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2 SHAY BEN-MOSHE ET AL.

1. Introduction

1.1. Background. The algebraic K-theory of rings, ring spectra and, more gen-
erally, of stable ∞-categories is a long-studied invariant, situated at the junction
of many fields of mathematics ranging from number theory to differential topology.
It is, however, notoriously difficult to compute, as among other things it possesses
fairly weak descent properties. In particular, it fails to satisfy Galois descent even
for ordinary fields. The intricate nature of algebraic K-theory stems from the fact
that its construction involves categorification – passing from a ring spectrum to
its ∞-category of modules. Thus, loosely speaking, the algebraic K-theory spec-
trum does not live in the same characteristic as the original ring spectrum. The
field of chromatic homotopy theory provides a precise formalization of the notion
of characteristic for spectra in the form of the chromatic height filtration. Based
on computational evidence in chromatic height 1, Ausoni–Rognes [AR02, AR08]
formulated the far-reaching redshift conjecture, out of which emerged a wider phi-
losophy, predicting the interaction of algebraic K-theory with chromatic height.
The conjecture states roughly that the process of categorification increases chro-
matic height by one. Furthermore, Ausoni and Rognes conjectured that algebraic
K-theory localized at the highest chromatic height posited by the redshift con-
jecture does satisfy descent for the Galois extensions of commutative ring spectra
introduced by Rognes in [Rog08] and further studied by Mathew in [Mat16].

Recent years have seen several breakthroughs in the study of such redshift phe-
nomena [HW22, Yua24, ABM22, BSY22]. Of particular relevance to this paper
are the results of Clausen–Mathew–Naumann–Noel [CMNN24] and Land–Mathew–
Meier–Tamme [LMMT24], establishing Galois descent for chromatically localized
algebraic K-theory. Recall that an idempotent complete stable ∞-category C is
called Lf

n-local if all of its mapping spectra are Lf
n-local, which roughly means that

they are concentrated in chromatic heights lower or equal n.

Theorem 1.1 ([CMNN24, Theorem C and Proposition 4.1]). Let C be an Lf
n-local

∞-category acted by a finite p-group G, then there are canonical isomorphisms
LT (n+1)K(C hG) ∼−−→ LT (n+1)K(C )hG, LT (n+1)K(C )hG

∼−−→ LT (n+1)K(ChG).

For example, for every Lf
n-local ring R, the ∞-category Perf(R) is Lf

n-local.
Thus, combined with Galois descent for perfect modules, this readily implies the
following:

Corollary 1.2 ([CMNN24, Corollary 4.16]). Let R → S be a T (n)-local G-Galois
extension where G is a finite p-group. Then there is a canonical isomorphism

LT (n+1)K(R) ∼−−→ (LT (n+1)K(S))hG.

It is known that Theorem 1.1 may fail for arbitrary finite groups G (e.g. of or-
der prime to p), but the question of whether Corollary 1.2 holds in this generality
is still open. More generally, one can ask to what extent chromatically localized
algebraic K-theory satisfies hyperdescent for profinite Galois extensions. Of par-
ticular interest is the case of the Lubin–Tate spectrum En, which is a profinite
Galois extension of the K(n)-local sphere with Morava stabilizer Galois group Gn.
Namely, it is natural to ask whether the functor U �→ LT (n+1)K(EhU

n ) on open
subgroups U ≤ Gn corresponds to a hypersheaf on the site of continuous finite Gn-
sets. As noted in [CMNN24, Example 4.17], even on the pro-p part of Gn, where
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 3

Corollary 1.2 implies that the resulting functor is a sheaf, the condition of being a
hypersheaf is not automatically implied.

Remark 1.3. To put this discussion in context, we note that for ordinary commuta-
tive rings (and schemes), Galois descent is a special case of étale descent, which is
a much studied subject in algebraic K-theory. In particular, the étale sheafification
of algebraic K-theory (known as étale K-theory) is closely related to its chromatic
L1-localization, as observed by Waldhausen [Wal84, §4]. Furthermore, questions of
hyperdescent for étale K-theory are of fundamental importance to the construction
of spectral sequences relating algebraic K-theory to étale cohomology. We refer the
reader to [CM21] for the state-of-the-art results in this direction.

1.2. Higher descent. Our first main result is an extension of Theorem 1.1 in
a different direction, by considering actions of higher groups. However, as we
shall explain in the next subsection, this seemingly unrelated generalization also
has implications to the above questions about Galois (hyper)descent for ordinary
(pro)finite groups. To state our results, we say that a group G in spaces is an m-
finite p-group if it is m-truncated and all of its homotopy groups are finite p-groups,
and that G is a π-finite p-group if it is an m-finite p-group for some m.

Theorem A (Higher descent, Corollary 3.2). Let C be an Lf
n-local ∞-category

acted by a π-finite p-group G, then there are canonical isomorphisms

LT (n+1)K(C hG) ∼−−→ LT (n+1)K(C )hG, LT (n+1)K(C )hG
∼−−→ LT (n+1)K(ChG).

From this, we deduce the following:

Corollary 1.4 (Theorem 3.13). Let R → S be a T (n)-local G-Galois extension
where G is an n-finite1 p-group. Then LT (n+1)K(R) → LT (n+1)K(S) is a T (n+1)-
local G-Galois extension.

Note that the first condition in Rognes’ definition of a G-Galois extension is
that the source is canonically isomorphic to the G-fixed points of the target. Thus,
Corollary 1.4 is simultaneously a generalization and a strengthening of Corollary 1.2.
On the other hand, in our case the second condition in Rognes’ definition of a G-
Galois extension is superfluous, via [BCSY24, Proposition 2.27].

Theorem A is closely related to the higher semiadditivity of T (n)-local spectra
(which indeed features in its proof as explained later in this section). In [BMS24]
the authors have constructed and studied the universal higher semiadditive ap-
proximation of algebraic K-theory. In Corollary 3.7, we deduce that for Lf

n-local
∞-categories, this higher semiadditive algebraic K-theory coincides T (n+1)-locally
with (ordinary) algebraic K-theory.

1.3. Cyclotomic redshift. As already mentioned above, aside from their intrinsic
interest, Theorem A and Corollary 1.4 also have applications to some particular
cases of Galois descent with respect to ordinary groups. We begin by recalling that
in [BCM20], Bhatt–Clausen–Mathew studied T (1)-local K-theory, with a focus on
discrete (commutative) rings. In particular, they have shown a result which can be
phrased as follows (see also [Mit00,DM98] for closely related results):

1Recall that G is n-finite if and only if BG is (n + 1)-finite. See the discussion above
Theorem 3.13 for an elaboration on the truncatedness assumption.
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4 SHAY BEN-MOSHE ET AL.

Theorem 1.5 ([BCM20, Theorem 1.4]). Let R be a commutative ring, then there
is a Z×

p -equivariant isomorphism

LT (1)K(R[ωp∞ ]) � LT (1)K(R) ⊗ KU∧
p ∈ CAlg(SpT (1)),

where Z
×
p acts on the p∞-th cyclotomic extension of R and on the p-complete

complex K-theory spectrum KU∧
p by Galois automorphisms and the Adams oper-

ations respectively.

In [CSY21b] (later extended in [BCSY24]) a higher height analogue of cyclotomic
extensions was studied in the context of higher semiadditive ∞-categories. Let C
be a presentably symmetric monoidal stable ∞-semiadditive ∞-category of height
n, and let R ∈ CAlg(C ). Then, there is some idempotent in the group algebra
R[BnCp∞ ], constructed using higher semiadditive integrals. This idempotent splits
off a direct factor called the (height n) p∞-cyclotomic extension of R, and de-
noted by R[ω(n)

p∞ ]. As the name suggests, height 0 cyclotomic extensions reproduce
ordinary cyclotomic extensions.

Example 1.6. In the case C = SpK(n) and R = SK(n), the p∞-cyclotomic exten-
sion SK(n)[ω

(n)
p∞ ] is the ring Rn studied by Westerland in [Wes17]. Namely, it is the

(continuous) homotopy fixed points of En by the kernel of det : Gn → Z×
p , whence

it is a Z×
p -Galois extension of SK(n). Therefore, the case C = SpT (n) provides a

T (n)-local lift of this Galois extension.

Specializing Example 1.6 to height n = 1, we see that ST (1)[ω
(1)
p∞ ] � KU∧

p . Con-
sequently, for commutative rings R with p ∈ R×, Theorem 1.5 can be rephrased as
a Z

×
p -equivariant isomorphism

LT (1)K(R[ω(0)
p∞ ]) � LT (1)K(R)[ω(1)

p∞ ].
Our second main theorem is the extension of this isomorphism to higher chromatic
heights.

Theorem B (Cyclotomic redshift, Theorem 4.11). Let R be a T (n)-local ring
spectrum, then there is a Z

×
p -equivariant isomorphism

LT (n+1)K(R[ω(n)
p∞ ]) � LT (n+1)K(R)[ω(n+1)

p∞ ].

Higher height roots of unity, classified by higher cyclotomic extensions, were also
used in [BCSY24] for constructing higher height analogous of the discrete Fourier
transform and Kummer theory. We show in Theorem 4.26 and Theorem 4.28 re-
spectively, that these constructions are also suitably intertwined by the functor
LT (n+1)K.

The proof of Theorem B proceeds by applying Theorem A to G = BnCp∞ to
obtain an isomorphism

LT (n+1)K(R)[Bn+1Cp∞ ] ∼−−→ LT (n+1)K(R[BnCp∞ ]).

We then show that the idempotents splitting the corresponding cyclotomic exten-
sions agree (equivariantly), implying the result. In fact, the analogue of Theorem B
also holds for (and follows from) the finite cyclotomic extensions R[ω(n)

pr ] for every
integer r ≥ 0. In particular, taking r = 1 and odd prime p, we obtain for every
height n a non-trivial instance of a T (n)-local Galois extension of order prime to
p, which is mapped to a T (n + 1)-local Galois extension by LT (n+1)K.
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 5

1.4. Hyperdescent and the telescope conjecture. Cyclotomic redshift
(Theorem B) also has implications for hyperdescent for algebraic K-theory and
the telescope conjecture. The starting point of this discussion is the question of
faithfulness of the cyclotomic extensions over T (n)-local ring spectra. While each of
the finite extensions R[ω(n)

pr ] is faithful over such a ring spectrum R, the infinite one
R[ω(n)

p∞ ] has a priori no reason to be. In [BCSY24, §7.3], the authors constructed
the universal localization of SpT (n) in which infinite cyclotomic extensions become
faithful, called the cyclotomic completion. Moreover, the cyclotomic completion is
shown to be smashing and in the case of an odd prime p given by the formula2

R∧
cyc � R[ω(n)

p∞ ]hG ∈ Alg(SpT (n))
for the action of the discrete dense subgroup

G := F
×
p × Z ≤ Z

×
p .

Also observe that by Example 1.6, we have SK(n)[ω
(n)
p∞ ] � Rn, and it follows from

Devinatz–Hopkins theory [DH04] that RhG
n � SK(n) (see also [Mor23, Theorem

1.1]). Therefore, all K(n)-local spectra are cyclotomically complete.
In the present paper, we show that cyclotomic completion is intimately related

to hyperdescent. The compatible system of finite cyclotomic extensions R[ω(n)
pr ]

assembles into a sheaf on the site of continuous finite Z×
p -sets, whose stalk is the

p∞-cyclotomic extension R[ω(n)
p∞ ]. In Proposition 5.11, we show that this sheaf is a

hypersheaf if and only if R is cyclotomically complete.
Cyclotomic redshift (Theorem B) allows us to transfer questions about cyclo-

tomic extensions between height n and height n + 1. In particular, it shows that
the sheaf LT (n+1)K(R[ω(n)

pr ]) is isomorphic to the sheaf LT (n+1)K(R)[ω(n+1)
pr ]. Us-

ing the fact that every K(n + 1)-local spectrum is cyclotomically complete, we
thus obtain a non-trivial instance of hyperdescent for K(n + 1)-localized algebraic
K-theory.

Theorem C (Cyclotomic hyperdescent, Corollary 5.13). Let R be a T (n)-local
ring spectrum, then the sheaf determined by the values LK(n+1)K(R[ω(n)

pr ]) is a
hypersheaf.

It is natural to ask whether the hyperdescent along the cyclotomic tower holds al-
ready on the level of telescopic localizations, or, equivalently, whether LT (n+1)K(R)
is cyclotomically complete for every T (n)-local ring spectrum R. This touches upon
the subtle distinction between the T (n)-local and the K(n)-local categories, which
is the subject of Ravenel’s long-standing telescope conjecture. Ravenel originally
conjectured that SpK(n) = SpT (n) for all heights and primes, but while it is known
to hold for n = 0, 1, it was soon suspected to be false for higher chromatic heights.
Burklund, Hahn, Levy and the third author [BHLS23] constructed counterexamples
to hyperdescent of the T (n + 1)-localized K-theory of cyclotomic towers for every
n ≥ 1 and every prime number. Therefore, combined with Theorem C, disproving
the telescope conjecture at height 2 and above.

For the convenience of the reader, we now give a rough sketch of the strat-
egy of [BHLS23] and its relation to cyclotomic completion. For simplicity of
the exposition, we focus on the case n = 2 and odd prime p. In this case we

2The case p = 2 requires only a slight modification.
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6 SHAY BEN-MOSHE ET AL.

take R = SK(1), and the goal is to show that the sheaf of cyclotomic extensions
LT (2)K(SK(1)[ω

(1)
pr ]) is not a hypersheaf. As explained above, this is equivalent

to showing that LT (2)K(SK(1)) is not cyclotomically complete, namely, that the
cyclotomic completion map

LT (2)K(SK(1)) −−→ LT (2)K(SK(1))∧cyc

is not an isomorphism. Since the p∞-cyclotomic extension of SK(1) is KU∧
p , cyclo-

tomic redshift (Theorem B) provides a Z×
p -equivariant isomorphism

LT (2)K(SK(1))[ω
(2)
p∞ ] ∼−−→ LT (2)K(KU∧

p ).

Hence, the cyclotomic completion is given by
LT (2)K(SK(1))∧cyc � LT (2)K(KU∧

p )hG.

Moreover, we have SK(1) � (KU∧
p )hG, and it is not hard to see that the cyclotomic

completion map identifies with the assembly map of G-fixed points
LT (2)K((KU∧

p )hG) −−→ LT (2)K(KU∧
p )hG.

One can further show that the assembly map for fixed points with respect to the
finite subgroup F×

p ≤ G is an isomorphism in this case, so, writing L = (KU∧
p )hF

×
p

for the non-connective p-complete Adams summand, we can identify the cyclotomic
completion map with the assembly map for Z-fixed points (see Proposition 4.17)

LT (2)K(LhZ) −−→ LT (2)K(L)hZ.
Using trace methods and the seminal computations of [AR02] of the topological
cyclic homology of the connective p-complete Adams summand �, this map is shown
not to be an isomorphism, disproving the telescope conjecture. The argument for
higher heights requires a more involved variant of these ideas, replacing � with
certain E3-forms of BP〈n〉 constructed by [HW22].

1.5. Outline of the proof. Let Catperf be the ∞-category of stable idempotent
complete ∞-categories, and let CatLf

n
⊂ Catperf denote the full subcategory of

Lf
n-local ∞-categories. Theorem A can be rephrased as saying that the functor

LT (n+1)K : CatLf
n
−−→ SpT (n+1)

preserves all π-finite p-space indexed colimits and limits. Observe that if the space
is discrete, i.e. 0-finite, then this is precisely the preservation of finite products.
The case of 1-finite p-spaces is precisely Theorem 1.1. The argument then proceeds
inductively on the level of truncatedness m ≥ 2. The proof can be divided into
three steps, which we now describe.

Reduction to constant colimits of monochromatic ∞-categories. A key ingredient
in this reduction is the categorical analogue of monochromatization. Recall that
a spectrum X ∈ Sp is called n-monochromatic if it is Lf

n-local and Lf
n−1(X) = 0.

The inclusion of n-monochromatic spectra Mf
nSp ↪→ Lf

nSp admits a right adjoint
Mf

n : Lf
nSp −−→ Mf

nSp, which fits into a natural exact sequence

Mf
n (X) −−→ X −−→ Lf

n−1(X).

Analogously, we say that an ∞-category C ∈ Catperf is n-monochromatic if it is Lf
n-

local and Lf
n−1(C ) = 0, where Lf

n−1 : Catperf → CatLf
n−1

is the left adjoint of the
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 7

inclusion. We show that the inclusion CatMf
n
↪→ CatLf

n
of the n-monochromatic ∞-

categories admits a right adjoint Mf
n : CatLf

n
−−→ CatMf

n
, which fits into a natural

exact (i.e. Verdier) sequence

Mf
n (C ) −−→ C −−→ Lf

n−1(C ).
This construction enjoys three key properties:

(1) The functor Mf
n : CatLf

n
→ CatMf

n
preserves all limits and colimits (see

Corollary 2.19).
(2) For every C ∈ CatLf

n
, the inclusion Mf

n (C ) ↪→ C induces a “purity isomor-
phism” (see Proposition 2.24 and [CMNN24, Theorem C])

LT (n+1)K(Mf
n (C )) ∼−−→ LT (n+1)K(C ).

(3) The ∞-category CatMf
n

is ∞-semiadditive (see Theorem 2.29).
Turning back to the proof of Theorem A, Property (1) and Property (2) together

imply that it suffices to prove that the functor restricted to n-monochromatic ∞-
categories

LT (n+1)K : CatMf
n
−−→ SpT (n+1)

preserves π-finite p-space indexed limits and colimits. Now, by Property (3), this
functor is between two ∞-semiadditive ∞-categories, from which we gain two
things: First, the preservation of π-finite p-space indexed colimits implies the same
for limits, allowing us to consider only colimits. Second, it suffices to consider
only constant colimits concentrated in a homotopy degree m (see Proposition 2.31
and Proposition 2.32). In other words, we are reduced to showing that for any
n-monochromatic ∞-category C and π-finite p-space A concentrated in homotopy
degree m the assembly map

LT (n+1)K(C )[A] −−→ LT (n+1)K(C [A])
is an isomorphism.

Reduction to categories of modules. By the Schwede–Shipley theorem [SS03], any
C ∈ Catperf is a filtered colimit of ∞-categories of the form Perf(R), where R is
the endomorphism ring spectrum of some object of C (see Proposition 2.9). Since
algebraic K-theory commutes with filtered colimits, we are reduced to considering
only such ∞-categories. Moreover, as our C is n-monochromatic, the ring spectra
R are n-monochromatic as well. Thus, we are reduced to showing that for any n-
monochromatic ring spectrum R and π-finite p-space A concentrated in homotopy
degree m the map

LT (n+1)K(R)[A] −−→ LT (n+1)K(R[ΩA])
is an isomorphism.

Proof of the special case. We thank Akhil Mathew for suggesting the following
inductive argument. The key ingredient facilitating the inductive step is [LMMT24,
Corollary 4.31], stating that the T (n+1)-localized algebraic K-theory of ring spectra
preserves sifted colimits when n ≥ 1. The base of the induction is m = 1, which is
provided by Theorem 1.1. When m ≥ 2, the space ΩA is connected, therefore, we
can present A and ΩA compatibly via their bar constructions

A � lim−→Δop(ΩA)•, ΩA � lim−→Δop(Ω2A)•.
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8 SHAY BEN-MOSHE ET AL.

Each of the spaces (ΩA)k is an (m − 1)-finite p-space, for which the result al-
ready holds by the inductive hypothesis, and we finish by the preservation of sifted
colimits.

2. Monochromatic categories

In this section we set up the categorical framework for the higher descent results
in chromatically localized algebraic K-theory. That is, we define CatLf

n
, CatMf

n
and

other related categories, and study them by means of various characterizations, clo-
sure properties, examples, adjunctions etc. In particular, we establish Property (1),
Property (2) and Property (3) discussed above. Here and in the rest of the paper
we use the term ‘category’ to mean ‘∞-category’.

2.1. Recollections of stable categories. We begin by setting notation for some
categories of stable categories and recalling some well known facts about them.

Definition 2.1. We denote by Catperf ⊂ Cat the (non-full) subcategory of small,
idempotent complete stable categories and exact functors between them, endowed
with the Lurie tensor product.

Definition 2.2. We denote by PrLst,ω ⊂ PrLst the (non-full) symmetric monoidal
subcategory of compactly generated stable categories and colimit preserving func-
tors between them that take compact objects to compact objects (equivalently, that
have a colimit preserving right adjoint).

