Journal of Pure and Applied Algebra 81 (1992) 11-16 North-Holland

Small ring spectra

Ethan S. Devinatz*

Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

Communicated by A. Heller Received 29 April 1991

Abstract

Devinatz, E.S., Small ring spectra, Journal of Pure and Applied Algebra 81 (1992) 11-16.

We determine conditions under which the cofibre of a self-map of a ring spectrum is again a ring spectrum. Sufficiently large iterates of v_n self-maps will satisfy this condition.

The main result of this paper gives conditions under which the cofibre of a self-map of a ring spectrum is again a ring spectrum. In particular, sufficiently large iterates of v_n self-maps satisfy this condition. By a ring spectrum, we mean a spectrum X together with maps $\mu : X \wedge X \to X$ and $\eta : S^0 \to X$ such that the composition

$$X = S^0 \land X \xrightarrow{\eta \land X} X \land X \xrightarrow{\mu} X$$

is the identity (in the stable category). Neither associativity nor commutativity is assumed; it is also not even assumed that η is a two-sided unit. We can then prove the following theorem:

Theorem 1. Let X be a ring spectrum and let $f : \Sigma^{|f|} X \to X$ with |f| even. Suppose that:

(i) The map $f \wedge X : \Sigma^{|f|} X \wedge X \to X \wedge X$ is in the center of the ring $[X \wedge X, X \wedge X]_*$.

(ii) The diagram

$$\begin{split} \Sigma^{2|f|} X \wedge X \xrightarrow{X \wedge f^2} X \wedge X \\ \downarrow_{\mu} \qquad \qquad \qquad \downarrow_{\mu} \\ \Sigma^{2|f|} X \xrightarrow{f^2} X \end{split}$$

commutes, where $f^2 = f \circ f$.

Correspondence to: E.S. Devinatz, Department of Mathematics, University of Washington, GN-50, Seattle, WA 98195, USA.

* Partially supported by NSF grant DMS 8903168.

0022-4049/92/\$05.00 (2) 1992 - Elsevier Science Publishers B.V. All rights reserved

E.S. Devinatz

Then $C(f^2)$, the cofibre of the map $f^2: \Sigma^{2|f|}X \to X$, has the structure of a ring spectrum so that the inclusion map $X \to C(f^2)$ is a map of ring spectra.

Now suppose that X is a p-local finite ring spectrum with $K(n-1)_*X = 0$ but $K(n)_*X \neq 0$. As usual K(i) denotes the *i*th Morava K-theory. Recall that a v_n self-map is a map $g: \Sigma^{\lfloor g \rfloor}X \to X$ which induces an isomorphism on $K(n)_*X$ and a nilpotent homomorphism on $K(i)_*X$ for $i \neq n$. Then, by the essential uniqueness, naturality, and centrality of v_n self-maps [3, Section 3], it follows that if g is any v_n self-map and n > 0, there exists a natural number N such that g^N satisfies conditions (i) and (ii). This implies the next result.

Theorem 2. Let X be a p-local finite ring spectrum, and let g be a v_n self-map (n > 0). Then there exists a natural number N such that, for each m > 0, $C(g^{mN})$ has the structure of a ring spectrum so that the inclusion $X \rightarrow C(g^{mN})$ is a map of ring spectra. \Box

Working before the nilpotence theorem, Oka obtained some results on ring spectra structures on certain specific finite complexes X with $K(n)_*X \neq 0$ and n small [4]. Of course, in general, one cannot expect such specific results from nilpotence technology. Nevertheless, this type of result is useful in some contexts. For example, in [2], it was sufficient to use the general existence of v_2 self-maps without knowing that any specific power of multiplication by v_2 could be realized. Furthermore, we expect that Theorem 2 will be a technical tool needed to explicitly present the Brown-Comenetz dual I_n of L_nS^0 as a direct limit of finite spectra (cf. [2, 1.5]). (In the absence of the telescope conjecture, this presentation will be in the $E(N)_*$ -local homotopy category, where N may be arbitrary.)

Finally, we remark that Theorem 2 may be folklore to certain BP-theorists. The proof of Theorem 1 requires three lemmas, the last two of which will be proved later. First, we introduce some notation. Given a self map $g: \Sigma^{|g|}X \to X$, there is a cofibration sequence

$$\cdots \to \Sigma^{|g|} X \xrightarrow{g} X \xrightarrow{\iota} C(g) \xrightarrow{\partial} \Sigma^{|g|+1} X \xrightarrow{-g} \Sigma X \to \cdots$$

Lemma 3. If f is a self-map of X and $f \wedge X$ is in the center of the ring $[X \wedge X, X \wedge X]_*$, then $f \wedge X = X \wedge f$.

