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THE ACTION OF THE MORAVA STABILIZER GROUP ON THE
LUBIN-TATE MODULI SPACE OF LIFTS

By ETHAN S. DEVINATZ and MICHAEL J. HOPKINS

Introduction. The purpose of this paper is indicated by its title. Namely, for
each prime number p, there is a certain canonical one-dimensional (commutative)
height n formal group law I',, defined over IF, and hence over [, the field with p”
elements. The automorphism group of this formal group law over [F» is defined
to be the n'" Morava stabilizer group S,. Now suppose A is a noetherian local ring
complete with respect to its maximal ideal m and such that the residue ring A/m
is an [F,n-algebra. Then, according to Lubin and Tate [15], the set lifts;;(A) of -
isomorphism classes of lifts of I',, to A is in natural bijective correspondence with
continuous WIF, -algebra homomorphisms from E,’,\ = WEpn [[ug,...,u,—1]] to A.
(WEF,n denotes the ring of Witt vectors with coefficients in Fy.) S, acts naturally
on lifts}(A); hence it acts on E}} by WIF,»-algebra homomorphisms. There is also
an equivalence relation of x-isomorphism on the set of pairs (F, v), where F is
a lift of T, to A and v is a “l-form on F.” The set of equivalence classes is
denoted (lifts}).(A) and is also acted on by S,. Since (lifts}). is “corepresented”
by E)\, = WEpn [[uy, . . ., un—111[u, u~!'1, S, acts on E’\, as well. This action is
gradation preserving, where |u| = —2 and |u;| =0, 1 < i < n — 1. In this paper,
we give explicit formulas for the action. We also provide an application of our
computation to Brown-Comenetz duality.

Using more sophisticated methods, Gross and Hopkins ([8], [9]) have found
a framework for understanding the action of S, on E/, which allowed them to
complete our understanding of the Brown-Comenetz dual of the E(n)-localization
of an E(n — 1).-acyclic finite spectrum (for p sufficiently large compared to n).
However, it is our hope that the present paper will provide topologists with an
accessible account of the genesis of the ideas in their work.

Let us indicate the homotopy-theoretic context of this action of S, on EJ,.
Recall that for each prime p, there is a p-local spectrum BP with coefficient ring
BP, = Zp)lv1, v2,. .., 1, ...], where v; is the ith Hazewinkel generator and has
degree 2( pi —1). (BP,, BP.BP) is a Hopf algebroid, and, if X is any spectrum,
BP.X is a comodule over this Hopf algebroid, also expressed by saying that
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670 ETHAN S. DEVINATZ AND MICHAEL J. HOPKINS

BP.X is a BP,BP-comodule. (See [18] for generalities about BP.) E}, becomes
a BP,.-algebra via the map r given by

u,-ul_”i i<n
0.1) rw)=< u'=""  i=n
0 ow.

(The reader should be aware that the map r does not classify the universal lift
of Theorem 1.1; in fact, the formal group law classified by r will not be used
in this paper.) Now let M be a BP,BP-comodule which is finitely generated as
a BP.-module. Suppose also that Z)i_lM = 0 for 0 < i < n. (By convention,
t = p.) Then Morava has shown ([16], see also [7]) that E/, ®gp, M is naturally
a continuous Galois equivariant twisted S, — E/, module. We recall the definition
of such an object here; again, for more details, the reader is referred to [16] or
[7]. First of all, S, is canonically a profinite group, and Gal = Gal(F,» /IF‘,,), the
Galois group of automorphisms of [Fpn, acts continuously in an evident way on
Sn. Gal also acts on WIF,»; letting Gal act trivially on the u;’s and u produces an
action of this Galois group on E.,. Now let N be a discrete continuous (graded)
E/\.-module. (Discreteness is here included only for convenience; note also that
N is discrete if and only if ui‘lN =0 for all 0 < i < n— 1, where, once again,
ug = p.) Suppose also that N is a Gal-module and a continuous S,-module. Both
of these actions are to be gradation preserving. Then N is said to be a continuous
Galois equivariant twisted S, — E\, module if the following relations are satisfied
foralln e N, e € E),, g € Sy, and o € Gal:

i glen) = gle)g(n)
0.2) ii. o(en) = o(e)a(n)
iii. o(gn) = o(g)on)

Alternatively, one could call N a continuous twisted (S, x Gal) — E,’,\* mod-
ule. The Galois equivariance of the action of S, on N implies that Gal acts on
H(Sp; N), the continuous cohomology of S, with coefficients in N. On HP, this
action is just the given action on N.

Now Let M be as before. Then the map

o ZHE-Dy M,

given by multiplication by %, is a BP,BP-comodule map for some & > 0. Hence,
Uy M is also a BP,BP-comodule. Morava has proved (again see [16] or [7]) that
there is a natural isomorphism

Extp.gp (BP., ;' M) =5 HX*(S,; ED, @pp, M)
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The significance of Morava’s change-of-rings theorem is this: Let L,, denote
the E(n).-localization functor. (Recall that E(n) is a spectrum with coefficient ring
Zipylvr, ...\ U1, Uny Uy 11.) Stable homotopy is “built out of” these localizations
as n varies; one may think of L, as detecting periodicity of order less than or
equal to n. If X is any spectrum, Hopkins and Ravenel [20; 8.2-3] have shown
that the Adams spectral sequence

Extgp.gp (BPy, BP.L,X) = L, X

is strongly convergent. If X is a finite complex with v,.“'BP*X =0 for all i < n;
i.e., X is E(n — 1)4-acyclic, then

BP.L,X = v, 'BP.X (see [17;6] and [19])
and so the Adams spectral sequence becomes
(0.3) H*(Sy, E), ®pp, BP.X)®" = m,L,X.

The E(n).-localizations of complexes of this sort are the constituents of the “n'
monochromatic piece” of stable homotopy (cf. §5); to understand their homotopy
using the Adams spectral sequence, one must understand the action of S, on EJ,.

Indeed, if p — 1 { n, S, is essentially a Poincaré group of dimension n? (see
Proposition 5.10); hence

Hi(Sp; E), ®p, BP.X) =0, i>n?,

for any E(n — 1).-acyclic finite spectrum X. It further follows by sparseness that,
if BP;X = 0 whenever 2(p—1) t i, and if 2p > n2+1, there can be no differentials
or extensions in the Adams spectral sequence 0.3 and thus

(04) H(Su;Ep, ®pp, BPLX)* = { mi-slnX 0SS, 2p = Dl
0 o w.

One might therefore expect in this situation a more direct relationship between
E,’l\* ®pp, BP.X and L,X. Such is the case; in §5 we show that (with certain
restrictions on X), L,X is Brown-Comenetz self-dual if and only if E), ®gp, BP.X
is Pontryagin self-dual as a continuous Galois equivariant twisted S, —E/, module.
Understanding Brown-Comenetz duality in the E(n).-local category is crucial in
our approach to the generating hypothesis. As an application of this reduction to
algebra, we prove (Theorem 5.3), using our formulas for the action of S, on E,/,\*,
that, at least for n = 2, L,X is not Brown-Comenetz self-dual if pBP,.X # 0. The
converse of this statement (for all n) is proved by Gross and Hopkins.
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Our method of determining the action of S, on E’, involves a comparison
of two approaches to studying lifts of a given formal group (law) I' of finite
height over a characteristic p perfect field k. In §1, we recall the (graded) Lubin-
Tate solution to the lifting problem and the definition of the action of S, on
E/\,. The coordinates u; in E/, are well suited for most of the needs of algebraic
topologists—unfortunately, as our formulas will make clear, it would be rather
complicated to explicitly determine the action of S, on u and the u;’s directly from
the definition. On the other hand, Cartier has developed a theory for determining
(lifts}-)«(A) which applies when A is a local ring with divided power structure
whose residue field is k. This theory, together with the requisite formal group
theory background, is summarized in §2; an appendix develops what is needed
concerning divided power structures and envelopes. Specializing to the case I =
I, Cartier’s theory allows us to determine certain canonical coordinates w;, 1 <
i < n—1, and wu™! in the divided power envelope of (E/)o whose transformation
under the action of S, can be easily described. We then determine the universal
lift of T', to this divided power envelope in terms of the canonical coordinates.
These steps are carried out in §2 and §3. In §4, we compare the universal Lubin-
Tate lift of I',,, described in terms of the u;’s, to the above universal lift to express
the w;’s and w in terms of the u;’s and u.

Acknowledgement. The first author would like to thank S. A. Mitchell for
a clarifying discussion on some of the material in §5, §6.

1. The Lubin-Tate theory of lifts. In this section we recall the Lubin-Tate
theory of lifts and its graded extension. Only the most familiar (to algebraic
topologists) parts of the theory of formal group laws are needed here; a good
reference is [18; Appendix 2]. In particular, all formal group laws are assumed
to be commutative and one-dimensional.

