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Abstract

The moduli space of deformations of a formal group over a finite field is studied. We con-
sider Lubin—Tate and Dieudonné approaches and find an explicit relation between them employing
Hazewinkel's universap-typical formal group, Honda'’s theory and rigid power series. The formula
obtained allows to give an explicit description of the action of the automorphism group of the for-
mal group on the moduli space. It essentially generalizes an analogous result of Gross and Hopkins
[Contemp. Math. 158 (1994) 23-88].
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Introduction

There are two different approaches to the study of deformations of a formal group over
a finite field considered up teisomorphism, where &isomorphism between two defor-
mations means an isomorphism with identity reduction. First of them is due to Lubin and
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Tate [8] who constructed a universal deformation of a formal group over a finite field, i.e.,
a formal group which represents the functor of deformations over complete local algebras
and thus provides a moduli space for it. Another approach is based on the Dieudonné the-
ory (see [3]) that assigns to any formal group over a finite field a profinite module over the
Dieudonné ring of this field which gives an equivalence between the category of formal
groups and the category of Dieudonné modules. For any deformation of a formal group
over a finite field which is defined over the ring of Witt vectors over this field, Fontaine
introduced a submodule in the Dieudonné module of this formal group in such a way that
*-isomorphic deformations correspond to the same submodule (see [3]). Our aim is to
compare these approaches and establish an explicit relation between them.

Let @ be a formal group over the perfect fieldbf characteristico. Hazewinkel [5]
defined the universal-typical formal groupFr and proved that any formal group over any
Z ,-algebra is isomorphic to a formal group which can be obtained Fenby applying
someZ ,-homomorphism to its coefficients. Suppose thais obtained fromF7 in this
way. Then we can usBr to construct the canonical universal deformatiomf @ which
is defined over the ring of formal power seriesiin- 1 variables with coefficients from the
ring of Witt vectorsW (I), whereh is the height of®. It gives a parameterization of the
Lubin—Tate moduli space and, in particular, allows us to fix the canonical deform@gion
of @ over W(l) whose logarithm we denote byg.

Then we fix an algebraic extensiémof / and study the deformations é&fover W (k). To
this end, we consider the non-commutative rifigpf formal power series in the variable
A with coefficients inW (k) and multiplication ruleAa = Frob(a) A for a € W (k). The
ring E acts on the left on the set of formal power series with coefficients in the fractions
field of W (k). Then we define the Dieudonné modubeas theE-moduleE fo/ P, where
P is the E-submodule ofE fo consisting of the power series with coefficientspiV (k).

We denoteD = E*(fo+ P) C D and introduce an equivalence relation bras follows:
b ~ c iff ab = c for some invertiblex € W (k). We define thep-adic period mapy from
the set of*;isomorphism classes of deformationsibver W (k) to the set of equivalence
classes inD and prove that it is bijective.

Further, we observe that the former set can be supplied with a right action of the group
of k-automorphisms of, and the latter one has a natural right action of the multiplicative
group of the ringE“°/Eug, where E*0 = E N ualEuo andug € E is such thatug =
p mod A, ugfo =0 mod p. But according to the results of Honda [6], the map from
E"0/Eug to the ring ofk-endomorphisms o® which assigns ta + Eug € E“°/Eug the
reduction of the formal power serig“g‘l(wfo) is a ring isomorphism. Thus we obtain the
right actions of the same group on the sekd$§omorphism classes of deformationsdf
over W (k) and on the set of equivalence classeB®inWe prove that the-adic period map
X is equivariant with respect to these actions.

Then we pass to our main object, namely, to finding an explicit formula for the
p-adic period map. For that purpose, we defingzanomomorphisna: from E fj to certain
E-module in such a way that the image Bfis equal to 0 and, moreover, its composi-
tion with the logarithm of the canonical universal deformation is a rigid analytic map on
Lubin—Tate’s moduli space which can be written down explicitly. Considering thexfirst
coordinate functions of this composition, we obtain a linear system of equation on the
coordinates of the-adic period mapy that provides an explicit formula for it. We also
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remark that if® is the reduction of the Artin—Hasse formal group, then this formula can
be essentially simplified.

As an application we suggest the following result. If we take for the definition of the
p-adic period mapy our explicit formula, then the equivariance propertyamplies that
it can be used for explicit description of the group action on Lubin—Tate’s moduli space.
To be more precise, we consider two modylt’ € pA x --- x pA and the deformations
F, F' of @ corresponding ta, z’. Then thek-automorphism ofd which is equal to the
reduction offo_l(wfo), wherew € E“0*, moves thex-isomorphism class of to that
of F' iff for somea € A*, the equalityax (1, ..., 7,-1)C(w) = x(t4, ..., 7,_4) holds,
whereC(w) is the matrix of the right multiplication irD by the elementv with respect
to the W (k)-basis fo, Afo, ..., A" fo. This theorem can be viewed as a generalization
of the result of Gross and Hopkins [4] who proved such a formula in the case @lign
the reduction of the Artin—Hasse formal group. On the other hand, it extends the previous
authors’ result [2] concerning the action of the automorphism group on the zero orbit of
the Lubin—Tate polydisk.