We recall the following from [Lura]:

Proposition 2.3. The inclusion PrLst,ω ↪→ PrLst is colimit preserving. Moreover,
the ind-completion functor

Ind: Catperf −−→ PrLst
is colimit preserving and symmetric monoidal, and factors through a symmetric
monoidal equivalence

Ind: Catperf � PrLst,ω : (−)ω.

Proof. The first part is [Lura, Lemma 5.3.2.9]. The second follows from [Lura,
Remark 4.8.1.8], and the third follows from [Lura, Lemma 5.3.2.11(3)]. �

Exact sequences. We give a brief recollection of exact sequences in Catperf , also
known as Verdier sequences. For a comprehensive treatment we refer the reader to
[CDH+20, Appendix A].

The category Catperf is pointed, with zero object the trivial category pt. Ac-
cordingly, we can talk about null sequences in Catperf .

Definition 2.4. A null sequence

C
F−−→ D

G−−→ E

in Catperf is called an exact sequence if it is both a fiber and a cofiber sequence.

Remark 2.5. Note that, unlike in the case of stable categories such as Sp, it is a
property of a composable pair of morphisms in Catperf to be a null sequence: It
is equivalent to the property that the composition GF carries every object of C
to a zero object of E . Accordingly, it is a property of such a pair to be an exact
sequence.
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 9

Remark 2.6. There are other equivalent characterizations of exact sequences. For
example, a sequence as in Definition 2.4 is an exact sequence if and only if F is
fully faithful and G exhibit E as a localization (or “Verdier quotient”) of D with
respect to the morphisms whose (co)fibers lie in C . This is also equivalent to F
being fully faithful and the sequence being a cofiber sequence.

Perfect modules. One source of examples of categories in Catperf is perfect modules
over ring spectra. We recall the following construction from [Lura]:

Proposition 2.7. The construction taking a ring spectrum to the category of its
left module spectra assembles into a symmetric monoidal functor

LMod: Alg(Sp) −−→ PrLst,ω.

Proof. By [Lura, Remark 4.8.5.17], there is a symmetric monoidal functor

LMod: Alg(Sp) −−→ ModSp(̂Catall),

where ̂Catall is the category of cocomplete categories and colimit preserving func-
tors. As in [Lura, Notation 4.8.5.10], LModR is presentable, thus, LMod fac-
tors through ModSp(PrL), which by [Lura, Proposition 4.8.2.18] is equivalent to
PrLst. By [Lura, Proposition 7.2.4.2], LModR is compactly generated. Moreover,
by [Lura, Corollary 4.2.3.7(2)], for every morphism R → S, the extension of
scalars functor LModR → LModS admits a right adjoint which is itself a left
adjoint. Therefore, LMod factors through the symmetric monoidal subcategory
PrLst,ω ⊂ PrLst. �

Definition 2.8. We define the symmetric monoidal functor

Perf : Alg(Sp) → Catperf

as the composition
Alg(Sp) LMod−−−−→ PrLst,ω

(−)ω−−−→ Catperf ,

which takes a ring spectrum to the category of its perfect (i.e. compact) module
spectra.

We now record the following well known corollary of the Schwede–Shipley theo-
rem [SS03].

Proposition 2.9. Every C ∈ Catperf is a filtered colimit of categories of the form
Perf(R), where R is the endomorphism spectrum of an object in C .

Proof. Let P denote the collection of thick subcategories of C generated by a
single object, which is a filtered poset with respect to inclusion. For each thick
subcategory C0 ∈ P generated by an object X ∈ C0, we have C0 � Ind(C0)ω by
Proposition 2.3. This implies that X ∈ Ind(C0) is a compact generator, which by
the Schwede–Shipley theorem [SS03] (see also [Lura, Theorem 7.1.2.1]) implies that

C0 � Ind(C0)ω � LModω
End(X)(Sp) =: Perf(End(X)).

Since every X ∈ C belongs to the thick subcategory generated by X, we have

lim−→C0∈PC0
∼−−→ C ,

and hence C is a filtered colimit of categories of the required form. �
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10 SHAY BEN-MOSHE ET AL.

2.2. Categorical localization and monochromatization.

Localization of stable categories. A symmetric monoidal localization L : Sp → LSp
exhibits LSp as an idempotent algebra in PrLst in the sense of [Lura, Definition
4.8.2.1]. By [Lura, Proposition 4.8.2.10], it is a property of C ∈ PrL to be a module
over LSp, which is precisely that all the mapping spectra of C are in LSp (see, e.g.,
[CSY21a, Proposition 5.2.10]). We can similarly consider the analogous notion for
Catperf .

Definition 2.10. Let L : Sp → LSp be a symmetric monoidal localization. We let
CatL ⊂ Catperf be the full subcategory of those categories all of whose mapping
spectra are in LSp. We refer to objects of CatL as L-local categories.

This notion is closely related to being LSp-linear in the presentable context. We
recall that since LSp is a localization of spectra, it is an idempotent algebra in
PrLst, and thus being a module over it is a property. Namely, D ∈ PrLst is a module
over LSp if and only if all mapping spectra of D are in LSp. In particular, given
C ∈ Catperf , if Ind(C ) is a module over LSp in PrLst, then all the mapping spectra
of C ⊂ Ind(C ) are L-local, i.e. C is L-local. However, the converse does not always
hold:

Example 2.11. Consider the p-completion functor L := (−)p : Sp → Sp∧
p . The cat-

egory Perf(Sp) of perfect modules over the p-complete sphere has p-complete map-
ping spectra, and hence is L-local. On the other hand, Ind(Perf(Sp)) � ModSp

(Sp)
is not Sp∧

p -linear, as for example

hom(Sp, Sp[1/p]) � Sp[1/p]

which is not p-complete.

The connection between L-local categories and LSp-linear categories in PrLst is
tightened when L is further assumed to be smashing, via the equivalence between
Catperf and PrLst,ω from Proposition 2.3. When L is smashing, it preserves compact
objects and so exhibits LSp as an idempotent algebra in PrLst,ω, and hence being a
module over it in PrLst,ω is a property. In fact, it is the same property as in PrLst,
that is, D ∈ PrLst,ω is a module over LSp, if and only if the map

D ⊗ Sp −−→ D ⊗ LSp

is an equivalence, which is the same condition whether we view it in PrLst or PrLst,ω.
Applying the equivalence (−)ω of Proposition 2.3 to LSp ∈ PrLst,ω, we obtain an

idempotent algebra
Perf(LS) = LSpω ∈ Catperf .

Again by [Lura, Proposition 4.8.2.10], it is a property of a category in Catperf
to admit a module structure over Perf(LS), and we now show that all properties
described above are equivalent.

Proposition 2.12. Let L : Sp → LSp be a smashing localization. For C ∈ Catperf
the following are equivalent:

(1) C ∈ CatL.
(2) C is a module over Perf(LS) in Catperf .
(3) Ind(C ) is a module over LSp in PrLst.
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 11

Proof. We first show that (2) and (3) are equivalent. Recall from Proposition 2.3
that there is a symmetric monoidal equivalence

Ind: Catperf � PrLst,ω : (−)ω.

Thus, condition (2) is equivalent to Ind(C ) being an LSp-module in PrLst,ω, which,
as explained above, is the same as being an LSp-module in PrLst, i.e. condition (3).

Assuming condition (3), all the mapping spectra in Ind(C ) are in LSp, and since
C ⊂ Ind(C ) is a full stable subcategory, the same holds for C , i.e. we get condition
(1).

Finally, assuming (1), to prove (3) it suffices to show that all the mapping spectra
in Ind(C ) are in LSp. Given X,Y ∈ Ind(C ) we can write X = lim−→Xa and Y = lim−→Yb

as filtered colimits of objects in the essential image of C . We thus get
hom(X,Y ) � lim←−a hom(Xa, lim−→bYb) � lim←−alim−→b hom(Xa, Yb) ∈ Sp,

where the second step uses the fact that the essential image of C in Ind(C ) consists
of compact objects. Since LSp is a smashing localization, it is closed under both
limits and colimits in Sp and hence we get condition (3). �

Corollary 2.13. Let L : Sp → LSp be a smashing localization. The full subcat-
egory CatL ⊂ Catperf is symmetric monoidal, closed under (small) limits and
colimits, and the left adjoint Catperf → CatL to the inclusion CatL ↪→ Catperf is
given by tensoring with Perf(LS) and hence is canonically symmetric monoidal.

Proof. By Proposition 2.12, the inclusion CatL ↪→ Catperf identifies with the for-
getful functor ModPerf(LS)(Catperf) → Catperf . The claims about the symmetric
monoidal structure follow immediately, and the claims about limits and colimits
follow from [Lura, Corollary 4.2.3.3 and Corollary 4.2.3.5]. �

By abuse of notation, we denote by L : Catperf → CatL also the symmetric
monoidal left adjoint constructed in Corollary 2.13. Example 2.14 is of principal
interest to our study:

Example 2.14. For every n and an (implicit) prime p, we let T (n) be the telescope
on some finite spectrum of type n and define the finite chromatic localization

Lf
n : Sp −−→ Lf

nSp
to be the Bousfield localization with respect to T (0) ⊕ · · · ⊕ T (n). Following the
conventions of [CMNN24,LMMT24], we choose T (0) = S[1/p] to be the telescope
of v0 = p on the sphere spectrum. Recall from [Mil92] that for all n ≥ 0, the finite
chromatic localizations are smashing. Hence, the full subcategory CatLf

n
⊂ Catperf

of Lf
n-local categories identifies with modules over Perf(Lf

nS).

Monochromatization of stable categories. Recall that a spectrum X is called n-
monochromatic if it is Lf

n-local and Lf
n−1(X) = 0 (where, by convention, Lf

−1(X) is
defined to be the zero object, so that every Lf

0 -local spectrum is 0-monochromatic).
The inclusion of the full subcategory Mf

nSp ↪→ Lf
nSp of n-monochromatic spectra

admits a right adjoint
Mf

n : Lf
nSp −−→ Mf

nSp,
which fits into a natural exact sequence

Mf
n (X) −−→ X −−→ Lf

n−1(X).
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12 SHAY BEN-MOSHE ET AL.

The functor Mf
n is both limit preserving, being a right adjoint, and colimit pre-

serving, as it is given by tensoring with Mf
n (S) and Mf

nSp is closed under colimits
in Sp. We shall now discuss a categorical analogue of this setup.

Definition 2.15. A category C ∈ Catperf is n-monochromatic if it is Lf
n-local

and Lf
n−1(C ) = 0. We denote by CatMf

n
⊂ CatLf

n
the full subcategory of n-

monochromatic categories. For every C ∈ CatLf
n
, we denote by Mf

n (C ) → C the
fiber of the localization map C → Lf

n−1(C ) formed in Catperf .

We remark that every Lf
0 -local category is by convention 0-monochromatic. Re-

call that the localization Perf(Lf
nS) → Perf(Lf

n−1S) participates in an exact se-
quence (see for example [LMMT24, Lemma 3.7]), and its fiber is, by construction,
the monochromatization of Perf(Lf

nS), which we can describe explicitly.

Proposition 2.16. Mf
n (Perf(Lf

nS)) is the thick subcategory of Perf(Lf
nS) gener-

ated by T (n).

Proof. First recall that by the thick subcategory theorem, the kernel Kn of the
localization Perf(S) → Perf(Lf

n−1S) is the thick subcategory generated from any
finite spectrum of type n. This participates in an exact sequence

Kn −−→ Perf(S) −−→ Perf(Lf
n−1S).

By [LT19, Lemma 3.12] and Corollary 2.13, tensoring the above exact sequence
with Perf(Lf

nS) gives the exact sequence

Kn ⊗ Perf(Lf
nS) −−→ Perf(Lf

nS) −−→ Perf(Lf
n−1S).

We thus see that Mf
n (Perf(Lf

nS)) is generated by the Lf
n-localization of any finite

spectrum of type n, that is, any telescope T (n). �

The monochromatization of a general category reduces to the above basic case
using the following:

Proposition 2.17. Let C ∈ CatLf
n
. The sequence

Mf
n (C ) −−→ C −−→ Lf

n−1(C )
is exact in Catperf , and

Mf
n (C ) � Mf

n (Perf(Lf
nS)) ⊗ C .

Proof. As mentioned above, the sequence

Mf
n (Perf(Lf

nS)) −−→ Perf(Lf
nS) −−→ Perf(Lf

n−1S)
is exact. By [LT19, Lemma 3.12] and Corollary 2.13 again, tensoring it with C
gives an exact sequence

Mf
n (Perf(Lf

nS)) ⊗ C −−→ C −−→ Lf
n−1(C ),

which also exhibits the first term as Mf
n (C ). �

The notation Mf
n (C ) is justified by the following:

Proposition 2.18. Let C ∈ CatLf
n
. The category Mf

n (C ) is n-monochromatic,
and the canonical map Mf

n (C ) → C exhibits it as the coreflection of C into
CatMf

n
.
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 13

Proof. For the first part, observe that Lf
n−1(C ) is in particular Lf

n-local and hence
Mf

n (C ), being the fiber of Lf
n-local categories, is Lf

n-local. By Proposition 2.17, the
sequence

Mf
n (C ) −−→ C −−→ Lf

n−1(C )
is exact. Thus, by [LT19, Lemma 3.12] and Corollary 2.13 once more, tensoring it
with Perf(Lf

n−1S) gives an exact sequence

Lf
n−1(Mf

n (C )) −−→ Lf
n−1(C ) ∼−−→ Lf

n−1(C ),

and in particular Lf
n−1(Mf

n (C )) = 0. That is, Mf
n (C ) is n-monochromatic.

We now prove the second part. Let D be any n-monochromatic category. Ap-
plying Map(D ,−) to the exact sequence

Mf
n (C ) −−→ C −−→ Lf

n−1(C )
gives a fiber sequence

Map(D ,Mf
n (C )) −−→ Map(D ,C ) −−→ Map(D , Lf

n−1(C )).

Since Lf
n−1(D) = 0, we get

Map(D , Lf
n−1(C )) � Map(Lf

n−1(D), Lf
n−1(C )) � Map(0, Lf

n−1(C )) � pt.

Thus, the map Map(D ,Mf
n (C )) → Map(D ,C ) is an isomorphism, exhibiting

Mf
n (C ) as the coreflection of C into CatMf

n
. �

Corollary 2.19. The full subcategory CatMf
n
⊆ CatLf

n
is closed under colimits

and the coreflection Mf
n : CatLf

n
→ CatMf

n
preserves all (small) limits and colim-

its.

Proof. By Proposition 2.18, the functor Mf
n is the right adjoint to the inclusion

CatMf
n
↪→ CatLf

n
. Hence, the inclusion preserves colimits and Mf

n preserves limits.
By Proposition 2.17, the composition of the functor Mf

n with the colimit preserving
fully faithful inclusion CatMf

n
↪→ CatLf

n
is given by tensoring with Mf

n (Perf(Lf
nS))

and hence preserves colimits. It follows that Mf
n preserves colimits as well. �

Proposition 2.20. For C ∈ Catperf , the following are equivalent:
(1) C belongs to CatMf

n
.

(2) F (n + 1) ⊗ X = 0 for every X ∈ C , and C is generated as a stable
idempotent complete category from objects of the form F (n)⊗X for X ∈
C .

(3) All the mapping spectra between objects of C are n-monochromatic.

Proof. (1) =⇒ (2): For the first condition, if C is n-monochromatic then it is in
particular Lf

n-local, and hence tensored over Perf(Lf
nS). Since Lf

n(F (n + 1)) = 0,
this implies that F (n + 1) ⊗ X = 0 for all X ∈ C . For the second condition, by
Proposition 2.18 and Proposition 2.17 we have

C � Mf
n (C ) � Mf

n (Perf(Lf
nS)) ⊗ C .

Consequently, C is generated from tensor products of the form M ⊗ X for M ∈
Mf

n (Perf(Lf
nS)) and X ∈ C . Since by Proposition 2.16, Mf

n (Perf(Lf
nS)) is the

thick subcategory of Perf(Lf
nS) generated by T (n) � Lf

n(F (n)), we deduce that C
is generated by the objects of the form F (n) ⊗X as claimed.
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14 SHAY BEN-MOSHE ET AL.

(2) =⇒ (3): We wish to show that for every X,Y ∈ C , the mapping spectrum
hom(X,Y ) is n-monochromatic. First, since Y ⊗ F (n + 1) = 0 and F (n + 1) is
finite, we see that

hom(X,Y ) ⊗ F (n + 1) � hom(X,Y ⊗ F (n + 1)) � hom(X, 0) = 0.

This implies that hom(X,Y ) is Lf
n-local. It remains to show that it is also Lf

n−1-
acyclic.

For fixed X ∈ C , the objects Y ∈ C for which hom(X,Y ) is Lf
n−1-acyclic is

thick. Since by assumption C is generated from objects of the form Y ⊗ F (n), it
suffices to show that hom(X,Y ⊗F (n)) is Lf

n−1-acyclic. Since F (n) is finite, we get

hom(X,Y ⊗ F (n)) � hom(X,Y ) ⊗ F (n),

which is Lf
n−1-acyclic since F (n) is.

(3) =⇒ (1): First, since the mapping spectra of C are in Mf
nSp ⊆ Lf

nSp, the
category C is Lf

n-local. It remains to show that it is also Lf
n−1-acyclic, namely, that

Lf
n−1(C ) = 0. Since Lf

n−1(C ) is generated by the image of the localization functor
Lf
n−1 : C → Lf

n−1(C ), it would suffice to show that Lf
n−1(X) = 0 for every X ∈ C .

For every such X, we have a fully faithful exact embedding Perf(End(X)) → C
sending End(X) to X, so by the commutativity of the square

Perf(End(X)) ��

��

C

��
Lf
n−1(Perf(End(X))) �� Lf

n−1(C )

it would suffice to show that Lf
n−1(Perf(End(X))) = 0. Finally, by our assumption

on C , the ring spectrum End(X) is n-monochromatic. Thus, using Corollary 2.13
we get that

Lf
n−1(Perf(End(X))) � Perf(Lf

n−1S) ⊗ Perf(End(X))

� Perf(Lf
n−1S⊗ End(X))

� Perf(Lf
n−1(End(X)))

= 0.

�

2.3. Monochromatization and purity. We now study the connection between
categorical monochromatization and chromatically localized algebraic K-theory,
starting with some recollections of algebraic K-theory.

Definition 2.21. We let KT (n+1) : Catperf → SpT (n+1) denote the composition

Catperf
K−−−−−→ Sp

LT (n+1)−−−−−→ SpT (n+1),

where K is the algebraic K-theory functor.

Remark 2.22. In the definition of KT (n+1), it does not matter whether one works
with connective or non-connective K-theory, since T (n+1)-localization vanishes on
bounded above spectra.
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 15

We remind the reader that the functor K preserves filtered colimits, sends exact
sequences in Catperf to exact sequences in Sp, and admits a canonical lax symmetric
monoidal structure (see for example [BGT13,BGT14]). Since LT (n+1) is symmet-
ric monoidal, colimit preserving and exact, KT (n+1) inherits these properties and
structure.

Recall that for R ∈ Alg(Sp), one defines

K(R) := K(Perf(R)).

Similarly, we denote

KT (n+1)(R) := KT (n+1)(Perf(R)),

which we consider as a functor Alg(Sp)→SpT (n+1). Note that for R∈CAlg(SpT (n)),
by [CMNN24, Proposition 4.15 and Theorem C], the inclusion Perf(R) ↪→ M̂oddbl

R

to dualizable T (n)-local modules induces an isomorphism

KT (n+1)(R) ∼−−→ KT (n+1)(M̂oddbl
R ).

Remark 2.23. The argument works verbatim for R ∈ Alg(SpT (n)) (i.e., in the non-
commutative case) when one replaces the category M̂oddbl

R of dualizable T (n)-local
modules by the category L̂Modldbl

R of left dualizable left T (n)-local modules.

One of the key results of [CMNN24] and [LMMT24] is the “purity theorem”,
which implies that if C is Lf

n−1-local then KT (n+1)(C ) = 0. As an immediate
consequence, we obtain the following categorical analogue:

Proposition 2.24. Let C ∈ CatLf
n
. Then the inclusion Mf

n (C ) ↪→ C induces an
isomorphism

KT (n+1)(Mf
n (C )) ∼−−→ KT (n+1)(C ).

Proof. By Proposition 2.17, there is an exact sequence

Mf
n (C ) −−→ C −−→ Lf

n−1(C ).

Since KT (n+1) preserves exact sequences, we get an exact sequence

KT (n+1)(Mf
n (C )) −−→ KT (n+1)(C ) −−→ KT (n+1)(Lf

n−1(C )).

