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COMPUTATIONS OF HEIGHT 2 HIGHER REAL K-THEORY SPECTRA AT
PRIME 2
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ABSTRACT. We completely compute the G-homotopy fixed point spectral sequences at prime
2 for the height 2 Lubin—Tate theory Es, in the case of finite subgroups G of the Morava
stabilizer group for G = Qg, SD16,G24, and G4g. Our computation uses recently developed
equivariant techniques since Hill-Hopkins—Ravenel. We also compute the (* — 0;)-graded Qg-
and SDjg-homotopy fixed point spectral sequences where o; is a non-trivial one dimensional
Qs-representation.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation and main results. Chromatic homotopy theory studies large scale phenomena
in the stable homotopy category using the algebraic geometry of smooth 1-parameter formal
groups [Qui69, Mor85]. The moduli stack of formal groups has a stratification by heights, which
in the stable homotopy category corresponds to localizations with respect to the Lubin—Tate
theories F,, for heights n > 0.

We fix a prime p. Let I'), be the p-typical height » Honda formal group law over I, and let
S, be the automorphism group of I',, (extended to Fyn). Let G, = S,, x Gal(F,»/F,) be the
(extended) Morava stabilizer group. Goerss—Hopkins—Miller showed that the continuous action of
G,, on 7. E,, can be refined to a unique E-action of G,, on E,, [Rez98, GH04, Lurl8§].

At a prime p, theoretically one can assemble the information of E,, with the G,, action for all
heights n > 0 to recover the p-local sphere. More precisely, the chromatic convergence theorem
due to Hopkins and Ravenel [Rav92] exhibits the p-local sphere spectrum S?p) as the homotopy
inverse limit of the E,-local spheres (in the sense of Bousfield [Bou79])

oo —Lp, S — - — Ly, S° — Ly, S°.
1
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Furthermore, these localizations can be built inductively via the following homotopy pullback
square (the chromatic fracture square)

LEn SO —_— LK(n)SO

! |

LEn7150 e LE,,HILK(,”)SO,

where Ly () denotes the localization functor with respect to K'(n), the nth Morava K-theory.
From this point of view, the K (n)-local sphere L (,,)S? is the building block of the p-local stable
homotopy category. Devinatz and Hopkins showed that L K(n)SO is equivalent to the homotopy
fixed point E"C~ [DHOA4].

Let G denote a finite subgroup of the Morava stabilizer group. From the finite resolution point
of view, the spectrum E"@ is the building block of the K (n)-local stable homotopy category
[Hen07, GHMRO5]. In particular, its homotopy groups W*EQG detect important families of
classes in the stable homotopy groups of spheres [HHR16, LSWX19, BMQ20]. Therefore, the
computation of E"“ is a central topic in chromatic homotopy theory and extremely challenging
in general.

From now on, we focus on the prime p = 2. Hewett classified all the finite subgroups of S,
[Hew95] (see also [Buj12]). If n = 2™~/ where ¢ is odd, then when m # 2, the maximal finite
2-subgroups of G,, are isomorphic to Caom, the cyclic group of order 2™; when m = 2, n is of the
form 4k + 2, and the maximal finite 2-subgroups are isomorphic to @g, the quaternion group.

There are breakthroughs of computations of EQG when G is cyclic due to the recent development
of the equivariant methods [HHR17, HSWX18, BBHS20, HS20]. These computations are done
by a new tool called the slice spectral sequence. The slice spectral sequence computations of the
norm of real cobordism theories induce computations of E" at prime 2 for the case G = Com.
As far as the authors are aware, there are no such computations for the case G = Qg due to the
lack of the slice information.

At height 2, the group Qs first appears as a subgroup of the (small) Morava stabilizer
group Sy. Maximal finite subgroups of S, are isomorphic to Gay4 = Qs x C5. Similarly, in
the (extended) Morava stabilizer group Ga, there are subgroups isomorphic to SDyg and Gys.
Homotopy fixed points of E5 with respect to the above subgroups appear in the finite resolution
of EF®2 the K (2)-local sphere at prime 2, as building blocks [Beal5, BG18]. Moreover, they
also appear in the interplay between chromatic layer 2 and the theory of elliptic curve (see for
example [Hop02, DFHH14, HM14, BO16, HL16]). Important examples like ¢tm f are related to
computations of EIC4,

In this paper, we use equivariant methods and a new method, which we called “the vanishing
line method”, to compute the G-homotopy fixed point spectral sequence (G-HFPSS) of the height
2 Lubin—Tate theory Fs at the prime 2 for G = Qg, SD1g, G24 and Gyg.

Let o; (resp. 0j, oy) be the one dimensional non-trivial Qg representation that i € Qs (resp.
J, k € Qs) acts trivially. We compute the integer-graded as well as (x — o;)-graded G-HFPSS for
E,. By symmetry, this gives the (¥ — 0;)-graded and (x — oy)-graded G-HFPSS for E».

Theorem A. (1) The integer-graded Qs-HFPSS for E5 has differentials as listed in Table 8
(also see Figs. 5 to 8). The Ex-page with all 2 extensions is presented in Fig. 9.
Furthermore, we have

SDys-HFPSS(Ey) ®z, W(Fy) = Qs-HFPSS(E,),

where the tensor products happen on E, and d, for every 2 <r < oco.
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(2) The (x—o0;)-graded Qs-HFPSS for Eq has differentials in Table 9 (also see Figs. 11 to 14)
and the E..-page with 2 extensions is presented as Fig. 15.
Furthermore, we have

SD16-HFPSS(Es3) ®z, W(Fy) = Qs-HFPSS(E>),
where the tensor products happen on E, and d, for every 2 < r < oco.

Theorem B. The integer-graded Go4-HFPSS for Es is a subobject of the integer-graded Qg-
HFPSS for Ey which consists of classes with D™ where 3 | m, and the differentials are exactly
the same. The Eo.-page with all 2 extensions is presented as in Fig. 10. Furthermore, we have

Gusg-HFPSS(E3) ®7, W(Fy,) = Goy-HFPSS(E>),
where the tensor products happen on E,. and d, for every 2 <r < co.

In Theorem B, we only compute the integer-graded part because o; cannot be lifted to a
(Glo4-representation.

Theorem A gives the complete computation of the integer-graded G45-HFPSS for F5. Though
the result is known to experts and can be deduced from the tmf computation [Bau08], as far as
the authors are aware, it is not written down in literature before. The (x — 0;)-graded computation
in Theorem A is new. Moreover, our methods for Qg-HFPSS computations are independent
of previous computations and can potentially work for higher heights. The first method is the
recently developed equivariant method which uses the restriction, transfer and norm structures of
the spectral sequence to deduce differentials and hidden extensions. More precisely, we deduce
differentials and hidden extensions in the Qg-HFPSS for E5 from differentials in the Cy-HFPSS
for F5 (computed in [HHR17, BBHS20]) via restrictions, transfers and norms. For example the
restriction functor from Qg to Cy implies a hidden 2 extension from a class at (54, 2) to a class at
(54, 10) in the Qg-HFPSS for E5 (See Lemma 4.23) which is crucial to deduce the d;3-differential
proved in Proposition 4.25. This exempts us from using the Toda bracket shuffling method as in
[Bau08, Proposition 8.5 (3)]. RO(G)-gradings have been proved to be helpful in computations
[HHR17, BBHS20]. For example, for groups H C G, the norm map on the Es-page of a G-HFPSS
is only defined after extending to RO(G)-gradings [Ull13, HHR17, MSZ20]. Norm maps allow
us to pull back and push forward known differentials for new differential information. In our
computation, (x — o;)-graded G-HFPSS for F5 gives an alternative proof of a dg-differential by
the norm map (See Proposition 4.43).

We also introduce a new method: “the vanishing line method”. The vanishing result [DLS22]
shows that all permanent cycles in filtration at least 25 must be hit, which forces differentials to
happen in many cases. For example, in Proposition 4.14 the vanishing line method forces three
differentials, including the longest dss-differentials, just from the Fs-page information.

Along the way, we prove properties that help the computation and work for general heights.
In particular, we improve the vanishing result in [DLS22, Theorem 6.1] for the Qs case to which
is sharp for all known cases.

Theorem C (Theorem 4.8). The Qg-HFPSS for Ey;1o admits a strong vanishing line of filtration
24k+5 _9,

Recall that having a strong horizontal vanishing line of filtration f means that the spectral
sequence collapses after the Ey-page, and any element of filtration greater than or equal to f
supports a differential or is hit.

Equivariant methods and the vanishing line method work for general heights. However, the
computation of the Fs-page of HFPSS(FEy4x12) is not known due to the lack of the explicit
Qs-action on Eyp49 for k > 1.

Question. How to describe explicitly the Qs-action on the Lubin-Tate theory Fyjyo for k > 17



COMPUTATIONS OF HEIGHT 2 HIGHER REAL K-THEORY SPECTRA AT PRIME 2 4

1.2. Summary of the contents. This paper is organized as follows. Section 2 provides a
necessary background for the computational tools for the RO(G)-graded homotopy fixed point
spectral sequence, and the input for the computation of the Qg-HFPSS for E5. In particular, we
review the norm structure in RO(G)-graded homotopy fixed point spectral sequences (Theorem 2.8)
and the interplay between the homotopy fixed point spectral sequences and the Tate spectral
sequences in general (Lemma 2.1). We briefly review the Qg-action on m,(F2) (Eq. (2.3)) and
the computation of RO(Cy)-graded Mackey-functor-valued Cy-HFPSS for Eo (Section 2.4). We
take these as the input for the Qg-HFPSS for F5. In Section 3 we compute the Fs-page of the
integer-graded and (x — 0;)-graded Qs-HFPSS(E2) by Bockstein spectral sequences.

In Section 4, we derive all differentials in the integer-graded Qs-HFPSS for E5 via equivariant
methods and the vanishing line method (Theorem 4.8). In Section 4.1, we prove the properties of
the Qg-HFPSS for F5 that we need for our computation. The vanishing line (Theorem 4.8) works
for general heights and is of its own interests. In Section 4.2, we give a complete computation of
all differentials in the logical order. The vanishing line method gives some difficult differentials
(for example Proposition 4.14). In Section 4.3, we solve all 2 extensions. In Section 4.4, we present
alternative proofs for those differentials that can be proved by more than one way.

In Section 5, we also apply equivariant methods and the vanishing line method to compute
the (x — 0;)-graded Qs-HFPSS for F5. In particular, this computation gives an alternative proof
of a dg-differential in the integer-graded part. In Section 6, we list figures that present our
computation. In Appendix A, we explain algebraic computations of the Qg group cohomology. In
addition, we explain how the Hurewicz image of E;C“ helps to compute the restriction map from
Qs-HFPSS to Cy-HFPSS.

1.3. Acknowledgements. The authors would like to thank Agnes Beaudry, Mark Behrens,
Paul Goerss, Bert Guillou, XiaoLin Danny Shi, Zhouli Xu, and Mingcong Zeng for helpful
conversations. The second author was supported by the National Science Foundation under Grant
No. DMS-1926686. The third author is grateful to Max Planck Institute for Mathematics in
Bonn for its hospitality and financial support. The fifth author is partially supported by the
Shanghai Rising—Star Program under Agreement No. 20QA1401600 and Shanghai Pilot Program
for Basic Research-FuDan University 21TQ1400100(21TQ002).

2. PRELIMINARIES

2.1. RO(G)-graded homotopy fixed point spectral sequences and Tate spectral se-
quences.
Let X be a G-spectrum, and let P*X be the slice tower of X. We have a diagram of towers:

EG, AP*X P*X EGAP*X

- | |

EG4 AF(EG,,P*X) —— F(EG,,P*X) —> EG N F(EG,,P*X).

This diagram of towers further induces a Tate diagram of spectral sequences

HOSS(X) — SliceSS(X) — LSliceSS(X)

T

HOSS(X) — HFPSS(X) —> TateSS(X).
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We briefly explain the above notations as follows. We use * to denote an integer and v to denote
an RO(G)-grading. We denote the underling homotopy group 7§(X A S™*) as a G-module by
T (X)
e The spectral sequence HOSS(X) of the tower EG1 A P*X is the RO(G)-graded homotopy
fixed point spectral sequence of X with the FEs-page as

H, (G, m% (X))

which converges to ma4+(EG4+ A X).
e The spectral sequence SliceSS(X) of the tower P*X is the slice spectral sequence of X
with the Fs-page as

T e —x (P|‘:\|X)
which converges to my _,(X). Where P X is the fiber of P*X — P*~'X and |¥%/| is the
underlying dimension of .
e The spectral sequence HFPSS(X) of the tower F(EG4,P*X) is the RO(G)-graded
homotopy fixed point spectral sequence of X with the Es-page as
ﬁ* (G’ Tk (X))
which converges to my _, (F(EG, X)).
e The spectral sequence EG A P*X of the tower is the RO(G)-graded localized slice spectral
sequence. It follows the treatment of a forthcoming paper by Meier-Shi-Zeng.
e The spectral sequence TateSS(X) of the tower EG A F(EG,, P*X) is the RO(G)-graded
Tate spectral sequence of X with the E5-page as

H (G, mx (X))
which converges to 7, _,(EG A F(EG, X)).

The following result is first proven in [Ull13] for the integer gradings and extended to the
RO(G)-gradings in[DLS22, Theorem 3.3]. It shows that the natural map from SliceSS(X) to
HFPSS(X) is an isomorphism in a certain range.

Lemma 2.1 ([Ull13], [DLS22]). The map from the RO(G)-graded slice spectral sequence to the
RO(G)-graded homotopy fized point spectral sequence

\4 14
¢ Py X — =G F(EG,,P|X)

l |

¢ X ——— 1§ F(EG.,X)

induces an isomorphism on the Es-page in the region defined by the inequality
7(V—-s—1)>|V], 7(V):= min |H| -dimV*.
{e}CHCG
Furthermore, the map induces a one-to-one correspondence between the differentials in this
isomorphism region.

We recall two kinds of distinguished classes in the RO(G)-graded homotopy groups that are
useful for naming the relevant classes on the Es-page of the slice spectral sequence (see [HHR16,
Section 3.4] and [HSWX18, Section 2.2]) and the homotopy fixed point spectral sequence.

Definition 2.2. Let V be a G-representation. We denote the inclusion of the fixed points
S% — SV by ay. This is a class in 7%,,5°. Moreover, for a ring spectrum X with G-action, we
abuse notation to denote the image of ay by ay under the map S® — X. We will also denote
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the class on the Fa-page of the G-HFPSS(S°) or the G-HFPSS(X) that detects the image of ay
by ay.

