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Abstract. We show that if U∗ is a hypercover of a topological space X then the
natural map hocolim U∗→X is a weak equivalence. This fact is used to construct
topological realization functors for the A

1-homotopy theory of schemes over real
and complex fields. In an appendix, we also prove a theorem about computing
homotopy colimits of spaces that are not cofibrant.
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1 Introduction

Let X be a topological space, and let U = {Ua} be an open cover of X. From this
data one may build the Čech complex Č(U)∗, which is the simplicial space

∐
Ua0

∐
Ua0a1����

∐
Ua0a1a2 · · ·������

HereUa0···an = Ua0 ∩· · ·∩Uan , and the face maps are obtained by omitting indices
– we have chosen not to draw the degeneracies for typographical reasons. Segal [S1]
proved that ifX has a partition of unity subordinate to U then the map |Č(U)∗| → X

is a homotopy equivalence, where |−| denotes geometric realization. Our first goal
in this paper is to generalize this result to the following theorem.

Theorem 1.1. For every open cover U ofX, the map hocolim Č(U)∗ → X is a weak
equivalence (where the hocolim is taken over the simplicial indexing category).

There are two steps in the argument. First, we prove that |Č(U)∗| → X is a
weak equivalence for arbitrary open covers. It is possible to deduce this from Segal’s
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result, making use of the fact that weak equivalences are detected by spheres, and
spheres always have partitions of unity. But instead of going this route we give a
proof that avoids Segal’s theorem completely, and is quite elementary.

The second step is to deal with the difference between |Č(U)∗| and
hocolim Č(U)∗. For any simplicial object W∗ in a model category, there are gen-
eral criteria for when its geometric realization agrees with its homotopy colimit
(cf. [H, Th. 18.7.4]); unfortunately these criteria apply only when the objects Wn

are all cofibrant, and we are definitely not assuming that the open sets Ua and their
intersections are cofibrant. It turns out that this cofibrancy issue never matters,
which is somewhat of a surprise. Here is one specific result which we will use later:

Theorem 1.2. Let U∗ be a simplicial space that has free degeneracies (see Defini-
tion A.4), but do not assume that each Un is cofibrant. Then the homotopy colimit
of U∗ is weakly equivalent to the realization of U∗.

This result is similar to [S2, A.5], but different in that it is about weak equi-
valences rather than homotopy equivalences. We in fact prove that when taking
homotopy colimits for any diagram of topological spaces one doesn’t first have
to make all the spaces involved cofibrant; the usual formulas are already homot-
opy-invariant. This is definitely a non-standard fact, but we’ve banished it to an
appendix so it won’t distract the reader from the general theme of the paper. On the
other hand it is a useful result, and we’d like to call attention to it.

The main goal of this paper is generalizing Theorem 1.1 so that it applies to
‘hypercovers’, rather than just Čech covers. These are defined in detail in Section
4, but for now we will just give an intuitive definition. An open hypercover of a
space X is a simplicial space U∗ such that

(1) Each Un is a disjoint union of open subsets of X,
(2) The spaces appearing in U0 are an open cover of X,
(3) The spaces in U1 cover the double intersections of those in level 0,
(4) The spaces in U2 cover the triple intersections of those in level 1, and so on.

Of course making sense of (4) – especially the ‘and so on’ part – requires a certain
amount of bookkeeping, which is why we are postponing the formal definition.
But the essence is that hypercovers are like Čech complexes except that instead
of taking the double intersections at level 1 we may refine them further, and we
may continue this refining process at each level. Our second main result concerns
homotopy colimits of hypercovers.

Theorem 1.3. If U∗ is an open hypercover of a space X, then the natural map
hocolimU∗ → X is a weak equivalence.

This result could almost be considered folklore since everyone immediately
agrees it’s true, but a proof seems to be missing from the literature. One might con-
sider tackling it by appealing to the Whitehead theorem, proving an isomorphism on
fundamental groupoids and homology with local coefficients. This is the approach
taken in [F, Prop. 8.1] in the related context of étale hypercovers, but this is messy
and obscures in computation the underlying geometric explanation of the theorem.
In the case of topological spaces, the isomorphism on fundamental groupoids was
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the subject of the paper [RT] (although they only dealt with Čech complexes, not
hypercovers). The approach we take here, on the other hand, is very elementary.
The idea is to reduce to the case of Čech covers in a clever way.

Our interest in these results arose from attempts to understand topological real-
ization functors in the A

1-homotopy theory of schemes [MV]. Given an algebraic
varietyX defined over C, there is an associated topological spaceX(C) obtained by
givingX the analytic topology. Of course this should extend to a map of ‘homotopy
theories’from the Morel-Voevodsky category Spc(C) to the category of topological
spaces. In [MV] this extension is only provided at the level of homotopy categories,
but we are interested in extending it to the model category level.

The first thing to note is that Spc(C) must be replaced by a Quillen-equivalent
model, denoted Spc′(C) in section 5. Once this is done, the key fact needed to
make things work is precisely Theorem 1.3. This is worked out in detail in Sec-
tion 5, following the basic program of [D2, Rem. 8.2] or [I]. We also prove that
taking analytic spaces for schemes defined over R induces a Quillen map from
Spc′(R) to Z2-equivariant topological spaces:

Theorem 1.4. The functor X �→ X(C) extends to left Quillen functors of the form
Spc′(C) → Top and Spc′(R) → Z2 − Top.

Finally, we give in this paper several interesting corollaries to Theorem 1.3. On
the whole these seem too disparate to recount in the introduction, but as an example
let us mention two of them. We refer the reader to Sections 3 and 4 for more results
like these.

Corollary 1.5. Let E → B be any map which is locally split (for example, a cov-
ering space), and form the associated Čech complex Č(E)∗ given by

Č(E)n := En+1
B = E ×B E ×B · · · ×B E.

Then the natural map hocolim Č(E)∗ → B is a weak equivalence.

Corollary 1.6. Let U be an open cover of a space X with the property that every
finite intersection Ua0···an is covered by other elements of U. Form the diagram
consisting of all the Ua’s and all the inclusions between them. Then the homotopy
colimit of this diagram is weakly equivalent to X.

The first corollary is an immediate consequence of Proposition 4.10, and the
second is restated and proved as Proposition 4.6(c).

Using open covers to give homotopy decompositions for spaces, or to detect
weak equivalences, is of course a classical topic. In addition to [S1] it is worth-
while to mention [Mc1], [Mc2], and [Dk]. Hypercovers were invented by Verdier
in [SGA4, Expose V, Sec. 7], where they were used as a way of computing sheaf
cohomology in arbitrary Grothendieck topologies. Finally, after writing this paper
we learned of the unpublished preprint [Si], which deals with some overlapping
issues from a different perspective.
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We would like to express our thanks to Bill Dwyer, Michael Mandell, and Jeff
Smith for several useful conversations about these results, and to Boris Chorny for
pointing out an error in an earlier version. We thank Phil Hirschhorn for helpful
conversations about the results in the appendix, in particular for his ideas on remov-
ing an annoying T1 separation condition. The final form of Lemmas A.2 and A.3 is
something we owe to him.

