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FUNCTION COMPLEXES IN HOMOTOPICAL ALGEBRA 

W. G. DWYER and D. M. KAN 

51. INTRODUCTION 

1 .l Summary 

IN [l] QUILLEN introduced the notion of a model category (a category together with 
three classes of maps: weak equivalences, fibrations and cofibrations, satisfying 
certain axioms (1.4 (iv))) as a general framework for “doing homotopy theory”. To 
each model category M there is associated a homotopy category. If W C M denotes 
the subcategory of the weak equivalences, then this homotopy category is just the 
localization M[W-‘I, i.e. the category obtained from M by formally inverting the maps 
of W, and it thus depends only on the weak equivalences and not on the fibrations and 
the cofibrations. Moreover, if two model categories are connected by a pair of adjoint 
functors satisfying certain conditions, then their homotopy categories are equivalent. 

The homotopy category of a model category M does not capture the “higher order 
information” implicit in M. In the pointed case, however, Quillen was able to recover 
some of this information by adding some further structure (a loop functor, a 
suspension functor and fibration and cofibration sequences) to the homotopy cate- 
gory. His fundamental comparison theorem then stated that, if two pointed model 
categories are connected by a pair of adjoint functors satisfying certain conditions, 
then their homotopy categories are equivalent in a manner which respects this 
additional structure. 

The aim of the present paper is to go back to an arbitrary model category M and 
construct a simplicial homotopy category which does capture the “higher order 
information” implicit in M. This simplicial homotopy category is defined as the 
hummock localization L”(M, W) (for short LHM) of [2]. It is a simplicial category 
(1.4) with the following basic properties: 

(i) The simplicial homotopy category LHM depends (by definition) only on the 
weak equivalences and not on the fibrations and cofibrations. 

(ii) If two model categories are connected by a pair of adjoint functors satisfying 
Quillen’s conditions, then their simplicial homotopy categories are weakly equivalent 
(1.4). 

(iii) The “category of components” of the simplicial homotopy category of M is 
just the homotopy category of M. 

(iv) If M, is a closed simplicial model category [I], then, as one would expect, the 
full simplicial subcategory M$ C M* generated by the objects which are both 
cofibrant and jibrant is weakly equivalent (1.4) to LHM. 

(v) “LHM provides M with function complexes”, i.e. for every two objects X, YE 
M, the simplicial set LHM(X, Y) has the correct homotopy type for a function 
complex, in the sense that, for every cosimplicial resolution X* of X and every 
simplicial resolution Y, of Y (4.31, it has the same homotopy type as diag M(X*, Y*). 

1.2 Application 

The hammock localization enables one to construct simplicial monoids which are 
analogs of “the space of self homotopy equivalences” of an object X E M, something 
that seems difficult to do using resolutions. In fact there are two obvious candidates: 
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(i) the homotopy automorphism complex haut ,_H~X, which is the simpliciat sub- 
monoid of LHM(X, X) consisting of the components which are invertible in 
rOLHM(X, X), and 

(ii) the simplicial monoid LHW(X, X). 

Fortunately (4.6) their classifying complexes have the same homotopy type whenever 
M is a closed model category. 

Actually it was our interest in such analogs of the space of self homotopy 
equivalences for arbitrary model categories that led to the present paper, as well as to 

I29 41. 

1.3 Organization of the paper 
After fixing some notation and terminology (in 1.4), we explain (in 02) what exactly 

we mean by simpficiaf categories and by weak equivalences between them and recall 
(in 43) the definition of the hammock localization of [2]. Our main results are then 
formulated in 34 and §5, those dealing with function complexes in 94, while 95 
concentrates on simpliciaf homotopy categories. Then comes 46 which is, in some 
sense, the key section of the paper. It contains various properties of cosimpficiaf and 
simpliciaf resolutions and, most importantly, a proof of their existence. The remaining 
sections (47 and 08) are devoted to the completion of the proofs of the results of 04 
and 05. 

1.4 Notation, terminology, etc. 
We will freely use the notation, terminology and results of f I, 21 (especially in the 

proofs), except for the slight changes in the terminology indicated in (i), (ii) and (iii) 
below. In (iv) we recall the definition of a model category and fix some related 
notation and terminology. 

(i) Simplicial sets. These will not, as usual, be necessarily small, but only homo- 
topically small in a sense that will be made precise in 2.2. 

(ii) Simplicial categories. These will be required (see 2.1) to have the same objects 
in each dimension, but their “simplicial horn-sets” need oniy be homotopicalfy small. 

(iii) Weak equivalences between simplicial categories. These will be (see 2.4) 
functors which induce an equivalence between the “categories of components” and 
weak homotopy equivalences on the “simplicial horn-sets”. This is a generalization of 
the notion of weak equivalence of [21. 

(iv) Model categories. A model category consists of a category M, together with 
three subcategories W, ,FiJ and Cof C M which contain all isomorphisms of M, 

satisfying the following axioms [ l,G 11: 

MO M is closed under finite direct and inverse limits. 
Ml Given a solid arrow diagram 

A-X 

/ 
B-Y 

with i E &f, p EE and either i or p E W. Then the dotted arrow exists. 
M2 Any map f E M can be factored f = pi and f = qj with i, j E=, p, q EC 

andi,qEW. 
M3 Any pullback of a map in s is again in Fib and any pushout of a map in 

+J is again in g. 
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M4 Any pullback of a map in W f7E is again in W flE and any pushout of 
a map in W n Czf is again in W n Cof. 