Let k be a perfect field of characteristic p, let n be a positive integer, and let I"
be a height n p-typical formal group law over k. If A is a complete local ring with
maximal ideal m and residue field a k-algebra, say that a formal group law F is a
lift of I if F = I'mod m. Two lifts F and G of I" to A are said to be x-isomorphic
if there exists an isomorphism (not necessarily strict) ¢ : F — G such that
px) = xmodm. If F and G are x-isomorphic, then the x-isomorphism between
them is unique [16; Lemma 1.1.2]. Denote by liftsf:(A) the set of *-isomorphism
classes of lifts of I to A. Note that every lift F of I is x-isomorphic to a p-typical
one—the canonical strict isomorphism from F to a p-typical formal group law
[18; A2.1.18] is a x-isomorphism since I" is already p-typical. Therefore, we need
only consider p-typical lifts, if we wish.

We can now state the main result of [15]. As usual, Wk denotes the ring of
Witt vectors with coefficients in k [23; Chapter II §5, §6].

THEOREM 1.1. [15; 3.1] There exists a lift F of T to Wk[luy,...,u,—1]] with
the following property: If A is a complete Noetherian local ring whose residue field
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is a k-algebra, and if F is a lift of T to A, then there exists a unique continuous
Wk-algebra homomorphism

vr s Wkllug, ... up—1]] — A
such that vp, F is *-isomorphic to F. In other words
liftst(A) = Homiy,_ oo (W[[u1, . . ., un_111, A).

Remark 1.2. The hypotheses on A can be relaxed considerably. This is dis-
cussed in [7], where it proves useful to do so.

For our purposes, I" will be taken to be the p-typical formal group law I',, over
[F, (and hence over k) whose p-series is [p]r,(x) = " (Although the notation
[pIr(x) is often used for the p-series, it is not really good notation, since [ ] will
mean something quite different in §2.) Then F in Theorem 1.1 can be taken to
be the formal group law classified by 6 : BP, — Wk[[uy,...,un,—1]], Where

u, i<n
(1.3) 0(v)=< 1 i=n (cf. [15; 1.1]).
0 i>n

We write lifts, for liftsy, .

For the “graded” Lubin-Tate theory, we consider pairs (F,u), where F is a
lift of ' to A and u is a unit in A. (F, u) is *-isomorphic to (G, v) provided that
F is x-isomorphic to G and the (unique) *-isomorphism ¢ : F — G satisfies
©'(0)- v = u. Define (lifts})«(A) to be the set of equivalence classes of such pairs.
Then with the hypotheses of Theorem 1.1,

(1.4) (liftsT)«(A) = Homfyk_alg (Wk[[u1, ..., up_ i 11[u, w11, A).

(A continuous homomorphism here is one that maps each u; into m.) EIC\* =
Wkl[u1, ..., up—11l[u,u~'] is graded by setting |u;| = 0 and |u| = —2; for the
meaning of this grading, see [7]. Write Ej,, = Eft , = WFpn[[uy, ..., up—111[u,u~ 1.

Autr (k), the group of automorphisms of I'" (over k), acts on (lifts}")«(A) on the
right as follows: Suppose g € k[[x]] is an element of Autr (k). Let 2 € Wk[[x]]
be any power series with 2(0) =0 and £ = g mod (p). Then define

(F,u)g=@""(F), & Ow),

where g~'(F)(x,y) = s~ [F(g(x), 8(y)]. It is easy to check that this definition
passes to x-isomorphism classes and is there independent of the choice of lift of
&, giving us the desired action. Now a right action on a space yields a left action
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on the space of functions, which in this case is Ef,. Explicitly, the Wk-algebra
homomorphism

i(g) : El/“\* - El/"\*

given by the action of g € Autr (k) on Ep, is defined on (E})o to be the endo-
morphism of (EP)o classifying the lift $~!(F), where g is a lift of g to (EP)o[[x]]
as above. Let

g i(ghF — §7'(F)
be the x-isomorphism. Then
i(gu=g'0)- (pg)(0)-u

Note that this action preserves the grading.
In particular, the above construction gives an action of S, = Autr, (Fp) =
Autr,, (F,n) ([18; A2.2.20]) on E’\. Here Fp denotes the algebraic closure of F,.

2. The Cartier theory of lifts. For this section we require some more
sophisticated aspects of the theory of (commutative) formal groups. Our basic
reference is [14]. Begin by defining a nilalgebra over a basic ring R to be a
commutative R-algebra without unit, all of whose elements are nilpotent. For
each indexing set I, one has a functor D" from the category of nilalgebras over
R to the category of pointed sets, defined by

DB) =B =B"
1

for each nilalgebra B. A formal variety over R is a functor from the category
of nilalgebras over R to the category of pointed sets, which is isomorphic to
the functor D® for some I. Finally, a formal group over R is defined to be a
commutative group object in the category of formal varieties over R.

A formal group law over R is a formal group over R together with a choice
of coordinate system. Indeed, let N denote the set of I-multi-indices whose
entries are nonnegative integers, only finitely many of which are not zero. Then
the power series

f@=Y" cax®,

acND

where x = (x)ic1, ca € RY for all @ € N®, and ¢y = 0, yields a natural
transformation D — D). There is a bijective correspondence between such
power series and such natural transformations [14; I 3.2 and 5.2]. Thus, if G is a
formal group, an isomorphism D = G yields a multiplication D’ x DO —
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D" represented by a power series satisfying the axioms for an |I|-dimensional
formal group law. Different isomorphisms D’ =5 G lead to isomorphic formal
group laws.

Now let I be a p-typical height » formal group law over the perfect field
k of characteristic p, and let A be a complete local ring whose residue field is
a k-algebra K. Let m : A — K be the quotient map. I' may also be regarded
as a formal group over k; take T' to be the formal variety D with multiplication
D x D — D given by the power series defining the formal group law I'. Note
finally that I" may be considered as a formal group over K; in general, if G is a
formal group over R and f : R — § is a ring homomorphism, then f,G, defined
in the evident way, is a formal group over S. With these notations we have the
following easy result.

PROPOSITION 2.1. liftsi-(A) may be identified with equivalence classes of couples
(G, b), where G is a formal group over A and § : I' — m.G is an isomorphism
of formal groups over K. (G, ) is equivalent to (G',8") provided there exists an
isomorphism (of formal groups) f : G — G’ such that n,f o § = & If such an f
exists, it is unique.

We are, however, interested in interpreting (liftsy)«(A). This requires consid-
eration of TG, the tangent space of G.

Let V be a formal variety over R, and let CV denote the collection of curves
in V; that is, the set of natural transformations v : D — V. Let

nil(R, n) = collection of nilalgebras over R such that every product
of n+ 1 elements is 0.

Then define TV to be the collection of equivalence classes of curves in V, where
two curves 7,y are equivalent if y| nil (R, 1) = 7| nil (R, 1). If one chooses an
isomorphism V —= D® so that o and ~y, are represented by power series, then
o is equivalent to 7, if and only if they have the same terms in degree 1. Since
a choice of coordinate system induces an isomorphism TV — TD® = RV,
TV can be given the structure of an R-module. This R-module structure is in
fact independent of the choice of coordinate system (cf. [14; I 6.6]), and ¥ is a
functor from the category of formal varieties to the category of (free) R-modules.
Furthermore, a map f of formal varieties is an isomorphism if and only if f is
an isomorphism of R-modules [14; I 8.1].

PROPOSITION 2.2. (liftst)«(A) may be identified with equivalence classes of
triples (G, 6,¢), where G, 6 are as in Proposition 2.1 and € : TG — A is an
isomorphism. (G, 6,¢) is equivalent to (G',¢',&") provided there exists a formal
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group isomorphism f : G — G’ such that m.f 0 § = §' and €' o Tf = €. The action
of Autr (k) on (liftst)«(A) is given by

(G,6,6)g=(G,608,¢), g€ Autr (k).

Proof. Let (F,u) € (liftsf)«(A). As before, F may be regarded as the formal
group Gr whose underlying formal variety is D with multiplication given by the
power series F. Let ¢, : TGr = TD = A — A be defined by ¢,(1) = u. Then let
(Gr,id, e,) correspond to (F,u). It is easy to see that this correspondence defines
a bijection between (liftsy).(A) and equivalence classes of triples (G, 6, €).

As for the description of the group action, chase down the identifications.

Cartier’s solution to the lifting problem utilizes the equivalence between the
category of formal groups over R and a certain category of modules over a ring
CartR. This equivalence is given by the Dieudonné module of a formal group.
In more detail, consider the curves functor C from the category of formal groups
over R to the category of abelian groups. (If G is a formal group, the abelian
group structure on CG arises in the usual way from the structure of G as a
commutative group object in the category of formal varieties over R.) Let Cart R
be the ring of natural transformations C — C . CartR is in fact a topological
ring and CG is a topological CartR-module [14; III 5-7]. As a ring, CartR is
generated by the homotheties [c] with ¢ € R [14; I 10], the verschiebungen V,
for each positive integer n [14; I 10], and the frobenius operators F, for each
positive integer n [14; IIT 3]. The functor C is fully faithful upon restricting its
target to the subcategory of continuous Cart R-modules (and continuous Cart R-
module maps) [14; III 8.4]; moreover, if the target is further restricted to the full
subcategory of reduced Cart R-modules [14; III 7.15], C becomes an equivalence
[14; III 10, 11].