By construction, we have the following property.

Proposition 2.3. With the above notation, the class ay on the Es-page of the G-HFPSS(X) is
a permanent cycle.

If the representation V has non-trivial fixed points (i.e. V& # {0}), then ay = 0. Moreover,
for any two G-representations V and W, we have the relation aygw = ayaw in ﬂ?V_W(SO).
Moreover, ay-class is always a torsion class, according to [HHR17, Lemma 3.6]

|G/Gv|ay =0

where Gy is the isotropy subgroup of V.
For an orientable G-representation V', a choice of orientation for V gives an isomorphism
Hﬁ,l(SV;Z) = 7. In particular, the restriction map

(2.2) HE(8Y,Z) — Hy(SV), z)
is an isomorphism.

Definition 2.4. Let V be an orientable G-representation. We define the orientation class of V'
uy € HIC"V/‘ (SV;Z) to be the generator that maps to 1 under the above restriction isomorphism 2.2.

The orientation class uy is stable in V' in the sense that if 1 is the trivial representation, then
uy g1 = uy. Moreover, if V and W are two orientable G-representations, then V @ W is also
orientable with the direct sum orientation, and uygw = uyuw.

Norms of ay classes and uy classes are given as follows.

Proposition 2.5. ([HHR16, Lemma 3.13]) Let H C G be a subgroup and V is a G-representation
Nﬁ(av) = QInd V;
urna (v NG (uy) = tmav
where Ind means Indg,

Given a G-oriented representation V' and a G-equivariant commutative ring spectrum X, by
[HHR16, Corollary 4.54] and the unit map S° — X, Hill-Hopkins-Ravenel defines the uy classes
on the Fs-page of the slice spectral sequence for X via the following map on 0-th slices

HZ =P)S" - PYX.
With Lemma 2.1, we can define uy classes in the RO(G)-graded HFPSS for X.
The computation of the TateSS and the HFPSS are closely related. In any RO(G)-graded

page the natural map from HFPSS(X) to TateSS(X) is isomorphic in positive filtration ([DLS22,
Theorem 3.6, see also [BM94, Lemma 2.12)).

Lemma 2.6. The map from the RO(G)-graded homotopy fixed point spectral sequence to the
RO(G)-graded Tate spectral sequence induces an isomorphism on the Es-page for classes in
filtration s > 0, and a surjection for classes in filtration s = 0. Furthermore, there is a one-to-one
correspondence between differentials whose source is in non-negative filtrations.

One advantage of considering Tate spectral sequences is that they are whole plane spectral
sequences with more invertible classes. This feature makes the calculations more accessible.

If V is a G-representation such that its fixed point set V¥ is trivial for any non-trivial subgroup
H of G, then SV is a geometric model for EG. If X is a G-spectrum, we have

EGANX =SV AX =a'X
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This implies that for such representation V', the class ay is invertible in the Tate spectral sequence.

Method 2.7. When it is multiplicative, the TateSS is extremely useful for proving permanent
cycles in the HFPSS. Assume the TateSS of a G-spectrum X is multiplicative. Then we can find
permanent cycles in the G-HFPSS for X as follows. Assume that we find a differential d,(a) = b
in the HFPSS, then there is a corresponding differential d,-(a’) = V' in the TateSS by Lemma 2.6.
We can move this differential by some r-cycle ¢ in the TateSS such that d.(c'a’) = ¢V is a
differential with the source ¢’a’ in a negative filtration and the target ¢’b’ in a non-negative
filtration. (One can choose ¢’ = a‘_,k for proper integer k where ay is an invertible class as above.)
Then ¢’V is a permanent cycle in the TateSS and hence the corresponding class of ¢/b’ in the
HFPSS is also a permanent cycle by Lemma 2.6. This method allows us to identify permanent
cycles at E,.-page for r < co.

Now we focus on G = Qg and its subgroups. We will use the following notations for represen-
tations of Cs, Cy and Qs.
e When G = C3, RO(C3) = Z{1, 02} where o3 is the sign representation.
e When G = Cy, RO(C4) = Z{1,0,A}. The representation o is the sign representation and
A is the 2-dimensional representation by rotating the plane R? by degree 5
e When G = Qs, RO(Qs) = Z{1,0;,0;, 0%, H}. The representations o;, o;, and oy, are
one-dimensional representations whose kernels are Cy(i), Cy(j), and Cy(k) i.e, the three
Cy subgroups generated by ¢,j and k, respectively. The representation H is a four-
dimensional irreducible representation, obtained by the action of Qg on the quaternion
algebra H = R @ Ri @ Rj @ Rk by left multiplication.
By the above discussion, S°¥ is a model of EQs. Therefore, the class ay is invertible in any
Qs-Tate spectral sequence.

2.2. Norm differentials and strong vanishing lines in spectral sequences. The Hill-
Hopkins-Ravenel norm structure holds in nice equivariant spectral sequences. Let H C G be a
subgroup. Consider the following diagram of G-spectra

o Pt pr o prt

Recall that P denotes the fiber of P™ — P"~! and P, = P°.
We denote the spectral sequence associated to this tower by { E™* d,.}, where n denotes the
filtration and the second grading denotes the RO(G)-graded stem. We say the spectral sequence

has a norm structure if there are two types of maps Nan — Pg/m| and NgP]j — ﬁ'g/;l such
that the following two diagrams commute up to homotopy.

N§P, Py NPy — P/
N{iP, -1 — Pg/a|n-1) NP —>P,‘§/§’|f

The norm structure induces a map between towers
~-~%N§Pn Nan,liw--

1 1

-+ = B/ — Pa/uj-1 = - = Pa-yje/ai+r = Po-vie/m) — -

which induces a map from the Fa-page of the H-level spectral sequence H-E, * to the FE>-page
of the G-level spectral sequence G-FE X as follows
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G . n,V4n |G/H|n,Ind§, V+|G/H|n
Ny : H-E, — G-E, .

It is proved in [MSZ20] that if X is a commutative G-ring spectrum then its slice spectral sequence,
homotopy fixed point spectral sequence, and Tate spectral sequence (at least for H # e) have a
norm structure.

One consequence of having a norm structure is that we can predict differentials in the G-level
from differentials in the H-level.

Theorem 2.8. ([Ull13, Proposition 1.5.17][HHR17, Theorem 4.7]) In a spectral sequence with
norm structures, if we have a differential d.(x) =y in the spectral sequence of a H-spectrum X.
Then in the spectral sequence for Y = Ng(X) there is a predicted differential

dia/m)(r—1)+1(a5NF (2)) = N (y)
where p = Indg(l) and p is the reduced representation of p.

In [DLS22] the authors use the norm structures to show that every class in G-TateSS(E,,) is
hit before a specific page depending on n and G.

Theorem 2.9. ([DLS22, Theorem 5.1]) At the prime 2, for any height n and any G C G, a
finite subgroup, let H be a Sylow 2-subgroup of G. All the classes in the RO(G)-graded Tate
spectral sequence of E, vanish after the En,, ,,-page. Here Ny, g is a positive integer defined as
follows:

e when (n,H) = (2", Coym), N, g =2"Tm —2m 4 1;

o when (n,H) = (4k +2,Qs), Nypg =273 — 7.

The isomorphism range of the natural map G-HFPSS(E,) — G-TateSS(E,,) implies there is a
strong horizontal vanishing line in E.-page of G-HFPSS(E,,).

Theorem 2.10. ([DLS22, Theorem 6.1]) At the prime 2, for any height n and any G C G,, a
finite subgroup, let H be a Sylow 2-subgroup of G. There is a strong horizontal vanishing line of
filtration Ny, g in the RO(G)-graded homotopy fized point spectral sequence of E,, .

It turns out that the existence of such horizontal vanishing lines is extremely helpful for
determining higher differentials in homotopy fixed point spectral sequences. In particular, for
our computation in Qs-HFPSS(E>), the vanishing line gives an independent proof of several
higher differentials in the integer-gradings. Moreover, this vanishing line plays a crucial role in
the computation of (x — 0;)-graded Qs-HFPSS for Es.

2.3. Lubin-Tate Theory E; with Gy4-action. We fix a pair (F,»,T'),) where I';, is the height
n Honda formal group law over F, extended to Fp». Then Lubin-Tate [LT65] shows that there is
a universal deformation F),, defined over a complete local ring

W(Fpn) [, ... ,un_l]][uﬂ]

where W(F,) is the p-typical Witt vector of Fy» and |u;| = 0, [u™!| = 2. The Landweber
exactness theorem shows that this ring can be realized by a complex oriented ring spectrum FE,,.

Let S,, be the automorphism group of I';,, namely the small n-th Morava stabilizer group. Let
G, =S, x Gal(Fp» /F,,) be the automorphism group of (Fy»,T',), namely the (extended) n-th
Morava stabilizer group. By universality, 7. F, admits a G,-action. The Goerss—Hopkins—Miller
theorem [Rez98, GHO04, Lurl8] lifts this action uniquely to an E..-action on E,,.

We are interested in computing 7, E"? for G a finite subgroup of G,, via G-homotopy fixed
point spectral sequences. For these computations, the action of the Galois group Gal(F,- /F))
will not change the differential pattern. More precisely, we review the following result.
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Lemma 2.11. ([BG18, Lemma 1.32][BGH22, Lemma 2.2.6, Lemma 2.2.7]) Let F C G,, be a
closed subgroup and let Fy = F'NS,,. Suppose the canonical map
F/Fy — G, /S, = Gal(Fp» /Fp)

is an isomorphism. Then there is a commutative diagram of homotopy fixed point spectral
sequences

W(Fpn) @z, H*(F, 1 E,) == W(Fpn) @z, T (BN

Jg |

H*(Fy,m.Ey,) 7. (Elo),

In this paper, we will focus on the case p = 2 and n = 2. The Galois group Gal(F4/Fs)
is isomorphic to Cy and we write W for the Witt vector W(F4). There are finite subgroups
Qs and Goy = Qg x Cs in the small Morava stabilizer group So and SDg = Qg x Gal and
G4 = G24 X Gal in the extended Morava stabilizer group Gs. The subgroups Qg, G24 are unique
up to conjugacy in Sy [Bujl2] (see also [BGH22, Remark 2.4.5]). Therefore, there is no ambiguity
of the notation W*Eg s or W*ESGM. The subgroup Qs and complex orientation coordinates can
be chosen specifically from the theory of elliptic curves at prime 2 so that the action has explicit
formulas as follows (See [Beal7, Section 2] for more details).

We recall the action of Ga4 on 7, Es [Beal7, Lemma A.1]. The coefficient ring is a complete
local ring 7, Fy = W[u]J[u*!] with a maximal ideal I = (2,u;). Denote uju~! by vy, the
generator of the quaternion group Qs by i, j, k and the generator of C3 by w. We regard the third
root of unit ¢ as a class in the Witt vector W. The Gos-actions on u~! and v, are

wi(vy) = vy, we(u™) =Cut,
1 -1
.1 v — U . v1 + 2u
iw(u™!) = ——r, is(v1) = —5——,
( ) CQ —C ( 1) CQ —C
(2.3) D) Cvp —ut (o) v1 4+ 2¢%u !
™) =2 Gun) = =,
¢2—¢ ' ¢
_ CPup —ut v1 4+ 2Cut
R e < eras
We define D tobe  []  g«(u™!) which is Qg-invariant. Then (FE3), could be expressed as
9€Qs/C2

T B2 & (Wloy, u™'][D7)7,
which is more convenient for the @g-cohomology computation.
Lemma 2.12. There is an isomorphism
H*(Qs, mEs) = (H*(Qs, Woy, u™)[D'])7.
Proof. Because D is QQg-invariant, we have
H*(Qg, W[, u ] [D™Y]) =2 H*(Qg, W[vy,u ])[D1].

Note that W[vy,u=t][D~!] is finitely generated as a W-algebra. Therefore, the completion is an
exact functor [AM16, Theorem 10.12] [HS99, Theorem A.1] and we have

H*(Q877T*E2) = (H*(Q&W[vla uil})[Dil]);\'
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2.4. Mackey functor C;-homotopy fixed point spectral sequence for F5. In this subsec-
tion, we recall some results on the Mackey-functor-valued Cy-HFPSS for Es in [BBHS20]. See
also the slice spectral sequence computation of the truncated Cs-normed Real Brown—Petersen
spectrum BP(C)(1) [HHR17][HSWX18].

Proposition 2.13. ([BBHS20, Proposition 5.6]) There is an isomorphism

H*(027 W*EQ) = W[[uo]] [fitlv Aoy, ug:og]/@a@)’
where the (J — *, *)-degree of the classes is given by |uo| = (0,0), |F1| = (p2,0), |as,| = (—02,1),
and |uzq,| = (2 — 202,0).

We partially rewrite the names of classes on the Fs-page of Cy-HFPSS(FE>) in [BBHS20,
Proposition 5.10] with slice names. For slice names, see [HHR17, HSWX18] for details. One
advantage of using slice names is that it is better to organize differentials by the slice differential
theorem [HHR16, Theorem 9.9].

Proposition 2.14. ([BBHS20, Proposition 5.10]) There is an isomorphism

H*(C4a 7T*LUQ) = W[[M]] [T27 m, 77,7 ay, ao’][ﬁli17 ufl? uQio:'L]/ ~
where p = trg;L (o), To = 52ugy, = trg;‘ (P U20,), N = 5100, = tlrg;1 (Fra4,) and 0’ = S1Upa, =
trgg (Frag,ug). Although o is not an oriented Cy-representation, we apply u, here indicating that

1’ is transfered from T1a,, from integer-graded part in Ca-level to (1 — o)-page in Cy-level. And
the relation ~ is the ideal generated by the following relation

2n =21 = 2a, = 4ay =0, T? = A ((n—2)% +4),
n*uze = n? = Tou) 'ussan, Ton' = 0y pnuxus,,
Ton = 01 pm'u, m' = puzean,
UrG2s = 207\ U0, ey = Nag =1 ag = Toas = 0.

Here A1 = 03ugyusg, at (8,0) is an invertible class in 7T*E£L04.

Remark 2.15. Proposition 2.13 and Proposition 2.14 give a full description of the Mackey
functor H*(Cy, w4 E2) by the Frobenius relation [BBHS20, Remark 5.17] and the multiplicative
property of restriction.

Remark 2.16. A warning is that one needs to be careful about the isomorphism range(See
Lemma 2.1) to translate between the slice spectral sequence and the homotopy spectral sequence.
For example, in the Cy-SliceSS(BP(C4)(1)), the class us, supports a non-trivial ds-differential
[HSWX18, Theorem 3.4], while in the corresponding C,-HFPSS(FE5), the class ug, actually
supports a non-trivial d7-differential [BBHS20, Remark 5.23].

