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Abstract. In this paper we show that model categories of a very broad class
can be replaced up to Quillen equivalence by simplicial model categories.

1. Introduction

1.1. Summary.
Model categories were introduced by Quillen [Q] as a very general setting in which
one can ‘do homotopy theory’. Among them is a distinguished class called the
simplicial model categories, which are essentially characterized by the following
property: certain formulae which in an arbitrary model category hold only up
to homotopy, in simplicial model categories actually hold on the nose. Actually,
such formulae can be made to hold on the nose in an arbitrary model category,
but only at the expense of carefully making choices; what’s useful about simplicial
model categories is that they come with a canonical set of choices already made.
This turns out to be quite a convenience, and simplicial model categories are much
easier to work with than arbitrary ones.

It is certainly not true that all model categories of interest are simplicial, but
many of them happen to be. It is natural to wonder if there is a significant difference
between simplicial and non-simplicial model categories. The obvious question is,
what do we mean by ‘significant’?

Now Quillen also introduced a notion of equivalence between model categories,
which involves having a pair of adjoint functors satisfying certain conditions. Two
model categories which are ‘Quillen equivalent’ represent the same underlying ho-
motopy theory. The purpose of this note is to show that a very large class of
model categories are Quillen equivalent to simplicial ones. In other words, for this
class of model categories there is no significant difference between simplicial and
non-simplicial, at least as far as the underlying homotopy theory is concerned.

More explicitly, if M is a model category then one can look at the category of
simplicial objects sM . This is also a model category in a standard way—it has a
so-called Reedy model structure, which is usually not simplicial. There are also an
obvious pair of adjoint functors

c∗ : M � sM : ev0.

Here c∗ (the left-adjoint) associates to X ∈ M the discrete simplicial object con-
sisting of X in every dimension, and ev0 sends Z∗ ∈ sM to its zeroth object Z0.
Under broad conditions on the model category M , we describe a way of making
sM into a simplicial model category with the property that the above functors are
a Quillen equivalence.

1991 Mathematics Subject Classification: Primary 55U35.

1



2 DANIEL DUGGER

To describe the conditions which we assume on M , it’s necessary to recall the
technique of localization. This is the process by which one adds weak equivalences
to a model category while keeping the cofibrations the same—in recent years it
has become recognized as a fundamental tool in homotopy theory. While it is not
true that all model categories can be localized, at the moment there are known
two large classes which can be—these are the left proper, cellular model categories
of Hirschhorn [H] and the left proper, combinatorial model categories of Smith
[S]. Cellular model categories include topological spaces, diagrams of topological
spaces, simplicial sets, the various model structures on bisimplicial sets, and many
more. Combinatorial model categories include practically any model category of
‘algebraic’ origin, and in particular anything built up in some way from diagrams
of simplicial sets. (There is a large overlap between the two classes).

We’ll use the following acronyms for the two types of model categories which
will appear in the paper:

(LpCe): Left proper, cellular;
(LpCo): Left proper, combinatorial.

A precise definition of these terms is available in section 2.
At this point we have introduced enough terminology to state our main result:

Theorem 1.2. Let M be a model category of type (LpCe) or (LpCo). Then there
exists a simplicial model category structure on sM for which the adjoint functors
c∗ : M � sM : ev0 are a Quillen equivalence.
The model structure is defined by saying that a map is a

• weak equivalence if it is a hocolim-equivalence (defined below);
• cofibration if it is a Reedy cofibration;
• fibration if it has the right-lifting-property with respect to the trivial cofibra-

tions.

We remark that a very similar result has been obtained independently by Rezk,
Schwede, and Shipley [RSS]. Their result applies in particular to model categories
which are cofibrantly-generated and stable (meaning essentially that the suspension
functor is an equivalence on the homotopy category), although they also realized
that their arguments would probably apply to the cellular case. The motivation
behind the stability assumption will be explained in the last section of this paper.

We close the introduction by saying a little about the proof of Theorem 1.2.
The key point is that the Reedy model structure on sM satisfies all the axioms
of a simplicial model category except one. This last axiom is satisfied if one looks
only at maps between simplicial resolutions—these are objects of sM which are
Reedy fibrant and have the property that every face and degneracy map is a weak
equivalence. Our approach is to produce a new model structure on sM in which
the simplicial resolutions become the fibrant objects, which allows us to replace
any object by a simplicial resolution up to weak equivalence. Since the simplicial
structure is well-behaved on simplicial resolutions, this essentially implies that it’s
well-behaved everywhere (and left properness is a key step in concluding this).

The model structure which does all this is produced by localization, and is an
instance of a more general ‘hocolim model structure’ for diagram categories. Let
M be a model category and C be a small indexing category. Given a diagram
X : C→M we may form its homotopy colimit by choosing a framing and applying
the usual Bousfield-Kan formula (see [DHK] or [H]), but this only has homotopy
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meaning when X is a diagram of cofibrant objects. For the purposes of this paper,
we define the corrected homotopy colimit to be the object obtained by first replacing
each object of X with a (functorial) cofibrant-replacement, and then taking the
usual homotopy colimit of the resulting diagram. A map X → Y between diagrams
is a hocolim-equivalence if it induces a weak equivalence between the corrected
homotopy colimits.

When M is cofibrantly-generated—which holds in particular if M is of type
(LpCe) or (LpCo)—then the category of diagrams MC has a Bousfield-Kan model
structure: the weak equivalences (resp. fibrations) are maps of diagrams which are
weak equivalences (resp. fibrations) at each spot. Our second main result is the
following:

Theorem 1.3. Let M be a model category of type (LpCe) or (LpCo), and let C be
a small category whose nerve is contractible. Then there is a model structure on
MC in which

(i) the weak equivalences are the hocolim-equivalences;
(ii) the cofibrations are the Bousfield-Kan cofibrations;

(iii) the fibrations are the maps with the appropriate right-lifting-property.

Moreover, the fibrant objects of MC are the objectwise fibrant diagrams which are
‘homotopically-constant’—i.e., in which every map of the diagram is a weak equiv-
alence.

It might be hoped that this model category will be useful in answering problems
about homotopy colimits other than just the ones encountered in this paper.

1.4. Organization of the paper.
Section 2 is a review of localization theory for model categories. The section also

gives brief definitions of the terms ‘cellular’ and ‘combinatorial’.
Section 3 recalls Quillen’s notion of a simplicial model category. We prove some

basic simplifications of the axioms, whose upshot is that in left proper model cate-
gories the hard parts of Quillen’s axioms can be checked just on the fibrant objects.

Section 4 starts by recalling that sM has a Reedy model category structure, as
well as a ‘categorical’ simplicial action. The purpose of the section is to investigate
how the two relate to each other. We prove that almost all of Quillen’s axioms for
a simplicial model category are satisfied, but not all of them. We also show that
if one looks only at maps between simplicial resolutions, then all the axioms are
satisfied. Most of this material has strong precedents in Hirschhorn [H], although
the results we need are not quite proven there.

In section 5 we produce our ‘hocolim model structure’ on diagram categories, and
in particular prove Theorem 1.3 above. There are versions of this result for both
the Bousfield-Kan and Reedy model category structures on diagrams. Although
the Reedy version is the one which is ultimately shown to be simplicial, we need to
use the Bousfield-Kan version to prove the basic properties of the Reedy one.

Section 6 proves the main theorem, that the Reedy version of the hocolim-
structure is simplicial, and section 7 lists some questions which may be of further
interest.

Finally, an appendix is enclosed in which we prove some basic facts about model
categories needed elsewhere in the paper. The appendix should be regarded as a
supplement to the books [H] and [Ho].
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1.5. Notation and Terminology.
We assume the reader is familiar with the language and basic results of model

categories—the most complete reference for this is Hirschhorn [H], and we try to
follow his conventions closely. Hovey’s book [Ho] also contains a wealth of material,
and is very accessible.