Unfortunately, CartR is a very large and unmanageable ring. However, if R
is p-local, the study of formal groups over R reduces to the study of modules
over a smaller ring Cart ,R. Here is a summary of the situation: If G is a formal
group over (the p-local ring) R, let C,G denote the group of p-typical curves of
G; ie., those curves v € CG such that F,y = 0 for all primes ¢ # p. TG has
a basis consisting of p-typical curves ([14; IV, 8.10]); in different language, this
says that any formal group law over a p-local ring is strictly isomorphic to a
p-typical one. Moreover, in Lazard’s theory, this fact is crucial in proving that
G is a p-typical formal group in a unique way [14; IV, 7-8]. Now GG is a
topological left Cart ,R module; the ring Cart ,R is a quotient ring of a subring
of CartR ([14; IV, 6.3]) and is generated by the homotheties, the verschiebung
Vp =V, and the frobenius F, = F. For the reader’s convenience, we summarize
the relations determining the structure of Cart pR.
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DEFINITION THEOREM 2.3. ([14; 1V, 2—4; VI, 1])

i. Every element x of Cart ,R has a unique representation as

x= Y V"[xmalF".

m,n>0
The sum may be infinite, but for each m, only finitely many x, , may be nonzero.
ii.
[a]lV = VIa’]
Fla] = [é"]F
[a][b] = [ab]

FV =p-lca,r=p-[1]

iii. Let {xx} be a sequence of indeterminates indexed on the nonnegative
integers, and define

wa{) = S pid"”
i=0

for each n > 0. Then, for all sequences {a;}, {bi} in R, we have

D VanF" + >  V[bIF" =Y V'[c,IF",

n>0 n>0 n>0
where
wa({ar}) + wa({bi}) = wa({ck})
foralln > 0. In particular,

[a] + [b] = [a + b mod V Cart, R.

iv. Therightideals, V" Cart, R, define a complete filtration on Cart, R. Cart ,R
is a topological ring with the topology given by this filtration.

Remark 2.4. Carty R is the ring of natural transformations from C, to C, (cf.
[14; 1V, 7.20)).

Remark 2.5. Let WR denote the ring of Witt vectors with coefficients in R
([23; 11, §6]). Then the map

WR % Cart, R
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defined by

{ac} — Y V'[an]F"

n>0
is a ring isomorphism onto a subring of Cart, R ([14; IV, 4]).

DEFINITION 2.6. A left Cart, R-module M is reduced if:
i. M=lim M/V"M.
“—n
ii. V*:M/VM — V"M /V"™'M is an isomorphism for all n.
ili. M/VM is a free R-module, the R-module structure being given by am =

[alm for m € M/VM.

Remark 2.7. Let M be reduced, and give M the topology obtained from the
filtration V"M, n € N. Then M is a topological Cart, R-module.

C,G is a reduced Cart, R-module [14; IV, 7.9]. Indeed, all reduced Cart, R-
modules arise in this way—the functor C,, from formal groups over R to reduced
Cart, R-modules is an equivalence [14; IV, 7.12]. We also note for future use that

C,G/VC,G = %G.

Let us call C,G, regarded as a topological Cart, R-module, the Cartier module
of G.

Although Cart, R is still in general unwieldly, the theory simplifies greatly
when R is a perfect field k of characteristic p. Recall that in this case, Wk is a
discrete valuation ring with uniformizing parameter p and residue field k. It also
has a frobenius automorphism o defined by

(2.8) o(ag,ar, az,...) = (ah,dl,d},...).

Regard Wk as a subring of Cart, k via the map in 2.5. Then Cart, k is obtained
by appropriately adjoining V and F to Wk, subject to the following relations:

2.9) i, VF=p=FV
Va° for all a € Wk
a’F for all a € Wk

ii. aV

iii. Fa

Properties ii and iii follow from i and 2.3. A proof that VF = p may be found in
[14; 1V, 4].
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Let G be a formal group over k. Of course, multiplication by V is always
a monomorphism on C,G; however, by 2.9i, multiplication by F is a monomor-
phism if and only if C,G has no p-torsion. If G is finite dimensional, this is the
case if and only if C,G is a free Wk-module of finite rank [14; VI, 7]. This rank
is defined to be the height of G; it agrees in the one-dimensional case with the
definition of height given in [18].

Now let I" be a height n (one-dimensional) formal group over k, and let
M denote its Cartier module. The next result is Cartier’s solution to the lifting
problem.

THEOREM 2.10. ([4], [14; VII]). Let A = Wk with maximal ideal m. (liftst')«(A)

is in bijective correspondence with the set of Wk-linear maps M LA forwhich there
exists an isomorphism A/m — M /VM of k-vector spaces such that the composite

ML A—A/m—M/VM
is the projection.

Remark 2.11. In [4], Cartier claims this result to be valid for A any complete
local ring with a divided power structure and with residue field k. He, however,
does not give a complete proof; that is done in [14; VII] but only for the ring
Wk. For our purposes this is enough.

We will need to understand the construction of the map ¢ : M — Wk
from an element of (lifts);).(Wk). This construction will be used to determine
certain canonical coordinates w;, w in the divided power envelope of the ring
WEpn [[ur, . . ., un—111[u, u~'] of functions on the moduli space of x-isomorphism
classes of lifts of I',,. The action of S, on these canonical coordinates will be
easy to understand. We will also use this construction to express the universal
lift of ', in terms of the w;’s. This will in turn allow us to express one set of
coordinates in terms of the other, thus giving us the action of S,, on u and the u;’s.

Following Lazard, we proceed to outline the construction of this ¢. First,
however, some preliminaries are needed.

ProposITION 2.12. ([14; VII, 6.3]). Write A = Wk. There exists a unique ring
homomorphism A : A — WA satisfying

Wwa(B(E)) = £

foralln € Nand £ € A. (See 2.3iii and 2.8 for the notation.)
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DEFINITION 2.13. Let M’ be a Cart,, k-module, and let C' be a Cart, Wk-module.
An additive map f' : M' — C' is (W, F)-linear if

fE€) = AGF()
f(Fy) = Ff(7)

forall{ € Wkandy e M.

THEOREM 2.14. ([14; VII, 6.14]). Let (G, 6) € liftsp(Wk), and let 7, be the
composite

Cp(6~ 1)
Cp(G) — Cp(mG) —— M = Cp(I).
Then there exists a unique (W, F)-linear section s : M — C,G of 7.

Now, if (G, d,¢) € (lifts;-)«(Wk), let s be as in 2.14, and consider the com-
posite

(2.15) t: M = Cy(G) — C,G/VC,G =TG = Wk.

t is the map corresponding to (G, §,¢) in Theorem 2.10.
COROLLARY 2.16. Let (G, 0,¢€) and t be as above, and let g € Autr (k). Then

ME ML wk
is the map corresponding to (G, 8, €)g € (liftst-)«(Wk). Here g also denotes the map
induced by g on the Cartier module of T..
Proof. Use Proposition 2.2 and the definition of the correspondence in The-

orem 2.10.

Remark2.17. Although not needed for this paper, the following more concep-
tual account of the bijection in 2.10 may help the reader understand [14; VII] and
[4]. One starts ([14; VII, 6.17-6.23]) by constructing a certain (n-dimensional)
formal group G* over Wk with tangent space M together with a canonical (W, F)-
linear section

71 M — Cp(G*)

of the projection

Cy(G*) = C,(G*)/VCy(G*) = M.

(Despite the notation, G* is constructed independently of any lift G of I".) G*
has the following universal property: For each reduced Cart, Wk-module C’ and
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(W, F)-linear map s : M — C’, there exists a unique map a : C,(G*) — C’ of
Cart, Wk-modules satisfying s = a.o . In particular, with the notation of Theorem
2.14, there exists a unique homomorphism f : G* — G of formal groups such
that

M—35 . CG

Cp(GY)

commutes. The map ¢ of 2.15 is then just the map %f : TG* — TG. Moreover,
f has additional significance. Not only is it surjective as a map from C,(G*) —
CpG, but its kernel is the Cartier module of a maximal embedded additive formal
group Ag ([14; VII, 7.5-7.10]). The extension

0—-A¢—-G"—-G—0

turns out to be the “universal extension of G with additive kernel” ([14; VII,
8.5)).