1.7 Notation and terminology

We assume that the reader is familiar with homotopy colimits, and in a few places
also with the theory of model categories. The original reference for the latter is [Q],
but we generally follow [H] in notation and terminology ([Ho] is also a good refer-
ence). Regarding homotopy colimits, [H] uses ‘hocolimD’ to denote the result of
applying a certain explicit formula to any diagramD. This has the disadvantage that
the resulting object has the correct homotopy type only when the diagram consists
entirely of cofibrant objects. We instead adopt the position that ‘hocolimD’ should
always denote the correct homotopy-invariant construction: it is obtained by first
applying cofibrant-replacement to the objects in the diagram, and only then using
the usual explicit formulas. In model-theoretic terms, homotopy colimit is the left
derived functor of the ordinary colimit functor, when the category of diagrams is
given the projective model structure (see below). Having made the previous point,
we now get to say that for topological spaces it isn’t really necessary because of
Appendix A.

We review one last piece of machinery, used often in the body of the paper.
Given a small category I , recall that there is a model structure on the category
sSetI of diagrams of simplicial sets such that a map is a weak equivalence (resp.,
fibration) if it is so in every spot of the diagram [H, Sec. 11.6]. We call this the
projective model structure on sSetI , and the cofibrant diagrams have the property
that the homotopy colimit and ordinary colimit are weakly equivalent.

Finally, some notation: Throughout this paper our open covers U = {Ua} are
always indexed by a set A. In particular, we are allowing the possibility that Ua =
Ua′ for different values a �= a′. For every finite set σ = {a0, . . . , an} in A, we’ll
write Uσ or Ua0···an for Ua0 ∩ · · · ∩Uan . Also, once and for all we fix our model for
�n as the subset of R

n+1 consisting of (n + 1)-tuples t = (t0, . . . , tn) such that
0 ≤ ti ≤ 1 for all i and �ni=0ti = 1. The symbol Top denotes the category of all
topological spaces – we don’t assume any hypotheses like compactly-generated,
although the results all work in that context as well. Also, the symbol sSet denotes
the category of simplicial sets.

2 Čech complexes

The purpose of this section is to prove the following:

Theorem 2.1. For any open cover U of a topological space X, the natural map
π : |Č(U)∗| → X is a weak equivalence.
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We start by recalling the following result and its corollary:

Proposition 2.2 (Gray). Let f : X → Y be a map of spaces and let U and V form
an open cover of Y . Suppose that the induced maps

f−1U → U, f−1V → V, and f−1(U ∩ V ) → U ∩ V
are all weak equivalences. Then X → Y is also a weak equivalence.

This is proven (in more generality) in [G, 16.24], using an elegant small-
simplices argument. With enough technology it can also be done by a Whitehead-
type theorem: it’s easy to see that X → Y is an isomorphism on π0, a souped-up
van Kampen theorem yields the isomorphism on π1, and for homology with local
coefficients one uses the Mayer-Vietoris exact sequence. Gray’s argument is much
nicer, though.

Corollary 2.3 (May). Let f : X → Y be a map of spaces and let U = {Ua} be an
open cover of Y . Suppose that f−1Uσ → Uσ is a weak equivalence for every finite
set σ of indices. Then X → Y is also a weak equivalence.

May deduces the generalization by a quick application of Zorn’s Lemma [M2,
Cor. 1.4]: look at the set of all opens W such that f−1(W ∩ Uσ ) → W ∩ Uσ is a
weak equivalence for all σ , including σ = ∅. This set has a maximal element, and
Gray’s result shows it must beX. In an earlier paper McCord proved a more general
version of this result [Mc1, Th. 6], but the proof is quite a bit more complicated.

Proof of Theorem 2.1. Let ε : E∗ → X be an augmented simplicial space and let
p : |E∗| → X be the induced map. For any V ⊆ X, there is a continuous bijection
from the realization of [n] �→ ε−1

n V to the space p−1V . If V is open in X, one
checks that this is actually a homeomorphism.

In our particular example of Č(U)∗ → X, we can now say that given any open
set V inX, the space π−1V is homeomorphic to the space |Č(U′)∗|, where U′ is the
open cover {Ua∩V } of the spaceV . We want to consider the mapsπ−1(Uσ ) → Uσ ,
but in this case the cover U′ of Uσ actually contains the whole space Uσ as one
of its elements. Using Corollary 2.3 we therefore reduce the theorem to the case
where the open cover contains the whole space as one of its elements, which is the
following lemma. 
�
Lemma 2.4. Let U be an open cover of X such that Ub = X for some index b.
Then the natural map |Č(U)∗| → X is a weak equivalence (in fact, a homotopy
equivalence).

Proof. There is a section χ : X → |Č(U)∗| obtained from the map Ub ⊗ �0 →
|Č(U)∗| and the identificationUb = X. We only need to show that χπ is homotopic
to the identity.

Let Č(U)∗ × I be the simplicial space obtained by crossing all the levels of
Č(U)∗ with the unit interval. Then |Č(U)∗ × I | is the quotient

[ ∐

a0···an
Ua0···an ×�n × I

]

/ ∼
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where the relations are the usual ones, not affecting the I factor at all. Define a map
|Č(U)∗ × I | → |Č(U)∗| in the following way. Take an element (x, t0, . . . , tn, s)
where x belongs to Ua0···an and (t0, . . . , tn) belongs to �n, and send it to the ele-
ment (x, 1− s, st0, . . . , stn) in the factorUba0...an ⊗�n+1. This definition respects
the various identifications.

Now, there is also an obvious map f : |Č(U)∗ × I | → |Č(U)∗| × I induced
by sending (x, t, s) to ((x, t), s). We claim that this is a homeomorphism, thereby
giving us a homotopy |Č(U)∗| × I → |Č(U)∗| between χπ and the identity. The
reason f is a homeomorphism is just because geometric realization and crossing
with I are both left adjoints, and the right adjoints are easily seen to commute. It is
important that I and�n are locally compact Hausdorff so that the relevant mapping
spaces with compact-open topologies have the correct adjointness properties. 
�

It’s possible to give a ‘slick’ proof of the above lemma by noticing that there
is a contracting homotopy for the simplicial space Č(U)∗. One needs to check that
homotopic maps of simplicial spaces give homotopic maps on realizations, but this
is essentially the above argument. See the proof of Proposition 4.10 for a broader
perspective.

2.5 Connection with Segal’s results

To close this section we make the connection between our Theorem 2.1 and the
result proven in [S1]. Segal doesn’t explicitly deal with Čech complexes, but the
objects he deals with turn out to be homeomorphic to them. This connection will
be needed later on.

Let A be the indexing set for a cover U. We have already introduced the Čech
complex Č(U)∗, but if A is given an ordering we may also consider the ordered
Čech complex Čo(U)∗ which is often easier to work with. This is the simpli-
cial space given by Čo(U)n = ∐

a0···an Ua0···an , where the coproduct ranges over
all ordered multi-indices in A. That is, we only consider multi-indices for which
a0 ≤ a1 ≤ · · · ≤ an. Note that there is an inclusion of simplicial spaces Čo(U)∗ →
Č(U)∗.

Proposition 2.6. The map Čo(U)∗ → Č(U)∗ induces a homotopy equivalence
|Čo(U)∗| → |Č(U)∗|.
Proof. For any (not necessarily ordered) multi-index a0 · · · an, there is a canon-
ical reordering aσ0 · · · aσn such that aσ0 ≤ · · · ≤ aσn. If ai = aj for some
i < j , then always choose σ i < σj . This allows us to define an inverse map
|Č(U)∗| → |Čo(U)∗|. If (x, t) is an element of Ua0···an ⊗ �n, then send (x, t) to
the element (x, σ t) of Uaσ0···aσn ⊗�n, where σ t is defined by (σ t)i = tσ i .

