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Lectures on p-divisible groups

The aim of these lectures, given at the Tata Institute in Janmuary -

February 1971, was to explain the contents of chapters 1, 2 and 4 of

MANIN (I), The theory of commutative formal groups over fields of finite charac-

teristic, English Trans,, Russian Math, Sur, 18,
For general facts about algebraic groups, our reference is

DEMAZURE (M) and GABRIEL (P), Groupes algébriques, Tome !, North Holland Pub. Co.,

1970, which shall be abbreviated as D,G.
For supplementary material the reader may refer to:

HONDA (T), I=ogeny classes of abelian varieties over finite fields, J. Math. Soc.

Jap. , 2_0,; 83-95, (‘968)0

HONDA (2), On the theory of commutative formal groups, J. Math, Soc, Jap., 22
213-246, (1970).

TATE (J), p-divisible groups; Proceedings of a conference on local fields,

{Driebergen 1966) Springer-Verlag, 1967,

TATE (J), Classes d'isogénies de variétés abéliennes sur un corps fini(d'aprés

T. HONDA), Seminaire Bourbaki, 352, Nov. 1968, Paris multigraphé,

TATE (J), Endomorphisms of abelian varieties over finite fields, Inventiones
Math,, 2 134-144 (1966)

N.B. The typing of these notes was done by Mr.P.Joseph, of the Tata
Institute, He did a very good job.



Iv

Notational Conventions, If C 1s a category, and A &n object of C, we write

simply A€C; if A, B€C, the set of morphisms in C of A to B is denoted
by E(AxB)-

By a ring we always mean, if not otherwise stated, a commutative ring with

unit,

M. Demazure
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CHAPTER I

SCHEMES AND FORMAL SCHEMES

1. k-functors

Let k be a ring and M, Dbe the category of k-rings (i,e, commutative
associative k-algebras with unit, or simply couples (R,{) where R is a ring and
P:k—>R a morphism), Actually, for set-theoretical reasons, one should not take
the category of all k-rings, but a smaller one (see D,G, page XXV-XXVI) but we shall

not bother about this point,

A k-functor is by definition a covariant functor from l_lk to the category

E of sets; the category of k-functors is denoted by M E.

Example. The affine line O, is defined by O,(R) = R, REM,.
x Y Y =k

If @:R—>S is an arrow of My, if X€ME, and if x€X(R), we shall
write xg (or sometimes x) instead of X(@)(x)eX(S); if fiX—>Y 18 an arrow
of ME, if ReM, and x&X(R), we shall write f(x) instead of f(R)(x)€Y(R);
with these notations, the fact that f is a morphism of functors amounts to

f(x)s = f(xs).
The category gkg has projective limits, for example:

a) a final object e is defined by e(R) = {#}, ReM,,

b) if X,YeME, the product XxY 48 defined by (XxY)(R) = X(R) xY(R),



) if X~5 287 is a diagram of ME, the fibre product T = XxY is
z
defined by T(R) = X(R)xZ(R)Y(R) = {(x,7) €X(R) % ¥(R), £(x) = g(y)}; more generally,

one has (iﬁ‘ﬁ Xi)(R) = %_i_n_x Xi(R)’

d) f:X—Y is a monomorphism if and only if f(R):X(R)~— Y(R) is injective
for each R, We say that X is a subfunctor of Y if X{(R)C Y(R) and f(R) is

the inclusion, for all R,

Let k'€ gk; as any k'~algebra can be viewed as a k-algebra, there is an

obvious functor M --» M and therefore an obvious functor M E—>M E; the

%' “k X k'
latter is denoted by X~—> X@kk'. So, if R 4s a k'-ring and R[_k] the underlying
k-ring, one has

the functor X~——> X®kk' is called the base-change functor or scalar-extension

functor. It commutes with projective limits, hence is left-exact.

] 1 s . s .
For instance _Qkakk can be (and will be) identified with Qk,.

2, Affine k-schemes,

Let A€M ; the k-functor Sp A (or simply Sp A) is defined by
Sp A(R) = M, (A,R)
SpkA(CP) = {\yp—> cpo\y} for C?:R—-?S;

if f:A—>B is an arrow of Mk’ then Spkf:SpkB-—> SpkA is obviously defined.

So Ap—> SpkA is a contravariant functor from y_k to M’L{E

An affine k-scheme is a k~functor isomorphic to a SpkA. For instance

-Qk is an affine k-scheme because

Sp,k[TI(R) = ¥ (k[T],R)=R = Q(R).



Let X be a k-functor and A a k-ring., We have the very simple and very important

Yoneda bijection

¥, E(Sp, A,X) > X(A) :

to fiSp A—s> X is associated = f(idA)€X(A); conversely, if E€X(A) and
(P€Spk(ﬁ.)(R) = _y;{(A,R), we put £(P) = X(P)( €); with our notation, the corres-

pondence between f and g is simply f£(Q) = C?(g).

As an example, we take X = Sp B; then X(A) = M (B,A), and we have a
Py

bijection

M, E(Sp, 4, Sp,B) =M, (B,A) ;

it means that A—>Sp A is fully faithful, or equivalently that it induces an anti-

equivalence between the category of k-rings and the category of affine k-schemes.

