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THE HOMOTOPY THEORY OF CYCLIC SETS'

BY

W. G. DWYER, M. J. HOPKINS AND D. M. KAN

Abstract. The aim of this note is to show that the homotopy theory of the cyclic

sets of Connes [3] is equivalent to that of SO(2)spaces (i.e. spaces with a circle

action) and hence to that of spaces over K( Z, 2).

1. Introduction.

1.1 Summary. The aim of this note is to study the homotopy theory of the cyclic

sets of Connes [3], These are simplicial sets with some additional structure, or more

precisely, diagrams of sets indexed by a category Aop of cyclic operators which

contains the category Aop of simplicial operators as a subcategory.

After a few preliminaries (§2), we construct a Quillen closed model category

structure on the category of cyclic sets (§3) and show that the resulting homotopy

theory is equivalent to (§4) that of SO(2)-spaces (i.e. spaces with a circle action) as

well as to (§5) that of simplicial sets over the nerve of Aop, which has the homotopy

type of K(Z, 2).

The first and the last of these results hold more generally, as their proofs depend

only on certain properties (2.2 and 2.6) of the inclusion functor/: Aop -» Aop. Some

additional exampls are (§6) a kind of covering Kop of Aop and, for every simplicial

group G, its flattening bG. (The homotopy theory of bG-sets (i.e. functors bG -* sets)

is equivalent to the homotopy theory of simplicial sets over the classifying complex

of G.)

1.2 Notation, terminology, etc. (i) The category Aop of simplicial operators. This is

the category with objects 0, 1, 2,... and generating maps

dj. n -» n - 1,       0 < j < aj, aj > 0,

Sji n -* n + 1,        0 «s i =5 ai,

subject to the relations

djdj = dj_xdj, 0 <j - i,

sjSj = SjSJ_x, 0<j-i,

(*) djSj = Sj_xdt: n -» n,       0 </-!<«,

= id, -1 < j - i < 0,

= Sjdj_x, j - i < -1.
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282 W. G. DWYER, M. J HOPKINS AND D. M. KAN

(ii) The category Aop of cyclic operators. This is the category with objects 0, 1, 2,...

and generating maps

d,: n -» n - 1,        0 «j i < ai, aj > 0,

Sj-. n -» n + 1, 0 </'<« + 1,

subject to the above relations (*) as well as the cyclic relations

(d0s„ + i)" + 1 = id:n-*n,       ai > 0.

Note that, except for these cyclic relations, there is aio relation involving the first face

operator and last degeneracy operator, i.e. d0sn + x # snd0: n -» n.

(iii) The categories S of simplicial sets (i.e. Aop-sets) and Sc of cyclic sets (i.e.

Aop-sets). These are the categories which have as objects the functions Aop -» sets

and Aop —> sets, respectively, and as maps the natural transformations between

them. A cyclic set X is thus a simplicial set together with an extra degeneracy map

sn+v Xn -» Xn + X in each dimension ai > 0, with the cyclic property that (d0sn+x)" + 1

= id: Xn -* Xn. However, in general, d0s„ + x * s„d0- Xn -* X„.

The categories S and Sc are connected by the rather useful forgetful functor j*:

S' —> S, induced by the inclusion functor j: Aop -» Aop.

(iv) The category Tc of SO(2)-spaces and the forgetful functor u: Tc -» T. We denote

by T the category of topological spaces, by T' the category of SO(2)-spaces, i.e.

topological spaces with a continuous SO(2)-action, and by u: Tc -» T the functor

which sends each SO(2)-space to its underlying topological space.

2. The standard cyclic sets A[ai]. This is a brief discussion of the standard cyclic

sets A[ai] (the cyclic analogs of the standard simplicial sets A[aj]), much of which is

explicit or implicit in [8].

2.1 The standard cyclic sets in A[aj]. For every integer ai > 0, the standard cyclic set

A[ai] is given by

A[n] = homA°P(n, -): Aop -> sets.