The computation of the Mackey-functor-valued Cy-homotopy fixed point spectral sequence
for E5 is explained in detail in [BBHS20, Section 5] and presented by [BBHS20, Figure 5.8] and
[BBHS20, Figure 5.14].

The RO(G)-graded Mackey functor computation is useful even if one only cares about the
computation of the integer-graded part m,E"“. The following discussion of hidden extensions is
a good example. We can use exotic operations (exotic transfers, exotic restrictions, and so on) in
Mackey-functor-valued spectral sequences to deduce differentials and hidden extensions inside the
spectral sequences. For more detailed definitions and properties of such phenomena, one could
refer to [MSZ20, Section 3.3].

In [HHR17, Lemma 4.2], the authors introduce a useful trick to determine exotic restrictions
and transfers on the F.,-page of Mackey-functor-valued G-HFPSS.
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Lemma 2.17. ([HHR17, Lemma 4.2]) Let G be a cyclic 2-group and G’ be its index 2 subgroup
then in 7y (F(EG 1, X)) we have

e ker(res&,) = im(a,)

o im(tr&,) = ker(a,)

where o is the sign representation of G.

The following hidden 2 extension in stem 22 is a good example showing that equivariant
structures provide extra integer-graded information (see a similar 2 extension in stem 2 in [MSZ20,
Remark 5.15]). In [HHR17, Figure 15] and [BBHS20, Figure 5.6], they drew all exotic restrictions
and transfers in the FE.-page of the Mackey functor valued Cy,-HFPSS(E5). The 2 extension
follows from an exotic transfer and an exotic restriction in 22 stem. We spell out the details in
Lemma 2.18.

Lemma 2.18. In the Mackey-functor-valued Cy-HFPSS for Eo, there is an exotic restric-
tion i@ stem 22 from ??u6AU4gagg to D%OF?UgJZ a6, and there is an exotic transfer in stem 22
from D%F?uggzaggz to O§u4>\u60a4>\a20. As a consequence, there is a hidden 2 extension from
~6 58

0] UGAULr Q20 10 DT ULNUGEAANA20 -

Proof. According to the computations in [HHR17][BBHS20], in stem 22 there are only three
classes survives: 08ug)us,a2, and djuszugsasnaz, in Cy-level and 017$us,,aq,, in Co-level. We
first claim the class 5?1;6 AU4s G2, 18 N0t in the image of multiplication by a,. If there is some x such
that a,x is 0$ugrussa2s, then  is detected by classes at (22 + 0, 1) or (22 + ¢,0). There is only
one class at (22 + 0, 1) which is 5‘11U4AU4JCLU on Fs-page. According to [HSWX18, Theorem 3.11],
this class supports a d3-differential

=4 =4 =7
d13(0]UsNU46 Oy ) = D UL d13(UsrAr) = D U AT

And moreover there is no non-trivial class at (22 + 0,0). Therefore, in homotopy level there
is no class such that its multiplication by a, hits the class 6?u6,\u40a20. Then according to
Lemma 2.17, this class must have a non-trivial restriction in homotopy level, and the desired
exotic restriction follows from degree reasons.

On the other hand by the gold relation uyas, = 2ussa, and 2a, = 0 we know on FEs-page

=8
07 U4 UG A4NA20 - Qg = 0

Moreover, according to the computation on * — o-page of C4-HFPSS(E>) [BBHS20], there is no
hidden a,-extension from d§ugy\ugsasraz, by degree reasons. Since we have im(trg,) = ker(a,),
the class 0§usxUg,asra2, must be a transfer of a class from Cy-level. Then the desired exotic
transfer follows from degree reasons. O

Remark 2.19. For degree reasons, the class 5(15u6 AU4s G2, cannot be in the image of the transfer
from Cs. However, by the gold relation, the product of this class and a, is zero on the Fs-page.
Therefore, this class must have a hidden a,-extension.

Remark 2.20. The hidden 2 extension in Lemma 2.18 will play a crucial rule in deducing
several higher differentials in Qs-HFPSS(F>) (see Lemma 4.23, Proposition 4.25). A similar 2
extension can also be seen in the homotopy groups of tmf in stem 54. The proof of this hidden 2
extension in [Bau08, Proposition 8.5 (3)] uses shuffling arguments of 4-fold Toda brackets. In
our Qs-HFPSS(Es) computation, the corresponding hidden 2 extension follows directly from the
C-computation by restriction (see Lemma 4.23).
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2.5. RO(G)-graded periodicity. When computing HFPSS, another advantage of expanding
to RO(G)-gradings is having more periodicities. These periodicities have their own theoretic
importance. They can also move integer-graded calculations to certain RO(G)-gradings where the
calculations might be simpler. In either the slice spectral sequence for BP(C4)(1) [HSWX18] or
the Cy-homotopy fixed point spectral sequence for E; [HHR17][BBHS20], we have the following
periodicities in the RO(G)-gradings.
Lemma 2.21. The following permanent cycles in Cy-HFPSS(E2) [HHR17|[BBHS20] are periodic
classes.

e The class 01 gwes (1 + o + \)-periodicity.

o The class ugy gives (16 — 8\)-periodicity.

o The class ug, gives (4 — 4o)-periodicity.

o The class ugpua, gives (10 — 4\ — 20)-periodicity.

Since the norm functor is symmetric monoidal, we can apply it to the above three invertible
permanent cycles, which gives some RO(Qg)-periodicities in Qg-HFPSS(E3). The quaternion
group Qs has three Cy subgroups Cy (i), C4(j) and Cy(k) generated by i, j and k respectively. For
each C4 copy we have the associated Cy-periodicities and their norms give RO(Qs)-periodicities
as follows.

Corollary 2.22. We have the following RO(Qg)-periodicities in Qg-HFPSS(Es).
o NZ¥(01):
1+o0;+0;+o0,+H
° Ngf (u4o) :
4+40; —4o; — 4oy,
4+40; —40; — 4oy,
4+ 4oy, — 4o, — 40’j
° Ngf (ugrtos) :
10 + 100; — 20 — 204 — AH
10 + 100, — 20; — 204, — AH
10 + 1003, — 20 — 20; — 4H

. Ngf (ugy) :

16 4 160, — 8H
16 + 160, — 8H
16 + 160, — 8H

Corollary 2.23. There are periodicities of 4 — 40;,4 — 4o and 4 — 4oy, in Qs-HFPSS(E>).

Proof. 1t suffices to show that 4 — 40, is a periodicity. This periodicity is given by the following
product:

NEr() (want2o)NE g (wanuag )Ny (usn) T NG s (a0 NG (20) T NG gy (20) ™

3. E3-PAGE OF THE Qs-HFPSS(Es)

In this section, we recollect the computation of the Es-page of the integer-graded Qs-HFPSS
for E5 by the 2-Bockstein spectral sequence (2-BSS) from [Beal7, Bau08]. Then we compute
the Es-page of the (x — 0;)-graded part by the same method. By Lemma 2.12 we can compute
H*(Qs, 7. F2), the Ey-page of the Qs-HFPSS for Es, by first computing H*(Qg, W[vy, u™1]).
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3.1. 2-BSS, integer-graded. The integer-graded 2-Bockstein spectral sequence for H*(Qg, W[vy, u™1])
is

H*(Qs, Falvr,u™))[ho] = H*(Qs, Wlvr,u™"])
where hg detects 2. The computation of the Ej-page, H*(Qs,Fy[v1,u~"]), is from [Beal?,
Appendix A]. We follow the notation in [Beal7], except that we use hy for 7 and hs for v. The
differentials of this 2-BSS are essentially from [Bau08, Section 7] and we list them in Table 1.

Proposition 3.1. The bigradings of generators of H*(Qg,F4[vy,u™t]) are:
lvi] = (2,0), [D]=(8,0), [k[=(=4,4), [m]=(1,1),
lha| = (3,1), o[ =(-11), [yl=(-11), [D~'h3y|=(-3,3).
The relation (~) is generated by:
(1) in filtration 1:
viha, Vim, wviy;
(2) in filtration 2:
hiha, hox —vihiz, hiy —wviz?, zy, Dy? — h3;
(3) in filtration 3:
h?Dz — h3, Da®—h3y, D(D~'h3y) — hdy;
(4) in filtration 4:
hi —vik.
Proof. Note that the composition
H*(Gay, Favr,u™)) = H*(Qs, Falvr,u™"]) > H*(Gaq, Falvr,u™"])

is multiplication by |G24/Qs| = 3 which is a unit in the coefficient Fy[v1,u~!]. This implies
that H*(Qg,F4[v1,u~t]) is just 3 copies of H*(Ga4,F4[v1,u"1]). The result follows from the
computation of the cohomology H*(Ga4, F4[v1,u~1]) in [Beal7, Thm. A.20]. O

The differentials in the integer-graded 2-BSS for the cohomology H*(Qg, W[vy,u~1]) are essen-
tially from [Bau08, Section 7] which are determined by the ones in Table 1 and the multiplicative
structure.

TABLE 1. 2-BSS differentials, integer-graded

(s, f) x rd(z)

4k +2,0) o1 203khy
( ) 1 1
(7,1) Dz 1 2h3
(-1,1) x 1 2y2
(—1,1) Y 1 222
(4,0) v? 2 4hy
(5,3) yh3 3 8kD

The 2-Bockstein computation gives the following result (see also [Bau08, Section 7]).

Theorem 3.2. Table 2 and Table 3 present H*(Qg, W[vy,u™1]), the Eo-page of the integer-graded
2-Bockstein spectral sequence (also see Fig. 2 and Fig. 3).

Remark 3.3. We note that in H*(Qs, W[vy,u~1]), there is an exotic hp-extension

h2 . l‘QhQ =4kD
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by [Bau08, Equation (7.13)] which is useful in later computations.

TABLE 2. E..-page, multiplicative generators, integer-graded

(s,f) =z 2-torsion
(—4,4) k  7/8
(-2,2) 22 Z/2
(=2.2) »*  Z/)2
0,2) zhy 7/2
(1,1) m Z7/2
3,1) hy 74
(5,1)  vih ZJ2
80 D Z

(8,0) ot Z

TABLE 3. Eoo-page, relation generators, integer-graded

relation generators

Uith
hiho, v%hl - ha, Dy? — h%, zhy -v‘lﬂ x? -v‘lﬂ y? -v‘f
xhy - ho, xhy -v%hl, z? - v%hl, y2h, 32 ~v%h1, D-xzhy-hy — hg
ht — ik, (zh1)?, (22)2,(y%)?, ha, 22 - xhy, y* - xhy, 22 - 2,
zhy - h%a T2 - h%v y2 ' h%vh% a — 4kDa y2 ’ h%v zhy - h%

BN |~

We refer readers to §6 for charts of the Fj-page and the E.-page.

3.2. 2-BSS, (x — 0;)-graded.

We discuss the RO(G)-graded case and restrict it to the (x — 0;)-graded case. A variation of
Lemma 2.12 still holds in this case. Thus we can compute H*(Qs, T«—y, E2) by first computing
the (x — o;)-graded 2-BSS, and then inverting D and taking the completion. Note that after
modulo 2, the representation o; is oriented and the orientation class u,, gives an isomorphism
between 7, E2/2 and 7, 41—y, E2/2 as Qg-modules. Therefore, the Ej-page of the (x — o;)-graded
2-BSS is abstractly isomorphic to that of the integer-graded part. We denote the Ej-page by

H*(Qs, Falvr,u™ ) {uo, }
where u,, denote a generator of the class at (1 — 0, 0).
Proposition 3.4. In the 2-BSS, there is a differential

d1(uy,) = 22Uy, + 2yu,y, .

Proof. The group cohomology computation shows that H'(Qs, m1—,,(E2)) is 2-torsion according
to Proposition A.7. Hence in the 2-BSS, there must be a d;-differential hit the bigrading (—o;, 1).
Then u,, in the 2-BSS must support a non-trivial d;-differential by degree reasons. Assume
that dy(uy,) = 2axus, + 2byu,, where a,b € Fy. By the Leibniz rule, we have di(viu,,) =
2h1ue, + 2azvius;. Since hp is a permanent cycle, the Leibniz rule implies that hju,, also
supports a non-trivial d;-differential. Therefore, the d;-target of viu,, cannot be 2hju,,. We
deduce that a # 0.
Similarly, by considering d; (h3u,,) and d;(yu,,), we deduce that b # 0.
d
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The remaining (x — 0;)-graded 2-BSS d;-differentials can be determined by the Leibniz rule
and the differential on u,, in Proposition 3.4.

Proposition 3.5. There is a 2-BSS differential
do(znuy,) = 4kviu,,.

Proof. By Example A.5, the class at (1 — 0;,4) is 4-torsion in the E-page. This forces the

desired ds-differential.
O

We list non-trivial differentials on classes of the form {multiplicative generators}u,, in the
table below.

TABLE 4. 2-BSS differentials, (x — o;)-graded

s, f) x r d.(x)
1—04,0) uy,

2

-0y, 1) LUy,

(
(
(
(3—04,0) viug,
(
(

27Uy, + 2y,
2332“01 + 2y2um‘
2NUe, + 2201U,,
2xhous; + 2yhou,,

4kviu,,

4—0’i,1) hQUO-i

DO | == =

2—0:,3) 2ntu,,

Theorem 3.6. Table 5 and Table 6 present H*(Qs, W[v1,u™']), the Ex-page of the (x — 0;)-
graded 2-Bockstein spectral sequence.

Proof. The result follows from the 2-BSS computation. O

TABLE 5. Eo page, module generators, (¥ — o;)-graded

s, f) =z 2-torsion

2.2 (24 hu 22
1) Az + yluo, 7/2

1,1) A{h +avitu,, Z)2
0,2)  viu,, Z

TABLE 6. Eo-page, relation generators, (x — o;)-graded

f relation generators
1 {hl + ‘rvl}utfi ’ Uil - U%uo'qz ’ U%hla U%uai ) h27 {‘T + y}uUi ' Uzll
2 {hl + $’U1}Um ' h27 {hl + mvl}um‘, . v%hl - U%umﬁ . h%a
ViU, - 2%, V32U, - Y2, VUg, - Thy, ViU, - B3, {2 + Y us, - vIhy, {2% + Y g, - v
3 {h1 + 2v1 Mg, - 2% — {2? + y*}uy, - ha, {h1 + 2v1 s, - y2, {2% + % Yue, - v2hy

{z + y}uy, - h3 — {h1 + 201}y, - hy, {7+ y}uy, - 2% — {2 + y}u,, - >
4 {xz + yQ}um : h%v {112 + y2}u0'i : h%? {ZE2 + y?}uoi ! 127 {$2 + yQ}uO'i : y27 {'1:2 + yz}uoi ~xhy
{h1 + 2v1 Mg, - b3 — v2u,,, 403u,, - k

We refer the readers to §6 for charts of the Fj-page and the E-page.
By Lemma 2.12, in both the integer-graded and the (% — o;)-graded case, the Es-page of
Qs-HFPSS(Es) follows from Theorem 3.2 and Theorem 3.6.
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Remark 3.7. The Es-page of TateSS(E>) follows by further inverting the class k from that of
Qs-HFPSS(E>), and then replacing the 0-line with the cokernel of the norm map.