This fundamental equivalence can also be looked at in the following ways
Let X be any k-functor; define a function on X to be a morphism f:X—>0,, i.e,
a functorial system of maps X(R)-—> R. The set of these functions, say O(X), has

an obvious k-ring structure: if f, ge0O(X), Aek, then

(f+g)(x) = £(x) + g(x)
(fg)(x) = f£(x)g(x)
(ALHx) = Af(x)

for any RE€M,  and any x€X(R), If x€X(R) is fixed, then by the very definition
of the k-ring structure of O(X), fi—>f(x) is an element of M (O(X),R) = Sp O(X);

we therefore have a canonical morphism

ot X—> Sp 0(X) .,

It is easily seen that o is universal with respect to morphisms of X into affine
k-schemes (any such morphism can be uniquely factorized through o), The definition

of affine k-schemes can be rephrased as: X 1is an affine k-scheme if and only if

e ———— e ———— —



o is an isomorphism, For instance O(Qk) is the polynomial algebra k[’r] generated

by the identity morphism 'I‘:Qk% O

The functor a—>SpkA commutes with projective limits and base-change:

one has the following obvious isomorphismsi

Sp(A) X Sp(B)2Sp(A® .B)

sp(C)
(l_igsp(l\i)=3p(l_i§ A)

Spi(A) B k' =Spy (AB k'),

(the last one explaining the notation @ for base-change); as a consequernce, the

full subcategory of affine schemes is stable under projective limits and base-change.

3. Closed and open subfunctors; schemes,

let X be & k-functor and E be a set of functions on X;EcCO(X). We

define two subfunctors V(E) and D(E) of X:
V(E)(R) = {x<X(R) | £(x) = O for all feE}.

D(E)(R) = {x€X(R)[f(x) for feE, generate the unit ideal of R},
Kfaf>X isa morphism of k-functors and F = {fo ufe E}CO(Y), then
a(V(E)) = V(F), w'(D(E)) = D(F) [if w:Y~>X is a morphiem of k-functors and 3

iz a subfunctor of X, then u"(z) is defined as the subfunctor of Y such that

W (2)(R) = {y<X(®) |u(y) €2(r)}].
If X is an affine k-scheme, then

1) V(E) 1is= an affine k-scheme with O(V(E)) = O(X)/E 0(X)
2) if E = {f} has only one element, then D(E) is an affine k-scheme with
o(D({£}) = o(X)[£"'] = o(x)[T]/(T£-1).

Proof. If X = Sp A, and ECA a O(X), then for all REN,



V(E)(R) ={ge M, (A,R) ]q(E) = 0} =M, (A/EA,R)

D({fH(R) ={ge ¥ (A,R)|P(£) 1is invertible}=m (a[f'],R) .

Definition. The subfunctor Y of X is said to be closed (resp, open) if for any

~1
morphism utT—>X where T is an affine scheme, the subfunctor u (Y) of T is

of the form V(E) (resp. D(E)).

For instance, if X is affine, then Y 4is closed {resp. open) if and

only if it is a V(E) (resp. D(E)). As a corollary, a closed subfunctor of an affine

k-scheme is also an affine k-scheme; this need not be true for open subfunctors:

take X = Sp k[’l‘,‘r’]ﬂgkz and Y = D({T,T’}}. In the functorial setting, the precise
definition of & not-necessarily affine k-scheme is a bit complicated. Let us give

it for the sake of completeness:

Definition. The k-functor X is a scheme if:

1) it is a "local" k-functor: for any k-ring R and any "partition of unity"

f; of R( = family of elements of R such that » Rfy = R), given elements

xiex(rz[f;']) such that the images of x; and x; in X(R[f‘zlfg]]) coincide for

21l couples (%,3), then there exists one and only one x€X(R) which maps on to

the x,.

2) There exists a family (UJ) of open subfunctors with the following properties:

each Uy 1s an affine k-functor; for any field Ke M ,X(K) is the union of the U;(K).

From this definition follows easily:

Proposition 1) an open or closed subfunctor of a k-scheme is a k-—scheme,

2) any finite projective limit (e.g. fibre product) of k-schemes is a k-scheme,

3) if X 1is a k-scheme, then X@k k' is a k'-scheme,



As an illustration of 1), let A€M, and ECA; then D(E) CSp A
is a k-scheme, because it is local and covered by the affine k-schemes D({f}),
f€E, Also note that the limit of a directed projective system of schemes is not

generally 2 scheme (although it is in the affine case, as already seen),

L, The geometric point of view.

let X be a k-functor; we want to define a geometric space (topological
space with a sheaf of local rings) IX} associated to X, First, the underlying set
of |X| is defined as follows: a point of |Xx] is an equivalence class of elements of
all X{(K) where K runs through the fields of Mo
equivalent if there exist two morphisms of M, say K—>1L, K'eL, where L is a

xeX(X) and x'eX(X') being

field, with x = x£

Second, the topology. If Y is a subfunctor of X, then |Y| can be
identified with a subset of ]X|; we define a subset U of |X| to be open if there
exists an open subfunctor Y of X, such that |Y|= U; moreover, such a Y can be

proved to be unique, and we write Y = KU

Third, the sheaf is the associated sheaf to the presheaf of rings

As an example, take X = Sp A, Ac M. Then {Sp Al ie the usual spectrum
Spec A of A: the points of Spec A are the prime ideals of A; the open seis are
the }D(S){ = {p]S¢p}, SCA; the sheaf is associated to the presheaf ID(S){——:»A[S"].
(One basic theorem asserts that the ring of sections of the sheaf over lD({f})l is
Al '],

In the general case, for all A€M, and all %€ X(A), the Yoneda
morphism Sp A—» X associated to ¥ defines a ringed-space-morphism Spec A—> x|
and |X| can be proved to be the inductive limit of the (non-directed) system of the

Spec A, {(D.G, I, § 1, n%).



One has then the following comparison theorem (D.G.I, §1,h.h.)