Finally, by [CMNN24, Theorem C] the right term KT (n+1)(Lf
n−1(C )) vanishes and

hence the left morphism becomes an isomorphism KT (n+1)(Mf
n (C )) ∼−−→KT (n+1)(C ).

�

In other words, the restriction of the functor KT (n+1) : Catperf → SpT (n+1) to the
full subcategory CatLf

n
⊆ Catperf factors through the limit and colimit preserving

reflection Mf
n : CatLf

n
→ CatMf

n
.

2.4. Higher semiadditivity. One advantage of the category CatMf
n

over CatLf
n

is that it is ∞-semiadditive. To establish that, we shall compare CatMf
n

to the
category of compactly generated T (n)-local categories, where we can exploit the
natural symmetric monoidal structure.
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16 SHAY BEN-MOSHE ET AL.

Compactly generated T (n)-local categories. Recall from the discussion in the be-
ginning of Section 2.2 that SpT (n) ∈ PrLst is an idempotent algebra classifying the
property of having T (n)-local mapping spectra. We also recall that in this situation,
the category of modules over SpT (n) in PrLst has a symmetric monoidal structure
with a different unit, but the same tensor product.

Definition 2.25. Let PrLT (n) ⊂ PrLst denote the full subcategory on those categories
whose mapping spectra are T (n)-local, endowed with the symmetric monoidal struc-
ture of ModSpT (n)(PrLst). Similarly, we let PrLT (n),ω := PrLst,ω∩PrLT (n) denote the full
subcategory of PrLst,ω on those categories whose mapping spectra are T (n)-local.

We now recall the following facts about n-monochromatization of spectra.

Proposition 2.26 ([Bou01, Theorem 3.3]). The composition

Mf
nSp −−→ Sp −−→ SpT (n) ∈ PrL

is an equivalence.

Proposition 2.27. A category C ∈ CatLf
n

is n-monochromatic if and only if
Ind(C ) has T (n)-local mapping spectra. Namely, the equivalence of Proposition 2.3
restricts to an equivalence

Ind: CatMf
n
� PrLT (n),ω : (−)ω.

Proof. For any C ∈ CatLf
n
, by Proposition 2.17, we have an exact sequence

Mf
n (C ) −−→ C −−→ Lf

n−1(C ).

Taking Ind, by the ∞-categorical analogue of Thomason–Neeman localization the-
orem [CDH+20, A.3.11. Theorem], we get an exact sequence (of not necessarily
small categories)

Ind(Mf
n (C )) −−→ Ind(C ) −−→ Ind(Lf

n−1(C )).

Note that in particular for C = Perf(Lf
nS), the fact that this is a fiber sequence

implies that Ind(Mf
n (Perf(Lf

nS))) � Mf
nSp.

Going back to the general case, we see that C is n-monochromatic if and only if
Ind(Mf

n (C )) → Ind(C ) is an equivalence. By Proposition 2.18 we have

Mf
n (C ) � Mf

n (Perf(Lf
nS)) ⊗ C .

Using the fact that Ind is symmetric monoidal and the result for Perf(Lf
nS), we see

that C is n-monochromatic if and only if

Mf
nSp ⊗ Ind(C ) −−→ Ind(C )

is an equivalence. By tensoring the equivalence from Proposition 2.26 with Ind(C ),
we get that the composition

Mf
nSp ⊗ Ind(C ) −−→ Ind(C ) −−→ SpT (n) ⊗ Ind(C ) ∈ PrL

is an equivalence. Thus, by 2-out-of-3, we see that C is n-monochromatic, if and
only if Ind(C ) → SpT (n) ⊗ Ind(C ) is an equivalence. Since SpT (n) ∈ PrL is the
idempotent algebra classifying the property of having T (n)-local mapping spectra
(see [CSY21a, Proposition 5.2.10]), we obtain the result. �
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 17

Proposition 2.28. PrLT (n),ω ⊂ PrLT (n) is a symmetric monoidal subcategory closed
under all colimits, and in particular its symmetric monoidal structure distributes
over all colimits.

Proof. To show that PrLT (n),ω ⊂ PrLT (n) is a symmetric monoidal subcategory, it
suffices to check that it contains the unit, and that morphisms are closed under
the tensor product. Note that T (n) is a compact generator of SpT (n) because
T (n) � LT (n)F (n) where F (n) is a finite type n spectrum, which by the thick
subcategory theorem is a compact generator of Lf

n−1-acyclic spectra of which SpT (n)
is a smashing localization. Thus, SpT (n) ∈ PrLT (n),ω. For closure of morphisms under
tensor product, recall that PrLst,ω and PrLT (n) have the same tensor product as PrLst,
and PrLT (n),ω is their intersection.

To see that PrLT (n),ω ⊂ PrLT (n) is closed under colimits, consider the following
commutative diagram:

Catperf PrLst,ω PrLst

CatMf
n

PrLT (n),ω PrLT (n)

∼

∼

Both horizontal morphisms in the left square are equivalences by Proposition 2.3
and Proposition 2.27. Colimits in PrLT (n) are computed as in PrLst because it is a
smashing localization, and the same holds for PrLst,ω by Proposition 2.3. Thus, by
the commutativity of the right square, it suffices to check that PrLT (n),ω ⊂ PrLst,ω is
closed under colimits. This follows from the commutativity of the left square and
Corollary 2.19. �

Theorem 2.29. For all n ≥ 0, the category CatMf
n

is ∞-semiadditive.

Proof. By Proposition 2.27, we have CatMf
n
� PrLT (n),ω, so it suffices to prove that

PrLT (n),ω is ∞-semiadditive. We shall prove that PrLT (n),ω is m-semiadditive by
induction on m, starting with m = −2 where the condition is vacuous. Assume
PrLT (n),ω is (m − 1)-semiadditive. By Proposition 2.28, it is symmetric monoidal
and the tensor product distributes over colimits, so by [CSY22, Proposition 2.3.4],
for every m-finite space A we have a canonical ambidexterity pairing

ε : SpT (n)[A] ⊗ SpT (n)[A] −−→ SpT (n) ∈ PrLT (n),ω.

Furthermore, A is PrLT (n),ω-ambidextrous if and only if ε is non-degenerate in the
sense that it exhibits SpT (n)[A] as self-dual. Now, again by Proposition 2.28, the
inclusion PrLT (n),ω ↪→ PrLT (n) is colimit preserving and exhibits the source as a
symmetric monoidal (non-full) subcategory of the target, which is ∞-semiadditive
by [HL13, Example 4.3.11] and [CSY21a, Remark 5.3.2]. In particular, ε is also the
canonical ambidexterity pairing in PrLT (n), and there exists

η : SpT (n) −−→ SpT (n)[A] ⊗ SpT (n)[A] ∈ PrLT (n),

which satisfies together with ε the zigzag identities. It thus suffices to show that
η belongs to PrLT (n),ω. Namely, that its right adjoint itself admits a further right
adjoint.
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18 SHAY BEN-MOSHE ET AL.

The ambidexterity pairing of any algebra in PrLT (n) is the same as in PrL itself,
which under the identification

SpT (n)[A] ⊗ SpT (n)[A] � SpT (n)[A×A] � SpA×A
T (n)

is given by (e.g., see [Har20, Proposition 3.17])

ε : SpA×A
T (n)

Δ∗
−−→ SpA

T (n)
A!−−→ SpT (n)

and
η : SpT (n)

A∗
−−→ SpA

T (n)
Δ!−−→ SpA×A

T (n) ,

where Δ: A → A × A is the diagonal. Since A is SpT (n)-ambidextrous, the right
adjoint A∗ of A∗ is isomorphic to A! and hence admits a further right adjoint
(note that by induction, we already know this for Δ∗, which is (m − 1)-finite). It
follows that η belongs to PrLT (n),ω, which completes the inductive step and hence
the proof. �

Remark 2.30. As a consequence of the arguments appearing above, π-finite limits
in PrLT (n),ω are computed as in ̂Cat∞. By the equivalence of PrLT (n),ω with CatMf

n
,

we obtain an explicit formula for computing π-finite limits in CatMf
n
. Namely, for

a π-finite space A and an A-local system {Ca}a∈A in CatMf
n
, the limit over A can

be computed as
lim←−a∈ACa �

(

lim←−a∈A Ind(Ca)
)ω

.

However, the forgetful functor CatMf
n
→ Cat∞ does not preserve π-finite limits.

Indeed, in light of the above formula, if the forgetful functor was π-finite limit
preserving, the limit of an A-shaped diagram of compact objects in a compactly
generated T (n)-local ∞-category C would have been itself compact. A counterex-
ample to this was communicated to us by Robert Burklund. Consider C = M̂odE1

and A = BCp. Starting with E1 with the trivial Cp-action, by the chromatic Fourier
transform, its Cp-equivariant self-maps are given by

π0 MapCp
(E1, E1)�π0 Map(E1, E

BCp

1 )�π0(E
BCp

1 )�π0(E1[Cp])�Zp[x]/(xp − 1).
We consider the Cp-equivariant self-map f : E1 → E1 corresponding to 1+x+ · · ·+
xp−1 and take X to be its cofiber in Cp-equivariant K(1)-local E1-modules. On the
one hand, as x is mapped to the identity under the forgetful map

MapCp
(E1, E1) −−→ Map(E1, E1),

as a non-equivariant E1-module we have X � E1/p, which is compact. On the
other hand, the homotopy fixed points module XhCp is the cofiber of the map
E1[Cp] → E1[Cp] given by multiplication by 1+x+· · ·+xp−1, which is Ep−1

1 ⊕ΣE1.
Since it is not a p-torsion object it is not compact.

Consequences of higher semiadditivity. To illustrate the usefulness of Theorem 2.29,
we shall record the following general reductions for proving preservation of π-finite
colimits for a functor between higher semiadditive categories, which will be used in
the proof of Theorem A.

Proposition 2.31. Let F : C → D be a functor between p-typically m-semi-
additive categories. If F preserves constant m-finite p-space indexed (co)limits,
then it preserves all m-finite p-space indexed (co)limits (i.e., it is p-typically m-
semiadditive).
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 19

Proof. For m = −2 there is nothing to prove. Assume by induction that F is
p-typically (m − 1)-semiadditive. Hence, by [CSY22, Theorem 3.2.3], for every
m-finite p-space A we have a commutative norm diagram

FA! FA∗

A!F A∗F ,

β! β∗

NmD

NmC

∼

∼

in which the horizontal maps are isomorphisms because C and D are p-typically
m-semiadditive. It follows that β! admits a left homotopy inverse. On the other
hand, using the wrong way adjunction A∗ � A! in C , we have the following diagram:

A!FA∗A! A!F

FA! FA!A
∗A! FA!.

μ! ν!

β!β!�

ν!

Hence, β! admits a section. Therefore, β! and β∗ are isomorphisms. �

Proposition 2.32. Let C ,D be categories admitting m-finite p-space indexed
colimits, and let F : C → D be a functor commuting with (m − 1)-finite p-space
indexed colimits. Then, F commutes with (constant) m-finite p-space indexed
colimits if and only if it commutes with (constant) colimits indexed by m-finite
p-spaces concentrated in homotopy degree m.

Proof. The only if part is clear. For the other direction, let A be some m-finite
p-space, and we shall show that F commutes with A!. Let B := A≤m−1, and
f : A → B be the canonical map. Since A! � B!f!, it suffices to check that F
commutes with both of them. By the inductive hypothesis, F indeed commutes with
B!, thus it remains to show that it commutes with f!. This can be checked fiber-wise
on the target, namely, for any b ∈ B, we need to show that b∗f!F → b∗Ff! � Fb∗f!
is an isomorphism. Consider the pullback:

Ab pt

A B
f

bib

The Beck–Chevalley condition guarantees that b∗f! � Ab!i
∗
b . Under this isomor-

phism, the condition we need to check is that Ab!i
∗
bF → FAb!i

∗
b is an isomorphism.

Since F commutes with i∗b , it suffices to show that it commutes with Ab!, which
indeed holds since by construction Ab is m-finite and concentrated in homotopy
degree m, so this follows by the hypothesis.

The case of constant colimits follows by pre-composition with A∗. �

3. Higher descent

3.1. Higher categorical descent. We are finally in position to prove Theorem A,
namely, that KT (n+1) preserves π-finite p-space (co)limits of Lf

n-local categories.
This is an immediate corollary of the following:
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20 SHAY BEN-MOSHE ET AL.

Theorem 3.1. The functor

KT (n+1) : CatMf
n
−−→ SpT (n+1)

is p-typically ∞-semiadditive. That is, it preserves π-finite p-space indexed limits
and colimits.

Proof. First, by Theorem 2.29 and [CSY22, Theorem A] the categories CatMf
n

and SpT (n+1) are both ∞-semiadditive. Therefore, by (the p-typical analogue of)
[CSY21a, Corollary 3.2.4] it suffices to show that KT (n+1) preserves π-finite p-space
indexed colimits. By Proposition 2.31 and Proposition 2.32 it is enough to consider
constant colimits indexed by π-finite p-spaces concentrated in a fixed homotopical
degree m. Namely, we have to show that for such a space A the assembly map

KT (n+1)(C )[A] −−→ KT (n+1)(C [A])

is an isomorphism.
For the case m = 0 observe that KT (n+1) is exact and in particular commutes

with finite coproducts. For m = 1, since C is in CatMf
n
, and in particular it is Lf

nS-
linear, the result follows from [CMNN24, Theorem 4.12(1)] applied to R = Lf

nS.
We proceed by induction on m ≥ 2.

First, we reduce to the case where C is of the form Perf(R) for a ring spectrum
R ∈ Mf

nSp. Indeed, by Proposition 2.9 we may write C as a filtered colimit of the
form

C � lim−→Perf(Ri) ∈ Catperf ,

where the ring spectra Ri are all endomorphism rings of objects of C . Since C ∈
CatMf

n
, we know by Proposition 2.20(3) that each Ri belongs to Mf

nSp. Since each
of the categories Perf(Ri) is a full subcategory of C , by Proposition 2.20(3) again
we deduce that they all belong to CatMf

n
. Also, recall that

KT (n+1) : Catperf −−→ SpT (n+1)

preserves filtered colimits. Thus, by naturality of the assembly map, to show that

KT (n+1)(C )[A] −−→ KT (n+1)(C [A]) ∈ SpT (n+1)

is an isomorphism for every C ∈ CatMf
n

it suffices to show that

KT (n+1)(Perf(R))[A] −−→ KT (n+1)(Perf(R)[A]) ∈ SpT (n+1)

is an isomorphism for every n-monochromatic ring spectrum R.
Note that once m ≥ 1 and A is concentrated in homotopy degree m, it is con-

nected, whence by Corollary A.6 this map assumes the form

KT (n+1)(R)[A] −−→ KT (n+1)(R[ΩA]) ∈ SpT (n+1).

Moreover, when m ≥ 2 the space ΩA is also connected.
First we deal with the case where R is of height n = 0. In this case, since ΩA is a

connected π-finite space we have R[ΩA] � R. Additionally, by [CSY21a, Theorem
D], the constant colimits over A in SpT (1) do not change the object, i.e. lim−→AX �
X naturally in X ∈ SpT (1) (see also the discussion under [CSY21a, Definition
2.4.1]). Hence, our assembly map identifies with the identity map of KT (1)(R) and
in particular it is an isomorphism.
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 21

From now on we assume that n ≥ 1. Using the bar construction, we can write
A � lim−→ΔopAk where Ak := (ΩA)k. Consider the commutative diagram:

lim−→ΔopKT (n+1)(R)[Ak] lim−→ΔopKT (n+1)(R[ΩAk])

KT (n+1)(lim−→ΔopR[ΩAk])

KT (n+1)(R)[lim−→ΔopAk] KT (n+1)(R[Ωlim−→ΔopAk])

The functor S∗ → S which forgets the pointing preserves sifted colimits by [Lura,
Proposition 4.4.2.9], and the inclusion S≥1 ↪→ S also preserves sifted colimits as
explained in the proof of [Lura, Proposition 1.4.3.9], thus so does the functor S≥1

∗ →
S. Therefore, there is no ambiguity as to where the colimits in the two bottom
objects are computed.

Our goal is to show that the bottom map is an isomorphism. We show that all
other morphisms are isomorphisms, which implies the result by the commutativity
of the diagram. The top map is an isomorphism by the inductive hypothesis, as Ak

is an (m − 1)-finite p-space. The left map is an isomorphism because the functor
KT (n+1)(R)[−] preserves all colimits. Since n ≥ 1, by [LMMT24, Corollary 4.31],
the functor

KT (n+1) : Alg(Sp) −−→ SpT (n+1)

preserves sifted colimit, showing that the upper right morphism is an isomor-
phism. Finally, for the bottom right morphism, note that the forgetful functor
Alg(Sp) → Sp and the functor Ω(−) both preserve sifted colimits (see [Lura, Propo-
sition 3.2.3.1] and [Lura, Corollary 5.2.6.18]), and R[−] commutes with all colimits,
so that R[Ω(−)] preserves sifted colimits. �

Corollary 3.2. The functor

KT (n+1) : CatLf
n
−−→ SpT (n+1)

preserves π-finite p-space indexed limits and colimits.

Proof. By Proposition 2.24 we can present the functor KT (n+1) : CatLf
n
→SpT (n+1)

as the composition

CatLf
n

Mf
n−−→ CatMf

n

KT (n+1)−−−−−→ SpT (n+1).

Now, the first functor preserves all limits and colimits by Corollary 2.19 and the
second preserves all π-finite p-space indexed limits and colimits by Theorem 3.1.
Hence, the composition preserves these limits and colimits as well. �

Remark 3.3. By Proposition 2.12, an equivalent formulation of Corollary 3.2 is that
the functor

KT (n+1)((−)ω) : PrL
Lf

n,ω
−−→ SpT (n)

preserves π-finite p-space indexed limits and colimits.

Corollary 3.4. There is a map

KT (n+1)(R)[A] −−→ KT (n+1)(R[ΩA]) ∈ SpT (n+1),
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22 SHAY BEN-MOSHE ET AL.

lax symmetric monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(Lf

nSp). Further-
more, when A is a sifted colimit of pointed connected π-finite p-spaces, it is an
isomorphism.

Proof. As explained in the proof of Theorem 3.1, the map is the assembly map of
the lax symmetric monoidal functor KT (n+1), together with the equivalence

Perf(R[ΩA]) � Perf(R)[A]

from Corollary A.6. By Theorem 3.1, it is an isomorphism for π-finite p-spaces.
Since KT (n+1) preserves sifted colimits of ring spectra by [LMMT24, Corollary
4.31], and R[Ω(−)] preserves sifted colimits of pointed connected spaces, we get
that the assembly map is an isomorphism for sifted colimits of pointed connected
π-finite p-spaces as well. �

Remark 3.5. Combining Proposition A.11, [CMNN24, Proposition 4.15], and the
fact that for modules in spectra perfect objects and dualizable objects coincide, for
R ∈ CAlg(SpT (n)) and M ∈ Sp≥0, the assembly map

KT (n+1)(R)[ΣM ] −−→ KT (n+1)(R[M ])

from Corollary 3.4 is equivalent to the composition

KT (n+1)(M̂oddbl
R )[ΣM ] −−→ KT (n+1)(M̂oddbl

R [ΣM ])

−−→ KT (n+1)(M̂odR[ΣM ]dbl)
∼−−→ KT (n+1)(M̂oddbl

LT (n)R[M ]).

Thus, when M is a filtered colimit of π-finite p-spectra, all three maps are isomor-
phisms. Indeed, the first morphism is an isomorphism since KT (n+1) preserves both
filtered colimits and π-finite p-space shaped colimits by Corollary 3.2. Moreover,
by Corollary 3.4, the composition is an isomorphism, so that the second morphism
is an isomorphism as well.

Corollary 3.6. The functor

KT (n+1) : Alg(SpT (n)) −−→ Alg(SpT (n+1))

preserves n-finite p-space indexed limits. In particular, for every R ∈ Alg(SpT (n))
and an n-finite p-space A there is an isomorphism

KT (n+1)(RA) ∼−−→ KT (n+1)(R)A.

Proof. Let R : A → Alg(SpT (n)) be a diagram indexed by some space A. The
assembly map is the following composition

KT (n+1)(lim←−AR) ∼−−→ KT (n+1)(L̂Modldbl
lim←−AR)

(1)−−→ KT (n+1)((lim←−AL̂ModR)ldbl)
∼−−→ KT (n+1)(lim←−AL̂Modldbl

R )

(2)−−→ lim←−AKT (n+1)(L̂Modldbl
R )

∼−−→ lim←−AKT (n+1)(R).
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 23

By [BCSY24, Theorem 7.29], the space A is SpT (n)-affine, namely, the map de-
noted by (1) is an isomorphism. By Theorem 3.1, the map denoted by (2) is an
isomorphism. �

Theorem 3.1 asserts that a certain version of T (n + 1)-localized K-theory is
∞-semiadditive. In [BMS24], the universal p-typically m-semiadditive version of
algebraic K-theory was studied. This functor has a T (n + 1)-localized version,
which assigns to any stable category admitting m-finite p-space indexed colimits C

a T (n + 1)-local spectrum K
[m]
T (n+1)(C ).