Proof. Use the fact that $f \wedge X$ commutes with the commutativity automorphism $\tau: X \wedge X \rightarrow X \wedge X$. \Box

Lemma 4. Let X be any spectrum and suppose that f is a self-map of even degree such that $f \wedge X$ is central. Then there exists a map $h: \Sigma^{2|f|+1}X \wedge X \rightarrow X \wedge X$ such that the diagram

commutes.

Lemma 5. Let f and X be as in Lemma 4. Then

$$f^2 \wedge C(f^2) : \Sigma^{2|f|} X \wedge C(f^2) \rightarrow X \wedge C(f^2)$$

is trivial.

Proof of Theorem 1. First note that hypothesis (ii) implies the existence of a map $m: X \wedge C(f^2) \rightarrow C(f^2)$ such that the diagram

$$\begin{split} \Sigma^{2|f|} S^{0} \wedge X \xrightarrow{S^{0} \wedge f^{2}} S^{0} \wedge X \longrightarrow S^{0} \wedge C(f^{2}) \longrightarrow \Sigma^{2|f|+1} S^{0} \wedge X \\ \downarrow_{\eta \wedge X} \qquad \qquad \downarrow_{\eta \wedge X} \qquad \qquad \downarrow_{\eta \wedge C(f^{2})} \qquad \qquad \downarrow_{\eta \wedge X} \\ \Sigma^{2|f|} X \wedge X \xrightarrow{X \wedge f^{2}} X \wedge X \longrightarrow X \wedge C(f^{2}) \longrightarrow \Sigma^{2|f|+1} X \wedge X \\ \downarrow_{\mu} \qquad \qquad \downarrow_{\mu} \qquad \qquad \downarrow_{\mu} \qquad \qquad \downarrow_{\mu} \qquad \qquad \downarrow_{\mu} \\ \Sigma^{2|f|} X \xrightarrow{f^{2}} X \xrightarrow{f^{2}} X \longrightarrow C(f^{2}) \longrightarrow \Sigma^{2|f|+1} X \end{split}$$

commutes, where the rows are cofibration sequences. Now the fact that $\mu \circ (\eta \land X) = \operatorname{id}_X$ does not of course imply that $m \circ (\eta \land C(f^2))$ is the identity—it does, however, imply that $m \circ (\eta \land C(f^2))$ is an automorphism of $C(f^2)$. It is then easy to see that by replacing m with $[m \circ (\eta \land C(f^2))]^{-1} \circ m$, we can arrange things so that the above diagram commutes and so that $m \circ (\eta \land C(f^2))$ is the identity.

Next, Lemma 5 implies that there exists a retraction $r: C(f^2) \wedge C(f^2) \rightarrow X \wedge C(f^2)$. Define $\mu': C(f^2) \wedge C(f^2) \rightarrow C(f^2)$ by $\mu' = m \circ r$ and η' by $\eta' = \iota \circ \eta$. Then one easily checks that these maps give $C(f^2)$ the structure of a ring spectrum and that $\iota: X \rightarrow C(f^2)$ is a ring spectrum map. \Box

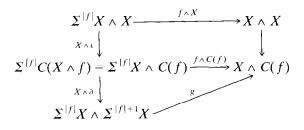
Proof of Lemma 4. Begin by observing that, since $X \wedge f = f \wedge X$, the composite

$$\Sigma^{|f|}X \wedge X \xrightarrow{f \wedge X} X \wedge X \to X \wedge C(f)$$

is trivial. There then exists a map

$$g: \Sigma^{|f|} X \wedge \Sigma^{|f|+1} X \to X \wedge C(f)$$

such that the diagram



commutes. To complete the proof, we must show that $(X \wedge \partial) \circ g : \Sigma^{2|f|+1}X \wedge X \to \Sigma^{|f|+1}X \wedge X$ is trivial. For this, it will be convenient to describe g at the point-set level.

Identify $\Sigma^{|f|}X \wedge \Sigma^{|f|+1}X$ with $\Sigma^{|f|}[C(X \wedge f) \cup_{X \wedge X} C(X \wedge X)]$. The cone coordinates are parameterized by [0, 1] with 0 the cone point. Now let $H: \Sigma^{|f|}X \wedge X \wedge I_+ \to X \wedge X$ be a homotopy with $H_0 = f \wedge X$ and $H_1 = X \wedge f$. Finally, write

$$X \wedge C(f) = C(X \wedge f) = X \wedge X \cup_{X \wedge \Sigma^{[f]} X} C(X \wedge \Sigma^{[f]} X)$$

as usual. Then define $g \mid \Sigma^{|f|} C(X \wedge f)$ to be $f \wedge C(f)$ and define

$$(g \mid \Sigma^{|f|}C(X \land X))(x_1 \land x_2 \land s) = \begin{cases} H(x_1 \land x_2, 2-2s) & s \ge 1/2, \\ x_1 \land x_2 \land 2s & s \le 1/2. \end{cases}$$