Theorem, X-€>|X| induces sn equivalence between the category of k-schemes and the

category of geometric spaces locally isomorphic to a Spec A, A€M,

One can give a quasi-inverse functor: there is a functorial bijection
between X(R) and the set of geometric-space-morphisms from Spec R to [X|, as

follows from the theorem and Yoneda's isomorphism,

By this equivalence, one defines geometric objects associated to the

k-scheme X : the local rings and the residue fields K(x), x€ |X|; all are

oX,x
k~rings,

5. Finiteness conditions,

Let k be a field. A k-scheme X is said to be finite if it is affine
and if O(X) is a finite dimensional vector space; if X is finite, then [O(X):k]

is called the rank rk(X) of X, A k-scheme X is locally algebraic (algebraic)

if it has a covering (a finite covering) by open subfunctors X; which are affine
k~schemes such that each O(X;) 4is a finitely generated k-algebra, If X is an

affine k-scheme, then the following conditions are equivalent:

1) X is algebraic, 2) X is locally algebraic, 3) O(X) is a finitely
generated k-algebra (D.G,I, $3,1.7).

It follows from the Normalization lemma that X is finite if and only if
X 1is algebraic and [X] finite. It follows from the Nullstellensatz that if X is
locally algebraic and # § (one defines @#(R) = § for all R, or equivalently
|¢| = @), then X(K) # @ for some finite extension K of k., Let X be a (locally)

algebraic k-scheme, k alpebraically closed; then if U is an open subfunctor of

X, Ulk) = § implies U = @, This easily implies that if one views X(k) as the
subspace of IXI whose points are the xe&|X| such that K(x) = k, the open subsets

of |X| and the open subsets of X(k) are in a bijective correspondence (by |U| —>U(k)).



It is therefore equivalent to know the k-scheme X, or the k-geometric space X(k)-
the only difference between the X(k)'s and Serre's algebraic spaces lies in that
the latter have no nilpotent elements in their local rings, whereas the former may
have, As we shall see later on, this is an important difference, Serre's algebraic
spaces correspond to "reduced" algebraic k-schemes (i.e. with no nilpotent elements).
A similar discussion can be made in the case of a general field k; one has to
replace X(k) by the set of closed points of |X] (by the Nullstellensatz, x€&[X]

is closed if and only if A(x) 1is a finite extension of k),

&, The four definitions of formal schemes,

From now on, k is assumed to be a field,

We denote by Mfy, the full subcategory of M, consisting of finite
(= finite dimensionsl) k-rings, A k-formal functor is a covariant functor
F:!_dgk—>§; the category of k-formal functors is denoted by Mf,E; this category has
finite projective limits, The inclusion functor ﬁ{k“—>‘_{k gives a canonical

functor ME->MfiF called the completion functor: if XeMHE, then ielfkg is

defined by )}E(R) = X(R) for ReMf,. The completion-functor is obviously left-exact.

If AEH_fk, we denote by Spfk A or Spf A the k-formsl-functor
R—}]_(_fk(A,H); one has obviously S;f\A = Spf A, and for any FeMfiE a Yoneda
isomorphism H_fkg(Spf A,F} =5 F(A), A€ Mf, . In particular, the functor A—>Spf A
is fully-faithful, or, what amounts to the same, the functor X—;ﬁ, X a finite
k-scheme, is fully faithful, We therefore can view the category of finite k-schemes
as a full subcategory of either gkg or MLE {we shall say: "the completion does

not change the finite k-schemes"),

a) By definition, & k-formal-scheme is a k~formal functor which is the limit of

a directed inductive system of finite k-schemes: F is a k-formal-scheme if there

exists a directed projective system (A;) of finite k-rings and functorial (in R)

isomorphiams:

F(R) = lim Mfi(A{,R) = lim Spf (A;)(R)



For any k-formal functor G, one has a Yoneda isomorphism
x_fkg(}_g Spf(A;), G) = lim G(A;).

There are three equivalent definitions of k-formal-schenes, all of them

very important:

b) Let A be a profinite k-ring, i,e. a topological k-ring whose topology has
a basis of neighbourhoods of zero consisting of ideals of finite codimension; one
also can say that A 1is the inverse limit (as a topological ring) of discrete
quotients which are finite k-rings, If REMf,E, we define Spf (A)(R) as the
set of all continuous homomorphisms of the topological k-ring A to the discrete
k-ring R; if (Ai) is the family of discrete finite quotients of A defining its
topology, then obviously Spf (A)(R) = lip Spf (A;)(R), and” Spf A is a

k-formal-scheme,

If @:tA—> B 1is a morphism of profinite k-rings, then Spf @ :Spf B—>Spf 4 is

obviously defined, We have then the

Theorem, A—s Spf A is an anti-equivalence of the category PM, of profinite

k-rings with the category of k-formal-schemes.

Proof. We first prove that Spf is fully faithful: let A and B be two profinite
k~rings and (Ai) be the family of all finite discrete quotients of A, We have

isomorphisms

MEE(Spf A,Spf B) = Lim Spf B(A;) = Lim PM,(B,A;)= PM(B,A).

We now prove that any k-formal-scheme F 1is isomorphic to a Spf A, By definition
there is a directed projective system (A;) of Mfy, such that F is isomorphic to
‘l_gm Spf BA4; let A be the topological k-ring ]&_m A;; we shall prove that A is

