 1+ taps) = ps and the first equality follows from the unique-
ness property of components. The second equality is proved similarly
(without any assumption of commutativity of m).

Corollary 2.9. Let 0,0 : 4, x Ay B be primitive (with respect to some
M-structure on B) and let Oi;= 0'¢;, 1= 1,2. Then 6= 6'.

Proof. We have only to observe that, by Theorem 4.7 of [2] and Proposi-
tion 2.6,

(2.8) 0= 0o, p,+ Otap, .

We bring together Proposition 2.1 and (2.8) to prove

Theorem 2.9. Let (4, m) be an H-object and let §: 4 x A~ A4 be an H-
structure on A which is primitive with respect to the H-structures m 3 ‘m, m on
A x A, A respectively. Then 0 = m and m is associative and commutative.

Proof. In the light of Proposition 2.1 it is sufficient to prove that 6 = m.
Now

0= 0up+ Otyp,, since 8 is primitive [by (2.8)]
= P+ Pa> since § is an H-structure
=m (see Theorem 3.3 of [2]) .
We next introduce a notion which will be useful in the construction of
primitive maps.
Definition 2.10. Let (4, m) be an M-object. Then a: X -4, §: Y > 4
strongly commute3) if

(2.11) mr{a X fl=mlax f): X x Y= 4.
Evidently the condition (2.11) is symmetrical in « and § and equivalent to
(2.12) m(fxa)r=m{ax f: X x Y= 4;

or, alternatively, to the condition that the elements ap,, fp, of the M-set
H({X x Y, A) commute:

(2.13) apy+ Bpa= Ppyt+ ap, -

It is plain, for example, that «, § strongly commute if m is a commutative
structure. We may prove

Proposition 2.14. (i) If a: X — A, §: Y -> A4 strongly commuteand ¢ : X, ~ X,
p: Y, > Y, then agp, By strongly commute.

%) We would say that o, f: X - 4 commute if « + 8 = § 4+ o; we make no use of

this notion here. If in Definition 2,10, X = ¥ and a, § strongly commute, then certainly
o, f commute.
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(i) If «: X >4, B:Y > A strongly commute and if 6:(4, m)—~ (B, n)
s primitive, then Geo, 0 B strongly commute.
Proof. (i) follows immediately from (2.11) since

ap X fy= (X ) (g xp)

(ii) follows from (2.13) since, if § is primitive,

An important example of strongly commuting maps is furnished by

Theorem 2.15. Let (A, x A,, my 3t my) be the direct product of the H-objects
(4y, my), (g, my). Then 1;: Ay — Ay x Ay, ty: Ay~ Ay x A, strongly commude.

Proof. 1t was shown in 2.6 that ¢, p,+ typy= t,0,+ ¢, p; (= 1), which is the
assertion of the theorem.

The relation of strong commutativity to primitive maps is brought out by

Theorem 2.16. Let «, §: (4, m)— (B, n) be primitive maps of M-objects.
Then if n is associative and a, f strongly commute, « + f is primitive.

Proof. Set y = «+ B. We must show that the diagram

AxA—""—=BxB

" n

A *— B
is commutative; that is, that y(p;+ p,) = yp+ yps: 4 x 4 — B. Now

Y1t o) = (@ + B) (2 + o)
= a(pi+ py) + B(pi+ o)
= {ap;+ ap,) + (Bp+ Ppy), since a, f§ are primitive
= ap+ (aps+ Bp) + PPy,  since n is associative
= ap+ (fp+ ap,) + fp,,  since a, f strongly commute
= (apy+ Bp) + (apyt+ Bps)
= (a+ B)py+ (x+ B)p,
= YDt YPa-

‘We will also need

Theorem 2.17. Let (A, m) be an associative M-object and let o: X — A;
B, v: Y > A be maps. Then if a commutes strongly with f and y it commutes
strongly with f 4 y.



Group-Like Structures, 111 171

Proof. We have

apit (B + y)Pe= api+ (Bt ypy)
= (ap;+ Bps) + Yy, since m is associative
= (Bps+ ap) -+ vp,, since «, f commute strongly

= Pt (2P + vpo)
= Bpy+ {yps+ ap,), since a, y commute strongly
= (fpat vP) + apy,
= (B+ V)Pt apy .
We close this section by proving two results on G-objects.
Theorem 2.18. Let (4, m) be a G-object, with inverse s: A — A, and let
: X—>A, §:Y—> A strongly commute. Then o and sf strongly commute.
Proof. In the group H (B, A) the inverse of f: B—~ A is sf; thus sf = — f.
Taking B = X x ¥, we have

apy+ fpy= Bp,+ apy,

80

= oot apy=op — Bp,,
or
SPpet apy = ap +sfp,,
and o, s f strongly commute.
Theorem 2.19. Let (A, m) be a G-object with inverse s: A — A. Then

m(sx s)=smr: 4 x4~+A4.

Proof. In the group H(A x 4, A), we have mt = p,+ p, and m(s x s)
= 8p;+ 8P, Thus the theorem follows from the group identity — (p,+ 1)
= (—=py) + (—P2).

Corollary 2.20. If (4, m) is @ CG-object then s: A — A is primitive.

The notions of this section are adequately exemplified by considering the
case € = &, the category of based sets and based maps. The conclusions are
then all familiar and elementary, and have, indeed, in many cases formed the
basis of the argument in the general case. As a somewhat less familiar example,
we consider the application of Corollary 2.7 to the category € = &, of based
spaces and based homotopy classes of continuous maps. We then deduce that
if A, B, C are H-spaces and if f: 4 x B— C is a primitive map (that is, a
continuous map whose homotopy class is primitive), then the homotopy class
of f is uniquely determined by those of f|4, f| B. The same corollary, applied
to the dual situation, tells us that if 4, B, C are H'-spaces, then the homotopy
class of a primitive map f: C > 4 v B is uniquely determined by those of the
projections of f onto 4 and B.