4. COMPUTATION OF THE INTEGER-GRADED Qgs-HFPSS(FE,)

In this section, we derive all differentials in the integer-graded Qg-HFPSS for E, via the
following two methods.
(1) Equivariant methods: apply the restrictions, transfers, and norms to deduce differentials
in the Qg-HFPSS for E5 from the Cy-HFPSS for Fs;
(2) The vanishing line method: use the fact that the Qs-HFPSS for Fy admits a strong
vanishing line of filtration 23 (Theorem 4.8, for general cases, see [DLS22, Theorem 6.1])
to force differentials.

We also solve all hidden 2 extensions via equivariant methods and investigation of the Tate
spectral sequence.

We will rename several classes on the FEs-page of the Qg-HFPSS for E5 as follows. The
advantage is that these names are compatible with the tm f computation and the Hurewicz images
in B9 (see [Bau08], also compare to [[sal8]). For example, we rename the class kD3 by g,
which is compatible with [Bau08] and suggests that this class detects the Hurewicz image of &
(see 4.9).

TABLE 7. Distinguished classes

Classes Bauer’s notation Bigrading

Dzxhq c (8,2)
D22 d (14,2)
kD3 g (20,4)

When we talk about the restriction map from Qg to Cy, the subgroup Cj usually indicates the
subgroup Cy (i) generated by i if there is no further specification. Some of the arguments in the
proofs of this section are easier to see when accompanied by charts in §6.

4.1. General properties of the Qs-HFPSS for Fyj12. It is a result of Shi-Wang—Xu, using
the Slice Differential Theorem and the norm functor of Hill-Hopkins-Ravenel [HHR16], that the
homotopy fixed point spectrum EZ,?& is 24F+6_periodic.

The periodicity of E; @ is known by computation to be 64 classically. Here we give a proof
that E;LQS is 64-periodic before compute it using Qs-HFPSS.

Proposition 4.1. The homotopy groups of the spectrum ESQS is 64-periodic and the periodicity

class can be given by the class D8.
Proof. The product

NES @1)* NS (o) NG gy (usnINES  (ao) NG (a0
gives the 64 periodicity of E;LQS. This product is in bigrading (64, 0) and is invertible. On the
other hand, the generator D® of mg4(E>) is Qg-invariant and invertible. Therefore, this periodicity
class is D® up to a unit. O

From now on we can simply view D?® as a periodicity class of E;L Q% In the following property,

we show that the Qs-HFPSS for F5 can split into three parts such that there are no differentials
across different parts.
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Note that the universal space EGo4 can be viewed as a model for FQg. The transfer and

the restriction of the genuine spectrum F'(EGaq4, Eo) give a sequence ESG“ = E;LQS LN E;LG’“,
which is compatible with the filtration of the HFPSS.

Proposition 4.2. The composition
E;"«G24 res E;Qs t_T> E§G24

s an equivalence. In particular, the Goy-HFPSS for E5 splits as a summand of the Qs-HFPSS
for Es.

Proof. The composition trores is multiplication by |Ga4|/|Qs| = 3. All spectra are 2-local and 3
is coprime to 2 so this composition is an equivalence. O

We identify the Es-page of Qs-HFPSS(Es) as a free module over the Fs-page of Go4-HFPSS(FE>)
generated by {1, D, D?}.

Corollary 4.3. Let a,b be two classes on the Es-page of Goy-HFPSS(Es). View a,b as classes
in Qs-HFPSS(Es) and consider classes aD*s bD* where kq,ky, € {0,1,2}. Then there is a
differential d,aD*s = bD* in the Qg-HFPSS(E>) iff there is a differential d,a = b in the
Goy-HFPSS(Es) and kg = k.

Proof. When k, = 0, this follows from Proposition 4.2. For k, = 1, note that the Qs-HFPSS for
E, is D8-periodic by Proposition 4.1. The two differentials

(1) dyaD = bD* and (2) d,(aD°) = bD**+8

imply each other. We observe that the class aD? is a class in G24-HFPSS(E>). Then by the case
ko = 0, the differential (2) happens in Ga4-HFPSS(E5). This implies the desired result. The case
k, = 2 is similar. O

As a consequence, the computation of the Qg-HFPSS for E5 splits into three copies with the
same differential patterns and there are no differentials across different copies. In particular, the
G94-HFPSS for Fs is 192-periodic.

Remark 4.4. A similar statement holds for general heights 4k + 2. A maximal finite subgroup
in Sypq2 18 Qg % Cyo2+1_1) = Gag X Cg2ri1_1y [Hew95][Bujl2, Section 4.3]. The computation of
the Qs-HFPSS for Fyy 12 also splits into copies of the computation of the Qg X C3(g2x+1_1)-HFPSS
for E4k+2.

Remark 4.5. The G94-HFPSS for E5 computation is essentially the same as the 2-local tm f
computation [Bau08]. However, our computation only relies on the C4 computation of Es and
hence is an independent computation of the classical tm f computations.

In Theorem 4.8, we will improve the horizontal vanishing line result of the Qs-HFPSS for
E4k12 in Theorem 2.10. In the case of the Qg-HFPSS for Fs, the improved vanishing line of
filtration 23 turns out to be sharp by computation. We start with the following fact.

Proposition 4.6. Let HZ be the Eilenberg-Mac Lane spectrum with trivial Qg-action. Then on
the Ea-page of Qs-HFPSS(HZ), the product a,,aq,a0, is trivial.

Proof. We prove a stronger statement that the whole group H*(Qs, 3—o, o, —o, (HZ)), where
the class a0, a4, lies in, is trivial. According to Proposition A.7, the group H3(Qs,7Z) is trivial.
We observe that the homotopy group 73-¢,; o, -0, (HZ) as a Qg-module is a copy of Z with trivial
Qs-action (0; ® 0; ® oy, is a trivial Qs-representation). Then we have

HO(Q877T3*Ui*Uj*Uk(HZ)) = (71—3*0’1'*03'*0’1@(HZ)))Q8 = Z.
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Similarly we also have
HO(Q& T-3+0itoitor (HL)) = (T-3+40,+0i+04 (HZ))QB =Z.

Let u be a generator of HO(Qg7 M3—0;—0j—ok (HZ)). Then the class u is invertible on the Ea-page
of HFPSS for HZ by the following paring

T3—0i—0j—0k (HZ) & T_3+0,+0i+0y (HZ) =Z.

Therefore, the class u induces an isomorphism H*(Qs, T3—g, o, -0, (HZ)) ~ H*(Qs,Z), the latter
of which is trivial.
Il

Remark 4.7. We thanked Guillou for confirming and explaining Proposition 4.6. This proposition
also follows from Guillou and Slone’s computation of quaternionic Eilenberg—Mac Lane spectra
[GS22].

Theorem 4.8. The RO(Qs)-graded Qs-TateSS for Eyi1o vanishes after Egants_g-page. And the
RO(Qg)-graded Qg-HFPSS for Eyyo admits a strong vanishing line of filtration 24++5 — 9.

Proof. Denote the height 4k + 2 by h. We briefly review the proof of the vanishing line of filtration
243 — 7 in [DLS22, Theorem 6.1] and explain the filtration improvement by 2. By Theorem 2.8,
in the Qg-TateSS(E},), there is a predicted differential

(41) d2h+3_7(Ng28 (@;1U§Z;1a172h+1 )aﬁ) =1.

o2

By naturality, the unit 1 has to be hit by a differential d, with » < 2"*+3 — 7. Note that since 1 is
hit, the spectral sequence vanishes at F,.-page.

The ring map Z — 7.(E}) induces a map between Es-pages of the Qg-HFPSS for HZ and
Ej,. Then the naturality forces the source of Eq. (4.1) is trivial since a; = a,,a0,05, = 0 by
Proposition 4.6. For degree reasons, we conclude r < 2"*3—-9. So every class in the Qg-TateSS(E},)
will disappear on or before the Fyn+s_g-page. Finally by Lemma 2.6 there is a strong vanishing
line of filtration 24*+5 — 9, O

Lemma 4.9. In the Qg-HFPSS for E, the class hi, ha, g are permanent cycles.
Proof. Consider the following maps
G0 Mnity phQs res, phCs.

By [LSWX19, Theorem 1.8], the class & € m50S° maps to a non-trivial class in E2°? in filtration

4 in the Co-HFPSS for E5. Thus the image of & in 7, (ESQS) is non-trivial. For degree reasons, it
is detected by the class g in Qs-HFPSS(Fs). The proofs for hy, hy are similar. O

We only use the Hurewicz image of Eg ©2 as the input. This has been systematically studied

in [LSWX19]. Our method does not assume the knowledge of the Hurewicz image of EX©.

4.2. Differentials in the integer-graded pages. We suggest readers refer to the charts while
reading the proofs in this section.

All statements about differentials in this subsection are differentials in integer-graded Qg-
HFPSS(E,) if there is no specification.

Proposition 4.10. The class v$ in (12,0) supports a dz-differential

d3(v}) = vihy.
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Proof. By construction, we have res:®(vf) = TQ,resC (h1) = n. In C4-HFPSS(Es), [BBHS20,
Proposition 5.21] implies that we have

ds(13) = T3’
The result follows by naturality.

Corollary 4.11. The class v?hy at (5,1) supports a ds-differential
ds(vihy) = hi.

Proof. By Proposition 4.10, we have d3(v$hy) = vihi. Note that v} is a 3-cycle. This forces the
desired ds-differential. O

Proposition 4.10 produces a family of ds-differentials by the Leibniz rule:
ds(D™ g i F2hY) = D™ g ol B+, and dy(D™ g viRY) = D™ty
for any (m, s,l,n) € Z X Z>o X Z>1 X L>1.
For degree reasons (and the following proposition), these are all the non-trivial dz-differentials.
Proposition 4.12. The following classes survive to the E-page.
2D™ 2 DMyl D™uithy, D™ R | (m,1) € Z X L.
Proof. The classes D™vil, D™vihy, D™v#h? cannot be hit by degree reasons. They are perma-
nent cycles by Lemma 2.6 and the Qs-TateSS(Fs) ds-differentials
d3(D™ 3 gLyl =2ty = DRt i lin e Z, 1 #0.

As for the classes 2D™v1*2 | we consider the additive norm map

Ho(Qs. (Ba).) = H(Qs, (E2).)
where N(z) = > ¢g(x). By the Qg-action formulas (Eq. (2.3)), we have
9€Qs

N(v%l+1(u—1)2l+1> _ Z g(U%l+l(u—1)2l+1)

9€Qs

N 2041 1N 2041
— 2 () 4o (m + 2yt vy —u!
= 2u; — —5
2 —¢ 2 -

”1”42“1)21“ <<”1“1>2l+1 <”1+2<“1)21+1 <<2”1“1)2m
+2( =< ¢?-¢ +2 22— ¢ .

The leading term of the above formula on the E-page of the 2-BSS for H*(Qs, W[vy,u™1]) is
21)‘11”2 for I > 1. Then we have

N(Dmv%bkl( —1y2+1y _ pm Z V2 (=12 = 9Dy 4l+2
9gEQs
since D is Qg-invariant. As the additive norm map is the d;-differential on F;-page of the Qg-

TateSS for Fs, we have the classes 2Dmviu+2 are permanent cycles who survive to the F,-page
by Lemma 2.6. (]

Remark 4.13. All the classes supporting or receiving non-trivial ds-differentials and all classes
in Proposition 4.12 are sometimes referred to as the bo-pattern. They match the pattern of (many
copies of) m, KO, the homotopy groups of the real K-theory. See [BG18, Definition 2.1] for more
details.
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The following result is the first example of the strong vanishing line method (Theorem 4.8).
The method gives differentials of three lengths (including the longest das-differential) all at once
(see Fig. 1).

Proposition 4.14. There are differentials

(1) ds(D~'3g5dhy) = 4D~ 1647,

(2) d13(D_7g3ch1) = 2D_16 7;

(3) dgg(D_lgh1> = D_16g7.
Proof. We suggest readers comparing the arguments with Fig. 1. The class D~1%¢" is a permanent
cycle in filtration 28 > 23. By Theorem 4.8, the classes D™16¢7, 2D71647 and 4D~'6¢" must
receive differentials. According to Corollary 4.3, Qs-HFPSS(Es) splits into three parts. On the
Es-page, these three parts are modules over the Fs-page of Go4-HFPSS(E>) and all differentials
do not cross different copies. In Fig. 1, we highlight the relevant copy. By inspection, we obtain
the desired ds, di3 and dos-differentials. O

Corollary 4.15. The class D at (8,0) supports a ds-differential
ds(D) = D™ 2gh,.

Proof. Note that D® is an invertible permanent cycle (Proposition 4.1), and ¢° is a permanent
cycle (Lemma 4.9). By Proposition 4.14(1) and the Leibniz rule, there is a ds-differential

(4.2) ds(D3dhy) = 4g°.
The relation dh3 = 4g (see Remark 3.3 under 2BSS names) forces the following ds-differential
(43) d5(D3d) = gdhg.

With Eq. (4.3), it suffices to show D?d is a 5-cycle. In fact, the only possible d5 target of D%d
supports a differential
ds(D~'gdhy) = 4D 4¢3,
by multiplying D~*ghs with Eq. (4.3). Note that D~% is a 5-cycle since D is a 3-cycle.
|

All the remaining ds-differentials follow from the Leibniz rule. There are no more ds-differentials
by degree reasons and Corollary 4.3.

We also get a do-differential from the d;3-differential in Proposition 4.14(2).

Corollary 4.16. The class Dc at (16,2) supports a dg-differential
do(Dc) = D™°g*dh,.

