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VANISHING LINES IN CHROMATIC HOMOTOPY THEORY

ZHIPENG DUAN, GUCHUAN LI, AND XIAOLIN DANNY SHI

Abstract. We show that at the prime 2, for any height h and G ⊂ Gh a finite subgroup
of the Morava stabilizer group, the RO(G)-graded homotopy fixed point spectral sequence
for Eh has a strong horizontal vanishing line of filtration Nh,G, a specific number depending
on h and G. It is a consequence of the nilpotence theorem that such homotopy fixed point
spectral sequences all admit strong horizontal vanishing lines at some finite filtration. Here,
we establish specific bounds for them. Our bounds are sharp for all the known computations
of EhG

h
when G is cyclic.

Our proof is by investigating the effect of the norm functor on the Hill–Hopkins–Ravenel
differentials in the Tate spectral sequence. As a consequence, we will also show that the RO(G)-

graded slice spectral sequence of (NG
C2

v̄h)
−1BP ((G)) has a horizontal vanishing line at the same

filtration Nh,G. As an immediate application, we establish a bound for the orientation order
Θ(h,G), the smallest number such that the Θ(h,G)-fold direct sum of any real vector bundle
is EhG

h
-orientable.
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1. Introduction

1.1. Motivation and main theorem. Chromatic homotopy theory originated with Quillen’s
remarkable observation of the relationship between the homotopy groups of the complex cobor-
dism spectrum and the Lazard ring [Qui69]. Later on, the work of Miller–Ravenel–Wilson on
periodic phenomena in the stable homotopy groups of spheres [MRW77] and Ravenel’s nilpotence
conjectures led to what is now called the chromatic point of view. It is a powerful tool that stud-
ies periodic phenomena in the stable homotopy category by analyzing the algebraic geometry
of smooth one-parameter formal groups. The moduli stack of formal groups has a stratification
by height, which corresponds to localization with respect to the Lubin–Tate theories Eh, h ≥ 0.
This stratification organizes the search for large scale phenomena in stable homotopy theory.
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More precisely, the chromatic convergence theorem of Hopkins and Ravenel [Rav92] exhibits
the p-local sphere spectrum S0

(p) as the homotopy inverse limit of the chromatic tower

· · · −→ LEh
S0 −→ · · · −→ LE1S

0 −→ LE0S
0.

Each stage of the tower, LEh
S0, is the Bousfield localization of the sphere spectrum with respect

to the height-h Lubin–Tate theory Eh. These localizations can be inductively computed via the
chromatic fracture square, which is the homotopy pullback square

LEh
S0 LK(h)S

0

LEh−1
S0 LEh−1

LK(h)S
0.

Devinatz and Hopkins [DH04] proved that LK(h)S
0 ≃ EhGh

h , where Gh is the Morava stabilizer
group. Here, Goerss–Hopkins–Miller showed that the continuous action of Gh on π∗Eh can be
refined to a unique E∞-action of Gh on Eh [Rez98, GH04]. Furthermore, the K(h)-local Eh-
based Adams spectral sequence of LK(h)S

0 can be identified with the Gh-homotopy fixed point
spectral sequence of Eh:

Es,t
2 = Hs

c (Gh, πtEh) =⇒ πt−sLK(h)S
0.

Henn [Hen07] proposed that the K(h)-local sphere LK(h)S
0 can be built up from the spectra

of the form EhG
h , where G is a finite subgroup of Gh. This has been explicitly realized at heights

1 and 2 [Hen07, GHMR05, Bea15, BG18].
From this point of view, the spectra EhG

h are the building blocks of the p-local stable homotopy
category. In particular, their homotopy groups π∗E

hG
h detects important families of elements in

the stable homotopy groups of spheres [HHR16, LSWX19, BMQ20]. The computation of these
homotopy groups is a central topic in chromatic homotopy theory.

In this paper, We focus on the prime p = 2. Hewett classified all the finite subgroups of Gh

[Hew95] (see also [Buj12]). If h = 2m−1n where n is odd, then when m 6= 2, the maximal finite
2-subgroups of Gh are isomorphic to C2m , the cyclic group of order 2m; when m = 2, h is of the
form 4k − 2, and the maximal finite 2-subgroups are isomorphic to Q8, the quaternion group.

Due to the difficulty of describing the explicit action of the stabilizer group Gh on Eh, com-
putations at the prime 2 has been limited to heights 1 and 2 until the recent computational
breakthroughs of Hill–Hopkins–Ravenel [HHR16] (norms of Real bordism and the slice spectral

sequence) and Hahn–Shi [HS20] (Real orientation). This has led to the computation of EhC2

h for

all heights [HS20], and EhC4
4 [HSWX18] at height 4.

For h > 0 and H a finite 2-subgroup of Gh, let Nh,H be the positive integer defined as follows:

(1) When (h,H) = (2m−1n,C2m), Nh,H = 2h+m − 2m + 1.
(2) When (h,H) = (4k − 2, Q8), Nh,H = 2h+3 − 7.

Based on the classification of the finite 2-subgroups of Gh, this accounts for all possible pairs
(h,H).

The main result of this paper is the following:

Theorem. At any height h and G ⊂ Gh a finite subgroup, let H be a Sylow 2-subgroup of G.
There is a strong horizontal vanishing line of filtration Nh,H in the RO(G)-graded homotopy fixed
point spectral sequence of Eh.

Recall that having a strong horizontal vanishing line of filtration Nh,H means that the spectral
sequence collapses after the ENh,H

-page, and there are no elements of filtration greater than or
equal to Nh,H that survives to the E∞-page.
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Our motivation for proving the main theorem is as follows: classically, it is a consequence
of the nilpotence theorem that the homotopy fixed point spectral sequences of the Lubin–Tate
theories all admit strong horizontal vanishing lines at some finite filtration (see [DH04, Section 5]
and [BGH17, Section 2.3]). While theoretically useful, this fact does not help very much when
doing concrete computations. Since we don’t know where exactly the vanishing line occurs, we
can’t use its mere existence to prove any differentials.

The recent computations of Hill–Shi–Wang–Xu demonstrate that having a precise strong
horizontal vanishing line is extremely useful for equivariant computations of Lubin–Tate theories.
In [HSWX18], the authors first analyzed the slice spectral sequence of BP ((C4))〈1〉 (a connective
model of E2 equipped with a C4-action). They proved that there is a horizontal vanishing line of
filtration 16, and every class on or above this line must die on or before the E13-page [HSWX18,
Theorem 3.17]. Using this fact, they gave a much shorter proof of all the slice differentials in
[HHR17].

For the next case, BP ((C4))〈2〉 (a connective model of E4 equipped with a C4-action), a similar
situation occurred: there is a horizontal vanishing line of filtration 96, and every class on or above
this line must vanish on or before the E61-page. This theorem is called the Vanishing Theorem
[HSWX18, Theorem 9.2], and it is the key to producing all of the higher slice differentials.

The strong vanishing lines proven in our main theorem will render future computations of
Lubin–Tate theories and norms of Real bordism theories much more tractable.

1.2. Main results. We will now give a more detailed summary of our results and describe the
contents of this paper.

In Section 2, we recall some basic facts of our spectral sequences of interest. More specifically,
the classical Tate diagram induces a Tate diagram of spectral sequences (see Section 2 for the
definitions of these spectral sequences)

HOSS(X) //

=

��

SliceSS(X)

��

// LSliceSS(X)

��

HOSS(X) // HFPSS(X) // TateSS(X).

The interaction between these spectral sequences will be crucial for proving our main theorem.
We will also recall the spectrum BP ((G)), its slice filtration in the case when G is a cyclic

group of order 2m, and some special classes on the E2-page of its slice spectral sequence. We
prove all the differentials in the C2-slice spectral sequence of i∗C2

BP ((G)) when G = C2m and Q8

(Theorem 2.3). While not stated elsewhere, this is a straightforward consequence of [HHR16,
Theorem 9.9].