One composition is the equal to the identity. It remains to construct a ho-
motopy H : |Č(U)∗| × I → |Č(U)∗| between the other composition and the
identity. As in the proof of Lemma 2.4, we use the space |Č(U)∗ × I | rather than
|Č(U)∗|× I . We defineH as follows: An element (x, t) of Ua0···an ⊗�n is equiva-
lent in |Č(U)∗| to the element (x, t0, . . . , tn, 0, . . . , 0) ofUa0···anaσ0···aσn ⊗�2n+1.
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Also, (x, σ t) is equivalent in |Č(U)∗| to the element (x, 0, . . . , 0, tσ0, . . . , tσn) of
Ua0···anaσ0···aσn ⊗�2n+1. Define H((x, t), s) to be the element

(x, st0, . . . , stn, (1 − s)tσ0, . . . , (1 − s)tσn)

of Ua0···anaσ0···aσn ⊗�2n+1. 
�
Proposition 2.7. Let U be an open cover of a spaceX indexed by a setA. Consider
the realization of the simplicial space

[n] �→
∐

σ0⊆···⊆σn
Uσn,

where the coproduct is indexed by chains of nonempty, finite subsets ofA. This real-
ization is homeomorphic to the realization |Čo(U)∗| of the ordered Čech complex
and is homotopy equivalent to |Č(U)∗|.

The realization in the above proposition is the object considered in [S1]. The
ordered Čech complex is another construction of the same space, which for us
seems somewhat easier to work with. One disadvantage, of course, is that it is not
natural: a total ordering on A must be chosen to begin with.

Proof. The second claim follows from the first claim and Proposition 2.6.
For the first claim, it is convenient to use a slightly unusual construction of

|Čo(U)∗|. When forming the geometric realization, instead of forming Cartesian
products with�k we instead form products with sd�k; since they are homeomor-
phic it doesn’t matter which one we use. Given this, the key observation is that we
can coordinatize sd�k in the following way: assuming that the vertices of �k are
labelled by the numbers 0, . . . , k in the usual way, a point on sd�k is represented
uniquely by a chain of proper inclusions σ0 ⊂ · · · ⊂ σj of subsets of {0, . . . , k}
together with an element t of �j . Essentially, the chain of subsets determines in
which sub-simplex the point lies, and then t gives local coordinates inside that
sub-simplex.

Using this coordinate scheme, we can write down maps in both directions
between the two realizations

[ ∐

σ0⊆···⊆σn
Uσn ×�n

]

/ ∼ and

[ ∐

a0≤···≤ak
Ua0···ak × sd�k

]

/ ∼ .

For instance, let’s give the map from left to right. Using degeneracy relations, a point
p in the left space can be represented by a chain of proper inclusions σ0 ⊂ · · · ⊂ σn,
a point x of Uσn , and an element t of �n. Let a0, a1, . . . , ak be the ordered list
of elements of σn. The chain σ∗ together with t defines a point s in sd�k , and
so we map p to the pair (x, s). It is easy to see that this map is well-defined and
continuous, and just as easy to write down its inverse. 
�

In the case that {Ua} admits a partition of unity {ψa} it is fairly easy to see
that the map π : |Čo(U)∗| → X admits a section: First, a point x of X has a
neighborhood which intersects the support of ψa only for finitely many indices



674 D. Dugger, D. C. Isaksen

a = a0, . . . , an. The section χ sends x to the point of |Čo(U)∗| represented by
(x, t) inUa0···an⊗�n where ti = ψai (x). One has to check thatχ is continuous (use
the local-finiteness of the partition of unity), and that χπ � id via a straight-line
homotopy. See Proposition 4.1 of [S1].

3 Passing to homotopy colimits

The results of the previous section all concerned geometric realizations. In this
section we translate these into results about various homotopy colimits. In general,
there is a ‘Reedy cofibrancy’ condition on simplicial spaces which guarantees that
geometric realization and homotopy colimit agree. Unfortunately our Čech com-
plexes are not Reedy cofibrant, due to the fact that the open sets appearing in them
are not necessarily cofibrant spaces. However, Theorem 1.2 shows that in the cate-
gory of topological spaces this cofibrancy issue is unimportant: homotopy colimits
can be computed naively, without first making things cofibrant.

Theorem 3.1. If U is an open cover of a space X, then the natural map
hocolim Č(U)∗ → X is a weak equivalence.

Proof. By Theorem 1.2, the map hocolim Č(U)∗ → |Č(U)∗| is a weak equiva-
lence because the Čech complex has free degeneracies in the sense of Definition
A.4. Theorem 2.1 now gives the result. 
�

Here are several alternative formulations:

Proposition 3.2. Let A be an indexing set for the cover U, and let PA denote the
partially ordered set consisting of all nonempty finite subsets ofA. Let 	 denote the
functor P

op
A → Top which sends σ to Uσ . Then the natural map hocolim 	 → X

is a weak equivalence.

Proof. To construct hocolim 	 we can take the realization of the simplicial replace-
ment for 	 (by Theorem A.7 we don’t need to first make the spaces cofibrant). That
is, we take the realization of the simplicial space

[n] �→
∐

σ0⊆···⊆σn
Uσn,

where the coproduct is indexed by chains of nonempty, finite subsets of A. Now
Proposition 2.7 tells us that this realization is homotopy equivalent to |Č(U)∗|, so
Theorem 2.1 finishes the proof. 
�

Corollary 3.3. Let PU denote the subcategory of Top whose objects are the open
sets Ua belonging to U together with their finite intersections; the morphisms are
the inclusions of open subsets ofX. Let 	 denote the inclusion functor PU → Top.
Then the natural map hocolim 	 → X is a weak equivalence.
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Proof. Consider the obvious functorF : P
op
A → PU sending σ toUσ . We will show

that it is homotopy cofinal, so for every object V in PU we prove that the undercate-
gory (V ↓ F) is contractible. It suffices to show that any mapK → N(V ↓ F) can
be extended over the cone on K , as K ranges over all finite simplicial sets. Every
n-simplex s in K maps to a chain of open sets V → Uσ0 → Uσ1 → · · · → Uσn in
(V ↓ F). Since K has only finitely-many non-degenerate simplices, only finitely-
many of the Uσ will ever appear. Define µ to be the union of all the σi arising from
the map K → N(V ↓ F). To extend the map over CK , we send the cone on s
to the (n + 1)-simplex corresponding to the chain V → Uµ → Uσ0 → Uσ1 →
· · · → Uσn . 
�

The following corollary was shown to us by Bill Dwyer. Let (Top ↓ X)U
denote the full subcategory of (Top ↓ X) consisting of all mapsZ → X that factor
through the spaceE = ∐

a Ua . Let 	 : (Top ↓ X)U → Top be the canonical func-
tor sending Z → X to Z. We would like to claim that the homotopy colimit of the
diagram 	 is weakly equivalent to X, but (Top ↓ X)U is not a small category. So
we choose an infinite cardinal κ larger than the size of E and restrict to the spaces
Z that have at most κ elements. As the proof of the following corollary indicates,
the weak homotopy type of hocolim 	 is independent of the choice of κ , as long as
κ is sufficiently large.

Corollary 3.4. For the functor 	 : (Top ↓ X)U → Top defined above, the natural
map hocolim 	 → X is a weak equivalence.