3. Commutative categories

Let € be a D-category and let ® be a category whose objects are M-objects
in € and whose maps (4, m) > (B, n) are precisely the maps 4 - B in €
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which are primitive with respect to the M-structures m, n; it contains all
identities and the zero maps between any two of its objects {cf. [2], Prop. 4.1
and the remark preceding it). We impose on ® the condition that it be closed
with respect to direct products; by this we understand that if (4,, my), (4, m,)
belong to ®, then so does (4, x 4,, m; 4 m,). We remark that we can now
give a precise justification for our description of {4, x 4, m, 3 m,) as the
direct product of (4,, m;) and (4,, m,), since it is indeed (together, of course,
with the projections p,, p,) the direct product of (4;, my) and (4,4, m,) in D.
Thus 9 is itself a D-category. We call ® an M-primitive category over €. If the
objects of ® are all H-objects, we call ® an H-primitive category over €;
similarly we speak of AH-primitive, G-primitive, CG-primitive, ACH-primi-
tive categories. If ® contains all the M-objects in € it will be called the complete
M-primitive category over €; similarly we will speak of complete H-primitive
categories, ete.

In the next section we will discuss the general theory of primitive categories.
In this section we dispose briefly of the commutative case, establishing the
relationship of the theory to that of additive categories. We first prove two
theorems generalizing familiar properties of the category of abelian groups.

Theorem 3.1. If © is an ACH-primitive category over € then (A4, x 4,,
my H my) 18 the inverse product of (Ay, my) and (A,, my) in D, the injections being
i Ay~ A x Ay 1y 4, > 4y x A,

Proof. Let (X, &) €D and let o;: 4;—+ X be primitive maps. Then o p,,
Xy Py, Ay X Ay~ X are primitive. Moreover «;p;, o;p; strongly commute,
since £ is commutative, so that o, p,+ o, p, is primitive, since & is associative
(Theorem 2.16). Thus oy p,+ &Py : 4; X Ay — X is a map in ® and

(3.2) (o1 + XaPo)y; = j=12,

since & is an H-structure.

It remains to show that the map 0 = o p; + a5 p, is uniquely characterized
by the equations (3.2). This, however, is attested by Corollary 2.7.

Theorem 3.1 asserts that, in such a category ®©, (finite) direct and inverse
products coincide. In such categories therefore all objects carry unique H-and
H-structures. Indeed if (4, m) is an object of ® then m: 4 x 4 — 4 is primi-
tive (Proposition 2.1) and, of course, mi; = mi, = 1, since m is an H-structure
in €. Moreover, m = {1, 1) in view of Theorem 3.1 and Proposition 4.18 of [2],
so that m is the unique H-structure on (4,m). Similarly d= {1,1}:4 -
— A % A is the unique H-structure on (4, m) in ®. Moreover it is plain that
m is an ACH-structure on (4,m) and d is an ACH-structure on 4, m).
Indeed if m were a CQ-structure in € then m would be a C G-structure in ®
and d would be a CG-structure in ®; the latter remark follows from Corol-
lary 2.20.

It was observed in [4] that, in the language of this paper, the category of
abelian groups is the complete H-primitive category over the category of groups.
We generalize this statement in Theorem 3.4 below. We first enunciate
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Proposition 3.3. Let © be an H-primitive category over € and let € be an
H-primitive category over ®. Let (A, m; 0) be an object of € Then § = m and m
ts associative and commutative.

Proof. This is just a restatement of Theorem 2.9.

It is, further, part of the statement of Proposition 2.1 that (4, m; m) is an
H-object of ® if m is associative and commutative; and it is a trivial observa-
tion that a map @: (4, m) - (B, n) between ACH-objects is primitive in €
if and only if @, regarded as a map (4, m; m) — (B, n; »n) is primitive in ®.
It follows that we may identify €, by means of the functor (4, m; m) - (4, m),
with a subcategory €, of ® which is an ACH-primitive category over €. The
category €, is, of course, a full*) subcategory of ® consisting of ACH-objects, and
only such subcategories may be identified with an H-primitive category over ®.

Theorem 3.4. Let ® be an H-primitive category. Then the H-primitive
categories over ® are essentially just the full ACH-primitive subcategories of ®.

We recall that an additive category is a category 2 together with an
abelian group structure in each H (A, B), where 4, B € U, such that 4 x B —
- H(4, B)is a functor from 2 x 2 to the category of abelian groups. This last
requirement is equivalent to demanding two-sided distributivity of addition
with respect to composition of maps.

Let us write Hg(4, B), 4, B¢ €, for the maps of the category € if it is
desirable to stress the category; and let us permit ourselves to suppress the
structure map from the symbol (4, m) for an object of an M-primitive category
over € if no confusion is to be feared.

Our aim is, in a certain sense, to identify CG-primitive categories with
additive categories. We first prove

Theorem 3.5. Let ® be a CG-primitive category over a category € and let
A, B be objects of ®. Then Hg(A, B) receives an abelian group structure from
the CG-structure in B; and © together with this abelian group structure in each
Hg (A4, B) constitutes an additive category.

Proof. Tt follows from Theorem 4.10 of [2] that Hg(d4, B) receives an
abelian group structure from the CG-structure in B. That Hg (A4, B) is a sub-
group follows from Theorem 2.16 and Corollary 2.20. The right distributive
law is a triviality ; and the left distributive law holds because we are composing
with primitive maps.

