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Lectures p-divisible groups

The aim of these lectures, given at the Tata Institute in January -

February 1971, was to explain the contents of chapters 1, 2 and 4 of

MANU (I), The theory of commutative formal groups over fields of finite eharac-

teristic, English Trans., Russian Math. Sur. 18.

For general facts about algebraic groups, our reference is

DEMAZURE and GABRIEL (1:), Groupes Tome 1, North Holland Pub. ce.,

1970, which shall be abbreviated as D.G.

For supplementary material the reader may refer to:

HONDA (1), Isogeny classes of abelian varieties over finite fields, J. Math. Soc.

Jap., 20, 83-95, (1968).

HONDA (1), On the theory of cOllllllUtative formal groups, J. Math. Soc. J ap., 22

213-246, (1970).

TATE p-divisible groups; Proceedings of a conference on local fieldS,

(Driebergen 1966) Springer-Verlag, 1967.

TATE (l), Classes de abeliennes sur un corps fini(d'apres

T. HONDA), Seminaire Bourbaki, 352, Nov. 1968, Paris multigraphe.

TATE Endomorphisme of abelian varieties over finite fields, Inventiones

Math., 134-144 (1966)

N.B. The typing of these notes was done by Mr.P.Joseph, of the Tata

Institute. He did a very good job.



IV

Notational Conventions. If Q is a category, and A an object of Q, we write

simply AEQ; if A, Be.Q, the set of lD.orphiSlll.s in Q of A to B is denoted

by Q(A,B).

By a ring we always mean, if not otherwise stated, a cOllllllUtative ring with

unit.

M. Demazure
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CHAPTER I

SCHJ!XES AND FORMAL SCHEXES

1. k-functors

Let k be a ring and be the category of k-rings (L. e. commutative

associative k-algebras with unit, or simply couples (R, cp ) where R is a ring and

R a morphism). Actually, for set-theoretical reasons, one should not take

the of all k-rings, but a smaller one (see D.G. page XXV-XXVI) but we shall

not bother about this point.

A k-fUnctor is by definition a covariant functor from to the category

E of sets; the category of k-functors is denoted by

Example. The affine line 2k is defined by 2k(R) '" R, RE.Mk.

If is an arrow of if and if XE:X(R), we shall

write xg (or sometimes x) instead of X( cp)(x) £X(S); if 18 an arro....

of if and XE.X(R), we shall write f(x) instead of f(R)(x)E:Y(R);

with these notations, the fact that f is a morphism of functors amounts to

The category has projective limits, for example:

a) a final object e is defined by e(R) '"

b) if t.he tlToduct. X.. Y 1S til'lfi."",d by (X xY)(R) '" X(R) X.Y(R),



obvious
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c) if x-4 z..fL-y is a di.agr-am of the fibre product T "" XxY is
Z

defined by T(R) '" X(R)X. Y(R) '" {(x,y) EX(R) xY(R), f(X) "" g(y)}; more generally,
Z(R)

one has Xi(R),

d) is a monomorphism if and only if is injective

for each R. We say that X is a subfunctor of Y if X(R) C Y(R) and f(R) is

the inclusion, for all R.

Let k'EM
k;

as any k'-algebra can be viewed as a k-algebra, there is an

functor M-... M and therefore an obvious functor M M ,E', the
K' -k K- K-

latter is denoted by X So, if R is a k '<-r-Ing and R[k] the underlying

k-ring, one has

the functor X/3 k ' is called the funct.or' or
k

functor. It commu.tes with projective limits, hence is left-exact.

For instance

2. Affine k-schemes.

o QD k 'k
can be (and will be) identified with 0 I'

K

Let the k-functor SPkA (or simply Sp A) is defined by

if f: B is an arrow of then SPkf:SPkB ---'lI> 3P
kA

is obviously defined.

30 SPkA is a contravariant functor from to

An affine is a k-functor isomorphic to a SP
k
A. For instance

2k is an affine k-scheme because

Spkk[T](R) = ... 2t<:(R).
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Let X be a k-functor and A a k-ring. We the very simple and very important

Yoneda bijection

to f: SPkA--;;.. X is associated i 0= f( idA) E:X(A); conversely, if E:X( A) and

<:pe:SPk(A)(R) ,. we put f( <p) .. X( with our notation, the corres-

pondence between f and '5 is simply f( CP) .. 9'( ).

As an example, we take X,. SPkB; then X(A) .. !\c(B,A), and we have a

bijection

it means that A--;.- SPkA is fully faithful, or equi,valently that it induces an anti-

e9mvalence between the category of k-rings and the category of affine k-schemes.

This fundamental equivalence can also be looked at in the following ways

Let X be any k-functor; define a function on X to be a morphism f:X---;.. Qk' .!..!.

a functorial system of maps R. The set of these functions, say O(X), has

an obvious k-ring structure: if t , g £O(X), >. E.k, then

(f+g)(x) =- f(x) + g(x)

(fg)(x) .. f(x)g(x)

( Af)(x) .. A.f(x)

for any and any xE.X(R). If XE:X(R) is fixed, then by the very definition

of the k-ring structure of O(X), f....-:;;.f(x) is an element of .. Sp O(X);

we therefore have a canonical morphism

00 Sp O(X) •

It is easily seen that o: is universal with respect to morphisms of X into affine

k-schemes (any such morphism can be uniquely factorized through O(). The definition

of affine k-schemes can be rephrased as: X is!!! k-scheme if !!!:! only if
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0( is an isomorphism. For instance 0(2k} is the polynomial algebra k[T] generated

by the identity morphism Qk'

The functor A--,,",SPkA commutes with projective limits and base-change:

one has the following obvious isomorphisms:

Sp(At) At)

(the last one explaining the notation for base-change); as a consequence, the

full subcategory of affine schemes is stable under projective limits and base-change.

3. Closed and open subfunctors; schemes.

Let X be a k-functor and E be a set of functions on X;EcO(X}. We

define two subfunctors V(E) and D(E) of X:

V(E)(R) '"' {x If(x) '" 0 for all feE}.

D(E)(R) .. {XE:X(R)/f(x) for f E, generate the unit ideal of R}.

is a morphism of k-functors and F,", {fo u,fE.E}c.O(Y), then

u- 1(V(E» .. V(F), u-1(D(E» .. D(F} [if is a morphism of k-functors and Z

is a subfunctor of X. then u- 1(Z) is defined as the subfunctor of Y such that

If X is an affine k-scheme, then

I} V(E) is an affine k-scheme with O(V(E» '"' O(X)!E O(X)

2) if E .. {f} has only one element, D(E) is an affine k-scheme with

O(D({f}) '"' O(X) [r1] 'II O(X)[T]!(Tf-1}.

Proof. If X .. Sp A, and EcA"" O(X), then for all RE:!k,
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V(E)(R) =

D({f})(R) ={<p !!Ic(A,R) /CPU) is

Definition. The subfunctor Y of X is said to be _.closed (resp. open) it' for an;y

morphism T is an affine scheme, the subfunctor u-
1
( y ) of T i!

of the form VeE) (resp. D(E».

For instance, if X is affine, then Y is closed (resp. open) if and

onlY' if it is a VeE) (resp. D(E». As a corollary, a closeg,.. subfunctor of an affine

k-scheme is also an affine this need not be true for open sub functors:

take X = Sp and Y = D({T,T'}). In the functorial setting, the precise

definition of a not-necessarilY' affine k-scheme is a bit complicated. Let us give

it for the sake of completeness:

Definition. The k-functor X is a scheme if:

1) it is a "local" k-functor: for !l}L.k-ring R and an;y "partition of unit;y"

f i of R( = family of elements of R !!:£!! that L Rfi = R), giYen elements

E:. X(R[ti 1] ) !!:£!! that the images of Xi and xj in X(R[fi 1:tj1] ) for

all couples (i,j), then there exists and onl;y x X(R) to

Xi'

2) There exists a f&mil;y (Uj) of open subfunctors with the following propertiesl

each Uj is an affine k-functor; for!!!r field K !!k,X(K) is the ;!nion of the Uj(K).

From this definition follows easilY'1

Proposition 1)!!! £!: subfunctor of ! i! ! k-scheme,

2) !!!l.f!!:!lli projective limit (.!.,g. fibre Eroduct) of k-schemes is !
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As an illustration of I), let AE:!1k and ECA; then D(E) C Sp A

is a k-scheme, because it is local and covered by the affine k-schemes D({f}),

fE:. E. Also note that the limit of a directed projective system of schemes is not

generally a scheme (although it is in the affine case, as already seen).

4. The geometric point of

Let X be a k-functor; we want to define a geometric space (topological

space with a sheaf of local rings) IXI associated to X. First, the underlying set

of Ixi is defined as follows: a point of Ixi is an equivalence class of elements of

all X(K) where K runs throu/l:h the fields of !1kl XE:X(K) and x' E:. X(KI
) beinll;

equivalent if there exist two morphisms of !1k' say L, K' where L is a

field, with

Second, the topology. If Y is a subfunctor of X, then IYI can be

identified with a subset of IXI; we define a subset U of lx/ to be if there

exists an open subfunctor Y of X, such that ITI'" U; moreover, such a Y can be

proved to be unique, and we write

Third, the is the associated sheaf to the presheaf of rings

As an example, take X = Sp A, AE.!1k' Then Isp AI is the usual spectrum

Spec A of A: the points of Spec A are the prime ideals of A; the open sets are

the ID(s)1 '" {plscj:p}, SCA; the sheaf is associated to the presheaf ID(s)I-+A[s-l].

(One basic theorem asserts that the ring of sections of the sheaf over ID({f})1 is

A[r'] i.

In the general case, for all AE:.!1k' and all the Yoneda

morphism Sp A.-+X associated to S defines a rinl!:ed-space-morphism Spec A--'iJ>. [x]

and IX I can be proved to be the inductive limit of the (non-directed) system of the

Spec A. (D.G. I, § 1, n04).
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One has then the following comparison theorem (D.G. I, §1,4.4. )

Theorem. X--il> IXI induces e9mvalence between the category k-schemes and !Jl!

category of geometric spaces locally isomorphic to! Spec A, se

One can give a quasi-inverse functorl there is a functorial bijection

betwen X(R) and the set of geometrie-space-morphisms from Spec R to [Xl, as

follows from the theorem and Yoneda's

By this equivalence, one defines geometric objects associated to the

k-scheme X I the local rings Ox and the residue fields K(x), xe: Ixl; all are,x
k-rings.

5, Finiteness conditions.

Let k be a field. A k-scheme X is said to be finite if it is affine

and if O(X) is a finite dimensional vector space; if X is finite, then [O(X)lk]

is called the rk(X) of X. A k-scheme X is locally algebraic (algebraic)

if it has a covering (a finite covering) by open subfunctors It which are affine

k-schemes such that each is a finitely generated k-algebra. If X is an

affine k-scheme, then the following conditions are equivalent I

1) X is algebraic, 2) X is locally algebraic, 3) O(X) is a finitely

generated k-algebra (D.G,I, §3,1,7).

It follows from the Normalization lemma that X is finite if and only if

X is algebraic and IXI finite. It follows from the Nullstellensatz that if X is

locally algebraic and ¢ (one defines ¢(R) ¢ for all R, or equivalently

I¢I a ¢), then X(K) ¢ for some finite extension K of k, Let X be a (locally)

algebraic k-scheme, k algebraically closed; then if U is an open subfunctor of

X, U(k) a ¢ implies U a ¢, This easily implies that if one views X(k) as the

subspace of IXI whose points are the x e:IXI such that 1{.(x) a k, the open subsets

of IXI and the open subsets of X(k) are in a bijective correspondence (by
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It is therefore equivalent to know the k-scheme X, or the k-geometric space X(k)-

the only difference between the X(k)'s and Serre's algebraic spaces lies in that

the latter have no nilpotent elements in their local rings, whereas the former may

have, As we shall see later on, this is an important difference, Serre's algebraic

spaces correspond to "reduced" algebraic k-schemes (Le, with no nilpotent elements),

A similar discussion can be made in the case of a general field k; one has to

replace X(k) by the set of closed points of IXI (by the Nullstellensatz, x IXI

is closed if and only if 1( (x) is a finite extension of k),

6, The definitions of formal schemes,

k is &Ssumed to ! field,

We denote by the full subcategory- of consisting of finite

(,. finite dimensional) k-rings, A functor is a covariant functor

the category- of k-formal functors is denoted by Mfk!; this category has

finite projective limits. The inclusion functor gives a canonical

functor called the completion functor: if then is
A

defined by X(R) == X(R) for RE:Mfk. The completion-functor is obviously left-exact.

If AE.Mfk, we denote by Spf
k

A or Spf A the k-formal-functor

one has obviously SP'A,. Spf A, and for any a Yoneda

isomorphism A,F) F(A), In particular, the functor A

is fully-faithful, or, what amounts to the same, the functor x.....X, X a finite

k-scheme, is fully faithful, We therefore can view the category of finite k-schemes

as a full subcategory ot either or (we shall say: "the completion does

not change the finite k-schemes").

a) By definition, a is a k-formal functor which is the limit of

! directed inductive slatem of finite k-schemes: F is a k-formal-scheme if there

exists a directed projective system (At) of finite k-rings and functorial (in R)

isoRlorphiamsl
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For any k-formal functor G, one has a Yoneda isamorphisa

There are three equivalent definitions of k-formal-scheEs, all of them

very important:

b) Let A be a profinite k-ring, i.e. a topological k-ring whose topology has

a basis of neighbourhoods of zero consisting of ideals of finite codimension; one

also can 88.y that A is the inverse limit (as a topological ring) of discrete

quotients which are finite k-rings. If RE:MflJ.' we define Spf (AHR) as the

set of all continuous homomorphisms of the topological k-ring A to the discrete

k-ring R; if is the falllily of discrete finite quotients of A defining its

then obviously Spf (A)(R) 'Z Spf (A:i)(R), ami Spf A is a

k-formal-scheme.