Corollary 3.7. Let C ∈ CatLf
n

be an Lf
n-local category admitting m-finite p-space

indexed colimits, then

K
[m]
T (n+1)(C ) � KT (n+1)(C ) ∈ SpT (n+1).

In particular, for any R ∈ Alg(SpT (n)), we have

K
[m]
T (n+1)(R) � KT (n+1)(R) ∈ SpT (n+1).

Proof. By [BMS24, Corollary 6.14], we need to check that the functor

Span(S(p)
m-fin) −−→ SpT (n+1), A �→ KT (n+1)(CA)

satisfies the m-Segal condition. Namely, that
KT (n+1)(CA) −−→ KT (n+1)(C )A

is an isomorphism for every m-finite p-space A, which holds by Theorem 3.1.
For R ∈ Alg(SpT (n)), recall from [BMS24, Remark 6.22] that

K
[m]
T (n+1)(R) � K

[m]
T (n+1)(L̂Modldbl

R ),

and recall that
KT (n+1)(R) � KT (n+1)(L̂Modldbl

R ),

so this is the special case C = L̂Modldbl
R . �

3.2. Higher Galois descent. We now turn to the implications of higher de-
scent for KT (n+1) to preservation of Galois extensions and in particular prove
Corollary 1.4 from Section 1 (as Theorem 3.13).

Given a symmetric monoidal category C and a weakly C -ambidextrous (pointed)
connected space BG

q−→ pt with diagonal denoted by BG
Δ−→ BG × BG, a G-

equivariant commutative algebra R : BG → CAlg(C ) is said to be Galois if it
satisfies the two conditions of [Rog08, Definition 4.1.3] (see also [BCSY24, Definition
2.25] for the present formulation):

(1) The mate of the unit 1 → q∗R =: RhG is an isomorphism.
(2) The mate of the multiplication R⊗R → Δ∗R =:

∏

G R is an isomorphism.
Here we are using the notation

∏

A X to mean the constant A-shaped limit on
X, where A is an arbitrary space.

Remark 3.8. In [Rog08], Rognes develops the theory of G-Galois extensions under
the assumption that 1C [G] is dualizable in C . By [CSY21b, Corollary 2.7], this
condition is implied by the weak C -ambidexterity of BG (i.e., the C -ambidexterity
of G). We also note that for C semiadditive (e.g., stable), the space BG is weakly
C -ambidextrous for all finite discrete groups G.
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24 SHAY BEN-MOSHE ET AL.

By applying the functor

Mod(−)(C ) : CAlg(C ) −−→ CAlgC (PrL),

to R, we get a G-equivariant structure on the C -linear symmetric monoidal category
ModR(C ) and an induced symmetric monoidal functor, which we denote by a slight
abuse of notation by

R⊗ (−) : C −−→ ModR(C )hG.

It is a classical fact, commonly referred to as Galois descent, that for an ordi-
nary finite group G and an ordinary G-Galois extension R, this functor is an
equivalence. We shall show that it is in fact always an equivalence provided R
is faithful. Similar results under somewhat different assumptions can be found in
[Mat16,Ban17,GL21]. We begin by generalizing the standard maneuver of identi-
fying the category of “descent data for G” ModR(C )hG with that of “G-semilinear
R-modules” ModR(CBG). This is a general fact unrelated to Galois extensions.

Proposition 3.9. Let C ∈ CAlg(PrL) and let R ∈ CAlg(C )A for some space A.
There is a natural equivalence of C -linear symmetric monoidal categories

lim←−A Moda∗R(C ) � ModR(CA).

Proof. First, we write CA as the limit of the constant A-shaped diagram on C
in CAlg(PrL). The cone maps exhibit for each a ∈ A the corresponding copy
of C in the diagram as a commutative CA-algebra, via the symmetric monoidal
functor a∗ : C A → C . Consequently, we have CA = lim←−AC in CAlgCA(PrL).
We claim that the tensor product in CAlgCA(PrL) commutes with space-shaped
limits. Indeed, since space-shaped limits and colimits in ModCA(PrL) coincide, they
are preserved by the tensor product [CCRY22, Example 4.26], and the forgetful
CAlgCA(PrL) → ModCA(PrL) is symmetric monoidal and preserves limits, the
same holds in CAlgCA(PrL). We can thus compute,

ModR(CA) � ModR(CA) ⊗CA C A

� ModR(CA) ⊗CA lim←−AC

� lim←−A

(

ModR(C A) ⊗CA C
)

.

Finally, when C is viewed as a commutative C A-algebra via the symmetric monoidal
functor a∗ : C A → C , we have by [Lura, Theorem 4.8.5.16],

ModR(CA) ⊗CA C � Moda∗R(C )

and therefore
ModR(CA) � lim←−A Moda∗R(C ).

�

In addition to the maps BG
q−→ pt and BG

Δ−→ BG × BG, it will be handy to
have a name for the basepoint pt e−→ BG as well. However, for a G-equivariant
object X in C BG, we shall denote the underlying non-equivariant object e∗X in C
also by X. In the notation above for a G-Galois extension R, we have the following:
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 25

Lemma 3.10. Let C ∈ CAlg(PrL), let BG be a weakly C -ambidextrous pointed
connected space, and let R : BG → CAlg(C ) be a faithful G-Galois extension. For
every X ∈ ModR(CBG) we have a natural C -linear isomorphism

R⊗X �
∏

G

X ∈ C BG.

Namely, G acts on the left hand side on the X coordinate alone, and on the right
hand side simply by permuting the G-factors (i.e. the co-induced object).

Proof. An R-module structure on X provides a map

Δ∗(R�X) � R⊗X −−→ X ∈ C BG,

whose mate is a natural transformation in X,

fX : R �X −−→ Δ∗X ∈ CBG×BG.

Forgetting the action of G on the R-coordinate of R ⊗X corresponds to applying
the functor

(e× Id)∗ : C BG×BG −−→ C BG.

Using the Beck–Chevalley condition for the pullback square of spaces

pt BG

BG BG×BG,Δ

e

e

e×Id

we get the map

gX : R⊗X
∼−−→ (e× Id)∗(R�X) fX−−→ (e× Id)∗Δ∗X

∼−−→ e∗e
∗X =:

∏

G

X

of functors
ModR(C BG) −−→ C BG.

It remains to show that gX is an isomorphism for all X. Since e and Δ are C -
ambidextrous, by [BCSY24, Corollary 2.34], e∗ is C BG-linear and colimit preserv-
ing, Δ∗ is C BG×BG-linear, and colimit preserving and gX is a natural transforma-
tion of C BG-linear colimit preserving functors. Consequently, it suffices to show
that it is an isomorphism for X = R for which it follows from the fact that fR is
an isomorphism, as it is exactly the second Rognes–Galois condition. �

From this we deduce descent for Galois extensions.

Proposition 3.11. Let C ∈ CAlg(PrL) and let BG be a weakly C -ambidextrous
pointed connected space. Every faithful G-Galois extension R : BG → CAlg(C )
induces a symmetric monoidal equivalence

C
∼−−→ ModR(C )hG.

Proof. Under the equivalence in Proposition 3.9, the functor

R⊗ (−) : C −−→ ModR(C )hG

corresponds to the composition of left adjoints

C
q∗−−−→ C BG R⊗(−)−−−−→ ModR(CBG).
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We shall show that the right adjoint of this composition is conservative and that
the unit of the adjunction is an isomorphism.

The unit map is given for every X ∈ C by the composition
uX : X −−→ q∗q

∗X −−→ q∗(R⊗ q∗X) =: (R⊗X)hG.
Since R is faithful, it suffices to show that uX becomes an isomorphism after post-
composition with the functor of tensoring with e∗R. We thus have,
e∗R⊗ q∗(R⊗ q∗X) � q∗(q∗e∗R⊗ (R⊗ q∗X)) � q∗(e∗e∗(R⊗ q∗X)) � e∗R ⊗X,

where the first isomorphism follows from the fact that tensoring with the dualizable
object e∗R (Galois extensions are dualizable by [Rog08, Proposition 6.2.1]) com-
mutes with q∗, the second is Lemma 3.10 and the third follows from qe = Id. We
get that e∗R⊗u is a natural C -linear endomorphism of the functor e∗R⊗−. Thus,
to show that it is an isomorphism, it suffices to show that it is an isomorphism on
X = 1, but u1 is already an isomorphism by the first Rognes–Galois condition.

To show that the right adjoint is conservative, it again suffices to do so after
post-composition with the functor of tensoring with e∗R. By the same argument
as before we have for every M ∈ ModR(CBG) a natural isomorphism

e∗R ⊗ q∗M � q∗(q∗e∗R⊗M) � q∗(e∗e∗M) � e∗M,

and e∗ is conservative. �
This Galois descent result has the following consequence for the functoriality of

Galois extensions under symmetric monoidal colimit preserving functors.
Proposition 3.12. Let F : C → D be a morphism in CAlg(PrL) and let BG be a
weakly C -ambidextrous pointed connected space. Then, the functor F : CAlg(C )BG

→ CAlg(D)BG carries G-Galois extensions to G-Galois extensions.
Proof. Let R be a G-Galois extension in C . We wish to show that F (R) is a G-
Galois extension in D . First, since F is symmetric monoidal and colimit preserving,
by [CSY22, Corollary 3.3.2] the space BG is also weakly D-ambidextrous and by
[CSY21a, Proposition 2.1.8] the functor F commutes with G-shaped limits. As a
result, the functor F takes the map

R⊗R −−→
∏

G

R

to the map
F (R) ⊗ F (R) −−→

∏

G

F (R).

Since the former is an isomorphism by the assumption that R is G-Galois, we
deduce that the latter is also an isomorphism.

It remains to show that the unit 1D → F (R)hG is an isomorphism. Regarding
D as a C -algebra via F , by Proposition 3.11 and the fact that the tensor product
in ModC preserves BG-shaped limits in each coordinate, we obtain a symmetric
monoidal equivalence
ModF (R)(DBG) � ModF (R)(CBG ⊗C D) � ModR(CBG) ⊗C D � C ⊗C D � D .

Taking the endomorphism objects of the units from both sides we get the desired
identification

F (R)hG � 1D .

�
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We turn to the main result of this section, regarding preservation of T (n)-local
G-Galois extensions R → S under the functor KT (n+1) for G a π-finite p-group. By
[CSY21a, Proposition 3.2.3], we have canonical equivalences

SpBG
T (n) � Spτ≤n+1(BG)

T (n) � SpB(τ≤nG)
T (n) .

Thus, without loss of generality, we may restrict attention to n-finite p-groups
G. In case G is further assumed to be (n − 1)-finite, we get by Corollary 3.6 an
isomorphism

KT (n+1)(R) ∼−−→ KT (n+1)(S)hG.

Namely, KT (n+1)(R) → KT (n+1)(S) satisfies the first Rognes–Galois condition. The
second Rognes–Galois condition is satisfied automatically, by [BCSY24, Corollary
7.31],3 making KT (n+1)(S) a G-Galois extension of KT (n+1)(R). Using our results
on Galois descent, we can bring the above reasoning to bear on the general n-finite
case.

Theorem 3.13. Let n ≥ 0, and let G be an n-finite p-group. For every T (n)-local
G-Galois extension R → S, the induced T (n + 1)-local G-extension

KT (n+1)(R) −−→ KT (n+1)(S)

is Galois.

Proof. By Proposition 3.11, we have a canonical equivalence

ModR(SpT (n))
∼−−→ ModS(SpT (n))hG.

Passing to dualizable objects we get an equivalence

ModR(SpT (n))dbl ∼−−→ (ModS(SpT (n))hG)dbl.

By [Lura, Proposition 4.6.1.11], there is a canonical equivalence

(ModS(SpT (n))hG)dbl � (ModS(SpT (n))dbl)hG.

Therefore

KT (n+1)(R) � KT (n+1)(ModR(SpT (n))dbl)

� KT (n+1)((ModS(SpT (n))dbl)hG)

� KT (n+1)(ModS(SpT (n))dbl)hG

� KT (n+1)(S)hG,

where the first and last isomorphisms follow from [CMNN24, Proposition 4.15] and
the third isomorphism follows from Theorem 3.1. This is the first Rognes–Galois
condition for KT (n+1)(S) as a G-extension of KT (n+1)(R) in SpT (n+1). Finally,
by [BCSY24, Corollary 7.31], the second Rognes–Galois condition is automatically
satisfied. �

3This is part of the theory of affineness developed in [BCSY24, §2].
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4. Cyclotomic redshift

In this section we apply the higher descent results of the previous section to
establish the compatibility of the chromatically localized algebraic K-theory func-
tor with higher cyclotomic extensions (see Theorem 4.11), the chromatic Fourier
transform (see Theorem 4.26) and Kummer theory (see Theorem 4.28). Roughly
put, these constructions depend on the height parameter, and the functor KT (n+1)
intertwines the corresponding construction in height n and in height n + 1.

Since all ring spectra in this section will be T (n)-local (or T (n + 1)-local), for
brevity we use the notation R[ΩA] for the group algebra computed in the T (n)-local
(or T (n + 1)-local) category rather than in spectra.

4.1. Cyclotomic extensions. In [CSY21b], for any R ∈ Alg(SpT (n)) the authors
constructed a height n analogue of the pr-cyclotomic extension R[ω(n)

pr ], which is a
direct factor of R[BnCpr ]. In this subsection we prove Theorem 4.11, saying that
there is an isomorphism

KT (n+1)(R)[ω(n+1)
pr ] ∼−−→ KT (n+1)(R[ω(n)

pr ]).

For the convenience of the reader, we now give an informal account of the argument
detailed in the rest of this subsection. First, the statement easily reduces to the case
r = 1 and commutative algebra R (in fact, to R = ST (n)). In the commutative case,
the group algebra R[BnCp] decomposes into the product of R[ω(n)

p ] and R, with
the projection to the second factor given by applying R[−] to the map BnCp → pt.
Second, the isomorphism

KT (n+1)(R)[A] ∼−−→ KT (n+1)(R[ΩA])

from Corollary 3.4 shows that the projection map KT (n+1)(R)[Bn+1Cp] →
KT (n+1)(R) identifies with the image of the projection map R[BnCp] → R un-
der KT (n+1). Finally, by the uniqueness of direct complements we get the required
isomorphism

KT (n+1)(R)[ω(n+1)
p ] ∼−−→ KT (n+1)(R[ω(n)

p ]).

Generalities on decompositions. We begin with some general facts regarding de-
compositions of commutative algebras into a product. First, we observe that each
of the two factors in the decomposition determines the other.

Lemma 4.1. Let C be a symmetric monoidal stable category, and let R ∈
CAlg(C ). Assume that we are given two decompositions

R � R1 ×R2, R � R1 ×R2

in CAlg(C ) and an isomorphism of R1 and R1 under R. Then, there is an
isomorphism of R2 and R2 under R as well, namely an isomorphism of decom-
positions.

Proof. Let ε1, ε2, ε1, ε2 ∈ π0R be the idempotents splitting R1, R2, R1, R2 respec-
tively. Taking π0 to the isomorphism of R1 and R1 under R gives a commutative
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 29

diagram of commutative rings:

π0R

π0R[ε−1
1 ] π0R[ε−1

1 ]∼

Since the image of 1 − ε1 in π0R[ε−1
1 ] is 0, commutativity shows that the same is

true in π0R[ε−1
1 ]. Thus, we have

(1 − ε1)εn1 = 0 ∈ π0R

for some n ≥ 1. Since ε1 is idempotent, we conclude that ε1 = ε1ε1. Symmetrically,
ε1 = ε1ε1. Thus, ε1 = ε1.

Since ε2 = 1 − ε1 and ε2 = 1 − ε1, we get that ε2 = ε2. Thus, we get an
isomorphism

R2 � R[ε−1
2 ] = R[ε−1

2 ] � R2

of commutative R-algebras, as required. �
We next show that the datum of a decomposition of a commutative algebra R

into a product is equivalent to the datum of a map 12
C := 1C ×1C → R where 1C

is the unit of C .
Lemma 4.2. Let C ∈ CAlg(̂Catall) be 0-semiadditive. There is a commutative
diagram

CAlg(C )2 CAlg12
C

(C )

CAlg(C )

∼

where the left diagonal map is given by the binary product and the right diagonal
map is the forgetful functor.
Proof. As in the proof of [CSY21a, Proposition 5.1.11] we have a commutative
diagram of symmetric monoidal categories

C × C Mod1C (C ) × Mod1C (C ) Mod12
C

(C )

C

∼ ∼

where the upper-right isomorphism is by the 0-semiadditivity of C . The result then
follows by applying CAlg. �

Let C ∈ ̂Catall, and let I be a category with an initial object denoted i. Consider
the adjunction

i! : C � Fun(I,C ) : i∗

between evaluation at i and left Kan extension along pt i−→ I. Observe that since i
is initial, for every X ∈ C we have

(i!X)(j) = lim−→i→jX = X,

namely i!X is the constant functor X : I → C . We have the following corollary
for decompositions of commutative algebras in the functor category Fun(I,C ) with
respect to the point-wise structure:
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30 SHAY BEN-MOSHE ET AL.

Lemma 4.3. Let I be a category with an initial object i and let C ∈ CAlg(̂Catall)
be 0-semiadditive. Then, a decomposition of a functor F : I → CAlg(C ) into a
product is the same data as a map 12

C → F (i) ∈ CAlg(C ). That is, the following
diagram commutes

Fun(I,CAlg(C )2) Fun(I,CAlg(C ))12
C
/

Fun(I,CAlg(C ))

∼

where Fun(I,CAlg(C ))12
C
/ is the slice category of the evaluation at i ∈ I.

Proof. Endow Fun(I,C ) with the point-wise symmetric monoidal structure, so that
Fun(I,CAlg(C )) � CAlg(Fun(I,C )),

whose unit is the constant functor 1C . Thus, by Lemma 4.2, we get that
Fun(I,CAlg(C )2) � CAlg12

C
(Fun(I,C ))

over Fun(I,CAlg(C )). Note that the functor i∗ is symmetric monoidal, which
endows i! with an oplax symmetric monoidal structure. By the discussion above, i!
is given by the formation of constant functor, and we see that the oplax structure is
strong. Hence, the adjunction i! � i∗ lifts to an adjunction on commutative algebras.
Since 1C � i!1C , by the adjunction, we get an equivalence of slice categories

CAlg12
C
(Fun(I,C )) � CAlg(Fun(I,C ))12

C
/

over Fun(I,CAlg(C )), concluding the proof. �

Similarly, we have the following corollary for decompositions of commutative
algebras in the functor category Fun(I,C ) with respect to the Day convolution:

Lemma 4.4. Let I be a symmetric monoidal category whose unit 1I is initial,
and let C ∈ CAlg(̂Catall) be 0-semiadditive. Then, a decomposition of a lax
symmetric monoidal functor F : I → C into a product is the same data as a map
12

C → F (1I) ∈ CAlg(C ). That is, the following diagram commutes

Funlax(I,C 2) Funlax(I,C )12
C
/

Funlax(I,C )

∼

Proof. The argument is analogous to the proof of Lemma 4.3, for the Day convo-
lution. Recall that

Funlax(I,C ) � CAlg(Fun(I,C )Day).
Since 1I is assumed to be initial, we see that the unit of the Day convolution is

Map(1I ,−) ⊗ 1C � 1C .