We turn now to the converse. Let 2 be an additive D-category. Then there
exists, for each B¢ 2, a unique CG-structure m: B x B - B inducing the
given abelian group structure in H(A4, B), 4 € A. Let € be the underlying
category of the additive category 2 and let ® be the CG -primitive category
over € whose objects are the CG-objects (B, m). Then we have

Theorem 3.6. The categories © and 2 coincide in the sense that

H@(A’ B) = HQ((Aa B)

9 Recall that a subcategory O of a category U is full if Y contains, with two objects
4, B of U which it contains, all the maps 4 — B in 2.
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Proof. Since the CG-structure m: B x B-> B induces the abelian group
structure in both Hg (4, B) and Hy(A, B), and Hg(4, B) is a subset of
Hy (A, B), it remains only to demonstrate the equality of Hg (4, B) and
Hgy (A, B) as sets, that is, to show that every map f: 4 - B in € is primitive
with respect to the given structuresm: 4 x 4 - 4, m: B x B— B. However,
the commutativity of the diagram

Axa4—

Bx B

m m

A B

amounts, in terms of the abelian group structure in Hy (P, @), P, @€ 2, to the
assertion

f(@i+ p2) = [+ 20,

which holds by hypothesis in an additive category.

The theorems of this section apply, clearly, to categories of abelian groups
or abelian monoids. Theorem 3.1, for example, generalizes the fact that, in the
category of abelian groups, (finite) inverse and direct products essentially
coincide; while Theorem 3.4 has the consequence that the H-objects in the
category ® of the groups are just the abelian groups. We may also exemplify
the theorems by reference to the category £ of H-spaces and primitive maps
(that is, maps whose homotopy classes are primitive in the category £, of
based spaces and based homotopy classes). Let us refer to a pair (4, m), where
AcHandm: 4 x A A in 9, as a homotopy H-object of 9 if (4, [m]) is an
H-object of 9,, where [m] is the homotopy class of m and 9, is the category
of H-spaces and primitive homotopy classes®). Then we infer that the homotopy
H-objects of £) are the homotopy-associative, homotopy-commutative H-spaces;
and in the category of homotopy-associative, homotopy-commutative H-spaces
inverse and direct products coincide (being just the cartesian product). Dually
we infer that the homotopy H-objects of §’ are®) the homotopy-associative,
homotopy-commutative H’-spaces; and in the category of homotopy-asso-
ciative, homotopy-commutative H'.spaces inverse and direct products coincide
(being just the disjoint union with base-points identified). We may also consider
full subcategories of the ACH-primitive and ACH-primitive categories
referred to above. In particular, of course, we obtain the result that inverse and
direct products coincide in the category of double loop spaces (and primitive
classes) and in the category of double suspensions (and primitive classes). This
last category furnishes an example of a category familiar in homotopy theory,
in which the objects are gets but the direct product is not the cartesian product
of the sets.

%) Thus 9, is the complete H-primitive category over ;.
%) &’ is the category of H’-spaces and primitive maps. In talking of H- and H’-spaces
we revert to the notations and terminology of [1].
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4. Primitive categories

In this section we develop certain basic notions in the theory of primitive
categories. We fix once and for all an underlying category € and consider
primitive categories over €. We recall that such a category is supposed to be
closed with respect to direct products; this assumption is sensible because,
as remarked, we have a unique natural process for defining an M-structure
on the direct product in € of two M-objects, such that the direct product, so
structured, becomes the direct product in ®. Our first observation in this
section is that an analogous statement holds for inverse limits (left-equalizers and
intersections). We will suppose in 4.1—4.4 below that € admits leftequalizers

Precisely, let (4, my), (B, mp) be two objects of ® and let f,g: 4 — B be
maps in ®, i.e., primitive maps. Let k: K — A4 be the left-equalizer of f and ¢
tn €. Then we recall (cf. [3], prop. 1.10)

Proposition 4.1. The object K admits a unigue M-structure mg: K X K - K
with respect to whick k is primitive. Moreover mg satisfies axion N (N = 1,11, IV}
of 12, § 4] if m,4 satisfies axiom N; and mg is a G-structure if m, and myg are
G-structures.

Let us say that ® is admissible if, for any f,g: 4 - B in ©, the object
(K, mpg) is in ® where k: K - A is the left-equalizer of f and g in €. Then we
have as a consequence of the proposition above and Prop. 4.1 (ii) of {2].

Corollary 4.2. If ® is admissible, left equalizers cotncide in € and D ; more
precisely, k: (K, mg) — (4, m,) is the left-equalizer of f,g: 4> B in ® if
k: K — A is the left-equalizer of {,g: A— Bin €.

As a further consequence of Proposition 4.1 we have

Corollary 4.3. The complete M-primitive (H-primitive, AH-primitive,
G-primitive, CG-primitive, ACH-primitive) category over € is admissible.

In the light of the method of construction of inverse limits {or directly
from their definition) we may immediately infer

Theorem 4.4. If © is an admissible M-primitive category over € then inverse
limits coincide in ® and €; that is, if of is an aggregate in © with inverse limit
[D; d 4] in €, then D may be given a unique M-structure my, such that (D, mp)€®,
each d 4, A € A, is primitive and [(D, mp); d 4] is the inverse limit of &7 in 9.

Of course, Proposition 4.1 implies, as a special case, that kernels are trans-
ferred from € to ®. It is worth remarking that cokernels are not, in general,
so transferred (for example, if € = &, the category of based sets, and ® = G,
the category of groups, then a homomorphism f : G — H has a different cokernel
according to whether it is regarded as a map in & or ®). In particular, maps
of ® with zero kernel in ® have zero kernel in €, whereas there can be maps
of ® with zero cokernel in ® and non-zero cokernel in €. This leads to the
question whether monomorphisms (epimorphisms } in ® are also monomorphisms
(epimorphisms) in €; it is easy to construct examples showing that this is,
in general, not the case. It is, of course, plain that, in passing from a category €
to an M-primitive category ® over €, any map of ® which is a monomorphism
{epimorphism) in € is also & monomorphism (epimorphism) in ®.