& profinite k-ring and that E‘;“ Spf Ay =Spf A,

Let us fix an 1i; the images of the transition maps fij: j——>Ai,j >i,

form a directed decreasing set of sub-k-rings in the finite k-ring Ai; it follows



that there is a j(i)2i such that
fi3(1) By1)) = Qi Ayys

it implies that, if we replace each Ai by Ai = j@i Ai 5

topological k-ring A, nor the functor l_i_rg Spf Ai. We can hence suppose that

we change neither the

all transition maps Aj—a-»Ai are surjective, It is now sufficient to prove that

the projections A—>Ai are surjective; this would imply both our assertions

Let now C; be the k-vector space dual to A;; the C; form a directed
inductive system with injective transition maps; call C = Li_g Ci; each canonical
map C; —C is injective. Let c* be the dual space of C, The dual maps
¥ Ai are surjective and form a projective system; they factorize through 4
and the projections A——-—;Ai are a fortiori surjective., 1In fact, the canonical
map c*—sa is bijective; if ve ¢ maps to zero on each A.; then the linear
form v over C vanishes over each Cy, hence is zero; conversely, if a€A,
then the projection of a on each Ai is a k-linear form on Ci5 these linear
forms match together, and define a k-~linear form on C, which means that a

belongs to the image of c*

¢) A k-cogebra is a k-vector space C together with a k-linear map
A:C—>C®kC. We say that C is a k-coring if Ais coagssociative, cocommutative,

and has a counit € ; let us make these three notions precise,

1) A is coassociative if (A@ic) o A= (?c@ D)o A, in the following

diagram

1.®A
C—>C®C 3 c®cec,
A,

2) A is cocommutative if the image of A\ consists of symmetric tensors;

equivalently, if o o A= A where o (x@y) = yOx.



T

3) A counit € to is a k-linear form €:C—>k such that the two maps

A 1. QFE
Co(C®C —> CO®KkC

£EB1
C s CBC =——> kBCE>C

are 1

If C is a k-cogebra, then the dual k-vector space c* has an algebra
structure defined by <x.y,uy = <x8y, Au),x,yec*,uGC. If C is a k-coring,

then C* is a ring,

*
Conversely, if A& is a finite k-algebra, the dual space A has a
natural cogebra structure, which is a coring structure if A is & ring, (If A& is

*
not finite, the dual space of A®A is not A'®A ).

The morphisms of k-corings are defined in an obvious way, and the k-corings

form a category.

Let A and R be two finite k-rings, and A* the dual k-coring of A,
Linear maps A—>R correspond bijectively to elements of the tensor product A*@ R;
the k~linear maps AA* and €4
and A*®R—>R which also we denote by & and €, We then have the easy

extend to B-linear maps *@rR—> (A"@R) @R( J’e R)

Lemma. The k-linear map A—>R associated to ue *er is

1®

ring homomorphism if
and only if Au=u®u and Eu =1,

We therefore have a functorial isomorphism

Sp A(R) = {ue A*GRlAu = u®u, gu

1}
For any k-coring C, we define the k-formal functor Sp*C by

Sp*C(R) = {u€C®R]Au = u®u, gu = 1}. We thus have a covariant functor Sp* from

the category of k-corings to the category of k-formal functors,



Theorem. The functor Sp* is an equivalence between the category of k-corings and

the category of k-formal-schemes.

Proof. As we have already seen Sp® induces an equivalence between the category of

finite k-corings and the category of finite k-schemes by the formula.,
3*
Spf A = Sp'A", A€Mf.

We have already seen that any k-formal-scheme F is an inductive limit of finite
schemes Spf (A;), with surjective transition maps Aj—)Ai; the inductive limit
C = l_i>m A: is naturally endowed with a k-coring structure, and, for any RE&Mf ,

we have
Sp"C(R) =1lip sp*A‘.l*(R) = 1im Spf A{(R) = F(R),

The only point that remains to be checked is that any k-coring is a union of finite

dimensional ones:

Lemma. If C is a kecoring, and E a finite dimensional subvector space of G,

e e e s S—

We need only prove the lemma for [Esk] = 1, say E = kx. Let a; be a

k-basis of C and write Ax = 3 x,®a;; put F= ) kxj; one has

x=(1®€E )A(x) = ine(ai) €F, and
ZAxiQai = (A® 1)Ax = (1QA)Ax = ZHQAB‘i?

iani = Zbijeaj’ this gives Axy = ina bji € F®C, hence AF C F®C,
Since A is cocommutative, we have AFCC®F, hence AF C F®F,

If C is a k-coring, let C* be the k-dual space of C with the linear
topology defined by the subspaces of C which are orthogonal to the finite-dimensional

subcorings of C, Then, what we have proved already in b) gives: the k-ring c*

is profinite and
Sp*C = Spf c*.
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*
Conversely, we can recover C as the set of continuous linear forms on C':

if A is a profinite k-ring, write Al for the sest of continuous linear forms on A,

then
Spf A = Sp*A'.

d) The fourth definition of k~formal schemes is from a purely functorial point

of view:

w—

Theorem, A k-formal functor Mf —>E is a k-formal scheme if and only if it is a

left exact functor.

We recall that a left exact functor is one which commutes with finite
projective 1limits (i.e, which commutes with fibre products and with the final cbjects),
Any Spf (A), Aeggk is clearly left exact (this is true in any category, and is the
very definition of finite projective limits) hence also any inductive limit of

Spf (Ai), AjeMfy, i.e. any k-formal-scheme, is left exact.

A proof of the converse can be found in D,G, V, 8 2,3,1, This fourth

definition will not be used in the sequel.

7. Operations on formal schemes,

A finite projective limit of k-formal-schemes is a k-formal-scheme, For
instance let F,—-) F(—F2 be a diagram of k-formal-schemes corresponding to a
diagram Aje—A —>A2 of profinite k-rings; then F‘ xF F2 is a k~formal scheme
corresponding to the profinite k-ring A'/O; Az where

Pl
A @A - .lti_m. AI/IIQA %)

where I, (resp 12) runs through the open ideals of A1 (resp A2) defining its
topology; A'!SA A2 can also be defined as the completed ring of the usual tensor
product AIO}‘ Az for the topology given by the AIQIZ + I,@Az. The description

P, <@
from the coring point of view is a bit more difficult, Let Ci-—-’-) c «&62 be
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the corresponding coring diagram, Then the k-coring D defining the fibre product
is the kernel of the map from C‘GC2 to C which sends x,8x, to
Cpt(x’) €,5(x,) - Et(xi) qz(xz); the canonical maps D—>C, and D—>C, are

defined by x,®X, > X, ez(xz) and x,@®x, f—>€1(x] )xz.