The fact that the coordinate functions of theadic period mapping are rigid analytic
implies the continuity of this mapping as well as the continuity of the action of the automor-
phism group on the moduli space of deformations. The canonical metric on the Lubin—Tate
polydisk is defined in [9]. The explicit formula proved allows one to estimate the action of
the natural filtration of the automorphism group with respect to this metric.

We will use the following notation. I8 is a ring, we writeB* for its multiplicative
group. We also denote b®[[x]o the B-module of the formal power series without con-
stant term and byB[x1, the B-module of the formal power series which have non-zero
coefficients ak” only if n is a power ofp.

1. Lubin—-Tate moduli space of formal group deformations and the action of the
automorphism group on it

Let! be a perfect field of characteristic O the ring of Witt vectors ovet and L the
fraction field of 0. We consider a one-parameter formal grapver! of finite heighth.
Let A be a complete Noetherian loc@lalgebra with maximal ideaM 2 p A and residue
fieldk = A/M 2 1. A formal groupF over A such that its reduction modul®1 is equal
to @ is called a deformation ap over A. If an isomorphism between deformatioAsand
G over A has identity reduction modul®1, we say that it is &-isomorphism. In this case
F andG are calledk-isomorphic. Thex-isomorphism class of the deformatighwill be
denoted by F].

Lubin and Tate [8] constructed a moduli spacefdsomorphism classes of deforma-
tions of @ and defined an action of the automorphism grou@odn it. Here we review
their main results.

A formal group® over! of height# is said to be in normal form if

D(x,y)=x+y +anh (x,y) mod derh + 1)

for some non-zera €1, WhereCp,» (x,y)=((x+ y)l’i _xP = y/’i)/p.
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Lemma 1.1[7, Lemma 6] Every formal group of finite height ovéris isomorphic to a
formal group in normal form.

Supposed to be in normal form. A formal groupg™ over O[[z1, ..., t;,—1] is called a
generic formal group fo@, if the reduction ofl" (0, ..., 0) modulop is equal to® and

reo,....04,....tn-)x, y)=x+y—4;C,i(x,y) mod deqPi~|—1)
fori<i<h—-1.

Theorem 1.2[8, Theorem 3.1]Let I" be a generic formal group fo® and F be a defor-
mation of® over A. Then there is a uniqug: — 1)-tuple(zs, ..., t,—1), T € M, such that
F is x-isomorphic tol"(z1, ..., t5—1) and thex-isomorphism is uniquely defined.

Theorem 1.2 implies thal is a universal deformation of the formal grodp and the
set of x-isomorphism classes of deformations ®@fover A is in one-to-one correspon-
dence withM x --- x M (h — 1 times). Thus we obtain a parameterization of the set of
*-isomorphism classes of deformationsdof

The group Aut @ acts on the right on the set #fisomorphism classes of deformations
of @ over A in the following way. Ifp € Aut, @ andF is a deformation ofp over A, then
[Flp =[g Yo F(g, )1, whereg € A[x]lo, the reduction og moduloM is equal top.

Proposition 1.3.Let F be a deformation oft over A. ThenOrb[F] is the set of the
*-isomorphism classes of deformationsfofvhich are isomorphic td& over A.

Proof. If ¢ € Auty @ andg € A[lx]lo, the reduction ofg is equal tog, theng provides
an isomorphism betweegi 1 o F(g, g) € [Flp and F. If g is an isomorphism between
deformationsG and F the reduction of is an automorphism ob and it maps the class
[F]tothe clas§G]. O

2. Hazewinkel’s universal p-typical formal group and the canonical universal
deformation

Hazewinkel used a universattypical formal group to get a parameterization of a large
number of generic formal groups, which in particular allows to choose one of them canon-
ically. We review here his construction.

DenoteA = Q,lt1, 12, ...1, 2 =Z,[11, 12, .. .]. Define aQ,-endomorphisna of A by
o(t;) = tl.‘". Let o operate on the ringt[x o by the formula

1o (chx”) = Zo(cn)xp".
n=1 n=1
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There exists a unique formal power serigse Alx], which satisfies the functional
equationpfr — 322, t;o' (fr) = px. We denote by, the coefficient offr atx?". Itis
clear thatdp =1 andd, € Q,l11, ..., ;] C A.

Proposition 2.1[5, Eg. (3.3.9)]

n
pdy=>Y 1" dyi.
i=1

Lemma 2.2.
fr=x+@/px" modn,....5 1. degp’ +1).

Proof. The functional equation fofy impliesd,, =t,/p modz, ..., t,—1. The required
formula follows immediately. O

Theorem 2.3.

(i) fr is the logarithm of a formal groupgy defined over2.
(i) Frx,y)=x+y—1C,(x,y)mods,... 11, degp' +1).

Proof. The part (i) is an immediate consequence of Hazewinkel's functional equation
lemma, see [5, Section 2.2(i) and Eqg. (2.3.7)]. The part (i) follows from Lemma 22.