Next, consider the cofibration sequence

$$X \wedge X \xrightarrow{f} C(X \wedge f) \cup_{X \wedge X} C(X \wedge X)$$
$$\xrightarrow{\bar{\pi}} (X \wedge \Sigma^{|f|+1}X) \vee \Sigma(X \wedge X) \xrightarrow{\bar{a}} \Sigma(X \wedge X)$$

where *j* includes $X \wedge X$ onto the base of $C(X \wedge X)$. It is easy to see that

$$(X \wedge \partial) \circ g = k \circ \bar{\pi}$$

(up to homotopy), where

$$k \mid \Sigma^{|f|} X \wedge \Sigma^{|f|+1} X = f \wedge \Sigma^{|f|+1} X,$$

$$k \mid \Sigma^{|f|+1} X \wedge X = \text{id}.$$

We claim, however, that $\overline{\partial}$ is just -k. This implies that $(X \wedge \partial) \circ g$ is trivial, completing the proof.

To prove the claim, note that $\bar{\partial} | X \wedge \Sigma^{|f|+1} X$ is just $\partial_1 = -(X \wedge f) = -(f \wedge X)$ in the cofibration sequence

$$X \wedge \Sigma^{|f|} X \xrightarrow{X \wedge f} X \wedge X \to C(X \wedge f)$$
$$\longrightarrow X \wedge \Sigma^{|f|+1} X \xrightarrow{\hat{\theta}_1} \Sigma(X \wedge X)$$

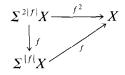
and that $\overline{\partial} \mid \Sigma(X \land X)$ is just $\partial_2 = -id$ in the cofibration sequence

$$X \wedge X \xrightarrow{\operatorname{id}} X \wedge X \to C(X \wedge X) \to \Sigma(X \wedge X) \xrightarrow{\partial_2} \Sigma(X \wedge X) . \qquad \Box$$

Remark. One uses the assumption that |f| is even to get $\partial_1 = -k |\Sigma^{|f|} X \wedge \Sigma^{|f|+1} X$.

With Lemma 4 proven, the proof of the last remaining lemma is straightforward.

Proof of Lemma 5. Apply Verdier's axiom [1, Part III, 6.8] to the commutative triangle



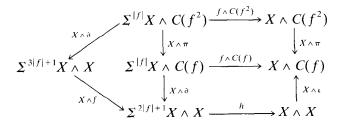
to obtain a cofibration sequence

$$\Sigma^{|f|}C(f) \xrightarrow{t} C(f^2) \xrightarrow{\pi} C(f) \xrightarrow{\delta} \Sigma^{|f|+1}C(f)$$

Now note that the composition

$$\Sigma^{|f|}X \wedge C(f^2) \xrightarrow{f \wedge C(f^2)} X \wedge C(f^2) \xrightarrow{X \wedge \pi} X \wedge C(f)$$

is trivial. This follows from the commutative diagram

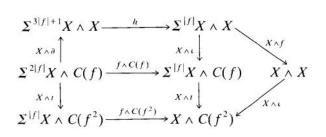


and the fact that $h \circ (X \wedge f) = (X \wedge f) \circ h$. There is therefore a map

$$q: \Sigma^{|f|} X \wedge C(f^2) \to \Sigma^{|f|} X \wedge C(f)$$

with $(X \wedge t) \circ q = f \wedge C(f^2)$. But $(f \wedge C(f^2)) \circ (X \wedge t)$ is trivial, again because of the commutative diagram

E.S. Devinatz



and the fact that $X \wedge f$ is central.

Thus

$$f^{2} \wedge C(f^{2}) = (f \wedge C(f^{2})) \circ (f \wedge C(f^{2}))$$
$$= (f \wedge C(f^{2})) \circ (X \wedge t) \circ q = 0,$$

completing the proof. \Box

References

- J.F. Adams, Stable Homotopy and Generalized Homology (University of Chicago Press, Chicago, 1974).
- [2] E.S. Devinatz, K-theory and the generating hypothesis, Amer. J. Math. 112 (1990) 787-804.
- [3] M.J. Hopkins, Global methods in homotopy theory, in: Homotopy Theory Proceedings of the Durham Symposium 1985 (Cambridge University Press, Cambridge, 1987) 73–96.
- [4] S. Oka, Ring spectra with few cells, Japan J. Math. 5 (1979) 81-100.