Finally, one uses G* to construct a lift of I from a map ¢ : M — Wk. Indeed,
consider the kernel L of ¢. If ¢ satisfies the hypotheses of Theorem 2.10, then L
is a direct summand of M such that L + pM = VM. This implies ([14; VII, 7])
that L is the tangent space of a unique maximal embedded additive subgroup A
of G*. Furthermore, there is a unique isomorphism

§: T — m,(G*/A)

such that the diagram

Co(G™) Cp(G*)/Cp(A) = Cp(G*/A)

Cp(d)

Cp(G*)/VCy(G*) =M + Cp(m(G*/A))

commutes. Let € be the map
T(G*JA) = M/LL Wk,

where we have also written ¢’ for its factorization through M /L. Then (G*/A, 6, €)
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is an element of (liftst).(Wk), and one can show that the correspondence
! — (G*/A,b,¢€)
is the inverse to the correspondence described earlier.

For the remainder of this section, we specialize to the case k = F» and " = T,
We first explicitly describe M = C,(T',) and S, as the group of automorphisms
of M. By Theorem 2.10 and Corollary 2.16, this gives a very good description
of (lifts;)«(WFy), which will allow us to understand the action of S, on the
canonical coordinates.

PROPOSITION 2.18. Let v € M be the curve y(x) = x. Then M is the free WF -
module with generators v, V7, . .., V"~ 'y. The action of the frobenius operator is
given by Fy = V"1,

Proof. By the definition of I', and ~, together with 2.9i, we have
VFy=py="V"y.

Hence Fy = V"~!y. Now the image of ~ in T}, is a generator; therefore, every
curve ¢ € M is written uniquely as

¢=>_ Vialy, a€Fp.
i>0

But this is equivalent to
C=boy+biVy+-+by V" ly

where

bi=2pk[ap_i] € WEFpyn,

nk+i
k>0

proving that «y, V7, ..., V" !y is a basis for M.

PROPOSITION 2.19. For each ( € M, there exists a unique endomorphism g of
I such that gy = (.

Proof. By the preceding proposition, it is clear that if such a g exists, it is
unique. To prove existence, write

n—1 . n—1 )
(= Za}’_lV”y = Z Viaiy, aj € Wy,

i=o0 i=0
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and define a WIF,»-module map g : M — M by

n—1
gV =3 V¥yy, 0<j<n—1.
i=0.,

Certainly gy = ¢ and g commutes with V. Moreover,

n—1

gFy) = gV Iy =) Vi My

i=0

n—1 -1

el
Z Viaf Vily
i=0
n—1 -1

L e
Z Viaf Fry
i=0
n—1

i -n
Z V'Fa "~
i=0

n—1
F) Viary=Fg(y),
i=0

where 2.9 has been used several times. Thus g is a map of Cart, F,»-modules,
completing the proof.

Continue with the notation of the last proposition and its proof. Then, with

respect to the ordered basis (v, V7, ..

(2.20)

=D
n—1

pan—1 pan—2 pai
o~! o1 o~!
ag pa,_ pay
o—(n=2)
I n Pan_1 1
== o—(n— o—n—
n—2 ap_3 ap

. V"_I'y), g is represented by the matrix

Note also that g is an automorphism if and only if the image of ¢ in 2T, is a
generator; i.e., ag is a unit in WIF,» (cf. discussion of ¥ preceding Proposition 2.2).
2.20 therefore gives us a convenient matrix representation of Sj,.
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Remark 2.21. From the power series point of view, S, consists of all power
series of the form

g= Zrbixpi, b; € ]Fpn, bo 7{0.
i>0

Then
. n_l .
gy=> "Vibily=>_ Viay
i>0 i=0

where

ai =y p*lbuksil.

k>0

Recall also that in [18; A2.2.17], S, is identified with the group of units of the
ring obtained by adjoining an indeterminate S to WIF,» with relations S” = p and
Sw =wS for all w € WF,». The element g then corresponds to Z?:ol a;S'.

3. The universal lift in Cartier’s theory. In this section we use the theory
of §2 to describe the action of S, on, and the universal lift of [, in terms of, the
previously advertised canonical coordinates. Write W = WIF,». Our first result
provides the definition of these coordinates.

PROPOSITION 3.1. Let (G, 6,¢) € (lifts;)«(W) and let t : M — W be the map
corresponding to (G, 6, €) in the bijection of Theorem 2.10. Let vy € M = Cy(I',) be
the curve y(x) = x. Then the map

p : (liftsy)«(W) — HomSy_ g (WIIwi, - ..., W t1llw, w™'1, W)
defined by u(G, 6,€) = h;, where
h(ww;) = t(V"y), 1<i<n—1
h(w) = 1(y),
is an isomorphism. (Once again, a W-algebra homomorphism

h:W[wi, ..o wa W, w™ 11 > W

is said to be continuous if it maps the maximal ideal of W[[wy, ..., wn—1]] into the
maximal ideal of W.)

Proof. Clear.
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Remark 3.2. If ¢ is a unit of W, and ¢ : M — W corresponds to (G, 8, ce),
then Ay = chy, so that

he(wi)) = hy(wy), 1 <i<n—1

hy (W) = chy(w).

This means that each w; has gradation 0 and w has gradation —2 (see discussion
of gradings in [7]; also compare Theorem 3.7ii).

PROPOSITION 3.3. The (right) action of S, on (lifts})«(W) is induced by a left

action of S, on W[[wi,...,wa_11l[w,w™'] which is linear on the coordinates
wwi,...,ww,_1,w. If g € S, is given by
n—1 )
gy = Z Viaiy, a; € W (cf. Prop. 2.19),
i=0
then
n—1 .
gw) = apw + Z aj',’_jwwj-
j=1
and

n—1 i+1
gww;y) = paiw +paj,; wwu_i+ - +pal_ wwiy
+agiww,~+ cee+al wwy.
Proof. Combine 2.16, 2.19, 2.20, and 3.1.

It follows from Remark 3.2 that 1 of Proposition 3.1 induces an isomorphism
(B4 po = (lifts; (W) — Homy,_,, (W[[wi, ..., wa_11], W).

One might ask whether there exists a lift  of T, to W[[wy, ..., wp—1]] such that,
for every (G, 6) € lifts;; (W), uo(G, 6).F is *-isomorphic to (G, 6). This is not the
case!; however, observe that since W has a divided power structure, we have
isomorphisms

(3.5) g (lifts}) (W) — HomfP (W{((wi, ..., wee1))lw, w™'1, W)
pio = (liftsy)(W) — Homy? . (W{((wy,...,wa_1)), W)

'Indeed, if such an F existed, it would follow that the image of the map ¢ of §4 would lie in
Wllwy,..., wn—111[w,w~']. But Theorem 4.4 shows that this does not happen.
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and that the action of S, on W[[wy, ..., wn_1]]lw,w™!] passes to an action on
W{wi,...,wn—1))[w,w™1]. Here W({wy,...,w,_1)) is the divided power en-
velope of the W-algebra W[[wy,...,w,—1]] and once again, the target of u
is to be interpreted as those W-algebra homomorphisms whose restriction to
W{(wi,...,wn_1)) is a P.D. map. (See the appendix for a discussion of divided
powers.) Now one might ask whether such an F exists over W{(wi,...,Wn_1)).
This is the case; indeed, the existence of Fis implied by Remark 2.11. However,
we will provide an explicit construction of F (which is needed for our purposes)
without using 2.11.

To determine the universal lift , we will compute what its logarithm must be
and then show that this logarithm produces a formal group law over
W{{wi,...,wn—1)). The following result shows how to use the Cartier mod-
ule of a formal group to compute a logarithm for it. It is implicit in [14], but
never really stated, so we give a proof here.

PROPOSITION 3.6. Let G be a one-dimensional formal group over a Q-algebra
R, and let v € Cy(G) such that vy : D — G is an isomorphism of formal varieties.
(In the language of [14], v is called a basic curve.) Let  denote the composite

C,G — 3G —— ED=R.
Then

logg,, () = 3 (r(F ) /p )"
>0

where log ., is the logarithm of the formal group law defined by G and the coor-
dinate system .

Proof. By naturality, we may assume that G = D and y(x) = x, so that
log ., is just the logarithm of G, regarded as a (p-typical) formal group law.
Now logg; , is by definition the power series representation of the unique formal
group isomorphism G — TG* which is the identity on TG. Here TG* denotes
the additive formal group whose tangent space is the R-module G = R (cf. [14;
I, 5]). Thus

logg., : Cp(G) — Cp,(2GY)

is a map of Cart, R-modules; the power series log ., (x) is just the power series
representation of the curve

k
logg ., (1) = Zakx” , ar € R.
k>0
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Then

logg, (F iy)=F (Z akxpk) = Z piakx“’k-i

k>0 k>i

by the computation of the action of the frobenius operators on the curves of the
additive group ([14; III, 3.16]). Since log_, is the identity on tangent spaces, it
follows that

n(F'y) = p'a;.

This completes the proof.

The next result proves the existence of F and gives its logarithm.