It has the universal property that, for every cyclic set X and every Ai-simplex x e X,

there is a unique map (1.2(iii)) cx:  A[ai] -*IeSc such that cxi„ = x (where

in e A[ai] denotes the generating Ai-simplex, i.e. the identity map of n). This gives

rise to a natural isomorphism

homs'(A[Ai], X) « homs(A[Ai], j*X) * X„.

The A[ai] and the maps between them form a A-diagram of cyclic sets, i.e. a

functor A[-]: A -» Sc, with the following property:

2.2 Proposition. In the induced (1.2(iii)) diagram of simplicial sets j* A[-]: A -* S,

all maps are weak (homotopy) equivalences.

2.3 The cyclic sets A[n, k]. As in the simplicial theory [2, Chapter VIII, 3.3] we

need the cyclic subsets A[ai,ac]cA[aj] (0 < ac < ai) which are spanned by the

(aj — l)-simplices dtin (0 ^ i ^ n, i ^ k), which clearly give rise to natural isomor-

phisms

homs'(A[Ai, ac], X) = homs(A[Ai, k], j*X),       0 < k < aj.
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THE HOMOTOPY THEORY OF CYCLIC SETS 283

Moreover, it is not difficult to prove (using 2.2)

2.4 Proposition. The inclusions A[ai, ac] -> A[ai] g Sc, (0 < ac < ai) induce weak

equivalences j*A[ai, k] ->j*A[n] G S.

2.5 The cyclic sets A[n]. Also useful are the cyclic subsets A[aj] c A[ai] (ai > 0)

spanned by the (ai - l)-simplices dtin (0 < i < ai). They give rise to natural isomor-

phisms

homs'(A[Ai], X) m homs(A[Ai], j*X),       ai > 0.

Moreover, each A[ai] is closely related to the direct limit 3A[ai] of the diagram in S'

which consists of

(i) for every integer / with 0 < ; < n, a copy A[ai], of A[ai — 1], and

(ii) for every pair of integers (i, /) with 0 < i <j < n, a copy A[ai], y of A[ai - 2]

together with a pair of maps

A[n]ie''Z"1A[n]l,j"5lA[„]J

and which has the following nontrivial property:

2.6 Proposition. For each integer n > 0, the obvious map 3A[ai] -» A[ai] g Sc is

an isomorphism.

Propositions 2.2 and 2.6 follow readily from

2.7 Proposition. Let SO(2) X |A[-1]|: A -» Tc (1.2(iv)) denote the obvious functor

which sends n (ai > 0) to the product of SO(2) and the geometric realization of A[n],

with SO(2) acting on the left on itself and trivially on\A[n}\. Then there exists a functor

M: A -» Tc such that the following diagram commutes up to natural equivalences:

SO(2)x|A[-]|
A-* Te

A->T
iy*A[-n

In particular, |/*A[aj]| is homeomorphic to SO(2) X |A[ai]| (ai > 0).

As, for X G Sc, the geometric realization 1/*^! can be expressed as a quotient of

the disjoint union LI^^ X |/*A[ai]| by the obvious identifications, Proposition 2.7

readily implies

2.8 Proposition. There is a functor U: Sc -* Tc such that the following diagram

commutes up to a natural equivalence:

T<.
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284 W. G. DWYER, M. J. HOPKINS AND D. M. KAN

It thus remains to give a

2.9 Proof of Proposition 2.7. Consider the "twisted" product A[l] X,A[ai] g S

which has as Ac-simplices (k ^ 0) the (k + l)-tuples of pairs of integers

((0,ix),...,(0,ia),(l,jx),...,(l,Jh))

such that 0 </i < • • ■ </6 < ix < • • • < ia < ai and a, b > 0, with the obvious

faces and degeneracies. Then there is a homeomorphism between the geometric

realizations

|A[1]X,A[«]|«|A[1]XA[»]|

which is natural in aj. As/*A[ai] is exactly the simplicial set obtained from A[l] X,

A[aj] by identifying the simplices

((0,ix),...,(0,ij)    and    ((1,j1),...,(1,jJ)

for every sequence of integers (ix,...,ia) with 0 < i, < ••• < ia < n, the above

homeomorphism induces a homeomorphism |/*A[ai]| ~ SO(2) X |A[«]| and the de-

sired result now follows readily.