If ep:A- B is a morphism of profinite k-rings, then Spf Cf :Spf B_Spf \ is

obviously We have then the

Theorem. A-:;,. Spf A is!!! anti-eguivalence of category 2f profinite

k-riQB! category of

We first prove that Spf is fully faithful: let A and B be two profinite

k-rings and be the family of all finite discrete quotients of A. We have

isomorphisms

A,Spf B) Spf B(At) "'"

We now prove that any k-formal-scheme F is isomorphic to a Spf A. By definition

there is a directed projective system of such that F is isomorphic to

:!:!: let A be the topological k-ring

a profinite k-ring and that lim Spf zSpf A.
-iI>

lim A:i.; we shall prove that A is

Let us fix an i; the images of the transition maps

form a directed decreasing set of sub-k-rings in the finite k-ring Ai; it follows
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that there is a j{i) such that

it implies that, if we replace each Ai by A' = n A
i j,

we change neither the
i j

topological k-ring A, nor the functor Spf Ai" We can hence suppose that

all transition maps Aj-+Ai are surjl"ctive. It is now sufficient to prove that

the projections A---"J!' are surjective; this would imply both our assertions

Let now Ci be the k-vector space dual to the Ci form a directed

inductive system with injective transition maps; call C Ci; each canonical

map Ci is injective. Let C* be the dual space of C, The dual maps

C* Ai are surjective and form a projective system; they factorize through A

and the projections are! fortiori surjective, In fact, the canonical

C* A is bi,jective; if vE: C* maps to zero on each Ai; then the linear

form v over C vanishes over each C1> hence is zero; conversely, if aE A,

then the projection of a on each Ai is a k-linear form on Ci; these linear

forms match together, and define a k-linear form on C, which means that a

belongs to the image of C*

c) A k-cogebra is a k-vector space C together with a k-linear map

L1:C We say that C is a k-coring if L:l is coassociative, cocommutative,

and has a counit e ; let us make these three notions precise,

1) 6. is Co&ssociative if {L1 1c} 0 {I C A} 0 6, in the following

diagram

'C06

2} b. is cocommutative if the image of D.. consists of symmetriC tensors;

equivalently, if <r 0 A= A where c:r (xey) =
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3} A e to t::. is a k-linear form £ :C-..+k such that the two maps

If C is a k-cogebra, then the dual k-vector space C* has an algebra

*structure defined by <x.y,u> '" <xey, Au> ,x,y£C ,uliC, If C is a k-coring,

then C* is a ring.

Conversely, if A is a k-algebra, the dual space A* has a

natural cogebra structure, which is a coring structure if A is a ring. (If A is

* *not finite, the dual space of A4!>A is not A e A ,).

The morphisms of k-"Corings are defined in an obvious way, and the k-corings

form a category.

Let A and R be two finite k-rings, and A* the dual k-coring of A.

*Linear maps correspond bijectively to elements of the tensor product A e Rj

A '* '* *8the k-linear maps and EA* extend to maps A 8R-4(A R}

and R which also we denote by t::. and e.. We then have the easy

Lemma. The k-linear map A.-+R associated!:£ uE: A*e R i5! ring homomorphism if

We therefore have a functorial isomorphism

For any k-coring C, we define the k-formal functor Sp*C by

Sp*C(R} '" {u E 106u '" uCS>u, au '" 1}. We thus have a covariant functor Sp* from

the category of k-corings to the category of k-formal functors.
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Theorem. The functor Sp* is!rr equivalence between the category of k-corings and

category 2! k-formal-schemes.

As we have already seen Sp* induces an equivalence between the category of

finite k-corings and the category of finite k-schemes by the formula.

We have already seen that any k-formal-scheme F is an inductive limit of finite

schemes Spf with surjective transition maps the inductive limit

*C '" Ai is naturally endowed with a k-coring structure, and, for any

we have

The only point that remains to be checked is that any k-coring is a union of finite

dimensional ones:

Lemma. If C is.! k-coring,.!!!!! E .! finite dimensional subvector space of C,

there exists .! subvector space F of C !!!!dl ECF and

AFCFSF.

We need only prove the lemma for [E:k] '" 1, say E "" lot. Let ai be a

k-basd.e of C and write Ax '" LXi8ai; put F"" Lkxt; one has

Since b is cocommutative, we have llFCC8F, hence AF C F4tF.

If C is a k-coring, let C* be the k-dual space of C with the linear

topology defined by the subspaces of C which are orthogonal to the finite-dimensional

subcorings of C. Then, what we have proved already in b) gives: the k-ring C*

is profinite and

Sp*C = spr c*.
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Conversely, we can recover C as the set of continuous linear forms on C*:

if A is a profinite k-ring, write for the set of continuous linear forms on A,

then

Spf A = Sp*A'.

d) The fourth definition of k-formal schemes is from a purely functorial point

Theorem. ! k-formal functor H4-+! is a g!!!!! only if II is !.

left exact functor.

We recall that a left exact functor is one which commutes with finite

projective limits (Le. which commutes with fibre products and with the final objects).

Any Spf (A), AE.!!k is clearly left exact (this is true in any category, and is the

very definition of finite projective limits) hence also any inductive limit of

Spf (Ai)' Ai E.Mfk, 1. e. any k-formal-scheme, is left exact.

A proof of the converse can be found in D.G. V, § 2,3.1. This fourth

definition will not be used in the sequel.

7. Operations 2!! formal schemes.

A finite projective !!!!!1 of k-formal-schemes is a k-formal-scheme. For

instance let F'f'- F2 be a diagram of k-formal-schemes corresponding to a

diagram At+-A A2 of profinite k-rings; then Ft X
F

F
2

is a k-formal scheme

corresponding to the profinite k-ring where

where It (resp I 2) runs thrOUgh the open ideals of Al defining its

"'-topology; AICD
A

A
2

can also be defined as the completed ring of the usual tensor

product At"A for the topology given by the + I t9A2" The description
CPt Q>2

from the coring point of view is a bit more difficult. Let C +--C
2

be
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the corresponding coring diagram. Then the k-coring D defining the fibre product

is the kernel of the map from C,.C2 to C which sends to

CP,(x1) E2(x2) - Et(x1) C92(x2); the canonical maps and D-7C2 are

definedby and

More particularly F,xF2

and to the k-coring

A
corresponds to the profinite k-ring Al&A2

(note that the maps 0,.C2-+Ci' 1,. 1,2) are defined by the counits).

We shall need later the following lemmaJ

Let t ... Bp£'If '" SpitCf morphism of schemes. (f !.!!
II !.!injective).

Clearly, tq> is is surjective) is a monomorphism).

Conversely, if £:X -+ Y is a monomorphism, then (general nonsense) the diagonal

morphism XXY X is an isomorphism. If Cf sC--?o> D is the corresponding coring

morphism, then the following sequence

1.1. V
o ---7> C C&0 ---+ D

is exact, where u.(x),. xex, v(xey),. EO(x) <f(Y) - 6
0(1)

Cf(x). If 0( EKer <:p,

then EC(CC) '" SD(q>(oc» '" 0; it follows that for any xE.C, one has v(xQo<) '" 0;

hence C8(Kerer) C u(C), This implies Kar Cf "" 0, or [C:k] ... " q> '" 0; in the

latter case, one has Ec '" cp 0 ED "" 0, and this implies 0 '" 0 (for instance

*' *'because l
C

'" 0 implies C '" 0).

The category of k-formal-schemes has infinite

II Spf Ai '" Spf nAi

tiSp*'Ci "" Sp*'ECi •
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A formal scheme F is said to be local if it is isomorphic to a Spf A where A

is a local ring; equivalently, Card F(K) must be 1 for all fields

is ! 2! if A '" AlIi is a

pro finite k-ring, let be the set of all open maximal ideals of A; the artinian

k-ring A/Ii is a product of local rings, which are the localized rings (A/Ii)m/I.
:1.

where m runs through the elements of (t containing Ii; since (A/Ii)m '" (A/Ii)m/I.
1.

if m:::>Ii and to} otherwise, we have AlIi'" n (A/li ) ; defining Am as the
m6.n m

A", n Am
men

(each Am as a directed projective limit of local rings).

Let k' be an extension of k; we define the functor by the

following formulas

k'
k

completion of Qx,x for

If X is a (locally)

If kl/k is finite, then this base-change functor is the obvious one,

If X is a & completion 'l' !!! k-formal more
A

precisely, X is the direct sum of the Spf Oy where x runs through the points
-A,X

of X such that [1(x): k]<00, and where x is the,
the topology defined by the ideals of finite codimension.

algebraic k-scheme, then these x are precisely the closed point of X, and '0-X,x
is the completion of Oy for the usual adic topology. For instance, if-A,X
X '" Sp A, where A is & finitely generated k-ring, then X'" U where m

t:\
runs through all maximal ideals of A, and is the completion of the local ring

Am for the m-adic topology. The functor Xt--71 is left exact and commutes with

.
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8. Constant and schemes.

For the moment, let us drop the assumption that k is a field. Given

a Set E, we define the constant to be the direct sum (in the eategory

of k-schemes)

equivalently, IEic I is the direct sum (Spec k)(E). For any scheme X, we have

canonical bijections

so that E Eic is the right adjoint functor to X X(k). This implies that

E .......Eic commutes with finite projective limits.

isomorphism

If k' one has a canonical

If X is a scheme, then !k!(X,Eic) can be identified with the set of

continuous (i.e. locally constant) maps of [x I to the discrete space E.

If E is finite, then Eic is affine and is the k-ring

6
Let now k be again a field. We define the constant formal-scheme Eic

as the completion of Eic, or equivalently, as the direct sum (Spf k)(E). Then

Spf k
E,

where kE has the product topology.

A k-scheme (resp k formal-scheme) is called constant if it is isomorphic

to an Eic (resp The completion functor induces an equivalence between the

category- of constant k-schemes and the category of constant k-formal scheme s ,

\tie define now an etale k-scheme (resp an to be a

direct sum of Sp (resp Spf) of finite separable extensions of k, Ll'lt k be an

algebraic closure of k, and ks the subextension consisting of all separable

elements of k. Then:
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Proposition. For! X (resp.! X), the following

conditions !r! equivalent:

This proposition is an easy consequence of the following I if A is a

k-ring, then A is a finite product of finite separable extensions of k if and only

if Aekk is a finite power of k, or AGDkk
s

a finite power of ks'

Let n be the Galois group of k /k; it is a pro finite topological group.
s

Let X be an etale k-scheme; then TT operates on the set X(ks) and the isotropy

group of any xCiO:X(ks) is open in n (one calls X(ks) a n-set). The t'undamental

theorem of Galois theory is equivalent tOI

Proposition. X---+ X(ks) is!!:!l eguivalence between the category of k-schemes

!!!! the category of n-sets.

1\
Note also that X.....-.,.. X is an equivalence between the categories of etale

k-schemes and etale k-formal schemes.

9. Frobenius morphism.

We suppose now that the characteristic p of the field k is >O. For

any k-ring A, we denote fAIA-+A the map xt-+xP; we denote by A[f] the

k-ring deduced from A by the scalar restriction fklk k, and A(P) = A41\,fkk

the k-ring obtained by the scalar extension fko

Then fAIA-.+A(r] is a k-ring morphism, and defines a k-ring morphism

(p) ( "P
FAll. FAxe>- ) '" X" J\.

If X a k-functor, we put X(p) .. Xe k, so that
k,f
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and lie define the Frobenius morphislll FXIX...... X(p) by

For example, if X '" SpkA, then X(p) ,. SPkA(p) and FX '= SPk FA' More generally,

if X is a k-scheme, X(p) is a k-scheme. If k,. IFp , then X(p).= X, but

F
X!

idX in general. If k' is an extension of k, then (Xekk' )(p).= X(P)8 k
k'

and FXe k ' .= FX&kk' (obvious from the definitions).
k

Analogous definitions can be given for formal-functors and formal-schemes

and the completion functor commutes with these constructions.

Proposition. Let X be! k-formal scheme, .2! ! locally algebraic k-!£.!l!!l!!!H then X

is etale if and only if FX is! lIlonomorphism, .2! if and only if FX .!!!!! iso-

morphism.

Let us give the proof in the case of a locally algebraic k-scheme. We

can replace X by XQkk, hence suppose k,. k. If X is constant, then F
X
is

an isomorphism. Conversely, suppose F
X

is a monomorphism; let U ,. Sp A be an

algebraic open affine subscheme of X; then F
U

is a monomorphism and we have to

prove that A is a finite power of k, Let m be a maximal ideal of A; write

A/Ji? .= AimED mlJi? and look at the two follolling mapsl the first one is the cano-

nical map uIA---,)oA/m2, the second one is AimED m/m2• Trivially

u 0 FA ,. v 0 FAl but by hypothesis FA is an epimorphism of and this implies

u ,. v 1. e. m/m2 .= O. For any maximal ideal m of A, we therefore have m.= m2,

and this in turn implies in a well-known manner that

'0. Frobenius J!!e symmetric products.

Suppose again p! O. Let V be a k-vector space, fitlV the p-fold

tensor power of V, TSPV the subspace of symmetric tensors and s:(!iJlV--:;.Tflv

the symmetrization operator: s(a,8 ... "'Lacr(I)8 ... 8 acr(p)' l61erecr

runs through the symmetric group 0 p• Let O(VI V(p) --:;. TSPV be the linear map

sending a A. to a e ... e a).
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The proof is an easy exercise in linear algebra.

If A is a k-ring, then TSPA is a ring and "'A a k-ring homomorphism

(because is an ideal in TSPA by the formula s(uv) a us(v) for u

symmetric). If X a Sp A, we denote Sp( rsPA) by SPX (p-fold symmetric power of

X) One has then the following commutative diagram

which gives another definition for FX'

Let now C be a k-coring, and consider the Frobenius morphism

(it is clear that (SP*C)(p) .. sp*c(p), where C(p):I k},
k,f

There exists a unique coring map such that Fa Sp*V
C'

The pth

iterate of A :C--+@2C (defined inductively by 6.2 .. A,

6.3 :I (1 o/)u (6. 1) oA, .•• ) maps C in T#C, and we have the

Theorem. is the composite!!!l! C J TSPc C(p).

Proof. Let A be the (profinite) k-ring C*; then ip) (C(p»* a (C*)(p). If

a £ A, XCi.C, one has by definition <ae 1, V(X» a <aP,X) where

a&1 e:(C*)(p) a C* k and V(x)E:C(p). By definition of the multiplication
k,f

of A, one also has <aP,x) .. ••• <> in the duality between
p

and But as .•. Sa is symmetric, and Ap(x) .. ocC(y) + s(v) for

y .. AcAp(x) and a suitable v£&PC. Since <a& ••• 8a, s(v» ... 0, this

gives

<aQD1, V(x» ... ••• sa, 0( (x) a (aSl, r»
C
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and V(x) = y as claimed above.

Corollary. *X = Sp C = Spf A is if and only g FA is surjective

(resp. bijective) !!!!! if !!!!! only if Vc is injective (r-eap, bijective).



CHAPTER II

GROUP-SCHEMES AND FORMAL GROUP-SCHEMF,s

I, Group-functors,

Let k be a ring, A group 12 on a k-functor is a family of

p;roup-laws on all the G(R), such that each functoriality map

is a homomorphism. Equivalently, a group law on G is a morphism

such that

'7t(R) :G(R»)( G(R) G(R)

is a group law for all R; this condition is equivalent to the axioms (Ass),

(Un), (lnv):

(Ass) The morphisms 7to (7txI
G)

?to (IGX'7t) GxGxG to G

egual.