A
More particularly F xF, corresponds to the profinite k-ring Aj®a,

and to the k-coring A?@A;:
A
Spf A % Spf A, = Spf (A'QAZ),

spc, s;;*cz = Sp*(c,®cC,),

(note that the maps ci@cz-—w i = 1,2, are defined by the counits),

i’

We shall need later the following lemma;

Lemma, Let f = Spfy = Sp¥cp be & morphism of k-formal schemes. Then (f iz 2
monomorghism)@(v is surjective’@((? is injective).

Clearly, (qj is injective)::}h is surjective) @(f is a monomorphism} .
Conversely, if f:X —>7Y is a monomorphism, then {general nonsense} the diagonal
morphism Xe—>XX ¥ X is an isomorphism, If CpsC—>D is the corresponding coring

morphism, then the following sequence
u v
0> C—>CABC—>D

is exact, where u(x) = x@x, v(x®y) = Ec(x) q(y) - ec(y) @(x). If x€Ker ¢p,
then GC(OC) = ED(C?(o()) = 0; 41t follows that for any x€C, one has v(x®«x) = 0;
hence C®(Kerq) c u(C). This implies Ker Q=0, or [C:k] =1, @ = 0; in the
latter case, one has EC = po ED = 0, and this implies C = 0 (for instance

because 1; = 0 implies C¥ = 0),

The category of k-formal-schemes has infinite direct sumss

i

U spe A = Spt Tl

L.lsp"ci = s*>c .



A formal scheme F is said to be local if it is isomorphic to a Spf A where A

is a local ring; equivalently, Card F(K) must be 1 for all fields KEMfi. Any

formal scheme is a direct sum of local formal-schemes: if A= Jé_@ A/Ii is a

profinite k-ring, let SL be the set of all open maximal ideals of A; the artinian

k-ring A/Ii is a product of local rings, which are the localized rings (A/Ii) /I
i

where m runs through the elements of §l containing I,; since (A/Ii)m = (A/Ii)m/l
i
if m>I, and {0} otherwise, we have A/I, = ﬂ (A/1,) ; defining A, as the
i i nefl i'm

limit of the (A/Ii)m’ we get

pe ] A

meQy

{each A, being local, as a directed projective limit of local rings).

Let k' be an extension of k; we define the base-change functor by the

following formulas
(Spf A) ekk' = Spf(A@® k'),
(sp™0)@ k' = sp™(C@ k')

If k'/k is finite, then this base-change functor is the obvious one,

defined by (F@kk')(R) = F(R. .).

(x]

If X is a k-schems, then its completion b4 is a k-formal scheme: more

A
precisely, X is the direct sum of the Spf where Xx runs through the points

Qx,x

of X such that {’K(X):k’]<oo, and where QXx is the completion of 0
3

O, x for

the topology defined by the ideals of finite codimension. If X 1is a (locally)
algebraic k-scheme, then these x are precisely the closed point of X, and ﬁx,x
is the completion of _(_)_x’x for the usual adic topology, For instance, if

X = 5p A, where A is a finitely generated k-ring, then €= .U.Spf ﬁm, where m
runs through all maximal ideals of A, and /A:n is the completion of the local ring
A, for the m-adic topology. The functor X&——?ﬁ is left exact and commutes with

base-change,
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8. Constant and etale schemes,

For the moment, let us drop the assumption that k is a field, Given
a set E, we define the constant scheme E, to be the direct sum {in the category

of k-schemes)

)(E)

.
b

B = (Spik

equivalently, IEkl is the direct sum (Spec k)(E). For any scheme X, we have

canonical bijections

() ()

> X(k) " = E(E,X(k)),

EkE(Ek,x) = !'_{k.E.( spkk, X)

so that E+—> E_ 1is the right adjoint functor to X+— X(k). This implies that
E0—~>Ek commutes with finite projective limits, If k'egk, one has a canonical

isomorphism

El'(:s E®, k'

If X is a scheme, then _l{kg(X,Ek) can be identified with the set of

continuous (i,e, locally constant) maps of {Xl to the discrete space E,
If E is finite, then E_ is affine and Ok(Ek) is the k-ring kE.

Let now k be again a field. We define the constant formal-scheme lﬁk

y(E)

as the completion of E ., or equivalently, as the direct sum (Spf k . Then

A
Ekfx Spf kE, where kE has the product topology.

A k-scheme (resp k formal-scheme) is called constant if it is isomorphic
to an E (resp ﬁ(). The completion functor induces an equivalence between the

category of constant k-schemes and the category of constant k-formal schemes,

We define now an etale k-scheme (resp an etale k-formal-scheme) to be a

direct sum of Sp (resp Spf) of finite separable extensions of k. Let k be an
algebraic closure of k, and k, the subextension consisting of all separable

elements of k., Then:
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Proposition. For a k-scheme X (resp.a k-formal scheme X), the following

conditions are equivalent:

X is etale, X®k 1is constant, X@®k, is constant,

This proposition is an easy consequence of the following: if 4 is a
k-ring, then A is a finite product of finite separable extensions of k if and only

if AGkTE is a finite power of k, or A®.k_ a finite power of ki.