Proof. We observe that in Qs-HFPSS(E5) there is an hi-extension from Dc to Dchy. We proof
by contradiction. Suppose that Dc does not support the claimed dg-differential. Then for degree
reasons, Dc becomes a 13-cycle. However, this contradicts Proposition 4.14 since Dch; supports
a non-trivial d;3-differential. O

Proposition 4.17. The classes 4D and 2D? at (16,0) support the following dr-differentials
(1) d7(4D) = D~?ghs;
(2) dn(2D?) = D~1ghd.

Proof. By Corollary 4.15 and the hidden 2 extension from 2hs to h} (see [Tod62]), D~2gh? has

to be hit by a differential. For degree reasons and Corollary 4.3, the only possible source is either
4D. The second dy-differential follows similarly from ds(D?) = 2D~ !ghs. O
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FIGURE 1. ds, di3, d23-differentials

The d-differential on D* (which we prove in Proposition 4.28) turns out to be a hard one, as
it does not follow from primary relations like the Leibniz rule or (hidden) extensions. We will

first prove several dy, dy3-differentials, and then the dr-differential follows from the vanishing line
method.

Proposition 4.18. The class D°ch; at (49,3) and the class Dc at (48,2) supports the following
differentials.

(1) dlg(DSChl) = 2D_4g4;

(2) do(D%c) = D~1g2dh;.

Proof. By a similar argument as in Corollary 4.16, it is enough to show the (1). We first observe
that the class 2D~*g* is in the image of the transfer map from Cy-HFPSS(Ey) since

trores(D *g?) = [Qs : C4]D*g* = 2D *¢*.

21



COMPUTATIONS OF HEIGHT 2 HIGHER REAL K-THEORY SPECTRA AT PRIME 2 22

According to [BBHS20, Proposition 5.28], the class res(D~%g*) receives a d3-differential in
C,-HFPSS(E5). The naturality forces that 2D~%*g* dies on or before the the Ej3-page in Qg-
HFPSS(FE5). The only possibility is the desired djs-differential by Corollary 4.3 and degree
reasons. (|

Remark 4.19. Since C;-HFPSS(E») is 32-periodic with the periodicity class A = dfug\usg,
[HHR17][BBHS20], the same argument in the proof of Proposition 4.18 gives an alternative proof
of Proposition 4.14(2) and Corollary 4.16.

Lemma 4.20. The class D3h; is a permanent cycle.

Proof. By Corollary 4.3, it suffices to show D?h; is a permanent cycle in Ga4-HFPSS(E,). For
degree reasons, D3h; can only possibly hit D=3gc or 2D~ 12¢% in Go4-HFPSS(E>). Because D8,
g are permanent cycles, Proposition 4.18 implies

di3(D73g%ch1) = 2D7'2¢% and dy(D3gc) = D 2¢%dh,.
Therefore, the class D3h; has to be a permanent cycle. ([

Remark 4.21. It turns out that D3h; is hit by a dos-differential in the Tate spectral sequence
by Corollary 4.22.

Corollary 4.22. There are non-trivial doz-differentials
(1) da3(D*h3) = D~ 'gChy;
(2) da3(D°hi) = D=1 h3.
Proof. The claimed dy3-differentials follow from Proposition 4.14(3) and Lemma 4.20 d

We write m = n if m = In for some [ € W(Fy)*.
Lemma 4.23. There is a hidden 2 extension from D°h3 to g*d.

Proof. According to Lemma 2.18, there is a hidden 2 extension in stem 54 from A}0$ug\t40a24 to
A ug U6y asra2, in the Cy-HFPSS(Ey) since it is Af-periodic. Note that the restriction of D to
the Fy-page of the Cy-HFPSS(Fs) is invertible then it equals A; up to a unit, i.e., ress (D) = A;.
In Appendix A we show that the restriction of the classes ho, d and g are non-trivial. Then in
stem 54 of Qs-HFPSS(E5), we have the following two restrictions

672\ - AAR6
resgj(D h3) = A0 UgAU4r A2

Q 2 - 48
res¢’ (g7d) = A0 U4 UG, G4NA2, -

Note that in Go4-HFPSS(E,), there are no other classes between these two filtrations. Then
the naturality forces a hidden 2 extension from D®h3 to g°d in Go4-HFPSS(Es). This hidden 2
extension also happens in Qs-HFPSS(F5) by Corollary 4.3. d

As the C4y-HFPSS for E5 is 32-periodic, a similar proof gives the following hidden 2 extension
in stem 22 in the Qg-HFPSS for Es.

Corollary 4.24. There is a hidden 2 extension from D?h3 to D~*g%d.

Proposition 4.25. The classes 2Dhy at (11,1) and 2D%hy at (43,1) support di3-differentials

(1) d13(2Dh2) = D78g3d;
(2) d13(2D5h2) = D_4g3d.
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Proof. (1) By Lemma 4.23 and the E..-page class g, there is a hidden 2 extension from D~2gh3
to D78g3d in stem 10 of the Qg-HFPSS for E,. By Corollary 4.15, we have
ds(Dhg) = D_Qghg.

Then the hidden 2 extension forces the desired differential.
(2) Tt follows similarly from the hidden 2 extension from D?g?h3 to D~*g3d by Corollary 4.24. [

Remark 4.26. In Bauer’s computation for tmf [Bau08], the hidden 2 extension in Lemma 4.23
is proved using four-fold Toda brackets. In our approach, the hidden 2 extension follows from the
restriction and the Cy-HFPSS hidden 2 extension, which again is forced by the exotic restrictions
and transfers in Lemma 2.18.

Lemma 4.27. The class Dh} is a permanent cycle.

Proof. The class Dh3 is a 5-cycle. By Corollary 4.3 and degree reasons, Dh? can only possibly hit
D=8g%d and D~'4g5h?, of which the former is hit by a d;3-differential by Proposition 4.25 and
the latter supports a dos-differential by Corollary 4.22 (D~14g5h2 = D=1645D2h2). The result
thereby follows. O

Proposition 4.28. The class D* at (32,0) supports a dy-differential
d7(D*) = Dghj.

Proof. Note that g and D8 are permanent cycles. Then by Lemma 4.27 the class D~°h3 g% at

(3,27) is also a permanent cycle. This class has to be hit by a differential via the vanishing line

method (Theorem 4.8). By Corollary 4.3, the potential source is either D=3gc or D~2¢%. The

former supports a dg by Proposition 4.18. Therefore, the only possibility is the d-differential
d7(D™12g%) = D™ hig".

Since D8¢% is a permanent cycle, the result follows.
O

All dr-differentials follow from Proposition 4.17, Proposition 4.28 and the Leibniz rule.
Before proving the next two dg-differentials in Corollary 4.32, we need to first prove a permanent
cycle in Lemma 4.29 and two dp;-differentials in Proposition 4.30.

Lemma 4.29. The class D3dh, is a permanent cycle.

Proof. By Corollary 4.16 in the Qg-TateSS for Fs, we have a dg-differential
do(D?g~?c) = D3dh,.

Then D3dh; is a permanent cycle in the Qg-TateSS. By Lemma 2.6 it is also a permanent cycle
in Qg—HFPSS(Eg) [l

Proposition 4.30. The classes D?d at (30,2) and DSd at (62,2) support di:-differentials
(1) dll(DQd) = D_4g?’h1;
(2) dll(Dﬁd) = gghl.

Proof. According to Proposition A.7, the restriction of the class d from Qg-HFPSS(Es) to
C4-HFPSS(FE>) is non-trivial, and supports a non-trivial dys-differential by [BBHS20, Proposi-
tion 5.28]. This implies the class D?d supports a non-trivial differential with a length at most
13. The desired differential in (1) follows by degree reasons. The proof for (2) is similar since
C4-HFPSS(E7) is 32-periodic.

O

Corollary 4.31. The classes D*dhy at (31,3) and D%dhy at (63,3) support di;-differentials
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(1) dy1(D?*dhy) = D=*g3h3;
(2) dll(DGdhl) = gSh%.

Corollary 4.32. The classes Dhy at (9,1) and D°hy at (41,1) support dg-differentials

(1) dy(Dh1) = D~ °gc;
(2) do(D°hy) = D~ 1g?%c.

Proof. By Corollary 4.3 and degree reasons, the class Dh; either supports a non-trivial dg-
differential or is an 11-cycle. We show it is the first case.

If Dhy were a 1l-cycle then by Proposition 4.30 and the Leibniz rule, there would be a
dq1-differential

dll(Dsdhl) = D_ngh%.
This contradicts Lemma 4.29. Therefore, we have the desired dg-differential in (1). The proof for
(2) is similar.
O

Proposition 4.33. The class D~ 'h; is a 13-cycle.

Proof. Since D? is the periodic class, it suffices to prove that D7h; is a 13-cycle. The D"h;
is a 7-cycle from our computation of Eg-page. It cannot support a dg-differential since the
possible target g2 Dc supports a differential by Corollary 4.16. Then for degree reasons, D7h; is a
13-cycle. O

Corollary 4.34. The classes D*c at (24,2) and DSc at (56,2) support do-differentials

(1) do(D*c) = D=*g2dhy;

(2) dg(Dﬁc) = g2dh1.
Proof. Suppose D?c doesn’t support a non-trivial dg-differential. Then for degree reasons, it is
a 13-cycle. However, since D~ 'h; is also a 13-cycle, the Leibniz rule show that Dh;c is also a
13-cycle. This contradicts Proposition 4.14 and proves the dg-differential in (1). The dg-differential
in (2) follows similarly by Proposition 4.18. d
Corollary 4.35. The classes Ddhy at (23,3) and D5dhy at (55,3) support dy1-differentials

(1) dll(Ddhl) = D_5ggh%;

(2) dll(Dsdhl) = D_lggh%.
Proof. According to Proposition 4.33, the class D~ 'h; is a 13-cycle. Then these two dii-
differentials follow by Proposition 4.30 and the Leibniz rule. O

Lemma 4.36. The class d is a permanent cycle.

Proof. Proposition 4.25 shows d is hit by a d;3-differential from 2D°g~3hy in Qg-TateSS(E>). By
Lemma 2.6 d is a permanent cycle. Il

Remark 4.37. In fact, the class d is in the image of the Hurewicz map S° — ES @5 This follows
from the Hurewicz image of E? [HSWX18, Figure 12] (see Proposition A.8).

Proposition 4.38. The classes D?hy at (17,1) and DShy at (49,1) support dg-differentials
(1) do(D*hy) = g>D~%¢;
(2) dg(D°h1) = g*c.

Proof. We prove by contradiction. Assume D?h; does not support the desired differential. Then

it is a 11-cycle by degree reasons. The Leibniz rule forces the class Dh; to support a non-trivial
dy:1-differential but this contradicts Lemma 4.36. The proof of (2) is similar. O
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Table 8 lists the differentials we have computed so far. They generate differentials via the
Leibniz rule. By inspection, these are all non-trivial differentials since the remaining classes are
permanent cycles by Method 2.7.

4.3. Extension problem. Now we solve all the 2-extensions on the E,-page.

Theorem 4.39. All the hidden 2 extensions in the integer-graded Goy4-HFPSS(Es) are displayed
in Fig. 10 by gray vertical lines.

Proof. Since the Go4-HFPSS for E5 is 192-periodic, it suffices to consider the stem range from 0
to 192. We divide these 2 extensions into three types by their proofs. The first type follows from
the fact that in homotopy groups of spheres 4v = 73 and h; detects 7, hy detects v (Lemma 4.9).
This type of hidden 2 extensions happens in stem 3,27,51,99, 123 and 147 in the period from 0
to 192.

The second type consists of the 2 extensions in stem 54 and 150. The proof of the first is in
Lemma 4.23, and proof of the second is similar using the 32-periodicity of Cy-HFPSS(F>) and
Lemma 2.18.

The third type consists of three hidden 2 extensions in the first period. The first one is in stem
110 from D'2d to D%g3h3. The other two in stem 130 and 150 (from filtration 10 to 22) follow
from the first one by multiplying g and g respectively.

In Ga4-TateSS(F2) we have the following two differentials by Proposition 4.25 and Corol-
lary 4.22.

d13(2D21g_3h2) = Dle,
dos(D*'g7°hY) = D°¢°hi.
Now consider the cofibration
(E2)ngay — B39 — B3
In the negative filtrations in Gas-TateSS(Ey), there is a hidden 2 extension from 2D?'g=3h, to
D?'g=3h3, then this hidden 2 extension under the additive norm map gives a 2 extension relation

in W*EQG“ from an element detected by D'2d to some element detected by D®g®h2. This forces

a hidden 2 extension from D12d to D®g3h? in Goy-HFPSS(Es).

We claim there are no further 2 extensions in Go4-HFPSS(FE5). By degree reasons, the other
possible hidden 2 extensions either have sources that are h; divisible or have targets that support
hy extensions. Therefore, the hidden 2 extensions cannot happen in these cases. O

Corollary 4.40. All the hidden 2 extensions in the integer-graded Qg-HFPSS(Es) are displayed
in Fig. 9 by gray vertical lines.

Proof. This follows from Theorem 4.39 and Proposition 4.2. U

Our result of 2 extensions via the equivariant and the Tate methods matches the ¢m f computa-
tion in [Bau08]. In [Bau08], because his arguments for proving differentials rely on (hidden) 7 and
v extensions, almost all these hidden extension are also computed (there are another v extension
from D°h? at (122,2) and its & multiples [[sa09, Lemma 5.3]). Here our new methods only use
hidden 2 extensions and the hi, ho multiplications on the Fs-page. Therefore, we do not need to
work out hidden n and v extensions and in our figures we only draw hi, he multiplications.

4.4. Differentials: alternative methods. In this subsection, we revisit several differentials in
the integer-graded part via different approaches.

Proposition 4.41. The class D at (8,0) supports a ds-differential
ds(D) = D™ 2gh,.
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Proof. The restriction of D to the C4-HFPSS for Es is Ay, which supports a non-trivial ds-
differential according to [BBHS20, Proposition 5.24]. By naturality, D must support a non-
trivial differential with length < 5. Then by Corollary 4.3 and degree reasons, it has to be
d5(D) = Dizghg. O

Moreover, given all ds, d7-differentials, then the vanishing line forces the d;;-differential in
Proposition 4.30.