THEOREM 3.7. Let

) =32"/p,

i>0

and let F be the formal group law over (W @ Q)[[w1, ..., wn,—1]] with
logz (x) = £(x) + 1% IWEGP) + Wl () + - - + w1 8],

Then
i. Fisaliftof Tyto W({wi,...wn_1)).
ii. (W(G,$6, ) F, w(G, 6, &)(w)) is x-isomorphic to (G, 6, ¢) for all (G, b,€) €
(liftsy)(W).
Proof. We assume i for now and prove ii. Let s : M — C,G be the (W, F)-
linear section of 2.14, and let v € M be the usual basic curve. Then s(y) is a
basic curve; furthermore, since s is a section of 7, (see 2.14), the formal group

law F obtained from G using the coordinate system s(v) is a lift of the formal
group law I, and (G, 6, ‘Is(fy)“) is x-isomorphic to (F, 1). By Proposition 3.6,

logr (0 = 3 [m(Frs(y)) /P41,
>0

where now

-1
7:CG— TG TD=W.

But m(F*s(7)) = t(F*+), where

-1
t:M5C6— 36 TD=W.
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t is the map corresponding to (G, 8, Ts(y)~') in Theorem 2.10. Now using the
known structure of M (Proposition 2.18), we have

logr (1) = 3_ (1F*n/p*)
>0

- nil Z (t(an+r’y)/pi"+r) (xp’)pf”

=0 j>0
n—1 .
S () ey
r=0 j>0
j xpi" = 1 (r—Dn+n—r N
=§6(t(7)/p’) +§j§ﬁ~r(v 7) &y’

n—1 ,
= N+ 3> (7 o) - v "

r=1 j>0

n—1

1 r
= DI+ = H(V" )L )
r=1

n—1
2+ Y (o(wn) /pIEEF),
r=1

where po = po(G,8). Thus F = uo*f’ . To complete the proof of ii, we need only
show that

(G, 8,&)w)~! = (Ts(y) " o)D)

But this follows from the fact that u(G, 4, Ts(fy)‘l)(w) = 1 together with Re-
mark 3.2.
We now prove i. Write

(3.8) > x =logz (), A€ W QWi ... wa1ll,

i>0

and let ¢; also denote the image of the Hazewinkel generator ¢; under the map
BP, — (W Q)[wi,...,wn—1]] classifying F. These elements are related by

(3.9) ph= 3 N,

0<i<j
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for each j > 0([18; A2.2.1]). We must show that each v; is in W{{wy,...,w,_1))
and that

_ ) Omodm i#n
(3.10) U= { Imodm i=n"’
where m is the maximal ideal of W((wy,...,wy_1)).

Before proving 3.10, we single out some useful facts, which follow easily
from 3.8 and our description of logz (x).

(3.11) PAj = Aj—n j>n

(3.12) PN Em j>1ln>1.

If n =1, it is easy to see from 3.9 and 3.11 that »; = 1 and ¢; = O for all
i>1.

For n > 1, we proceed by induction on i. To start the induction, note that
A1 = wi/p, so that v; = wi. Now assume that j < n and that ¢ € m for k < j.
Then, since m has divided powers, v,f epm. Butp\;=w; emfor0<i<n;
hence

J—1 .
p)\j -y = Z)\ivf_i em.
i=1
Therefore, if j < n, v; € m. If j=n, pA; = 1 by 3.11, so that v, = 1 mod m. Next
assume that j > n and that v, satisfies 3.10 for k < j. If 0 < i <jand j — i #n,
then _; € m, so
v, € (p))!m C p'm.

Thus, by 3.12,

)\izfiiem; O<i<jandj—i#n.
Equation 3.9 then becomes:

p)\j -y — )\j_nl),’l}i_n ecm.

Moreover,

(th = lmodm) = (¥ = 1 modpm) = (v,’fi_" = I modp/"m),
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with the first implication holding because m has divided powers. But p/~"\;_, €
m; this implies that

PAj— U — Ai_p €Em.
As p)j = Aj_n, we conclude that y; € m, completing the induction and the proof.

4. Comparison of universal lifts. Continue to write W = WFp"‘ Let F be
the universal Lubin-Tate lift of I',, to W[[u,,...,u,—_1]] described in 1.3, and let
F be the universal lift of T, to W((wy,...,wn_;)) described in 3.7. In this section
we explicitly determine the unique continuous graded homomorphism

v Wt w1 W(w, ), w ']
such that (.4 F, «(u)) is x-isomorphic to (F,w). By 1.4 and 3.7ii, there is then the
commutative diagram
(lifts*), W

A

Hom, _ Wilur....un—i 1)l u™"]. W) < Hom{% (W ((wi,...,wa1))lw, w1, W)

W—alg

This implies that, for each g € S, and P.D. W-algebra homomorphism 4 :
W{{wi,...,wa_1))[w,w™'] — W, the diagram

Wiluy, ..., un— 111w, u="]

L h

Wlluy,..., up— 1 N, u="] ———— W{(wy,..., wh— N w,w™!] ———— W

commutes. (Here g also denotes the algebra homomorphism induced by the action
of g.) From this diagram, it follows from Corollary A.7 that

Wllut, ...ty 1, u™ '] i W{wi,...,wo1))w, w1
g g

@D Wiy, .. upe i N, u™ '] d W{wi, ..., Wt )W, w™ ']

also commutes. Futhermore, we will show that + induces an isomorphism

T W((ul,...,un_l))[u,u_l] — W((w1,...,w,,_|))[w,w”1]
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(cf. A.2); since we have described the action of S,, on
W((wi,...,wae1))w, w1,

we therefore obtain a description of the action of S,, on W[[uy,...,u,—1]1[u, u™ n.
In order to state our main result, we need a little preparation. Let

4.2) logs () =S md,  my € Wilui,...,u,-111© Q.
k>0

By 1.3 and the relation between the Hazewinkel generators and the coefficients
of the logarithm of the universal p-typical formal group law (cf. 3.9), we have
the relations

k—i

k

pmy =y omy_all k<n
=
n—1 k—i

pmy =Y m_gll  +mg_n, k>n
i=1

4.3)

We will denote by u; and my, the image of these elements under ¢ (or ¢ ® Q), and,
as usual, m will denote the maximal ideal of W{(wy,...,w,—_1)).

THEOREM 4.4. There is a unique continuous graded homomorphism
v Wkttt Nl ™' T = W Wi, W), w ']

such that (L*IA*" , L(u)) is x-isomorphic to (F’ ,w). This homomorphism satisfies the
relations

w = (P'mpi)u mod p'm

wwj (P mj+m)u mOde-I

for1 <j<n-—1landalli> 0. Inaddition, the map
7 W((ul,...,u,,_l))[u,u_]] — W((wl,...,w,,_l))[w,w"l]

induced by . is an isomorphism.

Remark 4.5. Observe that the required map ¢ is obtained by first constructing
a continuous homomorphism

Lo . W[[ul,...,u,,,l]] b W((W],...,Wn_|>>

such that (L())*F is *-isomorphic to F. The extension ¢ must then be glven by
defining «(u) = h'(0)w, where h is the unique x-isomorphism from (Lo)*F to F. By
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[1; proof of Theorem 1.8] (see also Remark 1.2), such an ¢y exists and is unique;
however, we shall not use this result, since it is not much more work, and perhaps
makes the proof of Theorem 4.4 clearer, to prove existence and uniqueness along
the way.

Before proving this theorem, we separate off the following lemmas, the first
of which is needed even to give sense to the assertions of the theorem.

LEMMA 4.6. Foreachi>0and1 <j<n,

pi+1m,,i+j € W{(ug, ..., un—1)),
and
P i = PPty mod p™tI,
where I is the maximal ideal of W{{uy, ..., up—1)).

Proof. Begin by noting that, from 4.3 and induction,
p'mi € Wluy, ..., un—11]

for all i > 0. (This is indeed a special case of a general fact, valid for any p-
typical one dimensional formal group law over a torsion free ring.) Then, using
4.3 once more, we have

n—1
. . . k—t
+2 +1 +1 . .
PP muistyeg = P i + P mu_l] L k=n(i+ 1) +].
t=1

But
e (O C P
so, from above,
mk—t”‘? e el,
and therefore,
PP iy — P maig € pUIL

To finish the proof, we need only show that pm; € W((ui,...,u,—1)). This
follows easily from 4.3.
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Now define
S, tg—1) = limp™lmyy,  1<j<n—1
4.7 I
Sflui, .. up—1) = lim p™* mpgy).
1—00
These are power series in W{(uy,...,u,—1)); note that
(U1, . .. Up—1) = u; modI?
(4.8) f]( 1 n 1) '
fQu,...,up—1) =1 modI?

This immediately implies the following result.

LEMMA 4.9. LetT : W{(wi,...,wu—1))[w, w11 — W({uy,.. ey tn—1 ) u,u™]
be the continuous W-algebra homomorphism defined by

Tw) =fi/f, 1<j<n-1
Tw) = f(ug, ..., Uup—1) - u.
Then T is an isomorphism.