Since the paper by nature is concerned with model categories which may not be
simplicial, it is necessary for us to work with the machinery of framings and function
complexes. Recall that in a model category one has the notion of a cylinder object for
X, which is an object which ‘looks like’ X×∆1. A cosimplicial framing is a massive
generalization of this: it is a way of assigning to each object X a cosimplicial object
which ‘looks like’ [n] 7→ X ×∆n. In the same vein, a simplicial framing assigns to
each object Z a simplicial object which ‘looks like’ [n] 7→ Z∆n

. These can be used
to define the homotopy function complex from X to Z, which is a simplicial set
that acts as the replacement of the mapping space [n] 7→ Hom(X ×∆n, Z). The
reader will find a detailed treatment of all this in [H] and [Ho, Chapter 5], and we
will assume a familiarity with this machinery.

If C is a category and X,Y are objects in C, C(X,Y ) denotes the set of maps
from X to Y in C. If M is a model category and X and Y are objects, M(X,Y )
denotes a homotopy function complex from X to Y .

Various tensor products and exponentials are used throughout the paper, and
there is some potential for confusion here. If X : C → D is a C-diagram in D and
K : Cop → Set is a Cop-diagram of sets, we use X ⊗C K to denote the resulting
coend (cf. [McL]). Likewise, if L : C→ Set then homC(L,X) denotes the resulting
end.

On the other hand, if T is a category with a simplicial action (see section 2 for a
definition) and X ∈ T , K ∈ sSet, then X ⊗K and XK denote the tensor and hom
functors associated to the action. It should always be clear from context whether
we are talking about coends or simplicial actions.

1.6. Acknowledgements. It was Stefan Schwede who had the idea that some-
thing like all this might work, and I would like to thank him for sharing his ideas.
I also benefitted from conversations with Phil Hirschhorn and Dan Kan.

2. Localization of Model Categories

This section contains background material on localization, together with brief
definitions of cellular and combinatorial model categories. Many readers will want
to skip ahead, and only refer back to this section as needed.

Let M be a model category and let S be a set of maps in M . The process
of localizing M at S involves producing a new model category structure on M by
adding the elements of S to the class of weak equivalences. Because of the model
category axioms, this may force one into regarding other maps as weak equivalences
as well (for instance, retracts of elements of S). Bousfield was the first to develop
a systematic approach to this problem, which we recall next.

Definition 2.1.

(a) An S-local object of M is a fibrant object X such that for every map A → B
in S, the induced map of homotopy function complexes M(B,X) → M(A,X)
is a weak equivalence of simplicial sets.
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(b) An S-local equivalence is a map A → B with the property that M(B,X) →
M(A,X) is a weak equivalence for every S-local object X.

In words, the S-local objects are the ones which see every map in S as if it were a
weak equivalence. The S-local equivalences are those maps which are seen as weak
equivalences by every S-local object. The idea is that the S-local equivalences are
the maps which are forced into being weak equivalences as soon as we expand our
notion of weak equivalence to include the maps in S.

Definition 2.2. An S-localization of M is a model category LSM with the prop-
erties that

(a) The underlying category of LSM is M ;
(b) The cofibrations in LSM are the same as those in M ;
(c) The weak equivalences in LSM are the S-local equivalences.

Hirschhorn [H] refers to these as ‘left Bousfield localizations’ of M , but we will
just call them localizations (or S-localizations). An S-localization need not always
exist. If it does exist, it is clearly unique. The fibrant objects in LSM will be
precisely the S-local objects, but the fibrations may be somewhat mysterious.

There are two main classes of model categories where S-localizations are always
known to exist (for any set of maps S). These are the left proper, cellular model
categories of Hirschhorn [H], and the left proper, combinatorial model categories of
Smith [S]. The next item on the agenda is to recall the definitions of these classes.

Definition 2.3. A model category M is left proper if the pushout of a weak equiv-
alence along a cofibration is again a weak equivalence. That is, if A→ B is a weak
equivalence and A→ C is a cofibration, then in the pushout square

A // //

∼
��

C

α

��
B // B qA C

one has that the map α is also a weak equivalence.

Definition 2.4. A model category is called combinatorial if it is cofibrantly-
generated and if the underlying category is locally presentable.

The defintion of locally presentable will not be recalled here. It is a technical,
category-theoretic condition which ensures that every object is small (with respect
to some cardinal), and so the small object argument can be made for any set of
maps. The reader may consult [B] for a precise definition.

Definition 2.5. A model category M is called cellular if it is cofibrantly-generated
and has a set I of generating cofibrations and a set J of generating trivial cofibra-
tions such that

(a) The domains and codomains of the maps in I are compact relative to I;
(b) The domains of the elements of J are small relative to I;
(c) Every cofibration in M is an effective monomorphism.

This definition is quite technical, and we will not make matters worse by recalling
the precise meanings of ‘compact’ and ‘effective monomorphism’. The reader is free
to look these up in [H]. Again, the point of the definition is to guarantee that the
small object argument can be applied to any collection of cofibrations.
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We’ll use the following acronyms for the two types of model categories considered
in this paper:

(LpCe): Left proper, cellular;
(LpCo): Left proper, combinatorial.

The only things the reader will need to know about these classes are that

1. A model category in the class may be localized at any set of maps, and the
resulting model category is again in the class;

2. If M is in the class and C is an indexing category, then the Bousfield-Kan
model structure on the diagram category MC also belongs to the class;

3. If M is in the class and C is a Reedy category, then the Reedy model structure
on MC is also in the class.

(The Bousfield-Kan and Reedy model structures on diagram categories are recalled
in section 5, and are treated in detail both in [H] and [Ho]). These basic properties
are consequences of the work of Hirschhorn [H] and Smith [S].

3. Simplicial Model Categories

This section consists mainly of preliminaries. We recall Quillen’s notion of a
simplicial model category, and prove some basic results which simplify what is
needed to verify the axioms. The most important point is that for left proper
model categories, Quillen’s axiom SM7 can be verified essentially by showing that
the simplicial structure behaves well on fibrant objects.

Recall that a simplicial action on a category C consists of three functors

Map(X,Y ) ∈ sSet for X,Y ∈ C
X ⊗K ∈ C for X ∈ C and K ∈ sSet

XK ∈ C for X ∈ C and K ∈ sSet
such that certain familiar axioms hold. (This is also called a Cartesian closed
simplicial action in some circles).

A model category M with a simplicial action is called a simplicial model category
if the axiom below is satisfied:

(SM7) If f : A� B is a cofibration in M and j : K � L is a cofibration in sSet,
then the natural map

f ⊗ j : (A⊗ L)
∐
A⊗K

(B ⊗K) −→ B ⊗ L

has the following properties:

(i) It is a cofibration;
(ii) If f : A� B is a trivial cofibration, so is f ⊗ j;
(iii) If j : K � L is a trivial cofibration, so is f ⊗ j.

These statements are equivalent to the following dual versions. It will be neces-
sary for us to go back and forth between these equivalent formulations, and we’ll
be very cavalier about doing this.

(SM7, Dual Version) If p : X � Y is a fibration in M and j : K � L is a cofibration
in sSet, then the natural map

hom(j, p) : XL → XK ×YK Y L
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has the following properties:

(i) If p is trivial fibration, then so is hom(j, p);
(ii) hom(j, p) is a fibration;
(iii) If j : K � L is a trivial cofibration, then hom(j, p) is a trivial fibration.

Remark 3.1. It is useful to know that once SM7(i) has been checked, (ii) reduces

to verifying that if f : A
∼� B is a trivial cofibration and J ∈ sSet, then A ⊗ J →

B ⊗ J is a weak equivalence. This follows from looking at the diagram

A⊗K
f⊗K //

��

B ⊗K
��

��

A⊗ L
g //

f⊗L
11

A⊗ L
∐
A⊗K B ⊗K

f⊗j **
B ⊗ L.