A formal groupF over aZ ,-algebraB is called p-typical if there is a homomorphism
& from §2 to B such thatF = &, Fr. Evidently, Fr is a universap-typical formal group.

Proposition 2.4[5, Theorem 15.2.9]Every formal group over & ,-algebraB is isomor-
phic to ap-typical one.

Lemma 2.5.Let & be a homomorphism fro? to [. Then the height of the formal group
& Fr is equal to the minimal satisfyings (¢;) # 0.

Proof. It follows from Lemma 2.2. O
Corollary 2.6. Every p-typical formal group ovet is in normal form.
Proof. It follows from Theorem 2.3(ii) and Lemma 2.50

Now supposep to be ap-typical formal group. By Corollary 2.6, it is in normal form.
Take a homomorphisra from 2 to [ such that® = &, Fr. Let r; be the multiplicative
representative of (;) in O. Define aQ,-homomorphism from A to L[z, ..., #,—-1] as

follows: n(1;) =1t; fori < h; n(t;) =r; € O fori > h. Putl’ =n,Fr. ThenI is defined
overOlty, ..., ;—1], and its reduction modulp, 71, ..., ;1 IS equal tod. Moreover by
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Theorem 2.3(ii),I” is a generic formal group fo®, and hence by Theorem 1.2, it is a
universal deformation op.

It is clear that the formal power serigs= 7, fr € L[t1, ..., t,—1][x], is the logarithm
of I'. Denotea,, = n(d,) € L[t1, ..., t,—1]. Thena, is the coefficient of, atx?".

Proposition 2.7.

min(n,h—1) . n )
phi pi
pa, = E 1, an—j + E i ap—i.
j=1 i=h

Proof. It follows immediately from Proposition 2.1.0

3. Honda’s classification of formal groups and an explicit description of the
automorphism group

Honda developed a theory of formal groups over the ring of Witt vectors over a perfect
field of finite characteristic based on the properties of the logarithms of formal groups. That
enables, in particular, to describe explicitly the automorphism group of a formal group over
such field.

From now on, we suppogego be an algebraic extensionigindA to be the ring of Witt
vectors ovek. Let K be the fraction field oA and A denote the Frobenius automorphism
of K. The reduction fromA to £ modulo p will be denoted by overline.

We denote by the non-commutative ring of formal power series oxen the variable
A with multiplication rule Aa = a? A, a € A. This ring has several common properties
with the standard power series ridgx ], namely:

(1) a power series € E is invertible iff the constant term ofis invertible inA;

(2) the non-commutative version of Weierstrass preparation lemma holds, i.e., for any
u € E which is not divisible byp, there exists a unique invertiblec E such thatsu
is a monic polynomial, and deg is equal to the least power af in the power series
u which has an invertible coefficient;

(3) E admits uniquely defined left division transformation, it means that for any monic
polynomialu € E and anys € E, there exist uniqueg, r € E such thatt =qu +r, r
is a polynomial and deg< degu.

Let A operate orK [[x]o by the formula

o8] oo
A
Achx” = ch xPt.
n=1 n=1

That determines a leff-module structure oK [[x]o.
Letu € E be such that = p mod A. A power series € K[[x]o is said to be of type
if £(x)=x modx?anduf =0 modp.
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Lemma 3.1[6, Lemma 2.3] Letu,s € E, u = p mod A, f € K[x]o be of typeu and
g € AllxTo. Thens(f o g) = (sf) o g mod p.

Theorem 3.2[6, Theorem 2]Letu € E, u = p mod A and f € K[[x]o be of type:. Then
f is the logarithm of a formal group ovet.

Lemma 3.3[6, Proposition 2.6]Letu1,u2 € E, u3 = p mod A and f € K[[x]o be of
typeus. If up f = 0 modp, then there exists € E such thatuy = suj.

Lemma 3.4 [6, Lemma 4.2] Letu € E, u = p mod A, f € K[x]o be of typeu,
Y1 € K[[x1,...,x,]lo and y2 € Af[x1, ..., x,]lo. Thenf o1 = f oo mod p iff 1 =
Yo mod p.

Lemma 3.5[6, Lemma 4.3] Let F be a formal group oveA with the logarithmf and
g € K[[x]lo.- Theng o F(x,y) = g(x) + g(y) mod p iff there existss € E such thatg =
sf modp.

Theorem 3.6[6, Theorems 5 and 6l.etw, w’ € E, u; € E, u; = p mod A, f; € K[[x]o
be of typeu; and F; be the formal group with the logarithry fori =1, 2, 3. Then

() fz_l(wfl) has coefficients it iff there existg € E such thati,w = zu1;

(i) if £, (wf1) has coefficients i, then £, (wf1) € Homy (F1, F2);

(iii) if fz_l(wfl) and f3_1(w’f2) have coefficients id, thenf3_1(w’wf1) has coefficients
in Aand f5 M w'wf1) = f37 W' f2) 0 f5 M wh);

(iv) if ¢ € Home(F1, F2), then there existe € E such thatf, *(wf1) has coefficients in

Aand £, Nwf) = ¢.