3. A homotopy theory for cyclic sets. In Theorem 3.1 below we turn the category

Sc of cyclic sets (see subsection 1.2) into a closed model category in the sense of

Quillen, i.e. [2, p. 241] we define notions of weak equivalence, fibration and

cofibration such that the following five axioms are satisfied:

CM1. The category is closed under finite and direct and inverse limits.

CM2. If f and g are maps such that gf is defined and if two of f, g and gf are weak

equivalences, then so is the third.

CM3. If f is a retract of g (i.e. if there are, in the category of maps, maps a: f -* g

and b: g —> f such that ba = id^) and g is a weak equivalence, a fibration or a

cofibration, then so is f.

CM4. Given a commutative solid arrow diagram

U      ->      X
i i    y     i p

v     ->     Y

in which i is a cofibration, p is a fibration, and either p or i is a weak equivalence, then

the dotted arrow exists (and one says that i has the left lifting property with respect to

p, or equivalently, thatp has the right lifting property with respect to i).

CMS. Any map f can be factored in two ways:

(i) f = pi, where i is a cofibration and p is a trivial fibration (i.e. a fibration as well

as a weak equivalence), and

(ii) / = pi, where p is a fibration and i is a trivial cofibration (i.e. a cofibration as

well as a weak equivalence).

3.1 Theorem. The category S' of cyclic sets admits a closed model category structure

in which a map X -» FeS'isa weak equivalence or a fibration whenever the induced

(1.2) map j*X —»j*Y G S is so, and in which the cofibrations are (see also 3.4) the

retracts of the (possibly transfinite) compositions of cobase extensions of the inclusions

A[ai]-> A[ai](ai ^ 0).
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To prove this we first note that 2.3 and 2.5 imply

3.2 Proposition. A map in S' is a fibration iff it has the right lifting property with

respect to the inclusions A[n, k] -* A[ai](0 < ac ̂  ai).

3.3 Proposition. A map in S' is a trivial fibration iff it has the right lifting property

with respect to the inclusions A[n] -» A[ai](ai > 0).

Proof of Theorem 3.1. Verification of CM1, CM2, CM3 and the first part of

CM4 is easy. To prove CM5 one combines the small object argument of [9, Chapter

II, §3] with 3.3 or 2.4 and 3.2. This proof of CM5 implies that a trivial cofibration

U -* V admits a factorization U -» V -» V in which (by construction) the map

U -* V is a trivial cofibration which has the left lifting property with respect to the

fibrations and V -» Kis a (necessarily trivial) fibration. The remaining part of CM4

now follows from the fact that the map U -» V is (easily seen to be) a retract of the

map U -» V.

We end with some alternate descriptions of the cofibrations and the weak

equivalences.

3.4 Cofibrations in S'. Call a map X -* feS'' free if it is 1-1 and if, for every

integer ai > 0, the group of automorphisms of n (which is cyclic of order ai + 1) acts

freely on the «-simplices of Y which are not in the image of X. Clearly the inclusions

A[aj, k] -» A[aj] and A[n] -* A[ai] are free and so are their cobase extensions. In fact

one readily verifies

3.5 Proposition. The free maps in S' are exactly the (possibly transfinite)

compositions of cobase extensions of the inclusions A[ai]—>A[ai](ai>0). Hence a map

in S' is a cofibration iff it is a free map.

3.6 Weak equivalences in S'. Given a cyclic set X, i.e. a functor X: Aop -» sets, one

can compose it with the inclusion functor i: sets -» S and take the homotopy direct

limit [2, Chapter XIII] holimA°P iX G S. Then one has

3.7 Proposition A map X -> feS'i'sa weak equivalence iff the induced map

holimA°P iX -> holimA°P ifeS is so.