M5 Let f, g E M be maps such th;;‘; gf is defined. If two off, g and gf are in W, 

then so is the third. 
The maps of W, E, W n@, Cof, W flCof are called weak equivalences, 

fibrations, trivial fibrations, cofibrati= trivial cofibrations respectively and are 
sometimes denoted by 1, ++, z+, ‘H, s. 

An object X E M is called cofibrant if the map cp +X (rp = initial object) is a 

cofibration and is called fibrant if the map X+ * (* = terminal object) is a fibration. 
The full subcategory of M generated by the fibrant (resp. cofibrant) objects will be 
denoted by Mf (resp. M’) and we abbreviate MC’ = M’ U M’, Wf = W n M’, WC = 
w n MC. 

52. SIMPLICIAL CATEGORIES 

We start with a brief discussion of simplicial categories and weak equivalences 
between them. 

2.1 Simplicial categories 

By a simpliciaf category we will mean something slightly different from usual. We 
assume, as is often done, that they have the same objects in each dimension. 
However, we do not require that the “simplicial horn-sets” be small, but only that 
they be homotopically small in the sense explained below. A simplicial category 
which is “discrete” then is just an ordinary category. 

2.2 HomotopicaIIy small simplicial sets 

A (not necessarily small) simplicial set X will be called homotopically small if 
r”,(X; v) is small for every vertex v E X and every integer n 2 0. This is clearly 
equivalent to requiring that X contain a small simplicial subset U with the property 
that, for every small simplicial subset V C X containing U, there is a small simplicial 
subset W C X containing V, such that the inclusion U + W is a weak homotopy 
equivalence. Clearly the homotopy type of such a U is unique and it thus makes sense 
to talk of the homotopy type of a homotopically small simplicial set and of weak 
homotopy equivalences between homotopically small simplicial sets. 

The following proposition shows that, in a simplicial category in the sense of 2.1, 
one can “do homotopy theory” as usual. 

2.3 PROPOSITION. Let C be a simplicial category and let E C C be a small sim- 
plicial subcategory, i.e. the objects of E form a small set and, for every two objects 
X, Y EE, the simplicial set E(X, Y) is also small. Then there is a small simplicial 
subcategory D C C containing E such that, for every two objects X, Y ED, the 
inclusion D(X, Y) + C(X, Y) is u weak homotopy equivalence. 

The proof is straightforward. 

2.4 Weak equivalences between simplicial categories 

A weak equivalence S: C-D between two simplicial categories is a functor which 
(i) induces an equivalence x,C = wOD between the “categories of components”, 

and; 
(ii) induces, for every two objects X, Y EC, a week homotopy equivalence 

C(X, Y) - D(SX, SY). 

Similarly two simplicial categories will be called weakly equivalent if they can be 
connected by a finite string of weak equivalences. Clearly weakly equivalent simpliciul 
categories are equivalent from the point of view of homotopy theory. 

We end with observing that there is also the slightly stronger notion of 
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2.5 Homotopy equivalences between simplicial categories 
A functor S: C + D between simplicial categories is called a homofopy equivalence 

if there is a functor T: D+C (a homotopy inverse of S) such that the compositions 
TS and ST are, in the following sense, homotopic to the identity functors of C and D 

respectively. Two functors S,, S,: C +=C’ are homotopic if there exists a natural 
equivalence t: rr,S, = rOSz such that, for every two objects X, Y EC, the diagram 

C’(S,X, s, Y) 
SI 

C(X, Y) 
/ vx-‘JY) 

\ 
I 

% 
C’(S>X, St Y) 

commutes up to homotopy, where (tX_‘, tY) denotes a map obtained by composition 
with representatives of tX-’ and tY. 

It is not difficult to verify that indeed every homotopy equivalence is a weak 
equivalence. 

§3. SIMPLICIAL LOCALIZATIONS OF CATEGORIES 

The simplicial localizations of [I, 21 assigned to a small category C and sub- 
category WC C, weakly equivalent (2.4) small simplicial categories LC and L”C. In 
preparation for the formulation and proof of our results we recall the definition of 
LHC. Although in our applications the category C is not necessarily small, it turns out 
(see 04 and §S) that L”C is still well defined and is a simplicial category in the sense 
of 2.1. 

3.1 The hammock localization of a small category 

Let C be a small category and let W C C be a subcategory which contains all the 
objects. The hummock focalization of C with respect to W then is the (small) 
simplicial category LH(C, W) (for short L”C) defined as follows[2]: 

(I) LHC has the same objects as C in every dimension. 
(2) For every two objects X, Y EC, the simplicial set LHC(X, Y) has as its 

k-simplices the “reduced hammocks of width k and any length” between X and Y, 
i.e. the commutative diagrams in C of the form 

c 0.2 -. . 

4 
G,* - . ’ 
5- 

4 
-. . .- 

G-l 

\y \ 

-/ I 

in which 

(i) n, the length of the hammock, is any integer ~0, 
(ii) all vertical maps are in W, 

(iii) in each column all maps go in the same direction; if they go to the left, then 
they are in W, 

(iv) the maps in adjacent columns go in different directions, and 
(v) no column contains only identity maps. Faces, degeneracies and compositions 

are defined in the obvious manner, i.e. the i-face is obtained by omitting the i-row and 
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the i-degeneracy by repating the i-row; if the resulting hammock is not reduced, i.e. 
does not satisfy (iv) and (v), then it can easily be made so by repeatedly. 

(iv)’ composing two adjacent columns, whenever their maps go in the same 

direction, and 
(v)’ omitting any column which contains only identity maps. 
Note that the hammock localization comes with an obvious functor p: C + LHC. 
An immediate consequence of the above definition is 

3.2 PROPOSITION. For every two objects X, Y EC, the components of LHC(X, Y) 
are in l-1 correspondence with the maps X + Y E C[W-‘I, i.e. q,LHC = C[W-‘1, where 
C[W-‘1 denotes the (ordinary) localization of C with respect to W, i.e. the category 
obtained from C by “formally inverting” the maps of W. 