If f ⊗K is a trivial cofibration, its pushout g is a trivial cofibration. But then if
f ⊗ L is also known to be a trivial cofibration, f ⊗ j must be a weak equivalence
by the two-out-of-three property.

When SM7 is difficult to verify, it is because the objects A ⊗K and XK may
not behave well unless A is cofibrant and X is fibrant. SM7 only talks about maps
behaving well under these operations, and this can be troublesome to check when
one has no control over the domains and targets. The following proposition says
that in certain circumstances (notably left properness) one may verify parts of SM7
by only checking how the simplicial action behaves on fibrant objects.

Proposition 3.2. Let M be a model category with a simplicial action.

(a) If SM7(i) holds, then SM7(ii) is equivalent to requiring that for every simplicial
set K the functors (−)K preserve fibrations between fibrant objects;

(b) If SM7(i) and (ii) both hold, and if in addition M is left proper, then (iii)
may be reduced to the condition that if Z ∈ M is fibrant and K � L a trivial
cofibration in sSet, then ZL → ZK is a weak equivalence.

Proof. The simplicial action gives adjoint functors

(−)⊗K : M �M : (−)K .

If SM7(i) holds, then the right adjoint preserves trivial fibrations. On the other
hand, Remark 3.1 says that verifying SM7(ii) reduces to showing that the right
adjoint preserves fibrations. This in turn is equivalent to the condition that (−)K

preserves fibrations between fibrant objects, by Corollary A.2 from the appendix.
This proves (a).

For (b), let p : X → Y be a fibration in M and j : K → L a trivial cofibration
in sSet. We need to check that XL → XK ×YK Y L is a trivial fibration, and by
a theorem of Kan about left proper model categories, it suffices to check the right-
lifting-property with respect to cofibrations f : A → B between cofibrant objects.
By using adjointness, this is equivalent to checking that the maps f ⊗ j are all
trivial cofibrations.
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To check that f ⊗ j is a weak equivalence, we will look at its image under the
functor M(−, Z∗) where Z∗ is Reedy fibrant. The induced map is

M(B ⊗ L,Z∗) // M((A⊗ L)qA⊗K (B ⊗K), Z∗)

∼=
��

M(A,ZL∗ )×M(A,ZK∗ ) M(B,ZK∗ ).

(Here ZL∗ denotes the simplicial object i 7→ (Zi)
L). Now let α denote ZL∗ → ZK∗

and consider the diagram

M(B,ZL∗ )
γ

++

hom(B,α)

))

,,

M(A,ZL∗ )×M(A,ZK∗ ) M(B,ZK∗ ) //

��

M(B,ZK∗ )

��
M(A,ZL∗ )

hom(A,α)
// M(A,ZK∗ ).

Our hypotheses guarantee that α is a Reedy trivial fibration in sM . Since A and
B are cofibrant, the maps hom(A,α) and hom(B,α) are therefore trivial fibrations.
The map β is a publlback of hom(A,α), so it too is a trivial fibration. Then the
two-out-of-three property gives that the map labelled γ is a weak equivalence.

So we have shown that every Reedy fibrant Z∗ ∈ sM gives a weak equivalence
M(B ⊗ L,Z∗) → M((A ⊗ L) qA⊗K (B ⊗K), Z∗). By Proposition A.1, it follows
that (A ⊗ L) qA⊗K (B ⊗ K) → B ⊗ L is a weak equivalence. This is what was
wanted.

4. Simplicial Structures and Reedy Model Categories

Here we recall that if M is a category with limits and colimits, then sM has a
‘categorical’ simplicial action which is very much like the natural simplicial action
on sSet. When M is a model category, sM also has a ‘Reedy model category
structure’—but this turns out not to be compatible with the simplicial action. In
other words, sM does not become a simplicial model category in this way. This
failure, however, is not as bad as it could be: we verify that two-thirds of SM7 are
actually satisfied. In the later sections of this paper, the game will be to modify
the Reedy model structure so that it actually becomes simplicial. This is possible
because of a surprising property of the Reedy model category: the final third of
SM7 is satisfied if one only looks at maps between simplicial resolutions.

4.1. Categorical simplicial structures.
If T is a category which is both complete and co-complete, then the category sT

admits a certain ‘categorical’ simplicial action. This was studied by Quillen in [Q,
Chapter 2], however he only wrote down a simple formula for the tensor product.
It is crucial for our purposes to have a manageable formula for the exponential as
well; luckily, this is not hard.

First some general notation:

(i) For a set S and an object X ∈ T , let X · S denote
∐
S X. That is, X · S is a

coproduct of copies of X, one for each element of S.
(ii) Likewise, X ·S denotes

∏
S X (note the dot in the superscript).
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(iii) Given a small category C and functors X : C→ T , K : Cop → Set, let X⊗CK
denote the resulting coend:

X ⊗C K := coeq

( ∐
c→d∈C

Xc ·Kd−→−→
∐
c∈C

Xc ·Kc
)
.

(iv) Given X : C→ T and K : C→ Set, let homC(K,X) denote the resulting end:

homC(K,X) := eq

(∏
c∈C

Xc·Kc−→−→
∏

c→d∈C
Xd·Kc

)
.

These constructions allow us to describe the simplicial action on sT : for X ∈ sT
and K ∈ sSet,

(i) X ⊗K is the simplicial object with Xn ·Kn in degree n, and the obvious face
and degeneracy maps;

(ii) XK is the simplicial object which in degree n is hom∆op

(K × ∆n,X), with
the face and degeneracy maps induced by the cofaces and codegeneracies of
∆∗;

(iii) Map(X,Y ) is the simplicial set whose n-simplices are sT (X ⊗∆n, Y ).

The verification that these definitions do indeed equip sT with a simplicial action
will be left to the reader. We do, however, wish to isolate the following simple lemma
which will be needed later:

Lemma 4.2.

(a) For X ∈ sT , hom∆op

(∆n,X) ∼= Xn.

(b) For X ∈ sT and K,L ∈ sSet, hom∆op

(L,XK) ∼= hom∆op

(K × L,X).

Proof. The proof of (a) is a direct computation. To prove (b), first note that the

functors X(−) and hom∆op

(−,X) both transform colimits to limits—this follows
from adjointness considerations. Since any simplicial set is a colimit of ∆n’s, we
reduce at once to the case K = ∆n and L = ∆m. But this case follows directly
from the definitions, together with part (a).

4.3. The Reedy model structure on sM .
Let M be a model category. We briefly recall the Reedy model structure on the
category of simplicial objects sM . This is described in more detail in [Ho, Theorem
5.2.5] and in [H].

If X ∈ sM , the nth matching object of X is the object MnX defined by

MnX := hom∆op

(∂∆n,X).

(In what follows, we will tend to drop the ∆op from the superscript). Note that the
inclusion ∂∆n → ∆n gives a canonical map Xn = hom(∆n,X)→ hom(∂∆n,X) =
MnX. If f : X → Y is a map between simplicial objects, one defines the nth
matching map of f to be the map

Xn −→MnX ×MnY Yn.

We recall that sM has a Reedy model category structure characterized by the fol-
lowing properties:

(i) A map X → Y is a weak equivalence if each Xn → Yn is a weak equivalence
in M .
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(ii) A map X → Y is a fibration (resp. trivial fibration) if each matching map
Xn →MnX ×MnY Yn is a fibration (resp. trivial fibration) in M .

With only a little more effort, it is possible to also give a concise description of the
Reedy cofibrations—we will not need this, however.

The following proposition and remark explain how close the Reedy model struc-
ture on sM comes to being simplicial.

Proposition 4.4. Let M be a model category. The Reedy model structure on sM
with the categorical simplicial action satisfies parts (i) and (ii) of SM7.