In Section 3, we compare the slice spectral sequence, the homotopy fixed point spectral se-
quence, and the Tate spectral sequence by analyzing the maps

SliceSS(X) −→ HFPSS(X) −→ TateSS(X)

extracted from the Tate diagram of spectral sequences above. Works of Ullman [Ull13] and
Böckstedt–Madsen [BM94] show that as maps between integer-graded spectral sequences, both
maps induce isomorphisms in a certain range. For our purposes, we extend their isomorphism
regions to the RO(G)-graded pages.

Theorem (Definition 3.1 and Theorem 3.3). For V ∈ RO(G), let

τ(V ) := min
{e}(H⊂G

|H | · dimV H .
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The map from the slice spectral sequence to the homotopy fixed point spectral sequence induces an
isomorphism on the E2-page in the region defined by the inequality

τ(V − s− 1) > |V |.

Furthermore, this map induces a one-to-one correspondence between the differentials in this iso-
morphism region.

The proof of Theorem 3.3 is by application of the main result in Hill–Yarnall [HY18] about
the relationship between the slice connectivity of an equivariant spectrum and the connectivity
of its geometric fixed points.

The classical analysis about the map from the homotopy fixed point spectral sequence to the
Tate spectral sequence almost generalizes immediately to give an RO(G)-graded isomorphism
region.

Theorem (Theorem 3.6). The map from the RO(G)-graded homotopy fixed point spectral se-
quence to the RO(G)-graded Tate spectral sequence induces an isomorphism on the E2-page for
classes in filtrations s > 0, and a surjection for classes in filtration s = 0. Furthermore, there is
a one-to-one correspondence between differentials whose source is of nonnegative filtration.

In Section 4, we give a brief summary of the norm structure in equivariant spectral sequences.
The presence of the norm structure in our spectral sequences allows us to deduce the fate of
certain classes in the G-equivariant spectral sequence from information in the H-equivariant
spectral sequence, where H ⊂ G is a subgroup (Proposition 4.1).

In Section 5, we analyze the Tate spectral sequence of Eh.

Theorem (Theorem 5.1). For any height h and G ⊂ Gh a finite subgroup, let H be a Sylow
2-subgroup of G. All the classes in the RO(G)-graded Tate spectral sequence of Eh vanish after
the ENh,H

-page.

At any prime p, Mathew and Meier have shown that the map EhG
h → Eh is a faithful G-Galois

extension whenever G ⊂ Gh is a finite subgroup [MM15, Example 6.2]. This implies that the
Tate spectrum EtG

h is contractible [Rog08, Proposition 6.3.3]. As a consequence, all the classes
in the Tate spectral sequence of Eh must eventually vanish. Theorem 5.1 provides a concrete
bound for the vanishing page number when p = 2.

The proof of Theorem 5.1 requires us to analyze the G-equivariant orientation from BP ((G))

to Eh, as given by [HS20]. This orientation map factors through (NG
C2

v̄h)
−1BP ((G)):

BP ((G)) Eh

(NG
C2

v̄h)
−1BP ((G))

This induces a map of the corresponding Tate spectral sequences:

G- TateSS((NG
C2

v̄h)
−1BP ((G))) −→ G- TateSS(Eh).

Equipped with the results discussed in the previous sections, we first transport the differentials
from the C2-slice spectral sequence of i∗C2

(NG
C2

v̄h)
−1BP ((G)) to the C2-Tate spectral sequence of

i∗C2
(NG

C2
v̄h)

−1BP ((G)) by using the one-to-one correspondences proven in Section 3. Then, we use
the norm structure to deduce that the unit class in the RO(G)-graded Tate spectral sequence of
(NG

C2
v̄h)

−1BP ((G)) must die on or before the ENh,H
-page. Naturality and multiplicative structure

would then imply that the unit class in the RO(G)-graded Tate spectral sequence of Eh must
also die on or before the ENh,H

-page, and hence all the other classes must vanish after this page
as well.
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Our proof of the Tate vanishing for Eh works for any (NG
C2

v̄h)
−1BP ((G))-module to give the

following vanishing theorem.

Theorem (see Remark 5.4). Let M be a (NG
C2

v̄h)
−1BP ((G))-module, and H a Sylow 2-subgroup of

G. All the classes in the RO(G)-graded Tate spectral sequence of M vanish after the ENh,H
-page.

In Section 6, we turn our attention to the homotopy fixed point spectral sequence of Eh and
prove our main theorem.

Theorem (Theorem 6.1). At any height h and G ⊂ Gh a finite subgroup, let H be a Sylow 2-
subgroup of G. There is a strong horizontal vanishing line of filtration Nh,H in the RO(G)-graded
homotopy fixed point spectral sequence of Eh.

The proof of Theorem 6.1 is by using the vanishing theorem (Theorem 5.1) in the Tate spectral
sequence, combined with the comparison theorem (Theorem 3.6) between the homotopy fixed
point spectral sequence and the Tate spectral sequence.

Similarly, the same strong horizontal vanishing line exists in the homotopy fixed point spectral
sequence for (NG

C2
v̄h)

−1BP ((G)).

Theorem (Corollary 6.3). For any (NG
C2

v̄h)
−1BP ((G))-module M , there is a strong horizontal

vanishing line of filtration Nh,H in the RO(G)-graded homotopy fixed point spectral sequence of
M .

Corollary (Corollary 6.4). For all K(h)-local finite spectra Z, the homotopy fixed point spectral
sequence

Hs(G,EtZ) =⇒ πt−s(E
hG ∧ Z)

has a strong horizontal vanishing line at Nh,H .

In all the current known computations, our strong horizontal vanishing lines are sharp in the
case when H = C2m . More precisely, When H = C2, the strong horizontal vanishing line in the
homotopy fixed point spectral sequence of EhC2

h is at filtration exactly 2h+1 − 1. When H = C4,

the strong horizontal vanishing lines in the homotopy fixed point spectral sequences of EhC4
2 and

EhC4
4 are of filtrations exactly 13 and 61.

Conjecture. The strong horizontal vanishing line in Theorem 6.1 is sharp when the Sylow 2-
subgroup H is cyclic.

On the other hand, Bauer’s computation of tmf with the elliptic spectral sequence [Bau08]
implies that in the Q8-homotopy fixed point spectral sequence of E2, there is a strong horizontal
vanishing line of filtration 23. This is smaller than the bound given by our theorem, which is 25.

Question. When h = 4k− 2, what is the sharpest bound for the strong horizontal vanishing line
in the RO(Q8)-homotopy fixed point spectral sequence of Eh?

Question. What is the sharpest bound for the strong horizontal vanishing line for the homotopy
fixed point spectral sequence of EhGh

h ?

In Section 7, we prove the existence of horizontal vanishing lines in the slice spectral sequence.

Theorem (Theorem 7.1). When G = C2m or Q8, the RO(G)-graded slice spectral sequence of
any (NG

C2
v̄h)

−1BP ((G))-module M admits a horizontal vanishing line of filtration Nh,G.

In particular, Theorem 7.1 implies that there will be a horizontal vanishing line of filtration
121 in the C8-slice spectral sequence of ΩO, the detection spectrum of Hill–Hopkins–Ravenel that
detects all the Kervaire invariant elements [HHR16].

It is interesting to note that when G = Q8, even though there is no knowledge of the slice
filtration of BP ((Q8)) yet, Theorem 7.1 still applies to show that the slice spectral sequences of

(NQ8

C2
v̄h)

−1BP ((Q8))-modules all have strong horizontal vanishing lines of filtration Nh,Q8 .
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Question. What is the slice filtration of BP ((Q8))?

Nonequivariantly, Hovey and Sadofsky showed that after LK(n)-localization, v
−1
n BP splits as

a wedge of suspensions of v−1
n BP 〈n〉 [HS99, Theorem B]. Their argument generalizes to the C2-

equivariant setting to imply a splitting of v̄−1
n BPR as a wedge of (∗ρ2)-suspensions of v̄

−1
n BPR〈n〉

[LLQ19].
When G = C2m , since the quotient (NG

C2
v̄h)

−1BP ((C2m ))〈n〉 is a (NG
C2

v̄h)
−1BP ((C2m))-module,

Theorem 7.1 applies to show that there is a horizontal vanishing line of filtrationNh,C2m
in its slice

spectral sequence. The fact that (NC2m

C2
v̄h)

−1BP ((C2m )) and (NC2m

C2
v̄h)

−1BP ((C2m ))〈n〉 have the
same horizontal vanishing line suggests that a similar splitting should occur C2m -equivariantly.