Let [T be the Galois group of ks/k; it is a profinite topological group.
Let X be an etale k-scheme; then TI operates on the set X(ks) and the isotropy
group of any x&X(k,) 1is open in T] (one calls X(k,) aTl-set). The fundamental

theorem of Galois theory is equivalent to:

Proposition, X—> X(ks) is an equivalence between the category of etale k-schemes

and the category of Tl-sets,

N
Note also that X+—>X is an equivalence between the categories of etale

k-schemes and etale k-formal schemes,

9. The Frobenius morphism,

We suppose now that the characteristic p of the field k is >0. For

A

k~ring deduced from A by the scalar restriction fk:k——> k, and A(p) = A@k £ k
7k

any k-ring A, we denote f,:A—>A the map x+—>x"; we denote by A[f] the

the k-ring obtained by the scalar extension .

Then fA:A——aA[f] is a k-ring morphism, and defines a k-ring morphism

FA:A(p)-—)A, F\(x®n) = LA

If X a k-functor, we put X(p) = X® k, so that

k,f

Py - xz

[f]);



and we define the Frobenius morphism FX:X—-> X(p) by

yex(r) —> &

)
Fy(R) = X(£, (R) = XRpyp).

For example, if X = SpkA, then X(p) = SpkA(p) and Fy = Spy F,. More generally,
if X 1is a k-scheme, i) is a k-scheme, If k =[F,, then xP) . X, but

1
Fy # idy in general. If k' is an extension of k, then (X@kk')(p)a x(p)ekk

and Fy LK ™ ankk' {obvious from the definitions),
k

Analogous definitions can be given for formal-functors and formal-schemes

and the completion functor commutes with these constructions,

Proposition, Let X be a k-formal scheme, or a locally algebraic k-scheme; then X

is etale if and only if Fx is a monomorphism, or if and only if FX is an iso-
morphism.

Let us give the proof in the case of a locally algebraic k-scheme, We
can replace X by xeki, hence suppose k = k. If X is constant, then FX is
an isomorphism., Conversely, suppose F‘x is a monomorphism; let U= Sp A be an
algebraic open affine subscheme of X; then FU is a monomorphism and we have to
prove that A is a finite power of k, Let m be a maximal ideal of A; write
AMp = AL ® m/mg and look at the two following maps: the first one is the cano-
nical map usA—>A/p2, the second one is viA—>A/p —> A/ @ m/p2. Trivially
uo FA = v o Fy; but by hypothesis FA is an epimorphism of ¥, and this implies

u=v ie, m/m2 = 0, For any maximal ideal m of A, we therefore have m = mz,

and this in turn implies in a well-known manner that A,

10, Frobenius map and symmetric products.

Suppose again p # O, Let V be a k-vector space, epv the p-fold
tensor power of V, TSpV the subspace of symmetiric tensors and sz@pV-—avTSp v

the symmetrization operator: 3(338 eap) :Za’(”@ e ® ac—(p)’ where o

runs through the symmetric group @p' Let cxvzv(p)—) 18’V be the linear map

sending a @A toA(a® ... ®a).
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«
Lemma. The composite map WP} —V—s 78Py— 5 15Pv/s(@PV) 1is bijective.

The proof is an easy exercise in linear algebra,

Define the canonical map AvxTSpV ———-)V(p) by Ay 08 = o, ?\V oy = Id,

If A is a k-ring, then 1sPA is a ring and 7\A a k-ring homomorphism
(because s(GpA) is an ideal in TSTA by the formula s(uv) = us(v) for u
symmetric), If X = Sp A, we denote Sp(TSPA) by Px (p-fold symmetric power of

X) One has then the following commutative diagram

a;
f—2 5 %
Sp AA
F
X X 5 P

which gives another definition for FX'

Let now C be a k-coring, and consider the Frobenius morphism

FiSp*c —->Sp*c(p) (it is clear that (Sp*c)(P) - Sp*c(p), where CP) - c®, fk).
3
There exists a unique coring map VC:C——>C(p) such that F = Sp*VC. The pth

iterate AP:C—AGPC of A :C-—->®2C (defined inductively by A2 s 4,
Ay=(188) 0Ax (A®1) 04, ... ) maps C in TS°C, and we have the

A A
Theorem, VC:C—>C(p) is the composite map C P, msPc =€ >C(p).

Proof. Let A be the (profinite) k-ring C%; then A(P) = (c(P)y* . (c)(P), 1¢
a€h, xeC, one has by definition {a®1,¥(x)> = (ap,x) where

a@1e(c™)(P) . c*ek K end vx)ect?, By definition of the multiplication
of A, one also has ’ <ap,x> = {a@® ... @a,Apx) in the duality between @%a
and @PC. But 2® ... @4 1is symmetric, and Ap(x) a occ(y) + s(v) for

¥ = ACAp(x) and a suitable ve@pC. Since <a® ... ®@a, s(v)> = 0, this

gives

<a®‘9 V(x)> = <3® e B8, «C(x)> = <3®‘, Y>
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and V(x) =y = }\CAp(x), as claimed above,

Corollary. X = Sp'C = Spf A 1is etale if and only if F, is surjective

(resp, bijective) and if and only if Vo 1is injective (resp. bijective).



CHAPTER II

GROUP-SCHEMES AND FORMAL GROUP-SCHEMES

t. Group-functors,

Let k be a ring. A group law on & k-functor Geg{_k is a family of
group-laws on all the G(R), REM , such that each functoriality mep G(R)—>G(S)

is a homomorphism, Equivalently, a group law on G is a morphism
T:8xG~—>G
such that
T(R):G(R) x G{R) ~—> G(R)

is a group law for all R; this condition is equivalent to the axioms (Ass),

(Un), (Inv):

(Ass) The two morphisms 7Co ('nle) and o (1;X7t) from GxGXG to G are

equal.

(un) There exists an element 1€G(k) (or equivalently & morphism e:Sp K G )

such that To (lGx e) and 7o (e x1G) are equal to 1..