Proof. In this instance it’s easier to prove SM7 in its dual version.
To check that α is a fibration or trivial fibration, we must check the same for

the various matching maps of α. Given a map of simplicial objects Z → W , the
matching map in dimension n is

hom(∆n, Z) −→ hom(∂∆n, Z)×hom(∂∆n,Y ) hom(∆n, Y ).

By using Lemma 4.2 and some mucking around, the matching map of α may be
identified with

hom(L⊗∆n,X) −→ hom(Hn,X)×hom(Hn,Y ) hom(L⊗∆n, Y )

where Hn = (L ⊗ ∂∆n)
∐
K⊗∂∆n(K ⊗ ∆n). Since Hn → L ⊗∆n is a cofibration

of simplicial sets (because sSet is a simplicial model category), we are reduced to
proving the lemma below.

Lemma 4.5. If X → Y is a Reedy fibration (resp. trivial fibration) in sM and
K � L is a cofibration in sSet, then

hom(L,X) −→ hom(K,X)×hom(K,Y ) hom(L, Y )

is a fibration (resp. trivial fibration) in M .

Proof. By standard techniques, we can immediately reduce to the case where K �
L is the map ∂∆n → ∆n. But then this is just the characterization of Reedy
fibrations and trivial fibrations given above.

Remark 4.6. It is certainly not true that the Reedy structure satisfies SM7(iii).
An easy counterexample is obtained by taking any Reedy cofibrant A ∈ sM and
looking at the map A ⊗ ∆1 → A ⊗ ∆0. In simplicial degree 0 this looks like
A0

∐
A0 → A0, and so in particular the map is not an objectwise weak equivalence.

Stefan Schwede has had the idea to localize at the set of maps

(A⊗ L)
∐
A⊗K

(B ⊗K) −→ B ⊗ L

so as to force SM7(iii) to hold. The first difficulty is that these maps obviously
form a proper class, and the various localization machines in place require one
to be localizing a set of maps. This is fixed without too much trouble: if M is
cofibrantly-generated then sM is as well (see [H]), and it turns out to be enough to
localize at the above maps when K → L is ∂∆n → ∆n and A� B is a generating
cofibration.

There is a second difficulty which is more subtle. By localizing a model category
one introduces additional trivial cofibrations, and so we must go back and re-prove
SM7(ii) for the localized category. In many cases this would be inaccessible, because
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one usually doesn’t have much hold on what the new weak equivalences are. An
important fact about our approach is that we can completely identify these.

Although SM7(iii) does not hold in the Reedy model category, a limited version
does hold—the statement is true as long as all the domains and targets of our maps
are simplicial resolutions. We won’t need the full power of this result, but only the
limited version stated in the proposition below. In some sense this is the key fact
which makes the whole paper work; in the next section we will produce a model
structure for which the simplicial resolutions are precisely the fibrant objects, and
SM7 will reduce to checking that the simplicial structure behaves well on these.

Definition 4.7. A simplicial resolution is a Reedy fibrant object X ∈ sM with
the property that every face and degeneracy map is a weak equivalence.

Proposition 4.8. Let P ∈ sM be a simplicial resolution, and let K
∼� L be a

trivial cofibration of simplicial sets. Then PL → PK is a Reedy trivial fibration
between simplicial resolutions.

Proof. We already know the map in question is a fibration, by SM7(ii) for the
Reedy model category sM (Proposition 4.4). Let’s show it’s an objectwise weak
equivalence. In dimension m the map is

hom∆op

(L×∆m, P )→ hom∆op

(K ×∆m, P ).

Since K × ∆m → L × ∆m is a trivial cofibration of simplicial sets, we reduce to
proving the following:

(*) If I → J is a trivial cofibration in sSet, then hom∆op

(J, P ) → hom∆op

(I, P )
is a weak equivalence in M .

By standard techniques, this reduces to the case where I → J has the form
∆0 → ∆n. But hom(∆0, P ) and hom(∆n, P ) may be canonically identified with
P0 and Pn, and the map Pn → P0 is a weak equivalence precisely because P is a
simplicial resolution. This shows that PL → PK is a Reedy trivial fibration.

The final step is to prove that PK and PL are simplicial resolutions. The same
proof of course works for both.

Note first that PK must be Reedy fibrant, by SM7(ii) for the Reedy model
category. We must show that every face and degeneracy is a weak equivalence. To
do this, recall that PK is the simplicial object [n] 7→ hom∆op

(K × ∆n, P ). The
result labelled (∗) above, together with what we already knew, says that the functor

hom∆op

(−, P ) : sSet → M takes cofibrations to fibrations and trivial cofibrations
to trivial fibrations. By a standard fact about model categories, it follows that
weak equivalences between cofibrant objects must map to weak equivalences. In
particular, the maps

hom∆op

(K ×∆n, P )→ hom∆op

(K ×∆m, P )

induced by some ∆n → ∆m are all weak equivalences. This is what we wanted.

5. A Hocolim Model Structure on Diagrams

In this section we produce certain model structures on diagram categories MC,
where a map is a weak equivalence provided it induces a weak equivalence between
the corrected homotopy colimits. These model category structures are obtained
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as localizations, so our results are limited to the cases when M is of type (LpCe)
or (LpCo). There are versions of the model structure corresponding both to the
usual Bousfield-Kan (= objectwise fibration) and to the Reedy model categories of
diagrams. In the case where C = ∆op, the Reedy version of this hocolim-structure
will be shown in the next section to be simplicial and Quillen equivalent to M . The
Bousfield-Kan version will not be used elsewhere in the paper, but we need it here
as a stepping-stone in establishing the basic properties of the Reedy version.

If M is a model category and X : C → M is a diagram (C a small indexing
category), one can define the homotopy colimit of X by—for instance—choosing
a cosimplicial framing on M and writing down an explicit formula (see [H]). This
definition has the slight drawback that it gives the ‘correct’ homotopy type only
when the diagram X consists of cofibrant objects. An objectwise weak equivalence
X → Y induces a weak equivalence hocolimX

∼−→ hocolimY only when the entries
of X and Y are all cofibrant.

For the purposes of this paper, we remedy the situation by defining the corrected
homotopy colimit “corhocolimX” to be the result of first replacing every object of
X by a (functorial) cofibrant replacement, and then taking the usual homotopy
colimit of the resulting diagram. With this definition it is now true that any
objectwise weak equivalence X → Y induces a weak equivalence corhocolimX →
corhocolimY . (The length of the name ‘corhocolim’ is only justified by the fact
that we won’t actually have to use it very often).

Definition 5.1. A map of diagrams X → Y is said to be a hocolim-equivalence
if the induced map corhocolimX → corhocolimY is a weak equivalence in M .

Note that every objectwise weak equivalence is a hocolim-equivalence.

Recall that when M is a cofibrantly-generated model category, the category of
diagrams MC may be given a ‘Bousfield-Kan’ model structure: a map of diagrams
X → Y is a weak equivalence (resp. fibration) if the maps Xc → Yc are weak
equivalences (resp. fibrations) for every c ∈ C. (As always, the reader is referred
to [H] for a detailed treatment). Our goal will be to localize the Bousfield-Kan
structure by inverting the hocolim-equivalences. Unfortunately these form a proper
class of maps, so our first task is to identify a set of maps such that inverting them
is enough.

Assume now that M is left proper and cofibrantly-generated. Proposition A.5
from the appendix says that there is a set W of cofibrant objects with the property
that a map X → Y is a weak equivalence if and only if it induces weak equivalences
on function complexes M(A,X)→M(A, Y ) for every A ∈W .

Let C be a small category. For i ∈ C and X ∈M , let FXi denote the free diagram
generated by X at spot i. This is the diagram defined by

FXi (j) =
∐
C(i,j)

X.