Question. After LK(h)-localization, does (NC2m

C2
v̄h)

−1BP ((C2m )) split as a wedge of RO(C2m)-

graded suspensions of (NC2m

C2
v̄h)

−1BP ((C2m))〈n〉?

Without inverting NG
C2

v̄h, there is no horizontal vanishing line in the RO(C2m)-graded slice

spectral sequence of the non-localized quotient BP ((C2m))〈n〉, as we have elements of arbitrarily
high filtrations on the E∞-page. For example, the tower akσ is an infinite tower containing classes
of arbitrarily high filtrations that survive to the E∞-page. Interestingly, computations of BPR〈n〉,
BP ((C4))〈1〉, and BP ((C4))〈2〉 in [HK01, HHR17, HSWX18] suggest that horizontal vanishing lines
still exist in the integer-graded slice spectral sequence of the non-localized quotients.

Conjecture. There is a horizontal vanishing line of filtration Nh,C2m
in the integer-graded slice

spectral sequence of BP ((C2m ))〈n〉.

Finally, in Section 8, we give an application of our main theorem to study EhG
h -orientations of

real vector bundles. For h ≥ 0 and G ⊆ Gh a closed subgroup, let Θ(h,G) be the smallest number
d such that the d-fold direct sum of any real vector bundle is EhG

h -orientable. At the prime p = 2

and when G = C2, Kitchloo and Wilson [KW15] have studied EhC2

h -orientations. At all primes

and when G = Cp, Bhattacharya and Chatham [BC21] have studied E
hCp

k(p−1)-orientations.

We prove the following theorem, which uses the strong vanishing lines proven in Theorem 6.1
to give an upper bound for Θ(h,G) at the prime 2 for all heights h ≥ 0 and G ⊂ Gh a finite
group.

Theorem. (Theorem 8.4) For any height h ≥ 0 and G ⊂ Gh a finite subgroup, let d = 2 · |G| ·

|H |
Nh,H−1

2 , where H is a 2-Sylow subgroup of G. Then the d-fold direct sum of any real vector
bundle is EhG

h -orientable.

1.3. Acknowledgements. The authors would like to thank Agnès Beaudry, Prasit Bhattacharya,
Hood Chatham, Paul Goerss, Mike Hill, Tyler Lawson, Yunze Lu, Peter May, Zhouli Xu, Min-
cong Zeng, and Foling Zou for helpful conversations. We would like to especially thank Guozhen
Wang for reading and commenting on an earlier draft of our preprint and answering our numerous
questions.

2. Preliminaries

In this section, we will discuss the spectral sequences that are of interest to us. We will also
collect certain facts about these spectral sequences that we will need in the later sections.

Let X be a G-spectrum, and let P •X be the slice tower of X . The Tate diagram

EG+ ∧X //

≃

��

X //

��

ẼG ∧X

��

EG+ ∧ F (EG+, X) // F (EG+, X) // ẼG ∧ F (EG+, X)
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induces a diagram of towers:

EG+ ∧ P •X //

≃

��

P •X //

��

ẼG ∧ P •X

��

EG+ ∧ F (EG+, P
•X) // F (EG+, P

•X) // ẼG ∧ F (EG+, P
•X).

This diagram of towers further induces a Tate diagram of spectral sequences

(2.1)

HOSS(X) //

=

��

SliceSS(X)

1
��

// LSliceSS(X)

��

HOSS(X) // HFPSS(X)
2

// TateSS(X).

All the spectral sequences in (2.1) are RO(G)-graded spectral sequences. We pause to briefly
discuss notations:

(1) The spectral sequence associated with the tower EG+ ∧ P •X is the homotopy orbit
spectral sequence (HOSS) of X . It is a third and fourth quadrant spectral sequence, and
it converges to π⋆EG+ ∧ X . In the integer-graded page at the G/G-level, the spectral
sequence converges to πG

∗ EG+ ∧X = π∗XhG.
(2) The spectral sequence associated with the tower P •X is the slice spectral sequence

(SliceSS) of X . It is a first and third quadrant spectral sequence, and it converges
to π⋆X . In the integer graded page at the G/G-level, the spectral sequence converges to
πG
∗ X = π∗X

G.
(3) Following the treatment of a forthcoming paper by Meier–Shi–Zeng, the spectral sequence

associated with the tower ẼG ∧ P •X is called the localized slice spectral sequence of X
and is denoted by LSliceSS(X). It converges to π⋆ẼG ∧X .

(4) The spectral sequence associated with the tower F (EG+, P
•X) is the homotopy fixed

point spectral sequence (HFPSS) of X . It is a first and second quadrant spectral sequence,
and it converges to π⋆F (EG+, X). In the integer-graded page at the G/G-level, the
spectral sequence converges to πG

∗ F (EG+, X) = π∗X
hG.

(5) The spectral sequence associated with the tower ẼG∧F (EG+, P
•X) is the Tate spectral

sequence (TateSS) of X . It has classes in all four quadrants, and it converges to π⋆ẼG∧
F (EG+, X). In the integer-graded page at theG/G-level, the spectral sequence converges

to πG
∗ ẼG ∧ F (EG+, X) = π∗X

tG.

Let ρ2 denote the regular C2-representation. In [BHSZ21], it is shown that there are generators

t̄i ∈ πC2

(2i−1)ρ2
BP ((C2m ))

such that

πC2
∗ρ2

BP ((C2m )) ∼= Z(2)[Cm · t̄1, Cm · t̄2, . . . , ].

For a precise definitions of these generators, see formula (1.3) in [BHSZ21] (also see [HHR16,
Section 5] for analogous generators in πC2

∗ρ2
MU ((C2m))). In particular, for BPR, the generators t̄i

can be taken to be the v̄i’s, which are the C2-equivariant lifts of the classical vi-generators in
π2∗BP .

Similar to the treatment of MU ((C2m )) in [HHR16], we can build an equivariant refinement

S0[C2m · t̄1, C2m · t̄2, . . .] −→ BP ((C2m ))
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from which we can apply the Slice Theorem [HHR16, Theorem 6.1] to show that the slice asso-
ciated graded of BP ((C2m )) is the graded spectrum

HZ[C2m · t̄1, C2m · t̄2, . . .].

Here, the degree of a summand corresponding to a monomial in the t̄i-generators and their
conjugates is the underlying degree.

As a consequence, the slice spectral sequence for the RO(C2m)-graded homotopy groups of
BP ((C2m )) has E2-term the RO(C2m)-graded homotopy of HZ[C2m · t̄1, C2m · t̄2, . . .]. To compute
this, note that S0[C2m · t̄1, C2m · t̄2, . . .] can be decomposed into a wedge sum of slice cells of the
form

C2m+ ∧Hp
S

|p|
|Hp|ρHp ,

where p ranges over a set of representatives for the orbits of monomials in the γj t̄i-generators,
and Hp ⊂ C2m is the stabilizer of p (mod 2). Therefore, it suffices to compute the equivariant

homology groups of the representations spheres S
|p|

|Hp|
ρHp with coefficients in the constant Mackey

functor Z.
We recall some distinguished elements in the RO(G)-graded homotopy groups that we will

need in order to name the relevant classes on the E2-page of the slice spectral sequence (see
[HHR16, Section 3.4] and [HSWX18, Section 2.2]).

Definition 2.1. Let V be a G-representation. We will use aV : S0 → SV to denote its Euler
class. This is an element in πG

−V S
0. We will also denote its Hurewciz image in πG

−V HZ by aV .

If the representation V has nontrivial fixed points (i.e. V G 6= {0}), then aV = 0. Moreover,
for any two G-representations V and W , we have the relation aV ⊕W = aV aW in πG

−V −W (S0).

Definition 2.2. Let V be an orientable G-representation. Then a choice of orientation for V
gives an isomorphism HG

|V |(S
V ;Z) ∼= Z. In particular, the restriction map

HG
|V |(S

V ,Z) −→ H|V |(S
|V |,Z)

is an isomorphism. Let uV ∈ HG
|V |(S

V ;Z) be the generator that maps to 1 under this restriction

isomorphism. The class uV is called the orientation class of V .