3.3 The simplicial localizations of not necessarily small categories 

Definition 3.1 also makes sense for categories which are not necessarily small, 
except that in that case the simplicial sets LHC(X, Y) need not be small either. This 
will however cause us no difficulties because, for the categories considered in this 
paper, these simplicial sets LHC(X, Y) will turn out to be homotopically small, so that 
LH C is a simplicial category in the sense of 2.1. 

Of course the same applies to the weakly equivalent standard simplicial localiza- 
tion LC of (31. 

94. FUNCTION COMPLEXES IN MODEL CATEGORIES 

Our main result is that (i) the hammock localization (3.1) LHM of a model category 
M is a simplicial category (2.1) with the same objects as M, and (ii) the resulting 
homotopically small (2.2) simplicial sets LHM(X, Y) have the “correct” homotopy 
types for being function complexes. 

4.1 PROPOSITION. Let M be a model category (1.4 (iv)). Then the hammock local- 
ization LHM = LH(M, W) (3.1) is a simplicial category (2.1). 

Proof. This follows immediately from propossitions 4.4 and 4.5 below. 
Combining 4.1 with 3.2 one gets that the simplicial sets LHM(X, Y) have indeed 

the “correct” set of components. 

4.2 COROLLARY. For every two objects X, Y E M, the components of LHM(X, Y) 
are in l-1 correspondence with the maps X+ Y E M[W-‘1, i.e. 7rOLHM = M[W-‘I, the 
classical [ 1, Chap. I, 1.131 homotopy category of M. 

Further evidence is that (see 4.4) the simplicial sets LHM(X, Y) have the same 
homotopy type as the less functorial “function complexes” obtained using 

4.3 Simplicial and cosimplicial resolutions 
Let M be a model category. By a simplicial resolution of an object Y E M we then 

mean a simplicial object Y, over M together with a weak equivalence Y+ Y, such 
that 

(i) the object Y, is fibrant 
(ii) all face maps between the Y, are trivial fibrations (and hence the objects Y, 

(n >O) are also fibrant), and 
(iii) for every integer n L 0 the obvious map Y,,, *(d,, Y,) is a fibration, where 

(d,, Y,) denotes the inverse limit of the diagram which consists of 
(a) for every integer i with 0 zs i 5 n + 1, a copy (di, Y,) of Y,, and 
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(b) for every pair of integers (i, j) with 0 5 i <i 5 n + I. a COPY (d&iv Y,-l) of I',-,, 
together with pair of maps 

(djv Yn)- di-’ ididj, Yn-I) di -(dj, Yn). 

Similarly a map between two simplicial resolutions Y* and Y* of Y will be a map 
Ye+ p* of simplicial objects which is compatible with the weak equivalences YG Y,, 
and Y-r* yO. 

Cosimplicial resolutions and their maps are, of course, defined dually. 

4.4 PROPOSITION. Let M be Q model category. Then, for every two objects X, Y E 
M and every cosimplical resolution X” of X and simplicial resolution Y, of Y, the 
simplicial set diagM(X*, Y*) has the same homotopy type as LHM(X, Y). If X is 
cofibrant, then M(X, Y,) has also the same homotopy type and dually, if Y is fibrant, 
then so does M(X*, Y). 

Proof. The second part follows from the first part and 6.3 and 6.4: a proof of the 
first part will be given in 7.2 and 8.1. 

The usefulness of proposition 4.4 is due to proposition 4.5, which will be proved in 
6.7. 

4.5 PROPOSITION. Every object of model category has a simplicial and a cosim- 
plicial resolution. 

4.6 APPLICATION. The simplicial localizations enable us to construct simplicial 
monoids which are analogs of “the space of self homotopy equivalences”, something 
that seems difficult to do using resolutions. There are two obvious candidates: 

(i) the homotopy automorphism complex haut,,, X of an object X E M, which is 
the simplicial submonoid of LHM(X, X) consisting of the components of LHM(X, X) 
which are invertible in 7r0LHM(X, X), and 

(ii) the simplicial monoid LHW(X, X). However [2, 6.41 if W is closed in M in the 
sense of [3, 3.41 (e.g. if M is a closed model category [l, I, §5]), then the inclusion of 
L*W(X, X) in haut,,, X induces a weak homotopy equivalence between their classi- 
fying complexes. Of course [2] the classifying complex of LW(X, X) has also the same 
homotopy type. This is sometimes useful because [3] LW(X, X) is actually a simplicial 

group. 

We end with observing that, if the model category M comes already equipped with 
function complexes, i.e. if M is the O-dimensional part of a closed simplicial model 

category M* [I, Chap. II], then proposition 4.5 implies: 

4.7 COROLLARY. If X EM* is cofibrant and Y E M* is fibrant, then M,(X, Y) has 
the same homotopy type as LHM(X, Y). 

In fact the following stronger result holds. If M;’ C M* denotes the full simplicial 
subcategory generated by the cofibrant fibrant objects and if LHM* and LHMgf 
denote the bisimplicial categories obtained by applying LH dimensionwise with 
respect to the (iterated) degeneracies of the weak equivalences, then one has: (see 
3.1) 

4.8 PROPOSITION. In the commutative diagram 

incl. incl. 

M=& -M,-MM:’ 

J 1 \ 
LHM __ diag LHM* v diag LH M$’ 

the maps indicated by - are weak equivalences. 
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Proof. The map on the right is a weak equivalence by [3, 6.41 and Proposition 5.3 
readily implies that the left bottom map is so too. That the right bottom map is a 
weak equivalence will be proved in 7.4 and 8.4. 