Letu e E,u=p modA, f € K[x]o be of typeu and F be the formal group with
the logarithm . Denote byE" the set of power serie® € E satisfyinguw = zu for
somez € E. Evidently E* is a subring ofE, and Eu is a two-sided ideal irE“. Define
a mapu from the ringE*/Eu to Eng, F by the formulag(w + Eu) = f~(wf). Due to
Lemma 3.4, the definition is correct.

Proposition 3.7.u is a ring isomorphism.

Proof. By Theorem 3.6(iii),;x is a homomorphism. Theorem 3.6(iv) implies thatis
surjective. If f~1(wf) = 0 holds for somew € E*, then due to Lemma 3.4, we have
wf =0 modp. Now Lemma 3.3 implies that there existe E such thatw = su, i.e.,w
belongs to the zero coset kY / Eu. Thuspu is injective. O
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4. Dieudonné module andp-adic period map x

DenoteFp=1"(0,...,0) € O[lx, ylandfo=y(0,...,0) € L[x],. Evidently fy is the
logarithm of the formal grougFo, and the coefficient ofp atx?" is a, (0, . .., 0). Define
a Qp,-homomorphisnmy from A to L € K by the formulad(#;) = r;. Then Fo = 0, Fr,
fo=0sfr anda,(0,...,0) =0(d,) =du(r1, ..., ).

We defineR to be the E-submodule ofK[x], generated byfo. Let P denote the
E-submodule ofR which consists of the formal power series with coefficients belonging
to pA, and putD = R/ P. The E-moduleD is nothing else than the Dieudonné module of
the formal group?d (see [3]).

Denoteug=p — > 72, r; Al € O[AI C E.

Proposition 4.1.ug fo = px.

Proof. The coefficient offy atx?" is a, (0, ..., 0). Taking into account thal;.A = rf’ and
using the functional equation fofy, we obtain

uofo=pfo— Y 1A (fo)=pfo—y_ 3 rian(0,..., 00 x""

i=1 i=1n=0
oo 00 . X _ [e%e]
L ! i+n P
=pfo— Y Y rida(r{ ...,k )x? =9*<PfT—ZtiG'(fT)>=Px~ O
i=1n=0 i=1

Let D = E*(fo+ P) C D. We define oD the actions of the multiplicative groups*
and(E“/ Eug)* = E“* /(1 + Eug).

Proposition 4.2.The actions

E*x D — D: s(zfo+ P)=szfo+ P,
D x (E"*/(1+ Eug)) > D:  (zfo+ P)w(1+ Euo) = zwfo+ P

are well defined and commute. The left action is transitive, the right one is faithful, and the
stabilizer of any element with respect to the right action is trivial.

Proof. We check that the right action is faithful. (¢fo + P)w(1 + Eug) = zfo + P for

any z € E* then (w — 1) fo € P which impliesw € 1 + Eug by Lemma 3.3. The left
action is transitive therefore the stabilizer of any element with respect to the right action is
trivial. O

Finally, we denote bys the set of orbits inD with respect to the left action of the
groupA* C E*. ThenS is equal to{A*b(fo + P) | b € E*}. It inherits from D the right
action of E“0* /(1 4+ Eug). The stabilizer of the element*(fo + P) € S with respect to
this action isA* N E“0* ¢ E"9* /(14 Eug), and its orbit is{A*b(fo + P) | b € A* E"0*},
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We also observe that if=F, andr; = 0 whenever is not a multiple of the degree of

k overF,, thenug belongs to the center df, and henceE"° = E. Thus, in this case,
the right action ofE“0* /(1 + Eug) = E*/(1 + Eug) on S is transitive. If, in addition,

k =F,, thenE is commutative, and the subgrodd N E“0 = A* of E“9* /(14 Eug) =
E*/(1+ Eup) is normal, i.e..S becomes a principal homogeneous space for the action of
the groupE*/(A* + Euo).

Lemma 4.3.Let F, G be formal groups oved with the logarithmsf, g, respectively.
Then the reductions df and G are equal iff there exists € E* such thatg = sf mod p.

Proof. According to Lemma 3.5¢ =sf mod p for somes € E iff go F(x,y) =g(x) +
g(y) modp.Butg(x) +g(y) =goG(x,y),anddue to Lemma3do F=go G modp
iff F=Gmodp. O

We define the mag from the set ok-isomorphism classes of deformationsdfto S.
Let F be a deformation o and f its logarithm. By Lemma 4.3, there exist& E* such
that f = sfo mod p. We putx[F] = A*(sfo + P). If f, g are logarithms of twox-iso-
morphic deformations o, theng=1(af) = x mod p for somea € A* and Lemma 3.4
implies thatg = af mod p. Hence, for any, s’ € E satisfying f = sfp mod p andg =
s’ fo mod p, we haveA*(sfo + P) = A*(s’ fo + P). Thus the definition of is correct.

Proposition 4.4. x is bijective.