Proof. Thenth level of the Čech complex isEnX := E×XE×X · · ·×XE (n factors).
Let’s write C = (Top ↓ X)U, for brevity. So we have the functor F : �op → C

given by [n] �→ EnX. The composition �op → C → Top is just Č(U)∗. Because
of Theorem 3.1, it will be enough to show that F is homotopy cofinal.

For this we pick an object z : Z → X in C and show that (z ↓ F) is con-
tractible. This undercategory is isomorphic to the category of simplices of K [H,
15.1.16], where K is the simplicial set sending [n] to HomC(z, E

n
X). But observe

that HomC(z, E
n
X) is equal to T n where T = HomC(z, EX). SoK is the simplicial

set [n] �→ T n, which is contractible because T is nonempty (using the fact that
z : Z → X factors through E). Thus (z ↓ F) is isomorphic to the category of
simplices of a contractible simplicial set, and therefore has a contractible nerve. 
�
Corollary 3.5 (Small simplices theorem). Let Sing UX denote the simplicial set
whose n-simplices are the maps �n → X that factor through some Ua . Then
Sing UX → Sing X is a weak equivalence.

Proof. LetPA be the category defined in Proposition 3.2, whereA is the indexing set
for the cover. Consider the diagram	 : P

op
A → sSet defined by	(σ) = Sing (Uσ ).

By general nonsense |hocolim 	| � hocolim |	|. Also, there is a commutative dia-
gram

hocolimP
op
A

|Sing Uσ | ��

��

|Sing X|

��
hocolimP

op
A
Uσ �� X
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in which the vertical maps are weak equivalences because the natural map
|Sing Y | → Y is a weak equivalence for every space Y . We know from Proposition
3.2 that the bottom horizontal map is a weak equivalence, so the top horizontal map
is also a weak equivalence. We conclude that the map hocolim 	 → Sing X is a
weak equivalence of simplicial sets. Therefore, we shall compare hocolim 	 and
Sing UX.

For the moment, assume that A is finite. In this case P
op
A is a Reedy category

[Ho, Def. 5.2.1], where we think of all the maps as increasing degree. Since there are
no non-identity downward maps, the fibrations are objectwise in the Reedy model

structure on sSetP
op
A (see [Ho, Th. 5.2.5]). So in this case the Reedy and projective

model structures (cf. Section 1.7) are the same. In particular, a Reedy-cofibrant
diagram is also projective-cofibrant, which guarantees that the homotopy colimit
and the ordinary colimit are weakly equivalent.

The functor 	 may be checked to be Reedy cofibrant: at the spot indexed by
σ = {a0, . . . , an}, the latching object is the subobject of Sing Uσ consisting of
all simplices which are contained in some other Ub. The fact that it is actually a
subobject says that the latching map is a cofibration. So we know that hocolim 	

and colim 	 are weakly equivalent. It is easy to check that colim 	 ∼= Sing UX.
We have shown that if U is a finite cover, then Sing UX is weakly equivalent to
Sing X.

Now letA be arbitrarily large. For any finite subcollection U′, let ∪U′ denote the
union of the open sets in U′. Then we know the map Sing U′(∪U′) → Sing (∪U′) is
a weak equivalence. But Sing UX → Sing X is the filtered colimit of these maps,
where the indexing category is the poset of all finite subcollections U′. This uses
that each space �n is compact. Our result now follows from the fact that filtered
colimits of simplicial sets preserve weak equivalences. 
�

4 Hypercovering Theorems

In this section we define hypercovers, and then prove our main result, Theorem 1.3.
We go on to deduce various corollaries.

Before giving a rigorous definition of hypercovers, we need to recall a few
pieces of machinery related to simplicial objects. For any category C, let sC denote
the category of simplicial objects in C. Likewise, let s≤nC denote the category of
truncated simplicial objects of dimension n. There is the obvious forgetful functor
skn : sC → s≤nC, and if C has all finite limits then skn has a right adjoint called
coskn; these are the skeleton and coskeleton functors. If U∗ belongs to sC then
we’ll often abbreviate coskn(skn U)∗ as just coskn U∗. Finally, the nth matching
object MnU is defined to be the nth object of coskn−1 U∗. There is a canonical
map of simplicial spaces U∗ → coskn−1 U∗, and in level n it gives Un → MnU .
In levels less than n, this map is the identity. We write coskXn for the nth coskeleton
functor for s(C ↓ X).

These definitions have somewhat easier interpretations when C is the category
of topological spaces. To describe these, note that any simplicial set may be regarded
as a simplicial space which is discrete in every dimension, and if U∗ and W∗ are
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simplicial spaces then the set of maps fromU∗ toW∗ has a natural topology coming
from the compact-open topology on function spaces. Using these observations, one
checks that

(i) Un ∼= Map(�n,U∗),
(ii) [coskn U ]k ∼= Map(skn�k,U∗), and

(iii) MnU ∼= Map(∂�n,U∗).

The first property is immediate from the Yoneda lemma. The second property fol-
lows from the first and the adjunction between skn and coskn. The third property
is a special case of the second.

Finally, say that a map of spaces Z → X is an open covering map if it is
isomorphic to a map of the form

∐
a Ua → X where {Ua} is an open cover of X.

Definition 4.1. A hypercover of a spaceX is an augmented simplicial spaceU∗ →
X such that the maps Un → MX

n U are open covering maps for all n ≥ 0. Here
MX
n U denotes the nth matching object ofU∗ computed in the category s(Top ↓ X)

of simplicial spaces over X.

Note that MX
0 U

∼= X, so the condition for n = 0 says that U0 → X is an
open covering map. Also MX

1 U
∼= U0 ×X U0, so when n = 1 we are requiring

U1 → U0 ×X U0 to be an open covering map. The reader should be aware that
when n > 1 the objects MnU and MX

n U turn out to be isomorphic, so one can
forget about the extra complication of the overcategory.

Using properties (i)–(iii) above, it can be checked that ifU∗ → X is a hypercov-
er andK → L is an inclusion of finite simplicial sets, then the map Map(L,U∗) →
Map(K,U∗) is also an open covering map. From this, it follows that coskXn U∗ → X

is a hypercover whenever U∗ → X is a hypercover. Also, each map Uk →
[coskXn U ]k is an open covering map.

We leave it to the reader to check that in a hypercover each Un must be a dis-
joint union of open subsets of X, and that Čech complexes are the hypercovers for
which the mapsUn → MX

n U are all isomorphisms. Generalizing this, a hypercover
U∗ → X is called bounded if there exists an N such that the maps Un → MX

n U

are isomorphisms for all n > N . The smallest such N for which this happens is
called the dimension of the hypercover. Said intuitively, the bounded hypercovers
of dimension N are the hypercovers for which the refinement process stops after
the N th level. A hypercover U∗ → X has dimension at most N if and only if
U∗ ∼= coskXN U∗.

Lemma 4.2. IfU∗ → X is a bounded hypercover, then hocolimU∗ → X is a weak
equivalence.

A more detailed version of the following proof, given in the context of an
arbitrary Grothendieck topology, appears in [DHI].

Proof. We proceed by induction, starting from the fact that bounded hypercovers
of dimension 0 are just Čech complexes and therefore are handled by Theorem 3.1.