I’ 

55. SIMPLICIAL HOMOTOPY CATEGORIES 

The results of the previous section, and in particular Corollary 4.2 and Proposition 
4.8, suggest the following definition 

5.1 Simplicial homotopy categories 

A simplicial homotopy category of a model category M is an simplicial category 
which is weakly equivalent (2.4) to LHM = LH(M, W). 

Some examples are provided by 

5.2 PROPOSITION. Let M be a model category. Then the inclusions (1.4(iv)) 

LH(Mc, WC ng)-, LH(MC, WC) = LHMC + LHM 

LH (M’, W’ nFiJ --f LH (M’, W’) = LH M’ + LH M 

are all weak equivalences. 

5.3 PROPOSITION. Let M* be a closed simplicial model category [I, Chap. II]. Then, 
for every integer k L 0, the map LHW+ LHMk, induced by the k-fold degeneracy, is a 
weak equivalence. 

Proofs. It follows from [ 1, 5.11 and [4, 1.2 and 1.31 that in 5.2 the maps on the left 
are weak equivalences. 

Proposition 5.3 and the rest of Proposition 5.2 will be proved in 7.1,7.3,8.2 and 8.3. 
A further justification of Definition 5.1 is the fact that model categories which can 
be connected by a pair of adjoint functors having the usual properties have the same 
simplicial homotopy categories, i.e. 

5.4 PROPOSITION. Let M and N be model categories and let S: M-N and T: 
N+M be a pair of adjoint functors such that S (the left adjoint) sends cofibrations 
into cofibrations and weak equivalences between cofibrant objects into weak 
equivalences and T (the right adjoint) sends fibrations into fibrations and weak 
equivalences between fibrant objects into weak equivalences. Then, for every cofibrant 
object X E M and cosimplicial resolution Y* of Y, the adjunction map induces an 
isomorphism of bisimplicial sets 

M(X*, TY,) = NC%*, Y*). 

If moreover, for every cofibrant object X E M and fibrant object Y EN, a map 
X + TY E M is a weak equivalence if and only if its adjoint SX + Y E N is so, then 
the induced f unctors 

LHMc + LHNC and LHN’ + LHMf 

are weak equivalences and hence (5.2) M and N have the same simplicial homotopy 
categories. 

TOP Vol. 19. No. 4-H 
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Proof. The proof of the first part is straightforward. The second part follows from 
the first part and [ 1, I, Theorem 31. 

5.5 Remark. Of course [2, 2.21 one can everywhere replace LH by L. 

5.6 Remark. If M is a model category which admits functorial factorizations 
(1.4(iv), M2), then it is not hard to verify that in 5.2 the maps on the right are 
homotopy equivalences in the sense of 2.5. 

Similarly if, in 5.4, M and N both admit functorial factorizations, then the maps 
LHMc + LHNc and LHNf + LHMf are both homotopy equivalences and the com- 
positions 

LHM+ LHM= + LHN’ + LHN and LHN+ LHN’ + LHM’-+ LHM 

(in which the maps LnM+ LHMc and LuN-, LHNr are homotopy inverses (2.5) of 
the inclusions) are homotopy inverses of each other. 

55. SIMPLICIAL AND COSIMPLICIAL RESOLUTIONS 

This section is in many respects the key section of the paper. It contains some of 
the basic properties of simplicial and cosimplicial resolutions as well as a proof of 
their existence, i.e. Proposition 4.5. 

We start with showing that the “function complexes” obtained from resolutions 
are unique up to homotopy. 

6.1 PROPOSITION. Let X’G X E M be a trivial cofibration and let Y * be a sim- 
plicial resolution of an object Y EM. Then the induced map M(X, Y*)+ M(X’, Y*) is 
a trivial jibration of simplicial sets. 

Dually one has 

6.2 PROPOSITION. Let Y i+ Y’ E M be a trivial fibration and let X* be a cosim- 
plicial resolution of an object X E M. Then the induced map M(X*, Y)+M(X*, Y’) 

is a trivial jibration of simplicial sets. 

The proofs are straightforward, using the standard characterization of trivial 
fibrations of simplicial sets [l, II, 2.21. 

In view of [4, 1.2 and I.31 these propositions imply 

6.3 COROLLARY. Let X’ 4 X E M be a weak equivalence between cofibrant objects 
and let Y* be a simplicial resolution of an object Y E M. Then the induced map 
M(X, Y *) + M(X’, Y *) is a weak homotopy equivalence. 

6.4 COROLLARY. Let YA Y’ EM be a weak equivalence between jibrant objects and 
let X* be a cosimplicial resolution of an object X E M. Then the induced map 
M(X*, Y)+M(X*, Y’) is a weak homotopy equivalence. 

And combining these results with diagonal arguments [ 1, 1.41 one gets 

6.5 COROLLARY. Let X* be a cosimplicial resolution of a cojibrant object X EM 
and let Y, be a simplicial resolution of a fibrant object Y E M. Then the simplicial 
sets 

MW*, Y), WX, YA and diag M(X*, Y*) 

have all the same homotopy type. 
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6.6 COROLLARY. Let X* and X* be cosimpiicial resolutions of an object X EM 
and let Y* and Y* be simplicial resolutions of an object Y E M. Then the simplicial 
sets 

diag M(X*, Y*), and diag M(X*, Y,) 

have the same homotopy type. 

We now give an outline of a 

6.7 Proof of Proposition 4.5. (First half only). 
The proof proceeds by induction on n as follows. 
Given an object Y E M, find a fibrant object Y, together with a weak equivalence 

Y+ Y, by choosing a factorization Yfi Y, +--, e of the unique map Y + e (1.4(iv)). 