Proposition 4.42. The class D®d at (62,2) supports a dy,-differential

di1(D%d) = g*hy.
Proof. Tt is enough to prove the di;-differential
di1(D%gPdhy) = g°h3
since g is invertible in the Qg-TateSS for Eo. The target ¢8h? is a permanent cycle in filtration

34 > 23. By Theorem 4.8 and Theorem 2.9 it has to be hit by a differential. Since DS¢°dh; is a
7-cycle, the only possibility is the desired d;-differential. O

We here present another proof of the dg-differential in Proposition 4.38 which combines the
partial calculations in (x — o;)-gradings by the norm method (see Proposition 5.16).
Proposition 4.43. The class D?*hy at (17,1) supports a dy-differential

do(D*hy) = D™ *g%c.
Proof. Suppose the claimed dg-differential doesn’t happen, then D?h, is a 9-cycle. According to
Lemma 5.6, the class {x+y}D%u,, is a 9-cycle. Then the Leibniz rule implies that {z+y}DSh;u,,

is also a 9-cycle. This contradicts the fact that {z+y}D®hiu,, supports a non-trivial dg-differential
in Proposition 5.16. O

4.5. Summary of differentials. We summarize differentials in Table 8. All differentials follow
from this list by the Leibniz rule.

TABLE 8. HPFSS differentials, integer page

toprule (s, f) =« r de(z) Proof
(12,0) v§ 3 vind Proposition 4.10 (restriction)
(8,0) D 5 D7 2ghsy Corollary 4.15 (vanishing line)

or Proposition 4.41 (restriction)

(8,0) 4D 7 D7 %gh} Proposition 4.17 (8v = n?)
(16,0) 2D? 7 D lgh3 Proposition 4.17

(32,0) D* 7 Dgh3 Proposition 4.28 (vanishing line)
(9,1) Dhy 9 D7 %g% Corollary 4.32

(41,1) D°h; 9 D7 lg%c Corollary 4.32

(16,2) D¢ 9 D7 5g%dh; Corollary 4.16

(48,2) Doc 9 D 'g2dh; Proposition 4.18

(17,1) D?hy 9 D g%c Proposition 4.38

(49,1) DShy 9 g% Proposition 4.38

(24,2) D?c 9 D *g%dh; Corollary 4.34

(56, 2) Db¢ 9  g¢%dh Corollary 4.34

(30,2) D%d 11 D=%g3h;  Proposition 4.30 (restriction)
(62,2) Dbd 11 ¢3m Proposition 4.30 (restriction)
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TaBLE 8. HPFSS differentials, integer page
toprule (s, f) = r dy(x) Proof

or Proposition 4.42 (vanishing line)

(23,3) Ddhi 11 D=5g%h?  Corollary 4.35

(55,3) D5dh; 11 D7 1'g3h?  Corollary 4.35

(17,3) Dch; 13 2D 8g4 Proposition 4.14 (vanishing line)

(49, 3) D°chy 13 2D g% Proposition 4.18 (transfer)

(11,1) 2Dhy, 13 D78¢3d  Proposition 4.25 (hidden 2 extension)
(43,1) 2D%hs 13 D~%¢®d  Proposition 4.25

(—7,1) D7 'h; 23 D71646 Proposition 4.14 (vanishing line)
(18,2) D%h? 23 D 3¢%h;  Corollary 4.22

(43,3) D°h3 23 D~ 0¢%n2  Corollary 4.22

5. THE (% — 0;)-GRADED COMPUTATION

In this section, we compute the (x — 0;)-graded Qs-HFPSS for F5. We adapt the following
convention: a class at (n — o;,m) will be denoted as in degree (n — 1,m). Since the Qg-
representation o; cannot be lifted to Ga4, in this section, we only consider the groups Qg and
SD16. We name classes by their names in the 2-BSS in Table 5, and also use 2-BSS names for
the integer-graded classes as it makes the multiplication relation clearer.

Proposition 5.1. The class v3u,, at (4,0) supports a dz-differential
ds(vius,) = h3ug,.

Proof. We consider the restriction map from (x — 0;)-graded Qs-HFPSS(E>) to the integer-graded
C,-HFPSS(FE,). Note that the Cy-invariant element T, € H?(Cy, m4F>) equals v modulo 2. This
implies resgf (v%ugi) = T5. Recall that in the C4-HFPSS for Fs, the class T, supports a non-
trivial ds-differential ([BBHS20, Proposition 5.21]). The class viu,, must support a non-trivial
differential of length < 3. By degree reasons, we have

ds (v%ugi )= hi’ugi .
O

Since the (x — 0;)-graded part is a module over the integer-graded part, this ds-differential
implies a family of ds-differentials as follows:

d3(k* D™u{ 2 ug,) = kS D™ BT B,

where k,m,l,n € Z and [,n > 0. By taking out these ds-differentials, an argument similar to the
proof in Proposition 4.12 shows that the following classes are permanent cycles

m, 4l—2 m, 4l m, 4l m, 4Ly 2
2D %, DMy, D™ hy, D™ RY

where [ > 1 and m > 0. All the classes above either support non-trivial ds-differentials or are
permanent cycles. Similar to the bo-pattern in the integer graded part, we do not need to consider
this part in later computations of higher differentials.

However, this is not the only kind of ds-differentials in (x — o;)-graded part. In order to derive
the second kind of ds-differentials, we first need to show the ds-differential pattern and several
other facts.

Lemma 5.2. The class {x + y}u,, is a permanent cycle.
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Proof. For degree reasons, this class is a,, on the Es-page defined in Definition 2.2. By Proposi-
tion 2.3, this class is a permanent cycle. O
Corollary 5.3. The class {z + y}Du,, at (7,1) supports a ds-differential

ds({z + y}Duy,) = k{yha + xhiv1 } Du,,.

Proof. Since the (x — 0;)-graded part is a module over the integer-graded part, the claimed
differential follows from Lemma 5.2, Corollary 4.15 and the Leibniz rule. 0

Corollary 5.3 generates the first kind of ds-differentials via the Leibniz rule.
Lemma 5.4. The class {* + y?} Du,, is a permanent cycle.

Proof. According to Proposition 4.38, there is a dg-differential dg(DSh;) = k2D7xh;. Then the
Leibniz rule implies that the class k?x2h; D™u,, = k?D"2zhy - {x + y}u,, is hit by a differential of
length < 9. For degree reasons, it is hit by either a dg-differential or a dr-differential. In either
case, the degree reasons force k?{z? + y?}D7u,, to be hit on or before the Eg-page. Then the
class {#2 + y?}Du,, must be a permanent cycle; otherwise the class k2{z? + 32} D"u,, would
support a non-trivial differential since
E* {2 + y*}D"uy, = {2® + y*}Du,, - K*D®
where k2D® = ¢? is a permanent cycle that survives to E..-page in the integer-graded part. O
Corollary 5.5. The class {z? + y*}u,, at (—2,2) supports a ds-differential
d5({x2 + y2}u0'i) = k’{JC + y}h%um"

All ds-differentials in (x — 0;)-graded part follows from Corollary 5.3 and Corollary 5.5 by the
Leibniz rule.

Lemma 5.6. The class {x + y}D*u,, is a 11-cycle.

Proof. According to [BBHS20, Remark 5.23], the class us, is a 5-cycle in the Cy,-HFPSS for
E5. Therefore, Theorem 2.8 implies that Ngf (u2s)ae, is a 9-cycle. Because the norm functor
is symmetric monoidal [HHR16] and us, is an invertible class on the Es-page of the Cy-HFPSS
for Es, the class Ngf (uge) in the Qs-HFPSS for Es is also invertible on the Es-page. Hence
Ngf (u2s) - ap, is non-trivial on the Ea-page. By multiplying Ngf (uzs) - a,, with the periodicity
classes in Corollary 2.22, we get a non-trivial class at (31,1). For degree reasons, this class must
be {z + y} D*u,, (up to a unit). This implies that {z + y}D*u,, is also a 9-cycle. For degree
reasons, {z + y}D*u,, is a 11-cycle . O

Remark 5.7. We will show in Proposition 5.20 that the above class supports a non-trivial
dq3-differential.

Corollary 5.8. The classes x3u,, at (—3,3) and z3D*u,, at (29,3) support dy;-differentials
(1) di1(z3u,,) = K*{x + y} Dhiu,,;
(2) di1(23D*uy,) = K3{x + y} Dhyu,,.
Proof. According to Proposition 4.30, there is a d;;-differential in the integer-gradings
di1(z?) = k*Dhy.
Note that {z + y}u,, and {z + y} D*u,, are both 11-cycles. By the Leibniz rule, we have
di1(z%u,,) = {x + y}uy,diy (2?) = k*{z + y} Dhyu,,.

The proof of the second d;;-differential is similar.



COMPUTATIONS OF HEIGHT 2 HIGHER REAL K-THEORY SPECTRA AT PRIME 2 29

Proposition 5.9. The class {h; + zv1 }u,, at (1,1) supports a ds-differential
ds({h1 + zv1 }u,,) = 2kviu,,.

Proof. We argue by contradiction. Suppose this differential doesn’t happen. By Corollary 5.8
the class k*{z + y}D%hju,, must be hit by a differential of length < 11. Because kD? = g
is a permanent cycle, the class k*{z + y}D?u,, has to be hit by a differential of length < 11
in the Qg-TateSS for Ey. So is the class k?{x + y}D?h3u,,. For degree reasons, the class
k*{x + y}D?h3u,, has to be hit by the following dy-differential

(5.1) do({h? + xhyvi}Du,,) = k*{z + y}D*h3u,,.

By Lemma 2.6 this dg-differential also happens in the Qs-HFPSS for Es . This forces the following
do-differential
do({h1 + 2v1}Du,,) = k*{x + y} D*hyu,,.
Since D~ 1h; is a 9-cycle according to Proposition 4.33, there is a non-trivial dg-differential
do({h? + zhivi}u,,) = k*{x 4+ y} Dhiu,,.
By the assumption that {h; + xv; }u,, is a 3-cycle and degree reasons, this class survives to the
Ey-page. Then the above dg-differential forces
do({h1 + zv1}u,,) = k*{x + y}Dhiu,,.
Recall that Dh; supports a non-trivial dg-differential by Proposition 4.33. Then by the Leibniz
rule, we have
do({h? + xhivi}Du,,) = do(Dhy) - {h1 + zv1 }ug, + Dhy - do({h1 + 2v1 }u,,) = 0.
This contradicts Eq. (5.1).
Therefore, the claimed ds-differential must happen. O

Remark 5.10. Proposition 5.9 shows that 2kv?u,, is hit by a ds-differential. Recall that the
class kviu,, itself supports a non-trivial dz-differential by Proposition 5.1.

By the above discussion and by inspection, all ds-differentials in the (x — 0;)-graded part

follows from Proposition 5.1, Proposition 5.9 and the Leibniz rule.
Proposition 5.11. The classes {h} + xhiv1}Du,, at (10,2) and {h3 + zhiv1} D%u,, at (42,2)
support dg-differentials

(1) do({h? + zhyv1}Du,,) = k*{z + y}h3 D%u,,;

(2) do({h? + zhyv1}D%u,,) = k*{z + y}h3DOu,,.
Proof. Because kD3 = g is an invertible permanent cycle in Qg-TateSS(FE>), the d;-differential
in Corollary 5.8

di1 (23 D",) = k3 {x + yYh1 D5u,,
implies that in the (x — o;)-graded Qs-TateSS(F>) we have
di1 (k7 '2®Du,,) = (kD3 'dy1 (2> Du,,) = E*{z 4 y}h1 D?u,, .

Since k2{x + y}h1D?u,, is hit by a d;;-differential in Qg-TateSS(E»), its hy extension, k*{z +
y}h? D?u,,, has to be hit on or before the E1;-page. For degree reasons, this class k?{z+y} D?h3u,,

must be hit by the claimed dg-differential in Qg-TateSS(FEs). By Lemma 2.6, the first claimed
dy-differential also happens in Qs-HFPSS(E5). The second dg-differential follows similarly. O

We have the following dg-differentials by the Leibniz rule and integer-graded dg-differentials.

Proposition 5.12. We have the following dg-differentials
(1) do({z + y}h1Duy,) = k*2%hy D*u,,;
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(2) do({z + y}h1D*u,,) = k*>x2h1 D3u,.;

(3) do({z + y}h1D%u,,) = k?x2hy DSu,.;

(4) do({z + y}h1D%u,,) = k?2%h1 D" u,,.
Proof. We prove the first differential, and the proofs of the rest three differentials are similar.
According to Corollary 4.32; in the integer-graded Qs-HFPSS(E3) we have

do(Dhy) = k*xhy.
Note that the class {x + y}u,, is a permanent cycle by Lemma 5.2. Then the Leibniz rule implies
do({z +y}h1Duy,,) = {x + y}uy,do(Dhy) = k*2*hy D*u,,.
O

Corollary 5.13. The classes {x + y}D?u,, at (15,1) and {x + y}D%u,, at (47,1) support
dg-differentials

(1) do({x + y} D*ug,) = k*{a? + y°} D3, ;

(2) do({z + y}D%u,,) = k*{z% + y*}D"u,, .
Proof. By Proposition 4.33, the class D~1'h; is a 9-cycle. These two dg-differentials hold since

otherwise the classes ({z + y}Dhiu,, and {z + y}D?hyu,, would be 9-cycles by the Leibniz rule,
which contradicts Proposition 5.12. (]

In order to derive the last type of dgo-differential, we first need to show the following d;7-
differential in the (x — 0;)-graded part.

Proposition 5.14. The class {h? + zhivi }u,, at (2,2) supports a di7-differential
di7({h3 4 zhivi }us,) = k*{x + y}hiD%u,,.

Proof. Consider the class k®{h? +2hiv;} D*%u,, in filtration 26. By Theorem 4.8 this class cannot
survive to the F..-page.

After the Es-page, all the potential sources that could support a differential hitting the class
kS{h? + zhyv1} D u,, are k32%hyD%,,, k*{x + y}D%u,, and kx?h;D3%u,,. We ruin out all
three possibilities one by one. The class k322h; D%u,, is hit by the following do-differential in
Proposition 5.12

do(kxhiDu,,) = kD3dg({x 4 y}h1 D%u,,) = k*2*hy D%u,,.

The class k*{x+y}D%,, is a permanent cycle since {z+y}u,, is a permanent cycle by Lemma 5.2.
The class kx?h1D?® is also a permanent cycle since it is hit by a known dg-differential in the
Qs-TateSS for Ey according to Proposition 5.12

do(k™ x4+ y} D" hiu,,) = ka*hy D3u,,.