Proof. Let X be the category which has as objects the simplices of X and as maps

the cyclic operators between them. Then the nerve AX is clearly naturally isomor-

phic to holimA°P iX. Similarly, if /*X c X is the subcategory consisting of the

simplicial operators (the objects remain the same), then the nerve Nj*X is naturally

isomorphic to holimA" ij*\. Moreover, by [2, Chapter XII, 4.3] the latter simplicial

set is naturally weakly equivalent to j*X. The under categories of the inclusion

functor/*X -* X are readily verified to be isomorphic to the under categories nj, /

of the inclusion functor/: Aop -» Aop and, by the above arguments, the nerves of the

latter are naturally isomorphic to holimAP j/*A[ai] and hence naturally weakly

equivalent to /*A[ai]. The desired result now follows immediately from 2.2 and

Quillen's theorem B [10, p. 97].
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



286 W. G. DWYER, M. J. HOPKINS AND D. M  KAN

4. Comparison with SO(2)-spaces. In order to show that the homotopy theory of

cyclic sets of §3 is equivalent, in the strong sense of [5, §5], to the homotopy theory

of SO(2)-spaces (resulting from its usual model category structure (see Theorem

4.1)), we verify in Theorem 4.2 the existence of a pair of adjoint functors

Lc: (cyclic sets) <-> (SO(2)-spaces): Rc

satisfying the equivalence conditions of Quillen [9, Chapter I, Theorem 3]:

EQ1. The left adjoint Lc sends cofibrations into cofibrations and weak equivalences

between cofibrant objects into weak equivalences.

EQ2. The right adjoint Rc sends fibrations into fibrations and weak equivalences

between the fibrant objects into weak equivalences.

EQ3. For every cofibrant cyclic set X and every fibrant SO(2)-space Y, a map

X —> RCY is a weak equivalence iff its adjoint LCX —> Y is so.

First we recall from [6,1.2 and 2.2]

4.1 Theorem. The category Tc of SO(2)-spaces (see subsection 1.2) admits a closed

model category structure in which a map X -» feT1' is a weak equivalence or a

fibration whenever the underlying map of topological spaces uX -> uY G T is a weak

homotopy equivalence or a Serre fibration, and in which the cofibrations are the retracts

of the (possibly transfinite) compositions of cobase extensions of the inclusions SO(2) X

|A[ai]|-SO(2)X|A[aj]|(ai>0).

In view of Proposition 2.8 one can then formulate

4.2 Theorem. The functor U: S' -» T' has as right adjoint the functor R' =

hom(Z/A[-], -): T' -> S'. Moreover, this pair of adjoint functors satisfies the (above)

equivalence conditions of Quillen.

A3 Corollary. The categories S' and Tc have equivalent homotopy theories in the

strong sense that [5] their simplicial localizations with respect to the weak equivalences

are weakly equivalent in the sense of [5, §2].

Proof. One verifies successively and without much difficulty the following

properties:

(i) the adjointness;

(ii) L' preserves weak equivalences;

(iii) for every object Y g Tc, the simplicial set j*RcY is just the singular complex

of the underlying topological space uY;

(iv) Rc preserves weak equivalences and fibrations;

(v) U preserves cofibrations (use (iv) and adjointness);

(vi) for every object Y g Tc, the underlying map uLcRcY -> uY of the adjunction

map is the usual adjunction map from the geometric realization of the singular

complex of uY back to uY;

(vii) EQ3 is satisfied.

5. Comparison with simplicial sets over K(Z,2). As the homotopy theory of

SO(2)-spaces is (well known to be [4]) equivalent to that of simplicial sets over

K(Z, 2), Theorem 4.2 implies that the same holds for the homotopy theory of cyclic
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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sets of §3. We will now give a direct proof of this result (Theorem 5.1) which only

uses the fact that the functor/: Aop -» Aop has the properties described in Proposi-

tions 2.2 and 2.6.