Now let n 2 0 and assume that fibrant objects Yi have been constructed for all 
0 I i 5 n, together with face and degeneracy maps which satisfy the requirements for 
a simplicial resolution of Y, as far as.they make sense. Denote by (s*, Y,,) the direct 
limit of the diagram which consists of 

(i) for every integer i with 01 i 5 n, a copy (Si, Y,) of Y,, and 
(ii) for every pair of integers (i, j) with 0 I i <j zz n, a copy (SiSjr Y,_,) of Y,_,, 

together with the pair of maps 

q-1 

(Si, Yn) + (SSj9 Yn-1) - li (Sj, Y,). 

Then the maps (Sj, Y,) = Y, LY. = (dip Y,,) with f = sj_ldi for i <j, f = id for i = j, 
j+ 1 and f = sjdi_1 for i > j+ 1, induce a map (s*, Y,)+(d,, Y,). Choose a fac- 
torization (s*, Y,)G Yn+, G+ (d,, Y,) of this map and a lengthy but essentially 
straightforward calculation shows that the fibrant object Y.+l and the maps 

di: Yn+I ++ (d*, Yn) ++ (di, Yn) = Yn and Si: Yn = (Si, Yn)6,(S*v Yn)+ Yn+l 

have all the desired properties. 

6.8 Remark. It should be noted that the simplicial resolution of Y constructed in 
6.7 has the additional properties: 

(i) the map Y + Y, is a trivial cofibration, 
(ii) all degeneracy maps between the Y, are trivial cofibrations, and 
(iii) the every integer n 20, the map (s*, Y,)+ Y,+, is a trivial cofibration. Such a 

simplicial resolution will be called special. 
Special cosimplicial resolutions are, of course, defined dually. 
Special resolutions have the following useful properties. 

6.9 PROPOSITION. Let Y, and Y* be simplicial resolutions of an object Y E M. If 
Y * is a special resolution, then there exists a map of resolutions (4.3) Y, + F*. 

6.10 PROPOSITION. Let X* and X* be cosimplicial resolutions of an object X E M. 
If X* is a special resolution, then there exists a map of resolutions (4.3) X* --*X*. 

The proofs are straightforward. 

6.11 PROPOSITION. Let Y, be a special simplicial resolution of an object Y E M 
and let (Y $ W) denote the category of the trivial cofibrations starting at Y. Then the 
functor y: hop +( Y 3 W) which sends [n] to YG Y, is right cojinal [5, p. 3161. 
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6.12 PROPOSITION. Let X* be a special cosimplicial resolution of an object X E M 
and let (W -1 X) denote the category of the trivial fibrations ending at X. Then the 
functor x: A+(W C X) which sends [n] to X” -k X is left cofinal [5. p. 3161. 

Proof. (Of 6.11 only). One has to show that, for every object Y li Y’ E (Y J W), 
the under category (Y 4 Y’ J y) is contractible. But (Y 1 Y’ J y) is isomorphic to the 
homotopy direct limit [5, Chap. XII]. 

holim”“[[n] w( Y J W)( Y + Y’, Y-I* Y,)] 

which [l, Chap. XII, $31 has the same homotopy type as the simplicial set ( Y J W) 
(Y-I* Y’, YG Y*). But the latter is a fibre of the trivial fibration (6.1) 
M( Y’, Y *) -C-+ M( Y, Y,) and hence is contractible. 

§7. PROOFS (ASSUMING FUNCTORIAL FACTORIZATION.9 

It remains to prove Proposition 5.3 and parts of Propositions 4.4, 4.8 and 5.2. In 
this section we will prove these results under the assumption that, as is often the case, 
the model category M (resp. M,,) admits functorial factorizations (1.4(iv), M2). This 
will simplify the proofs considerably. In 48 we will then indicate what changes have to 
be made if M (res. M,) does not admit functorial factorizations. 

Easiest is the completion of the 

7.1 Proof of 5.2. Combination of the functorial factoziations with [2, 3.51 readily 
yields that (see 5.6) the inclusions LHMc + LHM and LHMj + LHM are actually 
homotopy equivalences (2.5). 

Next we finish the 

7.2 Proof of 4.4. In view of the results of 96 it suffices to show that, for 
X, Y E MC’, X* a special cosimplical resolution of X with X” = X and Y* a special 
simplicial resolution of Y with Y, = Y, the simplicial set diag M(X*, Y,) has the same 
homotopy type as LHM(X, Y). To prove this consider the sequence of maps 

diag M(X*, Y*) - M”(X*, Y,) - 

(W n C&-‘M(W ns)-‘(X, Y) L LHM(X, Y) 

in which 

(i) M”(X*, Y*) = hoJim A”“xAO’M(X*, Y*) [5, Chap. XII], where M(X*, Y*) is con- 
sidered as a functor A” X Aop +Sets C s Sets and the map on the left is the weak 
homotopy equivalence obtained by twice applying [5, Chap. XII, 3.41, 

(ii) (W fl cf)-‘M(W n%)-‘(X, Y) is, as in [2, 5.91, the nerve of the category 
which has as objects the sequences X G” X’+ Y’ a Y in M, and the reduction map 
r is a weak homotopy equivalence (by the argument of [2, 98]), and 

(iii) if S = (W & X) is the category of the trivial fibrations ending at X, T = (Y 3 W) 
is the category of the trivial cofibrations starting at Y and K: Sop x R + Sets C s Sets - - 
is the functor given by 

(x’-++ X, Y A Y') I+M(X’, Y’) 

then (W n &f)-‘M(W nz)-‘(X, Y) = holim SDPxTK and the map in the middle is the 

map between homotopy direct limits induced by the functor A: hop x Aop *Sop x T 
given by 

([k], [n]) I+(Xk Z+ X, YG Y,). 
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The desired result now follows from the fact that (6.1 I and 6.12) A is right cofinal 
and that therefore, by the right cofinality theorem for homotopy direct limits (which is 
the obvious dual of the left cofinality theorem for homotopy inverse limits [5, Chap. 
XI, 9.21 and which is proved in the same manner) the middle map is a weak homotopy 
equivalence. 