Math, Ann, 150 12
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In the following we concentrate attention on epimorphisms in M-primitive
(more precisely, H-primitive) categories. Our main object is to point out that
epimorphisms in H-primitive categories possess certain special properties not
enjoyed by epimorphisms in arbitrary categories. We first recall from [3], § 5
(see also [9]) the concept of a normal epimorphism: the epimorphism ¢ is
normal if the (right) annihilator of its (left) annihilator is the ideal generated
by ¢. Now let us consider two objects 4,, 4, of a category € and the projection
P14, x Ay — A;. Then, in general, p, is not normal. For its left annihilator
is the ideal generated by ty: 4, + 4, x 4, No wif € = &, the category of
based sets, then the right annihilator of 1, is the projection =, of 4, x 4,
onto the set obtained from 4; x 4, by the identification (o, ) = 0, ¥ € 4,, and
7ty does not factor through p, unless A, is a one-point set. Thus p, is not normal
in &. On the other hand we may prove

Theorem 4.5. Let ® be an H-primitive category. Then py: Ay x Ay— A4, is
‘normal in D.

Proof. Certainly t,: 44— A; x A, lies in 9, so that it is indeed the kernel
of p; in ®. We now prove that p, is the cokernel of 1,. Thuslet 0: 4, x 4,» B
be a map in ® such that 0i,= 0. Then 0 is primitive so that, by (2.8),

0= 6upt Ope= (04, ,
and the theorem is proved.

We observed in [2] §7 that a direct product of epimorphisms is not
necessarily an epimorphism. Again we indicate the force of the assumption
of primitivity by showing

Theorem 4.6. Let ® be an H-primitive category, and let «;: A;,— B, i=1,2,
be maps in D. Then ay X ay: A; X Ay By X B, is an epimorphism in ® if and
only if e, o, are epimorphisms®) in D.

Proof. 1t is true in any category that o, o, are epimorphisms if o X oy is an
epimorphism, so that it is the converse which merits special attention. Suppose
that o, o, are epimorphisms and let 0, ¢ : B; X By — C be maps in ® such that
0(oty X oty) = p(ag X ag). Now (ot X atg)ty= t;0;, ¢ = 1, 2, so that

Onoy= puay, Digay= piya,.

But o, «, are epimorphisms so that 04,= @y, 0i,= @i,. It now follows from
Corollary 2.7 that 6 = ¢, whence &, X a, is an epimorphism.

Of particular interest to us among the epimorphisms are the right-equalizers.
In any category the direct product of left-equalizers is the left-equalizer of the
product maps (cf. [3], Prop. 1.9). On the other hand there certainly are
categories in which the direct product of right-equalizers is not the right-
equalizer of the product maps; such a category, for example, is the category &*
dual to the category of groups, for in ® the free product of kernels is not, in
general, the kernel of the free product of the maps.

7) It is true in any category that a, X u, is a monomorphism (isomorphism) if and only
if o; and o, are monomorphisms (isomorphisms).
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We have not succeeded in proving that in a primitive category the direct
product of right-equalizers is the right-equalizer of the product maps, except
under an additional hypothesis. In fact we prove

Theorem 4.7. Let ® be an H-primitive category over € and let f;, g;: A, ~ B,
be maps in D with right-equalizers ¢;: B, — Cy, i = 1, 2. Then ¢; X c, is the right-
equalizer of f; X f, and g, x g, provided either (@) ¢, X ¢y X ¢y X ¢y S an epi-
morphism in € or (b) ¢; X ¢y 18 normal in D.

Proof. Certainly ¢; X ¢y is an epimorphism in ® (Theorem 4.6) and
(e X e} {fy X fa) = (€1 X €a) {gy X gg). It remains then to show thatif 6: B, X By—D
is a map in ® such that 0(f, X f,) = 0{g, X g,), then 0= @{¢, x ¢;) for some
p:0;x Oy— D in ©. We proceed to show, without invoking hypotheses (a)
or (b) that § = ¢ (¢, X ¢,) for some ¢": O, x Oy~ D in €.

Now since 0{f; X f3) = 8(g; X ¢,) it follows that 0¢,f,= G149, 1= 1, 2. Thus,
by hypothesis, ¢,= @;¢; for some map ¢;: C; > Din ©. Then

0= 6up+ Giap,

= Q16 Prt PPy

= m{@16,P1, PaCaPa}

= M (P01 X Paly)

= Mm@y X @y) (€ X Cg)

= @' (6 X Cp)
where ¢'= m (@, X @,). Now ¢ is a map in €; it is not obviously a map in ®
unless ® is an ACH-primitive category?®). To complete the proof we invoke
either hypothesis (a) or hypothesis (b). Indeed hypothesis (a) implies that ¢’
is already itself primitive; for we may invoke the elementary

Proposition 4.8. Let (4, m,), (B, mg), (C, m¢) be M-objects in € and let
f:A-> B, g: B— C be maps in € such that (i) f and gf are primitive, and (ii)
f X f is an epimorphism. Then g is primitive.

The conclusion of Theorem 4.7 follows from hypothesis (b) in the light of

Proposition 4.9. If ¢ is a normal epimorphism in © and o' is a map in €
such that o' ¢ is a map in D, then o ¢ = ae where « is a map in D.

For plainly o'¢& = 0 whenever £& = 0 so that o'¢ is a left multiple of ¢
in®.

Thus the proof of Theorem 4.7 is complete. Hypothesis (a) while appearing
artificial and very restrictive, is, in fact, verified in the particular categories
considered in this series of papers; it holds, of course, whenever epimorphisms
in ® are also epimorphisms in €. Hypothesis (b), on the other hand, is quite
unrestrictive in the special case of cokernels, since it would be implied by the
conelusion of the theorem.