The orientation class uV is stable in V . More precisely, if 1 is the trivial representation, then
uV⊕1 = uV . Moreover, if V and W are two orientable G-representations, then V ⊕ W is also
orientable, and uV⊕W = uV uW .

The Euler class aV and the orientation class uV behave well with respect to the Hill–Hopkins–
Ravenel norm functor. More precisely, for H ⊂ G a subgroup and V a H-representation, we
have the equalities

NG
H (aV ) = aIndV(2.2)

uInd |V |N
G
H(uV ) = uIndV(2.3)

where IndV = IndGH V is the induced representation.
When G = C2m , let λi, 1 ≤ i ≤ m denote the 2-dimensional real C2m -representation cor-

responding to rotation by
(
2π
2i

)
. In particular, when i = 1, the representation λ1 corresponds

to rotation by π and thus equals to 2σ, where σ is the real sign representation of C2m . When
localized at 2, the representations that will be relevant to us are 1, σ, λ2, λ3, . . ., λm.

When G = Q8, RO(Q8) = Z{1, σi, σj , σk,H}. The representations σi, σj , and σk are one-
dimensional representations whose kernels are 〈i〉, 〈j〉, and 〈k〉, respectively. The representation
H is a four-dimensional irreducible representation, obtained by the action of Q8 on the quaternion
algebra H = R⊕ Ri⊕ Rj ⊕ Rk by left multiplication.



VANISHING LINES IN CHROMATIC HOMOTOPY THEORY 9

For h ≥ 1, let v̄h ∈ πC2

(2h−1)ρ2
BP ((G)) denote the images of v̄h-generators under the map

BPR −→ i∗C2
BP ((G)),

which is inclusion into the first factor. The following theorem describes all the differentials in
the slice spectral sequence of i∗C2

BP ((G)).

Theorem 2.3. Let G = C2m or Q8. In the C2-slice spectral sequence of i∗C2
BP ((G)), the differ-

entials are generated under multiplicative structures by the differentials

d2h+1−1(u
2h−1

2σ2
) = v̄ha

2h+1−1
σ2

, h ≥ 1.

Proof. When G = C2, the claim is immediate from the Slice Differential Theorem of Hill–
Hopkins–Ravenel [HHR16, Theorem 9.9]. When G is larger than C2, the unit map BPR →
i∗C2

BP ((G)) induces a map

(2.4) SliceSS(BPR) −→ SliceSS(i∗C2
BP ((G)))

of slice spectral sequences. For degree reasons, the only possible differentials in SliceSS(i∗C2
BP ((G)))

are of lengths 2h+1 − 1, h ≥ 1.
We will proceed by using induction on h. For the base case, when h = 1, we have the

d3-differential
d3(u2σ2) = v̄1a

3
σ2

in SliceSS(BPR). Under the map (2.4), the source is mapped to u2σ2 and the target is mapped
to v̄1a

3
σ2
. By naturality, v̄1a

3
σ2

must be killed by a differential of length at most 3. Since the
lowest possible differential length is 3 by degree reasons, the d3-differential

d3(u2σ2) = v̄1a
3
σ2

must occur in SliceSS(i∗C2
BP ((G))). Multiplying this differential by permanent cycles determines

the rest of the d3-differentials. These are all the d3-differentials because after these, there are no
more room for other d3-differentials.

Suppose now that the induction hypothesis holds for all 1 ≤ k ≤ h − 1. For degree reasons,
after the d2h−1-differentials, the next possible differential is of length d2h+1−1. In SliceSS(BPR),
consider the differential

d2h+1−1(u
2h−1

2σ2
) = v̄ha

2h+1−1
σ2

.

The map (2.4) sends both the source and the target of this differential to nonzero classes of the

same name in SliceSS(i∗C2
BP ((G))). By naturality, the image of the target, v̄ha

2h+1−1
σ2

, must be

killed by a differential of length at most 2h+1 − 1. By degree reasons, it is impossible for this
class to be killed by a differential of length smaller than 2h+1 − 1. It follows that the differential

d2h+1−1(u
2h−1

2σ2
) = v̄ha

2h+1−1
σ2

exists in SliceSS(i∗C2
BP ((G))). The rest of the d2h+1−1-differentials are determined by multiplying

this differential with permanent cycles. After these differentials, there is no room for other
d2h+1−1-differentials by degree reasons. This completes the induction step. �

3. Comparison of spectral sequences

In [Ull13] and [BM94], it is shown that the maps 1 and 2 in (2.1) induce isomorphisms in a
certain range in the integer-graded page. For our purposes, we will extend their integral-graded
isomorphism ranges to RO(G)-graded isomorphism ranges.

Definition 3.1. For V ∈ RO(G), let

τ(V ) := min
{e}(H⊂G

|H | · dimV H .
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Lemma 3.2. For V ∈ RO(G), the spectrum SV ∧ ẼG is of slice ≥ τ(V ).

Proof. By [HY18, Theorem 2.5], SV ∧ ẼG is of slice ≥ n if and only if the geometric fixed points

ΦH(SV ∧ ẼG) ∈ τPost
≥n/|H| for all H ⊂ G. For ẼG, its underlying space is contractible and its

H-fixed points is S0 whenever H is a nontrivial subgroup of G. Since ΦHSV = SV H

∈ τPost
≥dimV H ,

SV ∧ ẼG is of slice ≥ τ(V ). �

Theorem 3.3. The map from the RO(G)-graded slice spectral sequence to the RO(G)-graded
homotopy fixed point spectral sequence

πG
V−sP

|V |
|V |X πG

V−sF (EG+, P
|V |
|V |X)

πG
V−sX πG

V−sF (EG+, X)

induces an isomorphism on the E2-page in the region defined by the inequality

τ(V − s− 1) > |V |.

Furthermore, the map induces a one-to-one correspondence between the differentials in this iso-
morphism region.

Proof. Applying the functor F (−, P
|V |
|V |X) to the cofiber sequence

EG+ −→ S0 −→ ẼG

produces the cofiber sequence

F (ẼG, P
|V |
|V |X) −→ P

|V |
|V |X −→ F (EG+, P

|V |
|V |X).

The long exact sequence in homotopy groups imply that the map

πG
V −sP

|V |
|V |X −→ πG

V−sF (EG+, P
|V |
|V |X)

is an isomorphism when both πG
V −sF (ẼG, P

|V |
|V |X) and πG

V −s−1F (ẼG, P
|V |
|V |X) are trivial. Since

πG
⋆ F (ẼG, P

|V |
|V |X) = F (S⋆ ∧ ẼG, P

|V |
|V |X) and P

|V |
|V |X is a |V |-slice, it suffices to find pairs (V, s)

such that SV−s−1 ∧ ẼG is of slice greater than |V |. By Lemma 3.2, this is equivalent to (V, s)
satisfying the inequality τ(V − s− 1) > |V |.

We will now use induction on r to show that the map of spectral sequences induces a one-
to-one correspondence between all the dr-differentials whose source and target are both in the
isomorphism region. The base case of the induction, when r = 1, is trivial.

For the induction step, suppose that the map induces a one-to-one correspondence between all
the dr′ -differentials in the isomorphism region for all r′ < r. Let dr(x) = y be a dr-differential in
SliceSS(X) such that both x and y are in the isomorphism region. By naturality, y′ (the image
of y) must be killed by a differential of length at most r in HFPSS(X). If the length of this
differential is r, then the source must be x′ (the image of x) and we are done. If the length of
this differential is smaller than r, then the induction hypothesis implies that the same differential
must appear in SliceSS(X). This would mean that y is killed by a differential of length smaller
than r, which is a contradiction. Therefore all the dr-differentials in SliceSS(X) that are in the
isomorphism region appear in HFPSS(X).