Therefore, the class k°{h} + zhiv1 } D*%u,, must support a non-trivial differential. Since kD3 = g
is an invertible permanent cycle in TateSS, the class {h} + zhiv1 }u,, = D8(kD3)"kS{h? +
xhyv1 } DY, also has to support a non-trivial differential. Then for degree reasons, since
kS{h? + zhyv1}Du,, is 5-cycle, the only potential targets are k*zh?D?u,, and k5z3D3u,,.
However, the class k°x®D3u,, supports the following d;;-differential by Corollary 5.8:

dy1 (K23 D3u,,) = (ED3)° D™ 194y, (23D u,,) = KDYz + yYhiu,,.
Therefore, the class {h% + xhyv1 }u,, supports the desired dyr-differentials

d17({hf + zhivi Yugy,) = k4{x + y}h%Dzugi.
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It turns out that this is the only d;7-differential in one period of the (x — 0;)-graded part of
Qs-HFPSS(Es).

Proposition 5.15. The classes {22+ y*}D3u,, at (22,2) and {x? +y*}D"u,, at (54,2) support
dg-differentials

(1) do({z* + y?} D3u,,) = k22® D*u,,;

(2) do({z* + y*}D"u,,) = k*2®D8u,,.
Proof. According to Proposition A.7, the restriction of {z? + y?}u,, to the integer-graded Cy-
HFPSS for Es is non-trivial. It implies the following restriction by degree reasons

resgf ({xQ + y2}D3u0i) = 6(15U6)\U4ga20.

We now prove that the class {z? 4+ y?}D3u,, supports a non-trivial differential by contradiction.
Suppose that the class {z? + y?} D3u,, is a permanent cycle that survives to the E..-page. Note
that its Cy-restriction d0$ugrtus,a2, has a hidden 2 extension in ﬂ*(Egc“) by Lemma 2.18. Then
{z? + y?} D3u,, also has a hidden 2 extension in the E.,-page. However, since hidden extensions
and natural maps between spectral sequences will not decrease filtration, the potential target of
the hidden 2 extension from the class {#? + y?} D3u,, can only be k?{2? + y*}D*u,,, k{yhs +
xhyv1 }D3u,, and k{h? + xhiv; } D3 by degree reasons. However, the first class k2{x? +y*} D*u,,
supports a non-trivial ds-differential by Corollary 5.5

ds(k*{x? + y*} D"u,,) = k32h3 D, .

The second class k{yhs + zhiv1} D3u,, is hit by a ds-differential by Corollary 5.3

ds({z +y} D3u,,) = k{yhy + xhivi} D3u,,.
The third class k{h% + xhlvl}D?’ugi supports a d;7-differential by Proposition 5.14

dy7(k{h? + xhiv1 } D3u,,) = kSzh? DPu,,.
Therefore, all the potential targets of the hidden 2 extension from the class {2? + y?} D3u,,
will not survive to the E.-page. This is a contradiction. Hence the class {2 + y?} D3u,, must
support a non-trivial differential.

After the Es-page, the only two potential targets are k?z3D%u,, and k°{x + y}h? D%u,, by

degree reasons. However, the class k°{z + y}h?D5u,, is hit by the following d;7-differential by
Proposition 5.14 and the Leibniz rule

di7(E{h3 + zhivi} D3u,,) = kD3dy7({h? + xhivi }u,,) = K> {z 4+ y}h? DPu,, .

Then the first desired dg-differential follows. The proof of the second dg-differential in the
statement is similar since the C4-HFPSS for Fs is 32-periodic. O

Actually, we can apply the norm method to get a dg-differential directly (after the calculation
of FE3-page) which is independent of the dg information in the integer-graded part.

Proposition 5.16. There is a normed dg-differential in (x — o;)-page
d9({x + y}D6u01‘) = k2{$2 + y2}D7u0i‘

Proof. According to [HHR17, Theorem 11.13], the class ug) supports a non-trivial ds-differential
in C4-HFPSS(E>)

ds(uz)) = 01uxa2200-
Then Theorem 2.8 implies there is a predicted do-differential in Qs-HFPSS(E>)

dg(NgS (u2>\)aai) = Ngf (61)Ngf (uA)agHagj Qg -

4
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We claim the target of this predicted dg-differential is non-trivial on the FEs-page. It suffices
to show that the class a4, a0, is non-trivial since Ngf (ux)asgp is invertible in TateSS(Es). We

observe that

resgj (a45;00,) = G20

where ay, is non-trivial in Cy-HFPSS(Es,). This implies that a,;a, is also non-trivial. Therefore,
the non-trivial class on the Es-page Ngf (61)Ng48 (uA)agHa(,j ay, must be hit on or before the
Ey-page. By multiplying this class with the periodicity classes in Corollary 2.22, we get a
non-trivial class at (46, 10), which has to be the class k?{z? + y?} D"u,, (up to a unit) by degree
reasons. Therefore, the class k?{x? 4+ 4%} D"u,, has to be hit on or before the Eg-page too. For
degree reasons, the desired dg-differential happens in the (x — 0;)-graded part. (]

All dy-differentials follow from Proposition 5.11, Proposition 5.12, Corollary 5.13, Proposi-
tion 5.15 and the Leibniz rule.

Proposition 5.17. The classes {x +y}hiD?u,, at (17,3) and {z+y}h1 D u,, at (56,2) support
dos-differentials

(1) dos({x + y}hiD%u,,) = k°{x + y}h1 Doug,;

(2) dos({z + y}h1D"u,,) = k{x + y} Du,,.

Proof. By Corollary 4.22 we have the following two des-differentials in the integer-graded part
do3(D?h?) = k®hyD®, and das(D"hy) = k5D,

Note that the class {x + y}u,, is a permanent cycle by Lemma 5.2. Then the desired two
differentials follow from these dos3-differentials and the Leibniz rule. O

All das-differentials follow from Proposition 5.17 and the Leibniz rule.
Lemma 5.18. The classes {h?+xhyvi }D"u,, and {h? +xhivi}D*u,, are both permanent cycles.

Proof. After the Es-page, the potential targets of {h? + zhiv;}D7u,, are the classes k2{x +
y}h3iD8u,, and k322 D%,,, since lengths of differentials in the RO(Qs)-graded Qs-HFPSS(E»)
are less than or equal to 23 by Theorem 4.8. However, the class k*{x + y}h? D%u,, supports a
non-trivial daz-differential by Proposition 5.17 and the class k323 D%u,, supports a non-trivial
dy1-differential by Corollary 5.8. By similar reasons, the class {h? + xhjv; }D%u,, is also a
permanent cycle. O

Proposition 5.19. There are four non-trivial dy1-differentials
(1) d11($2h1D2ugi) = k?’{h% =+ ZL’hl’Ul}DB’ugi;
(2) di1(z2h1D3u,,) = k*{h3 + xhiv1 } D*u,,;
(3) di1(x%h1D%uy,,) = k3*{h? + xhiv1} D uy,;
(4) d11($2h1D7ugi) = k‘g{h% + l‘hﬂ)l}Dgugi.

Proof. We prove the last dy;-differential, and the proofs for the other differentials are similar.
The class {h? +zhiv1} D u,, is a permanent cycle by Lemma 5.18. Then k%{h? +zhqv1 } D%u,, =
D={h2 4+ zhyv; }D"u,, (kD?)® is also a permanent cycle. Since the filtration of this class is 26
which is greater than 23, Theorem 4.8 implies that the class k°{h? + zhiv; } D"u,, must be hit
by a differential. For degree reasons, we have the d;-differentials

dll(k‘?’thngum) = k6{h% + l‘hl’Ul}Dgugi.
Note that the class (k*D)~! = (k*D°D~%)~! is an invertible permanent cycle in Qg-TateSS(E»).

Then the Leibniz rule implies the desired d;;-differential in Qs-TateSS(F>). By Lemma 2.6 this
dq1-differential also happens in Qs-HFPSS(E>). O
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All dq;-differentials follow from Corollary 5.8, Proposition 5.19 and the Leibniz rule.
Proposition 5.20. The class {x +y}D*u,, at (31,1) supports a dy3-differential
diz({z +y}D*ugy,) = K3{h? + xhyvi } Dou,,.

Proof. We first claim the class k3{h? + zhyv1 } D°u,, is a permanent cycle. In the Qg-TateSS for
E,, by multiplying it with k~2D~? . D8, we obtain {h? + xhiv; }D*u,,, which is a permanent
cycle by Lemma 5.18. So k*{h? + zhiv; } D%u,, is also a permanent cycle in the Qg-HFPSS for
Es.

Next we consider the class k°{h? + zhivi } D%u,, = k3{h% + xhiv1} D%u,, - k3D° - D=8 above
the vanishing line. By Theorem 4.8 it must be hit by a differential since it is a permanent cycle.
Then for degree reasons, the only two possible sources are {x + y} D*u,, and x2h; D*u,,. Note
that the class z2h; D* is a permanent cycle since it is hit by a dg-differential in Qg-TateSS(FEy)

do(k™22h1 D3uy,,) = 22hy D*u,,.
Therefore, the claimed d;3-differential must happen. O
This dq3-differential can also be deduced via the norm method.

Second proof of Proposition 5.20. According to [HHR17, Theorem 11.13][HSWX18, Corollary 3.14],
there is a dr-differential in the C4-HFPSS for Fs

dr(ugn) = 017 ugxasy.
Then Theorem 2.8 shows that there is a predicted d;3-differential
d13(Ng48 (ugr)as,) = Ngf(ﬁﬁ]\]gf (n’)Ngf (u2))asm.

According to [Sch1l, Proposition 10.4 (viii)], resgi‘ Ngf (n") = n'* is non-trivial. Then Ngf (') is
non-trivial on the Es-page and so is the class Ngf (51)Ng48 (77’)Ng48 (u2x)agm. By multiplying the
non-trivial class Ngf (51)]\7&8 (7 )Ngf (uz2x)asg with the periodicity classes in Corollary 2.22, we
get a non-trivial class at (30,14) on the Eo-page, which has to be the class k3{h? + zhiv; } D%u,,
by degree reasons. Therefore, the class k3{h? + zhyvi}D°u,, must be hit on or before the
E3-page. For degree reasons, the desired di3-differential follows. O

All dys-differentials follow from Proposition 5.20 and the Leibniz rule.

Table 9 lists the differentials we have computed so far. They generate differentials via the
Leibniz rule. By inspection, these are all non-trivial differentials since the remaining classes are
permanent cycles by Method 2.7.

Theorem 5.21. There are no hidden 2 extensions on the Eo-page of (x — 0;)-graded Qs-
HFPSS(Es).

Proof. Since a,;, = {z + y}u,, already lives in the homotopy group ﬂ'_m(EéI QS) and it is 2-
torsion. Then in (x — o;)-graded Qs-HFPSS(E>) all a,, multiples that survive to E-page can
not support hidden 2 extensions. Then for degree reasons, the only possible 2 extensions are from
{22 + 42} D*%+ 1y, to k{h? + zhiv, } D**1y,  where k € Z. We now show there is actually no
hidden 2 extension on the class {#? + y?}Du,,; and the rest are similar. We observe that in
(* — 0;)-graded Qs-TateSS(FE3), there is a differential

do(k™*{z + y}us,) = {2* +y*} Dug,.

By sparseness of the Qg-TateSS for Fs, the above differential implies that under the homotopy
group map induced by the additive norm map

N: (By)ngs — EX9,
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the elements detected by k~2{x + y}u,, maps to elements detected by {z? + y*>}Du,,. However,
in (x — 0;)-graded Qs-HOSS(FE>)

then it forces

2k~ {z + y}u,, =0,

2{z* + y*}Du,, = 0.

The result is presented in Fig. 15. We only draw hq, ho extensions from the Fs-page.

5.1. Summary of differentials. Differentials in (x — o)-graded part are given by Table 9. All
differentials follow from this list by multiplying permanent cycles and the Leibniz rule.

TABLE 9. HPFSS differentials, (x — o;)-page

(s,f) = r o de(x) Proof
(1,1)  {h1 + zv1 b, 3 2kviu, Proposition 5.9
(4,0)  v?u,, 3 hlu, Proposition 5.1 (restriction)
(7,1)  {z+y}Duy, 5  k{yha + xhyvi}Du,, Corollary 5.3 (module structure)
(14,2) {2? + y*}D?u,, 5 kxhiD%u,, Corollary 5.5 (module structure)
(10,2) {h? + xhiv1}Du,, 9 k*{z +y}h?D?u,, Proposition 5.11
(42,2) {h3 +zhiv1}D%u,, 9 k*{x + y}h3iDCu,, Proposition 5.11
(8,2)  {z+y}th1Du,, 9 k?2%h1D?u,, Proposition 5.12 (module structure)
(40,2) {x +y}hi1Ddu,, 9  k%*x?h; DSu,, Proposition 5.12
(15,1) {x +y}D?u,, 9 k{2 + y*} D3u,, Corollary 5.13
(47,1) {z +y}D%u,, 9  k{2?+y*}Du,, Corollary 5.13
(22,2) {2 +y*} D3u,, 9  k22°D*u,, Proposition 5.15 (hidden 2 extension)
(54,2) {2® +y*}Du,, 9 k?2°D8u,, Proposition 5.15
(15,3)  2%hyD?u,, 11 k*{h? + zhyv1}D3u,, Proposition 5.19 (vanishing line)
(47,3)  x2hy DSu,, 11 k*{h? + zhyv,}D"u,, Proposition 5.19
(23,3) 2%h1D3u,, 11 k3{h? + zhyv,} D*u,, Proposition 5.19
(55,3) 2%h1D"u,, 11 k3{h? + zhyv,}D%u,, Proposition 5.19
(29,3) 23D%u,, 11 k3zhyDu,, Corollary 5.8 (module structure)
(61,3) 23D8u,, 11 k3zhy D%u,, Corollary 5.8
(31,1) {x+y}D*u,, 13 k3{h? + zhyv1}D%u,, Proposition 5.20 (vanishing line

or norm differential)
(2,2)  {h3 + xhiv; }u,, 17 kYax + y}h2D?u,, Proposition 5.14 (vanishing line)
(17,3) {x +y}hiD?u,, 23 kS{z +y}h D® Proposition 5.17 (module structure)
(56,2) {z+ythiD"u,, 23 kS{z + y}DOu,, Proposition 5.17
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6. CHARTS AND TABLES

6.1. Keys for the charts. In all charts, a gray line denotes a multiplication. See the following
table for the keys.

TABLE 10. keys for multiplications

line meanings
vertical 2 multiplication
slope 1 h1 multiplication
slope 1/3 ho multiplication

dashed (only in 2BSS) hidden extension

The colored lines denote the differentials. We use different colors to distinguish different
lengths.

TABLE 11. keys for classes

class meaning
dot k
blue dot  k[j]

k
red dot  k[j]{j}
square  W(k)

Here k is Fy for G = SD1g or Gug, and is Fy for G = Qg or Gay; j is v12D 73 for Gag or Gys,
and v D~! otherwise.