In words, the object at spot j in FXi is a coproduct of X’s, one for each map i→ j.
Note that the functor X 7→ FXi is the left adjoint to D 7→ Di: if D is any diagram,
then MC(FXi , D) = M(X,Di).

For every map i→ j in C and A ∈W , there are maps of diagrams

FAj → FAi .
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Let S denote the set of all such maps.
If M is of type (LpCe) or (LpCo), then so is the diagram category (MC)BK .

In particular, we may consider its localization at the set S—denote this localized
model category by S−1(MC)BK . The goal of this section is the following:

Theorem 5.2. Assume that the nerve of C is contractible. Then:

(a) The weak equivalences in the localized model category S−1(MC)BK are precisely
the hocolim-equivalences.

(b) The adjoint functors colim : S−1(MC)BK �M : c∗ are a Quillen equivalence.
(c) The fibrant objects in S−1(MC)BK are the objectwise fibrant diagrams with the

property that every map in the diagram is a weak equivalence.

Remark 5.3. One might interpret this result in the following way. A diagram
in MC morally has two kinds of homotopy invariants: it has homotopy invariants
coming from the model category M , and homotopy invariants coming from the
structure of the indexing category C. The theorem says that if C is contractible
and one localizes away all the homotopy invariants coming from C, then all the
remaining invariants factor through the homotopy colimit functor.

We need the following key result due to Chachólski and Scherer [CS] (also proven
by Kan [DHK]):

Proposition 5.4. Let M be a model category and let C be a small category whose
nerve is contractible. If X : C → M is an objectwise cofibrant diagram in which
every map is a weak equivalence, then the natural maps Xα → hocolimX are also
weak equivalences.

Corollary 5.5. Let M and C be as above, but assume that M is cofibrantly-
generated. Let X ∈ MC be a cofibrant diagram in which every map is a weak
equivalence. Then for any fibrant replacement Z for corhocolimX, there exists a
map of diagrams X → c∗Z which is an objectwise weak equivalence.

Proof. The adjunction colim: MC � M : c∗ is a Quillen pair when MC is given
the Bousfield-Kan model structure. Then colimX is cofibrant and colimX '
corhocolimX ' Z, so there is a weak equivalence colimX

∼−→ Z in M . Let
X → c∗Z be the adjoint of this map. Since this map is a hocolim-equivalence
by construction, the Chachólski-Scherer result shows that it must actually be an
objectwise weak equivalence.

Proof of Theorem 5.2. We first prove (c). General localization machinery tells us
that a diagram X is fibrant in the localized model category iff X is fibrant in
(MC)BK and the induced maps of homotopy function complexes

MC(FAi ,X)→MC(FAj ,X)

are weak equivalences, for every i → j in C and every A ∈ W . We claim that in
general the function complex MC(FAi ,X) may be identified up to weak equivalence
with the function complex M(A,Xi)—this follows by computing the first using a
simplicial resolution of X, and then using adjointness. Granting this, the above
maps are weak equivalences precisely when the maps

M(A,Xi)→M(A,Xj)

are so. But we chose W so that this happens precisely when Xi → Xj is a weak
equivalence. This proves (c).
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To prove (a), it will be enough to show that a map A → B between cofibrant
objects is a hocolim-equivalence precisely when it’s an S-local equivalence. This is
because for A and B arbitrary, we can pick a cofibrant replacement in (MC)BK

Ã //

∼
��

B̃

∼
��

A // B.

The vertical maps are objectwise weak equivalences, and therefore Ã → B̃ is an
S-local equivalence (resp. hocolim-equivalence) if and only if A→ B is one. So if it
is known that the two types of weak equivalence agree for maps between cofibrants,
they must agree in general.

So now assume that A and B are cofibrant. Let X be an S-local object, and
let Z be a fibrant replacement for corhocolimX. By the above corollary, there is a
map of diagrams X → c∗Z which is an objectwise weak equivalence between fibrant
objects. Consider the diagram

MC(A,X)
∼ // MC(A, c∗Z)

∼= // M(colimA,Z)

MC(B,X)
∼ //

OO

MC(B, c∗Z)
∼= //

OO

M(colimB,Z)

OO

Here the horizontal arrows on the right are obtained by computing the function
complexes using simplicial resolutions of the second variable, which allows us to
use the adjunction between colim and c∗. The important point is that the maps
are weak equivalences, not that they’re isomorphisms.

Now the map A → B is an S-local equivalence provided that for every S-local
object X, the map MC(B,X) → MC(A,X) is a weak equivalence. The above
diagram essentially shows that this is the same as requiring that M(colimB,Z)→
M(colimA,Z) be a weak equivalence for every fibrant Z ∈ M . This in turn is
equivalent to colimA→ colimB being a weak equivalence in M . Since the colimit
functor is the ‘correct’ homotopy colimit for cofibrant diagrams, the last condition
is precisely that A→ B be a hocolim-equivalence.

For (b), first note that the adjoint functors do indeed form a Quillen pair— for
instance, c∗ clearly preserves fibrations and trivial fibrations. Let A be a cofibrant
diagram and Z ∈M be a fibrant object. We must verify that a map colimA→ Z
is a weak equivalence iff the adjoint A → c∗Z is a hocolim-equivalence. Consider
the commutative square

hocolimA //

��

hocolim(c∗Z)

��
colimA // colim(c∗Z).

Note that colim(c∗Z) ∼= Z, since the indexing category is contractible (so in par-
ticular, connected). The result will follow once we show that the vertical maps are
weak equivalences, because then the top map will be a weak equivalence precisely
when the bottom map is—this is what was wanted.
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The left vertical map is a weak equivalence because A is cofibrant. For the right
map, pick some i ∈ C and consider the composable arrows

Z = (c∗Z)i → hocolim c∗Z → colim c∗Z ∼= Z.

Proposition 5.4 says that the first map is an equivalence. Since the composite is an
actual isomorphism, the second map is a weak equivalence as well.

5.6. A Hocolim Structure for Reedy Model Categories.
If C is a Reedy category, then there is another model structure on MC called the
Reedy model category structure. (In the cases where C is either ∆op or ∆, these are
the model structures on sM and cM discussed in section 2.) Reedy model structures
have the advantage that they exist quite generally, not just under the assumption
that M is cofibrantly-generated. When one does have cofibrant-generation, the
identity maps give a Quillen equivalence

L : (MC)BK � (MC)Reedy : R.

The goal in this section is to localize the Reedy model structure at the hocolim-
equivalences. In the case where C = ∆op, this model category will be the one used
to prove our main result, Theorem 1.2.

The result we’re after is the following:

Theorem 5.7. If the nerve of the Reedy category C is contractible, then

(a) The weak equivalences in S−1(MC)Reedy are the hocolim-equivalences;
(b) The identity maps give a Quillen equivalence

S−1(MC)BK � S−1(MC)Reedy .

(c) The fibrant objects of S−1(MC)Reedy are the the Reedy fibrant diagrams having
the property that every map is a weak equivalence.

Proof. The proof of (c) is exactly the same as for the Bousfield-Kan structure. We
next prove (a).

A general result of Hirschhorn [H] says that if L : M � N : R is a Quillen
pair between localizable model categories, and S is a set of maps in M , then the
adjunction extends to a Quillen pair S−1M � (LS)−1N . So in particular, in our
case the identity maps give a Quillen pair

S−1(MC)BK � S−1(MC)Reedy .

Let A → B be a map of diagrams, and let Ā → B̄ be a fibrant replacement in
S−1(MC)BK . In other words, we have a square

A

��

// // Ā

��
B // // B̄

where the horizontal maps are Bousfield-Kan cofibrations and hocolim-equivalences.
Because of the Quillen pair above, we know that these maps are also trivial cofi-
brations in S−1(MC)Reedy—in particular, they are Reedy S-local equivalences.
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Now let Â→ B̂ be a fibrant replacement for Ā→ B̄ in the (unlocalized) Reedy
model structure. This gives us a diagram

A

��

// // Ā

��

∼ // Â

��
B // // B̄

∼ // B̂.