On the other hand, let dr(x
′) = y′ be a dr-differential in HFPSS(X) such that both x′ and y′

are in the isomorphism region. Let x be the pre-image of x′. By naturality, x must support a
differential of length at most r. If this differential is of length exactly r, then naturality implies
that the target must be y, the unique preimage of y′. If the length is smaller than r, then by
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the induction hypothesis, x′ must support a differential of length smaller than r as well. This
is a contradiction. Therefore all the dr-differentials in HFPSS(X) that are in the isomorphism
region appear in SliceSS(X). This completes the induction step. �

Remark 3.4. In the integer-graded page, let V = t ∈ Z. Let m(G) be the order of the smallest
nontrivial subgroup of G. When t− s ≥ 1, τ(t− s− 1) = m(G)(t− s− 1), and the isomorphism
region in Theorem 3.3 is defined by the inequality

m(G)(t − s− 1) > t.

This recovers Theorem I.9.4 in [Ull13].

Example 3.5. When G = C2m , all the nontrivial C2m -representations are rotations, and they
have no H-fixed points when H ⊂ C2m is a nontrivial subgroup. Therefore, if V ′ ∈ RO(G) is an
element consisting only of nontrivial representations, then τ(t+ V ′ − s− 1) = 2(t− s− 1) when
t− s > 1.

In the (∗+ V ′)-graded page, the isomorphism region in Theorem 3.3 contains pairs (t+ V ′, s)
that satisfies the inequality

2(t− s− 1) > t+ |V ′|,

or equivalently

s < (t− s)− 2− |V ′|.

In particular, the inequality shows that in any of the RO(C2m)-graded page, the isomorphism
region is always bounded above by a line of slope 1.

Theorem 3.6. The map from the RO(G)-graded homotopy fixed point spectral sequence to the
RO(G)-graded Tate spectral sequence induces an isomorphism on the E2-page for classes in
filtrations s > 0, and a surjection for classes in filtration s = 0. Furthermore, there is a one-to-
one correspondence between differentials whose source is of nonnegative filtration.

Proof. The E2-page of the Tate spectral sequence of X is

Es,V
2 = Ĥs(G, π0(S

−V ∧X)) =⇒ πG
V ẼG ∧ F (EG+, X),

and the E2-page of the homotopy fixed point spectral sequence is

Es,V
2 = Hs(G, π0(S

−V ∧X)) =⇒ πG
V F (EG+, X).

By the definition of Tate cohomology, Ĥs = Hs when s > 0. Furthermore, the map H0 → Ĥ0

is a surjection whose kernel is the image of the norm map. This proves the claim about the
E2-page. The proof for the one-to-one correspondence of differentials is exactly the same as the
proof in Theorem 3.3. �

We end this section by discussing the invertibility of certain Euler classes in the Tate spectral
sequence. Recall that if V is a G-representation such that the fixed point set V H is empty
whenever H ⊂ G is nontrivial, then S(∞V ) is a geometric model for EG, and S∞V is a geometric

model for ẼG. Therefore, for any G-spectrum X ,

ẼG ∧X ≃ S∞V ∧X = a−1
V X.

Specialized to the case when G = C2m and Q8, we see that ẼC2m ≃ S∞λm and ẼQ8 ≃ S∞H.
Moreover, if X is a G-spectrum, then the Tate spectral sequence of X is the spectral sequence
associated to the tower ẼG ∧ F (EG+, P

•X). This implies that the class aλm
is invertible in

all the C2m-Tate spectral sequences, and the class aH is invertible in all the Q8-Tate spectral
sequences.
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4. The norm structure

In this section, we give a brief summary of results for the norm structure in equivariant
spectral sequences. For more detailed discussions, see [Ull13, Chapter I.5], [HHR17, Section 4],
and [MSZ20, Section 3.4].

Consider a tower
· · · −→ P i+1 −→ P i −→ P i−1 −→ · · ·

of G-spectra and let E∗,⋆
∗ be the associated spectral sequence. Set Pm

n = fib(Pm → Pn−1) and
Pn = P∞

n . The towers that will be of relevant to us in this paper are the towers for the slice
spectral sequence, the homotopy fixed point spectral sequence, and the Tate spectral sequence.

Let H ⊂ G be a subgroup. Suppose we have maps NG
HPn → P|G/H|n and NG

HPn
n → P

|G/H|n
|G/H|n

that are (up to homotopy) compatible with the maps Pn → Pn−1 and Pn → Pn
n . This is called

a norm structure. It induces norm maps

NG
H : Es,V +s

2 −→ E
|G/H|s,IndG

H V +|G/H|s
2 .

If X is a commutative G-spectrum, then its slice spectral sequence, homotopy fixed point spectral
sequence, and Tate spectral sequence all have the norm structure (for the Tate spectral sequence,
there is a norm structure as long as H 6= e, as discussed in [MSZ20, Example 3.9]).

The following proposition ([MSZ20, Proposition 3.7]) is a restatement of [Ull13, Proposition
I.5.17] and [HHR17, Theorem 4.7]. It describes the behaviour of differentials under the norm
structure.

Proposition 4.1. Let x ∈ E2(G/H) be an element representing zero in Er+1(G/H). Then
NG

H (x) represents zero in E|G/H|(r−1)+2(G/G).

In other words, Proposition 4.1 states that if x ∈ Es,V +s
2 (G/H) is killed by a dr-differential,

then NG
H(x) ∈ E

|G/H|s,IndG
H V+|G/H|s

2 (G/G) must be killed by a differential of length at most
|G/H |(r − 1) + 1.

Let σ2 be the sign representation of C2. As an immediate consequence of Equations (2.2) and
(2.3), we have the following proposition.

Proposition 4.2. The following equalities hold:

NC2m

C2
(aσ2) = a2

m−2

λm

NC2m

C2
(u2σ2) =

u2m−1

λm

u2σ

∏m−1
i=2 u2i−1

λi

NQ8

C2
(aσ2) = aH

NQ8

C2
(u2σ2) =

u2
H

u2σi
u2σj

u2σk

.

Proof. The equalities follow from (2.2), (2.3), and the following facts about induced representa-
tions:

IndC2m

C2
(1) = 1 + σ +

m−1∑

i=2

2i−2λi

IndC2m

C2
(σ2) = 2m−2λm

IndQ8

C2
(1) = 1 + σi + σj + σk

IndQ8

C2
(σ2) = H.

�
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Theorem 4.3.

(1) The class NC2m

C2
(v̄h)a

2m−2(2h+1−1)
λm

in the C2m -slice spectral sequence of BP ((C2m )) dies on
or before the E2h+m−2m+1-page.

(2) The class NQ8

C2
(v̄h)a

2h+1−1
H in the Q8-slice spectral sequence of BP ((Q8)) dies on or before

the E2h+3−7-page.

Proof. By Theorem 2.3, we have the differential

d2h+1−1(u
2h−1

2σ2
) = v̄ha

2h+1−1
σ2

in the C2-slice spectral sequence of i
∗
C2

BP ((C2m )) and i∗C2
BP ((Q8)). Our claims follow by applying

Proposition 4.1 and the equations in Proposition 4.2 to (H,G, x, r) = (C2, C2m , v̄ha
2h+1−1
σ2

, 2h+1−

1) and (C2, Q8, v̄ha
2h+1−1
σ2

, 2h+1 − 1). �

5. Vanishing in the Tate spectral sequence

By the work of Hahn and Shi [HS20], the Lubin–Tate theory Eh admits an equivariant ori-
entation. More specifically, for G ⊂ Gh a finite subgroup, there is a G-equivariant map from
BP ((G)) to Eh. Furthermore, this G-equivariant map factors through (NG

C2
v̄h)

−1BP ((G)):

BP ((G)) Eh

(NG
C2

v̄h)
−1BP ((G))

This equivariant orientation induces the following diagram of spectral sequences:

SliceSS(BP ((G))) HFPSS(BP ((G))) TateSS(BP ((G)))

HFPSS(Eh) TateSS(Eh).

For h > 0 and H a finite 2-subgroup of Gh, let Nh,H be a positive integer defined as follows:

(1) When (h,H) = (2m−1n,C2m), Nh,H = 2h+m − 2m + 1.
(2) When (h,H) = (4k − 2, Q8), Nh,H = 2h+3 − 7.

Based on the classification of 2-subgroups of Gh, this accounts for all possible pairs (h,H).

Theorem 5.1. For any height h and G ⊂ Gh a finite subgroup, let H be a Sylow 2-subgroup of
G. All the classes in the RO(G)-graded Tate spectral sequence of Eh vanish after the ENh,H

-page.