Thus, by Lemma 4.2, we get that
Funlax(I,C 2) � CAlg12

C
(Fun(I,C )Day)

over Funlax(I,C ). Since 1I : pt → I is symmetric monoidal, by [LNP22, Proposi-
tion 3.34] or [BMS24, Proposition 3.6], the adjunction (1I)! � (1I)∗ is symmetric
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 31

monoidal, and hence lifts to an adjunction on commutative algebras. By the dis-
cussion above, 1C � (1I)!1C , so by adjunction, we get an equivalence of slice
categories

CAlg12
C

(Fun(I,C )Day) � CAlg(Fun(I,C )Day)12
C
/

over Funlax(I,C ), which concludes the proof. �
Cyclotomic extensions. Let C be a presentably symmetric monoidal stable ∞-
semiadditive category with all objects of semiadditive height n (e.g. SpT (n)). By
[CSY21b, Proposition 4.5] (see also [CSY21b, Definition 4.7] and [BCSY24, Corol-
lary 6.7]), the map

Σn
Fp −−→ 0 ∈ SpBF

×
p

≥0
induces a decomposition

1C [Σn
Fp] � 1C × 1C [ω(n)

p ] ∈ CAlg(C )BF
×
p ,

where 1C [ω(n)
p ] is called the (height n) p-th cyclotomic extension. For every M ∈

Sp≥0 equipped with a map ΣnFp → M , the induced map
1C [Σn

Fp] −−→ 1C [M ] ∈ CAlg(C )
makes 1C [M ] into a 1C [ΣnFp]-algebra.
Definition 4.5. For X ∈ C and M ∈ Sp≥0 equipped with a map ΣnFp → M , we
let
X[M ]0 := X ⊗ 1C [M ] ⊗

1C [ΣnFp]
1C , X[M ]ω := X ⊗ 1C [M ] ⊗

1C [ΣnFp]
1C [ω(n)

p ]

which gives a decomposition
X[M ] � X[M ]0 ×X[M ]ω ∈ C .

Observe that this decomposition is natural in M ∈ (Sp≥0)ΣnFp/ and lax sym-
metric monoidally natural in X ∈ C .
Example 4.6. Let R ∈ Alg(SpT (n)) and let M ∈ Sp≥1 be equipped with a map
Σn+1Fp → M .

(1) Applying the above to X = KT (n+1)(R) we get a decomposition
KT (n+1)(R)[M ] � KT (n+1)(R)[M ]0 ×KT (n+1)(R)[M ]ω ∈ SpT (n+1).

(2) Applying the above to X = R, and looping M , we get a decomposition
R[ΩM ] � R[ΩM ]0 ×R[ΩM ]ω ∈ Alg(SpT (n)),

and since KT (n+1) preserves finite products, we get a decomposition
KT (n+1)(R[ΩM ]) � KT (n+1)(R[ΩM ]0) ×KT (n+1)(R[ΩM ]ω) ∈ SpT (n+1).

Observe that these decompositions are natural in M and lax symmetric monoidally
natural in R.

Our goal is to compare the two decompositions in Example 4.6. Recall from
Corollary 3.4 that there is a map

KT (n+1)(R)[A] −−→ KT (n+1)(R[ΩA]) ∈ SpT (n+1),

lax symmetric monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(SpT (n)), which is an

isomorphism when A is a sifted colimit of π-finite p-spaces. By pre-composing with
Ω∞ : Sp≥1 → S≥1

∗ and passing to objects under Σn+1Fp, we get the following:
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32 SHAY BEN-MOSHE ET AL.

Definition 4.7. Using the above, we define the map

KT (n+1)(R)[M ] −−→ KT (n+1)(R[ΩM ]) ∈ SpT (n+1),

natural in M ∈ (Sp≥1)Σn+1Fp/ and lax symmetric monoidally natural in R ∈
Alg(SpT (n)).

Since Ω∞ preserves filtered colimits, this map is an isomorphism when M is a
filtered colimit of π-finite p-spectra.

Proposition 4.8. The map

KT (n+1)(R)[M ] −−→ KT (n+1)(R[ΩM ]) ∈ SpT (n+1)

respects the decompositions of the source and the target from Example 4.6.

Proof. We begin by reducing to the initial case, namely R = ST (n) and M =
Σn+1

Fp. The map in question is a natural transformation of functors

(Sp≥1)Σn+1Fp/ −−→ Funlax(Alg(SpT (n)), SpT (n+1))).

Since Σn+1Fp is the initial object of (Sp≥1)Σn+1Fp/, by Lemma 4.3, it suffices to
check that the map

KT (n+1)(R)[Σn+1
Fp] −−→ KT (n+1)(R[Σn

Fp])

of lax symmetric monoidal functors Alg(SpT (n)) → SpT (n+1) respects the decom-
positions. Since the unit ST (n) ∈ Alg(SpT (n)) is the initial object, by Lemma 4.4,
it suffices to check that the map

KT (n+1)(ST (n))[Σn+1
Fp] −−→ KT (n+1)(ST (n)[Σn

Fp]) ∈ CAlg(SpT (n+1))

respects the decompositions, which we now show.
Applying the map in question to R = ST (n) and M = 0, we get the following

commutative square in CAlg(SpT (n+1)):

KT (n+1)(ST (n))[Σn+1
Fp] KT (n+1)(ST (n)[Σn

Fp])

KT (n+1)(ST (n)) KT (n+1)(ST (n))

∼

∼

where both horizontal maps are isomorphisms because Σn+1Fp and 0 are π-finite
p-spectra. Thus, the two decompositions coincide by Lemma 4.1. �

Remark 4.9. Recall that the spectrum Σn+1
Fp is acted by the group F

×
p and the

splitting
1C [Σn+1

Fp] � 1C × 1C [ω(n+1)
p ]

is F×
p -equivariant. Now, let G be a group acting on M ∈ Sp≥1, equipped with a

map G → F×
p and a G-equivariant map Σn+1Fp → M . Since the decompositions

of Example 4.6 are natural in M , the induced map

KT (n+1)(R)[M ]ω −−→ KT (n+1)(R[ΩM ]ω) ∈ SpT (n+1)

is canonically G-equivariant.
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We now specialize to the case of cyclotomic extensions. We begin by recalling
some definitions and notations from [BCSY24] regarding Brown–Comenetz duality.
Let IQp/Zp

be the p-local Brown–Comenetz spectrum, and let

I(n)
p : (Sp[0,n])op −−→ Sp≥0

be the functor sending M to

I(n)
p M := homSp≥0(M, τ≥0ΣnIQp/Zp

).

Since I
(n)
p Fp � Σn

Fp, we get a further induced functor

I(n)
p : (Sp[0,n]

/Fp
)op −−→ (Sp[0,n])ΣnFp/.

Definition 4.10. For X ∈ C and M ∈ Sp[0,n]
/Fp

we let

X[ω(n)
M ] := X[I(n)

p M ]ω ∈ C .

By [BCSY24, Remark 6.10], when M = R is a commutative algebra in Sp[0,n]

augmented over Fp, this agrees with X[ω(n)
R

] of [BCSY24, Definition 4.19].

Theorem 4.11. There is a map

KT (n+1)(R)[ω(n+1)
M ] −−→ KT (n+1)(R[ω(n)

M ]) ∈ SpT (n+1),

natural in M ∈ Sp[0,n]
/Fp

and lax symmetric monoidally natural in R ∈ Alg(SpT (n)).
Moreover, when the homotopy groups of I(n)

p M are torsion p-groups, the map is
an isomorphism.

Proof. The first part follows immediately from Proposition 4.8 by pre-composing
with

I(n+1)
p : (Sp[0,n]

/Fp
)op −−→ (Sp≥1)Σn+1Fp/

and projecting to the (−)ω coordinates. For the second part, when the homotopy
groups of I(n)

p M are torsion p-groups, the same is true for I
(n+1)
p M � ΣI

(n)
p M , so

by [BCSY24, Lemma 6.57] it is a filtered colimit of π-finite p-spectra, concluding
the proof. �

Remark 4.12. By Remark 4.9, if a group G acts on M and is mapped to F
×
p in a way

making the map M → Fp equivariant, then the comparison map in Theorem 4.11
is G-equivariant.

Example 4.13. Consider the case M = Z/pr, and recall that by [BCSY24, Corol-
lary 6.7] the extension R[ω(n)

Z/pr ] � R[ω(n)
pr ] is the higher cyclotomic extension defined

in [CSY21b, Definition 4.7]. Thus, we get an isomorphism

KT (n+1)(R)[ω(n+1)
pr ] ∼−−→ KT (n+1)(R[ω(n)

pr ]) ∈ SpB(Z/pr)×
T (n+1) .

Example 4.14. For every r ∈ N, we have a natural action of Z
×
p on Z/pr, and

the projection maps Z/pr+1 � Z/pr are Z×
p -equivariant. By naturality, we get an
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isomorphism of sequential diagrams in SpBZ
×
p

T (n+1):

KT (n+1)(R)[ω(n+1)
p ] KT (n+1)(R)[ω(n+1)

p2 ] · · · KT (n+1)(R)[ω(n+1)
pr ] · · ·

KT (n+1)(R[ω(n)
p ]) KT (n+1)(R[ω(n)

p2 ]) · · · KT (n+1)(R[ω(n)
pr ]) · · ·

���

Taking the colimit of the sequences, by [CSY21b, Definition 4.10] (see also [BCSY24,
Corollary 6.18]) and the preservation of filtered colimits under KT (n+1), we get an
isomorphism

KT (n+1)(R)[ω(n+1)
p∞ ] ∼−−→ KT (n+1)(R[ω(n)

p∞ ]) ∈ SpBZ
×
p

T (n+1).

Our next goal is to extend the last two examples from cyclotomic extensions to
any intermediate extension. Let 0 ≤ r ≤ ∞, and let G = (Z/pr)× if r < ∞ or
G = Z×

p if r = ∞, with its canonical action on R[ω(n)
pr ] over R. For any subgroup

H ≤ G, the assembly map for H-fixed points together with the (inverses of) the
isomorphisms from the examples above give us a map

KT (n+1)(R[ω(n)
pr ]hH) −−→ KT (n+1)(R[ω(n)

pr ])hH

� KT (n+1)(R)[ω(n+1)
pr ]hH ∈ SpB(G/H)

T (n)

lax symmetric monoidally natural in R ∈ Alg(SpT (n)).
We also remind the reader that Z×

p can be decomposed as

Z
×
2 � (Z/4)× × (1 + 4Z2), Z

×
p � F

×
p × (1 + pZp).

In other words, Z×
p � Tp×Zp where Tp is (Z/4)× for p = 2 and F

×
p for odd primes.

Proposition 4.15. Let 0 ≤ r ≤ ∞, and let H be a finite subgroup of G, then the
map

KT (n+1)(R[ω(n)
pr ]hH) −−→ KT (n+1)(R)[ω(n+1)

pr ]hH

is an isomorphism.

Proof. We begin with the case of finite r. If r = 0 then G is trivial and there is
nothing to prove, so we assume that r ≥ 1. Denote S = R[ω(n)

pr ]. It suffices to show
that the map

KT (n+1)(ShH) −−→ KT (n+1)(S)hH

is an isomorphism. By [CSY21b, Proposition 5.2], the cyclotomic extension
ST (n+1)[ω

(n+1)
pr ] is faithful. Thus, we can check if the above assembly map is an

isomorphism after tensoring with it. Namely, after adding pr-th roots of unity. The
resulting map is the top arrow in the following diagram:

KT (n+1)(ShH)[ω(n+1)
pr ] KT (n+1)(S)hH [ω(n+1)

pr ]

KT (n+1)(ShH [ω(n)
pr ]) KT (n+1)(S)[ω(n+1)

pr ]hH

KT (n+1)(S[ω(n)
pr ]hH) KT (n+1)(S[ω(n)

pr ])hH

� �

��
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 35

To see that the diagram commutes, note that the upper and lower triangles commute
by the compatibility of assembly maps under composition, and the middle square
commutes by the naturality of the cyclotomic redshift map (Theorem 4.11) applied
to the assembly map. The bottom left and top right vertical maps are isomorphism
since SpT (n) and SpT (n+1) are 1-semiadditive, hence their tensor products commute
with 1-finite limits in each coordinate. The top left and bottom right vertical maps
are isomorphisms again by cyclotomic redshift (Theorem 4.11). Thus, the top map
is an isomorphism if and only if the bottom map is an isomorphism. By the second
Rognes–Galois condition we have

S[ω(n)
pr ] �

∏

(Z/pr)×
S ∈ Alg(SpT (n+1))B(Z/pr)× ,

where the action of (Z/pr)×, hence of H, is given by freely permuting the factors.
Finally, KT (n+1) preserves finite products, so the bottom map identifies with the
isomorphism

KT (n+1)(
∏

(Z/pr)×/H

S) ∼−−→
∏

(Z/pr)×/H

KT (n+1)(S).

Now assume that r = ∞. Since H is finite, it is contained in Tp. Note that
for k ≥ 2 if p is even and for k ≥ 1 if p is odd, Tp also injects to the Galois
group of R[ω(n)

pk ], and the isomorphism R[ω(n)
p∞ ] � lim−→R[ω(n)

pk ] is Tp-equivariant.
Since SpT (n) and SpT (n+1) are 1-semiadditive we get that (−)hH commutes with
colimits, and KT (n+1) commutes with filtered colimits, so the result follows from
the finite case. �
Cyclotomic completion. Recall that given R ∈ CAlg(SpT (n)), the infinite cyclo-
tomic extension R[ω(n)

p∞ ] is not guaranteed to be faithful over R. In [BCSY24], the
authors introduced the cyclotomic completion functor (−)∧cyc : SpT (n) → SpT (n),
which is the universal localization making all infinite cyclotomic extensions faith-
ful, namely, the ST (n)[ω

(n)
p∞ ]-localization. Moreover, in [BCSY24, Proposition 6.19]

the authors gave a formula for the cyclotomic completion. Recall that Z×
p � Tp×Zp.

The cyclotomic completion is given by taking fixed points with respect to the
(dense) subgroup Tp × Z, i.e.,

R∧
cyc � R[ω(n)

p∞ ]h(Tp×Z) ∈ Alg(SpT (n)).

By cyclotomic redshift (Theorem 4.11), we have a Z×
p -equivariant isomorphism

KT (n+1)(R)[ω(n+1)
p∞ ] ∼−−→ KT (n+1)(R[ω(n)

p∞ ]).

We thus get the following formula for the cyclotomic completion of KT (n+1)(R):

KT (n+1)(R)∧cyc
∼−−→ KT (n+1)(R[ω(n)

p∞ ])h(Tp×Z).

One can take fixed points with respect to Tp × Z in two steps, by first taking
the fixed points with respect to the finite group Tp, and then the fixed points with
respect to the residual action of Z. This leads to consider the following intermediate
extensions:

Definition 4.16. For X ∈ SpT (n) we let

X[ω(n)
pr ] := X[ω(n)

pr ]hTp ∈ SpT (n).
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Observe that when p = 2 we have X[ω(n)
22 ] � X and X[ω(n)

2r ] carries a residual
(Z/2r−2)-action, while for odd p we have X[ω(n)

p1 ] � X and X[ω(n)
pr ] carries a residual

(Z/pr−1)-action. We also note that since SpT (n) is 1-semiadditive, we have

X[ω(n)
p∞ ] = X[ω(n)

p∞ ]hTp = (lim−→X[ω(n)
pr ])hTp

∼−−→ lim−→X[ω(n)
pr ]hTp

= lim−→X[ω(n)
pr ] ∈ SpBZp

T (n).

Proposition 4.17. For every R ∈ Alg(SpT (n)) the map

KT (n+1)(R) −−→ KT (n+1)(R[ω(n)
p∞ ])hZ

exhibits the target as the cyclotomic completion of the source. In particular, if R
itself is cyclotomically complete, the assembly map

KT (n+1)(R[ω(n)
p∞ ]hZ) −−→ KT (n+1)(R[ω(n)

p∞ ])hZ

exhibits the target as the cyclotomic completion of the source.

Proof. For the first part, by [BCSY24, Proposition 6.19], for any X ∈ SpT (n) the
map

X
∼−−→ X[ω(n)

p∞ ]h(Tp×Z) � X[ω(n)
p∞ ]hZ

exhibits the target as the cyclotomic completion of X. By Proposition 4.15, we
have

KT (n+1)(R)[ω(n+1)
p∞ ] ∼−−→ KT (n+1)(R[ω(n)

p∞ ]) ∈ SpBZp

T (n+1).

Taking Z-fixed points and applying the above to X = KT (n+1)(R), we conclude
that

KT (n+1)(R) −−→ KT (n+1)(R[ω(n)
p∞ ])hZ

exhibits the target as the cyclotomic completion of the source, as required.
We move on to the second part. By the naturality of Theorem 4.11 in M and

Remark 4.12, the map from the first part is given by applying KT (n+1) to the
Z-equivariant map R → R[ω(n)

p∞ ], where R is endowed with the trivial action, and
passing to the mate. Namely, it is the bottom composition in the following diagram:

KT (n+1)(R) KT (n+1)(RhZ) KT (n+1)(R[ω(n)
p∞ ]hZ)

KT (n+1)(R)hZ KT (n+1)(R[ω(n)
p∞ ])hZ

The left triangle clearly commutes, and the right square commutes by the naturality
of the assembly map. Since R is cyclotomically complete we know that R

∼−−→

R[ω(n)
p∞ ]hZ, so that the top composition is an isomorphism. Therefore, by the first

part, the assembly map appearing on the right exhibits the target as the cyclotomic
completion of the source. �
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4.2. Fourier transform. We shall now explain the compatibility of the functor
KT (n+1) with the chromatic Fourier transform of [BCSY24]. With notation as in
Section 4.1, we recall the construction of this Fourier transform.

Notation 4.18. To avoid cumbersome notation, whenever we have a connective
spectrum M and an object X of some category C , we shall denote by XM the
constant Ω∞M -shaped limit on X, instead of XΩ∞M .

Definition 4.19 ([BCSY24, Definition 3.6 and Definition 3.11]). Let C ∈
CMon(Cat) and R ∈ CAlg(Sp≥0,(p)). The space of R-pre-orientations of height n
of C is defined to be

POr(n)
R

(C ) := MapSp≥0
(I(n)

p R,1×
C ).

By [BCSY24, Proposition 3.10], for C ∈ CAlg(PrL) the space POr(n)
R

(C ) is equiv-
alent to the space of natural transformations

1C [−] −−→ 1
I(n)
p (−)

C

between functors Mod[0,n]
R

→ CAlg(C ). We denote the natural transformation
corresponding to ω ∈ POr(n)

R
(C ) by

Fω : 1C [−] −−→ 1
I(n)
p (−)

C

and refer to Fω as the Fourier transform associated with ω. Finally, we say that ω
is an R-orientation, if Fω is an isomorphism for all π-finite M ∈ Mod[0,n]

R
.

The main result of this section is Theorem 4.26, which shows (under certain
assumptions on ω and M) that the image of the Fourier transform

Fω : R[M ] −−→ RI(n)
p M

under the functor KT (n+1) : CAlg(SpT (n)) → CAlg(SpT (n+1)) is a Fourier trans-
form with respect to a corresponding pre-orientation. Recall that the functor
KT (n+1) can be written as a composition of three functors:

CAlg(SpT (n))
M̂od(−)−−−−−→ CAlgSpT (n)

(PrL) (−)dbl

−−−−→ CAlg(Cat
L

f
n
)

KT (n+1)−−−−−−→ CAlg(SpT (n+1)).

Thus, we are led to consider the compatibility of three different operations with the
formation of Fourier transforms:

(1) For R ∈ CAlg(SpT (n)), we shall relate the Fourier transforms of R and
of M̂odR. This is essentially done in [BCSY24, §5] by discussing more
generally the interaction of Fourier theory with categorification, and we
review and slightly expand this discussion.

(2) For C ∈ CAlgSpT (n)
(PrL), we shall relate the Fourier transforms of C and

of its small subcategory C dbl ∈ CAlg(CatLf
n
).

(3) For D ∈ CAlg(CatLf
n
), we relate the Fourier transforms of D with that of

KT (n+1)(D). More generally, we shall show that the Fourier transform is
compatible with higher semiadditive lax symmetric monoidal functors.

We now deal with each of these points, and later combine them to prove our
main result, Theorem 4.26.
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Fourier and categorification. For C ∈ CAlg(PrL), recall from [BCSY24, §5.2] that
taking loop spaces gives a natural map

Ω: POr(n+1)
R

(ModC (PrL)) −−→ POr(n)
R

(C ),

taking a pre-orientation ω : I(n+1)
p R → C× to the pre-orientation given by

I(n)
p R � ΩI(n+1)

p R
Ωω−−−→ ΩC × � 1×

C .

The corresponding Fourier transforms are related by the following result:

Proposition 4.20. Let C ∈CAlg(PrL), let R∈CAlg(Sp≥0,(p)) and let ω : I(n+1)
p R

→ C × be a pre-orientation of ModC (PrL) of height n + 1. Then, we have the
following commutative diagram in CAlgC (PrL)

Mod1C [M ](C ) Mod
1
I
(n)
p M

C

(C )

C [ΣM ] C I(n+1)
p ΣM

FΩω

Fω

�

naturally in M ∈ Mod[0,n]
R

, where the right vertical map is the left adjoint of the
global sections functor as in [BCSY24, §2.1].