Proof. Any element ofS is of the formA*(sfo + P) with s € 1+ AE. The power series
sfo is of typeugs—1, and then by Theorem 3.2, it is the logarithm of a formal gréup
defined overd. By Lemma 4.3/F is a deformation ofp, andx[F] = A*(sfo + P). Thus
x is surjective. If the deformation&; and F» of @ with the logarithmsf1 and f> are such
that x[F1] = x[F2], then f2 = af; mod p for somea € A*. Due to Lemma 3.4, itimplies
thatf{l(afl) = x mod p, i.e., F1 and F» arex-isomorphic. Thereforg is injective. O

Since the reduction ofp is equal to®, we can apply Proposition 3.7 to identify
End,® and the ringE“0/Eug. Then Aug @ is identified with the multiplicative group
(E"9/Eug)* = E“%*/(1+ Eug). Thus we have right actions of the grofi** /(1 + Eug)
on both the set of-isomorphism classes of deformations®@@ands.

Theorem 4.5.y is E*%* /(1 + Eug)-equivariant.

Proof. Let F be a deformation ofp and let f be its logarithm. Then by Lemma 4.3,
there exists € E* such thatf = sfop mod p. Then the image ofF] with respect toy

is A*(sfo + P). Multiplying it by w(1+ Eug) € E*°*/(1+ Euo) on the right, we obtain
A*(swfo+ P). On the other hand, the automorphismdotorresponding tav(1 + Eug)

is j(w + Eug) = fy *(wfo), and it send§F] to [G], whereG is the formal group with
logarithmg =a~1f o fo_l(wfo) anda € A* is such thatw = a mod A. By Lemma 3.1,
we havef o fy(wfo) = (sfo) o f (wfo) = swfo mod p. Hence the images ¢&1 with
respect tgy is alsoA*(swfo + P) andy is E“9*/(1+ Eug)-equivariant. O
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Now we are going to declare our main purpose. We can ideifyith £ so that
fo corresponds to 1. It gives us the following identificatiofs:with E/Eug, D with
E*/(1+ Eug) and S with {A*b(1+ Eug) | b € E*}. By Lemma 2.5, the least power in
the formal power seriegp which has an invertible coefficient is. Then according to
Weierstrass preparation lemma, there exists a uniglgeE™* with coefficients inO such
thatsoug is a monic polynomial of degree SinceE admits uniquely defined left division
transformation, for any € E, there exist uniqug, r € E such that = gsoug + r, where
r is a polynomial and deg< h. If s is invertible, therr is also invertible. Thus the cosets
in D can be represented by the polynomials o¥eaf degree less thai, and such a coset
belongs toD iff the corresponding polynomial has an invertible constant term. Moreover,
the polynomials oveA of degree less thainwith constant term equal to 1 can be chosen as
representatives of the cosetsSinWe call the polynomial of that sort belonging to the image
of ax-isomorphism class of deformations®@fwith respect tg the Dieudonné polynomial
of this class. The coefficients of the Dieudonné polynomial give a parameterization of
the set ofx-isomorphism classes of deformations®f Our purpose is to compare this
parameterization with Lubin—Tate's one. To be more precise, we will prove an explicit
formula expressing the coefficients of the Dieudonné polynomial through Lubin—Tate’s
parameters.

5. E-homomorphisma

Letw; € 0,0< i < h, be the coefficients abuog, i.e.,soug = Z?:o 7; Al whererr;, = 1
sincesoug is monic andr; € pO for 1 <i < h — 1 becausay is invertible. Define the
sequence, € O in the following way:¢o=1,¢, =0for1<n<h—1and

h—1 i -
_ A~h A=
=~ § :T[i Cnvin
i=0

for n > h. Sincern; € pO for 0 <i < h — 1, we havev(s,) > [n/h]. In particular,
lim¢g, =0.

Proposition5.1.Let f =Y 2, cixP' € R. Thenpc; — Z;‘:l rjAH ci—j =0 modp for any
i>0.

Proof. If f = fo, thenc; =4;(0,...,0), and Proposition 2.7 implies that the equality
holds. Now, we are going to show that if the equality holds fee Z?ioc,-xf”‘ € R, then
it holds also forAf =Y 7%, ¢ x¥". Indeed
-1 -1 A
pciA_l — rjA /ciA_j_l = (pc,-l — erA /ci1j> =0 modp.
j=1

j=1

Since fp generateR as E-module, we obtain the required statement
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For anyn > 0, define amA-linear mapw, : R — A in the following way:

00 00 i
oy (Z Cix”l> = pipco+ Z giﬁ'n <pci — er l’cij)'
i=0 i-1 =1

Since lim_ » ;f;n =0, Proposition 5.1 implies that the definition is correct.

Proposition 5.2.«;, ( fo) = p¢, foranyn >0

Proof. The coefficient of fy at x”' is a;(0,...,0). Then the required formula follows
immediately from Proposition 2.7.0

Let A{y}, denote theA-submodule ofA[[y], consisting of the formal power series
Yoo cay?" such that linr,, = 0. Let A operate O0M{y}, by the formula

0 o0

n A '

A E iyt = E ey’
n=0 n=0

That determines a leff-module structure od{y},.