Proof of Theorem 4.4. We construct o and | compute H'(0) as in Remark 4.5.
Since F and (L())*F are p-typical, F and (L())*F are x-isomorphic if and only if
there exists a homomorphism

(4.10) S @Fgt  F o (00F,  ar € W(lwi,. ... wa_1))
i>0

with

@.11) a,-E{ Imodm i=0

Omodm i>0 °

Suppress ¢ from the notation. 4.10 holds if and only if

logz (Z Faix”i) = ag log (x).
i>0

We must find the values of the u; in W((wy,...,w,—;)) which allow the above
equation to be solved for the a;. By Theorem 3.7, this equation becomes

j it i phi n! ; ni+j
Somd " =3 @o/p" + 303 (aowi/p .

iji>0 i>0 j=1 i>0
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Equivalently, the following equations must be satisfied for all i > 0 and 1 <j <
n—1:

n(i+1)—1

i1 n(i+1) k
4.12) ao/p*! = myndl  + Y mdh
k=0
ni+j nitj—1 k
j+1
agw;/p™*' = mpisjaly  + mkaﬁnj—k
k=0

Using 4.11 together with the sort of argument in the proofs of Theorem 3.7i and
Lemma 4.6, one sees that 4.12 cannot be solved unless

(4.13) ao = p*'mpgyymodp™*lm

— i+l i+1
awj = p m,,,-+jmodp m

for all i > 0. Conversely, if 4.13 is satisfied, one can then solve inductively for
the remaining ay.
But, by Lemma 4.9, the above equations are satisfied if and only if

w=T""\Wllui,...,up—1]]

and

ap - T 'u=w.

This proves the existence and uniqueness of ¢, and, since ay L=y (0), we have
that 7 = T~ and is therefore an isomorphism. The relations between the canonical
and the Lubin-Tate coordinates are just a restatement of 4.13.

5. Brown-Comenetz self-duality. In this section, we present our applica-
tion of these formulas to Brown-Comenetz duality. We first recall the context of
this application.

Let I, be the Brown-Comenetz dual [3] of L,S; it is characterized by a
natural isomorphism

(5.1) [X,I,Jo — Hom (7ro(X A LnS), Q/ Z(,,))

for all spectra X. Hom here denotes the group of group homomorphisms between
two abelian groups; in general, Homg will denote the R-module of module ho-
momorphisms between two R-modules. Note that since L,X = X AL,S® (see [20;
7.5.6)), it follows that F(X,1I,), the function spectrum of maps from X to I, is
the Brown-Comenetz dual of L,X.
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In our approach to the E(n)-approximate generating hypothesis (see [5]), it
is important to have an explicit understanding of the spectrum 7,. Without going
into details here, the first step in achieving this understanding is determining
I, \'V; for an appropriate direct system of finite spectra {3~ V;}. Each of these
spectra should satisfy

(5.2) BP,V;=BP,/(p°,4},... "))

as BP,BP-comodules, where ~z/{;" is invariant mod (p/, v{' s z),'("_‘ Dforl1 <k<
n — 1. One also requires that

n—1
lim BP,Z™"iV; = BP./(p™, 05°, ..., vi2)), mi= Y 2i(p' — 1),
J i=1

or, more precisely, that

L,im=™"V; = M, S°.
j

(See [17; 5,6] and [19] for the definition and properties of M,S°.)

Other conditions may additionally be imposed on the system {Z~"V;}; for
instance, one may require that each V; be Spanier-Whitehead self-dual (up to
suspension) and even that each V; be a ring spectrum. The existence of such
sequences is guaranteed by nilpotence technology ([11], [12]; also cf. [5; 2]). In-
deed, we can and will assume that, for each Vj, there is a sequence of cofibrations

zlolx; 0 X — Xii, 0<i<n—1,
with X = 5%, X, = V;, and with BP,.g; given by multiplication by /. Furthermore,
we will assume that g; A X; = X; A g; for all i—which guarantees that each
X; is Spanier-Whitehead self-dual—and that a ring spectrum structure has been
inductively constructed on each X; using the method of [6].
Write V for a complex V; of the sort above, and call such a spectrum -

admissible. We will say that L,V is Brown-Comenetz self-dual if there exists a
map f : Z/IL,V — I, such that the adjoint

s,V — Fv,1,)
of the map
sALvav s v Lo

is an equivalence. Here m : VAV — V is the ring spectrum pairing.
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A priori, our definition of Brown-Comenetz self-duality is stronger than it
apparently should be. Namely, one would expect to call V Brown-Comenetz self-
dual if there merely existed an equivalence 'L,V SFW,1,). Although it seems
likely that these two definitions are equivalent, we have chosen ours so that
Theorem 5.4 holds and is easy to prove.

If n=1 and p is odd, then I; = L1((Sz)[’)\), the E(1).-localization of the p-
completion of S2 ([5; 1.5]). Hence Brown-Comenetz duality becomes essentially
Spanier-Whitehead duality and so if V is any l-admissible spectrum—in this
case, a mod (p’) Moore spectrum—then L,V is Brown-Comenetz self-dual. The
map f is just projection onto the top cell.

In this section, we will prove the following result.

THEOREM 5.3. Let p > 5 and let V be 2-admissible. If pBP,V # 0, then L,V is
not Brown-Comenetz self-dual.

As remarked in the introduction, this theorem is proved by first reducing it
to a problem in pure algebra.

If N is a (discrete) continuous Galois equivariant twisted S, — E/, module
(see 0.2) of finite type, then so is

N~ = Homw (N,Q/Zp) @ W),

where W = WIF,», Gal acts in the evident way on Q/Zpy®W, and S,, acts trivially
on Q/Z) ® W. N~ is called the Pontryagin dual of N. Note that (N~)~ =N as
Galois equivariant twisted S, — E», modules. If there exists a ¢ € Z such that

N~ =~ I'N

as Galois equivariant twisted S, — EJ, modules, we say that N is Pontryagin
self-dual. We will prove the following result.

THEOREM 5.4. Suppose p > max{(n*>+1)/2,n+1}, and let V be n-admissible.
Then L,V is Brown-Comenetz self-dual if and only if Eb, ®pp, BP.V is Pontryagin
self-dual.

The next result will allow us to prove Theorem 5.3 by making a single
computation.

.n-—l
»>“n—1

LEMMA 5.5. Suppose (p, vf', . v,';”__l') and (pP, J, ... ) are ideals in
BP, with vt (resp. v)¥) invariant mod (p®, . . ., v,'ck_' 1) (resp. (P, ..., 00))) for all
1 <k < n— 1. Suppose further that iy, > ji whenever 0 < k < n — 1. Now let

M = E), ®gp, BP,/(P,...,v"))

» “n—1

N = EJ), ®pp, BP./(PP, ..., /")
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Then, if M is Pontryagin self-dual, so is N.
If V is any 2-admissible complex with pBP,V # 0, then BP,V = BP,/
(p°, u ') with jo > 2 and j; > p. Thus, the next result, taken together with 5.4
and 5.5, implies Theorem 5.3.

LEMMA 5.6. The module
Ej, ®pp, BP,/(p*,}) = E, [(p*, ) = Wluy, u,u="1/(p% )

is not Pontryagin self-dual.

We now prove 5.4, 5.5, and 5.6 in turn. We begin be recalling some properties
of Poincaré pro-p-groups. The reader is referred to [21; I] for more details.

Let G be a Poincaré pro-p-group of dimension d, and let I be its dualizing
module. [ is a discrete G-module; it comes equipped with a homomorphism

it H(G D — Q/Z,),
such that, if A is any finite G-module, the map
(5.7 Hom (4,1)° — Hom (HX(G; A), Q/Z,))

which sends f € Hom (A4, )° to the composite

HY(G;4) L HYG; 1) — Q/Zy)
is an isomorphism ([21; I 3.5]). In fact, as an abelian group I =~ Q/Z(p), and

furthermore, i is an isomorphism ([21; I 4.5]). The isomorphism 5.7 can also be
generalized.

ProOPOSITION 5.8. Let G, I be as above, and letn > 1. Write W = WF ko k> 1
Suppose that M is a finite discrete W[Gl-module; set M~ = Homwy (M, I ® W) and
note that it is also a finite discrete W[G1-module. Then the “evaluation” map

H(G; M) ®w HEN(G;M™) — HAG, 1 @ W) =5 Q/Zpy @ W
is a perfect pairing—that is, the adjoint
(5.9) H*{(G;M™) — Homy (HAG; M), Q/Zp) @ W)

is an isomorphism for all i > 0.
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Proof. Mimic the necessary parts of the proof of Proposition 30 in [21; I 4.5].

If p—1 { n, it is known (see, for example, [18, 6.2.10]) that S2, the p-Sylow
subgroup of S, consisting of those matrices of the form 2.20 with ay = 1 mod (p),
is a Poincaré pro-p-group. We would like, however, to have analogous results for
the full stabilizer group S,. This is indeed the case.