(Inv) There exists a morphism o :G—> G such that the two morphisms

G ————>GXG—>G &and G——3GXG—>G are equal to 1,

We are principally interested in commutative group laws, i.e, such that G(R) is
commutative for all R, 1i.e,

(Com} If T:G%G~—>»GXG jis the symmetry, then T o 7= 7.

A k-group-functor is a pair (G, M) where G is a k~functor and 7
& group-law on G, The k-group functors form a category, a homomorphism f:G—>H

beine a morphism such that f£(R):G(R)~—> H(R) is a group-homomorphism for each R,
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or equivalently such that (fx=f) GAG = AH o f. The category Gr, of k-group-

functors has projective limits, For instance:
— The final object & = Sp ¥ has a unique group law,

— If G—>He—XK 1is a diagram of Gr,, the fibre product Gx HK has an

obvious group law, for which it is the fibre product in (‘x_rk

— In particular, if f£:G—>H 1is a homomorphism, the kernel Ker f of f is

the sub-functor GxH . of G; equivalently

(Ker £)(R) = Ker(f(R):G(R) —> H(R)).
The homomorphism f 1is a monomorphism if and only if Ker f = ey

— The definition of a subgroup functor is clear,

A k-group~scheme or k-group is a k-group functor whose underlying k-functor is a

scheme,

The base-change functor (Ek-—-a g:;k, , for k'e Hk is obviously defined.

2. Constant and etale k-groups,

The functor 1"3-—>Ek from sets to k~schemes commutes with products
and final objects; it follows that Ek has & natural group-law if E is a group.
Such a k-group is called a constant k~group. Suppose k is a field and TT the
Galois group of ks/k; the functor X-——>X(ks) from etale k~schemes to TJ]-sets
is an equivalence (I,8); it follows then from the definition of a k-group, and the

fact that a product of etale schemes is also etale:

Proposition. The functor X——3> X(ks) is an equivalence between the category of

etale k-groups (resp, commutative etale k-groups) and the category of []-groups

(resp., commutative Ty-groups = Galois modules over T7).

Moreover, X is an etale k~group if and only if X®kks is a constant k-group,
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3. Affine k-groups.

Let G = SpkA be an affine k-scheme, The morphisms M :GXG—> G
are the SpkA where A tA—->A® A is a k-ring morphism. Moreover 7 satis-
fies Ass, Com, Un if and only if A is coassociative, cocommutative, has a
counit, The condition (Inv) is equivalent to (Coinv): there exists o~ iA——>A

such that the composite maps

A Qo product,

A" 3 A®A >SAD A » A
A8 a@a T8, a@ PRt ,

are the cox_qgosifd map A—-§+k—-—>ﬁ.

Such & o is called an involution, or antipodism. If one identifies A with

0(G), A®A with O(GxG), then
(AD)(x,y) = f(xy), ot(x) = £(x"), gf = £(1),
for x,y€G(R), Reﬁk.

We shall be interested in commutative groups, Let us define a k-biring
A as a k-module, together with a structure of k-ring and a structure of k-coring,

which are compatible in either of the two equivalent following senses:
— the product AQ® A——>»A is a k-coring morphism,
— the coproduct A—>A @A is a k-ring morphism,

Then, the category of commutative affine k-groups is antiequivalent to the category
of k~birings with antipodism by G+—>0(G) and A——>Sp A (the morphisms of

birings are defined in the obvious way).



A very useful remark is the followings let G be an affine k-group and

A= 0(G) [t.hen I_{k(A,R) >~ G(R) for any Re_lik ])

1) 4n the group G(A@A) = ¥, (A,A@A) ’AA is the product of the two canonical
maps i'zsp——glea and izxai—~>a@1)
2) 4n the group G(A) = ljk(A,A), o, is the inverse of 1,

3) €, is the identity of G{k) = gk(a,k).

These facts are trivials for instance 1) says that if H is a group, the map

(x,5) —>xy 1is the product of (x,y)—»x and (x,y)—37.

Example 1. The additive group o s defined as follows: gk(R) is the

additive group of R; then, by the above remarks:
0(eq, ) = k[T]
(T is the identity €—>0) AT=T®1 + 18T, T =~ T, gT = O.

Example 2, The multiplicative group Bk 1s defined as follows: gk(R) is the

multiplicative group of invertible elements of R; hence
-
O(}ﬁk) = k[T’T .]
(T:p—> 9, 1is the inclusion) ,AT = T@T,oT = T ', €T = 1,

Example 3. Let n»1 be an integer. We define a group homomorphism #k_ﬂ) Hx

by x+—>x", The kernel of this homomorphism is denoted by a /:-Lk‘ Hence

nPi(®) = {xer, <" = 1}

O(H#k) - k[-T]/Tn"I s

with the same formulas as above,
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Note that, if k 1s a field and n isnot O in k, @, 1is etale (because

T 1 1is a separable polynomial) and , i (ky) 1s the Galois module of nth

roots of unity,

Example 4, Let k be a field with characteristic p # O. One defines prgk

b

p

as the kernel of the homomorphism x—3x of &, in itself, Hence

prﬁk(R) = {x€R, xpr = 0},

r
o r2y) = k[r]/1"

Note that I_ggk(m) = {0} for any field K,
p

Remark that gkekk' = &yt p®k! = Pt e

The remarks we made about the construction of &, £ can be generalized
in the following way, Let H be any k-group functor, and G = SpkA be an affine
k-group, Let f€ g(_kg(G,H)ﬁH(A); consider the three maps 1, i,, A tA——> ABA,
Thens

Lemma, The element f€H(A) is & group homomorphism from G to H if and only

if in the group H(A®A), one mA(r) = i’(f)iz(f). Because, if H(A®A) is
identified with M E(G=G,H) , then A (f), 1,(£) and 1,(f) map (x,¥) to

f(xy), f(x), f(y) respectively,

Examples.  Gr, (G, &) = {xe€r, Ax = x@1 +19x},
ot
gg_k((},prcék) = {xer x° =20, Ax=xel + lsx} ,

sz(G,#k) a{xeA,Ax = x@x, €x = 1}.
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As for the latter, remark that the lemma gives:t x€A = ;ikg(c,gk) is a homomorphism
from G to M, if and only if Ax = x@®x, and x is invertible. But this
implies €x = 1 {because a group homomorphism sends 1 to 1); conversely, if

Ax=x®x and gx = 1, then by {(Coinv) xe(x) =€gx = 1,

-qr-k(G’n/*k) = {xeA,xn = 1,Ax = Xx®@X%, €x = 1}.