Since lim— o gi{n = 0, Proposition 5.1 implies that lign, o o, (f) = 0 for any
f € R. Therefore we can define thelinear mapx : R — A{y}, by the formulax(f) =
Yoo (£)y7".

Proposition 5.3.« is a homomorphism df-modules.

Proof. If f =Y 0c;x? € RthenAf =Y ¢A xP'. We compute

-1
th—t-n(pcl 1 Z Ci— l j)
m—1 i o A
i i—j
= (PCn+1CO + Z tnia (pci - erA C[-j)) .
i=1 j=1

Now taking a limit overm, we obtain a,(Af) = a,;1(f)?. Thereforea(Af) =
32 o1 ()2 = Aa(f), i.e.,a is a homomorphism of -modules. O

Proposition 5.4.«(P) =
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Proof. Let f € P. Thenf = ufy for someu € E and Lemma 3.3 implies that there exists
s € E such thatu = sug. Further, applying Propositions 5.3, 5.2 and the definitiog,of
we obtain

a(f) =suoa(fo) =55y soquPCny = pssy ZZm (A" =0 o

n=0i=0

6. Rigid analytic functions p, and explicit calculation of the p-adic period map

We define the ring of rigid analytic function& {{r1,...,#,—1}} as the subring of
K[t1,...,t,—1] consisting of the formal power series

f= > fit!

I=(i1,....ip—1)eN—1

such that(f;) + |I| — oo as|I| — oo, wheref; = fi, i, ., t! =11t - t;,h 1=
i1+ ---+ip—1 andv is the normalized valuation df . Such power series converge if the
variables;, 1 <i < h — 1, take value irp A. It means that the rigid analytic functions can
be evaluated on the sptA x --- x pA (h — 1 times).

Define a norm orK {{t1, ..., t,—1}} by

£l = p*minleNh—l{V(fI)+|[|}.
This norm providesK {r1,...,t,—1}} with the structure of BanaclK-algebra (see
[1, Section 6.1.5, Proposition 1]). If a sequence of rigid analytic functions converges to
f e K{n,...,tn_1}}, then the sequence of their values at a poiniix --- x pA (h—1
times) converges to the value gfat this point.

Proposition 6.1.The sequence of polynomials

m i
P§;1610 + Z é‘iﬁ—’n <pai - erAlij ai—j) € L[tlv R t/’l—l]
i=1 j=1

converges irL{t1, ..., t5—1}} to the formal power series

oo min(i,h—1) ) oo h—1
Al =] A*]
pn=platy Y ;,+,,tj’ aij=pin+y Y §,+,+,,tj’ ;e
i=1 j=1 i=0j=1

Proof. By Proposition 2.7, we have

i mingi,h—1) .
Al A Al pi=
§i+n (pa,' — E r; a,-_j) = E gt-i-n j ai—j.

j=1
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Furthermore, the recursive formula fay implies thatp’a; € O[t1, ..., t,_1]. Therefore
we have

min(i,h—1)

Al P' J i—pi=
Z §n+lt] ai—j <p P
1

X )

i.e., the sequence of polynomials under consideration is a Cauchy sequdnie,in .,
th-1}}. O

Proposition 6.2.p0,(t1, ..., th—1) = o, (y (11, ..., T1—1)) foranyr; € pA andn > 0

Proof. The coefficient ofy (1, ..., th—1) atx” is a;i(t1, ..., Th_1). Since the evaluation
of arigid analytic function at a pointipA x --- x pA (h — 1 times) commutes with taking
limit, Proposition 6.1 implies the required equalityn

Lemma 6.3.Let f € K{t1,...,tp—1}, fF(O =1and|f —1| <1,ie,v(fy))+1|J]>0
foranyJ e N*=1 J £ (0,...,0). Thenf is invertible inK {1, ..., tn_1}}.

Proof. Let f'(t1,...,t5-1) = f(pt1,..., ptp—1). Then we havef € K{r1, ..., t5_1}} iff
v(f)) > oo as|J| - oo, ie., f' = Zf}t/ belongs to the Tate algebf®,_1(K). By
[1, Section 5.1.3, Proposition 1], an elemghi T, _1(K) such thatf’(0) = 1 is invertible
iff v(f))>0foranyJ e N1 J#(0,...,0). Sincef’ is invertible iff £ is invertible,
we are done. O

Proposition 6.4.pq is invertible inL{z1, ..., 1,1}

Proof. pg= pio= p mod1y, ..., 1. We will prove thatog/ p is invertible inK {z4, .. .,
tn—1}. By Lemma 6.3, it is enough to show thgip/p — 1|| < 1. Sincez, =0for1<n <
h—1andv(g,) > [n/h], we obtainv(;“,,) > 1 for anyn > 1. From the recursive formula
for a;, it follows that||a; || < p'. Therefore| Z] 1§lA +/t” aill < p~ 1Pt < p~2forany