PROPOSITION 5.10. Assume p — 1 t n. The conclusions of Proposition 5.8 hold
with G = S, and I = Q/Zp) with trivial S, action.

This proposition will be proved in §6. Note that it implies in particular that
our notation for the Pontryagin dual is not abusive.

We will also need to understand how the Galois action on S, behaves in the
above perfect pairing. Let / be the dualizing module for S,. By the universal
property of the dualizing module, there exists a unique Z,[S, x Gal]-module
structure on /, extending the (trivial) S,-action on /, such that

HY (S ) —— Q/Zp

O x i

HE (Sa31)
commutes for each o € Gal. Then
H (S 1@ W) 28 Q/Zp) @ W
is Galois equivariant, where W = WIF,» with the usual Galois action. But /@ W ~

Q/Zp) ® W as Z,[Gal]-modules, where Gal acts trivially on Q/Z) (cf. [10; VI,
11.7]). In particular,

I @ W) =~ Q/Zy).
Now it is a consequence (see e.g. [7]) of the fact H!(Gal, GL(Fpn)) = 0 (see [23;
X, Proposition 3]) that, if N is any finite Galois equivariant W module, then the
inclusion N% < N induces a Galois equivariant W-module isomorphism

(5.11) Nl ew — N.

Hence I® W =~ Q/Z,) ® W as Galois equivariant W-modules. Putting these facts
together, it follows that the isomorphism

H"7H(S,; M™) — Homy (H.(Sy; M), Q/Zpy ® W)



MORAVA STABILIZER GROUP 699

is Galois equivariant, whenever M is a (discrete) continuous Galois equivariant
twisted S, — E/, module of finite type. Note that the Galois action on M is the
one that is described above Theorem 5.4.

Proof of Theorem 5.4. For this proof, we use the following notations: If M is
a discrete S,-module, write H*(M) for H(S,; M). Also, if V is an n-admissible
complex, write Ej, (V) for Ef, ®pp, BP«(V).

Suppose first that L,V is Brown-Comenetz self-dual, and let

f:E"L,V = I,
be the requisite map. Then regard
f € Hom (n_,,L,V, Q/Zp))
and notice that
oLV @ TomsLnV = 1LV L Q/Zp)
is a perfect pairing. By 0.4, this can be rewritten as
H* (Ep (V)% © H*EpV)® — B Ep ) L @/,

which yields, by 5.11 applied to N = H**(E/\(V)), a Galois equivariant perfect
pairing

(5.12)  H™ENLV)) @y H*(ELV)) — HELV) L /2y @ W
of W-modules.

Consider now the quotient map Ef\, (V) — Fpn[u,u~']. Since H'M = 0 when-
ever i > n? and M is any finite discrete S,-module, it follows that

H” (EN(V)) — H” Fpr [, u™']) — 0

is exact. But H”z(]Fpn [u,u"']) # O; therefore f must be concentrated on
H"z"’z_'"(E,/l\*(V)). Thus, by 5.10 and the discussion following it, there exists
a unique Galois equivariant S,-map

g: ENp—m(V) = Q/Zp @ W
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of W-modules such that
H" (Ep,(V)) <5 H™ (Q/Zpy ® W) > Q/Zpy @ W

is f.

Next consider the pairing
Ep (V) ®w Ep(V) — En(V) = Q/Zip @ W.

Its adjoint

h: Ep(V) — £~ Homy (En(V), Q/Zp) @ W)
is a Galois equivariant map of twisted S, — E/, modules, making the diagram

H*(Ep (V) ®@w H*Ep (V) — O/ Zp) @ W

id @ hy

Y
H*(EN(V)) @w H*(EAV)™)

commute. The top map is the pairing of 5.12 and the diagonal map is that of
Proposition 5.10. Since both pairings are perfect, A, is an isomorphism. We claim
that this implies that 4 is an isomorphism.

Indeed, if A, is an isomorphism, then H(ker #) = 0. But

keth #0 = po='f =" 7" € kerh,
where
BP.V = BP,/(p",..., "))
Since pio—ll){'_l ...d,;"__ll is a primitive in BP,V, it is S, invariant in EJ\(V),

proving that ker 2 = 0. On the other hand, (coker k)™ = ker (h™), and (h™), is
an isomorphism; therefore, (coker 7)™ and thus coker #4 is trivial. This completes
the proof that Brown-Comenetz self-duality implies Pontryagin self-duality.

To prove the converse, note that if one has a Galois equivariant isomorphism

h: Ep (V) — Z' Homy (Ep(V), Q/Zy) ® W)

of twisted S, — E/, modules, then g = h(1) provides, by the same process as
before, a map f : 2”2_’L,,V — I, making L,V Brown-Comenetz self-dual.



MORAVA STABILIZER GROUP 701

Proof of Lemma 5.5. Let
h:M — X Homy (M,Q/Z, ® W)
be a Galois equivariant isomorphism of twisted S, — E7, modules. Define ¢ :
XN — M by

io—jo . d1—J in—1—jn—
L(x)=p’° jOU;I J1 "'vnn—ll Jn Ix’

and let 7 : M — N be the usual quotient map. ¢ is a Galois equivariant twisted
S, — E, module map since the map

D EBP (P, .., ") — BP (PO, ..., u))

n—1

defined by

J(x) = ploho vi‘_j' . v,’;"_‘l' =ty
is a BP.BP-comodule map. It is easy to check that there exists a unique Galois

equivariant twisted S, — E/\, module map 4’ such that the diagram

/
N h Zt+s ( N~ )
™ A
M—" sy

commutes. Since k is an isomorphism and m, ™ are surjective, A’ is also an
isomorphism.

Proof of Lemma 5.6. Since E., /(p?, 1}) is generated as an E%,-module by the
S, invariant element 1 it suffices to show that (Eé\* /( p2, /)™ has no S, invariant
Ej,-module generator.

Recall from A.3 that W({u;)) C (W®Q)[[#]] and that if 3" aui € W{(u)),
i>0
then a; € W for 0 < i < p. We therefore have a homomorphism

W((u))lu.u™"1 — E/(P*, )
defined by sending u¥(3";5oaiu}) to u (S aiul). An easy computation using

Theorem 4.4 shows that w is mapped to # and w; is mapped to u; under the (S;
equivariant) composition

W (w1 ))Dw, w1 5 W) ), u™"1 = /(0% o).
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Next consider the embedding of W]F;2 in S, given by

ar g, = [ g a(‘)7 ] (see 2.20).

Then, by 3.3,

gaW = aw

gaW1 = a®a wy,
and hence
(5.13) gl = au

galt] = a’a "y

in E3, /(p*, ).
Now let h be an Ej,-module generator of (EL,/(p% )™, say h €

(E}, /(P2 1F))5,. Observe that k(™ 'uk) then has order p2. If h is S, invariant,
then

h(ga(d™ b)) = h(ud ™)
for all a € W*. By 5.13, this means that
(5.14) a*a'P(@®¥~! = 1 mod (p?)

for all a € W*.
Write

a = eg+ejpmod (p?),

where each e; is a member of the multiplicative system of representatives of Fy.
in W. Then

a’ = e+ efpmod (p°),
and thus 5.14 is satisfied if and only if

Ep(;(p——l)+k+1-—p =1

(p— DeP 2Pl L (ks 1 — p)BP~ M Pg =0
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for all ¢y € IF;Z, €1 € F,;. But Galois automorphisms are linearly independent;

therefore, the bottom equation implies that (p — e’ "¥***!'~7 = 0, an impossi-

bility. This shows that 4 cannot be S, invariant, completing the proof.

6. Proof of Proposition 5.10. We begin the proof by computing the action
of S9 on its dualizing module. We start with some generalities.

Let G be a Poincaré pro-p-group. Since Z, = Hom (Q/Z,), Q/Zp)) as rings,
it follows that the action of G on its dualizing module is described by a continuous
group homomorphism

x6:G—1Z,.

In fact, since G is a pro-p-group, the image of x¢ lies in U, the group of units
congruent to 1 mod (p). Note that if p > 2 (the only case of interest to us here),
U is isomorphic to the additive group Z, (cf. [18; A2.2.15]) and in particular is
torsion free. If, in addition, G is an analytic group over Q,, x¢ has a convenient
geometric description, which we now explain.

Let K be a local field, and let H be an analytic group over K with Lie algebra
L(H) over K. If h € H, let ad(h) : H — H be the automorphism defined by
ad (h)(x) = hxh~!, and let ad (h), : L(H) — L(H) be the induced Lie algebra
map. Define the group homomorphism "

ad? : H — autg (C(H), L(H))

by ad? (h) = ad (h), and consider the composition

H
H 2, auty (CH), LH)) 25 k%,

where det is the determinant homomorphism.

THEOREM 6.1. ([13; V, 2.5.8], see also [22]). Let G be an analytic group over
Qy and a Poincaré pro-p-group. Then X = deto ad?.

We will use this theorem to determine Xs0-

PROPOSITION 6.2. Xs0 is the trivial homomorphism.