Hypothesis (a) may be rendered more acceptable if the notion of sfrong
epimorphism in ® is introduced.

%) Thus if ® is an ACH-primitive category, the conclusion of Theorem 4.7 follows
without any special assumption (a) or (b).

12*
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A mapf: 4 - Bin 9® is a strong epimorphism in an M-primitive category ®
if there exists a map ¢: B — 4 in € with fg = 1. Plainly a strong epimorphism
in ® is an epimorphism in both € and ®; and direct products of strong epi-
morphisms are strong epimorphisms. Thus hypothesis (a) is certainly satisfied
if ¢, and ¢, are strong epimorphisms. Now since every epimorphism in & has a
right inverse and since every epimorphism in & is indeed an epimorphism in &,
all epimorphisms in ® are strong. An important property of the category &
is thus generalized in the following theorem.

Theorem 4.10. Let € be a category with kernels and let © be an admissible®)
QG-primitive category over €. Then in © all strong epimorphisms are normal.

Proof. Let f: A — B be a strong epimorphism in ® andlet g: B> 4 be a
map in € such that fg = 1. Then f = fgf, whence, f being a primitive map of
G-objects, f(1 — gf) = 0. Thus if & : K - 4 is the kernelof fin €, 1 — gf = kg,
or
(4.11) 1= Fkq+gf
for some map g: 4 -~ K in €.

Now £k is also the kernel of f in ® (Proposition 4.1) so that we prove the
normality of f by showing thatif /: 4 - C is a map in ® such that Ik = 0 then
I = mf with m in ©. By (4.11) and the primitivity of I we have

U=1lkq+1lgf=1gf=mf,
where m = lg. Finally we invoke Proposition 4.8 to deduce the primitivity
of m; for f x f certainly is an epimorphism in € since f is a strong epimorphism
in ®.

Thus, in fact, hypotheses (a) and (b) of Theorem 4.7 are both verified if
¢, and ¢, are strong epimorphisms. We return to strong epimorphisms in the
next section ; meanwhile (and also in preparation for the next section) we discuss
the situation in which a primitive category admits inverse products. At this
point we merely recall notations, prove one simple fact taken from group
theory, and & second fact also taken from group theory and given a purely
group theoretie proof in {4].

Suppose that ® is a H-primitive over € and that ® is also an I-category
{thus, in fact, ® is a DI-category). We use the notations of [2],

g A4, >4, % x4, t=1,2,...,n
Ay x4, > A4, t1=1,2,...,n
for the injections and projections associated with the inverse product of »
objects 4, € ®; we also adopt the notation
w:dyx-orxd, > A, x x4,
for the canonical map from the inverse to direct product ((3.34) of [2]). Thus »
is given by
wq = t;, all i,
or by
Py =g, all i,
%) Here it is sufficient that the kernels of maps of © belong to 9.
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or, symmetrically, by
ping; = 0;,
where 8} : A; > A, is the Kronecker symbol. We prove
Theorem 4.12. Let ® be an H-primitive category. Then

K= T+ LgTly+ Ay x Ay > Ay x - X A4,

where the bracketing and the order of the summation of the 7, is arbitrary.
Moreover » is a strong epimorphism.

Proof. The first assertion is an immediate consequence of the following
generalization of Proposition 2.6.

Propesition 4.13. Let ® be an H-primitive category. Then
1o P oot " F P 4y X~ X A, > A, x - X 4,

where the bracketing and the order of the summation of the v, p, is arbitrary.

This proposition is proved by taking any such sum A of the ¢, p; and showing
that p;A= p,, 1= 1,2, ..., n. The details may be omitted. Finally, to prove
that » is a strong epimorphism, we observe that

2Pt QaPh) = HG Pyt #GnPa
=up+ ot LP=1,

by proposition 4.13, where again the bracketing and the order of summation
of the ¢;p, is arbitrary; of course we do not here claim that the value of the
sum g, py+ - + g, P, isindependent of the bracketing and order of summation.
This completes the proof of the theorem.

Now we assume that © is a DI-category admitting right-equalizers (or,
what is the same thing, admitting direct limits). We may then factorize
wi Ak Agx Ay —> A, x Ay x A5 a8

(4.14) Ay x Ayx A7 T(Ay, Ay Ag) > 4, % Ay x Ay

{see [6] or [3], where notations are different). We repeat here the definition of
T{4,, Ay, A3) = T and of the factorization (4.14) in an arbitrary D1-category
with unions. Let ¢ = {1, 0} be the “embedding” of 4, in 4;x 4;; we will
identify d;x A; with A4;x 4; so that the notation J is preferable to one
involving components. Then 7T is characterized up to canonical equivalence
by the conditions (a) there exist maps f;;: A;x 4; > T with 8,,3 = £,,4,
Praty= Bastd, Prath = Paai; (b) given maps y;;: 4, x 4, > U with p,
= Y158; V1283 = Va3, V1383 = Y4343, there exists a unique map y : T — U with
Y Bes= vis

By taking U = A; x 4, x Aj and y,; ;= t;;, the “embedding” of 4;x 4;in
4, % 4,%x A,, we obtain from (b) a unique map »': T — 4, X 4, % 4, with
% Biy=t;;. We define »"': A, x Ayx Ay > T by »"” = (B, o, fs), Where
Bi=B124, fo=P12t3, Bs= P15t} Then

LIV

W = (ot Pyyw Ba ' By = (qath hgth sth) = (s tas la) = %
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We now prove

Theorem 4.15. If ® is an AH-primitive D1-category with right equalizers,
then

s T(4,, Ay, Ay~ Ay x A, < Ay
is an equivalence'®).