(Un) element I G(k) (.2!: equivalently ! morphism e:Sp

such that '?to (IGX e) and '1to (e XI
G)

equal!:2 'o:

(lnv) morphism G such that morphisms

We are principally interested in commutative group laws, i,e. such that G(R) is

commutative for all R, L, e.

(Com) If t;':G><G--?>G><G is the s;ymmetry, 'C07t .. '1(.

A is a pair (G, '1t) where G is a k-functor and '7t

a group-law on G. The k-group functors form a category, a homomorphism f:G H

a such that H(R) is a for each R,
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or equivalently such that (r )(f) o6
G

'" A
H

0 f. The category of k-group-

functors has projective limits. For instance:

- The final object ek '" Sp k has a unique group law.

- If is a diagram of the fibre product Gx K has an
H

obvious group law, for which it is the fibre product in 9!k.

_ In particular, if H is a homomorphism, the kernel Ker f of f is

the sub-functor Gx H e
k

of G; equivalently

(Ker f)(R) '" Ker(r(R):G(R) H(R».

The homomorphism f is a monomorphism if and only if Ker f '" ek.

_ The definition of a subgroup functor is clear.

A k-group-scheme or k-group is a k-group functor whose underlying k-functor is a

scheme.

The base-change functor for k'e: '\ is obviously defined.

2. Constant and k-groups.

The functor E from sets to k-schemes commutes with products

and final objects; it follows that has a natural group-law if E is a group.

Such a k-group is called a constant k-group. Suppose k is a field and n the

Galois group of k/k; the functor X from etale k-schemes to IT-sets

is an equivalence (I.B); it follows then from the definition of a k-group, and the

fact that a product of etale schemes is also etale:

Proposition. functor X(ks) is equivalence between the category of

etale k-groups (resp.commutative etale k-groups) and the category of n-groups

(resp. commutative n-groups '" modules n).

Moreover, X is an etale k-group if and only if k is a constant k-group.
k s



3. k-groups.

Let G '" SPkA be an affine k-scheme. The morphisms '1t :G)( G---+ G

are the SpkA where A :A--+AekA is a k-ring morphism. Moreover t7(. satis-

fies Ass, Com, Un if and only if t::.. is coassociative, cocommutative, has a

couni.t; The condition (Inv) is equivalent to (Coinv): a: :A-...+ A

.ll!!i the composite maps

Such a .,.. is called an involution, or antipodism. If one identifies A witl1

O(G), A8 A with O(G)( G), then

(Af)(x,y) '" f(xy), <:rf'(x) '" f(x- I ) , Sf'" r(l),

for x,yE:G(R), R !1t<.

We shall be interested in commutative groups. Let us define a k-biring

A as a together with a structure of k-ring and a structure of k-cor-mg,

which are compatible in either of the two equivalent following Senses:

_ the product AC8 A is a k-coring morphism.

- the coproduct e A is a k-ring morphism.

Then, the category of commutative !f!!n! k-groups is antiequivalent to the category

of k-birings with antipodism by Gt---+O(G) and A (the morphisms of

birings are defined in the obvious way).
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A very useful relllArk is the followings let G be an affine k-group and

A," O(G) [then G(R) for any 7)
I) ..tn the group G(A8A). AA is the product of the two canonical

IIlApS and

2) the group G(A) '" erA is the inverse of 'Al

3) SA is the identity of G(k) '"

These facts are trivial: for instance I) says that if H is a group, the map

(x,y) is the product of (x,y) _x and

Example i , The additive group is defined as follows: 2Sk(R) is the

additive group of R; then, by the above remarks:

(T is the identity 2k) )/).,T '" T a' + 1Q)T, o-T '" - T, eT '" O.

Example 2. The multiplicative group f-k is defined as follows: J:!k(R) is the

multiplicative group of invertible elements of R; hence

n
Example 3. Let n>.;.1 be an integer. We define a group homomorphism

by The kernel of this homomorphism is denoted by n #- k' Hence

n#k(R) '" {XE.R, x
n,"

I}

with the same formulas as above.
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Note that, if k is a field and n is not 0 in k, n#:k is etale (because

ofl- 1 is a separable polynomial) and n is the Galois module of nth

roots of unity.

Example 4. Let k be a field with characteristic p I O. One defines

r
as the kernel of the homomorphism of iG!Sk in itself. Hence

Note that "" {OJ for any.!!ili K.
p

The remarks lore made about the construction of6, E can be generalized

in the following way. Let H be any k-group functor. and G "" SPitA be an affine

k-group. Let consider the three maps i" i 2, D.. :A----+MH.

Then:

The element f EH(A) is! grouE homomorphism!!2!!! G !.2 H g and only

if !:!!! group H(A6U), (r) '"' i 1(f)i2
(f) . Because, if H(ASA) is

identified with xG,H) , then I:l (f), i,(f) and i 2(f} map (x,y) to

f(xy) , f(x), fey) respectively.
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As for the latter, remark that the lemma gives: XE:A .. !!Ic§(G,S2k) is a homomorphism

from G to 14k if and only if x .. xex, and x is invertible. But this

implies ex.. 1 (because a group homomorphism sends 1 to 1); conversely, if

L::. x .. x8x and Ex" I, then by (Coinv) xcr(x) .. Ex .. I.

4. k-formal-groups, Cartier duality.

Suppose now that k is a field. The definitions of nOI can be

carried mutatis mutandis to k-formal functors. A k-formal group is a k-formal-

group-functor whose underlying k-formal-functor is a k-formal-scheme. For k-formal

groups, we can repeat n03, replacing tensor products, by completed tensor
A A

products: the coproduct maps A to A 0 A, ••• If G is a k-group, then G has

a natural structure of a k-formal group. For instance, a is an equivalence

between constant (resp. etale, resp. finite) k-groups and constant (resp. etale,

resp. finite) k-formal groups.

It is more interesting to look at formal-groups from the point of view of

k-cor-Inae, Let G .. Sp*C be a k-formal-scheme; to give a morphism '?tIG xG --+ G

is equivalent to give a k-coring map ----+ C 1. e. an algebra structure on C

compatible with the coring structure; moreover, '7\. is a group law (resp. a commu-

tative group law) if and only if this algebra structure is associative, has a unit

element and an antipodism (same axiom as (Coinv» (resp. and is commutative). In

particular, is an equivalence between k-birings mh antipodism and

commutative It follows that Sp C ----,;. Sp*C is!!! antieguivalence

between commutative k-groups !!!!! commutative k-formal-groups. This can also

be explained as follows:
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For any cOlDlllutative k-group-functor G, we define the Cartier dual of

G as the commutative k-group-functor D(G) such that, for

D(G)(a) '" Gr R, J.S....);
--z? k I!l.

if G and H are two commutative k-group-functors, then it is equivalent either

to give a homomorphism G --iiloD(H) , or a homomorphi$m H D(G), or a "bilinearll

morphism Gx H # k- In particular, there is canonical biduality homomorphism

O(G:G D(D(G».

A
Theorem 1) g G is!!! commutative k-group, D(G) is! commutative

group. More precisely, if G '" Sp A, where All! k-biring with antipodism,

A A .
D(G) '" Sp*A. The functor !.!!!! antieguivalence between

commutative k-groups and commutative k-formal-groups.

2) g G is! commutative D(G) O<G is

!!! isomorphism, G----'7 D(G) induces! duality in category ss finite

mutative groups. Moreover rk(G) '" rk( D( G)).

Let G '" Sp A, where A i4 Q. k-J:ir.ing with involution. Then, for Mft

r-.
D(G)(R) '" Gr (Ge R, J.l. ) '" {x .A19 R, Ax," x 19 x, Ex'" 1} '" Sp*A(R);

--z? k I-a k

to prove 1), it remains only to show that the multiplication in A giving the

group structure of D(G) is the given one; this verification is straightforward.

The proof of 2) is similar.

Examples i) Dff"»/ »,. M.. and conversel.... (exercise).
\J,&. nZ k 1tork "
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2) (Charac (k) : p 1 0) There is a canonical bilinear morphism

given by f(x,y) exp (xy) 1 + xy + ••• + (xy)p-l«p_l)!

A A
3) D(/Ok) 1l k, hence D(f->k) :Zk (exercise).

5. The Frobenius and the Verschiebung morphisms.

It defines an

Suppose charac (k) P /: O. The functors G-4G(p) and the morphism

G(p) commute with products, This implies that, if G is a k-group-

functor, then G(p) has a natural structure of a k-group-functor, and FG is a

homomorphism. The same is true for k-formal-group-functors,

and

Let G be a commutative affine k-group.

by l l(pl)O F
G,G G G

We have D(G(P» = D(G)(P), By

Cartier duality, there is therefore a unique homomorphism (the Verschiebung morphism)

A A
such that D(VG) =FO(G)' If G = Sp A, then D(G): Sp*A, and we see that

VG : Sp VA (VA has been defined in I, nOlO).

In the same way, we define the Verschiebung homomorphism for commutative

k-formal groups. One defines also G in the same way as Fri,

If is an homomorphism of commutative affine k-groups (or

k-formal groups), then the following diagram is clearly commutative:



f

H(p)--------+) H

Proposition. It G 1;!tI k-group (resp. ! commutative k-formal

group), then

It is sufficient to prove this for the affine case, because the formal

case follows by Cartier duality. Moreover. the first formula (for any G) implies

the second one: by the functoriality of F and V, one has a commutative diagram,

and Fa 0 Va '" v (p) 0 F (p).
G a

To prove Va 0 FG .. P idG' \'Ie use I, nOlO. One has a cOIDIIlutative diagram

(where A", O(G»I
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or

with 5(g) ,. (g, ... ,g), and '1C'P(g1"'/») ,. g1 + ., + Then

Va 0 Fa ,. '1t"p b ,. P idG'

Remark. The above diagram gives a direct definition of VG,

from the facts that F is an epimorphism for Q$k and #k and that

6. The category of affine !£-groups.

Recall that k is supposed to be a field. Let be the category of

all !!!1!!! cOllllllutative k-groups.

Theorem 1. (Grothendieck): 1h! category ACk abelian.

a) 1! additive category: Clear.

b) Any morphism f:G _H of has a kernel: one has

Ker f,. GxHe ,0(Ker f) ,. O(G)/m(H)O(G)
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(m(H) "" Ker e H:O(H) --+-k). Remark that O(G) ----,)0 OCKer f) is surjective.

c) Any morphism f:G-+H of has a cokernel: One takes Coker r such

that

O(Coker f) "" O(H)G "" {fEO(H), r(g+h) "" f(h) Vge:G(R), heH(R)}

'" {teO(H), U) '"
H

Remark that O(Coker O(H) is injective.

d) There is only one thing more to prove, and this is the fundamental tact,

that any monomorphism is a kernel, and any epimorphism is a cokerneL, More

precisely

Theorem 2. Let t:G H be! morphism of ACk•

I) The tollowing conditions equivalent: s is! monomorphism, O(r) is

surjective (Le. G is! subgroup of H), r

2) The following conditions eguivalent: f is!!! epimorphism, OU) is

injective, OU) lOCH) ---l> O(G) makes O(G) ! faithfully flat O(H) - module,

O(f) is! cokernel.

For a proof see D.G. III, 3.7.4. The main point is (r mono) ==>
(r kernel) or equivalently (r mono) U "" Ker(coker f».

Corollary I.

functor.

If k ' !! !!! extension of k, then G G !) k I

k

Clear: It respects kernels and cokernels.

Corollary 2. Let O--+K--+ be!!! seguence, the

O(G) - algebra O(G) is isomorphic to O(G) e O(K).
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of Gx K G)( G is an isomorphism.
H

Corollary 3. If 0 K G 1! exact seauence with K algebraic

(resp. finite 2! rank r); then O(G) is! finitely presented O(H)-ring

(resp. ! finitel;,: generated projective O(H)-module of rank r ),

Because it becomes so after the faithfully flat scalar-extension

O(H) - O(G) (Corollary 2).

Corollary 4. 1f 0 G ----::'H ---">0 is!!2 seguence, then G

is algebraic (resp. if and only if Hand K !!:!. In the finite

h!! rk(G) = rk(K).rk(H).

If O(G) is finitely generated or finite, so is the subalgebra O(H)

and the quotient O(K). The converse and the last assertion follow from corollary 3.

Corollary 5. If H is!!2 epimorphism (resp. if Ker f is algebraic,

resp. .f!!.!lli) and if and hE:H(R), R-ring S faithfully

..!1!i (resp. finitel;[ presented, resp. and projective) geG(s)

such f(g) = h
S

Clear from Corollary 4: h is given as a map O(H) R; take S = O(G) 8
0(H)R.

Corollary 6. II f:G- H is!!2 epimorphism with Ker f algebraic, if

is !.!1ili, hI<: H(L), there ! finite extension L' of L !!!!!!

geG(L') with r(g) = h
L,.

Follows from corollary 5 by the Nullstellensatz.

Remark. If f is an epimorphism (without on Ker f), then f(L)

is surjective for any algebraically field L (D.G. III, 3.7.6).

By Cartier Duality the category of commutative k-formal-groups also is

abelian, and Spf <p is a monomorphism (r-eep, an epimorphism) if and only if <f is

surjective (resp. injective).
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Theorem 3. a) The abelian category ACk satisfies the (AB 5*): it !:!!!.

directed projective ! directed projective limit of epimorphisms

!!! epimorphism.

b) The artinian objects 2.f ACk algebraic groups. !&. object of

ACk the directed projective limit 2f its algebraic quotients.

a) is clear from Th.2: one has Sp q>i Sp Cf'i and a directed

inductive limit of injective maps is injective.

b) see D.G. II, 2.3.7.

By Cartier duality, the dual statements hold for the category of

mutative k-formal-groups.

From now on we shall mainly speak about commutative groups. We

group instead of commutatiye 5:0up unless otherwise stated. From now on also,

k p denotes the characteristic of k, and Tf2 Gal(ks/k)' Our

main interest will be the case p;' 0. As we shall see, the case p ° is

rather trivial.

7. Etale connected formal-groups.

We already defined and studied etale affine (resp. formal) groups.

They are equivalent to finite (resp. all) Galois modules by

k )(ks ) 2 U E(K).
k S K/k sep,

finite

If p;' 0, then G is etale iff Ker Fa 2 e, and this implies that F is an

isomorphism (1,9). It follows that subgroups, quotients and extensions (direct

limits in the formal ease) of etale groups also are etale. The same statement

is true if p O.
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Recall, that the formal-group G '" Spf A is local (We shall also say

connectedl if A is local or equivalently if G(K) '" to} for any field K. A

morphism from a connected group to an etale group is zero.

a) There is !n exact sequence (unique }!£ to isomorphism)

GO is connected, 7CQ(G)

of R GO(R) '" G(R!g».

n (pn), I1!'!!!. G I' If k--)ok

-=

If RE!ft< r:. is the nilradical

If p 0, then GO is the limit stl:

is!n extension then '" G00
kk

1
,

Proof. Write G -= Spf A -= liSpf Am. Let AO be the local factor corres-

ponding to the ideal me -= Ker( f :A-----+ k}, Call GO '" Spf AO; by construction,

GO(R) -= Ker(G(R) G(R/!!» for RE:Mf
k;
it follows that GO is a subgroup of G.