Suppose that U∗ → X is a bounded hypercover of dimension n+ 1. Define V∗
to be coskn U∗, so V∗ is a bounded hypercover of dimension at most n. Therefore,
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we may assume by induction that hocolim V∗ → X is a weak equivalence. The
canonical map U∗ → V∗ gives an open covering map Un+1 → Vn+1, by the very
definition of what it means for U∗ to be a hypercover (since Vn+1 = Mn+1U ). In
fact, one can check that Uk → Vk is an open covering map for all k.

Consider the following bisimplicial object, augmented horizontally by V∗:

V∗ U∗�� U∗ ×V∗ U∗���� · · ·������

The kth row is the (augmented) Čech complex for the open covering mapUk → Vk .
Note that for 0 ≤ k ≤ n the kth row is the constant simplicial object with value
Uk because Uk → Vk is the identity. Call this bisimplicial object (without the
horizontal augmentation) W∗∗.

Let D∗ denote the diagonal of W∗∗. Standard homotopy theory tells us that
hocolimD∗ may be computed (up to weak equivalence) by first taking the homot-
opy colimits of the rows of W∗∗, and then taking the homotopy colimits of the
resulting simplicial object. But the homotopy colimit of the kth row is just Vk by
Theorem 3.1. Since V∗ is a bounded hypercover of dimension at most n, we have
assumed that hocolim V∗ is weakly equivalent toX. So hocolimD∗ → X is a weak
equivalence.

We claim thatU∗ is a retract, overX, ofD∗. Note first that one has, in complete
generality, a map U∗ → D∗; in dimension k it is the unique horizontal degeneracy
W0k → Wkk (which is the diagonal map in the Čech complex).

To produce a map D∗ → U∗ it is enough to give skn+1D∗ → skn+1 U∗,
because U∗ = coskn+1 U∗. Notice that skn D∗ = skn U∗. Choosing any face map
[0] → [n + 1] gives a map Wn+1,n+1 → W0,n+1, which is just Dn+1 → Un+1.
This induces a corresponding map skn+1D∗ → skn+1U∗ as desired.

It is straightforward to check thatU∗ → D∗ → U∗ is the identity (becauseU∗ =
coskn+1 U∗ one only has to check it on (n+ 1)-skeleta), and all the maps commute
with the augmentations down to X. We have already shown that hocolimD∗ → X

is a weak equivalence. Since hocolimU∗ → X is a retract of hocolimD∗ → X, it
must also be a weak equivalence. 
�
Theorem 4.3. IfU∗ → X is a hypercover then the maps hocolimU∗ → |U∗| → X

are both weak equivalences.

Proof. The fact that hocolimU∗ → |U∗| is a weak equivalence follows from The-
orem 1.2: the simplicial object U∗ has free degeneracies (Definition A.4).

To show that hocolimU∗ → X is a weak equivalence, note first that we have an
isomorphism πk(hocolimU∗) → πk(hocolim [coskk+1 U∗]). This is true for any
map of simplicial spacesX∗ → Y∗ which is an isomorphism on (k+1)-skeleta – an
easy proof is to apply the singular functor everywhere to get into bisimplicial sets,
then use the diagonal in place of hocolim. But coskk+1 U∗ is a bounded hypercover,

so Lemma 4.2 gives us the isomorphism πk(hocolim[coskk+1 U∗])
∼=−→ πkX. 
�

4.4 Complete covers

In this section we replace hypercovers with a related concept which captures the
same phenomena. This second approach was suggested to us by Jeff Smith.
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Definition 4.5. An open cover U = {Ua} of a space X is called complete if for all
finite sets σ of indices, the intersection Uσ is covered by elements of U. It is called
a Čech cover if every Uσ is again an element of the cover.

Complete covers appear in [DT, Satz 2.2], where they were used in the context
of identifying quasi-fibrations. The paper [Mc1] then used them to detect weak
equivalences.

We blur the distinction between a cover and the full subcategory that it spans
inside the category of open sets of X. Given a cover U, we can construct an asso-
ciated simplicial space in the following way: For any n ≥ 0, let Pn denote the
category of nonempty subsets of {0, . . . , n}, where the maps are the inclusions.
Note that the assignment [n] �→ Pn defines a cosimplicial category in the obvious
way. (Application of the nerve functor everywhere gives the cosimplicial space
[n] → sd�n.)

Define �∗ to be the simplicial space

[n] �→
∐

F : Popn →U

F({0, . . . , n}),

where the coproduct runs over all functors Popn → U. The faces and degeneracies
are induced by those in P in the expected way.

To give a point in �3, for example, is to give the following data:

(1) A sequence of opens U0, . . . , U3 in U,
(2) 6 open subsets U01, U02, . . . , U23 in U such that Uij ⊆ Ui ∩ Uj ;
(3) 4 open subsets U012, . . . , U123 in U such that Uijk ⊆ Uij ∩ Ujk ∩ Uik;
(4) An open subset U0123 in U which is contained in all the Uijk;
(5) A point on U0123.

It is usually helpful to think of these open sets as indexed by the faces of a 3-simplex.
In forming the Čech complex of a cover U we are throwing in all the finite

intersections Uσ into the higher levels of the simplicial object, and these are typ-
ically objects which are not in U itself. The simplicial object �∗ is in some sense
the closest thing we can get to a Čech complex while requiring all the open sets to
belong to U.

Proposition 4.6.

(a) If the cover U is complete then �∗ is a hypercover of X.
(b) Regarding U as a category, let 	 : U → Top be the obvious inclusion. Then

hocolim 	 � |�∗|.
(c) If the cover U is complete then the natural map hocolim 	 → X is a weak

equivalence.

Proof. For part (a), consider the full subcategory P̄n of Pn consisting of all objects
except for {0, 1, . . . , n}. Then the matching space Mn� is equal to

∐

F̄ : P̄ opn →U

[ ⋂

σ∈P̄n
F̄ (σ )

]
.
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For example, a point in M3� is determined by the data in (1)–(3) above, together
with a point in U012 ∩ U013 ∩ U023 ∩ U123.

Since the cover is complete, for each functor F̄ : P̄ opn → U and each element
x of ∩σ∈P̄n F̄ (σ ), there exists an extension F of F̄ to Popn such that x belongs
to F({0, . . . , n}). This shows that �n → Mn� is an open covering map, which
finishes part (a).

Now we proceed to part (b). To form hocolim 	we can work in the Strom model
structure on Top (see Appendix A), where we first take the simplicial replacement

[n] �→
∐

U0→···→Un

U0

and then form the realization. Here the coproduct is indexed over all functors
�n → U, where �n denotes the category of n composable maps. Note that �∗
was formed in almost the same way as the simplicial replacement of 	, except we
indexed the coproduct by functors Popn → U. Each Pn is essentially just a sub-
division of �n, so it’s not surprising that |�∗| is another model of the homotopy
colimit.

In somewhat more detail: Let sd′ denote the ‘opposite’ of the usual subdivision
functor on sSet , in which the orientations of all the simplices have been changed
so that they point away from the barycentres, rather than towards them. (We need
this because we are using Popn rather than Pn.) The functor sd′ has a right adjoint
Ex′. There is a natural ‘first vertex map’ sd′K → K , inducingK → Ex′K . Given
our diagram 	 : U → Top, the realization of the simplicial replacement is isomor-
phic to the coend 	 ⊗U B, where B : U → sSet sends Ua to the classifying space
B(Ua ↓ U). Likewise, one checks that the realization of �∗ is isomorphic to the
coend 	⊗U Ex′ B, where Ex′ B is the obvious composite functor. The natural map
B → Ex′ B is an objectwise weak equivalence. The object B of sSetU is cofibrant
(see [H, Cor. 14.8.8]), where this diagram category has the projective model struc-
ture described in Section 1.7. The exact same arguments show that Ex′ B is also
cofibrant in this structure. So we have an objectwise weak equivalence between
two cofibrant diagrams. The diagram 	 : U → Top is objectwise cofibrant (since
we are working with the Strom model structure on Top), and so by [H, Cor. 18.4.5]
it follows that 	 ⊗U B → 	 ⊗U Ex′ B is a weak equivalence.