In order to prove Theorem 5.1, we will first prove the following lemmas:

Lemma 5.2. Let G be a finite group and H ⊂ G a p-Sylow subgroup. For a p-local G-spectrum
X, if the RO(H)-graded Tate spectral sequence of X vanish after the Er-page, then the RO(G)-
graded homotopy fixed point spectral sequence of X will also vanish after the Er-page.

Proof. The restriction and transfer maps induce the following maps of spectral sequences:

G- TateSS(X) H- TateSS(X) G- TateSS(X).res tr

The composition map tr ◦ res is the degree-|G/H | map. Since |G/H | is coprime to p and X is
p-local, the composition tr◦res is an isomorphism. This exhibits the RO(G)-grated Tate spectral
sequence as a retract of the RO(H)-graded Tate spectral sequence.

Consider a nonzero class x on the E2-page of the RO(G)-graded Tate spectral sequence of X .
Its image, y = res(x), must be nonzero. This is because if y = 0, then 0 = tr(y) = tr◦ res(x) = x,
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which contradicts our assumption. Since y vanishes after the Er-page, it either supports a
differential or gets killed by a differential of length at most r. If y supports a dr′-differential,
where r′ ≤ r, then by naturality of the restriction map, x must also support a differential of
length at most r′. On the other hand, if y is killed by a dr′-differential, then by by naturality of
the transfer map, x must also be killed by a differential of length at most r′. It follows that x
must also vanish after the Er-page. �

Lemma 5.3.

(1) At height h = 2m−1n, the unit class in the RO(C2m )-graded Tate spectral sequence of

(NC2m

C2
v̄h)

−1BP ((C2m )) must be killed on or before the (2h+m − 2m + 1)-page.
(2) At height h = 4k − 2, the unit class in the RO(Q8)-graded Tate spectral sequence of

(NQ8

C2
v̄h)

−1BP ((Q8)) must be killed on or before the (2h+3 − 7)-page.

Proof. For G = C2m and Q8, consider the map from the C2-slice spectral sequence of i
∗
C2

BP ((G))

to the C2-Tate spectral sequence of i∗C2
BP ((G)). Theorem 2.3, combined with the isomorphisms

in Theorem 3.3 and Theorem 3.6, shows that we have the differential

d2h+1−1(u
2h−1

2σ2
) = v̄ha

2h+1−1
σ2

in the C2-Tate spectral sequence of i∗C2
BP ((G)). Since aσ2 is invertible by our discussion in

Section 3, after inverting v̄h, we have the differential

d2h+1−1(v̄
−1
h u2h−1

2σ2
a1−2h+1

σ2
) = 1

in the C2-Tate spectral sequence of i∗C2
(NG

C2
vh)

−1BP ((G)). Our claims now follow by applying

Proposition 4.1 to (H,G, x, r) = (C2, C2m , 1, 2h+1 − 1) and (C2, Q8, 1, 2
h+1 − 1). �

Proof of Theorem 5.1. By Lemma 5.2, it suffices to prove the claim for G = C2m and Q8. The
G-equivariant map

(NG
C2

v̄h)
−1BP ((G)) −→ Eh

induces a map of the corresponding Tate spectral sequences. By naturality and Lemma 5.3, the
unit class in the RO(C2m)-graded Tate spectral sequence is killed on or before the (2h+m−2m+1)-
page, and the unit class in the Q8-Tate spectral sequence is killed on or before the (2h+3−7)-page.
Our claim now follows from the fact that the Tate spectral sequence is multiplicative. �

Remark 5.4. If M is a (NG
C2

v̄h)
−1BP ((G))-module, its Tate spectral sequence will also be a

module over the Tate spectral sequence of (NG
C2

v̄h)
−1BP ((G)). The same proof as the one used in

Theorem 5.1 will apply to show the same vanishing results in the Tate spectral sequence of M .

6. Horizontal vanishing lines in the homotopy fixed point spectral sequence

The vanishing of the Tate spectral sequence (Theorem 5.1) leads to the existence of strong
horizontal vanishing lines in the homotopy fixed point spectral sequences of Lubin–Tate theories.

Theorem 6.1. At any height h and G ⊂ Gh a finite subgroup, let H be a Sylow 2-subgroup of
G. There is a strong horizontal vanishing line of filtration Nh,H in the RO(G)-graded homotopy
fixed point spectral sequence of Eh.

We first prove the following lemma, which reduces the general case to the case when G is a
finite 2-subgroup of Gh.

Lemma 6.2. Let G be a finite group and H ⊂ G a p-Sylow subgroup. For a p-local G-spectrum X,
if the RO(H)-graded homotopy fixed point spectral sequence of X has a vanishing line LH , then
the RO(G)-graded homotopy fixed point spectral sequence of X will also have LH as a vanishing
line.



VANISHING LINES IN CHROMATIC HOMOTOPY THEORY 15

Proof. The restriction and transfer maps induce the following maps of spectral sequences:

G- HFPSS(X) H-HFPSS(X) G- HFPSS(X).res tr

The composition map tr ◦ res is the degree-|G/H | map. Since |G/H | is coprime to p and X is
p-local, the composition tr ◦ res is an isomorphism. The RO(G)-graded homotopy fixed point
spectral sequence is a retract of the RO(H)-graded homotopy fixed point spectral sequence. It
follows that the vanishing line in the middle spectral sequence, H-HFPSS(X), will force the same
vanishing line in G-HFPSS(X). �

Proof of Theorem 6.1. By Lemma 6.2, we just have to prove the claim for all (h,H). Consider
the map

H- HFPSS(Eh) −→ H- TateSS(Eh).

By Theorem 3.6, this map induces an isomorphism of classes above filtration 0 and a one-to-one
correspondence of differentials whose sources are in non-negative filtrations.

By Theorem 5.1, all the classes in the Tate spectral sequence vanish after the Nh,H-page. In
particular, this implies that the longest differential is of length at most Nh,H , and any class of
filtration at leastNh,H must die from a differential whose source and target both have nonnegative
filtrations. Combined with the isomorphism in Theorem 3.6, this implies that the homotopy fixed
point spectral sequence collapses after the Nh,H-page, and there is a strong horizontal vanishing
line of filtration Nh,H . �

Corollary 6.3. For any (NG
C2

v̄h)
−1BP ((G))-module M , there is a strong horizontal vanishing

line of filtration Nh,H in the RO(G)-graded homotopy fixed point spectral sequence of M .

Proof. By Remark 5.4, the proof is the same as the proof of Theorem 6.1. �

Corollary 6.4. For all K(h)-local finite spectra Z, the homotopy fixed point spectral sequence

Hs(G,EtZ) =⇒ πt−s(E
hG ∧ Z)

has a strong horizontal vanishing line of filtration Nh,H .

Remark 6.5. The existence of concrete strong horizontal vanishing lines (as given by Theo-
rem 6.1) is very useful for equivariant computations. In [HSWX18], a crucial observation is that
there is a horizontal vanishing line of filtration 16 in the slice spectral sequence of BP ((C4))〈1〉
(hence in HFPSS(E2)) and there is a horizontal vanishing line of filtration 96 in the slice spectral
sequence of BP ((C4))〈2〉 (hence in HFPSS(E4)). The authors of that paper called this the Van-
ishing Theorem (see [HSWX18, Theorem 3.17, Theorem 9.2]). Using the Vanishing Theorem,
Hill–Shi–Wang–Xu gave a much easier recomputation of the slice spectral sequence of BP ((C4))〈1〉
(first computed in [HHR17]) and completely computed all the differentials in the slice spectral
sequence of BP ((C4))〈2〉.

In a forthcoming paper, we will apply Theorem 6.1 to give an alternative computation of EhG24
2

(the 2-primary K(2)-local TMF ) by using the equivariant structures present in the homotopy
fixed point spectral sequence. Furthermore, we will also use Theorem 6.1 to prove new RO(G)-
graded periodicities in the homotopy fixed point spectral sequences of Eh (for example, E4 has
a periodicity of 36− 16λ− 4σ).