Proof. Taking (C -linear) endomorphisms of the units from the categorical Fourier
transform

Fω : C [ΣM ] → C I(n+1)
p ΣM

gives a morphism

Fd
ω : 1C [ΩΣM ] � End(1C [ΣM ]) → End(1

C
I
(n+1)
p ΣM

) � 1I(n)
p M .

By [BCSY24, Proposition 5.13], this morphism fits into a commutative diagram in
CAlg(SpT (n)), natural in M :

1C [M ] 1
I(n)
p M

C

1C [ΩΣM ] 1
I(n+1)
p ΣM

C

�

FΩω

�

F
d
ω

Now, consider the following diagram in CAlgC (PrL):

Mod1C [M ](C ) Mod
1
I
(n)
p M

C

(C )

Mod1C [ΩΣM ](C ) Mod
1
I
(n+1)
p ΣM

C

(C )

C [ΣM ] C I(n+1)
p ΣM

FΩω

Fω

�

��

F
d
ω
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 39

The upper part is obtained by applying Mod(−)(C ) to the previous commutative
diagram. The bottom commutative square is obtained by applying the counit map
of the symmetric monoidal adjunction

LMod(−)(C ) : Alg(C ) � ModC (PrL)∗ :End(−)

to the categorical Fourier transform, and the bottom left map is an isomorphism
due to Proposition A.4. Since the outer rectangle of this diagram is the diagram
from the statement of the proposition, the result follows. �

Remark 4.21. In the setting of Proposition 4.20, when I
(n+1)
p ΣM is C -affine in the

sense of [BCSY24, Definition 2.15], the right map in the commutative square is also
an isomorphism. Thus, in this case we get an equivalence between the functor

Fω : C [ΣM ] −−→ C I(n+1)
p ΣM

and the functor induced from

FΩω : 1C [M ] −−→ 1
I(n)
p M

C

on module categories.

Passing to dualizable objects. Recall that for a symmetric monoidal category C , the
natural inclusion i : C dbl ↪→ C induces a natural isomorphism i : (C dbl)× ∼−−→ C ×.

Taking maps from I
(n)
p R into this isomorphism, we obtain a natural equivalence

POr(n)
R

(C ) � POr(n)
R

(C dbl).

Definition 4.22. Let C ∈ CAlg(Cat) and R ∈ CAlg(Sp≥0,(p)). For a pre-
orientation ω : I(n)

p R → C ×, we denote by

ωdbl : I(n)
p R −−→ (C dbl)×

the pre-orientation corresponding to ω under the above equivalence.

The Fourier transforms of ω and ωdbl are related by the following result, where
the left morphism in the commutative diagram is the one from Definition A.10.

Proposition 4.23. Let C ∈ CAlg(PrLst), let R ∈ CAlg(Sp≥0,(p)) and let ω : I(n)
p R

→ C × be an R-pre-orientation. Then, the following diagram commutes naturally
in M ∈ Mod[0,n]

R
:

C [M ]dbl (C I(n)
p M )dbl

C dbl[M ] (C dbl)I
(n)
p M

F
dbl
ω

Fωdbl

�

Proof. First, the target of both paths in the diagram is right Kan extended along

I(n)
p R : pt −−→ Mod[0,n]

R
.

Therefore, it suffices to show that the diagram commutes after evaluation at M =
I
(n)
p R and post-composing with the canonical augmentation (C dbl)Map(I(n)

p R,I(n)
p R)
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40 SHAY BEN-MOSHE ET AL.

→ C dbl (see [BCSY24, Remark 3.12]). Namely, we have to show that the following
diagram commutes:

C [I(n)
p R]dbl C dbl

C dbl[I(n)
p R] C dbl

εdbl
ω

εωdbl

where εω is the augmentation of C [I(n)
p R] corresponding to ω and similarly for

ωdbl. To show that this square commutes, we can take the mates with respect to
the adjunction

C dbl[−] : Sp≥0 � CAlgCdbl(Catperf) :(−)×.

By construction, the mate of the Beck–Chevalley map C dbl[I(n)
p R] → C [I(n)

p R]dbl

is the map

I(n)
p R −−→ C [I(n)

p R]× i−1

−−→ (C [I(n)
p R]dbl)×,

where the first map is the unit of the adjunction above. Consider now the diagram

(C [I(n)
p R]dbl)× (C dbl)×

C [I(n)
p R]× C ×

I
(n)
p R (C dbl)×

εdbl
ω

i−1

εω

i−1

i

ωdbl

ω

in Sp≥0. The outer rectangle is the mate of the above square, so we need to show
that this diagram commutes. The upper square commutes by the naturality of i.
The left triangle commutes by the definition of εω and the right triangle commutes
by the definition of ωdbl. �

Fourier and lax functors. We now provide a slight generalization of [BCSY24,
Proposition 3.18]. Let F : C → D be a lax symmetric monoidal functor between
symmetric monoidal categories. As explained in Definition A.8, we have a natural
map F× : R× → F (R)× for R ∈ CAlg(C ).

Definition 4.24. For an R-pre-orientation of C , we define an R-pre-orientation
of ModF (1C )(D)

F (ω) : I(n)
p R

ω−−→ 1×
C

F×
−−→ F (1C )×.

The Fourier transforms of ω and F (ω) are compatible in the following sense.

Proposition 4.25. Let F : C → D be a lax symmetric monoidal functor between
presentably symmetric monoidal categories. Let n ≥ 0, let R ∈ CAlg(Sp≥0,(p)),
and let ω : I(n)

p R → 1×
C be an R-pre-orientation of C . Then, the following diagram
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in CAlgF (1C )(D) commutes naturally in M ∈ Mod[0,n]
R

F (1C [M ]) F (1I(n)
p M

C )

F (1C )[M ] F (1C )I
(n)
p M

F (Fω)

FF (ω)

Proof. We essentially repeat the proof of [BCSY24, Proposition 3.18], we give the
details for the convenience of the reader. First, note that the diagram is indeed
natural in M , as the assembly maps and Fourier transforms are natural in M . To
see that it commutes, recall from [BCSY24, Proposition 3.10] that the space of
natural maps

F (1C )[−] −−→ F (1C )(−)

between functors Mod[0,n]
R

→ CAlgF (1C )(D) is equivalent to the space of R-pre-
orientations of ModF (1C )(D). Thus, it suffices to prove that the pre-orientations
corresponding to the two maps coincide.

By construction, the pre-orientation corresponding to FF (ω) is F (ω). The pre-
orientation corresponding to the other composition is the lower composition in
following diagram:

1C [I(n)
p R]× (1Map(I(n)

p R,I(n)
p R)

C )× 1×
C

I
(n)
p R F (1C [I(n)

p R])× F (1Map(I(n)
p R,I(n)

p R)
C )× F (1C )×

This diagram commutes because of the naturality of the map F× : R× → F (R)×.
Again, by construction of Fω, the composition from I

(n)
p R to 1×

C is ω, which when
composed with 1×

C → F (1C )×, gives F (ω). �

Fourier and K-theory. We turn to prove the compatibility of the functor KT (n+1)
with the Fourier transform.

Theorem 4.26. Let R ∈ CAlg(SpT (n)), let R ∈ CAlg(Sp≥0,(p)) and let ω be an
R-pre-orientation of ̂ModR ∈ CAlg(PrLT (n)) of height n + 1.

(1) The following diagram commutes naturally in M ∈ Mod[0,n]
R

:

KT (n+1)(R[M ]) KT (n+1)(RI(n)
p M )

KT (n+1)(R)[ΣM ] KT (n+1)(R)I
(n+1)
p ΣM

KT (n+1)(FΩω)

FKT (n+1)(ω
dbl)

(2) When M is π-finite, the vertical maps in the above diagram are isomor-
phisms, giving an equivalence

KT (n+1)(FΩω) � FKT (n+1)(ωdbl)

of maps in CAlg(SpT (n+1)).

Licensed to Univ of Rochester. Prepared on Fri Nov 22 07:20:29 EST 2024 for download from IP 128.151.13.9.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



42 SHAY BEN-MOSHE ET AL.

(3) If Ωω is an orientation, then KT (n+1)(ωdbl) is an orientation. That is,
for every π-finite M ∈ Mod[0,n+1]

R
the Fourier transform

FKT (n+1)(ωdbl) : KT (n+1)(R)[M ] ∼−−→ KT (n+1)(R)I
(n+1)
p M

is an isomorphism.

Proof. We begin by establishing part (1). By Proposition 4.20 applied to C =
M̂odR, we have the following commutative diagram in CAlg(PrLT (n)), natural in M :

M̂odR[M ] M̂od
R

I
(n)
p M

M̂odR[ΣM ] M̂odI(n+1)
p ΣM

R

FΩω

Fω

�

Taking dualizable objects and pasting with the commutative square from
Proposition 4.23, we get the following commutative diagram in CAlg(Catperf):

M̂oddbl
R[M ] M̂oddbl

R
I
(n)
p M

(M̂odR[ΣM ])dbl (M̂odI(n+1)
p ΣM

R )dbl

M̂oddbl
R [ΣM ] (M̂oddbl

R )I
(n+1)
p ΣM

F
dbl
Ωω

F
dbl
ω

�

F
ωdbl

�

Applying KT (n+1) and pasting the commutative square from Proposition 4.25 for
the lax symmetric monoidal functor KT (n+1), we get the following commutative
diagram in CAlg(SpT (n+1)), in which the outer rectangle is the required diagram:

KT (n+1)(R[M ]) KT (n+1)(RI(n)
p M )

KT (n+1)((M̂odR[ΣM ])dbl) KT (n+1)((M̂odI(n+1)
p ΣM

R )dbl)

KT (n+1)(M̂oddbl
R [ΣM ]) KT (n+1)((M̂oddbl

R )I
(n+1)
p ΣM )

KT (n+1)(R)[ΣM ] KT (n+1)(R)I
(n+1)
p ΣM

KT (n+1)(Fdbl
Ωω)

KT (n+1)(Fdbl
ω )

F
KT (n+1)(ω

dbl)

KT (n+1)(Fωdbl )

�

�

For part (2), recall that when M is π-finite, the left vertical composition is an
isomorphism by Corollary 3.4 (see also Remark 3.5), and similarly the right vertical
composition is an isomorphism by Corollary 3.6.

Finally, we prove part (3). By assumption, Ωω is an orientation, so that the upper
map in the diagram from part (1) is an isomorphism for every π-finite M ∈ Mod[0,n]

R
.
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By part (2), we conclude that for every π-finite N := ΣM ∈ Mod[1,n+1]
R

the Fourier
transform

FKT (n+1)(ωdbl) : KT (n+1)(R)[N ] ∼−−→ KT (n+1)(R)I
(n+1)
p N

is an isomorphism. It remains to show that this holds for every π-finite N ∈
Mod[0,n+1]

R
. This follows from the case of 1-connective N as in the proof of [BCSY24,

Theorem 5.15], which we briefly recall for the reader’s convenience. Consider the
exact sequence

τ≥1N −−→ N −−→ τ≤0N ∈ Mod[0,n+1]
R

.

By the 1-connective case, the Fourier transform is an isomorphism at τ≥1N . By the
duality from [BCSY24, Proposition 4.9], the Fourier transform is also an isomor-
phism at π-finite objects of Mod[0,n]

R
, and in particular at τ≤0N . Since ̂ModKT (n+1)(R)

is semiadditive, the underlying space of τ≤0N , which is a finite set, is M̂odKT (n+1)(R)-
affine by [BCSY24, Example 2.35]. Thus, by [BCSY24, Proposition 4.12], the
Fourier transform is an isomorphism at N , as required. �

4.3. Kummer theory. Let R ∈ CAlg(SpT (n)). As shown in [BCSY24, Proposi-
tion 4.32], for R ∈ CAlg(Sp≥0,(p)), an R-orientation ω : I(n)

p R → R× provides a
natural equivalence

CAlgΩ∞M-gal(R; SpT (n)) � MapSp≥0
(I(n)

p M,R×)

for π-finite M ∈ Mod[1,n]
R

, referred to as the “Kummer equivalence”. Here, the
left-hand side is the space of local systems Ω∞M → CAlgR(C ) which are Galois
extensions of R (with Galois group Ω∞Σ−1M).

Our goal is to compare the Kummer equivalences of R and KT (n+1)(R). We first
relate their sources and targets, starting with the sources. As we have shown in
Theorem 3.13, the functor

KT (n+1) : CAlgR(SpT (n)) → CAlgKT (n+1)(R)(SpT (n+1))

carries Galois extensions to Galois extensions for n-finite p-groups, and in particular
restricts to a natural map

KT (n+1) : CAlgΩ∞M-gal(R; SpT (n)) −−→ CAlgΩ∞M-gal(KT (n+1)(R); SpT (n+1)).
We now consider the targets. As explained in Definition A.8, since K : Catperf →
Sp≥0 is a lax symmetric monoidal functor, there is a natural map C× → K(C )×
for C ∈ CAlg(Catperf). Moreover, the equivalence 1×

C � ΩC× corresponds to a
natural map Σ1×

C → C× of connective spectra. Composing them, we get a natural
map

Σ1×
C −−→ K(C )×.

For any S ∈ CAlgR(SpT (n)), applying the above to C = M̂oddbl
S and post-composing

with the map K → KT (n+1), we obtain a natural map

ΣS× −−→ KT (n+1)(S)×.
Consider also the two adjunctions

R[−] : Sp≥0 � CAlgR(SpT (n)) :(−)×,
KT (n+1)(R)[−] : Sp≥0 � CAlgKT (n+1)(R)(SpT (n+1)) : (−)×.
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These adjunctions are compatible via the map above in the following sense:

Lemma 4.27. Let R ∈ CAlg(SpT (n)) and let M ∈ Sp≥0. Then, the following
diagram commutes naturally in S ∈ CAlgR(SpT (n))

Map(R[M ], S) Map(KT (n+1)(R[M ]),KT (n+1)(S)) Map(KT (n+1)(R)[ΣM ],KT (n+1)(S))

Map(M,S×) Map(ΣM,ΣS×) Map(ΣM,KT (n+1)(S)×)

�

∼

�

where the upper right isomorphism is the one from Corollary 3.4.

Proof. Note that the functor
Map(R[M ],−) : CAlgR(SpT (n)) → S

in the upper left corner of the diagram is co-represented by R[M ], so it suffices to
prove the commutativity in the special case S = R[M ], and after evaluating both
of the compositions at IdR[M ].

The value of the upper-right composite at IdR[M ] is the map

ΣM −−→ KT (n+1)(R)[ΣM ]× ∼−−→ KT (n+1)(R[M ])×,

while the value of the left-bottom composite is the map
ΣM −−→ ΣR[M ]× −−→ KT (n+1)(R[M ])×.

In light of Remark 3.5, it thus suffices to show that the following diagram commutes:

KT (n+1)(M̂oddbl
R )[ΣM ]×

ΣM (M̂oddbl
R [ΣM ])× KT (n+1)(M̂oddbl

R [ΣM ])×

ΣR[M ]× (M̂oddbl
R[M ])× KT (n+1)(M̂oddbl

R[M ])×

�

�

The commutativity of the upper (triangle-shaped) square follows from Lemma A.9.
The right square commutes by naturality of the map C × → KT (n+1)(C )×, so we
are left with the left square. Finally, using Corollary A.5, we embed this square as
the left square in the following diagram:

ΣM (M̂oddbl
R [ΣM ])× (M̂odR[ΣM ]dbl)× (M̂odR[ΣM ])×

ΣR[M ]× (M̂oddbl
R[M ])

× M̂od×
R[M ]

∼

Recall that every invertible object is dualizable, which shows that the bottom right
horizontal map is an isomorphism. Therefore, to show that the left square com-
mutes, it suffices to show that the outer rectangle and the right rectangle commute.
The commutativity of the outer square follows from the construction of the right
map as in [BCSY24, Proposition 5.11] (see also Remark A.7). The middle triangle
commutes since the vertical map is defined as the composition of the other two.
Finally, the right (trapezoid-shaped) square commutes because of the naturality of
the embedding C dbl ↪→ C . �
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Recall that we have a map ΣR× → KT (n+1)(R)×. Post-composing with this
map gives a map

Map(I(n)
p M,R×) −−→ Map(ΣI(n)

p M,ΣR×)
∼−−→ Map(I(n+1)

p M,ΣR×)

−−→ Map(I(n+1)
p M,KT (n+1)(R)×).

Also recall that for any R-orientation ω of R, Theorem 4.26 gives an R-orientation
KT (n+1)(ω) of KT (n+1)(R). We can now compare the Kummer equivalences corre-
sponding to these orientations.

Theorem 4.28. Let R ∈ CAlg(Sp≥0,(p)), let R ∈ CAlg(SpT (n)) and let ω be an
R-orientation of ̂ModR of height n + 1. Then, the following diagram commutes
for any π-finite M ∈ Mod[1,n]

R

CAlgΩ∞M-gal(R; SpT (n)) CAlgΩ∞M-gal(KT (n+1)(R); SpT (n+1))

Map(I(n)
p M,R×) Map(I(n+1)

p M,KT (n+1)(R)×)

� �

Proof. We exhibit the required commutative square as the pasting of the following
squares:

CAlgΩ∞M-gal(R; SpT (n)) CAlgΩ∞M-gal(KT (n+1)(R); SpT (n+1))

Map(RΩ∞M , R) Map(KT (n+1)(R)Ω∞M ,KT (n+1)(R))

Map(R[I(n)
p M ], R) Map(KT (n+1)(R)[I(n+1)

p M ],KT (n+1)(R))

Map(I(n)
p M,R×) Map(I(n+1)

p M,KT (n+1)(R)×)

� �

� �

� �

The bottom square is the commutative square of Lemma 4.27 applied to the ring
R and connective spectrum I

(n)
p M . The upper horizontal morphism comes from

Theorem 3.13. The second and third horizontal morphisms are obtained by apply-
ing KT (n+1) and using the isomorphisms of Corollary 3.4 and Corollary 3.6. The
left upper vertical isomorphism is given by taking the limit over Ω∞M to a Ga-
lois extension R → S, giving a map RΩ∞M → limΩ∞M S � R, and similarly for
the right upper vertical isomorphism. The upper square commutes by naturality
of limits. The middle vertical isomorphisms are the Fourier transforms, which are
isomorphisms as in [BCSY24, Theorem 7.33], and the middle square commutes
because of Theorem 4.26. �

5. Cyclotomic hyperdescent

In this section we explain the intimate relationship between cyclotomic comple-
tion and hyperdescent, and use it to rephrase the results of the previous section in
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46 SHAY BEN-MOSHE ET AL.

this language. These should be compared with the general results on hyperdescent
for algebraic K-theory as in [CM21]. We refer the reader also to [Mor23] for a
discussion of hypersheaves and hyperdescent in the chromatic context.

The starting point of this section is the observation that for X ∈ SpT (n) the
Z
×
p -action on the infinite cyclotomic extension X[ω(n)

p∞ ] is continuous. As a defini-
tion of continuous Z×

p -actions, we consider sheaves on the site T
Z
×
p

of continuous
finite Z×

p -sets (see for example [CM21, Definition 4.1]). Indeed, the intermediate
cyclotomic extensions X[ω(n)

pr ] arrange into the cyclotomic sheaf X[ω(n)
p(−) ], whose

stalk is X[ω(n)
p∞ ]. In this language, cyclotomic redshift (Theorem 4.11) says that

KT (n+1) takes cyclotomic sheaves to cyclotomic sheaves (see Proposition 5.12).
The main connection between cyclotomic completion and hyperdescent is estab-

lished in Proposition 5.11, showing that X is cyclotomically complete if and only
if the cyclotomic sheaf X[ω(n)

p(−) ] is a hypersheaf. As explained in [BCSY24, §7.3],
by the Devinatz–Hopkins theorem [DH04], all K(n)-local spectra are cyclotomi-
cally complete. Thus, we deduce that KK(n+1)(R[ω(n)

p(−) ]) is a hypersheaf for any
R ∈ Alg(SpT (n)), namely that K(n+ 1)-local algebraic K-theory satisfies hyperde-
scent along the cyclotomic tower (see Corollary 5.13).

As continuous finite Zp-sets are simpler than continuous finite Z×
p -sets, we con-

sider the corresponding restriction of the cyclotomic sheaf, whose values are the
extensions R[ω(n)

pr ] of Definition 4.16. We leverage the connection between cyclo-
tomic completion and hyperdescent to reinterpret and strengthen Proposition 4.17
to Theorem 5.16, stating that the map

KT (n+1)(R[ω(n)
p(−) ]) −−→ KT (n+1)(R[ω(n)

p∞ ])h(p(−)
Z)

exhibits the target both as the hypersheafification and as the level-wise cyclotomic
completion of the source.