Using 7.2 we will now give a 

7.3 Proof of 5.3. Let X, Y, X* and Y* be as in 7.2 and consider the commutative 
diagram induced by the k-fold degeneracy 

diag &(X*. Y *) g Mb’(X*, Y *) -1, (W fl s)-‘M(W nE)-‘(X, Y) -1, L”M(X, Y) 
J L 4 -1 

diag M,(X*, Y*> C M;I(X*, Y*)+(W fl E)-‘Mk(W nE)-‘(X, Y)+ LHMk(X, Y). 

Clearly (see 7.2) the indicated maps are weak homotopy equivalences. Furthermore, 
even though Mk (k > 0) is not a model category, the fact that the maps X + Y E Mk 

are in natural 1-I correspondence with the maps X @ A(k]+ Y E M,, and the maps 
X + YAr’r E M,, together with the functoriality of the factorizations, readily implies 
that the conditions of [2, 8.21 are satisfied and that one therefore, as in 7.2, can apply 
the argument of [2, 083 to show that the right bottom map is a weak homotopy 
equivalence. It thus remains to show that the map on the left is a weak homotopy 
equivalence. But this follows easily from the results of Is6 and the fact that 
Mp(X*, Y,) = Mo(X*@A[kl, Y*) and that X*@A[k] is also a cosimplicial resolution 
of x. 

It remains to complete the 

7.4 Proof of 4.8. The existence of functorial factorizations readily implies that 
MOd satisfies the conditions of [2, 8.21 and the same clearly (see 7.3) applies to M$ 
The rest of the argument of 7.3 also applies, showing that the k-fold degeneracy map 
Mocl -+ Mk” induces a weak equivalence L”M,” -+ LHMkC’. The desired result now 
follows immediately. 

$8. PROOFS (WITHOUT FUNCTORIAL FACTORIZATIONS) 

We end with indicating the changes that have to be made in the proofs of 07, if M 
(resp. M,) does not admit functorial factorizations. 

We begin with 

8.1 Proof of 4.4. If M does not admit functorial factorizations, then (see 7.2(vii)) 
part of the argument of [2, $81 does not work. What goes wrong is that, for any two 
words m and n in M and W-‘, the map 

m(W fl Cof)-‘(W n Fib)-ln(X, Y) z mW_‘n(X, Y) 

has not any longer an obvious (homotopy) inverse. But we will prove that it is still a 
weak homotopy equivalence, which is all that is needed. 

Note that [2, 5.11 C is the nerve of a functor N-‘C. Hence, in view of Theorem A 
of 161, it suffices to prove that, for every object b E N-‘mW-‘n(X, Y), the over- 
category (N-‘C 4 b) has a contractible nerve. Let 

b=(X-...-u-V-... - Y). 
* 

Then one can apply the construction of 6.7 to the object w: VG U of the over- 
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category (W i U) and obtain a simplicial object V, together with a compatible 
collection of trivial fibrations V, -A U and trivial cofibrations VG V, such that the 
compositions VG V, *+ U equal w. Denote by D: hOP +(N-‘C J b) the functor 
which sends [n] to the object 

X -. . .- fy4-+v,- v-...--- Y 

1 id 1 id 1 id 1 id 

X -. . .- u-v---- *.-Y. 

As NAoP is contractible, it then remains to show that, for every object e E (N-‘C J b), 
the undercategory (e J D) has a contractible nerve. The latter is naturally isomorphic 
to the homotopy direct limit [5, Chap. XII] holim*““E of the simpiicial set E which 
sends [n] to (N-‘C 4 b)(e, D[n]), when E 7s considered as a functor Aop -+ 
Sets C s Sets. Hence [5, Chap. XII, 933 N(e 4 D) has the same homotopy type as E. 
But if e is the object 

X -. . .- U’ttW-V’-...- Y 

1 = 1 1 1 = 
X -. . .- uc-----_-vL...- Y 

then it is not hard to see that E is isomorphic to a fibre of the (6.1) trivial fibration 
(W J U)( W, V,)+(W .J U)( V’, V,) and hence is contractible. 

8.2 Proof of 5.2. To show that the inclusion LHMc + LHM is a weak equivalence 
(without assuming functorial factorizations), let X, Y, X* and Y* be as in 7.2 and 
note that there is a commutative diagram 

M(X*, Y) + M’(X*, Y)+(W= nE)-‘M’(X, Y) -+ LHMc(X, Y) 

I I I I 
diag M(X*, Y*) c M”(X*, Y*) +(W n Cof)-‘M(W fl Fib)-‘(X, Y) + LHM(X, Y) 

in which the bottom row is as in 7.2 and the top row is similar (M’(X*Y) = 
holim”“‘M(X*, Y), where M(X*, Y) is considered as a functor Aop +Sets C s S$>. 