Finally, part (c) is an immediate consequence of (a), (b), and Theorem 4.3. 
�
The following corollary was originally proven by McCord [Mc1, Th. 6], but

is an easy consequence of our hypercovering theorem. It generalizes May’s result
from Corollary 2.3, which handled the case of Čech covers. For the proof we will
need the following observations: (1) If U → X is an open covering map and
f : Y → X is any map, there is an induced open covering map Y ×X U → Y .
(2) If U∗ → X is a hypercover and f : Y → X is a map of spaces, one gets a
hypercover f−1U∗ → Y whose space in level n is Y ×X Un.

Corollary 4.7. Let f : X → Y be a map of spaces. Suppose there is a complete
cover U = {Ua} of Y such that each f−1(Ua) → Ua is a weak equivalence. Then
f itself is a weak equivalence.
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Proof. From U form the associated hypercover �Y∗ as described in the paragraph
preceding Proposition 4.6. Pulling this back to X gives a hypercover �X∗ :=
f−1�Y∗ , as described above (note that this is not the hypercover associated to
the covering {f−1Ua}). Now f induces a map �X∗ → �Y∗ compatible with the
augmentations. This map of simplicial spaces is a levelwise weak equivalence, by
assumption. Upon taking homotopy colimits we get

hocolim�X∗
∼ ��

∼
��

hocolim�Y∗
∼

��
X �� Y,

and so we conclude that X → Y is also a weak equivalence. 
�

4.8 Generalized hypercovers for topological spaces

Up until now we have only considered open covers, but now we turn to a broader
notion. We’ll say that a map p : E → B of spaces is a generalized cover if
it is locally split: that is, every element of B has a neighborhood U such that
p−1(U) → U admits a section. Observe that covering spaces, and in fact fibre
bundles in general, are generalized covers.

Definition 4.9. An augmented simplicial space U∗ → X is a generalized hyper-
cover of X if the maps Un → MX

n U are generalized covers.

Proposition 4.10. If U∗ is a generalized hypercover of X then hocolimU∗ → X

is a weak equivalence.

Proof. The general results of [DHI] show that this is a formal consequence of
Theorem 4.3, because open covers and generalized covers generate the same Grot-
hendieck topology on topological spaces. To keep within the spirit of the present
paper, however, we will also give an elementary proof.

One can almost repeat all of the results leading up to Theorem 4.3 for gener-
alized covers verbatim, but there is the slight problem that for a generalized cover
E → X the Čech complex Č(E) need not be Reedy cofibrant, even in the Strom
model category. Here Č(E)∗ is the simplicial space whosenth level isE×X · · ·×XE

(with n+1 factors), and for Reedy cofibrancy one needs to know that the inclusion
of the ‘fat diagonals’ in each Č(E)n are cofibrations. Although this will be satisfied
in almost all real-life situations, we avoid the issue by working only with hocolims.

Using the same arguments as in Lemma 4.2 and Theorem 4.3, one reduces to
showing that if E → X is a generalized cover then π : hocolim Č(E)∗ → X is
a weak equivalence. Since E → X is a generalized cover, there is an open cover
{Ua} ofX such that the map has a section over eachUa . By Corollary 2.3, it suffices
to prove that π−1(Uσ ) → Uσ is a weak equivalence for every σ . But for any open
U ⊆ X, π−1(U) is homeomorphic to hocolim Č(p−1U)∗ (the argument is the
same as for realizations – see the first paragraph of the proof of Theorem 2.1). So
at this point we have further reduced to the case where E → X has a section.



682 D. Dugger, D. C. Isaksen

But a section gives a contracting homotopy for the augmented simplicial space
Č(E)∗ → X, or equivalently a homotopy equivalence between Č(E)∗ and the con-
stant simplicial space withX in every dimension. So if�1 denotes the usual simpli-
cial set, regarded as a discrete simplicial space, we have a homotopy Č(E)∗×�1 →
Č(E)∗. One can check that if Z∗ is any simplicial space, then the two inclusions
Z∗ ↪→ Z∗ ×�1 induce weak equivalences after taking hocolims (there are differ-
ent ways to prove this, one of which is to quote [D1, Thm 6.1]). It follows that a
homotopy equivalence between simplicial spaces induces a homotopy equivalence
between their hocolims, and so hocolim Č(E)∗ → X is a homotopy equivalence.


�

Corollary 1.5 is an immediate consequence of the above proposition.

Example 4.11. LetG be a topological group and consider the usualG-fibre bundle
ξ : EG → BG. Form the Čech complex Č(ξ)∗, which is a generalized hypercover
of BG. Using only the fact that EG has a free G-action, one can see that the nth
level of Č(ξ)∗ is homeomorphic to Gn × EG, and the face and degeneracy maps
are the familiar ones of the two-sided bar construction B(∗,G,EG). Now using
that EG is contractible, we find that Č(ξ)∗ is levelwise weakly equivalent to the
simplicial space

∗ G���� G×G · · · .������

The above proposition tells us that |Č(ξ)∗| � BG, and so in this way we recover
the usual bar construction for BG.

5 Topological realization functors for A
1-homotopy theory

Let k be a field. Morel and Voevodsky [MV] produced a model category Spc(k)
which captures the ‘motivic homotopy theory’ of smooth schemes over k. Here
Spc(k) stands for ‘spaces over k’. There are several possible choices for what
model category to choose, all Quillen equivalent in the end, but we choose our
reference point to be the category of simplicial presheaves on the Nisnevich site
of smooth schemes over Spec k, with the model structure provided in [J, Appendix
B].

When k comes with an embedding k ↪→ C, then any k-scheme X gives rise to
a topological spaceX(C) consisting of its C-valued points with the analytic topol-
ogy. A natural expectation is to use this functor to relate Spc(k) to the usual model
category Top of topological spaces. Morel and Voevodsky showed how to extend
this functor on the level of homotopy categories (by somewhat awkward methods),
but they didn’t produce functors at the model category level. In this section we use
Proposition 4.10 to produce such functors, with the small provision that we have
to replace Spc(k) with a Quillen-equivalent variant. We also address the situation
when k ↪→ R, in which case one can construct topological realization functors into
Z2-equivariant spaces.

As in [D2], a Quillen pairL : M � N : R will be called a Quillen map M → N.
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5.1 The Complex case

Let T denote either the Nisnevich or étale Grothendieck topology on the category
Sm/k of smooth k-schemes. In the terminology of [D2], let Spc′(k)T denote the
universal model category built from Sm/k subject to the following relations:

(1) X � Y
∼−→ (X ∪ Y ) (here � denotes the coproduct in our model category,

whereas ∪ denotes disjoint union of schemes);
(2) hocolimU∗

∼−→ X for any T-hypercover U∗ of a smooth scheme X (called
‘basal hypercovers’ in [DHI]);

(3) X × A
1 ∼−→ X.

(Relation (1) is morally a special case of (2), but must be included separately for
technical reasons – see [DHI]).