Remark 6.1. We elaborate more on boxes and dots connected by vertical lines in the same
bidegree. Such pattern is a 2-adic presentation of a class. Namely, the bottom dot is generated
by the generator and represents a 2-torsion copy, the dot or box just above is generated by twice
the generator, and so on.

For example, on the E-page of the integral degrees (Fig. 9), in bigrading (32, 0) the bottom red
dot represents the class W/2[vi D~ !]{v} D3} and the blue box above represents W[vi D~1]{2D*};
Note that there is a 2 extension. Thus the class at (32,0) is W[viD=1|[{viD3} ® W{2D*}.

Such presentations help to demonstrate where the differentials or extensions come from. For
example, in Fig. 5 in bigrading (12, 0), only the generator v{ supports a non-trivial dz-differential
and 20$ survives. This convention is due to Dan Isaksen.

Remark 6.2. We comment on the extensions between dots of different colors. For example, in
the bidegree (24,0) and (25, 1) in Fig. 9, there is an h; multiplication connecting a red and a blue
dot. The red dot represents the class W/2[v D~ !]{v{D?} and the blue dot represents the class
W /2[vi D~ ]{h1D3}. The h; multiplication happens whenever it is indicated by the class names.
Note that the class W/2{h; D3} is not hi-divisible in this case since the source is missing.

6.1.1. 2-BSS.

Fig. 2 - Fig. 4 are charts for the 2-Bockstein spectral sequences. All three charts have (8,0)
periodicity by multiplying D and (—4,4) periodicity by multiplying & (except the v local classes
in low filtration). We only depict part of the spectral sequence here, which contains a full periodic
range.

In Fig. 2, a blue line indicates the multiplication by x, while an orange line indicates the
multiplication by y.
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Recall the (x — 0;)-graded part and the integer-graded part have isomorphic E;-pages. When
interpret the chart as the (¥ — 0;)-graded part, the name of a class at (s, f) is its label multiplied
by u,,, and its degree is (s + 1 — oy, f). For example, the class 1 at (0,0), when interpreted as an
(% — 0;)-graded part class, denotes u,, at (1 — o;,0) in the 2BSS.

Fig. 3 and Fig. 4 show the E-page of 2BSS, for the integer-graded part and (x — o;)-graded
part respectively.

6.1.2. HFPSS.

Fig. 5-Fig. 9 depict the integer degree calculation of the integer-graded G-HFPSS(Es) for
G = Qs or SDsg, and Fig. 11-Fig. 15 depict the (x — 0;)-graded calculation. Both Fs>-pages are
(8,0) periodic by multiplying D, and other pages are (64,0) periodic by multiplying D%. All
charts are (20, 4) periodic by multiplying kD? (except the v; local classes in low filtration). The
differentials are denoted by the colored lines with their length classified by the color. When the
target or the source of the differential is out of range, we replace the line with an arrow. There
are horizontal vanishing lines in filtration 23 on E.-pages.

2BSS, F1 PAGE

: 4 >
L |y d
. —_— A
Z " % S = 78
4 >

FIGURE 2. The E;-page of the integer/(* — 0;)-graded 2BSS.

INTEGER DEGREES, 2BSS, E,, PAGE
s} i

S LE / :

! ,,,};4 b;/'
v : // : /m’
v ¥ 7 :

Z

FIGURE 3. The Eo.-page of the integer-graded 2BSS.
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SIGMA DEGREES, 2BSS, E., PAGE

FIGURE 4. The Eo.-page of the (¥ — o;)-graded 2BSS.

INTEGER DEGREES, HFPSS, FEs PAGE

¥ ¥ — ¥

FIGURE 5. The Es-page of the integer-graded Qs-HFPSS(E>). The red lines are ds-differentials.
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FIGURE 7. The Eg-page of the integer-graded Qs-HFPSS(E5). The purple lines are dg-differentials.
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FIGURE 6. The Es-page of the integer-graded Qg-HFPSS(E>3). The green lines are ds-differentials.
The blue lines are dr-differentials.
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FIGURE 8. The E11-page of the integer-graded Qs-HFPSS(E>). The brown lines are dq1-differentials.

The magenta lines are djs-differentials. The green lines are djs-differentials.
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FIGURE 9. The E.-page of the integer-graded Qg/SD16-HFPSS(Es).
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FIGURE 10. The E-page of the integer-graded Ga4/G4s-HFPSS(E>).
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FIGURE 11. The Es-page of the (x — o;)-graded Qs-HFPSS(E>). The red lines are dgz-differentials.
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FIGURE 12. The E5-page of the (x — 0;)-graded Qs-HFPSS(FE2). The green lines are ds-differentials.
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FIGURE 13. The Eg-page of the (¥ —o;)-graded Qs-HFPSS(E>). The purple lines are dg-differentials.
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SIGMA DEGREES, HFPSS, E, PAGE

FIGURE 15. The E-page of the (x — 0;)-graded Qg/SD16-HFPSS(E3).

APPENDIX A. GROUP COHOMOLOGY

In this appendix, we collect and present examples of computations of group cohomology. There
are two main applications: one is to calculate it as the input for the Fs-page of the integer- and
(% — 0;)-graded homotopy fixed points spectral sequences for Es, the other is to utilize restrictions,
transfers, and norm maps for proofs of differentials. All the rests needed for our computation of
the Qg-HFPSS for E5 are listed in Proposition A.7.

Let Qg be presented as

Qs = (i,5]4*, 5% ijij ")
with its real representation ring RO(Qs) = Z{1,0;,0;, 0, H}. To calculate H*(Qs, A) we will
use the following 4-periodic free Z[Qg]-resolution:

07 Xo & x, I ox, &2
where Xy = Z[Qs]{ao}, V(ap) = 1, and for k > 0,

Xarr1 = Z[Qs{br,1, 0,2},  d(br,1) = (
d(br,2) = (j — 1)ax,
Xary2 = Z[Qsl{cr1,cho},  dlcpn) = (1+4)bpy — (1 + 5)bk,2,
d(cr2) = (14 i§)b,1 + (i — 1)by 2,
Xakts = Z[Qs|{ex}, d(ex) = (i — Dega — (i — 1)cg,2,
Xap+a = Z[Qs{art1}, dar+1) =D g0y 9 €k

Suppose that A is a Qg-module, then H*(Qs; A) is the cohomology of the cochain complex

AP Ao A AgA A% 4

where the differentials (by abuse of notation) are given by the following matrices

i1 14+i —1-j o
d‘““(j—l)’ d4k+1(l+ij —1+i)’ dirsa = (=1 +E 1=14j),

and d4k+3 = ZQEQS g.
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We record here the group cohomology of Qg with trivial Z coeflicients
H*2(Qs,7) = 220 22,
HY""(Qs,Z) = L/8,
H*™(Qs,Z) = 0,
where k > 0,¢q > 0, and the generator of H*(Qg,Z) gives the 4-periodicity.
In addition to the integer-graded Qs-HFPSS for Es, we also compute the (¥ — o;)-graded part.

For this purpose, we study the structure of 7, Fs ® 0; as a Qg-module, which is given by the
following analog of [HM17, Lemma 4.6] :

Lemma A.1. Let E be a Qg-spectrum. Then
T¢(EASYT) 21 E® oy
as Qg-modules.

Recall that we define v; = uju~! and its Qg action is given in Eq. (2.3). By Lemma 2.12, we

may first compute H*(Qg, W[u~1,v1]), and then invert D and complete at I = (2, uy).

Remark A.2. If we define s = i,(u~!) and denote u~! by ¢, then the actions of Qg on s,t are
given by

ix(8) = —t, ix(t) = s
gu(s) = —Cs+Ct, jult) =(s+ Pt
ku(s) = Cs+ Pt ka(t) = s =t
For computational purposes, it is equivalent to replace generators «~!,v; by s,t, and the form of

the action turns out to be more compact.

We first calculate the 0-th cohomology ring. Behrens and Ormsby [BO16] have determined
the Cy(i)-invariants:

Proposition A.3. Let by = 52 + 12, by = st — st® and § = st?, then
H°(Cy, Wu™", v1]) = Wiba, by, 6]/ (b3 — b36 + 46%).
The j-actions on bg, by, d are the following:

Jx(b2) = —ba,

Gu(bg) = —(2¢ + 1)b3 4 by + 8(2¢ + 1)6,

G4 (8) = b3 +2(2¢ + 1)by — 76.
Proposition A.4. We have the 0-th cohomology ring

H°(Qg, W[u™",v1]) = W[sy, 52, s3] /(55 = 4(2¢ + 1)s7s9 + 165153)

where s1 = b3, so = by + (2¢ +1)3, and s3 = b3 + 2(2¢ + 1)bsby — 8b26.

Proof. Since m,F5 is 16-periodic, it suffices to compute the j-invariants of H°(Cy, W[u=!,v1]) in
low degrees. The result follows by direct computation. (I

In the main computations, we sometimes need to rely on explicit group cohomology results.
The following is an example.

Example A.5. The calculation of H*(Qg, T4 Es ® 0;) = W/4.
The cochain complex at degree 4 looks like

W{s2, st, 12} 225 W{s2, st, 12} L5 W{s2, st,t2}2
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By Lemma A.1, the actions are
i (s%) =13 ix(st) = —st, i (t?) = 5*
Gu(s) = —Cs® 4 2st — CH2, j.(t) = Cs+ 2, G (1) = ¢%s% + 2st + (12
Therefore, ker dy = ker (i — 1) = W{s? + ?}.
Meanwhile, since we have
ds(s?) = 4(s* 4+ %),
ds(st) =0,
ds(t?) = 4(s* + 12),
we conclude that H*(Qg, m4Fy ® 0;) = W /4.

We also calculate a couple of restriction maps in group cohomology. In the case of the integer-
graded part, most calculations are easy. By Proposition A.8 we deduce that the generators
1, V, ¢, d, g have to restrict non-trivially to their C4-counterparts, which lie in the Hurewicz image.
For the (x — 0;)-graded part, some chain level calculations seem to be inevitable.

Example A.6. In the integer-graded part, calculate rescf ) D~2d # 0. This is used in the proof
of Proposition 4.30.

The class D~2d lies in bigrading (—2,2). We are looking at the degree 0 part of W[u=1,vq].
The generator of H?(Qg, W{1}) is given by the cochain

« Z[Qg]{Co)l, 00’2} — W{1}7
Co,1 > ].7 Co,2 F> 0.

Restricting to Cy(i), we rewrite Xo = Z[Qs]{co,1,c0,2} as Z[Cy(i)]{co,1,Jc0.1,C0,2,5¢0,2}, and
similarly for X;. Then « restricts to the cochain

a: Z[Qsl{co,1,7¢0,1, 0,2, jeo2} — W{1},
Co,1, Jco,1 — 1, co2, jco,2 > 0.
Now we check the image of d,. Let 1, 52,83, 84 be the dual basis of by 1,jbo,1,0b0,2,7bo,2 in

Homg, ;) (X1, W{1}). The image of 3, is calculated by evaluating 3, o d; at the Cy(i)-basis of
X5. As an example, we have

(B1od1)(c1,0) = B1((1+4)bo,1 — bo2 — jbo2) = 2.

Similarly, we verify that the restriction of a does not lie in the coboundary; hence the restriction
is non-trivial.

Sometimes the restriction to Cy (i) is trivial, but it becomes non-trivial when restricted to
C4(j) or Cy(k). By similar calculations we have res 3 (¢ + y)uo; = 0, while resgﬁ; (z +y)uos, #0.
Finally, we present the collection of calculated results.

Proposition A.7. Summary of calculated group cohomology
H3*(Qs,Z) = 0.
H4(Qg, 7T4E2 ® 0'1') = W/4
H*(Qs, 14y ® 0;) = W/2.
H*(Qs, 4B @ 0;) = W/2® W/2.
Hl(Qg, 7TOE2 & O’i) = W/2
Summary of calculated restrictions
. re58§ hy # 0.
. res?i‘ ha # 0.

%
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° resgf d#0.
. rest g #0.
o res@) Ha? + y? tug, # 0.

In fact, the restriction map from H*(Qs, 7. E2) to H*(Cy, 7. E>) is determined by the Hurewicz
image of Egc“. The direct algebraic computation we gave above could potentially adapt to
computations at higher heights.

We recall the known result of the Hurewicz image result of E§C4. We follow names introduced
in Proposition 2.14.

Proposition A.8. (see [HSWX18, Figure 12]) The following classes on the F.-page of the
C4-HFPSS for Eo detects images of the Hurewicz map: S° — Egc“:
e 51a,, at (1,1) detects the image of n € m15°,
d1ura, at (3,1) detects the image of v € m3S°,
01u40a4>\ at (8,8) detects the image of € € 7rgSO
01u4>\u20a20 at (14,2) detects the image of k € m145°,
Sugrugsazy at (20,4) detects the image of i € maS°.

The unit map S° — E2Y factors as
SO unit ESQS res ESC4.

There is a map of spectral sequences from the Adams—Novikov spectral sequence of the sphere
to the C4-HFPSS for Es, and it factors through the Qg-HFPSS for E». By comparing the
Adams—Novikov spectral sequence of the sphere (e.g., see [Rav78, Table 2]) and the Cy-HFPSS
for E5, we see that the classes detecting 7, v, g, d do not jump filtrations under this map. Hence
in the Qg-HFPSS for Es, these classes are detected by classes hq, ha, d, g, and the Cy-restriction
of these classes are non-trivial as follows.

Proposition A.9. The restriction map from the Es-page of the Qs-HFPSS for Es to the Fs-page
of the Cy-HPFSS for Ey is determined by the following and the multiplicative structure.

resC 8(hy) =n, resC S(he) = v,

resgs( ) =0, resg8 (d) = dfusgasy,

Q __ 6
resg’ (9) = DJugrUG A2

The element € € m3S° is detected by a class at filtration 2 in the Adams-Novikov spectral
sequence of the sphere. However, the image of € in 7T8ESC4 is detected by djussaqy at filtration 8
in the C4-HFPSS for Es. There is a jump of filtration by 6. By degree reasons, in Qs-HFPSS(E>),
the image of € could be potentially detected by a class of filtration 2 < f < 8. By the fact that

the unit map S° — Eth further factors through S° ity EQG“, the image of € is detected by
the class ¢ at (8,2) (up to a unit) in Qs-HFPSS(E2). Therefore, there is an exotic restriction in
HFPSS from Qg to C4 that maps the class ¢ to the class 01 U4y aay.
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