Proof. Since » is an epimorphism (Theorem 4.12) so is »". Thus it remains
only to construct a map n: 4, X 4,x 4A;—~ T in © such that gx' = 1. We
define

n= P11+ PaPot Papy: Ay X Ay x Ay T
since the structures in ® are associative the map # is well-defined.

We now prove % primitive. By Theorem 2.15 & and & strongly commute,
so that (Proposition 2.14) ¢p, and i p, strongly commute and, applying B,
on the left, §,p, and f,p, strongly commute. Similarly 8,2, and f3ps, S22,
and f;p, strongly commute. We now apply Theorems 2.16 and 2.17 to deduce
that f,p+ P3P+ Bsps is primitive; note that ® has been assumed AH-
primitive.

It remains to show that nx' = 1. Now 5 = (f1p,+ Bape+ Baps)ti= f;
so that nx' f10f = Nyt = iy = = P14}, and, similarly, nx’' 1,4 = 1oy
Thus, by corollary 2.7 nx' f1,= Py, Similarly nx' f13= Bi3 7% Baz= Pas
so that, by condition (b) above, ' = 1 and the theorem is proved.

A known case of this theorem is that of the category & (see [4]). It is also
known that the category &* dual to the category of based sets is one in which
»' is an equivalence. (In other words in the dual factorization in the category &
the map corresponding to »' is an equivalence.) In fact this second case is
indeed an example of Theorem 4.15 in the light of the following theorem which
expresses a curious ‘“‘duality” between the categories & and &. Of course &
is the complete G-primitive category over &; however we also have

Theorem 4.16. The category & is equivalent to the complete G-primitive
category over &.

Proof. Kan’s theorem ([8], Theorem 3.10 or [4], Theorem 1.6) asserts
that an AH-object in & is a free group G together with a homomorphism
#: G — G * G given on a free set of generators S = {z} by

4.17) BT = G~ 3

moreover the set § = 8 U (e), where e is the identity of @, is characterized as
the set of solutions in G of (4.17); or, as we may say, as the set of primitive
elements of G with respect to u. It is plain, further, that (G, u) is in fact a
G-object with inversell) g : G — @ given by gx = -1, 2 € S. Thus there exists
a one-to-one correspondence F between objects § of & and G-objects (F(8), u)
of &, F(§) being the free group freely generated by S = § — (¢), where ¢ is the
base point of § and is to be identified with the identity of @; the G-structure
on F(8) is that given by (4.17).

1) Theorem 1.1 of [6] enables us to generalize this immediately to more than 3 factors.
1) Recall that g is the inverse with respect to the comultiplication u.
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Theorem 1.9 of [4] may now be paraphrased as saying that, given two
G-objects (F(8,), ;) and (F(8,), uy) a primitive map from the first to the
second is just the unique homomorphism F(8,) - F(S,) extending a given
based function S, — S,. If we extend the domain of F by declaring the image,
F (D), of such a based function @: 8§, - §, to be the unique homomorphism
F(8,) - F(S,) extending @ it is then plain that F is a functor from & onto
the complete G-primitive category over ® which is one-to-one on objects and
maps and thus establishes the equivalence of the two categories.

This theorem has the effect of explaining “dual” phenomena in the cate-
gories © and ® as twin manifestations of a general theorem on primitive
categories. We have already mentioned that Theorem 4.15 applies both to &
and to ®; it yields, in the language of [3], § 5, the fact that, for any group G,
(@) = 2, and, for any set 8, [(S) =< 2. A simpler example of this duality is
provided by the assertion in Theorem 4.12 that x is a strong epimorphism in
an H-primitive DI-category. As a consequence of this assertion the two
statements “‘x is a strong epimorphism in &, “x is a strong monomorphism
in &” may both be deduced. Again Theorem 4.6 enables us to deduce simul-
taneously that direct products of epimorphisms in ® are epimorphisms and
inverse products (= ‘‘unions with base point identified”) of monomotphisms
in & are monomorphisms. A less trivial example will be found in the next
section.

5. The canonical factorization in G-primitive categories

Our main purpose in this section is to generalize Theorem 2.3 of [5]. Let
Ajs-x A= Anﬂ:-i»An——lw—a'..AD+1—1»A20”_—’-¢1—»A1
=4, x - x4,

be the factorization (F) of [3], Theorem 4.4, where 4,, . .., 4, are objects of
a DI-category U with left equalizers. Then it was shown in [3]thatif U= &
then each x? is an epimorphism. Our generalization is as follows. We suppose
€ to be a D-category with left-equalizers and take © to be an admissible
G-primitive D1-category over €. We may thus construct the factorization (F)
{6.1) in ® and we prove

Theorem 5.2. In the factorization (F) in ® each x? is a sirong epimorphism.

Proof. We adopt the notation of [3,4,5]. Given strings I,J CN
=(1,2,...,n) with J C I, let 4;, 4; be the associated inverse products and
letnl: A;— Ay, g2 Ay A be the projections and injections, Then 47 is the
inverse limit of the ®-aggregate &/??= (4,, n} with |I| < p), and there are
canonical maps

(5.1)

AV > A,
with 77 &2 — & Moreover a unique map

Av A > AP
is defined by
(5.3) =y,
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where 71; is the projection A" — A4;. Since
(5.4) AP— wP oxPtloe . gyn—1

it is plainly sufficient to prove that A7 is a strong epimorphism. We will need
the relation

(6.5) nhql=qKa], where L=JnK;

the proof of this relation will be omitted.

We next consider the maps &7, |I| < ¢; since € admits left-equalizers and,
hence, intersections, and since ® is admissible, we may construct the inter-
section of the kernels of these particular maps to obtain an object F, = F,(47)
and monomorphism u,: F, - A?. The map u, is a map in ® and is, as we have
stressed, the intersection of the kernels of the &%, |1} < ¢, both as a mapin €
and as a map in ®. Note that Fy= 47, F, = 0; and, of course, yg= 1, p, = 0;
and that u, is the intersection of the kernels of the &2, |I] = 1.