If k"""""'7 k ' is an extension, then A I is local, because the residue field

of AO is k; it follows that (Gat k')o '" G00 k ". Suppose p 0, then
rn {m k k

Ker ,. Spf A/mt}, where m/ J is the closed ideal of A generated by the

x
pn,

xemo; hence \(Ker -= Spf( A/mJpnJ) -= Spf Ao .. GO, To prove a), it

only remains to show that G/Go

Remark first that G is etale if and only if GO .. e: replacing k

by k we can suppose ,0 °k to be algebraically closed; 1f G .. e then A .. k;

but then all the Am are isomorphic (by translation); hence A kE and G is

etale. To prove that G/Go is etale is therefore equivalent to prove (G/GO)o .. e;

if H is the inverse image of (G/GO)o in G, then H is an extension of two

connected groups; this implies that H is connected (for any field K in Mfk
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then

is an exact sequence, hence H(K) '" {OJ) hence H<;Go Le.
00 0

H .. G and (GIG) .. e.

Suppose now k is perfect. Let be the residue field of Am, and

B .. Tlm. Then Spf B is etale
e

biring of A)j put G .. Spf B.

and G is the

and is a subgroup of G (because B is quotient

- e e-Then (GS k) .. G k as is readily checked,
k k

product of GO and Ge , because this becomes true by going to k.

An affine group G is said to be infinitesimal if it is finite and local,

equivalently, if G is algebraic and >G(k) .. e. By the preceding proposition, we

see that a finite group is an extension of an etale group by an infinitesimal group

and that this extension splits if k is perfect.

Definition. ! commutative) connected grouE G .. Spf A is

said to be of g A goetherianj the dimension of G is defi-

nition the Krull dimension 2! A.

Let m be the maximal ideal of Aj it is well known that A is

noetherian if and only if [m/m2 : k] < + 00, and that dim G "[m/m2: k].

(p ;. 0). ! connected formal group G is of if and only if

Ker F
G

If' G is.2! finite then Ker is for all n,

If Ker F
G

is finite, then [A/m{P} :k] ",00, hence [m/m2:k]< + 00.

Conversely, if m/m2 is generated by the classes of Xl, .•. ,xn, then A is a

quotient of k [[Xl"" ,xn]] , and Aim{pn} is a quotient of the finite k-ring

k [[Xl'" ,xnl]/(x j , ••• 'Xn) {pn}.
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It follows if p j, 0 connected formal group 2f type is an

inductive limit of (G,. Ker r:;).

If G is an algebraic group-scheme, then the "connected completion"

to of G is of finite type:

nO ,. Spf 0G,e ['" Ker if p 0].

8. groups.

Lemma. G Then the following conditions equivalent:

(i) G is Cartier of ! constant group.

(ii) G is!!! affine k-group and k-ring O(G) is generated !!Z the characters

of G (Le. homomorphisms from G to f-'k)'

If G", O( r k)' then G(R) '" GrR( r R'#-R) '" g(r ,R*) '" [r),R),

hence G '" Sp k[r], where k[r] is the algebra of the group r (note' that

6."1", 7'&1, E"Y", 1, a--''''7- 1, "Yer), and each 'Ycrc k[r]", O(G) is a character

of G,

Conversely, if G is affine and O(G) generated by characters, let r
be the group of all characters of G; then the canonical map k[r} --. o(G) is

surjective. But it is always injective (oedekind's lemma on linear independence

of characters), hence k[r] '='-O(G).

Such group !.! called diagonalizable.

Theorem. Let G be! k-group. Then the following conditions eguivalent:
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(ii)

(iii)

(iv)
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G is diagonalizable.

G&kK is diagonalizable for! field KE:

G is the Cartier dual .!!'.! etale k-group.

t!>
D(G) is.!!'.! group.

(v) Grk(G, es ) .. O.
- k

(Vi) (If p 1 0), vG:G(pL G is.!!'.! epimorphism.

The implications are clear.

of O(G); let A .. 0(0)

dual of the coring A).

algebra morphism

We know that (G, <z:S k) is the set of primitive elements

and let AI be the of D(G) (i.e. the topological

By duality, a primitive element of A corresponds to an

compatible with the augmentations of AI and k[t]/t2. All primitive elements

are zero if and only if Alo has no quotients :Lsomorphic to k[t]/t2, which
I A 0 A

means that A 0 .. k, i.e. D(G) .. e, i.e. D(G) etale.

End 2! proof. If k ' is an extension of k, then condition (v) for G is

equivalent to condition (v) for G0k'. This implies the equivalence of all

conditions except (iii). It is clear that (iii) (i) (definition); conversely,

if £(G) is etale, then let E be the etale k-group such that i .. we

claim that D(E)c¥G. 'Ihis is easy if k .. ks' because E is constant; the

general case is proved by going to ks (see D.G, IV, 1.3.2).



38

Such a group is called multiplicative; the multiplicative groups cor­

respond by duality to etale formal groups; they form a thick subcategory ( .. stable

by subgroups, quotients, extensions) stable for of ACk, called and

anti­equivalent to the category of Galois­modules: to corresponds the
A

Galois­module X(G) ..0(G0 k )(k ) .. Grk (Ge k '#k ).
kS s ­s kS s

" AIf E is an etale k­group, then O(E) is multiplicative and O(O(E» .. E;

in fact, one already has O(D(E» '" E.[O.G., loco cit,] It implies that the anti­

equivalence between multiplicative groups and etale groups can also be given

(without speaking about formal­groups at all; by E G­+O(G).

9. Unipotent affine groups. Decomposition of affine groups.

Theorem. Let G ss sa affine k­group, The following conditions !!! eguinlent.

( i)
,..
O(G) is! connected group.

(ii) multiplicative sUbgroup.2f G

(Lv)

( v)

!!:!I algebraic quotient of G ll!!! extension of subgroups of <2:!i k'

n
(If p # 0), ('Um V

G
'" e,

The equivalence of (i) and (ii) is clear (the formal group H is con­

nected. iff = e, i.e. iff it has no etale quotients), The equivalence of

(ii) and (iii) follows from the theorem of n08. The equivalence of (iii) and (iv)

is clear because algebraic groups are artinian. Suppose p # O. If G satisfies

(iv), then for any algebraic quotient H of G, one has '" 0 for large n

(recall that V'2! k .. 0). It follows that (\ Im vg has no algebraic quotients,

hence is e, Conversely, if (v) is true for G, G cannot contain a non­zero

multiplicative subgroup H, for H is an epimorphism for all n,
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The unipotent groups correspond by

duality to connected formal groups, They form a thick subcategory,stable for

ACk, called

By duality, the theorem of n0 7 gives:

Theorem. An affine group is .!n .! unique extension of .! unipotent group

£l ! multiplicative group. !hi! extension splits if k is perfect.

In particular, if k is perfect, any finite group is uniquely the product

of four subgroups which are respectively etale multiplicative, etale unipotent,

infinitesimal multiplicative and infinitesimal unipotent, Therefore the category

!k of finite (commutative) k-groups splits as a product of four subcategories,

called Fiuk, The categories and !1!!!k are dual to each

other, the categories and are autodual,

Proposition 1) Let p '" 0, !k '" Fel\: !!!! finite (commutative) k-group

is etale and multiplicative,

2) Let p f. 0 k algebraically closed, !N. (commutative) finite

k-group is an extension of copies of ""',.... and (Z/r 'Z>k' r prime.
- - - - pt-k

Proof of 1), By duality, it suffice to prove that any finite unipotent group is

zero. Such a group is a product of an etale unipotent group and an infinitesimal

unipotent group; by the first theorem, these two groups are extensions respectively

of etale subgroups of and infinitesimal of '2l: k, Any etale subgroup

of must be zero, because '" k has no finite subgroups; an infinitesimal

subgroup of O<k is of the form Sp k[T] IT" where n must be such that

this means (T + Tt)n .. exTn +13T'n and implies

Proof of 2). Let G£!k' If G is etale, then G '" r k where r is a finite

group; but r is an extension of groups Zit 7L, r prime, and G is an extension
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of If G is infinitesimal and multiplicative, then G..,

where r is finite and Gr( r ,'k*) .., 0; this implies r is p-torsion, and G is

an extension of copies of D( (Z/p7L\) .., p,(bk' If G is infinitesimal and

unipotent, then G is an extension of infinitesimal subgroups of These

n n In
are the because (T+T') .z ()( T + (3T implies

p

is a p-fold extension of pllSk (remark that pr<?s'k/Pti!!:k'"

but

Corollary. If m is! prime, and G ! finite (commutative) k-group, then

""'WI. il" .., 0 for large 0< if and only if rk( G) power of m.

It follows from the multiplicativity of the rank, the fact that

rk(G0 'k) '" rk(G) and the obvious formulas:
k

...
In particular, if r. ult;' .., 0, then

length k)
rk(G) .., p where

length (G) is the length of a Jordan-Holder series of G.

10. Smooth formal-groups.

A (not-necessarily commutative) connected formal group G.., Spf A is

said to be smooth if A is a power-series algebra k[[XI' ....xnJ]. In that case,

the coproduct 6. A iii A is given by a set of formal power series.

and the axioms (Ass) and (Un) give

(Ass)<P(X,<]?(y,Z» '"

(Un) <P(O,y) '" <P(X,O) .., 0
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It is easily proved, using the implicit function theorem, that the existence of an

antipodism is a consequence of (Ass) and (ue). The axiom (Com) can be written.

(Com) ,. <)(y,X).

Such a set{<Pi1 is a in the sense of Dl.eudonne;

Theorem. a = Spf A be! (not-necessarily commutative) connected formal group

of finite tYpe.

1) If p '" 0, !:.!:!!n a .1!! smooth.

2) If p" 0, the following conditions equivalent:

a) a is!!!!22i!:!,

_1
b) kP is reduced.

k

c) FalG a(p) .1!!!!! epimorphism.

Remark first that in 2) we have a) ==>b) ; moreover c) is equi-

(p) ( ) p-I
valent to FA:A A being injective, or to A p A0

kk
being reduced.

P- lWe then have to prove that if, either p '" 0, or p 0 and A<8
kk

is reduced,

then A9!k[[X1, ... ,Xnl] .

Let first m be Ker( E :A-.....,»k) and be a linear form. We

claim that exists ! continuous k-derivation D of A for a," m,

e D(a) '" S(a mod m
2).

Define first 6(a) '" 6«a- fa) mod m2); then

S(ab) = e(a) cS(b) + E(b) &(a); put D", (1 & S) 06: if '" 'a.ab., thenL 1. 1.

Da", L ai c5bi• One has eDa '" 2:1:(ai) 6(bi} '" b(LE(ai)bi) '" Za; it remains

to show that D is a derivation:

D(ab) '" (lcaO)L\(ab) '" (105)(b.aAb) '"

+ (10E)6b. '" aDb + bDa,
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Let now i be elements of m such that their classes modulo form

a basis of m/m2• The canonical map

is surjective. Suppose it is not injective. Let f, <p" 0, with minimal

valuation; certainly'CI (q» >0 (because <p (0) Ef(<P) '"' 0). By the above

remark, there exists continuous derivations Di of A with Di ( j)=Dij mod m.

mod m to the identity matrix, hence is invertible. It follows that at
aX

j

o.

If p'"' 0, then c:P must be 0, and t is injective. If p" 0, then

there exists 1\te.kl/P [[XI" . with <l> '"' tvP; extend t to

f':k
l/P [[Xl, .. then f'(Ijr)P,", f(<P) '"' 0. Because A0

k
k l / p

is reduced, this implies f' ('l') ... 0. But <p was supposed of minimal valuation,

hence IV '"' ° (if not, decompose \If as a sum L.A.i'V
i'

A
i

E:. k
1
/
p , ljriE:Ker r,

\Vi" 0, and note that 1J('I\I)?inf "(\If.» and <p= O.

q. e , d.

The theorem can be strengthened:

I) (Cartier). If p'" 0, and G '"' Sp*C is a connected (not-necessarily com-

mutative) formal-group, then C is the universal enveloping algebra of the Lie

algebra "? of G. This implies that the category of all connected formal-groups

is equivalent to the category of all Lie algebras over k, By the Poincare-

Birkhoff-Witt theorem, this also implies that, if is finite dimensional, then

G is smooth. Moreover, if G is conunutative, then is abelian ,hence

( "",0 )( 1 ) . ()G C". ; by duahty, any unipotent conunutative k-group is ! power of the

additive group.
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2) 'If p 0, k is perfect, G is any (not­

necessarily commutative) connected formal group of finite type, H a subgroup,

and G/H," Spf A (the quotient 'Which has not been defined in these lectures),

r, r J.
then Ais of the form k nXl, ... [Yl""'Yd];!(Y; , ••• , ). This applies

for instance to A = 0 ,G an algebraic lo­gr­oup,
G,e

Corollary. Suppose p I 0, .!:!1!! ill G be a connected grouE of

1) If k is perfect, there exists !: unique sequence .2! connected groups

0­ G d­G­G/G d­ 0,re re

with Gr ed smooth, and G/Gred infinitesimal ( '" .f!!!lli).

Proof 1) The uniqueness is clear, because any homomorphism from a smooth group

to an infinitesimal group is zero (look at the algebras). Let G '" Spf A, and

Gr ed = Spf Ared, where Ared '" A/n is the quotient of A by its nilideal.

Because Ar ed is reduced (see the appendix, nO 12),

and Gr ed is a subgroup of G, smooth by the theorem. Moreover G/Gr ed '" Spf B,

'Where B '" ­ xl81 EAenf. If xE:B, E(x) '" 0, then

x '" e 1 (Ax ­ x& 1) E:n, It implies B!; k + n, and B is artinian, hence

finite.
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2) It is clear that H ... is smooth if and only if Hcakk is. Replacing

k by ii, we can suppose k perfect and apply 1). There exist an i with

_i _1 (pi)
!'-(G/Gr ed) ... 0; but F(G

red)
... G

r ed
because Gr ed is SIIlooth. Hence

... ... and is smooth.

Corollary. Let G connected formal group of finite n » dim G.

Then rk( is bounded .!!!2.

rk(Ker ... pni. rk(Coker

If G is smooth, then F
G

is an epimorphism, and Ker

hence ... pni. In the general case,

let r be such that H .. rG is smooth, let K .. Ker we have exact sequences:

The second sequence gives rk(Coker ri) .. rk(Ker ri) rk(K) -e 00, the first one

gives the claimed formula.