The right horizontal maps are objectwise weak equivalences, and the left horizontal
maps are both hocolim-equivalences and Reedy S-local equivalences. Moreover, Â
and B̂ are fibrant in both S−1(MC)BK and S−1(MC)Reedy : they are Reedy fibrant
(hence objectwise fibrant) and have the property that every map in the diagram is
a weak equivalence, because Ā and B̄ have this property by construction.

The above diagram gives us everything we need. If A → B is a hocolim-
equivalence, then going around the diagram shows that Â → B̂ must be one as
well. But these are fibrant objects in S−1(MC)BK , and an S-local equivalence
between fibrant objects is necessarily an objectwise weak equivalence. Then going
back around the diagram, we find that A→ B is also a Reedy S-local equivalence.

A similar chase shows that if A→ B is a Reedy S-local equivalence, it must be a
hocolim-equivalence. In other words, the notions of Reedy S-local equivalence and
hocolim-equivalence are identical.

Finally, the Quillen equivalence in part (b) follows from an immediate verifica-
tion, using (a).

Remark 5.8. Hirschhorn has also shown that if L : M � N : R is a Quillen
equivalence between localizable model categories, and S is a set of maps in M , then
the Quillen pair L : S−1M � (LS)−1N : R is also a Quillen equivalence. This
gives another proof of part (b) of the corollary, but unfortunately it doesn’t seem
to give (a) as an immediate consequence. One appears to still need a proof such as
the one we gave above.

6. A simplicial model structure on sM

The goal of this section is to prove Theorem 1.2. Most of the work has been
done already, and the proof is just a matter of assembling the details.

Let M be a model category of type (LpCe) or (LpCo). We showed in the last
section that there is a model structure on sM in which a map X → Y is a

(i) weak equivalence if it is a hocolim-equivalence;
(ii) cofibration if it is a Reedy cofibration;
(iii) fibration if it has the right-lifting-property with respect to all trivial cofibra-

tions.

Denote this model category by sMhc.

Theorem 6.1. The categorical simplicial structure makes sMhc into a simplicial
model category, for which the usual adjoint pair c∗ : M � sMhc : ev0 is a Quillen
equivalence.

Remark 6.2. The above model structure was called the ‘Reedy hocolim-model
structure’ in the last section, to constrast it with the analagous Bousfield-Kan
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hocolim-structure. The latter model category is definitely not simplicial, for the
following reason:

Assume for the moment that it were. Then given a trivial fibration X → Y in
S−1(sM)BK (which are exactly the trivial fibrations in sMBK) it would also be
the case that

X∆n → X∂∆n ×Y ∂∆n Y ∆n

is a trivial fibration. In particular, the map of zeroth-objects would be a trivial
fibration in M . But a little thought shows that this map of zeroth spaces is exactly
the nth matching map of X → Y , and so we are claiming that X → Y is a Reedy
trivial fibration. In other words, every trivial fibration in sMBK is a Reedy trivial
fibration. It is easy to check that this is false.

Proof of Theorem 6.1. It is well known (and easy to check) that the functor c∗
maps cofibrations to Reedy cofibrations, and trivial cofibrations to Reedy trivial
cofibrations. This is the statement that

c∗ : M � sMReedy : ev0

is a Quillen pair. It follows at once that the same functors give a Quillen pair
with sMReedy replaced by sMhc (essentially because the identity maps give Quillen
functors L : sMReedy � sMhc : R).

To show this is a Quillen equivalence, let A ∈ M be cofibrant and X ∈ sMhc

be fibrant (so that X is a simplicial resolution). Let Ã and X̃ denote the result of
applying a functorial cofibrant replacement functor (in M) to A, and levelwise to
X. Consider the diagram

A

��

Ã

��

∼oo ∼ // hocolim(c∗Ã)

��
X0 X̃0

∼oo ∼ // hocolim X̃.

The right horizontal arrows are weak equivalences by Proposition 5.4, since all the
face and degeneracy maps of both c∗Ã and X̃ are weak equivalences. So it follows
that the right-most vertical map is a weak equivalence precisely when the left-most
map is—i.e., c∗A → X is a hocolim-equivalence iff A → X0 is a weak equivalence
in M . This establishes the Quillen equivalence.

Now we turn to the simplicial structure. Part (i) of SM7 follows from the cor-
responding result about sMReedy (Proposition 4.4), because the cofibrations in the
hocolim- and Reedy model categories are the same.

To prove (ii), it suffices to show that the functors (−)K preserve fibrations be-
tween fibrant objects (Proposition 3.2). Recall that in a localized model category,
a map between fibrant (i.e. local) objects is a fibration if and only if it was a fi-
bration in the un-localized model structure (see [H] for a proof). So a fibration
between fibrant objects in sMhc is precisely a Reedy fibration between cosimpli-
cial resolutions. We know that (−)K preserves Reedy fibrations by SM7(ii) for the
Reedy model category (4.4), and (−)K take cosimplicial resolutions to cosimplicial
resolutions by Proposition 4.8.

Finally, we must prove SM7(iii). Since M is left proper, the same is true for
sMReedy and therefore also for the localization sMhc (this follows from arguments
of Hirschhorn [H]). Because of this, Proposition 3.2(b) let’s us prove SM7(iii) by
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checking that if Z is fibrant in sMhc and K
∼� L is a trivial cofibration of simplicial

sets, then ZL → ZK is a weak equivalence. Since Z is a simplicial resolution,
Proposition 4.8 shows that ZL → ZK is actually an objectwise weak equivalence
(and hence a hocolim-equivalence).

This completes the proof of Theorem 1.2.

Remark 6.3. The fact that sMhc is a simplicial model category of course trans-
lates into a simple statement about homotopy colimits. To see this, recall that any
X ∈ sM may be regarded as a diagram X : ∆op → M , and this diagram has a
homotopy colimit. SM7(iii) for sMhc is the statement that if A � B is a Reedy
cofibration inducing a weak equivalence between the corrected homotopy colimits,
then (A⊗L)

∐
A⊗K(B⊗K)→ B⊗L also induces a weak equivalence on corrected

homotopy colimits. It would be nice to have a proof of this for arbitrary model
categories M , but at the moment we don’t know of one. It is known to be true if
M has the property that a disjoint union of weak equivalences is a weak equiva-
lence, but this does not hold in general. The problem is that in forming A ⊗K,
A ⊗ L, etc., one is forming a bunch of coproducts, and this is not necessarily a
good operation. When one goes to compute the correct homotopy colimit of such
a diagram, the first step is to replace every object by a cofibrant one—the problem
is that a coproduct of cofibrant replacements will not necessarily be the cofibrant
replacement of the coproduct. The fact that A� B is a Reedy cofibration should
save the day, but it’s not so clear how to make use of this.

In our situation we really cheated, and side-stepped the whole issue by making
use of left properness (which we had to assume anyway) and by milking the existence
of a model structure. Somehow the argument feels a little unsatisfying because of
this. It does show the power of the model category machinery, however, in the sense
that we were able to prove a non-trivial result about homotopy colimits without
having to work very hard. This suggests that the model category sMhc may be
useful for other kinds of applications.

7. Some additional remarks

In this final section we raise some open questions related to the above results.

7.1. The Reedy Hocolim Structure.
Let M be a model category of type (LpCe) or (LpCo), and let C be a contractible

Reedy category. Theorem 5.7 gives a model structure on MC in which

(i) The weak equivalences are the hocolim-equivalences;
(ii) The cofibrations are the Reedy cofibrations;
(iii) The fibrations are the maps with the appropriate right-lifting-property.