We will use the symbol m for the G-structure in any object of ®; indeed,
for simplicity, we will still use the symbol m even if a k-product is involved1?)
for k < 2. We will use the symbol s for the inverse throughout ®; and we will
use a symbol like {f;} for the map, into a direct product, with components
and may indicate the range of j in a subsciipt.

With these conventions we proceed to construct a right-inverse of A7 in €.
As in [5] we order the r-strings for each r and we define the map (in €)

Vo AP > Ap |l 2 t+1

by
(5.6) Ver™ m{ i Sm{q§§§}1ﬂ=z+1,ch} :
The notation {¢5 &%}, _, ., ;c, indicates the map whose components are
¢’ &% where J proceeds over the given range in the order laid down for the
strings.

We prove next that, if |J| = ¢+ 1,
nhg =0, if JqK

5.7 .
6.7 =q§§f}yt, if Jck

For,if L=JNK,
nf{qg Y= e,
by (5.5)
= Q},{ Tl
Now if J ¢ K then |L] < ¢ s0 that & u,=0;if J CK then L=J, so (5.7) is
proved.
Thus, since n;’{ is primitive,
g Vo= m{”f{g”t’ ‘Sm{”f;?.‘;fgz“x}u:zcﬂ,.:cz}
= m{ & p, 8m{q§§gut}lJl=t+1.JCl{}
= Yirty -

%) This is legitimate since our structures are associative, see [2].
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It follows that the maps y, , u, together determine a map

(5.8) i Fy—> A7 (in 6)
such that
(5.9) E1Ve= Vit

(Here we are, of course, invoking the fact that A? is the inverse limit of the
maps 7k in € as in ©.)
Let |I] = £+ 1; then
Erye= vy oty = m{E iy smAGT E B} 51—, s 1)

= m{éﬂ;f‘g’ Sf?ﬂt}

Thus yp, induces o
(5.10) o Fy—»F,
with
(56.11) Hryp1®e= Vs -

We define d,: 4 - 4" by
O = Mg &= 11
where ¢, embeds 4, in 4* and then define
(5.12) fi= 0, Fy—> A" .
We next prove the decisive equality
(5.13) pre = m{yy, A7 B} .

We have to show that each side of (5.13) composes with £2 to give the same
map, Now

Em{y, ’B} = m{&? vy EPAP B} since &7 is primitive
= m{?’z,lﬂu 7, B}, by (5.9) and (5.3)
= m{?’t,zl‘p 7, d,u,} by (5.12)
=m{&m, smi{g; &5 ph, ~t+1,0cp M9 E =z+1,}
= m{ 7ty Sm{?553ﬂ3}331=:+1,Jc1’ m{qgfgi“:}mwﬂ,btcz} by (8.7) .
This expression is equal to &2 u,, and thus (5.13) is established. We now define
maps 6,: 47> F,0 < t < p, by

(514) 60-—— 1, et == ag—lgt—la t = 1 .

We prove, by induction on ¢, that
(5.15) L= m{y 0, A% 8,04, 4% B,_10,_1, . . ., A7 Byo} .
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Now m{ye A7 fo} = 1 by (5.13) s0 (5.15) holds with ¢ = 0. We suppose (5.15)
established with t = 7 — 1. Then

m{ye0,, A2 8,05, A7 B—10,—q, - ., A7 BB}
= m{m{y,, AP B30, A B Opy, ., AP 5060}
= m{pt 0, A7 B 10,1, ..., A7 Bo0o} by (5.13)
= M{Ys18cegs A2 By Oy ., A2 8,0} by (5.11)
=1, by the inductive hypothesis.
This establishes (5.15) which we apply with ¢ = p — 1. Then

1= m{yﬂ—lam—b v ﬂm-«lew-l’ Ce AP 5060}
= m{,u,,ﬂ,,, v ﬂz)-—loﬂ—-l’ ey AP 5060}
=m{0, A7 B,y 0,1, ..., A2 Bo0,} since p,=0

= APm{fy—_10p1, ..., Bofs} since A? is primitive.

We have thus constructed a right inverse of 1? in €, namely m{f, ,6,-1,
.+ +, By}, and the theorem is proved.

This theorem has already been established in & (see [5] Theorem 2.3), the
present proof being, of course modeled on that in &. However Theorem 5.2
does enable us, by virtue of Theorem 4.16, to recognize the statement that,
in the factorization (F’) in &, the maps ?x are strong monomorphisms, as a
manifestation of the same phenomenon as that described by Theorem 2.3
of [6].

We recall that in [3], § 5, we defined not only the concept of length but
also the concept of weak length. Thus in a category U we have [(A4) < n if there
exists g: I (A)—> A4 with®3) gur-l=d=(1,1,...,1): 4" > A (see (5.1));
while wl(A4) < n if dk = 0 where k: K — A" is the kernel of »»—1. However
Theorems 4.10 and 5.2 enable us to infer (ef. [3], Theorem 5.11)

Corollary 5.16. In the admissible G-primitive 1-category © length and weak
length coincide.

This was merely noted in passing in [5] for the category &.