Example 6.6. When G = C2 and at all heights h, there is a d2h+1−1-differential in the C2-

homotopy fixed point spectral sequence of Eh, and there is a nonzero class v̄2ha
2h+1−2
σ in bidegree

(2h+1 − 2, 2h+1 − 2). Therefore the vanishing line in Theorem 6.1 is sharp for EhC2

h .
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Example 6.7. The computations in [HHR17] implies that in the RO(C4)-homotopy fixed point
spectral sequence of E2, there exists a d13-differential

d13(N
4
2 (t̄1)

5u4λu4σaλaσ) = N4
2 (t̄1)

8u8σa8λ

(where we let λ = λ2 andN4
2 (−) = NC4

C2
(−) for convenience). Moreover, the classN4

2 (t̄1)
10u4λu10σa6λ

in bidegree (28, 12) (representing κ2) that survives to the E∞-page. Therefore, our vanishing

line is sharp for EhC4
2 .

Example 6.8. The computations in [HSWX18] implies that in the RO(C4)-homotopy fixed
point spectral sequence of E4, there is a d61-differential

d61(N
4
2 (t̄2)

11u16λu32σa17λaσ) = N4
2 (t̄2)

16u48σa48λ

Moreover, the class N4
2 (t̄2)

24N4
2 (t̄1)u44λu74σa30λ in bidegree (236, 60) survives to the E∞-page.

Therefore, our vanishing line is sharp for EhC4
4 .

Conjecture 6.9. The vanishing line given by Theorem 6.1 is sharp when the Sylow 2-subgroup
H is cyclic.

Example 6.10. Consider the RO(Q8)-homotopy fixed point spectral sequence of E2. Theo-
rem 6.1 implies that there is a strong horizontal vanishing line of filtration 25. However, the
actual vanishing line is of filtration 23. More specifically, by Bauer’s computation [Bau08], there
is a d23-differential

d23(η∆
5) = ∆6k6

(the notations are adopted from [Bea17] where ∆ and k are generators on E2-page). This implies
that in the Tate spectral sequence, there is a d23-differential

d23(η∆
−1k−6) = 1.

By the same argument as the one given in the proof of Theorem 6.1 and Bauer’s computation,
the sharpest vanishing line in the homotopy fixed point spectral sequence is of filtration 23.

Question 6.11. When h = 4k−2, what is the sharpest bound for the strong horizontal vanishing
line in the RO(Q8)-homotopy fixed point spectral sequence of Eh?

7. Horizontal vanishing lines in the slice spectral sequence

Wewill now prove explicit horizontal vanishing lines for the slice spectral sequences of (NG
C2

v̄h)
−1BP ((G))-

modules. Recall from Section 5 that when (h,G) = (2m−1n,C2m), Nh,C2m
= 2h+m−2m+1, and

when (h,G) = (4k − 2, Q8), Nh,Q8 = 2h+3 − 7.

Theorem 7.1. When G = C2m or Q8, the RO(G)-graded slice spectral sequence of any (NG
C2

v̄h)
−1BP ((G))-

module M admits a horizontal vanishing line of filtration Nh,G.

Lemma 7.2. When G = C2m or Q8, any (NG
C2

v̄h)
−1BP ((G))-module is cofree.

Proof. By [HHR16, Corollary 10.6], we need to show that ΦH(NG
C2

v̄h)
−1BP ((G)) is contractible

for all non-trivial H ⊂ G. To do so, it suffices to check that ΦH(NG
C2

v̄h) = 0 for all nontrivial

H ⊂ G. Recall that v̄h ∈ πC2

(2h−1)ρ2
BP ((G)) is defined to be the composition

S(2h−1)ρ2 BPR i∗C2
BP ((G)).

v̄h

The claim now follows from the fact that for the class v̄h ∈ πC2

(2h−1)ρ2
BPR, Φ

C2(v̄h) = 0 and

therefore
ΦH(NH

C2
v̄h) = ΦC2(v̄h) = 0

for all nontrivial H ⊂ G. �
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Proof of Theorem 7.1. Since the spectrum M is cofree by Lemma 7.2, both the slice spectral
sequence and the homotopy fixed point spectral sequence converge to the same homotopy groups:

SliceSS(M) HFPSS(M)

πG
⋆ M πG

⋆ F (EG+,M).=

Consider a class x on the E2-page of the slice spectral sequence. We claim that if the filtration
of x is at least Nh,G, then x cannot survive to the E∞-page. This is because if x survives to
represent an element in πG

⋆ M , then there must be a class y on the E2-page of the homotopy fixed
point spectral sequence that also survives to represent the same element in

πG
⋆ F (EG+,M) = πG

⋆ M.

Moreover, the filtration of y must be at least the filtration of x, which is ≥ Nh,G. This is a
contradiction because by Corollary 6.3, there is a strong horizontal vanishing line of filtration
Nh,G in the homotopy fixed point spectral sequence. �

8. EhG
h -orientation of real vector bundles

For h ≥ 0 and G ⊆ Gh a closed subgroup, let Θ(h,G) be the smallest number d such that the
d-fold direct sum of any real vector bundle is EhG

h -orientable (defined in Definition 8.1). At the

prime p = 2 and when G = C2, Kitchloo and Wilson [KW15] have studied EhC2

h -orientations.

At all primes and when G = Cp, Bhattacharya and Chatham [BC21] have studied E
hCp

k(p−1)-

orientations.
In this section, we will use the strong vanishing lines proven in Theorem 6.1 to give an upper

bound for Θ(h,G) at the prime 2 for all heights h ≥ 0 and G ⊂ Gh a finite group.

Definition 8.1. Let E be a multiplicative cohomology theory with multiplication µE : E∧E →
E, and ξ a virtual k-dimensional real vector bundle over a space X . Denote the Thom spectrum
of ξ by Mξ. An E-orientation for ξ is a Thom class u : Mξ → ΣkE such that for any map
f : Y → X , the pull-back uf∗(ξ) : Mf∗(ξ) → Mξ → ΣkE induces an equivalence

(8.1) F (ΣkY+, E) F (Mf∗(ξ), E),≃

where (8.1) is defined by sending a map g : ΣkY+ → E to the composition

Mf∗(ξ) = S0∧Mf∗(ξ)
ιE∧id
−−−−→ E ∧Mf∗(ξ)

id∧∆
−−−→ E ∧Mf∗(ξ)∧Y+

id∧uf∗(ξ)∧id
−−−−−−−−→ E ∧ΣkE ∧Y+

µE∧id
−−−−→ E ∧ ΣkY+

id∧g
−−−→ E ∧ E

µE
−−→ E.

Here, ∆ : Mf∗(ξ) → Mf∗(ξ) ∧ Y+ is the Thom diagonal map.

Remark 8.2. If ξ is E-oriented, then the equivalence (8.1) induces a Thom isomorphism

E∗−k(Y+) E∗(Mf∗(ξ))
∼=

for any map f . In particular, when f is the identity map, there is a Thom isomorphism

E∗−k(X+) E∗(Mξ)
∼= .

Note that it follows immediately from Definition 8.1 that for any E-oriented bundle ξ, its
pull back bundle f∗(ξ) is also E-oriented. Our definition also recovers the classical definition of
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orientations. More precisely, if we take Y to be a point, then the Thom space of the pull back is
Sk, and the restriction of the Thom class u under the map

Ek(Th(ξ)) −→ Ek(Sk)

is a unit.
For X a non-equivariant spectrum, we can treat it as a G-spectrum equipped with the trivial

G-action. We have the equivalence

F (EG+, F (X,Eh))
G ≃ F (X,F (EG+, Eh))

G ≃ F (X,F (EG+, Eh)
G) = F (X,EhG

h ).

This equivalence allows us to use the homotopy fixed point spectral sequence to compute (EhG
h )∗(X).

The E2-page of this homotopy fixed point spectral sequence is

Es,t
2 = Hs(G;Et

hX) =⇒ (EhG
h )t+s(X).

Let γ be the universal bundle on BO (it is of virtual dimension zero). Following Kitchloo–
Wilson [KW15], we will denote the Thom spectrum of nγ by MO[n]. Let MO[0] = S0 and define
ΠMO :=

∨

k≥0

MO[2k].