Corollary 1) Let 0 _ G' --G__GIt __ 0 be.!!! exact sequence of connected

formal-groups. Then dim (G) .. dim (G') + dim (GIt).

2) If f:G' __ G is! homomorphism of connected group, G

smooth, and dim G .. dim G' , then f is.!!! epimorphism if !:!lS! only g Ker f is

finite.

1) follows from the snake diagram and the preceding corollary.
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2) We have the equivalence (Ker f (dim(Ker f) .. 0)

f(G') .. dim GI) f(G') .. dim G).

...i. i dim G
rk Ker J.'r(G

')
? p

But dim f(G') .. dim G gives

rk(Ker

_i i
hence Ker Ff(G

')
.. Ker FG,

i
and G.. U Ker '" U Ker Fr(GI ) .. f( G,).

t i. p-divisible formal

Suppose p 1 O,

Definition. ! (commutative) group G is called p-divisible (.2!!

Barsotti-Tate group) if .ll satisfies the three following properties:

We know that rk(Ker p idG) .. ph, he N. This h is called the height

ht(G) of G. Using I), this gives

j j. ht(G)
rk(Ker p id

G)
.. p

The multiplicativity of the rank gives the exactness of the sequences

Conversely, if we have a diagram
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where the Gi are finite k-l1;roups with the followin,l!; properties.

b) the sequences

a) rk(Gj ) ph
j
, h a fixed

i j
0----40Gj Gj +1 are exact.>

then (Gn,in) a p-divisible formal group, of height n, and

Ker( pn idGIG G) Gn•

This gives an alternative de finition .IU: p-divisible groups.

The (Serre) dual of a p-divisible group G is the p-divisible group G'

defined as follows:

is a

p-divisible formal group, with ht(G')" ht(G); it is clear that Pj" D{ij)'

so that (G')' can be identified with G.

Examples 1 ) The constant formal group /7l) is a p-divisible group of
p p k

height 1; conversely, any constant p-divisible group of height h is isomorphic

h
to (Qp/ 7l ) .p k

2) Let A be a (collllllUtative) algebraic k-group, such that p.id
G
I A ---+ A

is an epimorphism. Then, it can be shown that Ker(p. idA) is finite; define

Then A( p) is a p-divisible group, containing l.) Ker For instance,
J

for A ... #k' one finds A(p) ... U j'p-- ... (Q / x )',
j P k P Pk
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If A is an abelian variety of dimension g, one knows that p idA is an epi­

morphism, with rk(Ker p ida) '" 19. It follows that A(p) !!.! p­divisible

group of height 2g (see Chapter V).

Proposition. a Then a is p­divisible g and only if

the following conditions satisfied.

1) Qt (<Il/ 7l'p)r, r l1!:!lli.

2) GO is of smooth, and G)

by k,

group

If G is p­divisible, then GO and are, and conversely (replace k

then a is the product of GO and We already know that the etale

E is p­divisible iff E(k):::: (G) / Z )r. We therefore can suppose a
p p

connected.

Suppose G is p­divisible, then Ker F
G
c Ker(VaF

G)
'" Ker(p id

G)
is finite,

hence G is of finite type: on the other hand G(p) also is p­divisible, hence

Ker V
G

Ker(FGVG) '" ker (p id (p» is finite, and FG is an epimorphis"/ll.
G

because p ida(V) '" FaV
a

is.

Conversely, if G is smooth, and Ker V
G

finite, Fa and Va are epimorphisms

(nO 9), hence also p id
G

'" VGF
G;

this implies also an exact sequenoe

and Ker (p id
G)

also is finite. Finally U Ker (pj ida) ;;2.UKer .. a.

Example.
"'0

If A is an algebraio unipotent k­group, then A is never p­divisible,

unless A is finite.

The above exact sequence gives for any p­divisible group G the formula

height (G) '" dim (G) + dim (G').
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Proposition. Let G connected, smooth group. There

exist two subgroups H,K!;;;G with H p-divisible, pnK 0 large n, HnK

finite, and G H + K.

Let pnG Im(pn idGIG---+ G); the subgroups pnG of G are smooth

(quotients of G) and fOrm a decreasing sequence. There exist an n such that

pna o Ker F
G

'" p2nGnKer FG (Ker F
G

is finite, hence artinian). This implies

pna '" J-n, because pnG/p2na is connected, smooth, with monomorphic Frobenius

(or dimension zero). Put H pnG, K '" Ker (pn id
G).

Then G", H + K, P is

epimorphic, and pnK '" O. Therefore Ker (p id
H)

is finite, hence H is p-divisible,

and H(\K S;Ker (pn id
H)

is finite.

12. Appendix.

Theorem. Let k be perfect field with characteristic p I 0 ) A and B

complete noetherian k-rings with residue field k. If A B .!!! reduced,

1) Let ol. be a positive integer. We say that a k-ring R has property (No()

if R is local artinian with residue field k, and if x R, :xl' '" 0 implies

xe -nr; ('"'"R '" maximal ideal of R).

LellllBa 1. If R .!!E S property (No<) , R0 S.
k

r
Let xi be a basis of the k-vector space R such that the Xi are

a basis of for all r, Let zE::R@S, with zP 0; we can write z

hence L. '" O. This implies the existence of elements ),l,j e k and
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Because k is pertect, each ;\,j can be written as "'i,j and we have

Xi • m:. then I\j .. 0 for all j, hence yi ,. 0, hence Yi E: ; in any case

2) Let A be a local complete noetherian k-ring with residue tield k. Put

,. AlmA' and let <XA(r) be the greatest 0( such that Ar has property

(No( ) t O<A(r) is the greatest integer such that

Lemma 2. A is reduced iff lim 0( (r) '" + -00 •
- - r A

A P N .. N+lIt XE'. with x '" 0, xe:.m
A,

x.,..m
A

' then «.A(r ) N tor all r,

Conversely, suppose A is reduced, let Vi '" {XE'.A, xPe:.mi}. Then (Vi) is a

decreasing sequence of ideals of A, and n Vi ,. O. By definition, o«r) is the

greatest integer with Vr to ..;(r), and nvi ,. 0 implies 0( (r) .. 00

(Chevalley's theorem, !!! Zariski-Samuel, Chapter VIII, § 5).

3) Let now A and B be as in the theorem and put C '" Ai B, then lemma 1

gives

and we conclude by Lemma 2.



CHAPTER III

WITT GROUPS AND DIEUDONNE MODULES

Let p be a fixed prime number.

1. Artin-Hasse exponential

Let k be a ring. We denote by "k the affine k-group which associates

with the multiplicative group 1 + tR[(t]] of formal power-series in R

It
with constant term 1 (as a k-functor, A

k
is obviously isomorphic to .9.k)' For

n ;:l: 1, let A(n)be the closed subgroup such that
k

+ a t
n

}n + •••

one has obvious exact sequences

O /I. ( n+l ) hen) 0
---+ k '\k ----+

where the first morphism is the inclusion, the second one being (1 +ant + ••••) an-

The k-group '\ hence appears as the inverse limit of the I\k/ /I. n-1) , each

1\ /A(n+l)
k k being an n-fold extension of the additive group. (If k is a field,

then A
k

is a unfpotent, group),

Let F", 1 - t + , .. be a fixed element of A(k) '" 1 + tk ret]]

Then we have an isomorphism of k-schemes (where rtJ+ -= {1,2, ... ) ).
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If k: Qt, then take F(t): exp(-t); one has F(at)F(bt) '" F«a+b)t), so

N+
that cr is an isomorphism of k-groups from O<k to A k , If k is a field with

characteristic p, it is not possible to find F 1 + tk [[ t J] with

F(t) '" 1 - t + "'J F(at)F(bt) '" F(ct);

p-l
we find first F(T): 1 - t + •• , + (-t) /(p-l)1 + .. , and for the coefficient

of TP we find 0 '" 1 and the computation fails, But remark that for any F

one certainly has a formula

(1)

where \(X,Y)E:k[X,y].

F(at)F(bt) '" 11 F( ;\(a,b)t
i);

i>O

The idea is to find an F such that most of the "'i vanish.

find F with Ai : 0 if i is not a power of p,

A classical formula asserts

Actually we shall

(2)
n }A(n)/n

exp(-t) '" n (1 - t )
n

where P: is the Moebius function. Recall first that r(n) '" 0 if n is divisible

k
by the square of a prime IF(Pl •.• Pk) = (-1) if P1,,,,,Pk are distinct

primes and JA( 1) '" 1; for n >1, one has

L ,M-(d) '" O.
din

It follows that
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which gives (2), Let

0) F(t),. 11
(n,p) ,.

n fA-(n)/n
(l-t ) .. 1- t + ,,'

if 2(p) .. {a/beQ, (p,b) .. l}, then

(4)

If f4(n) I 0, then either (n,p) .. I, or n .. pn', (n',p) .. I, It follows

from (2) and 0) that exp(-t) = F(t)/F(tp)l/p, or

p lip p2 1/p2
F(t) .. exp(-t)F(t) .. exp(-t-tP/p)F(t) .. , •• , so that

(5)

{

F(t) .. exp L( t ) • with

P 2 2
L(t) .. -t -t /p-tP /p -

The formula (1) for F can be written L(at) + L(bt) .. LL( A.i (a,b)t
i)

where Ai p) [X,Y]• Goinp: to Q, it follows immediately that A.i .. 0 if i

is not a power of p, which give a formula

i
(6) F(at)F(bt).. n F('Vi(a,b)tP ).

The Artin-tl!!!! exponential is defined as the morphism

such that



53

From (6), it follows easily that there exists formula

(8)

P £.A (R), R£.M' IJL ' can be uniquely written
- -\p)

Q -+ n
p(t) E(an,t ),

(n,p =1

Proposition.

From this and (1 0), it follows

The 2( p)-group A !! isomorphic to the {n/( 0, p) .. t} -power
Z(p)

of the subgroup image.£f E.

By base-change a similar statement applies to J\F
p
; it shows that the

Artin-Hasse exponential plays over IF a somewhat similar role as the usual
p

exponential over

By (5) and (7), we can write

with

( 10)

The formula (8) can also be written
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We already know that the coefficients of 5i lie in Z(p)c <9.. On the

other hand, it is clear from (10) that they lie in Z[p-l J. But Z(p{tZ[p-l]:o2Z.

Theorem. There exists .! unique commutative law with the following

equivalent properties:

(i) is .! homomorphism.

(ii) Each 0'" ----?' is a homomorphism.-- 'i' -7£ :;z: - - -

Each (r), (ii) is equivalent to the fact that (with';" for the law we

are constructing)

( 12)

Hence the uniqueness; it remains to be shown that the law defined by (12) is a

commutative group law with unit element (0,0,.·.. ). The associativity, commutativity

and unit element axioms can be expressed by polynomials identities, with coefficients

in 7.l., in the coefficients of the 5i• These identities are satisfied after

going frOil 7L to ll[p-l], because the 7/. [p-l] define an isomorphism

[p-lJ- [p-l J' Because ZC 2Z[p-l ], we are done. The existence of an

inverse element can be proved if p! 2 by the remark that Cf'n(-Xo'-X, , •• ) :0

- - )j in the general case, the antipodism over rz.[p-l] is given by

polynomials with coefficients in Z[p-l]; but these coefficients are also in Z(p)'

hence are in Z.

IN
The Z -scheme OZ ' together with the above law, is called the

Z-group of Witt vectors of infinite length relative p and denoted Ez W.
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If w" (an)e W(R) .. RIN, Bn is the nth-component of w and w) the nt h_

phantom-component of w. The phantom components define a group isomorphism froll

Let 'ti be the monomorphism defined by

Then <Po(Tw) "" 0, <1>n(Tw) "" it follows that T

morphism, called the translation. We define the group 'tin of of

length n by the exact sequence of group functors

( 14)

(i.e. by 'tin(R) "" Coker 'fl(R) for each R). By the definition of the group law

in 'ti, it is clear that (aO,a1, ••• ) '" (ao, ••• ,an_l'O, ••• ) +
n

which means that as a scheme, 'tin is !4<, the projection morphism 'ti--}lo'tin

being (ao,' .. ) --+ (ao,'" ,&n-l ). The group law on 'tin is (&0'" .,an_1) ...

(bo, ••• ,bn-l) "" (So(ao,bo), ••• ,Sn-l(ao, ••• ,an-l bo, ••• ,bn-l» in particular

'til "" !25.. The snake diagram gives from (14) translation homomorphism T:Wn---:l>Wn+1,

such that T(ao, .•• ,an_1) "" (O,ao" •• ,Bn_l)' projection homomorphisms R:'tin+1---li"Wn

such that R(ao, ••• ,Bn) "" (ao, ••• ,an-l) and exact sequences

( 15)

Moreover, the projections give rise to an isomorphism

n
Let 7::,2z--""W be the morphism a---f'(a,O, ... ). We have Cfn'l.:(a) '" aP ,

E('l.:(a),t) '" F(at).
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Theorem. There exists! unique ring-structure .2!! the Z-group W such that either of

the two following conditions satisfied.

(ii) 'C(ab) .. 't"(a) 'C(b), a,b£R k'

We first replace Z by P "'-. Z[p-l]. Then is an isomorphism,

hence the existence and uniqueness of a ring structure on -P satisfYing (i);
n

moreover, because 'C(a» .. (aP), this ring-structure satisfies (11);
n n

conTersely, consider a ring structure on the such that (aP). (bP ) ..
n

«ab)P); the multiplication is given by polynomials of the form (Yn) ..

(L X i yj ) , with L a
pi

b
Pj

.. (ab)pn; this gives {j).a 0 except

when i .. j .. n, and This ends the proof for P.

The multiplication in wp we just found is given by polynomials

Mn(Xo,· .. ,lh, Yo,···,Yn)e: p[Xo'''''Yn'''']:

by definition, 4li .. «s,». «r,», i .. 0,.... An easy lemm.a

(D.G. V, A 1.2) proves that 'Yo""']; the above formula defines then

a 'Z -morphism Wx W The fact that it gives a ring structure satisfying (1)

and (ii), with unit element .. (1,0, ••• ) can be expressed by identities

between polynomials with coefficients in Z; these identities are true over P

and 'Z- P is injective.

The W is called the Witt ringL each Wn is a quotient ring

of W, the canonical morphisms !\,:W--+Wn and Wn are ring-

homomorphism (but not T!).
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From now on, k characteristic p, We denote by

\:, Wnk , the k-rings WSJEk, Wnk remark that the phantom-components
n

O(k are now (hence the name).

Because Wk .. WIF $IF k, we can identif'J {p) and and the
p p

Frobenius morphism F:W
k

is given by

It is a ring-homomorphism (because F commutes with products). Similar statements

are true for "k and the Wnk•

PropMlition a). The Verschiebung morphism of "k is

Verschiebung morphism of Wk i! T, the Verschiebu!!,g mOrphism of Wnk

R.T .. T.R.