The model categories Spc(k)T and Spc′(k)T have the same underlying category
and the same class of weak equivalences, but differ in their notions of cofibration
and fibration. They are injective and projective versions of the same homotopy
theory.

Theorem 5.2. There are Quillen maps Spc′(k)et → Top and Spc′(k)Nis → Top

sending a smooth k-scheme X to X(C).

Proof. By general nonsense from [D2], to give a Quillen map Spc′(k)T → Top

we just need to give a functor Sm/k → Top which respects the above relations.
The functor we’re interested in is X �→ X(C), and this clearly preserves relations
(1) and (3). In the case of the étale topology, the fact that it preserves relation (2)
is just Proposition 4.10; the point is that if p : E → B is an étale cover, then
p(C) : E(C) → B(C) satisfies the hypotheses of the inverse function theorem and
hence is locally split.

Since the étale topology is finer than the Nisnevich topology, there is an obvious
map Spc′(k)Nis → Spc′(k)et (in essence, there are more relations of type (2) for the
étale topology). So one also gets a topological realization map Spc′(k)Nis → Top

by composition. 
�
It is possible to show that the functor X �→ X(C) takes elementary distin-

guished squares [MV, Sec. 3.1, Def. 1.3] to homotopy pushout squares of topo-
logical spaces. Together with results of [B], this can be used to give an alternative
proof of the above theorem for the Nisnevich topology.

5.3 The Real case

If we have a Real field k ↪→ R, then the spaceX(C) comes equipped with an action
of the group Gal(C/R) = Z2. So we might hope to compare Spc′(k) to a model
category of Z2-equivariant spaces.

Recall that ifG is a finite group then there are two notions of weak equivalence
for G-spaces, called the non-equivariant and G-equivariant equivalences. An
equivariant map X → Y is a non-equivariant equivalence if it is a weak equiva-
lence after forgetting the equivariant structure, and it is aG-equivariant equivalence
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if XH → YH is a non-equivariant weak equivalence for every subgroup H ⊆ G.
There are associated G-equivariant and non-equivariant model structures on the
category of G-spaces, which we will denote Top(G) and Top(G)non.

If p : E → B is an equivariant map which is also a covering space (non-equiv-
ariantly), the map hocolim Č(E)∗ → B is a non-equivariant equivalence but not
necessarily aG-equivariant equivalence. For instance, if p isG → ∗ then the map
hocolim Č(E)∗ → B is equal toEG → ∗. So when we have a subfield k ↪→ R the
arguments given above show that the functor X �→ X(C) induces a Quillen map
Spc′(k)et → Top(Z2)non, but not a Quillen map Spc′(k)et → Top(Z2). However,
when we use the Nisnevich topology something special happens.

Lemma 5.4. IfE → B is a Nisnevich cover of k-schemes, thenE(C)Z2 →B(C)Z2

is locally split.

For a counterexample to this in the case of étale covers, try Spec C → Spec R.

Proof. First note thatX(C)Z2 is homeomorphic toX(R) for any schemeX over k.
The map p(R) : E(R) → B(R) is surjective by the defining property of Nisnevich
covers; every R-point in B lifts to E.

By definition of étale covers, p(R) satisfies the hypothesis of the inverse func-
tion theorem. Since p(R) is surjective, it is locally split. 
�
Theorem 5.5. There is a Quillen map Spc′(k)Nis → Top(Z2) sending a smooth
k-scheme X to X(C).

Proof. The argument exactly parallels the non-equivariant case in Theorem 5.2,
so the only nontrivial part is to show that if U∗ → X is a Nisnevich hypercover
then the map hocolimU∗(C) → X(C) is a Z2-equivariant weak equivalence of
Z2-spaces. The fact that it is a non-equivariant equivalence has already been dis-
cussed in Theorem 5.2, because U∗ → X is in particular an étale hypercover. So
we must consider what happens when we take Z2-fixed points.

It is a fact that for any diagramD ofG-spaces (G any finite group) and any sub-
group H of G, one has (hocolimD)H � (hocolimDH) (see Remark 5.6 below).
So we just need to convince ourselves that hocolim{U∗(C)Z2} → X(C)Z2 is a
non-equivariant weak equivalence. But by the above lemma one sees that U∗(C)Z2

is a generalized hypercover of X(C)Z2 , and so the result is an instance of Proposi-
tion 4.10. 
�
Remark 5.6. In the above proof we needed the fact that (hocolimD)H is weakly
equivalent to hocolim(DH ). This is well-known in equivariant topology, but it’s
hard to find an actual reference. We give a brief sketch, for which we are grateful
to Michael Mandell.

First of all, it clearly suffices to consider the case where all the Di are cofi-
brant. This means in particular that they are Hausdorff. We form hocolimD by
first writing down the simplicial replacement of the diagram, and then taking geo-
metric realization. Taking H -fixed points obviously commutes with the simplicial
replacement functor, so it suffices to worry about the geometric realization part. But
one can check that if X∗ is a simplicial space in which all Xn are Hausdorff, then
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|X∗|H is homeomorphic to |XH∗ |. To do this, use the skeletal filtration on |X∗| and
the fact that |Skn X∗| is obtained from |Skn−1X∗| by pushing out along a closed
inclusion (this is one of the places where the Hausdorff condition is needed). Check
that taking fixed-points commutes with filtered colimits, and for Hausdorff spaces
it also commutes with pushouts along closed inclusions.

Appendix A. Homotopy colimits for diagrams of non-cofibrant spaces

Let Top denote the category of all topological spaces, with its usual model category
structure. Given a diagram D : I → Top, the usual instructions for computing the
homotopy colimit of D are (1) to apply a cofibrant-replacement functor to every
object in the diagram, and (2) to then use an explicit formula like that of Bousfield-
Kan [BK, Sec. XII.2]. This is the situation in an arbitrary model category. In this
section we show that for the special case of Top, the first step of cofibrant-replace-
ment is actually not needed. What we show is that no matter what formula one uses
for computing homotopy colimits – whether it is the Bousfield-Kan formula or your
favorite alternative – that formula always gives a homotopy invariant construction
in Top, even without the cofibrant-replacement step. This fact seems to be folklore
in certain circles, although not well-known in others.

The most useful way to formulate this result seems to be in model category
terms, as a comparison between the usual model structure on Top and the Strom
model structure, where everything is cofibrant. See Theorem A.7.

To begin with, we need the following

Lemma A.1. Let A → B and X → Y be weak equivalences. Given a diagram

A×Dn

��

A× Sn−1��

��

�� X

��
B ×Dn B × Sn−1�� �� Y,

where the maps in the left-hand-square are the obvious ones, the induced map
from the pushout of the top row to the pushout of the bottom row is also a weak
equivalence.

Note that if A and B are cofibrant then this is an easy consequence of left-
properness for Top, but we claim the result in greater generality.

Proof. LetXA and YB be the pushouts of the top and bottom rows respectively, and
write f : XA → YB for the map between them. We will produce a suitable cover
of these spaces and use Proposition 2.2.

Let UB be the pushout of

B × (Dn − {0}) B × Sn−1 ���� Y.