Lemma 8.3. The homotopy fixed point spectral sequence for (EhG
h )∗(ΠMO) is a multiplicative

spectral sequence whose multiplication on the E2-page is commutative.

Proof. By [HR20], in order to ensure that the homotopy fixed point spectral sequence has a
multiplicative structure, it suffices to construct a G-equivariant map

F (ΠMO,Eh) ∧ F (ΠMO,Eh) → F (ΠMO,Eh).

Consider the following map

BO
∆
−→ BO ×BO

[2i,2j]
−−−−→ BO.

It induces a map of the corresponding Thom spectra

MO[2i+ 2j] −→ MO[2i] ∧MO[2j].

If we fix n and combine all such maps for the pairs (i, j) such that 2i+ 2j = 2n, we get a map

MO[2n] −→
∨

2i+2j=2n

MO[2i] ∧MO[2j].

Taking the wedge sum of all such maps for all n ≥ 0 gives the map

∆: ΠMO =
∨

n≥0

MO[2n] −→
∨

n≥0




∨

2i+2j=2n

MO[2i] ∧MO[2j]



 = ΠMO ∧ ΠMO.

We can then define the G-equivariant multiplication on F (ΠMO,Eh) as the following compo-
sition:

F (ΠMO,Eh) ∧ F (ΠMO,Eh) −→ F (ΠMO ∧ ΠMO,Eh ∧ Eh)
(µEh

)∗
−−−−→ F (ΠMO ∧ ΠMO,Eh)

∆∗

−−→ F (ΠMO,Eh)

To show that the multiplication on the E2-page is commutative, note that since kγ⊗C = 2kγ
as real vector bundles, 2kγ is Eh-oriented. For each k ≥ 0, we have a Thom isomorphism

E∗
h(MO[2k]) ∼= E∗

h(BO+) · u2k.

We will show that the E2-page is equal to E∗
h(BO+)[u2], equipped with the obvious multiplicative

structure (which is commutative).
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Consider the composition map

MO[2k] −→

k
︷ ︸︸ ︷

MO[2] ∧ · · · ∧MO[2]
u2∧···∧u2−−−−−−→

k
︷ ︸︸ ︷

Eh ∧ · · · ∧ Eh
µ
−→ Eh.

This composition is uk
2 by the definition of our multiplicative structure on E∗

h(ΠMO). We claim
that uk

2 is a Thom class for MO[2k].
Note that by iteratively applying adjunction and the Thom isomorphism, we have

F (MO[2] ∧ · · · ∧MO[2], Eh) = F (MO[2] ∧ · · · ∧MO[2], F (MO[2], Eh))

= F (MO[2] ∧ · · · ∧MO[2], F (BO+, Eh))

= F (MO[2] ∧ · · · ∧MO[2] ∧BO+, Eh)

= · · ·

= F (BO+ ∧ · · · ∧BO+, Eh),

and this is given by the Thom class u2 ∧ · · · ∧ u2. Pulling back this Thom class via the diagonal
map BO+ → BO+ ∧ · · · ∧BO+ gives uk

2 , and it induces the Thom isomorphism

E∗
h(MO[2k]) ∼= E∗

h(BO+) · u
k
2 .

It follows that we can express the induced multiplication on E2-page H
∗(G,E∗

h(ΠMO)) by using
the multiplication on

⊕

k≥0

E∗(BO+) · u
k
2 via the Thom isomorphisms. �

Theorem 8.4. For any height h ≥ 0 and G ⊂ Gh a finite subgroup, let d = 2 · |G| · |H |
Nh,H−1

2 ,
where H is a 2-Sylow subgroup of G. Then the d-fold direct sum of any real vector bundle is
EhG

h -orientable.

Proof. It suffices to show that for the universal bundle γ on BO, its d-fold direct sum dγ is
EhG

h -orientable. Let u2 : MO[2] → Eh be a Thom class for 2γ, as considered in Lemma 8.3. For
any element g ∈ G, let gu2 : MO[2] → Eh denote the composition

MO[2] Eh Eh
u2 g

.

Define the map uG : MO[2 · |G|] → Eh to be the composition

uG : MO[2 · |G|]
∆
−→

|G|
︷ ︸︸ ︷

MO[2] ∧ · · · ∧MO[2]
g1u2∧···∧g|G|u2

−−−−−−−−−−→

|G|
︷ ︸︸ ︷

Eh ∧ · · · ∧ Eh

µEh−−−→ Eh,

where g1, g2, . . ., g|G| are all the elements of the group G. It is clear from the definition that uG

is an element in H0(G,E0
h(MO[2 · |G|])). By a similar argument as the one used in the proof of

Lemma 8.3, the class uk
G ∈ H0(G,E0

h(MO[2 · |G| · k])) is a Thom class for MO[2 · |G| · k] in the
sense that there is a Thom isomorphism

E∗
h(BO+) E∗

h(MO[2 · |G| · k])
·uk

G .

If the class uk
G is a permanent cycle in the homotopy fixed point spectral sequence for

(EhG
h )∗(MO[2 · |G| · k]), then by naturality, the map of spectral sequences

H∗(G,E∗
h(BO+)) H∗(G,E∗

h(MO[2 · |G| · k]))

(EhG
h )∗(BO+) (EhG

h )∗(MO[2 · |G| · k])

·uk
G
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induces an isomorphism

(EhG
h )∗(BO+) · u

k
G
∼= (EhG

h )∗(MO[2 · |G| · k])

on the E∞-page. Moreover, for any map f : Y → BO, the pull back of the class uk
G, f

∗(uk
G) ∈

H0(G,E0
h(Mf∗(2 · |G| · kγ))), is also going to be a permanent cycle by naturality:

H∗(G,E∗
h(MO[2 · |G| · k])) H∗(G,E∗

h(Mf∗(2 · |G| · kγ)))

(EhG
h )∗(MO[2 · |G| · k]) (EhG

h )∗(Mf∗(2 · |G| · kγ)).

Therefore, it will induce a Thom isomorphism on the E∞-page of the homotopy fixed point
spectral sequence for (EhG

h )∗(Mf∗(2 · |G| · kγ)) as well.
It remains to find a k such that uk

G is a permanent cycle. Since there is a splitting map

E∗
h(MO[2 · |G| · k]) −→ E∗

h(ΠMO) −→ E∗
h(MO[2 · |G| · k]),

the homotopy fixed point spectral sequence for (EhG
h )∗(MO[2·|G|·k]) is a retract of the homotopy

fixed point spectral sequence for (EhG
h )∗(ΠMO). In particular, the class uk

G is a permanent cycle
in the homotopy fixed point spectral sequence for (EhG

h )∗(MO[2 · |G| · k]) if and only if it is a
permanent cycle in the homotopy fixed point spectral sequence for (EhG

h )∗(ΠMO).
By Lemma 8.3, the homotopy fixed point spectral sequence for (EhG

h )∗(ΠMO) has a mul-
tiplicative structure that is commutative on the E2-page. Furthermore, all the classes on the
E2-page are |H |-torsion, and there can only be differentials of odd length by degree reasons.
Since this spectral sequence is a module over the spectral sequence for (EhG

h )∗(S0), it has a

strong horizontal vanishing line of filtration Nh,H . It follows that when k = |H |
Nh,H−1

2 , the class
uk
G must be a permanent cycle. This finishes the proof of the theorem. �

Remark 8.5. Theorem 8.4 implies that Θ(h,G) ≤ 2 · |G| · |H |
Nh,H−1

2 . We would like to remark
that our bound is by no means optimal, as we haven’t done any explicit computations with the
homotopy fixed point spectral sequence. In [KW15, Theroem 1.4], Kitchloo and Wilson proved

via explicit computation of (EhC2

h )∗(BO(q)) that the 2h+1-fold direct sum of any real vector

bundle is EhC2

h -orientable. Our bound in this case is Θ(h,C2) ≤ 22
h+1.

The only facts we used to obtain our bounds are that there is a strong horizontal vanishing
line of filtration Nh,H , and that the E2-page is H-torsion. With more computational knowledge
of the homotopy fixed point spectral sequence of (EhG

h )∗(ΠMO), there will be more data to
obtain a much better upper bound for Θ(h,G).
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