By 7.2 and 8.1 the maps in the bottom row are all weak homotopy equivalences, and, 
by a slight variation on the arguments of 7.2, so are the maps in the middle and on the 
left in the top row. The results of 06 readily imply that the map on the left is a weak 
homotopy equivalence and it thus remains to show that the map on the right in the top 
row is one too. To do this it suffices to show [2, 6.2(ii)J that 

(i) the inclusion (WC fl Cof)-iM’(X, Y)+(W’)-‘M’(X, Y) is a weak homotopy 
equivalence and 

(ii) the pair (M’, WC) admits a homotopy calculus of left fractions [2, 6.l(ii)l. 
To prove (i) consider the diagram 

(WC n Cof)-‘M’(X, Y)‘- (WC)-‘M’(X. Y)” 

1 I incl. 

in which 
(WC n Cof)-W(x, Y) - (WC)-‘M’(X, Y) 

(iii) (WC nCof)-‘M’(X, Y)* is the nerve of the category which has as objects the 
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pairs (u, n), where u is a diagram in MC of the form X + A G Y and u is a cylinder 

object for Y, (i.e. a factorization YvY + Y’ ++ Y of the folding map YvY -+ Y), 

(iv) (W’)-‘M’(X, Y)” is defined similarly, 
(v) the vertical maps are obtained by forgetting the cylinder objects, and 
(vi) the diagonal map assigns to a diagram X +A C Y in MC and a cylinder object 

YvY ti Y’-++ of Y the diagram X+AvyY’ c< Y. 

Using the argument of 8.1 it is not hard to show that the vertical maps are weak 
homotopy equivalences and the desired results now follows from the (easily 
verifiable) fact that the diagram commutes up to homotopy. 

The proof of (ii) combines the above argument with the one of [2, $83 and will be 
left to the reader. 

8.3 Proof of 5.3. One combines the arguments of 7.3 and 8.1. 
We end with 

8.4 Proof of 4.8. The argument of 7.4 breaks down completely, as the Mtr do not 
any longer satisfy the conditions of [2, 8.21. Instead we will prove directly that, for 
every two objects X, Y E M$, the map M&X, Y)+diag L”M*(X, Y) is a weak 
homotopy equivalence (actually we only use the fact that X E M$ and Y E Mf,). To 
do this we factor this map 

M,(X, Y)+diag M$(X@A[*], Y)-*diag W-‘M*W-‘(X, Y) 

--, diag L” M,(X, Y) 

where Mi(X@A[*], Y) is as in 8.2. The map on the right is a weak homotopy 
equivalence (by the arguments of 7.3 and 8.1), and so is the map on the left, because it 
fits into a commutative diagram 

&.W, Y) - diag MA(X@A[*], Y) 

die MJXCW[*l, Y) 

in which the map on the left is readily verified to be a weak homotopy equivalence, 
while the map on the right is the weak homotopy equivalence of [5, Chap. XII, 3.41. It 
thus remains to investigate the middle map. 

Choose a special cosimplicial resolution X* of X with X” = X, a map of resolu- 
tions X @A[*] + X* and a special simpiicial resolution Y* of Y with Y, = Y. Then 
the middle map fits into a homotopy commutative diagram 

diag M$(X@A[*], Y] + diag W-‘M*W-‘(X, Y) 

diag M&X*, Y)+diag M$(X*, Y,)*diag (W nEf)-‘M,(W n Fib)-‘(X, y) 

in which M’i(X*, Y*) is as in 7.2 and the deisred result now follows from the fact that 
(i) by the arguments of 7.3, 8.1 and [2, §8], the vertical map on the right is a weak 

homotopy equivalence, 
(ii) by the argument of 7.2 the right bottom map is so too, and 
(iii) by the arguments of 06 and [5, Chap. XII, 3.41 both maps starting at 

diag M$(X*, Y) are weak homotopy equivalences. 



440 w. G. DYER and D. M. KAN 

REFERENCES 
1. D. G. QUILLEN: Homotopical algebra. Lect. Notes in Math. Springer-Verlag. 43 ( 1967). 
2. W. G. DWYER and D. M. KAN: Calculating simolicial localizations. J. Pure and Ambed AIR.. to appear. 
3. W. G. DWYER and D. M. KAN: Simplicial tocal&ations of categories. J. Pure and &pried A/g.. to appear. 
4. K. S. BROWN: Abstract homotopy theory and generalized sheaf cohomology. Trans. A. M.S. 186 ( 1974). 

419-458. 
5. A. K. BOUSFIELD and D. M. KAN: Homotopy limits, completions and localizations. Lect. Notes in Mufh. 

Springer-Verlag. 304 (1972). 
6. D. G. QUILLEN: Higher algebraic K-theory I. Lect. Notes in Math. 341 (19731. 85-147. Springer-Verlag. 

Yale University 
New Haven, CT 06520, U.S.A. 

and 

Massachusetts Institute of Technology, 
Cambridge, MA 02139, U.S.A. 



VOLUME CONTENTS 

NUMBER 1 

MICHAEL H. FREEDMAN: Planes triply tangent to curves with nonvanishing 
torsion . . . . . . . . . . . . . . . . . . . . . . . 
W. DE MELO: Moduli of stability of two-dimdnsional diffeomorphisms . . 

STEVEN P. KERCKHOFF: The asymptotic geometry of Teichmuller space . . 

SHIGEYUKI MORITA and TAKASHI TSUBOI: The Godbillon-Vey class of codi- 
mension one foliations without holonomy . . . . . . . . . . . . 
WILLIAM D. HOMER: Equivariant PL embeddings of spheres . . . . . . 
ANDREW PRESSLEY: Decompositions of the space of loops on a lie group . 

HARRIS JAFFEE: Real algebraic curves . . . . . . . . . . . . . 
C. T. C. WALL: Affine cubic functions-II. Functions on C3 with a corank 2 
singular point . . . . . . . . . . . . . . . . . . . . . . 
Errata . . . . . . . . . . . . . . . . . . . . . . . . 

