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Abstract 

Devinatz, E.S., Small ring spectra. Journal of Pure and Applied Algebra 81 (1992) 11-16 

We determine conditions under which the cofibre of a self-map of a ring spectrum is again a 

ring spectrum. Sufficiently large iterates of u,, self-maps will satisfy this condition. 

The main result of this paper gives conditions under which the cofibre of a 

self-map of a ring spectrum is again a ring spectrum. In particular, sufficiently 

large iterates of u,, self-maps satisfy this condition. By a ring spectrum, we mean a 

spectrum X together with maps F : X A X+X and n : S”+ X such that the 

composition 

is the identity (in the stable category). Neither associativity nor commutativity is 

assumed; it is also not even assumed that n is a two-sided unit. We can then prove 

the following theorem: 

Theorem 1. Let X be a ring spectrum and let f : _I$ “‘X- X with / f( even. Suppose 

that: 

(i) The map f A X : Z ’ f'X A X + X A X is in the center of the ring [X A X, 

X A Xl,. 
(ii) The diagram 

commutes, where f2 = f 0 f. 
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Then C( f ‘), the cojibre of the map f“ : iZ2”‘X+ X, has the structure of a ring 

spectrum so that the inclusion map X-+ C( f ‘) is a map of ring spectra. 

Now suppose that X is a p-local finite ring spectrum with K(n - 1),X = 0 but 

K(n),X#U. As usual K(i) denotes the ith Morava K-theory. Recall that a u,, 

self-map is a map g : 2 ‘“‘X + X which induces an isomorphism on K(n),X and a 

nilpotent homomorphism on K(i),X for i # ~1. Then, by the essential uniqueness, 

naturality, and centrality of u,, self-maps [3, Section 31, it follows that if g is any u,, 

self-map and n > 0, there exists a natural number N such that g”’ satisfies 

conditions (i) and (ii). This implies the next result. 

Theorem 2. Let X be a p-local finite ring spectrum, and let g be u v,, self-map 

(n > 0). Then there exists a natural number N such that, for each m > 0, C( g”““) 

has the structure of a ring spectrum so thut the inclusion X+ C( g”“‘) is a map of 

ring spectra. 0 

Working before the nilpotence theorem, Oka obtained some results on ring 

spectra structures on certain specific finite complexes X with K(n),X # 0 and IZ 

small [4]. Of course, in general, one cannot expect such specific results from 

nilpotence technology. Nevertheless, this type of result is useful in some contexts. 

For example, in [2], it was sufficient to use the general existence of uZ self-maps 

without knowing that any specific power of multiplication by u, could be realized. 

Furthermore, we expect that Theorem 2 will be a technical tool needed to 

explicitly present the Brown-Comenetz dual I,> of L,,S” as a direct limit of finite 

spectra (cf. [2, 1.51). (In the absence of the telescope conjecture, this presentation 

will be in the E(N),-local homotopy category, where N may be arbitrary.) 

Finally, we remark that Theorem 2 may be folklore to certain BP-theorists. 

The proof of Theorem 1 requires three lemmas, the last two of which will be 

proved later. First, we introduce some notation. Given a self map g : 2’“‘X-t X, 

there is a cofibration sequence 

Lemma 3. If f is a self-map of X and f A X is in the center of the ring [X A X, 

XnX],,fhenf~X=X~f. 

Proof. Use the fact that f A X commutes with the commutativity automorphism 

T:XAX+XAX. 0 

Lemma 4. Let X be any spectrum and suppose that f is u self-map of even degree 

such that f‘ A X is central. Then there exists a map h : 2”“’ ‘X A X+ X A X such 

that the diagrum 
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$“XA C(f)==+XA C(f) 

I XAd T XAL 

,x’f’X A _I’f’+‘x”x A x 

commutes. 

Lemma 5. Let f and X be as in Lemma 4. Then 

f2 A C(f2): _x2’f’ x A C(f’)+ x A C(f’) 

is trivial. 