5.1. Continuous group actions. In this subsection we study continuous group
actions of profinite groups G, and in particular continuous Galois extensions. To
achieve this, we begin by recalling the general setup of (hyper)sheaves on a site, and
then specialize to the site TG of continuous finite G-sets. We say that a sheaf R of
commutative algebras is a continuous G-Galois extension if its value at any finite
G-set is a faithful Galois extension. The two main results are Proposition 5.4, which
is a form of Galois descent for continuous G-Galois extensions, and Corollary 5.9,
which shows that for modules over R, hypersheafification coincides with level-wise
localization at the stalk of R.

Sheaves and hypersheaves. We begin by recalling the relevant setup of (hyper)-
sheaves and their formal properties. We refer the reader to [Lura, §6.5] for a
comprehensive study of sheaves and hypersheaves and to the discussion in [HPT23,
§1] for a short overview of (hyper)sheaves with coefficients.

For a site T consider the ∞-topos Shv(T ) of sheaves on T . For a presentable
category C we let

Shv(T ; C ) := Shv(T ) ⊗ C ∈ PrL

denote the category of C -valued sheaves on T . This can alternatively be defined as
the full subcategory of presheaves that satisfy descent, namely the sheaf condition
(see [Lurb, Remark 1.3.1.6]).
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 47

We now wish to define the full subcategory of hypersheaves. In the case of
S-valued sheaves, they can be defined intrinsically – we denote by Shvhyp(T ) ⊂
Shv(T ) the full subcategory of hypercomplete objects, namely those sheaves that
are local with respect to ∞-connected morphisms (see [Lur09, §6.5.2]). As above,
we define

Shvhyp(T ; C ) := Shvhyp(T ) ⊗ C ∈ PrL.
This can alternatively be defined as the full subcategory of presheaves that satisfy
hyperdescent, the analogue of the sheaf condition for hypercovers (this follows from
[Lur09, Corollary 6.5.3.13] and the formula for the Lurie tensor product [Lura,
Proposition 4.8.1.17]). The inclusion Shvhyp(T ; C ) ⊆ Shv(T ; C ) admits a left
adjoint

(−)hyp : Shv(T ; C ) −−→ Shvhyp(T ; C )
called hypersheafification. We note that pushforwards of sheaves preserve hyper-
sheaves (see for example [Lur09, Proposition 6.5.2.13]). Observe that when C
is presentably symmetric monoidal, then the category of (hyper)sheaves is pre-
sentably symmetric monoidal as well, and the hypersheafification functor is sym-
metric monoidal.

We shall be primarily interested in sites with a finitary Grothendieck topology
in the sense of [Lurb, Definition A.3.1.1]. One of the key properties of hypersheaves
is the Deligne completeness theorem saying that equivalences can be checked on
stalks, a version of which we now recall:

Proposition 5.1. Let T be a category with pullbacks endowed with a finitary
Grothendieck topology, and let C be a compactly generated presentable category.
Then Shvhyp(T ; C ) has enough points in the sense that the collection of functors

C ⊗ f∗ : Shvhyp(T ; C ) → C ,

where f∗ ranges over the points of Shvhyp(T ), is jointly conservative.

Proof. By [Hai21, Lemma 2.12], it suffices to prove the result for C = S. By
[Lurb, Proposition A.3.1.3], the ∞-topos Shv(T ) is locally coherent, whence by
[Lurb, Proposition A.2.2.2] so is Shvhyp(T ). The claim then follows from the
Deligne completeness theorem [Lurb, Theorem A.4.0.5]. �

By [Lur09, p. 669], hypersheafification is a geometric morphism. Thus, by com-
posing, any point of Shvhyp(T ) gives a point of Shv(T ). Therefore, under the
assumptions of Proposition 5.1, given a map F → G in Shv(T ; C ) from a sheaf to
a hypersheaf, to check that it exhibits G as the hypersheafification of F it suffices
to check that it is an isomorphism on all points coming from Shvhyp(T ).

Sheaves on continuous G-sets. We now review the setup of continuous G-actions
where G is a profinite group, as developed in the ∞-categorical setting for example
in [CM21, §4.1]. We denote by TG the site of continuous finite G-sets, endowed
with the Grothendieck topology generated by the jointly surjective finite families
of maps, which is finitary by construction. For a sheaf F ∈ Shv(TG; C ) and an
open subgroup U ≤ G, observe that F(G/U) has a residual NG(U)/U -action.
Furthermore, there is an equivalence (see [CM21, Construction 4.5])

Shv(TG; C ) � lim−→U�G open CB(G/U) ∈ PrL.
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48 SHAY BEN-MOSHE ET AL.

In other words, the data of a sheaf F is precisely the data of F(G/U) ∈ CB(G/U)

together with coherent compatibility maps. In particular, by [Lur09, Theorem
6.3.3.1] the ∞-topos Shv(TG;S) can be presented as a filtered limit formed in the
category of ∞-topoi:

Shv(TG;S) � lim←−U�G open SB(G/U).

By [Lur09, Remark 6.3.5.10] applied to the ∞-topos of spaces, the space of points
of SB(G/U) is B(G/U). Consequently, the space of points of Shv(TG;S) is the
filtered limit lim←−B(G/U), which is a connected space with a canonical basepoint.
We denote the distinguished point of this topos by

e∗ : S −−→ Shv(TG;S).

For C ∈ PrL, the corresponding stalk functor e∗ : Shv(TG; C ) → C is given by

e∗F � lim−→U�G open F(G/U).

Since there is a canonical map BG → lim←−B(G/U), the stalk has a canonical G-
action (where G is regarded as a discrete group), namely e∗ lifts to a functor
ē∗ : Shv(TG; C ) → C BG. The right adjoint ē∗ : C BG → Shv(TG; C ) sends X ∈
C BG to the sheaf whose values are

(ē∗X)(G/U) = XhU ∈ C B(G/U).

Since the right adjoint to the forgetful CBG → C is given by X �→
∏

G X, we see
that the right adjoint of e∗ sends X ∈ C to the sheaf whose values are

e∗X(G/U) = ē∗
(

∏

G

X
)

(G/U) =
(

∏

G

X
)hU �

∏

G/U

X ∈ C B(G/U).

Also note that every object of CBG is a hypersheaf since SBG is hypercomplete,
and since ē∗ is a geometric morphism it sends hypersheaves to hypersheaves (see
[Lur09, Proposition 6.5.2.13]).

Continuous Galois extensions and hypersheafification. We now consider Galois
extensions with respect to profinite groups using the above setting.

Definition 5.2. Let G be a profinite group, let C ∈ CAlg(PrL) be semiadditive
and let R ∈ CAlg(Shv(TG; C )). We say that R is a continuous G-Galois extension
if for every open normal subgroup U �G the object R(G/U) ∈ CAlg(C )B(G/U) is
a faithful Galois extension.

We observe that a collection of compatible faithful Galois extensions automati-
cally assembles into a sheaf in the following sense:

Proposition 5.3. Let F : T op
G → CAlg(C ) be a finite product preserving functor

such that F(G/U) is a faithful G/U-Galois extension for any open normal sub-
groups U � G. Then F satisfies the sheaf condition, and hence is a continuous
G-Galois extension.

Proof. Since F preserves finite products, it remains to show that for every inclusion
of open normal subgroups U � U ′ �G the canonical map

F(G/U ′) −−→ F(G/U)h(U ′/U) ∈ CAlg(C B(G/U ′))
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is an isomorphism. This map makes the target into a commutative F(G/U ′)-
algebra. Since F(G/U ′) is a faithful Galois extension, Proposition 3.11 implies
that

(−)h(G/U ′) : CAlgF(G/U ′)(CB(G/U ′)) ∼−−→ CAlg(C )

is an equivalence, and in particular is conservative. Therefore, it suffices to check
that

F(G/U ′)h(G/U ′) −−→ (F(G/U)h(U ′/U))h(G/U ′) � F(G/U)h(G/U) ∈ CAlg(C )

is an isomorphism. Indeed, by assumption F(G/U ′) and F(G/U) are G/U ′- and
G/U -Galois extensions respectively, and in particular satisfy the first Rognes–Galois
condition. Namely, the above map identifies with the identity map of the unit 1C

and so, in particular, is an isomorphism. �

For every continuous G-Galois extension R and X ∈ C , we have the presheaf
X⊗R formed by tensoring R with X level-wise. We show that it is in fact a sheaf,
and generalize the Galois descent result of Proposition 3.11 to profinite groups.

Proposition 5.4. Let G be a profinite group, let C ∈ CAlg(PrL) be semiaddi-
tive and let R be a continuous G-Galois extension. Then, there is a symmetric
monoidal equivalence

−⊗R : C � ModR(Shv(TG; C )) : (−)(G/G).

Proof. Recall that

Shv(TG; C ) � lim−→U�G open CB(G/U) ∈ PrL.

By Proposition 3.11, for every open normal subgroup U�G, taking homotopy fixed
points induces a symmetric monoidal equivalence

(−)h(G/U) : ModR(G/U)(CB(G/U)) ∼−−→ C .

Also, recall that Mod(−)(−) is a symmetric monoidal left adjoint functor from
PrL,CAlg to CAlg(PrL) [Lura, Theorem 4.8.5.11] and hence commutes with colimits.
Finally, we obtain the required equivalence in CAlg(PrL):

ModR(Shv(TG; C )) � ModR(lim−→U�G open C B(G/U))

� lim−→U�G open ModR(G/U)(CB(G/U))
� lim−→U�G open C

� C .

�

For a continuous G-Galois extension R as above, consider the stalk R := e∗R ∈
CAlg(C ). We denote by LR : C → LRC the Bousfield localization with respect to
R. Our next goal is to show that, under some hypothesis, the hypersheafification
of a sheaf which is a module over R is given by applying LR level-wise. For that
purpose, we begin with Lemma 5.5:

Lemma 5.5. Let G be a profinite group, let F : C → D ∈ CAlg(PrL) with C and
D semiadditive, and let R be a continuous G-Galois extension. For any R-module
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50 SHAY BEN-MOSHE ET AL.

sheaf M ∈ ModR(Shv(TG; C )), the presheaf F (M) obtained by applying F level-
wise is a sheaf, and F (R) is a continuous G-Galois extension. This assembles
into a functor

F : ModR(Shv(TG; C )) −−→ ModF (R)(Shv(TG; D)).

Proof. Since F is a colimit preserving functor between semiadditive categories, it
also preserves finite products, so that F (R) preserves products. By Proposition 3.12,
the functor F sends (finite) Galois extensions to Galois extensions, so that
F (R(G/U)) is a G/U -Galois extension for every open normal subgroup U � G.
Thus, Proposition 5.3 implies that F (R) is a continuous G-Galois extension.

Now, since the symmetric monoidal structure on PSh(TG; C ) is compatible with
the sheafification PSh(TG; C ) → Shv(TG; C ), and R is a sheaf, we get an induced
localization ModR(PSh(TG; C )) → ModR(Shv(TG; C )), and similarly for F (R)
and D . Post-composition with F induces a symmetric monoidal functor

F : PSh(TG; C ) −−→ PSh(TG; D),
and in particular sends R-modules to F (R)-modules. Since F : C → D is symmetric
monoidal we see that the outer square in the following diagram commutes:

C ModR(Shv(TG; C )) ModR(PSh(TG; C ))

D ModF (R)(Shv(TG; C )) ModF (R)(PSh(TG; D))

F

−⊗R

−⊗F (R)

F

Proposition 5.4 shows that the horizontal morphisms factor as depicted in the dia-
gram, thus the right vertical morphism

F : ModR(PSh(TG; C )) −−→ ModF (R)(PSh(TG; D))
restricts to the full subcategories of sheaves in the source and target, giving the
dashed morphism in the diagram. �
Proposition 5.6. Let G be a profinite group of finite virtual p-cohomological
dimension, and let C ∈ CAlg(PrLst) be p-local. Let R be a continuous G-Galois
extension with stalk R := e∗R. For every M ∈ ModR(Shv(TG; C )), the presheaf
LRM is a hypersheaf and the map

M −−→ LRM
exhibits the target as the hypersheafification of the source.

Proof. Since the inclusion LRC ⊆ C is limit preserving, for an LRC -valued pre-
sheaf, the (hyper)sheaf condition is the same whether we view it as valued in C
or in LRC . Hence, in either interpretation, we get by Lemma 5.5 that LRM is a
sheaf.

We now show that LRM is a hypersheaf. We begin by reducing to M =
R. By [CM21, Corollary 4.28], hypersheaves form a smashing localization of
Shv(TG; Sp(p)). Consequently, the same holds for Shv(TG;LRC ) since smashing
localizations are closed under tensor products in CAlg(PrL). Consequently, since
LRM is a module over LRR, it suffices to prove that the latter is a hypersheaf.

We shall reduce it to showing that the level-wise tensor product R ⊗ R is a
hypersheaf as follows. The sheaf LRR is a hypersheaf if and only if the map

LRR −−→ (LRR)hyp
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is an isomorphism, where the hypersheafification is formed in Shv(TG;LRC ). Since
the functor

R⊗− : LRC −−→ ModR(C )
is conservative, we can check this after tensoring level-wise with R. We proceed
by showing that this operations sends both sides to sheaves, and moreover R ⊗
(LRR)hyp is the hypersheafification of R⊗LRR. Recall that the category of LRC -
valued sheaves is LRC -linear, with the action given by tensoring with X ∈ LRC
level-wise and sheafifying, and since hypersheafification is smashing, it commutes
with this action. That is, for a sheaf F , the hypersheaf (X ⊗ F)hyp is given by
the sheafification of X ⊗ Fhyp. Now, observe that both LRR and (LRR)hyp are
R-modules. Thus, by Lemma 5.5, applying

R⊗− : LRC −−→ ModR(LRC )

level-wise sends them to sheaves (note that the tensor product in LRC is obtained
by applying LR to the tensor product in C , but R-modules are already R-local). So
does applying the limit preserving right adjoint of the above displayed functor. As
a result, both presheaves R ⊗ LRR and R ⊗ (LRR)hyp are sheaves, and the latter
is isomorphic to (R ⊗ LRR)hyp. Moreover, since the map R(G/U) → LRR(G/U)
is an R-equivalence for every open normal subgroup U of G, we also get that
R⊗R � R⊗ LRR. That is, it suffices to show that R ⊗R is a hypersheaf.

By the R(G/U)-algebra structure of R, we have a map

R ⊗R(G/U) ∼−−→ R⊗R(G/U) (R(G/U) ⊗R(G/U))

−−→ R⊗R(G/U)
∏

G/U

R(G/U) ∼−−→
∏

G/U

R

depending functorially on U , which is an isomorphism by virtue of the second
Rognes–Galois condition for R(G/U). That is, we have

R ⊗R � e∗R � ē∗
∏

G

R.

Recalling that ē∗ lands in hypersheaves, we conclude that R⊗R is indeed a hyper-
sheaf, concluding the proof that LRM is a hypersheaf.

Finally, we need to check that M → LRM exhibits the target as the hypersheafi-
fication of the source. Since the target is a hypersheaf, by Proposition 5.1 it suffices
to check that the map is an isomorphism on stalks, namely that e∗M → e∗LRM is
an isomorphism, or equivalently that its cofiber is zero. On the one hand, since e∗

is symmetric monoidal, both the source and the target are modules over R := e∗R,
so in particular they are R-local and hence so is the cofiber. On the other hand,
for each open normal subgroup U of G, the cofiber of M(G/U) → LRM(G/U) is
R-acyclic, and as the cofiber of e∗M → e∗LRM is given by their colimit, it is itself
R-acyclic. �

As a sheaf F ∈ Shv(TG; C ) can be thought of as an object X = e∗F ∈ C
endowed with a “continuous action” of the profinite group G, the value F (G/U) is
the “continuous U -fixed points” of said action of G on X. We shall hence introduce
a suggestive notation, which is less likely to cause confusion now that we are done
with the technical discussion above.

Licensed to Univ of Rochester. Prepared on Fri Nov 22 07:20:29 EST 2024 for download from IP 128.151.13.9.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



52 SHAY BEN-MOSHE ET AL.

Notation 5.7. For X ∈ Shv(TG; C ), we shall abuse notation and denote by X also
the underlying object e∗X and for every open U ≤ G, denote by XhU the value of
X at G/U ∈ TG.

Continuous Zp-actions. The case G = Zp is notably easier to analyze than the
general case for two reasons. First, because the transitive continuous finite Zp-sets
are the orbits Z/pr for r ≥ 0, making (pre)sheaves simpler to handle. Particularly,
we have a sequential colimit presentation of the category of sheaves

Shv(TZp
; C ) � lim−→CB(Z/pr) ∈ PrL,

i.e. the data of a sheaf is the data of local systems Xh(pr
Z) ∈ C B(Z/pr) together

with isomorphisms (and no further coherence data)

Xh(pr
Z) ∼−−→ (Xh(pr+1

Z))h(pr
Z/pr+1

Z).

Second, because Zp is freely topologically generated by a single generator via the
dense inclusion Z ≤ Zp. We denote by

d∗ : Shv(TZp
; C ) � CBZ :d∗

the adjunction obtained from the adjunction ē∗ � ē∗ by further restricting and
right Kan extending along the inclusion Z ≤ Zp. We now show that, under certain
hypotheses, a concrete description of the hypersheafification can be given in terms
of this adjunction.

Proposition 5.8. Let C be a compactly generated p-complete stable category.
Then, for every X ∈ Shv(TZp

; C ) the unit map

X −−→ d∗d
∗X

exhibits d∗d
∗X as the hypersheafification of X.

Proof. As mentioned above, d∗d∗X is a hypersheaf. Therefore, by Proposition 5.1,
it suffices to show that X → d∗d

∗X induces an isomorphism on stalks, namely
after applying e∗. Since e∗ is obtained by applying d∗ and forgetting the Z-action,
it suffices to check that X → d∗d

∗X induces an isomorphism after applying d∗. By
the zigzag identity and 2-out-of-3, it suffices to check that the counit map

(d∗d∗)d∗X −−→ d∗X

is an isomorphism.
Next, we reduce to the case C = Sp∧

p . Since C is compactly generated, the
functors

hom(K,−) : C −−→ Sp∧
p

ranging over all K ∈ C ω are jointly conservative, and are colimit and limit preserv-
ing. Thus, they commute with d∗, d∗ and hypersheafification, so we are reduced to
the case C = Sp∧

p .
Now, we can take the cofiber of multiplication by p to reduce to the claim that

the map
d∗d∗d

∗(X/p) −−→ d∗(X/p)
is an isomorphism for every Sp-valued sheaf X on TZp

. Observe that the homotopy
groups of the spectrum

Y := d∗(X/p) � lim−→r(X/p)h(pr
Zp)
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are p2-torsion and the Z-action on them is restricted from a continuous Zp-action.
We will prove that for any Y with such homotopy groups the map

lim−→rY
h(pr

Z) � d∗d∗Y −−→ Y

is an isomorphism by showing that it induces an isomorphism on homotopy groups.
Note that homotopy groups commute with filtered colimits, so that lim−→rπi(Y h(pr

Z))
∼−−→ πi(lim−→rY

h(pr
Z)), and the i-th homotopy group of the source of the map above

fits into a short exact sequence

0 −−→ lim−→rH
1(prZ;πi+1(Y )) −−→ πi(lim−→rY

h(pr
Z)) −−→ lim−→rH

0(prZ;πi(Y )) −−→ 0

and the map πi(lim−→rY
h(pr

Z)) → πi(Y ) factors through

lim−→rH
0(prZ;πi(Y )) −−→ πi(Y ).

This map is an isomorphism, since the action on πi(Y ) comes from a continuous
Zp-action, so that every element is fixed by prZ for large enough r. It remains to
show that

lim−→rH
1(prZ;πi+1(Y )) = 0.

Since πi+1(Y ) is p2-torsion and the action comes from a continuous Zp-action,
πi+1(Y ) can be written as a filtered colimit of finite p2-torsion groups Mj with a
continuous Zp-action. Since H1(prZ;−) commutes with filtered colimits, by ex-
changing the order of colimits we are reduced to showing that for every j we have

lim−→rH
1(prZ;Mj) = 0.

Indeed, for large enough r, the action of prZ on Mj is trivial. Thus, for large
enough r, this is the 1-st cohomology of S1 � B(prZ) with coefficients in Mj . The
transitions maps going from r to r + 1 correspond to the p-fold covering map of
the circle, thus induce multiplication by p on Mj . Since M is p2-torsion, the result
follows. �

Combining Proposition 5.6 and Proposition 5.8, we immediately deduce the fol-
lowing:

Corollary 5.9. Let C ∈ CAlg(PrLst) be compactly generated and p-complete, and
let R be a continuous Zp-Galois extension with stalk e∗R ∈ CAlg(C ). For M ∈
ModR(Shv(TZp

; C )), the map

M −−→ d∗d
∗M

exhibits the target both as the hypersheafification and as the level-wise e∗R-locali-
zation of M .