1 
9 

23 

43 
51 
65 
81 

89 
99 

NUMBER 2 

STEVE FERRY: Homotopy, simple homotopy and compacta . . . . . . iO1 
KLAUS J~~NICH: Symmetry properties of certain C”-functions on the 2-dimen- 

sional disk . . . . . . . . . . . . . . . . . . . . . . 111 
MARK GORESKY and ROBERT MACPHERSON: Intersection homology theory . 135 
ALAN DANKNER: Axiom A dynamical systems, cycles and stability . . . 163 
E. GHYS et V. SERGIESCU: StabilitC et conjugaison differentiable pour certains 

feuilletages . . . . . . . . . . . . . . . . . . . . . 179 
MARIE-PAULE MULLER: Sur les composantes de Novikov des feuilletages . 199 
JOHN H. HUBBARD: On the convex hull genus of space curves . . . . . 203 

NUMBER 3 

ALLAN CALDER and JERROLD SIEGEL: On the width of homotopies . . . . 
A. HATCHER and W. THURSTON: A presentation for the mapping class group of a 

closed orientable surface . . . . . . . . . . . . . . . . . 
ERIK KJAER PEDERSEN and ANDREW RANICKI: Projective surgery theory . . 
NEAL BRAND and GREGORY BRUMFIEL: Periodicity phenomena for concordance 

classes of branched coverings . . . . . . . . . . . . . . . 
J. C. ALEXANDER and STEVEN M. KAHN: Characteristic number obstructions to 

fibering oriented and complex manifolds over surfaces . . . . . . . 
KLAUS J~~NICH: Contact preserving families of functions . . . . . . . 
V. GUILLEMIN and D. KAZHDAN: On the cohomology of certain dynamical 

systems . . . . . . . . . . . . . . . , . ~ . . . . . 
V. GUILLEMIN and D. KAZHDAN: Some inverse spectral results for negatively 

curved 2-manifolds . . . . . . . . . . . , . . . . . . . 
D. R. MCMILLAN, JR. and T. L. THICKSTUN: Open three-manifolds and the 

Poincar6 conjecture . . . . . . . . . . . . . . . . . . . 

209 

221 
239 

255 

265 
283 

291 

301 

313 



ii LIST OF CONTENTS 

NUMBER 4 

AKIO KAWAUCHI: On links not cobordant to split links . . . . . . . . 321 
OLEHJORTH RASMUSSEN: Continuous variation of foliations incodimension two 335 
S. G. DANI: On affine automorphisms with a hyperbolic fixed point . . . 351 
W. DWYER, W. C. HSIANG and R. STAFFELDT: Pseudo-isotopy and invariant 
theory--I . . . . . . . . . . . . . . . . . . . . . . . 367 
PETER B. PERCELL: On homotopies of transient vector fields . . . . . . 387 
MICHAEL MALLER: Fitted diffeomorphismsof non-simply connected manifolds . 395 
STEVE J. KAPLAN: Realizing simply connected 4-manifolds by blowing down. 411 
P. E. NEWSTEAD: The fundamental group of a moduli space of bundles on P3. 419 
W. G. DWYER and D. M. KAN: Function complexes in homotopical algebra . 427 



AUTHOR INDEX 

ALEXANDER, J. C. 
BRAND, NEAL . 
BRUMFIEL, GREGORY 
CALDER, ALLAN . . 
DANI. S. G. . 
DANKNER, ALAN 
DE MELO, W. . : : 
DWYER. W. . . . 
DWYER. W. G. . . 
FERRY, STEVE . . 
FREEDMAN, MICHAEL H. 
GHYS. E. 
GORESKY, MARK’ : : 
GUILLEMIN. V. 
HATCHER, A. . : 1 
HOMER, WILLIAM D. 
HSIANC, W. C. 
HUBBARD, JOHN H.’ : 
JAFFEE, H. 
J~NICH, KLA&Z 

. 

KAHN. STEVEN M. . : 
KAN. D. M. . 

. . 

. 

. 

. . 

. 

. 

. . 

. . 

. . 

. 

. 

. . 

. 

. 

. . 

. . 

. . 

. . 

. 
. . 

265 
. -255 
. 255 
. 209 
. 351 

163 
. 9 
. 367 

427 
101 

I 
179 . . 
135 

291,301 
. 221 
. 51 

367 
203 

81 
‘Hi.283 
. 265 

427 

KAPLAN. STEVE J. 
KAWAUCHI. AKIO 
KAZHDAN, D. 
KERCKHOFF, STEPHEN’P.’ 
MACPHERSON, ROBERT 
MALLER. MICHAEL 
MCMILLAN. JR. D. R. : 
MORITA, SHIL~EYUKI 
MULLER, MARIE-PAUL; . 
NEWSTEAD, P. E. . 
PEDERSEN, ERIK KJAER 
PERCELL, PETER B. . 
PRESSLEY, ANDREW . 
RANICKI, ANDREW . 
RASMUSSEN, OLE HJO~TH 
SERGIESCU, V. 
SIEGEL, JERROLD : : : 
STAFFELDT, R. . 
THICKSUN. T. L. . 
THURSTON, W. 
TSUBOI, TAKASHI : : : 
WALL, C. T. C. 

....... 411 

....... 321 
. . 291,301 

. 23 

. I35 
....... 395 
....... 313 
....... 43 
....... I99 
....... 419 
....... 239 
....... 387 
....... 65 
....... 239 
....... 335 
....... 179 
....... 209 
....... 367 
....... 313 
....... 221 
....... 43 
....... 89 

. 
111 