Proof of Theorem 1. First note that hypothesis (ii) implies the existence of a map 

m : X A C( f ‘14 C( f ') such that the diagram 

~2~f/So A x W’, 
s” A x- s” A C( f2)- 

p+y A x 

i 
II”X rl”X 

xAf” > 
I I 

?AC(fZ) 
1 

rl”X 

px * x XAX--+XA C(fl)--+ plfl+IX A x 

i II I 
I” m 

f2 I I !J 
px-x -C(f2)-S- ‘IfI+ X 

commutes, where the rows are cofibration sequences. Now the fact that pa(r) A 

X) = id, does not of course imply that m 0 (7 A C( f ‘)) is the identity-it does, 

however, imply that m 0 (7 A C( f ‘)) . IS an automorphism of C( f ‘). It is then easy 

to see that by replacing m with [m 0 (q A C( f’))]-’ 0 m, we can arrange things so 

that the above diagram commutes and so that m 0 (7 A C( f ?)) is the identity. 

Next, Lemma 5 implies that there exists a retraction r : C( f ‘) A C( f ‘)-+ X A 

C(f’). Define p’: C(f’)r\ C(f’)-C(f*) by p.‘=mor and n’ by n’= ~077. 

Then one easily checks that these maps give C( f ‘) the structure of a ring 

spectrum and that L : X--, C( f ') is a ring spectrum map. 0 

Proof of Lemma 4. Begin by observing that, since X A f = f A X, the composite 

~lflX* x fnX -xr\ x+x/\ C(f) 

is trivial. There then exists a map 

such that the diagram 
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commutes. To complete the proof, we must show that (X A a) og : S2’t’t’X A 

X+ C”“‘X A X is trivial. For this, it will be convenient to describe g at the 

point-set level. 

Identify _Z’f’X A Z”‘+’ X with 2’f’[C(X~ f) U,,, C(Xr\ X)]. The cone co- 

ordinates are parameterized by [0, 11 with 0 the cone point. Now let H : _I$ lf’X A 

X A I, ---f X A X be a homotopy with H,, = f A X and H, = X A f. Finally, write 

X A c(f) = c(x A f) = x A x u,,,‘l,l, c(x A c”‘x) 

as usual. Then define g ( Z lr’C(X A f) to be f A C(f) and define 

Next, consider the cofibration sequence 

xAx’- c(x A f) ux Ax c(x A x) 

-%(xAZ~~~“X)V_Z(XAX)~C(XAX) 

where j includes X A X onto the base of C(X A X). It is easy to see that 

(up to homotopy), where 

k)C”‘XAX /rl+'_y=fA c”“lX) 

k 1 -pri+l Xr\X=id. 

We claim, however, that a is just -k. This implies that (X A 13) 0 g is trivial, 

completing the proof. 

Toprovetheclaim,notethatil(X~~“‘+’Xisjustd,=-(X~f)=-(f~X) 

in the cofibration sequence 

X * ZlflX xA’ --+XAX-,C(XAf) 

-+xA,c’~‘+‘X~Z(x*x) 
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and that 3 ( x(X A X) is just a2 = -id in the cofibration sequence 

XAX ~XAX~C(X*X)4(XhX)~C(XAX). 0 

Remark. One uses the assumption that ) f\ is even to get 8, = -k 1 2 “‘X A 
2 Ifl+ ‘X, 

With Lemma 4 proven, the proof of the last remaining lemma is straight- 

forward. 

Proof of Lemma 5. Apply Verdier’s axiom [l, Part III, 6.81 to the commutative 

triangle 

to obtain a cofibration sequence 

_$f’C(f)’ C(f “) 4 C(f)~P”C(f). 

Now note that the composition 

_pX* C(f2)SX* C(f2)ZXA C(f) 

is trivial. This follows from the commutative diagram 

and the fact that h 0 (X A f) = (X A f) 0 h. There is therefore a map 

q: S’f’XA C(f2)-+~‘f’XA C(f) 

with (XA t)os=fr\ C(f’). But (f A C(f”))o(x~ t) is trivial, again because of 

the commutative diagram 
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and the fact that X A f is central. 

Thus 

f2 A W’) = (fA W’)P(f A C(P)) 

=(f/\ C(f’))qXAt)oq=O, 

completing the proof. q 
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