5.2. Hyperdescent and cyclotomic completion. We begin by constructing the
cyclotomic sheaf. By [CM21, Construction 4.5] and cofinality there is an equivalence

Shv(T
Z
×
p
; SpT (n)) � lim−→U�Z

×
p open SpB(Z×

p /U)
T (n) � lim−→SpB(Z/pr)×

T (n) ∈ PrL.

Definition 5.10. For X ∈ SpT (n) we define the cyclotomic sheaf

X[ω(n)
p(−) ] ∈ Shv(T

Z
×
p
; SpT (n))
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to be the sheaf determined by the cyclotomic extensions X[ω(n)
pr ] and the isomor-

phisms
X[ω(n)

pr ] ∼−−→ X[ω(n)
pr+1 ]h(Z/p).

Note that the stalk of the cyclotomic sheaf is given by

ē∗X[ω(n)
p(−) ] � lim−→X[ω(n)

pr ] � X[ω(n)
p∞ ] ∈ SpBZ

×
p

T (n).

Proposition 5.11. The cyclotomic sheaf ST (n)[ω
(n)
p(−) ] is a continuous Z

×
p -Galois

extension and there is a symmetric monoidal equivalence

SpT (n)
∼−−→ Mod

ST (n)[ω
(n)
p(−) ]

(Shv(TZp
; SpT (n))), X �→ X[ω(n)

p(−) ].

Moreover, X ∈ SpT (n) is cyclotomically complete if and only the cyclotomic sheaf
X[ω(n)

p(−) ] is hypercomplete.

Proof. For the first part, ST (n)[ω
(n)
p(−) ] is Galois because each finite cyclotomic exten-

sion is a faithful Galois extension by [CSY21b, Proposition 5.2], and the equivalence
follows from Proposition 5.4.

For the second part, by the first part X[ω(n)
p(−) ] is a module over ST (n+1)[ω

(n+1)
p(−) ],

whose stalk is ST (n+1)[ω
(n+1)
p∞ ]. Since cyclotomic completion is ST (n+1)[ω

(n+1)
p∞ ]-

localization, the result follows from Proposition 5.6. �

For R ∈ Alg(SpT (n)), consider the cyclotomic sheaf R[ω(n)
p(−) ]. By applying

KT (n+1) level-wise we get the SpT (n+1)-valued presheaf KT (n+1)(R[ω(n)
p(−) ]).

Proposition 5.12. The functor KT (n+1) sends cyclotomic sheaves to cyclotomic
sheaves, that is, there is an isomorphism

KT (n+1)(R)[ω(n+1)
p(−) ] ∼−−→ KT (n+1)(R[ω(n)

p(−) ]) ∈ Shv(T
Z
×
p
; SpT (n+1)).

Proof. We need to show that the two presheaves on T
Z
×
p

agree. The source is a
sheaf and in particular preserves products. Since KT (n+1) preserves products, the
target preserves products as well. Therefore, it remains to show that they agree on
transitive continuous finite Z×

p -sets, which is the content of Proposition 4.15. �

Corollary 5.13. KK(n+1)(R[ω(n)
p(−) ]) is a hypersheaf of K(n + 1)-local spectra for

any R ∈ Alg(SpT (n)).

Proof. By Proposition 5.12 we know that KK(n+1)(R[ω(n)
p(−) ]) is a cyclotomic sheaf.

Since all K(n + 1)-local spectra are cyclotomically complete (see the discussion
above [BCSY24, Question 7.36]) the result follows from Proposition 5.11. �

We now push the cyclotomic sheaf to Zp, giving a sheaf whose values are the
extensions from Definition 4.16. Recall that Z×

p � Tp × Zp where Tp is (Z/4)× for
p = 2 and F

×
p for odd primes. Let π : Z×

p → Zp denote the projection, and consider
the functor TZp

→ T
Z
×
p

given by restriction along π. Restricting (pre)sheaves along
this functor induces a geometric morphism denoted

π∗ : Shv(T
Z
×
p
; SpT (n)) −−→ Shv(TZp

; SpT (n)).
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Definition 5.14. For X ∈ SpT (n) we let

X[ω(n)
p(−) ] := π∗(X[ω(n)

p(−) ]) ∈ Shv(TZp
; SpT (n)).

Warning 5.15. The notation might be somewhat confusing. For odd primes, the
value of X[ω(n)

p(−) ] at the Zp-set Z/pr is X[ω(n)
pr+1 ], and for p = 2 the value at the

Z2-set Z/2r is X[ω(n)
2r+2 ]. In particular the value at the trivial Zp-set is X.

Recall that the functor
d∗ : Shv(TZp

; SpT (n+1)) −−→ (SpT (n+1))BZ

is computed by a filtered colimit d∗F � lim−→Fh(pr
Zp), and thus commutes with

KT (n+1). This gives us a map

KT (n+1)(R[ω(n)
p(−) ]) −−→ d∗d

∗KT (n+1)(R[ω(n)
p(−) ])

∼−−→ d∗KT (n+1)(d∗R[ω(n)
p(−) ]).

Theorem 5.16. For any R ∈ Alg(SpT (n)) the map

KT (n+1)(R[ω(n)
p(−) ]) −−→ d∗KT (n+1)(d∗R[ω(n)

p(−) ])

exhibits the target both as the hypersheafification and as the level-wise cyclotomic
completion of the source.
Proof. It suffices to show that

KT (n+1)(R[ω(n)
p(−) ]) −−→ d∗d

∗KT (n+1)(R[ω(n)
p(−) ])

exhibits the target both as the hypersheafification and as the level-wise cyclotomic
completion of the source. By Proposition 5.12 we know that KT (n+1)(R[ω(n)

p(−) ]) is
module over ST (n+1)[ω

(n+1)
p(−) ], whose stalk is ST (n+1)[ω

(n+1)
p∞ ]. By [BCSY24, Propo-

sition 6.19], being cyclotomically complete is also equivalent to being local with
respect to ST (n+1)[ω

(n+1)
p∞ ] := ST (n+1)[ω

(n+1)
p∞ ]hTp . The claim now follows from

Corollary 5.9. �

Appendix A. Group algebras

As explained in Section 1, at the core of our study is the map
KT (n+1)(R)[A] −−→ KT (n+1)(R[ΩA])

for a ring spectrum R and a pointed connected space A. The construction of this
map is the combination of two ingredients. First, for every functor F : C → D
between categories with A-shaped colimits and X ∈ C , we have an assembly map

F (X)[A] := lim−→AF (X) −−→ F (lim−→AX) =: F (X[A]).

Second, for every ring spectrum R, the equivalence between local systems over A
and representations of the group ΩA in R-modules gives, in the realm of small
stable categories, an equivalence

Perf(R[ΩA]) � Perf(R)[A].
In Appendix A.1 and Appendix A.2 we review these standard constructions, and
verify some of their basic naturality and multiplicativity properties necessary for our
applications to K-theory. Finally, for T (n)-local commutative rings we shall also
employ a variant of the above equivalence, replacing perfect modules by dualizable
T (n)-local modules, which we discuss in Appendix A.3.
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A.1. Multiplicativity of assembly maps. Recall that given a functor F : C →
D , for every X ∈ C and A ∈ S we have a natural assembly map

F (X)[A] −−→ F (X[A]).

Furthermore, if F is lax symmetric monoidal, we shall show that the assembly map
is canonically lax symmetric monoidally natural in both X and A.

First, we want to exhibit the source and target of the assembly map as symmetric
monoidal functors in both variables. Let ̂Catall be the category of cocomplete
categories and colimit preserving functors. For every C ∈ ̂Catall we can define the
functor S×C → C given by (A,X) �→ X[A] as a left Kan extension in the following
way. Consider the functor i : C → S × C that is constant on the point in S and is
the identity on C . The left Kan extension along i is a functor of the form

i! : Fun(C ,C ) −−→ Fun(S × C ,C )

which gives (i!IdC )(X,A) = X[A]. Now if C ∈ CAlg(̂Catall), then the functor i
is symmetric monoidal, by [LNP22, Proposition 3.34] or [BMS24, Proposition 3.6],
the functor i! is symmetric monoidal, with lax symmetric monoidal right adjoint i∗,
with respect to the Day convolution on the source and target. Since commutative
algebras in the Day convolution are lax symmetric monoidal functors, we get an
induced adjunction

i! : Funlax(C ,C ) � Funlax(C × S,C ) : i∗

lifting the adjunction on (not lax symmetric monoidal) functors. Thus, the functor

S × C −−→ C , (A,X) �→ X[A]

given by i!IdC acquires a lax symmetric monoidal structure. Since the symmetric
monoidal structure of C preserves colimits in each variable, the lax symmetric
monoidal structure on i!IdC is strong.

Now, let C ,D ∈ CAlg(̂Catall) and let F : C → D be a lax symmetric monoidal
functor. Denote by ˜F the functor given by post-composition with F , and consider
the following commutative square:

Funlax(C ,C ) Funlax(C × S,C )

Funlax(C ,D) Funlax(C × S,D)

i∗

i∗

F̃F̃

Passing to horizontal left adjoints, we obtain a Beck–Chevalley map

i! ˜F −−→ ˜Fi!.

Evaluating this map at IdC ∈ Funlax(C ,C ), and noting that ˜F (IdC ) = F , gives a
map between lax symmetric monoidal functors

i!F −−→ F ◦ i!IdC .

Unwinding the definitions, this is precisely the assembly map.

Definition A.1. For C ,D ∈ CAlg(̂Catall) and a lax symmetric monoidal functor
F : C → D we define the map

F (X)[A] −−→ F (X[A]) ∈ D
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DESCENT AND CYCLOTOMIC REDSHIFT IN K-THEORY 57

to be the map i!F → F ◦i!IdC constructed above, so in particular as a lax symmetric
monoidally natural transformation.

Remark A.2. When F is colimit preserving the assembly map defined above is an
isomorphism.

A.2. Modules over group algebras. We now specialize to the case where the
category itself is PrL (which lives in a large version of ̂Catall) giving us the con-
struction C [A] symmetric monoidally naturally in C ∈ PrL and A ∈ S. If we
further assume that A is pointed connected, we have an identification of C [A] with
LModΩA(C ). We would like to make this identification symmetric monoidal as
well. The argument will require the following rigidity property of the category of
pointed connected spaces:

Lemma A.3. The identity functor is the only (symmetric monoidal) auto-equiv-
alence of the category S≥1, up to isomorphism.

Proof. The category
S≥1
∗ � Grp(S)

is the non-abelian derived category (a.k.a animation) of the ordinary category of
groups Grp(Set) (see, e.g., [ČS24, Example 5.1.6(1)]), and it is known that the
latter has no non-identity auto-equivalences (see [Fre64, p.31 example F]). By (the
dual version of) [Lura, Proposition 2.4.3.8], every functor admits a unique oplax
symmetric monoidal structure with respect to the Cartesian monoidal structure on
the source and the target, which implies the symmetric monoidal version of the
claim. �

Proposition A.4. There is an equivalence
LModΩA(C ) � C [A] ∈ PrL,

symmetric monoidally natural in A ∈ S≥1
∗ and C ∈ PrL.

Proof. Both sides are symmetric monoidal functors
PrL × S≥1

∗ −−→ PrL.
That is, morphisms in a larger version of CMon(Cat). As the source is a coproduct
of PrL and S≥1

∗ , it suffices to identify the two functors on each coordinate separately.
On the PrL factor both functors are the identity so the claim holds trivially. We are
thus reduced to proving the claim for C = S. Note that LModΩA(S) is naturally
pointed by ΩA with its regular left action on itself. Also, S[A] is pointed by the map
S → S[A] induced from the basepoint of A. Hence, both promote to symmetric
monoidal functors

S≥1
∗ −−→ PrL∗ ,

where PrL∗ is the category of presentable categories with a chosen object (equiv-
alently, the under category PrLS/). It would suffice to show they are naturally
isomorphic as such.

We begin by showing that both of them are fully faithful. For LModΩ(−)(S)
this follows from [Lura, Theorem 4.8.5.11]. For S[−] we argue as follows. First,
for all A,B ∈ S≥1

∗ , restriction along the Yoneda embedding A ↪→ S[A] provides an
isomorphism

MapPrL∗ (S[A],S[B]) � MapĈat∗
(A,S[B])
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by the universal property of S[A] as a free co-completion of A. Now, since A is
connected, every pointed functor A → S[B] factors uniquely through the Yoneda
embedding B ↪→ S[B], and hence provides an isomorphism

MapĈat∗
(A,S[B]) � MapS≥1

∗
(A,B).

It thus follows that S[−] is fully faithful as well. Furthermore, the essential images
of the two functors are the same (see, e.g., [CSY21b, Proposition 4.4]), so the
composition of one with the inverse image of the other is an auto-equivalence of
S≥1
∗ , which by Lemma A.3 must be the identity. �

For C ∈ CAlg(̂Catall) applying Alg(−) to the symmetric monoidal functor
(A,X) �→ X[A] and pre-composing with Ω: S≥1

∗ → Mon(S) gives a symmetric
monoidal functor

S≥1
∗ × Alg(C ) −−→ Alg(C ), (A,R) �→ R[ΩA].

Similarly, applying CAlg(−) and pre-composing with Sp≥0 → CMon(S) we get a
symmetric monoidal functor

Sp≥0 × CAlg(C ) −−→ CAlg(C ), (M,R) �→ R[M ].

Corollary A.5. There is an equivalence
LModR[ΩA](C ) � LModR(C )[A] ∈ PrL∗ ,

symmetric monoidally natural in A ∈ S≥1
∗ and (C , R) ∈ PrL,Alg. Similarly, there

is an equivalence
ModR[M ](C ) � ModR(C )[ΣM ] ∈ CAlg(PrL),

natural in M ∈ Sp≥0 and (C , R) ∈ PrL,CAlg.

Proof. By composing (the pointed version of) the equivalence of Proposition A.4
with the symmetric monoidal functor PrL,Alg → PrL∗ taking (C , R) to LModR(C )
pointed by R we obtain a symmetric monoidal equivalence

LModΩA(LModR(C )) � LModR(C )[A] ∈ PrL∗ .
It thus remains to identify the left-hand side above with LModR[ΩA](C ). As in the
proof of Proposition A.4, these are two symmetric monoidal functors

PrL,Alg × S≥1
∗ −−→ PrL∗ ,

and since the source is a coproduct in the category of symmetric monoidal cate-
gories, it suffices to make the identification separately in each coordinate, both of
which are obvious.

The second part follows by applying CAlg to the above equivalence. �
Corollary A.6. There is an equivalence

Perf(R[ΩA]) � Perf(R)[A] ∈ Catperf ,

symmetric monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(Sp).

Proof. Consider the natural equivalence of functors obtained from the case C = Sp
of Corollary A.5. Observe that by Proposition 2.3, the symmetric monoidal inclu-
sion PrLst,ω ↪→ PrLst is colimit preserving, and by Proposition 2.7, the two functors
factor through it. The result then follows by applying the equivalence (−)ω of
Proposition 2.3. �
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Remark A.7. Various versions of Proposition A.4 and its corollaries were formu-
lated and proved in the literature, including two different papers of the authors
([CSY21b, Proposition 4.4], [BCSY24, Proposition 5.11]). We hope that this ver-
sion, which is compatible with the cited ones, but also includes the multiplicative
naturality in all variables, will meet all our future requirements, so that we shall
not have to prove it again.

A.3. Dualizable modules. We first recall some generalities on Beck–Chevalley
maps. Let

C0 C1

D0 D1

LC

F0 F1

LD

α

be a lax commutative square of categories, and assume that LC admits a right
adjoint RC with unit uC and counit cC , and similarly for LD . Then, there is a
Beck–Chevalley transformation given by the composition

F0R
C uD

=⇒ RDLDF0R
C α=⇒ RDF1L

CRC cC

=⇒ RDF1.

The Beck–Chevalley map is compatible with the unit maps in the sense that the
following diagram commutes

F0 RDLDF0

F0R
CLC RDF1L

C

uD

uC α

We now apply this in a specific context. Let C ∈ CAlg(̂Catall). Recall that there
is a group algebra–units adjunction:

1C [−] : Sp≥0 � CAlg(C ) : (−)×.

For C ,D ∈ CAlg(̂Catall) and a lax symmetric monoidal functor F : C → D there
is a natural assembly map

F (1C )[M ] −−→ F (1C [M ])

of functors Sp≥0 → CAlgF (1C )(D). In other words, this provides the 2-morphism
depicted in the following diagram:

Sp≥0 CAlg(C )

Sp≥0 CAlgF (1C )(D)

F

1C [−]

F (1C )[−]

Definition A.8. Let C ,D ∈ CAlg(̂Catall) and let F : C → D be a lax symmetric
monoidal functor. We define the natural map

R× −−→ F (R)×

of functors CAlg(C ) → Sp≥0 to be the Beck–Chevalley map associated to the above
lax commutative square under the group algebra–units adjunctions.
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Namely, at R ∈ CAlg(C ), the resulting map R× → F (R)× is the composition

R× ∼−−→ hom(1C [S], R) −−→ hom(F (1C [S]), F (R))

−−→ hom(1D [S], F (R)) ∼−−→ F (R)×,

where the third morphism is obtained by lax unitality of F and the assembly map

1D [S] −−→ F (1C )[S] −−→ F (1C [S]).

Lemma A.9. Let C ,D ∈ CAlg(̂Catall) and let F : C → D be a lax symmetric
monoidal functor. Then the following diagram commutes naturally in M ∈ Sp≥0:

M F (1C )[M ]×

1C [M ]× F (1C [M ])×

Proof. This is the compatibility of the Beck–Chevalley map with units. �

Consider now the group algebra–unit adjunction applied to the category Cat ∈
CAlg(̂Catall):

pt[−] : Sp≥0 � CAlg(Cat) : (−)×.
Every invertible object of a symmetric monoidal category is in particular dualizable,
that is, the inclusion C dbl ↪→ C induces an isomorphism (C dbl)× ∼−−→ C ×. In other
words, we have a commutative square of categories:

CAlg(Cat) Sp≥0

CAlg(Cat) Sp≥0

(−)×

(−)dbl

(−)×

Now, for C ∈ CAlg(PrLst), we have C dbl ∈ CAlg(Catperf), and the formation of
dualizable objects refines to a functor

(−)dbl : CAlgC (PrLst) → CAlgCdbl(Catperf).

By restricting the (large categories version) of the commutative square above to
presentable stable categories, we obtain the following commutative square:

CAlgC (PrLst) Sp≥0

CAlgCdbl(Catperf) Sp≥0

(−)×

(−)dbl

(−)×

Recall that the horizontal maps admit left adjoints C [−] and C dbl[−].

Definition A.10. For C ∈ CAlg(PrLst) we define the natural transformation

C dbl[−] −−→ C [−]dbl

between functors Sp≥0 → CAlgCdbl(Catperf) to be the Beck–Chevalley transforma-
tion corresponding to the square above.
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Observe that for a colimit preserving symmetric monoidal functor F : C → D ∈
PrLst the assembly map is an isomorphism

F (R)[ΩA] ∼−−→ F (R[ΩA]).

Namely, the group algebra is unambiguously defined.

Proposition A.11. Let F : C → D ∈ CAlg(PrLst) be a colimit preserving symmet-
ric monoidal functor between presentably symmetric monoidal stable categories.
Then, there is a commutative diagram in Catperf

Moddbl
R (C )[ΣM ] ModR(C )[ΣM ]dbl Moddbl

R[M ](C )

Moddbl
F (R)(D)[ΣM ] ModF (R)(D)[ΣM ]dbl Moddbl

F (R)[M ](D)

∼

∼

lax symmetric monoidally natural in M ∈ Sp≥0 and R ∈ CAlg(C ).

Proof. Applying Corollary A.5 to F : C → D gives the commutative square in
CAlg(PrLst)

ModR(C )[ΣM ] ModR[M ](C )

ModF (R)(D)[ΣM ] ModF (R)[M ](D)

∼

∼

lax symmetric monoidally naturally in M ∈ Sp≥0 and R ∈ CAlg(C ). Taking
dualizable objects, we get the right commutative square in question. The left
commutative square in question is the naturality of the map E dbl[ΣM ] → E [ΣM ]dbl

in E , applied to
ModR(C ) −−→ ModF (R)(D).

�
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