(Fcp)(tP) .. 1 + L .. <pP .. V(F Cf). But F is an epimorphism, hence

On the other hand, the definition of E and T shows that

( 16)

but E(x, t P ) .. VE (x, t) .. E(Vx, t) and E is monomorphism, hence Vx '" Tx.

Projecting this formula on Wnk , we find Vw '" R.T .. T.R.
nk



b) Because Fl Wk--'lI' Wk is an epimorphism, we can suppose y '" Fa, Then

V(Fx.y) '" V(Fx.Fz) '" VF(xz) '" pxz '" x.pz '" x, VFz '" x, Vy.

Corollary. If x,y£Wk(R),

Corollary. Suppose k is perfect; Q!!.!:! W(k) is! discrete valuation ring,

complete, and W(k)/pW(k) "" k,

One has FW(k) '" W(k) because k is perfect, hence

pnW(k) '" r"f!W(k) '" TnW(k)

Moreover W(k)/pW(k) '" Wt(k) '" D<:(k) .. k.

and W(k).. lim W(k)/pnW(k).
+-

Proposition (Witt). Let k be perfect, and A be complete noetherian local

with residue k, Let k canonical projection. There

unique ring-homomorphism

u:W(k)_ A

compatible with the projections W(k)_k !!:!:!' rr • If moreover A is!

discrete valuation ring with p, t
A
I 0, then A is! finite W(k)-module

rank [A/pAlk J; in particular if pA '" A, then u is!!! isomorphism.

(After Cartier). Consider the given by the phantom compo-

nents eJ>n I Wn+ t (A) ----7 A. If m is the maximal ideal of A, then

'\ n+1
't'n«xn), m if this gives a commutative square
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<P n
W (A) )A

W (:;1 1n+l

W l(k) • A/mn+l
n+

Let CT :k---"" k be given by 0- (A..)" Al/p and put Un" <Pno Wn+1( (I'"n); then,

if ao"" ,!lnE: A

Let

n n n n-l
), ••• "" +

u '" A.

n n+l
+ p an mod. m

Then u is a ring-morphism and "Itu( 0<0"'" o<n) .. OC:o ' This gives the existence

of u, Let u':W(k)--+A be another such homomorphism; then -c' .. u''(" :k-----+- A

is compatible with multiplication and such that'1tt::' .. Id; such a t:' is unique,
1 -n pn

as is well-known (because 'C"'(0<) must be in {\ (1'(.- (o<.P» which has only

one element (Cauchy»; on the other hand, any xE:W(k) can be written

and

of u,

u' (x) must be
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The last statement follows from the fact that if a" ••• ,ae E:. A are a

basis of A modulo pA, then they generate the W(k)-modulo A, (8IIrba.ki, Alg.

Corom. Chap. III, § 2, Prop. 12, Cor. 3). Therefore A is finitely generated as

W(k)-module, without torsion because pn. 1A ! 0, hence free of rank [A/pAtk].

4. Duality of finite Witt groups

For m, n". 1, we put

Between these finite k-groups, we have homomorphisms

f I'

where i is the canonical inclusion, and f,t,r are induced by F,T,R. Clearly,

i and tare monomorphisms, f and rare epimorphisms, and for the group mWn'

we have F if, V .. rt.

For any let W' (R) be the set of all (0( 0,0<:1" •• ) e: Wk( R)

such that an ° for large n, and lin nilpotent for all n. It is easy to

check that W'(R) is an ideal in Wk(R) and that E(w,t) is a polynomial for

wE:Wt(R); in particular E(w,1) is defined for wE:W'(R), and we have a

homomorphism

EtW'---+



given by wt--+E(w, 1).

moreover, one has
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*then xy£ WI (R) and E(xy, 1)£ R ;

The morphism (x,y)I---+E(xy,l) from l\"WI to}olk is bilinear, hence gives a

group-homomorphism WI--D(Wk). LThis can be shown to be an isomorphism

(D.G. V § 4.45) but we shall not need this fact-l.

Let lTn:Wnk- be the section of Wnk defined by

CTn(cxo, ... ,O<n_l)" (cxo' .. "CXn_ l' 0, ••• ) [ern is not a group homomorphism); it

is clear that 0'"n sends IIIWn in WI.

<x,Y> is bilinear, gives !!1 isomorphism

!W! satisfies

<x,ty > '" <fx,y>

in Ker ,. IIIl fl, hence
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where ueW'(R). This implies ex + x' ,y> '" <x,y> + (X' ,y> +

E(T
n(u)'CT'm(y),I);

but E(T
n(u)'CT'm(y),I)

'" E(u.flCT'm(y),I), and

crm(fly) '" O. This proves the bilinearity of <, > •

It remains to prove that <, > gives an isomorphism between mWn and

but, because of the exact sequences

and

and the adjointness of t and f, and rand i, we are reduced by induction

on m and n to the case m'" n ,. 1. In that case lW, '" and < , > is

not zero, hence the given homomorphism is not zero; but,

because p'2Sk is simple, it is an isomorphism, and the proof is complete.

5. Dieudonne modules (Affine unipotent groups).

From the field k is supposed to be perfect.

Let be the inductive system of A c uk'

The ring W(k) operates -!!. .!.!! follows.

the Frobenius homomorphism W(k)_ W(k),

ne:Z(M--+a(P) is bijective, because k

First, .'!!.! denote CT' r a ......... a(p)

and by al---+a(pn) its nth power,

is perfect.) Let ae: W(k) and
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( I-n)
a * 101 : a p flo.' 101,

where is the image of a(pl-n) in W(R), and b.wE:Wn(R) the product

of be:W(R) and we:Wn(R) '" W(R)ITnW(R). By this definition, Wn(R) becomes

a W(k)-module, and T:Wn(R)- Wn+I(R) is a homomorphism of W(k)-module,

because

( I-n) ( -n) p-n
T(a*w):T(a P .w):T(F(a P ).w):a .Tw",a*Tw.

R

For any Ge: Ac !.1c' we define the Dieudonne module M(G) of G to

be the W(k)-module

(equivalently M(G) '" Ind (A c !.1c) (G, Of course, G/-----+M(G) is a contra-

variant functor from Ac Uk to category Mod W( k) of all W( k )-modules. This

construction obviously commutes with automorphisms k, in particular with

fk:k--ll>k. If M is a W(k)-module, let M(P) = W(k) : as a group

M(P) '" M, but the extemallaw is (w,m)_w(p-
I)

m; if fe:Acuk(G,Wnk ) , then

ip) is a homomorphism from G(p) to Wnk• Hence a map from

M(G) to M(G(P»; it is clear that (wr)(p) '" w(p)i p) for we:W(k), and this

map induces an isomorphism,

by means of which we al'ways identify M(GP) with M(G)(P)

The two morphisms F
G

and VG define two morphisms

(p) ( ) (p)F", M(FG):M(G) _ MG, and V", M(VO):M(O) -M(G) or equivalently

group-homomorphisms F, V:M(G)---.M(G) with F(am): a(P)Fm, v(a(p)m) '" aVm,
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aaW(k), meM(G). By construction, if iiiE:Acuk(G,Wnk ) represents m M(G),Fm

and Vm are represented by Fw. 0 iii and Vw. 0 m,
nk nk

The morphism T:Wnk-Wn+lk being a monomorphism, the maps

Acuk(G,Wnk ) - Acuk(G,Wn+1k) are injective, and can be identified

with a submodule of M(G); more precisely

It follows that any element of M( G) is Id.lled by a power of V.

Let 1\ be the (non-commutative) ring generated by W(k) and two

elements F and V subject to the relations

(p) (p)
Fw '" w F, w V =: Vw, FV "" VF "" P

It can be easily seen that any element of can be written uniquely as a finite

sum

If Ge: Acuk, then M(G) has a canonical structure of a left I1cmodule; if K is

a perfect extension of k, there is a canonical map of

(remark that DK a.;; W(K)8
W(k)

I\, and that the left hand side can also be written
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Theorem. The functor M induces between Acuk and

category of all !\-modules of V-torsion. For agl perfect extension K of k,

(*) is!!! isomorphism. Moreover

G is algebraic 4=:* M(G) finitely generated !\-module,

G is finite (:=:> M(G) is! of finite length.

Proof in D.G. V, § 1, nO 4.

6. Dieudonne modules (p-torsion.!1!!ll! k-groups)

Proposition. The functor GI---+ M(G) induces!!! anti-equivalence between

Feuk (resp. and the category of Ok-modules, which are W(k)-modules.2f

length, killed ! power of V and F.J:! bijective (resp, !ill!

killed by ! power of F).

This follows from the theorem, and the fact that if G is finite,

then G is etale (resp. infinitesimal) if and only if FG is an isomorphism

(resp. 'S ° for large n},

Examples. If G" (Z!P71)k .Feuk' then M(G) " k with F" 1, V" OJ if

G" p!2Ske:.Fiuk, then M(G) " k with F" 0, V" O.

Proof. We can suppose k algebraically closed, in either case G is the unique

simple object of (resp: Fiu
lc
) ; hence M(G) is the unique simple object of

the corresponding category) and it is clear that the proposed modules are simple.

rk(G) " plength (M(G»

We can replace k by k, and it is enough to check the formulas for the simple

groups, in which case it follows from the examples above.
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Let m,n be two positive integers; consider the canonical injection

mWn--' Wn; it defines an element uE:M(mWn)' clearly flu =< F
n
u .: 0, hence a

map of D-modules (0.: I\):

Proposition. xm,n bijective.

Using the exact sequences connecting the mWn' we are easily reduced

to the case m = n « 1; but D/OF + DV=k and M(,W,),: = k,

Take m =< n. Any element in 0/(0F" + nv") can be written in a unique

fl-1 n-lway x=< w
'_

n
+' •• +w_1V + W

o
+ w,F +.•• + w

n
_1 F

therefore have a canonical W(k)-linear projection

we

Let Q be the quotient field of W(k), and Woo be the W(k)-module

QjW(k); it can be identified with the direct limit of the system

but this system is also

Hence 1'1 (k},-
For any Ok-module M, we denote by M* the following !\:-module: as

W(k)-module, M*.: ModW(k)(M,Woo); if f .M*, then (Ff)(m) =< f(Vm)(P),

(Vf)(m) .: f(Fm)(P-
1).

It is clear (duality of finite length modules over a

principal ideal ring) that M_ M* induces a duality in the category of

I\-modules are of finite length over W(k).
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Let now GE: Fiuk' then there exists n such that '" 0, '" 0; it

follows that M(G) '" Fiuk(G,nWn); moreover "" 0, Fri(G) '" 0, and

M(D(G» => Let m:D(G)_ nWn be an element of M(D(G»; let

composed homomorphism

D(m)
)

this gives a D-linear map

composing this with -nn:M(nWn)--+Wn(k)

we get a W(k)-linear map M(G) '

and the canonical injection

t .e. an element of M(G)*. Hence a map

(**)

This map is independent of the choice of the integer n: if lie replace

m:D(G)---. by mt
'" itm", tim: D(G)---+ n+1Wn+l' then is replaced

by D(m t )ahn+1 '" D(itm)ahn+1 '" D(m)D(it)ahn+1 '" hence <Pm is replaced

by (Pm' :: tv) '" M(fv)M(D(m)ahn) '" M(fv)cpm and 'lfn "m is replaced by

1tn+1M(fv) <:Pm' But M(fv):D!(DF" + Dv") _D!(DF"+1 + ,p+l) is of course

x--+FVx"" px, and -nn+IM(fv) '" '7I:n+1 p ""

We therefore have a. well-defined W(k)-linear map (**).

Theorem. For all Ge: Fiuk, (**) ll!.!! isomorphism of

The proof runs as follows.

a) (**) cODDnutes with F and V.

b) Theorem is true if G "" nWn'



For the details, see D.G. V, § 4, nO 5.

In short, the autoduality G t---+ D(G)

Df.eudorme functor, to the autoduali ty M..-.- M*

of finite length killed by a power of V and F.

of Fiuk corresponds, via the

in the category of !\:-module

Let now G£ Fi!!!k, we define the Ddeudonne module M(G) by

M{G) :II M{D{G»*.

It follows from the Cartier duality between and Feuk the functor

G- M{G) just defined induces !!! antieguivalence between Filii< .!!:.!:! the category

of all !\:-modules of finite length .2!l which F is nilpotent and V bijective.

We can describe M(G) as follows. Suppose first G is diagonalisable:

G", D{ r
k
) . Then D{G)\¥ r

k
, and M(D{G» '" rk,Wnk ) :II 9!{r ,Wn{k»=

.Q!:( r , Woo) .. M0!:!w{k) (W(k) &.z r , Woo), hence

M{G) =W{k) 87L.f.

In general, G is defined by a Galois module rand M(G) is the set of inva-

riants under the Galois group n of M(G4t
k
k ) ; hence

Moreover, F and V are easily described by duality:

Let Xp be thp. category of all finite k-groups of p-torsion. Any G
k

in X
Pk

decomposes uniquely as H xK, with H . Fiuk " Fe!:!I<,KE: Fimk and we define

M{G) as M(H) XM{K).
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Theorem a) The functor Gf-"-'!"M(G) is'an antieguivalence between category

!I!k ,. Fiukx Feuk >< Fi!!!k of all k-groups 21 ,E-torsion, and the category of

all triples (M,FM'VM) Mis! finite length W(k)-module!!!S! FM and VM

two group endomorphisms of M such that

b) G is etale, infinitesimal, unipotent.2! multiplicative according as

FM is isomorphic, FM nilpotent, VM nilpotent, VM isomorphic.

rk(G) ,. length M(G).

d) If K is! perfect extension of k, there exists! functorial isomorphism

e) There exists ! functorial isomorphism

M(D(G» ... M(G)*.

Let (M, FM, VM) be as in the theorem. There exists m with

with 0, 010 '" 0, VIMOl is bijective, VIM
l l

is bijective. But

FV ,. VF = p, hence Ml l '" 0; this implies M '" Moo E9 MOl e M
l o

'
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The proof is now straight forward and left as an exercise.

8. Dieudonne modules (p-divisible groups).

Let us first prove a lemma.

Tfn--- .•. _MI be! system.2f W(k)-modules with

following properties.

n 'It

1) .TI!! sequence Mn+1 Mn+1 0 !! .f2!:!1! n,

M"" M .!!! finitely generated W(k)-module and 1!l! £i!!.!2!lic!.:J:

It follows from 1) that

is exact for all nand m (where '7( .. '1t"n ° "Kn+1 0 .,. ° '?till-I)' Taking the

inverse limit over m, we find an exact sequence

[the functor is exact for finite length modules - D.G. V § 2, 2.2 a)]

where "'n is the canonical projection, hence the last assertion. Let now

be elements in M generating M!pM"" M1; consider the W(k)-module

. r
homomor-phd.em cp:W(k) ---+ M such that cp(a

1
, ••• ,ar) '" a1ml + , •• It

induces surjective maps W(k)r!pnW(k)r---+M!pn M for all n hence is surjective

as an inverse limit of surjective maps of finite length modules.