To formulate Theorem 5.1, let A/Aop be the nerve of Aop (which [3] is weakly

equivalent to K( Z, 2)), let the category S/A/Aop of simplicial sets over A/Aop have the

closed model category structure induced by the usual one on S [9, Chapter II], let * :

Aop -> sets g S' be the terminal object and let LA°P: S' -> S/A/Aop be the functor

which sends an object X g Sc to the map (see 3.6)

holim A°P iX -* holim A°P i* = A/Aop.

Then one has

5.1 Theorem. The functor LA"P: S' -» S/A/Aop has as right adjoint the functor

RA"P = hom(LA°PA[-], -): S/AAop -» Sr.

Moreover, this pair of adjoint functors satisfies the (see §4) equivalence conditions of

Quillen.

5.2 Corollary. The categories S and S/A/Aop have equivalent homotopy theories in

the strong sense that [5] their simplicial localizations with respect to the weak equiva-

lences are weakly equivalent in the sense of [5, §2].

Proof. The adjointness is obvious and Proposition 3.7 implies that a map

X -» yeS'isa weak equivalence iff the induced map LA°PX -» LA"PY g S/A/Aop is

so. Moreover, LA°P preserves cofibrations and hence it follows from the adjointness

that RA"P preserves fibrations and trivial fibrations. By [1, 1.2 and 1.3], this implies

EQ2. Finally, to prove EQ3, it suffices to show that, for every fibrant object

7 G S/AAop, the adjunction map LAOpRA°PY -h> Y g S/AAop is a weak equivalence.

To do this let Y' = (Nj)*Y G S/AAop be the pull back over Nj: AAop -» AAop and

let

LA°P: S ~ S/AAop: RA°P

be the pair of adjoint functors analogous to LA°P and RA'P. Then it is not difficult to

verify that the adjunction map LA°PRAOPY' -> Y' G S/A/Aop is a weak equivalence

and that this map admits an obvious factorization LA"PRA"PY' -> LA"Pj*RA"PY -» Y'.

Using the argument of Proposition 3.7 and the fact that Y g S/AAop is fibrant, one

now proves that the adjunction map LAOPRA"PY ->fe S/AAop is a weak equiva-

lence iff the map LAopj*RA°PY -> Y' g S/AAop is so. It thus remains to prove that

the map LA°PRA°PY' -> LAopj*RA°PY G S/AAop is a weak equivalence and to do this

one observes [4, §5] that the obvious maps holim4"" iA[n] -> holimA°P jA[ai] g S

(aj > 0) are weak equivalences and that the A-diagram LA°PA[-]° /op: A -* S/AAop

is a cosimplicial resolution [5, 4.3]. To prove this last statement one notes that

Proposition 2.6 implies that the A-diagram A[-]°/op: A -* Sc is a cosimplicial

resolution and that the functor LA°P satisfies EQ1 and commutes with the direct

limits in question.

5.3 Remark. The last step in the above proof is the only place where we used

Proposition 2.6.
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6. A generalization to other categories under Aop. As mentioned in 1.1, Theorems

3.1 and 5.1 hold more generally, as their proofs only use the fact that the functor/:

Aop -» Aop has the properties described in Propositions 2.2 and 2.6. In order to

formulate these generalizations, we start with a brief discussion of

6.1 Categories under Aop. Let 2 be a small category and let /: Aop -» 2op be a

functor. For every integer aj > 0, one can then define the standard 2op-set 2[ai] by

2[ai] = hom2"P(/n,-): 2op -> sets.

Clearly, these 2op-sets give rise to a 2-diagram 2[-]: 2 -> 2op-sets of 20p-sets as

well as an induced 2-diagram /*2[-]: 2 -» S of simplicial sets. One can also

consider the 2op-subset 2[ai] c 2[aj] spanned by the "faces" of the generating

element, i.e. the identity map of yn, and the 2op-set 32[ai], defined by means of a

direct limit as in 2.5.