Write Dε for {x ∈ Dn : |x| < ε} (where 0 < ε < 1), and let VB = B ×Dε . The
spaces UB and VB clearly form an open cover of YB , and notice that UB deforma-
tion-retracts down to Y . The intersection UB ∩ VB is equal to B × (Dε − {0}).
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The same definitions give us a cover {UA, VA} of XA, and it is easy to check
that f−1(UB) = UA and f−1(VB) = VA. So the map f−1(VB) → VB is the
map A × Dε → B × Dε , which is a weak equivalence. Similar reasoning shows
that f−1(UB ∩ VB) → UB ∩ VB is a weak equivalence. Finally, one argues that
f−1(UB) → UB is a weak equivalence because it deformation-retracts down to
X → Y . Proposition 2.2 now shows that XA → YB is a weak equivalence. 
�

We’ll say that an inclusion Y ↪→ Z is relatively T1 if given any open setU in Y
and any point z of Z\U , there is an open set W of Z such that U ⊆ W and z /∈ W
(compare the similar definition from [Ho, p. 50]). It follows that if E is any finite
subset of Z\U , one can find an open set W ⊆ Z which contains U and doesn’t
intersect E. Note that a space X is T1 precisely if all the inclusions {x} ↪→ X are
relatively T1.

Lemma A.2. Given a pushout diagram of the form

A× Sn��

��

�� Y��

��
A×Dn+1 �� Z,

the inclusion Y ↪→ Z is relatively T1.

Proof. Suppose given a point z in Z and an open U in Y . Either z is in Y or else
it is represented by a pair (a, t) where t is in the interior of Dn+1. The argument
works the same for the two cases, and so for convenience we’ll assume the latter.

Pull back U to A× Sn and express it as a union of rectangles Vi ×Wi , where
Vi is open in A and Wi is open in Sn. Each Wi can be fattened into an open subset
W ′
i of Dn+1 with the properties that W ′

i ∩ Sn = Wi and W ′
i does not contain t .

Let M be the union of the Vi ×W ′
i ; it is an open subset of A × Dn+1. Let N

be the union of the images ofM and U in Z. One checks that N ∩ Y = U , and the
pullback ofN toA×Dn+1 isM . SoN is open in Z andN contains U , butN does
not contain z. 
�

The following lemma is well-known for closed inclusions of T1-spaces (see
also [Ho, Prop. 2.4.2]). The usual proof still works in our case.

Lemma A.3. Suppose that Y1 ↪→ Y2 ↪→ · · · is a sequence of relatively T1 inclu-
sions and that K is a compact space. Then any map f : K → colim Y factors
through some Yk .

Proof. Suppose the map does not factor through any Yk . By taking a subsequence
of Y if necessary, we can find a sequence of points k1, k2, . . . inK with the property
that f (ki) lies in Yi\Yi−1.

Pick an n and set Vn = Yn. Next, choose an open set Vn+1 in Yn+1 which con-
tains Vn but doesn’t contain f (kn+1). Then pick an open set Vn+2 in Yn+2 which
contains Vn+1 but neither f (kn+1) nor f (kn+2). Continuing this process gives an
infinite sequence of opens, so their colimit Wn is an open subset of colim Y .
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As n varies, the open subspaces Wn form a cover of colim Y . But f (K) is a
compact subspace of colim Y , and it is not covered by any finite subcover. This is
a contradiction. 
�

We now need some machinery related to simplicial spaces.

Definition A.4. A simplicial space X∗ is said to be split, or to have free degener-
acies, if there exist subspaces Nk ↪→ Xk such that the canonical map

∐

σ

Nσ → Xk

is an isomorphism. Here the variable σ ranges over all surjective maps in � of
the form [k] → [n], Nσ denotes a copy of Nn, and the map Nσ → Xk is the one
induced by σ ∗ : Xn → Xk (see [AM, Def. 8.1]).

The idea is that the spacesNk represent the ‘non-degenerate’ part ofXk , sitting
inside of Xk as a direct summand. It is an easy exercise to check that if X∗ has
free degeneracies and all the Nk are cofibrant spaces, then X∗ is Reedy cofibrant
in sTop.

If X∗ is any simplicial space, let Skn X∗ be the simplicial space equaling X∗
through dimension n and equaling the degenerate subspaces ofX∗ in larger dimen-
sions. This is slightly different than the n-truncated simplicial space skn X∗. There
are maps Sk0X∗ → Sk1X∗ → · · · and the colimit is X∗. It follows that |X∗|
is equal to colimn |Skn X∗|, using that geometric realization is a left adjoint (and
this doesn’t require any assumptions on X, only hinging upon the fact that the
spaces�n are locally compact Hausdorff). An important point is that whenX∗ has
free degeneracies the space |Skn X∗| is obtained from |Skn−1X∗| via the pushout
diagram

Nn × ∂�n

��

�� |Skn−1X∗|

��
Nn ×�n �� |Skn X∗|.

(A.1)

Proposition A.5. Let X∗ be a simplicial space with free degeneracies. If K is a
compact space then any map K → |X∗| factors through some |Skn X∗|.
Proof. This is a direct application of Lemmas A.2 and A.3, using the skeletal fil-
tration of |X∗| and the pushout square (A.1). 
�

The following corollary is the crucial ingredient for Theorem A.7. It is very
similar to things in the literature, notably [M1, Th. 11.13] and [S2, Lem. A.5].
May’s result assumes the spaces are compactly-generated and Hausdorff, and also
that the realizations are simply-connected. Segal’s result is more similar to ours,
and the proofs follow the same pattern, but he works with homotopy equivalences
rather than weak equivalences.

Corollary A.6. If X∗ → Y∗ is a map of simplicial spaces with free degeneracies
such that Xn → Yn is a weak equivalence for each n, then |X∗| → |Y∗| is also a
weak equivalence.
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Proof. For every k and every basepoint ∗ of X0, there is an isomorphism

colim
n

πk(| Skn X∗|, ∗) → πk(|X∗|, ∗)

(and the same statement holds with X∗ replaced by Y∗). This follows from Propo-
sition A.5, taking K to be a sphere. Therefore, it suffices to show that |Skn X∗| →
|Skn Y∗| is a weak equivalence. Using induction, this follows from the pushout
square (A.1) and Lemma A.1. 
�

Recall that the Strom model category is a model structure for topological spaces,
denoted TopS , in which the weak equivalences are homotopy equivalences and the
cofibrations (resp., fibrations) are the Hurewicz cofibrations (resp., fibrations). Note
that all objects are cofibrant in this structure.

Theorem A.7. Let D : I → Top be a diagram of spaces. Then the homotopy co-
limits of D as computed in Top and TopS have the same weak homotopy type.

Proof. We don’t know if the Strom model category is simplicial – the usual defi-
nitions for the simplicial action run into adjointness problems because Top is the
category of all topological spaces. However, one may check directly that the ho-
motopy colimit of a diagram in TopS can still be computed by first taking the
simplicial replacement of D and then applying the geometric realization functor,
as usual. No cofibrant-replacement is necessary, since all objects are cofibrant.

In Top we first apply a cofibrant-replacement functor to all the objects in the
diagram, and only then do we take simplicial replacement and realize. Simplicial
replacements always have free degeneracies (see [D2, Proof of Lem. 2.7]), hence
Corollary A.6 applies. 
�
Remark A.8. Theorem A.7 also holds if one uses the category of compactly-gener-
ated, weak Hausdorff spaces with its usual model structure. The same proofs work,
with some extra caution that the various colimits are what they’re supposed to be.

Finally, we give a short proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem A.7, we can compute the homotopy colimit in
the Strom model category. In this model structure U∗ is Reedy cofibrant because it
has free degeneracies. So the realization already has the correct homotopy type.


�
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