Alternative proof. Apply Bourbaki, !!g. Ch. 3, § 2, nO, 11, Prop. 14 and

Cor. I to Ai" W(k)!pi+IW(k), ;II
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We say that a formal group G is of p-torsion if

We have exact sequences

n n+\ pn n+\0_ Ker p __ Ker p Ker p

n
0---+ Ker pn---+ Ker pm+n p Ker pm

the latter show by induction that Ker pn is finite for all n. Define

M(G) .. lim M(Ker pn).

Theorem. G-+M(G) is!!l antieguivalence between the categor,y .2f p-torsio!! formal

groups and the category of ttiples. (M,FM'VM) where M is! finitely generatet!

and FM, VM group endomorphisms of M

FM(wm) "" w(P)FM(m)

VM(w(p)m) "" wVM(m)

It follows from the lemma that M(G) is finitely generated and that

Mn Conversely if M is as before, then we define G as Gn

From the definitions and what 'WaS already proved follow im!nediately:

1) G 1! if and only if M(G) and 1:!! that M(G) is the

!! defined in § 7.

2) G is p-divisible if and onlz if M(G) .ll ( .. and

height (G) .. dim M(G),
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3) !2! perfect K/k, is ! functorial isomorphism

4) G is p-divisible, .!1!:h .<!ual G', then

M( GI) '" MOd
W(

k) (M(G), W( k ) ) ,

(F ( )fHm) .. rev m)(p), (V ( )fHm) .. f(F m)(p-l)
MGI M MG' M

Proof of 4. Let M(G) '" M; then M M/pnM, and M/pnM 2 M(Ker pn idG); but

G' is defined as D(Ker pn idG)' hence M(G') .. M(D(Ker pn ida» ...

9. Dieudonne. modules (connected group of finite

By a similar discussion (replacing p by F), we have the following

results: if G is a connected finite type formal group, define M(G) ...

M(Ker it is a module over the F-completion 'Ok of 1\.

.Theorem. G--toM( G) is!n antieguivalence beheen categorY of connected

0-
formal groups .£f finite the category £! Uk-modules M

that M/FM finite length. Moreover

2) G smooth FtM(G) ----+ M(G) is injective; in that

dim (G) ... length(M(G)/FM(G».



CHAPTER IV

CLASSIFICATION OF p-DIVISIBLE

k is a perfect field (unless otherwise stated»)charac (k) ,j 0; we denote

by B{k) the quotient field of W(k), and extend :x:t-+X<p) to an automorphism

of B(k); the set of fixed points of in W{k) (resp. B{k» is

W{ f p ) '" Zp (resp, B{ lFp ) '" o;)p)'

1. Isogenies.

A F-lattice (resp. F-space) over k is a free W{k)-module (resp. a B(k)-

vector space), of finite rank, together with an injective (resp. injective'" bijective)

group endomorphism F such that F{AX)" If M is a F-lattice, then

B(k)a M has a natural F-space structure.
W(k)

To each p-divisible group G, we associate the F-lattice M{G), and the

F-space E{G) '" B(k)Q M(G); the functor G--.. M(G) is an antiequivalence
W(k)

between p-divisible groups and those F-lattices M for which FM =>pM.

If K is a perfect extension of k, and M a F-lattice over k, we

define MK as W{K)0
W(k)M,

similarly for F-spaces.

Let G !lli! H be p-divisible groups of height and fl G----+ H

be ! homomorphism. The following conditions equivalent

a) Ker f

b) f is!m epimorphism,

c) M{f)IM(H)--M{G) is injective,

d) Coker M(r)

e) E{f):E{H)----.1Io E(G) is!m isomorphism.
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This is clear: (a) ¢:::::> (d), (c), and (c)<==9 (d) SusJ.'l!!l

f is callf'd .2.!l isogeny.

Protlosition. Let G and H be p-divisible groups. Then E(G) and E(H)

!!:! isomorphic if and only if there exists an isogeny fIG ----. H.

Let Gp:E(H)----. E(G) be an isomorphism; there exists m such that

<fI(M(H» c then :M(H)--+ M(G) corresponds to an isogeny f. The

converse is clear.

Two such groups are called isogenous. The classification of p-divisible

groups upto isogeny is therefore equivalent to classification of F-spaces of the

form E(G).

A F-space E is called effective if it contains a lattice (i,e. a

W(k)-submodule M such that E = B(k)8 M)
W(k)

stable by F, i.e. if it comes

F(x0 y)

from an F-lattice. It comes from a p-divisible group if and only if it contains

-1
a lattice stable by F and pF .

2, The category of F-spaces

It is! Qp-linear category: an abelian category, such that Hom(E1,E2)

has a natural (finite dimensional, in -vector space structure, the
p

composition map (f,g)----. go r being Qp-bilinear L note that (Q,p is the

centre of B(k)_7.

It !:!!!! tensor products and internal Hom: If E1, E2 are F-spaces, then

and Hom(E ,E
2
) are the usual e and Hom of B(k)-vector spaces and

- 1
-1 (p)= Fx lS Fy, (Fu)(x) =u(F x) , x El'yE:E

2,u Hom(E1,E2
) .

We denote by "IJ the F-space (B(k), x_x(p», by 11 (n) the F-space

B(k),X_p-nx(p). The dual E of E is Hom(E, "IJ), the nth. E(n) of

:F. is E0'D(1'l).
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We have the usual canonical isomorphisms

Hom(A, !i2!!!(B,C» '" Hom(ASB,C)

!i2!!!("D ,A) A

Hom(A,B) '" Hom('tJ ,Hom(A,B»

Ae(BSC) '" (AGibB) II C ...

In particular

E(m)(n) '" E(m+n)

" "E(m) E(-m).

If G is a p-divisible group and Gtits then

V

E(Gt
) E(G)(-l)

(because Serre duality sends F to V", pr-1) .

These constructions commute with the base-extension functor

E..-- Ell. '" B(K)eB(k)Erlk a perfect extensior].

Let ° be a rational number; write .\. .. !,
r

(r,s) '" 1. We define the F-lattice MAo over IFp by

with r:, s IN, r> 0,

F acting by multiplication by T, and similarly, the F-space EA over IFp

by
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If then define ii A ,. Zp[F]/(f'-S _ v"), then iiA is a

lattice in Ei\. and a Dieudonne module; actually, let GA be the p-divisible

group over defined by the exact sequence

A
G ---+ W(p)

It is clear that

Hence height (GA.) '" r, dim (GA ) '" e, It is also clear that (GA.)' '" G1_.iV

A i\. () i\We put Ek '" (E )k '" B k E •

then

In particular

l/r () l/r )denote the class of X by P , then Wk (p is a complete descr.te

valuation ring with residue field k and maximal ideal generated by pl/r. We

extend x,"-x(p) to W(k) (pl/r ) and B(k)(p'/r ) by putting

( l/r )(p) 1/rp ,. p •
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F ( '" i/r) '" (p) (s+i)/r
s LWiP = l.- wi P

and similarly for B(k)(p1/1"). Then the F-lattice (W(k)(pl/ r ),Fs) i!! isomorphic

to MC; the F-space (B(k)(pl/r ),Fs) isomorphic to

Send pi/r to the class of of.

Let a, be IN be such that ar - bs '" 1.

unique unramified extension of degree r

Consider B(W I" ) is
P

of B( Wp) :rQp-1 and let KA.

the

be the

associative B( IF I" )-algebra ldth unit generated by an element ; such that
p

It is a left vector space of dimension rover B( IF 1") ldth basis
p

1"-1
1, ... ,; ,

Moreover, because -b is invertible

implieso<.e:G;\p' and

r-l i
let X:r L

i=O

hence an algebra of degree 1"2

modulo r,o«p-b) '" 0(

is a division-algebra;

over Q). •p

KA has centre 11'\. Finally, KA.__ 'l:lp

be a right zero divisor. By multi-

plication by suitable powers of p and we can suppose that a. e w( W .),
1 p1

and aof.PW( i- ). The matrix of the right multiplication by X in the basispr

1, ... , i-1 is (write a: for (p-b) )

r «:p 1"-1 0

1"-1
CTpa
i
_
1



Its determinant is congruent to

cannot be zero, contradiction.
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r-l
• aC-

'" 0
Norm(ao) mod Pi it therefore

Suppose k:::>lF r' and consider
p

It is a B(k)-vector space with basis .. 1 i '" O,... ,r-l and a right

A. F \::i.: t: "".K -vector space; we make it a F-space over k by defining ? - ?

Proposition. a) The F-space B(k)0
B(

IF ) K
A

is isomorphic to
pr

b) Its endomorphisms the right multiplication !?z elements of KA .

We send the F-space E '" B(k)8 ( ) KA to B(k)(pl!r) by mapping
B IF rp

. /
to pl, r; it is easy to check that this mapping is an isomorphism of F-spaces

hence a). To prove b), we first remark that the F-space structure and the

o -vector space structure on E commute: each multiplication
r..

x--+Xoc,O( e x

is a F-space endomorphism. We use now the following lemma.

This is clear from the definition of

! bijection

with

Using this lemma, it is enough to prove that the elements x of E

r AF x = pSx are the 180< ,o<.e K • Let



79

...:r s (pr)
and 1" x .. P x implies of. '" oc

i ...

@ Let 7\.' s'lr', with r',s' IN,(s',r') 1, be rational.

b) let m" g.c.d. (1',1"), then

A. A' A+ A'
K K !1n(K ).

P

A'a) By the above lemma, we have to look to those x Ek

}I.'
but Ek has a basis f j such that, if x '"L bjfj,

"')rr I (11" s '1'
hence F x .. p f j; on the other hand, if

r " ,
F r sr b sr-x .. p x .. L- j P f j .

Because sr' I s'r, and

for this implies x .. 0.

b) Let e' , .. , e'
1 r'

be the canonical base of EkJ\' , and i\ + i\! .. 71.0 '" S 11' ,o 0

with so" sr' + r's/m, r o'" rr'/m. Then

It follows that, i and j being fixed, and indices running modulo (r,r'), the

, 7\ A'
vectors ei +k e ej+k' k .. 0, ••• , r a - 1, span a sub-F-space of Ek 8 Ek iso-

E
i\+ J\'

morphic to k This gives m linearly independent sUbspaces,hence an

7\ A' J\+ 7\' m
isomorphism Ek e Ek :J>l (\ ) •
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Taking k big enough, this gives a map of the endomorphism algebras

A ,,-'this map is injective because K K is simple, hence bijective because
Qp

both sides have dimension (rr,)2 over <Qp'

we find isomorphisms

1
As a corollary, take i\. = n IN in c) ;

n
(In particular 13 (-n) .. "''1<), and

A A.+nK Qt K

Hence .i\t---+ K"- gives a homomorphism

which is injective (because KA is a skew-field, hence cannot be split if

r 11, Le. i\'z>, and known to be surjective.

® For AE:Q, we define
-J\ 0

to be the dual of E
k

(note that E =1]).

From the relations between dual, tensor products, and internal Hom, and using the

I
twist operation we obtain for A, »;« <tl

.i\. ,,-I ".+,,-1 m
a) Ek 8Ek (\: ) } m .. g.c.d (r,r

l
) )

A 11..1 /\.1_11.. m
b) Hom(Ek,E

k
):::t(Ek »)m .. g.c.d (r,rl)j

wi th invariant

d) If 7\=!, r o O, (s,r) = 1, then
r

is a central diVision algebra over <Qp'

dim = r-, If k ;:) If then
pr

A.mod I, is
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effective if and only if F1<:" comes from a p-divisible group if and only

if

e)

4. Classification of F-spaces £Y!r algebraically closed

,
Lemma 1. If k algebraically extension of E; El £;-,71..., J\.' G/

splits.

I

Let 0-f:
k
'1\----? E <----? 0 be an exact sequence of F-spaces;

for any n, we have an exact sequence

that splits if and only if the first one splits; taking n large enough, we can
, ,

therefore suppose '1\, J\. Write 71... 2 sir, 2 s ' Ir l as usual. It is suf-

ficient to prove

Indeed, let be such thav r s 7\.'cp(X)02e,;then (F -p)(x) £k. If(*)

is true, there exists a

x by x - y, we can suppose (Fr _ ps)(x) • 0, and x gives a splitting.

I ,,,,' ",I

and it is enough to show that Fr r - psr IE;' --+ lEic' is surj ectivee If

,
is the canonical basis of A, we have

,
Jr' sr' ') (pr) sr'

(1'" - P )(L:>i e i ...L- P ai - p
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it is therefore sufficient to show that, if 0<, !3 7l, the map

- x

from B(k) to B(k) is surjective,

00 i(3 (piP<)
If A>° then, taking x = L p b , we find

r i=O

reduced to the preceeding case, If f3 = 0, we use successive approximation: let

bE:B(k) be fiXed, and suppose xeB(k) and mE: 7L are such that

(po( ) m., m (pO< ) (pcx.)
x - x - bep W(k); if xl '" x + P y, yE:W(k), then xl - xl - b '"

pm(y(po() _ y + (x(p) _ x _ b)!pm), and this belongs to pm+1W(k) if and only if

_po<.. _ (pO< ) m
y - y + (x - x - b)/p '" 0, denoting by z--+ z the residue map

Because k is algebraically closed, this equation has a solution,

k exists r, s E: IN, coprime, .!!:ns! elements

(**)

v{a )
Let /\. '" inf (---1..); write A." s!r, sand r coprime, and put

i

isI ....
a i '" p . Cl(i; then o(i E:W(k), and O<i is unit for at least one i>O. Let us

look for b i of the form pis/r i' W(k),

(**) as:

-1Putting v '" u , we can write
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n (n- 1) 1
V( p ) fl + v p a..n- + + va '"11"· ••• n.

so that (**) is equivalent to

Replacing ai by pis/r ex
i

and bi by pis/r we find the system

and we have a solution if and only if we can find a unit v in W(k)(pl/r) such

that

This equation, we solve by successive approximation. Modulo pl/r, it gives



n
-p
v + ••• +

and this has a n2B-!!!2 solution because one of the O(i is non-zero and k is

algebraically we can therefore start the induction and suppose we have a

(pn) (pn-l) _ i/r
V + 0( v «oc - 0 diIi +... '" nv i - mo p •

i/r
Writing vi+1 .. vi + P x, and solving

we find an equation

+ ... +
= (i+l )/r

O(n vi+l - 0 mod p ,

n n-l
-p - "RPx + 0<.1

which has a solution in k.

Lellllll& 3. Let k be and m E :2.!!.!!2!r"!!r2 F-space.