>0, and thug|po — pll < p~2,i.e.,llpo/p — 1l < .1 o

Now let 1+ Zf‘;ll B: A’ be the Dieudonné polynomial of theisomorphism class of
deformations of®@ which contains the formal group'(zy, ..., t5—1). Then the formal
group with the logarithm(1 + Zf‘;llﬁiAi)fo is x-isomorphic tol'(z1, ..., t;,-1), 1.€.,
there existg € A* such that

h-1
y(t1,..., ‘L'h_]_)l(e <1+ Z,BiAi)fo) =x modp.
i=1

Then by Lemma 3.4, it implieg(t1, ..., t—1) =e(1+ Zf’:—ll B: A) fo mod p. Proposi-
tions 6.2, 5.4, 5.3 and 5.2 give
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0 h—1
Yo pan ey =aly (. o) = 0t<8 <1+ Zﬁzﬂi> fo)

n=0 i=1
h—1

_5(14—2,31 >a(fo) pE(l—i—Zﬂz )anypn
n=0

i=1

Writing down the coefficients ap?”, 0 < n < h — 1, in the left and right parts of this
equality, we obtain the following system bflinear equations ope, pefa, ..., peBr—1:

(po(t1, ... Th=1), P1(T1, ..., Th=1), - - P—1(TL, - .., Th=1))
= (pe, peP1, - .-, pePn-1)Z,

i+j }z ,Jj=
Sincetp=1,;, =0forl<n<h—1andy, = —no 75 0, the matrixZ becomes after

an obvious permutation of rows a triangle matrix with non-zero elements on its diagonal.

Thus Z is invertible, and the linear system has a unique solution. Taking into account
Proposition 6.4, we can summarize our results in the following theorem.

whereZ = {¢A o is ank x h matrix with entries fromO

Theorem 6.5.Lett; e pA andp; € A, 1 <i, j <h— 1, be such that

X[F(‘L’l,.. , Th— 1) (<1+Zﬂl )fO+P)€S.

Theng; can be explicitly expressed throughwith the aid of the following rigid analytic

functions with coefficients ib: g; = ((po, ..., pr_1)Z~1)i/po, WhereZ = {fﬁl,’}?;io-

7. Applications

According to Theorem 6.53; can be considered as rigid analytic functions on the
Lubin—Tate polydiskpA x --- x pA (h — 1 times). One can use them for checking several
properties of deformations @ with given moduli.

Proposition 7.1.Lett; € pA for 1< j <h — 1. ThenI'(tq,..., 1,—1) is isomorphic to
Foiff 14+ Y=L g A" € A*E“o*, whereg; = ((po, ..., pn-1)Z V)i/po, 1<i <h—1.

Proof. The elementA*(sfo + P) € S belongs to the orbit ofA*( fp + P) with respect to
the right action ofE“0* /(1 4+ Eug) on S iff s € A* E“0*, The required statement follows
from Theorems 4.5, 6.5 and Proposition 1.33

Proposition 7.2.Letw € E*o* and r(k) € pA, ﬂ(k) ceAfork=1,2,1<i,j<h—-1 be
such thaty[I"(zy”, ..., 7)1 = A*((l+ Y18 Al fo+ P) € S. Then
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[1—'(1;1(1)’,. T}El)l)]llv(w‘i‘EMO) =[ (7"1(2)7-' 1_}52)1)]

iff a(L,B0,..., 87 )Cw) =(182,....82)

for somea € A*, whereC (w) is the matrix of the right multiplication by the elemenibn
E/Euginthe basisl, A, ..., AP1,

Proof. Itis an immediate consequence of Theorem 4 5.

Let us consider a metri¢ on the set ok-isomorphism classes of deformationsdf
over A defined by the formula

a(r( )L M@ m2)) =exe(— | min w(? ~ o).

According to Yu [9, Section 2], the number mig; < — 1v(r(1) (2)) has the following
interpretation: it is the maximail such that the identity homomorphlsm between the re-

ductions OfF(r(l) .. I}El)l) andF(r(Z) .. r,fz)l) can be deformed to an isomorphism

overA/p' A. Further, we define a f||trat|ofUn}n>1 on the groupE“°* /(1 + Eug) as fol-
lows: let U, be the image of the subgroy@d™ + p" E) N E*0* of E"0* with respect to
the factorization by X Fug. Remark that the intersection of the groups is the stabi-
lizer of the cIass{Fo]. Evidently, any element of/, can be uniquely written in the form
wo + p” Z 1 w,Ai + Eug, wherewg e A*, w; e Aforl<i<h-1.

Proposition 7.3.Let p # 2, w € E"0*, ) e pAfork=212and1<j<h-—1 Let

formal groupsF = I'(z\", .. "‘>1) k_ 1,2, be such thafF»] = [Fl],u(w+Euo). If
w+ Eug € Uy, thend([Fl] [Fa]) < exp—m — 1).