Notice that the definitions of these classes make no use at all of our assumptions
on M . It’s therefore natural to wonder whether such a model category structure
exists in general.

A first step in this direction is to try to identify the fibrations, and there turns
out to be a candidate for what they should be: these are the Reedy fibrations
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X → Y with the property that for every c→ d in C, the square

Xc
//

��

Xd

��
Yc // Yd

(7.1)

is a homotopy pull-back square.
If the above hocolim-structure exists, it must have the property that a fibration

which is a hocolim-equivalence is actually an objectwise weak equivalence. This is
because the trivial fibrations of the hocolim-structure are exactly the class of Reedy
trivial fibrations, as they both are the maps having the right-lifting-property with
respect to Reedy cofibrations. We can therefore ask—as a reality check—if the
above candidate for the hocolim-fibrations has this property. Unfortunately this
question is somewhat awkward; the following is a more manageable question which
would imply it:

Question: Let X and Y be diagrams of cofibrant objects. If X → Y is a Reedy
fibration with the property described in (7.1), does it follow that for each c ∈ C the
diagram

Xc

��

// hocolimX

��
Yc // hocolimY

is also a homotopy pull-back square?

Remark 7.2. Very loosely stated, condition (7.1) states that the ‘difference’ be-
tween Xc and Yc remains constant as c is allowed to vary. The above question asks
whether this must also then be the ‘difference’ between hocolimX and hocolimY .

Note the following observations:

(i) If the answer is yes, this would be a generalization of Chachólski and Scherer’s
theorem (5.4). When Y is the constant diagram whose value is a point, the
question asks: ifX is Reedy fibrant with the property that every map is a weak
equivalence, does it necessarily follow that Xc → hocolimX is an equivalence
for every c ∈ C? The Chachólski-Scherer theorem says that the answer is yes.

(ii) An affirmative answer would imply that a Reedy fibration with the prop-
erty (7.1) which is also a hocolim-equivalence, is in fact an objectwise weak
equivalence.

(iii) An affirmative answer would possibly allow one to prove by hand that
the hocolim-structure exists, at least under mild hypotheses like cofibrant-
generation. In other words, the model category could be constructed without
having to localize.

Now we come to the sad truth of the situation, which is that at the moment
the answer to the above question seems likely to be “no”. Even examples of simple
indexing categories like the pushout category

• ←− • −→ •
make the result seem questionable. However, the answer does appear to be “yes”
in a variety of circumstances. Rezk has proven similar results for model categories
coming from simplicial topoi in [R]. Rezk, Schwede, and Shipley [RSS] have shown
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that the result holds when C = ∆op and the model category M is cofibrantly-
generated and stable.

All of this shows the extreme power of the localization machinery, which allowed
us to construct the model category without ever understanding what the fibrations
are. It would be interesting to see some kind of characterization of the fibrations,
though.

7.3. Replacing model categories by simplicial ones.
After being exposed to the results of sections 5 and 6, the reader may be tempted

to conclude that having the hocolim-equivalences among the weak equivalences is
in some sense the ‘smallest price to pay’ for having the model category on sM be
simplicial. This is in some sense true, and in some sense false.

Consider the following properties of a model structure on sM :

(i) The categorical simplicial action makes it into a simplicial model category;
(ii) The natural adjunction c∗ : M � sM : ev0 is a Quillen pair;
(iii) The above adjunction is a Quillen equivalence.

It’s possible to see that

• If a model structure on sM satisfies (i) and (ii), then the identity maps must
give a Quillen pair

L : sMReedy � sM : R.

(In particular, every Reedy cofibration must be a cofibration in sM .) More-
over, one can show that every fibrant object in sM is a simplicial resolution.
It follows that if M is of type (LpCe) or (LpCo) then the identity functors
give a Quillen pair

L : sMhc � sM : R.

• If (iii) is also satisfied, then the above Quillen pair must be a Quillen equiva-
lence between sMhc and sM .

What all this says is that in a certain sense the hocolim-structure really is the
closest model category to the Reedy structure having properties (i)–(iii) (closest
from the right, in any case). However, it may be that the hocolim-structure does
not exist in general, but that there is another (Quillen equivalent) model structure
which does exist in general. This would be an interesting topic for further research.

As soon as one is willing to forgo both conditions (ii) and (iii) above, it’s possible
to find simplicial model category structures on sM which are very different than
our hocolim-structure. For example, when M is the category Top∗ of pointed
topological spaces, there is the E2-model structure on sM developed in [DKS]. This
is simplicial, and there are more hocolim-equivalences than E2-weak equivalences.

7.4. Dual results for cosimplicial objects.
It turns out that the category of cosimplicial objects cM also has a natural simplicial
action, which is completely dual to the one we have considered on sM . We mention
that there is at least the possibility of finding a model structure on cM with the
properties that

(a) The categorical action makes it a simplicial model category;
(b) The obvious adjoint pair ev0 : cM �M : c∗ is a Quillen equivalence.
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Moreover, a natural candidate for such a model structure arises by dualizing the
hocolim-structure on sM . That is to say, we can ask to make cM into a model
category by defining the

(i) Weak equivalences to be the holim-equivalences;
(ii) Fibrations to be the Reedy fibrations;
(iii) Cofibrations to be the maps with the appropriate left-lifting-property.

At the moment there are no interesting cases where we can actually construct
such a model category, however. Techniques dual to those in this paper would allow
the model category to be constructed by colocalizing a certain set of maps, but for
colocalizations there is at the moment no analogue for the theories of Hirschhorn
and Smith. There is no common class of model categories for which colocalizations
are known to exist.

Appendix A. Some Facts about Model Categories

The reader should regard this section as a supplement to the book of Hirschhorn
[H]. The purpose is to establish some new (but elementary) results about model
categories which are needed in the body of the paper. These are Corollary A.2 and
Proposition A.5.

Let M be a model category. If A ∈ M and Z∗ ∈ sM , let M(A,Z∗) denote the
simplicial set obtained by applying the functorM(A,−) levelwise to Z∗. Note that if
Z∗ is Reedy fibrant then there is a natural map π0M(A,Z∗)→ HoM (A,Z0) (where
the latter denotes maps in the homotopy category of M). This an isomorphism
when A is cofibrant, but not in general. Given two maps f, g : A → Z0, we will
write f ' g(wrt Z∗) if f and g are in the same path component of M(A,Z∗).

The following result is an easy generalization of something Hirschhorn proves
about simplicial model categories.

Proposition A.1. Let f : A → B be a map in M and suppose that for every
simplicial resolution Z∗, the induced map f∗ : M(B,Z∗) → M(A,Z∗) yields an
isomorphism on π0. Then f is a weak equivalence in M .

Proof. Pick Reedy simplicial resolutions Â∗ and B̂∗ of A and B for which the maps

jA : c∗A→ Â∗ and jB : c∗B → B̂∗

are Reedy trivial cofibrations. The proof will show that it’s enough just to know that
the maps M(B, Â∗)→M(A, Â∗) and M(B, B̂∗)→M(A, B̂∗) induce isomorphisms
on π0.

The idea is to show that f becomes an isomorphism in the homotopy category.
Using the isomorphism π0M(B, Â∗) → π0M(A, Â∗) we see that there is a map

g : B → Â0 projecting onto jA : A
∼−→ Â0. In other words, there is a g for which

gf ' jA(wrt Â∗), and this implies that gf = jA in the homotopy category. But jA
was a weak equivalence, so this may be written as j−1

A g ◦ f = idA in HoM . The
next step is to show that the other composite is also the identity.