There I\E:Q!ill!! morphism E

Taking a non-zero simple quotient of E, we can suppose E simple,

i.e. a simple B(k)[F]-module. But B(k)[F1 is an (non-commutative) euclidean

ring, and such a module is a quotient B(k)[F]lP '" B(k)[F] /B(k)(F]P where

PE:B(k)[Fl is a monic polynomial r + a
1
r- 1

+... +an• Replacing E by an E{-m),m

large, we replace F by and we can suppose &iE: W(k), Henoe E is

defined by the F-lattice M .. W(k)(Fj/P. Then, by lemma 2, we can write

P ,. Q(F_ps/r)u, where QE.W(k){pl/r)(F), UE:W(k)(pl/r)*, and (r,s) .. 1. Then

-1
gives an epimorphism
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but, as a W(k) [F]-module, the right-hand side is "l\A., and the Induced map

is a non-zero F-lattice homomorphism.

Proeosition. .!!! simele F-space (1.!. does contain

F-subspace).

We can suppose k algebraically closed. If E is a proper F-subspace

of Nk'\ there exist (lemma J) a non-zero morphism

If ".1 the composite map <- is zero by section}, E) e) hence

A" fA; then this composite map must be an isomorphism, because is a

skew-field; this gives E" O.

Theorem (Manin). If k .!! the of F-spaces k

is .!!!!!i-simple, ill simple objects being the F-space is isomorphic to !

By lemma 3 and the above proposition, the simple F-spaces are just the

by the proposition, any F-space is an extension of By lemma 1, such an

extension splits.

Corollarz. If k is algebraically: F-space k 1! isomotphic to

!!! E1c, E !!! F-seace !ill! prime

Corollary:. If k is algebraicall;y: p-divisible grou,E k II

isogeneous i£ ! product of Gf'.
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5. Slopes.

Let E be an F-space over k, k algebraically closed. Let A Q. The

component of slope A in E is the sum of the sub F-spaceSof E isomorphic to

!k; the multiplicity of the slope i\ is the B(k)-dimension of this component

(e.g., if i\,. air, the multiplicity of J\ in is r-),

The slope-seguence of E is the non-decreasing sequence

(n" [E:B(k»)) of all slopes of E, each one repeated according to its multi-

plicity.

2
The Newton polygon P of E is the polygon OA1••• An in <D., where At has

coordinates (i, 11.1+" , + 1I.i ) ; the points of P have integral coordinates

and the slopes of its sides are the

The slope-function CA:l of E is the function c.) I Q --. Q defined by

n
w( x ) ,.L: inr(

i=1

Each of these three objects determine the two others and determine E upto iso-

morphism; for instance the set above P is



Proposition. Let M F-lattice, w the slope function.2f. B(k)0W(k)M;

oc. , IN, 0( 0, !h! difference

is bounded.

We can replace k by k, hence suppose k algebraically closed.

If M and M' are two lattices giving isomorphic F-spaces, there exists

an exact sequence of W(k)[F]-modulee

where N has finite length. The snake-lemma, applied to the diagram

a_OF -->"Fe-. NF--a
0- M M' __ 0

where cp(x,y} FO(x + pray, gives the inequality

length - length MI/,¥(M,2) 2 length N;

therefore, if the proposition is true for M(resp. MI), it is true for M'(resp. M).

c) It is therefore sufficient to prove the proposition for the F-lattices
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and FO<M + p/Ol M is generated by

inf(as, s )p ,., e
i
, i .. b+I, ••• , r

The length of the quotient is

)
and p ej' j '" 1, ••• , b.

e.. (r - b) inf (as, (6) + b inf «8.+1 )s, ).

If (3,as, then i .. rj3;

if as )s, then e. .. (r - b) as + b13 ;

if then e.. (r - b) as + b(a+l)s .. DCs.

On the other hand W (f3 ) .. r inf (f3/o<, 7\.), hence

0«(..;)(13/0<..) '" oc r- inf (f'/oc,s/r) .. inf (rar,ocs), and the proposition follows

easily.

The slopes, slope sequence, ••• , for a p-divisible group Gover k

(not necessarily algebraically closed, nor even perfect) are defined as the

corresponding object for the F-space k).
k

The slopes of G are in the interval [0, IJ. The above proposition

givess

Corollary. If <.0) is .th! function of the E-divisible group G, then, .f.2£

0(, E:11\, 0(10

rk(Ker fX ()Ker p/3 id ) '" po<.c..:> (13/0<. )+A(o< , (3 )
G G

where A(()(, (3) .i!! bounded.



In particular (.,)(7\.) ... 0 for 7\., 0,

w( 7\) ... lim log (rk(Ker P'AO(ida», for
ex--+- 00 p
0< , "cx£1H

(.0)( "-) '" dim G for ?\ height (G).

6. The characteristic polynomial of endomorphism.

If M is an F-lattice (resp. E is an F-space) and <p an endomorphism

of M (resp. E), then the determinant det (q» of <p is in Z'p (resp.Q}.p): if

n
n '" dim M (z-esp, n ... dim E), then 1\ Cf is the multiplication by det (<:p) and

commutes with F; this implies det (<P)(p) ... det (qp), hence the assertion.

More generally, the characteristic polynomial

det(<:p - Tid)

If cp is an endomorphism of M, then it is well-known that

length (M/q>(M» '" v (det(<p».

(Note that v(0) ... ce ).

This applies for instance to the case of the F-lattice of a p-divisible

group G, and gives for any endomorphism cp of a p-divisible group G

rk(Ker <p) '" pv( det M( C(») ,

(where, convention, poo '" 0, and rk(H) ... 0 if H is not finite).

If k is a finite field with q '" pa elements, then Fa is W(k)-linear,

hence is an endomorphism of the F-lattice M (resp. of the F-space E).
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Theorem (Manin).

that v(q) '" 1 (i.e. v(p) '" 1/a); let

By replacing E by E(-n), which replaces '("i by n
q 'C"i' and the

slopes (Ai) by (7I.. i +n) , lie can suppose that E comes from an F-lattice M.

By the above proposition, the slope function w of E is determined by <..:l( "') '" °
if 7\(.0, and for °

(.,) (i\) '" lim length M( (Fac<K + qAO(M).
c( ----+0

0(,7\0< E)lII

Note that B(k) C (Up' We can find a basis ei of E'(k) p such that the

matrix of Fa in this basis is triangular with diagonal entries '(""i; as remarked

in the proof of the proposition of nO 5, the hand side of (*) is also

equal to the analogous expression,

-
B(k) (}p

generated by the

M being replaced by the lattice N in

But Fao< e
i
= ct e

i,
and

This gives (.,)(?)"" 2::)nf(w( 'C
i
) , "-), whence the theorem.

7. Specialization of p-divisible group!'!.

If S is a scheme over lf p ' a p-divisible group Gover S is a

system (Gn,in) of finite locally free commutative group-schemes over S, together

with homomorphisms inlGn--+ Gn+1 with the properties given in Ch. III.
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For each sE: S, the fibres (Gn) give a p-divisible group Gs'

Theorem (Grothendieck). Let s 'E S be! sEecialisation of s, w (resp WI)

the sloEe-function of Gs( resp, Gs I). Then w' w • Eguivalently, the Newton-

Eolygon of Gs' is above the of Gs'

Each Ker and each Ker pia idG is a finite locally free commutative

group scheme; moreover

Ker FO<, Ker pf3 c: Ker pSup( 0<, ) •

By the following lemma, it follows that

This gives immediately w
s
' ( A.) A.).

Let S be! scheme, Z ! finite locally free s..scheme, X Y two

.fi.!:!ll! locally free subschemes of Z. If s' £ S is! sEecialisation of

sE S, then

rk(X n Y) rk(X () Y) •
s' s

Proof. Take S '" Spec R affine, Z '" Spec A, X '" Spec A/I, Y '" Spec A/J; then

Xn y '" Spec A(I ... J). But A/r and J are locally free R-modules and A/(I ... J)

is the cokernel of the R-linear map cp:J A/r. Remark now that the rank of

does not increase by specialization.

Remark. If G is of height r, then ws(r) is the dimension of Gs' Hence

'" ws(Z); equivalently, the extremities of the Newton polygon are invariant

under specialization.
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a. Some particular

Let G be a p-divisible group (k perfect). The slope sequence of Gs

determines G0 k upto isogeny. We know that G splits as a product Ge x Gc'k

where Ge is etale and Gc connected. But is etale (resp. connected) if

and only if /\'" 0 (resp ">0). Hence the slopes of Ge (resp. Gc) are the

which are '" 0 (resp. >0),

The Serre dual Gt of G has the slope sequence

1 - /\h 1 - "'h-l , ••• 1 -

Applying the preceeding decomposition also to G', we find:

Proposition. The p-divisible group G £!U uniquely written!! ! product

where the slopes of Ge (resp. G, resp, slopes G

'" 0 (resp ft 0,1, resp'" 1).

In particular, if k '" k,

morphic to it.

Equivalently: if"", llr, or (r-l)/r, any F-lattice M in

is isomorphic to 1\.". By duality, it is enough to prove the statement for

7\.", l/r. Then has a basis I'll' ••• ,er, with Fe
1 '" e

2, Fe2 = e3, . · · , Fer_l
,.

e
r,

Fe '" pel' For el:\<:;h i, let mi '" inf{mlpm ei EM). Thenr



93

i.e. eiE:M and

m;::<; writeLet mE:M,implies

replacing if necessary the basis (e1) by a basis we can suppose

-1.l. 11 Thp e i H, for a i. is

There exists 0( with Fo(m;:H;, Foe+1mE:Ht; replacing m by FCl( m, we can

suppose meH, but

and a contradiction,

Example. If k k, then any p-divisible group G of height 0, t ,2,3 is isomorphic

to one of the following:

height ° 0

height t Go' G
1

height 2
2

Go.>\G
t
, G1/ 2,G

1,

2
or isogenous to (G

1
/ 2).



CHAPTER V

p-ADIC COHOMOLOGY OF ABELIAN VARIETIES

k is a field, p charac (k).

I. Abelian varieties,

The following facts are known, see Lang's or Mumford's Abelian Varieties.

a) If A is an abelian variety, of dimension g, over k, and <vI"'" CPr

are endomorphisms of A, then

rk Ker{n «) +••• + n cp )
1 1 r r

is a polynomial in nl, ••. ,nr with rational coefficients, of degree 2g

(by convention, the rank of a non-finite group is 0).

The characteristic polynomial P of the endomorphism cP is defined by

2g 2g
P{n) rk Ker{Cf> - n ida) '" (-I) n +••• rk{Ker cp ).

b) There exists an abelian variety A', the of A, with the following

properties:

I) for any n, Ker{n idA) and Ker{n idA') are Cartier dual of each other,

this duality being compatible with the inclusion and projection

m
Ker{n idA)<f--Ker{m idA')'
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2) There exists an isogeny (epimorphism with finite kernel) of A to A',

2, of finite order and endomorphisms.

Let A be an abelian variety over k, and t a prime number. For any
n 2ng

n IN, Ker(.f idA) is a finite group of rank.e • We define

If .( I. p, then A( t) is an etale formal-group, and we define

it is a free module of rank 2g over Zt (and also a Galois module).

If £ .. p, then A(p) is a p-divisible group, of height 2g. We define

Ht(A,p) '" M(A(p» " Dieudonne module of A(p);

it is an F-lattice over k, and in particular a free module of rank 2g over W(k),

t
Evidently A............ H (A, l), t any prime, is a functor. In particular,

any endomorphism C{' of the abelian variety A giYeS rise to an endomorphism

H1(q>, f) of Hl(A,.f), lie denote by v.e. the canonical valuation on

Zt (resp. W(k) if r, p).

Lemma, If C{' is endomorphism of A, then for !:!:!l prime .e, (t. 0/ p or l .. p),

Eguivalentlx
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We can suppose k is algebraically closed. As we have seen JKer q> is the

product of its components of t -torsion:

Ker 'l' '"n(Ker cp() A( t »

and rk(Ker q> () A(.()} is a power of l, hence

rk(Ker cp(\A( .{»'"

1
For each £ ,cp induces an endomorphism of H (A,.f) and we have an exact sequence

where N is of length vt (det H
1
( '¥' .f. ».

If t. p, N is the Pontrjagin dual of Ker cpAA( i ), hence the

relation. If i" p, N is the Dieudonne module of Ker «>OA(p), and

rk(Ker cp(\ A(p» " plength (N) as we have seen.

Theorem. If cp

we have---

an endomorphism of A, then, for.!!!:l .e , (i. j p, .2!: l " p),

This follows from the preceding lemma, by the method of Mumford, p.181.

Corollary. If cp is endomorphism of A, then characteristic polynomial

of 'l' is also the characteristic polynomial of H1(ep, t) for all .(. It has

integral coefficients.

Because a rational number is integral if it is a f-adic integer for

all .e •
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3. Structure of the p-divisible group A(p).

We remark first that AI(p) (AI the dual abelian variety to A) is

canonically isomorphic to the Serre dual of A(p). Because AI and A are

isogenous, this implies that A(p) is isogenous to its Serre dual. Equivalently,

if the slope sequence of A(p) is

r--s (\then 1\.2 i" -, and s + r - s Ig- r
r. From these follows

the fact that the dimension of A(p) is g, Le. rk(Ker
ig

.. P •

For instance, if g .. 1, then k is isogenous (hence isomorphic)
k

to either Gox G1 or G1/2• More generallYl

Proposition. Let A be!!! abelian variety of dim g, the algebraically

closed field k, Then A(k) contains at most pg points of order p, Moreover,

the following conditions eguivalent.

1) A(k) contains pg points of order p,

2) A(p) is isomorphic to )t

We have A(p) .. AO x ( Q IlL ( ; the slopes of 10
are the A. >0, the

p p k ).

r
slopes of (Q /:z) are the Ai .. O. Hence r is the multiplicity of the slope

p p

0, hence also the multiplicity of the slope 1. This implies r and the

equivalence r .. g <===* the slopes of A(p) are g times 0 and g times 1.

The proposition follows easily.
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Such an abelian variety is called ordinary.

The theorems of § 2 and Chapter IV, § 6 give l

Theorem (Manin). Let k be! finite q 0: pa elements, A !!!

abelian variety; k,

2g 2g n
P(T) ,. t;1 ('("i - T) ,. T +'''+q

a
the characteristic polynomial of the Frobenius endomorphism FA of A.

w is the valuation (0 ---+ Q
p

Example. If g = 1, i.e. A is an elliptic curve, then

P(T) r2 - + q,

and we find the (easy) statements I

Tr(rP') .= 0 (mod p) ¢::::::>A(p) '" G
1/ 2

Tr(F
a)

/. 0 (mod p) <==> A(p) ,. Gox G1 i.e. A is ordinary.
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