We will assume that the functor/: Aop -» 2op satisfies one or both of the following

conditions:

(i) In the diagram of simplicial sets/*2[-]: 2 —> S, all maps are weak equivalences.

(ii) For every integer n > 0, the obvious map 32[ai] —> 2[«] g 2op-sets is an

isomorphism.

The arguments of the proof of Theorem 3.1 then yield

6.2 Theorem. Let 2 be a small category and let: Aop -» 2op be a functor satisfying

6.1( i). 77ieAi the category 2op-sets (of functors 2op -» sets and natural transformations

between them) admits a closed model category structure in which a map I-> fe 2op-

sets is a weak equivalence or a fibration whenever the induced map j*X ->/*T g S is

so and in which the cofibrations are the retracts of the (possibly transfinite) composi-

tions of cobase extensions of the inclusions 2[ai] -» 2[aj] (ai > 0).

Similarly, if the category S/A2op of simplicial sets over A/2op has the closed

model category structure induced by the usual one on S [9, Chapter II], if

* g 2op-sets is the terminal object and if L2°"-sets -» S/A2op denotes the functor

which sends an object X g 2op-sets to the map (see 3.6)

holim 2"P iX -> holim 2°P i * = A2op,

then the arguments of the proof of Theorem 5.1 yield

6.3 Theorem. Let 2 be a small category with connected nerve and let j: Aop -» 2op

be a functor satisfying 6.1(i) and (ii). TTieAi the functor L2°P has as right adjoint the

functor

R^ = hom(Lz°P2[-], -): S/A2°p -* 2op-sets

and this pair of adjoint functors satisfies the (see §4) equivalence conditions of Quillen.

6.4 Corollary. The categories 2op-sets and S/A/2op have equivalent homotopy

theories in the strong sense that [5] their simplicial localizations with respect to the weak

equivalences are weakly equivalent in the sense of [5, §2].
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



the homotopy theory of CYCLIC SETS 289

6.5 Example. If in the definition of Aop (see 1.2(h)) one omits the cyclic relations

id0sn+x)" + 1 = id: n -> n (ai > 0), one gets a category Kop which is a kind of

covering of Aop. There is an obvious functor/: Aop -» Kop which satisfies 6.1(i) and

(ii). Moreover, the nerve A/Kop is contractible and the homotopy theory of K^-sets

thus is equivalent to the usual homotopy theory of simplicial sets.

6.6 Example. Given a simplicial group G, one can form its flattening bG, i.e. [7,

§7] the category which has as objects the n (ai > 0) and as maps k -> n the pairs

(e, g), where e is a map e: k -» n g Aop and g is an Ai-simplex of G. There is an

obvious functor /: Aop -» bG given by je = (e, 1) for all e g Aop. Moreover, one

readily verifies that this functor satisfies 6.1(i) and (ii) and that AbG is weakly

equivalent to the classifying complex of G. Hence, the resulting homotopy theory of

bG-sets is equivalent to the homotopy theory of simplicial sets over the classifying

complex of G. This is, however, not surprising as hG-sets axe essentially the same as

simplicial sets with a G-action.

We end with observing that in all three cases (i.e. Aop, Kop and bG) the functor j

was onto on objects. Actually this is not surprising in view of

6.7 Proposition. Let J, be a small category with connected nerve and let j:

AoP _> 2oP be a functor satisfying 6.1(f) and (ii). // 2gp c 2op denotes the full

subcategory spanned by the image of j, then the resulting functor j0: Aop -» 2qp also

satisfies 6.1(i) and (ii) and the inclusion 2qp -» 2op induces an equivalence between the

homotopy theory ofS,°p-sets and that ofH.'tf'-sets.

Proof. This follows immediately from Theorem 6.3 and Quillen's Theorem B [10,

p. 97].
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