Proof. S0 is an open subgroup of the group of units of a central division
algebra D over QQ, [18; A2.2.16] and hence L(S%) = L(D*). Now there exists a
finite extension K of Q, such that

Dk =D ®Qp K ~ M,(K),

the algebra of n x n matrices over K (see [25; IX]). Since L(Dg) = £(Dx)®Qp K,
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it follows from Theorem 6.1 that the diagram

(6.3) DX D;é = GL,(K) det o ad, - KX

commutes.
But L(GL.(K)) = M,(K), and ad (a). is just conjugation by a € GL,(K).
Hence deto ad, is trivial and therefore so is Xs0-

We next relate the cohomology of SO to that of S,,.
Sg is a normal subgroup of S,, and there is an extension

fﬁxem,

n

where the map S, — IF;,, is given by sending a matrix to the mod (p) reduction
of ag. This sequence splits; a homomorphism IF;,, — S, may be defined by

e@ 0 --.. 0
0

(6.4) a— |
0 - - el@ "

where e(a) € W, is the multiplicative representative of a € F,». With this
splitting, we may write S, = 59 F.

Suppose M is a discrete S,-module over Z,). Then F;n acts on M by restric-
tion and also on SO by conjugation. This provides us with an action of F;,, on
H(S% M) and a canonical restriction map

(6.5) HE(Sus M) — H(S% M)

Since the F;;-fixed point functor is exact on the category of Z, [F;n]-modules,
it follows from the Hochschild-Serre spectral sequence (see [24; II §4]) that this
map is an isomorphism.

Now suppose p — 1 { n and let Iy be the dualizing module for S. Since IF;,,
acts on S9 by automorphisms, there is a unique 7 »[SY x F;,,]-module structure
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on /y, extending the (trivial) Sg-action, such that
H™ (89 I)) —— Q/Zy

a i

H" (89 1o)

commutes for all a € ]F;,. This action is described by a group homomorphism
T ]F;(n — Z;( = Aut (Iy, Ip).

Morava has shown [16; 2.2.2] that F:,, acts trivially on the elements of order

p in Ip; therefore, T(]F;n) C U. But U is torsion free, so 7 must be trivial. We
conclude from 6.2 and 6.5 that

(6.6) HE (83 Q/Zipy) = H (53 Q/Zip) 5 Q/ L),

with Q/Zp) given the trivial S,-action.

Proof of 5.10. Let I = Q/Z,) with the trivial S,-action. Using 6.6, we obtain
a pairing

6.7) HX (S M) @w HY “*(Ss M™) — Q/Zpy @ W
for any finite discrete W[S,]-module M, which we claim is in fact a perfect

pairing.
Indeed, the isomorphism

H"~ (8% M™) — Homy (H.(S%; M), Q/Z(,) ® W)
is ]F:,, -equivariant and the composition
HE (80 M7 2 Homy (HI(S%: M), Q/Zp) ® W)'7"
— Homy (Hé(SB;M)F”",Q/Z(p) W)

is the adjoint of 6.7. But the last map is an isomorphism by the following lemma,
completing the proof.
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LEMMA 6.8. Let G be a finite group of order prime to p and let N be any
WIG]-module, W = W]Fpk. Then the restriction map

Homy (N, Q/Zp ® W) — Homw (N®, Q/Z, ® W)

is an isomorphism.

Proof. The idempotent ﬁ . Zg in W[G] splits N as N® @ Ny. The proof is
geG
completed upon observing that

Homy (No, Q/Zpy ® W)° = 0 = Homy (No)®, Q/Z(y) ® W).

Appendix. In this appendix, we develop the theory of rings with divided
power structure as far as we need it. For a more complete account, the reader is
referred to [2, §3].

DEFINITION A.1. Let A be a ring complete with respect to an ideal I. A divided
power structure vy on (A, I) is a sequence of functions vy, : I — I, n > 1, such that,
forallx,y € I and a € A,

L o nx)=x
. ya(ax) = a"yn(x)

n—1
i, Ya(x+y) = 1) + () + ; Vi) Yn—i(y)

V. () Vm(x) = [(m + n)!/m!n!]Ynem(x)
V.. m(Ym(x)) = [(mnl)/(m!)" n!1Yum(x).

We also say that “(/,) is a P.D. ideal”, or that “(A,I;+) is a PD. ring”, or
that *“y is a P.D. structure on I”. If (B,J;~') is another P.D. ring, then a P.D.
morphism f : (A,I;y) — (B,J;7') is a ring homomorphism f : (A,I) — (B,J)
such that

Yn(f(x)) = f(yn(x)) for all x € 1.

(A ring homomorphism f : (A,I) — (B,J) is a ring homomorphism f : A — B
with f(I) C J.)
Note that i and iv imply that

X'"=nlvy(x), xel,n>1.
Thus, if B is torsion free, then a P.D. structure on J, if it exists, is unique. Fur-

thermore, a P.D. morphism f : (4,1;y) — (B,J;') is just a ring homomorphism
f:@AD— (B,J).
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In the body of this paper, we discuss local rings with divided power structure.
By this, we mean that the maximal ideal is given a P.D. structure. We also use
the notion of the divided power envelope of an algebra over a P.D. ring.

DEFINITION A.2. Let (A,I,7y) be a P.D. ring, let B be a ring complete with
respect to the ideal J, and let f : (A,I) — (B,J) be a ring homomorphism, in other
words, (B,J) is an (A,I)-algebra. The divided power envelope of (B,J) is a P.D.
ring (B,T;7), together with a ring homomorphism v : (B,J) — (B,J) such that:

i. tof:(AIvy) — (B,J;%) isaPD. map.

ii. Whenever (C,K;6) is a P.D. ring and g : (B,J) — (C,K) is a ring
homomorphism with gof a P.D. map, there exists a unique PD. map g : (B,J;7) —
(C, K; ) such that the diagram

(B,J;7)

-~

(B,J) ——5— (C.K:5)

N

A, Lvy)

commutes.

Certainly, the divided power envelope is unique up to canonical isomorphism.
As for existence, the following construction suffices for our purposes.

CONSTRUCTION A.3. Let A be a torsion free complete local ring with divided
powers. We now describe the divided power envelope A((x)) of the A-algebra A[[x]].
Consider the subring C of (A ® Q)[x] generated by A and S = {x*/k! : k > 1}. Let
I C C be the ideal generated by S and the maximal ideal of A. Define

A{(x)) = p_QC/If.

A{(x)) is canonically a subring of (A ® Q)[[x]]. One also sees that A{(x)) is a
complete local ring, whose residue field is the same as that of A, and that A((x))
has divided powers. Furthermore, the inclusion A[[x]] — A((x)) expresses A((x))
as the divided power envelope of A[[x]] regarded as an algebra over the divided
power ring A.
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By iterating Construction A.3, we obtain the divided power envelope of a
power series algebra on a finite number of generators. For example, the divided
power envelope WFpn ((w1, ..., w,_1)) of the WF,»-algebra WF,, [[wy, - - -, wp—1]]
is given by

(A4) WEpn (W1, ..., wne1)) = (WEpn (w1, .. ., W) D{((Wn1)).

This ring is also a subring of (WF,» @ Q)[[wy, ..., wn_1]].
The (corollary of the) next result is needed in §4.

PROPOSITION A.5. Let A be as in A.3, and assume in addition that A is a domain
whose maximal ideal w is infinite. For each a € m, let e, denote the extension of
the A-algebra map

e, Al[x]]—= A
given by e,(x) = a to a P.D. morphism
e, A((x)) — A.

Suppose P(x) € A({(x)) C (A ® Q)[[x]] and that P(a) = €,(P) = 0 for all a € m.
Then P =0.

Proof. Write

P(x) =) ci(®/il), ¢ €A.

i>0

(The ¢;’s must also satisfy a certain convergence condition, but we need not spell
it out here.) Fix 0 # b € m, and consider the power series

Q(x) = P(bx) = Y _ cyi(b)x € A[[x]].

i>0

P(x) = 0 if and only if Q(x) = 0. Since Q(a) = 0 for all a € m, the next result
implies our proposition.

LEMMA A.6. Let A be as in A.5. and suppose that Q(x) € A[[x]] with Q(a) =0
foralla € m. Then Q = 0.

Proof. Assume Q # 0. Then write
) = x*Q1(x)

with Q;(0) # 0. Choose i such that Q;(0) ¢ m/, and let 0 # ¢ € m‘. (For example,
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we could take ¢ = a, with 0 # a € m.) Then Q;(c) # 0, and hence

0(c) = ckQi(c) #0,

contradicting the assumption on Q. Therefore, Q = 0.

This proposition may also be iterated to give the following easy consequence.

COROLLARY A.7. Let A be as in A.5, and let

P(xi,...,xn) € A((x1,... %)) C (A QI[x1,...,x,]]

if P(ay, . ..,ay) = 0 for all ordered n-tuples of elements of m, then P = 0.
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