6. Homotopy systems in primitive categories?)

Let €, € be D-categories and let H : € - €' be a D-functor. Then (see [2])
if (4, m) is an M-object of €, (H A, Hm) is an M-object of € satisfying all the
axioms satisfied by (4, m). We may prove

Proposition 6.1. Let H, K: € > €' be two D-functors and let t : H - K be o
natural transformation. Then for any M-object (4, m) of €

t e HA > KA
8 primitive.
13) The terminology is here as in [3], § 5: 4" is the inverse product of n copies of 4 and

T'(A) the second object in the factorization (F): 4* "5 T (4).
14) See [3], § 6 for the concept of (left or right) homotopy and homotopy system in a
general category.
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Proof. We recall that, for any objects X, X, of € and any D-functor
H: €€ thereisan equivalence = 0(H) = {Hp,, Hp,}  H(X; x X,)->HX, x
X HX,in € such that p,0 = Hp,, j = 1, 2. Then the diagram

¢
H(X; x Xp) — 55 K(X, % Xy)

(6.2) 0 8
t X, Xt X, ¥
HX xHX,— KX, x KX,
commutes. For p;(ty, X tx,)0 =ty p,0 =ty Hp;= Kp;ix . x, since { is a
natural transformation; thus
pillx, ¥ tx)0=p;0tx . x,

In the light of (6.2), the primitivity of ¢, is just the assertion that the

diagram

H(4d x A)—2* K (4 x A)

Hm Km

HA “ K4
commutes; and this is an immediate consequence of the naturality of ¢.

Let (4, my), (B, mg) be M-objects of € and let @ : 4 — P B be a homotopy
between primitive maps f,g: 4 — B, where P is the path functor belonging
to a right homotopy system on €. Then by definition P is a D-functor so that
it is meaningful to demand of @ that it be a primitive map. If it is we call @
a primitive homotopy between the primitive maps f,g. This terminology is
justified by the observation that a right homotopy system in € is a functor
P : € —» € together with some natural transformations P I, I - P, where
is the identity functor; and that, by proposition 6.1, the resulting maps
PA >4, A PA are primitive for all M-objects (4, m). Let us express this
in the

Corollary 6.3. Let ® be a primitive category over € and let S(P;t, b, p)
be o right homotopy system in € such that (PA, Pm) ¢ ® whenever (4, m) € 9.
Then 8 induces a primitive right homotopy system Sg on © by the rule Pg(A,m)
= (P A, Pm), the natural transformations of Sg being just those of S, transferreds)
to ®.

‘We now recall that a right homotopy system is fasthful if P preserves left-
equalizers, and deduce from corollary 4.2

Proposition 6.4. Let S be a faithful right homotopy system in € and let ©
be an admissible primitive category over € such that (PA, Pm) € D if (A, m)€ D,
where P is the path functor belonging to S. Then the induced primitive right
homotopy system Sg on D is also faithful.

1*} Any further axioms which we wished to impose on our right homotopy system
(cf. [3], § 6) would equally well transfer from € to 9.
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We draw attention to the implication of this proposition. The system Sg
may well fail to have a left adjoint in ®; but, if § has a left adjoint in €, then
S will still be faithful.

Now it was shown in [3], § 6 that the factorization (F) in a category is
invariant under faithful right homotopy. To recall the details, let P be a path
functor U — 1l belonging to some faithful right homotopy system 5. For any
objects By, B,,. .., B, of Ulet

F(B): Br—Br-les... B¥Y X pe @

F(PB): (PBy»— (PByr-1—>...—> (PB)a+1"> (PB)i— . ..— (P B}

be the F-factorization associated with B,, B,, ..., B,; PB;,PB,,...,PB,
respectively. Then there is a natural map ¢: F(PB)-> PF(B); that is, a
sequence of natural maps ¢?: (P B)?—> P(B%), ¢=1,2,..., n, such that the
diagram

nd

(PB)q+1 - (PB)q
gatt 99
P(Bu+1 e | P(BY)

is commutative for each ¢. Moreover the map ¢ has the property that if
Q;: 4;,— PB, is a homotopy between f; and ¢g,: 4,—~ B, i=1,2,....n,
where 4,, 4,, ..., A, are objects of U, and f;, g;, @; induce

fi: A9 B2, g?: 49> Be, Q7. 4¢— (PB)?,

then @207 is a homotopy between f¢ and g% From this it is an immediate
consequence that if the maps f,: 4, B; are homotopy equivalences (with
respect. to the faithful system 8) then so are the maps f¢: 49> B? and thus
the factorization (¥} is, in a precise sense, homotopy invariant.

Now let 8 be a faithful right homotopy system on a category € and let ®
be an admissible primitive category over € which is cloged with respect to the
path functor of S, as in proposition 6.4; suppose further that ® is an I-category.
Then the discussion above is applicable to the induced right homotopy system
Sg on ® and we have proved

Theorem 6.5. Let © be an admissible primitive DI-category over a category €
and let Sg be the primitive right homotopy system on D induced by a faithful
system 8 on €. Then the factorization (F) in ® is homotopy invariant with
respect to Sg.

We may exemplify this theorem by considering the factorization (F) in the
category of group complexes (or c.s.s. groups (see [5])). Then Kan’s notion of
“homotopy through homomorphisms” or loop homotopy (see [7]) coincides
precisely with the equivalence relation on maps generated by the homotopy
system Sg, where the path functor P in § is just the functor X — XTI, Certainly
8 is faithful (since P has a left adjoint), so we may conclude that the factoriza-
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tion (¥') is homotopy invariant, in the sense of Kan, in the category of group
complexes.

We note that the introduction of the homotopy system Sg enables us to
define, in 9, not only the length and weak length, but also the homotopy-
length and weak homotopy-length of objects of ©. The fact that the homotopy-
length and weak homotopy-length are homotopy invariants, with respect
to Se, where § is faithful, is an immediate consequence of the homotopy
invariance of the factorization (F); however, as remarked in [3] § 6, this fact
follows quite simply from the fact that homotopy classification is compatible
with composition of maps and thus does not depend on the faithfulness of S.

Finally we point out that although length and weak length coincide in
an admissible G-primitive category (Corollary 5.16), there is no reason to
suppose that homotopy-length and weak homotopy-length coincide in such a
category furnished with a primitive right homotopy system.
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