Now f : A → B lifts to a map f̂ : Â∗ → B̂∗. It’s an easy check that the
maps f̂0g, jB : B → B0 both project onto f̂0jA under the map π0M(B, B̂∗) →
π0M(A, B̂∗). Since our assumption is that this is an isomorphism, it follows that
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f̂0g ' jB(wrt B̂∗). This means that f̂0 ◦ g = jB as maps in the homotopy category.
Now the square

Â0

f̂0 // B̂0

A

jA

OO

f
// B

jB

OO

gives that f ◦ j−1
A = j−1

B ◦ f̂0 in HoM , and therefore

f ◦ j−1
A g = j−1

B f̂0g = j−1
B jB = idB.

This completes the proof that f becomes an isomorphism in HoM , which says that
f is a weak equivalence.

Corollary A.2. Let M and N be model categories, and let L : M � N : R be
an adjoint pair. Then these are Quillen functors if and only if R preserves both
fibrations between fibrant objects and trivial fibrations.

There is of course a dual version of this corollary, where L is required to preserve
cofibrations between cofibrant objects and trivial cofibrations.

Proof. The ‘only if’ part is classical, so we only prove the other direction. Our
proof depends heavily on adjointness.

The assumption that R preserves trivial fibrations implies that L preserves cofi-
brations, and what we must show is that L also preserves trivial cofibrations. So

let A
∼� B be a trivial cofibration. Proposition A.1 lets us check that LA→ LB is

a weak equivalence by examining

N(LB,Z∗)→ N(LA,Z∗)

for every simplicial resolution Z∗ ∈ sN . By adjointness, this map is isomorphic to

M(A,RZ∗)→M(B,RZ∗).

Since A → B is a trivial cofibration, the above map will be a weak equivalence as
long as we can show that RZ∗ is Reedy fibrant in sM . The nth matching map of
RZ∗ → ∗ may be identified with RZn → R(MnZ) (using the fact that R commutes
with limits). Then the fact that Z∗ was Reedy fibrant implies that Zn → MnZ is
a fibration between fibrant objects, and so our assumption that R preserves such
maps gives directly that RZ∗ is also Reedy fibrant.

Remark A.3. The above corollary is especially useful in the context of localiza-
tions S−1M . The fibrations in a localization are often mysterious, but the trivial
fibrations and the fibrations between fibrant objects are the same as those in M .

Corollary A.4. Let f : A � B be a cofibration between cofibrant objects. Then
f is a weak equivalence if and only if f has the left-lifting-property with respect to
fibrations between fibrant objects.

Proof. Suppose that f has the stated lifting property. Using the proposition, we
only have to show that M(B,Z∗) → M(A,Z∗) induces an isomorphism on π0 for
every simplicial resolution Z∗. Surjectivity is immediate from the assumption on
f—in fact, M(B,Z∗)→M(A,Z∗) is surjective on 0-simplices. So let g, h : B → Z0

be maps with the same image in π0M(A,Z∗). Since A is cofibrant and Z∗ fibrant,
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M(A,Z∗) is a fibrant simplicial set. The fact that gf and hf are in the same path
component implies that there is an H : A→ Z1 giving a homotopy between them.
In other words, there is a square

A��

��

H // Z1

��
B

(g,h)
// Z0 × Z0.

But Z1 → Z0×Z0 is a Reedy fibration between fibrant objects, and so our assump-
tion on f gives a lift. That is, we get a homotopy between the maps g, h : B → Z0,
which shows they become identified in π0M(B,Z∗). This completes the proof.

The next result runs along very different lines. Recall that in topological spaces
and simplicial sets one can detect whether a map is a weak equivalence by examin-
ing the function complexes from certain basic objects (e.g., the spheres)—in these
classical cases this is essentially the definition of weak equivalence. The proposition
below gives an analog for ‘nice enough’ model categories. This is a key element for
our construction of the hocolim model structure in section 3.

Proposition A.5. Let M be a left proper, cofibrantly-generated model category.
Then there exists a set W of cofibrant objects which detect weak equivalences, in
the sense that a map X → Y is a weak equivalence precisely when the induced map
of function complexes

M(A,X)→M(A, Y )

is a weak equivalence for every A ∈W .

Proof. Let {Aα → Bα} be a set of generating cofibrations, and let Ãα � B̃α
denote cofibrations between cofibrant objects which are weakly equivalent to the
Aα → Bα. Define W to be {Ãα, B̃α}.

Suppose that X → Y induces weak equivalences on the function complexes
obtained by mapping from elements of W . Let X̂∗ → Ŷ∗ be a Reedy fibration
between fibrant objects which is a replacement for c∗X → c∗Y in the Reedy model
category sM . To show that X → Y is a weak equivalence, it is enough to show that
M(C, X̂∗) → M(C, Ŷ∗) is a weak equivalence of simplicial sets for every cofibrant
object C ∈ M . Our assumption yields that this map is a weak equivalence when
C is one of the Ãα or B̃α, and so the idea will be to build an arbitrary C (up to
homotopy) from these basic objects. Cofibrant-generation says that any C may be
built up from the Aα and Bα, but this is not quite what we want. This is why we
have to assume left properness.

Recall that the small object argument gives us a (possibly transfinite) sequence
of spaces

∅ = C0 → C1 → C2 → · · · ⇒ C∞

with the properties that

(i) C∞ = colimnCn;
(ii) C is a retract of C∞;
(iii) Cn+1 is obtained from Cn by pushing-out along the maps Aα� Bα.
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The argument now proceeds in several steps:

Step 1: Each Cn induces a weak equivalence M(Cn,X∗)→M(Cn, Y∗).

This is trivial for C0, and so we assume the statement for Cn−1 and proceed by
induction using the fact that Cn sits in a pushout diagram∐

Aα //
��

��

Cn−1

��∐
Bα // Cn.

By a result of [H], left properness guarantees that there are cofibrant approximations

C̃n−1 and C̃n which sit in a pushout square∐
Ãα //
��

��

C̃n−1

��∐
B̃α // C̃n.

Mapping into X∗ and Y∗ gives a diagram

M(C̃n−1,X∗) //

∼
��

∏
M(Ãα,X∗)

∼
��

∏
M(B̃α,X∗)oooo

∼
��

M(C̃n−1, Y∗) // ∏M(Ãα, Y∗)
∏
M(B̃α, Y∗)oooo

where the pullback of the horizontal rows are M(C̃n,X∗) and M(C̃n, Y∗). The
vertical maps are weak equivalences by the assumption about X → Y and the
induction hypothesis (and this is where we really need Ã and B̃ instead of A and
B, since M(A,X∗) and M(B,X∗) need not be homotopy function complexes). The

indicated maps are fibrations because Ãα → B̃α are cofibrations and X∗ and Y∗
are Reedy fibrant. This all implies that the induced map between the pullbacks is
a weak equivalence of simplicial sets (using the fact that sSet is right proper, if you
wish). This is equivalent to the statement that M(Cn,X∗)→M(Cn, Y∗) is a weak

equivalence, using the fact that C̃n → Cn is a weak equivalence between cofibrant
objects.

Step 2: C∞ induces a weak equivalence M(C∞,X∗)→M(C∞, Y∗).

Since C∞ is the colimit of the Cn, the simplicial set M(C∞,X∗) is the limit of
the M(Cn,X∗). The maps M(Cn,X∗) → M(Cn, Y∗) are fibrations because Cn is
cofibrant and X∗ → Y∗ is a Reedy fibration, and they are weak equivalences by
Step 1. We now use the fact that a (possibly transfinite) sequential inverse limit of
trivial fibrations is again a trivial fibration.

Step 3: C induces a weak equivalence M(C,X∗)→M(C, Y∗).

Since C is a retract of C∞, the map in question is a retract of M(C∞,X∗) →
M(C∞, Y∗), which was just shown to be a weak equivalence. A retract of a weak
equivalence is again a weak equivalence.

Thus, we have shown that any cofibrant object yields a weak equivalence of
mapping spaces to X∗ → Y∗. This is known to imply that X → Y is a weak
equivalence in M (as always, see [H]).
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