Proof. We assumev = wg + p™ Zf’:‘ll w; AL with wg € A*, w; e Afor1<i <h—1.If
C(w) is the matrix of the right multiplication by the elementon E/ Eug with respect to
the basis 14, ..., A" 1 thenC(w) = wol, mod p™ wherel), is the identitys x & matrix.
Therefore by Proposition 7.2 we haﬂfel) /3(2) mod p™ for 1 <i < h— 1. It was shown
k h—i—1 (k) , A+
in the proof of Theorem 6.5 that}" = ps® and p*, = pe® Yz . l(+)] ghAﬂ’
1 (2) 1 2 (1) 2 (2) 1
<h—1,k=1,2. Hencepg p(e()—s())and,o e() ,'8()=
p&‘(l) 2 Z}!_’ 1 'Bi(—t)j _ ﬁl(i)])é.hA:j” _ 0 modpm+2 for1<i<h—1.
Suppose our claim is false, i.e., My <, 1v(r(1) (2)) <m.Letl<n<h-1
be such thav (7Y — @) <v® (2) fi - L _ @
) < v(rj yforany 1< j <h—1andv(t,” — 1,7) <

v(r}l) — r}z)) for j > n. Denoter = v(z, (1) 2. As v(¢y) =1, we have
e (0 - r?) =r 1

Further v(§h+] n(r(l) (2))) > A+ 2forj >nand



460 O. Demchenko, A. Gurevich / Journal of Algebra 288 (2005) 445-462

i ne' P , ,
(thﬁj—:-h —n () _T;) )ai>>1+)‘+(17’—1)—l>)»+2
fori > 1 sincep’a; € A andp > 3. It gives

ot =2 = (60 =)+ 5 i o)
j=n+1

oo h—1 . 1pi Zl’i
i+j
DI TN )a,)

i=1j=1
=x+1

Similarly

oo h—-1 o o b

1 2 i+ 2
R D0 S i T I

i=1j=1

Since

i+ 2 i .
<Zcﬁ‘wih T2 ,>>1+p’—z>2
fori > 0, we obtain

oo h—1
it = e+ 338 e

i=0j=1

WV

2.

Finally taking into account that(¢‘?) = 0 we deduce

V(o2 = o2 ® = p 02 (05 = pg”)) = 241

1 2 2 1 2
() ())3(2)— ( €] p(())):

Sincel < m, it contradicts the congruence, P ,oh )n (0

PV @ _ p? ¢ =0 modp™*2. Thus we proved that

d([Fl], [Fz]) = exp(— min v(r;l) — 1;2))) <exp(—m —1). O

1<j<h-1

For a deformatiorF’ and an integer > 0 denote byB(F, n) the open ball in the set of
*-isomorphism classes of deformationsd@fwith center{ F'] of radius exp—n), i.e.,

B(F,n) ={[G]]d([G],[F]) < exp(—n)}.
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Corollary 7.4. Let p # 2, w € E"%* and deformations;, F»> of @ be such tha{Fi]
B(F,n), w+ Eug € Uy, and[F2] = [F1]lu(w + Eug). Then[F>] € B(F, min{n, m + 1}).

Now we are going to consider the case wheris the reduction of the Artin—-Hasse
formal group oveiZ , of heighth. It means thatb = &, Fr, where theQ ,-homomorphism
& from £2 to F, is defined as follows; (#;) = §; » andé is the Kronecker delta. Then
ri=8nuo=p—A" so=—1,m; =—p8,for0<i <h—1,and hencey 1, = p'n0
for 0 < n < h — 1. Further, we calculate

mh i
i i—j
pénao + Z gzérn (pai - erA Cli—j)
i=1 j=1

m
= p(sn,OaO + p(pap—n — (Sn,OaO) + Z Pi(Paihﬂl — Qih—n—h)
i=2

2 1 2 1
=p ap—n+ (Pm+ Amh—n — P ah—n) = Pm+ Amh—n-

Thus p, = liMu— 0 p" P Lamp—n for 0< n < h — 1. The matrixZ = {; A }h 1 o has 1 at
the left upper corner ang below the non-main diagonal, all other entrles are 0. Therefore
Bi = pLpn_i/pofor 1<i < h — 1. Finally, we obtain

- 2
My oo P Ca0ms - iy im dmhti
lim,, - 0o Pm+1

Bi=p

Amh m=>00  dmp

We notice that if the degree @foverF,, is equal to, thenug = p — A" belongs to
the center ofE, and hence, the group éfautomorphisms o acts on the set of-iso-
morphism classes of deformations &f over A transitively. Moreover in this case, this
group being identified wittE“o* /(14 Eug) = E*/(1+ E(p — A")) is isomorphic to the
multiplicative group of the maximal order in the central division algebra Qgof rank
h? and invariant 1.

If @ is the reduction of the Artin—Hasse formal group, the maftixv) from Proposi-
tion 7.2 can be easily written in terms of the coeﬁicienta;oNamer, ifw = Zh_ol w; A,

thenC(w) = {c,,}l =0 wherec; ; = w? ;if j>1i,andc; —pwh+ if j <i.Thusin
this special case, Proposmon 7.2 g|ves the result of Gross and Hopkms on the equivariance
of a p-adic period map (see [4, Proposition 23.5]).
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