L, k-formal-groups, Cartier duality.

Suppose now that k 4is a field. The definitions of n°l can be

carried mutatis mutandis to k-formal functors. 4 k-formal group is a k-formal-

group-functor whose underlying k-formal-functor is a k-formal-scheme, For k-formal
groups, we can repeat n°3, replacing tensor products, by completed tensor
productss the coproduct maps A +to A@A, +e. If G is a ke-group, then € nas
2 natural structure of & k-formal group. For instance, G—>0 is an equivalence
between constant (resp. etale, resp. finite) k-groups and constant (resp. etale,

resp, finite) k-formal groups,

It is more interesting to look at formal-groups from the point of view of
k-corings, Let G = Sp*C be a k-formal-scheme; to give a morphism 7C:G %G —> G
is equivalent to give a k-coring mep C®C—>C 4i.,e, an algebra structure on C
compatible with the coring structure; moreover, 7% is a group law (resp. a commu-
tative group law) if and only if this algebra structure is associative, has a unit
element and an antipodism (same axiom as (Coinv)) (resp. and is commutative). In

particular, C——-)Sp*C is an equivalence between k-birings with antipodism and

commutative k-formal-groups. It follows that Sp C—>Sp*C is an antiequivalence

between commutative affine k-groups and commutative k-formal-groups, This can also

be explained as follows:
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For any commutative k-group-functor G, we define the Cartier dual of

G as the commutative k-group-functor D(G) such that, for RE M,

D{G)(R) = QzR(GQKR ,/uR);

if G and H are two commutative k-group-functors, then it is equivalent either
to give a homomorphism G —>»D(H), or a homomorphism H—>D(G), or a "bilinear"

morphism GXH—> a4, . In particular, there is canonical biduality homomorphism

oG —> D(D(G)).
If k'eX, then D(G@kk')u D(G)®, k', and O(Gekk' = “G“kk"

S
Theorem 1) If G is an affine commutative k-group, D(G) is a commutative k-formal

group. More precisely, if G = Sp A, where A 1is a k-biring with antipodism,

AN
then D(/E) = Sp*A, The functor G—>D(G) 4is an antiequivalence between affine

commutative k—groups and commutative k-formal-groups.

—— -_

2) If G is a finite commutative k-group, then D(G) also is; o, is

an isomorphism, and G—>» D(G) induces a duality in the category of finite com-

mutative groups., Moreover rk(C) = rk(D(G)).

Let G = Sp A, where A #4a k-bring with involution. Then, for Re Qﬂ_fa
N #
HG)(R) = gﬁ(cekn,#n) = {xeA@kR, Ax=x@x, £€x = 1} = Sp"A(R);

to prove 1), it remains only to show that the multiplication in A giving the
group structure of D(G) 4is the given one; this verification is straightforward,

The proof of 2) is similar,

E; =
xamples 1) D((Z/nZ)k) iy and conversely (exercise),
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2) (Charac (k) = p £ 0) There is a canonical bilinear morphism

fspgkxpgk—a/—ék

1
given by f(x,y) =exp (xy) =1 + xy +,,, + Gy /(p-1)" . It defines an

=~ £

isomorphism D(p0_<k) pZ k-

A VAN
3) D(,ék)=zk, hence D(lgk) ’Zk (exercise).

5. The Frobenius and the Verschiebung morphisms.

Suppose charac (k) = p # 0. The functors G——>G(p) and the morphism
FG:G—> G(p) commute with products, This implies that, if G 1is a k-group-

alp)

functor, then has a natural structure of a k-group-functor, and FG is a

homomorphism, The same is true for k-formal-group-functors,
n n n-1 n n n n-1
Ve define P ) by o) . (P NPy FGzG——>G(p ) by F - F (p)© For
G ¢ p G

let G be a commtative affine k-group. We have D(G(p)) = D(C‘-)(p). By

Cartier duality, there is therefore a unique homomorphism (_t.h_e Verschiebung morphism)

VG’G(p)

—> G
A - *
such that D(VG) = Fﬁ(G) . If G=S5p A, then D(G) = Sp A, and we see that

Vg =8SpV, (VA has been defined in I, n°10),

In the same way, we define the Verschiebung homomorphism for commutative

WS o
k~-formal groups. One defines also G:G “—> G in the same way as o

If f:G—>H 1is an homomorphism of commutative affine k-groups (or

k-formal groups), then the following diagram is clearly commutative:
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y F
SP__ 8 . G, &p)
#p) ¢ #(p)
\/ v F
P H H L)

Proposition, If G is an affine commutative k-group (resp, a commutative k-formal

group), then
Vg © Fq = p.id, Fg © Ve = p.idG(p).

Equivalently, V,(Fy(x)) = px, FG(VG(x)) = px (additive notation).
It is sufficient to prove this for the affine case, because the formal

case follows by Cartier duality, Moreover, the first formula (for any G) implies

the second one: by the functoriality of F and V, one has a commutative diagram,

fe G o(p)
Fo Fo(p)
oe) P (?)

and FL o0 V. =V o F .
z%° % Gr(p) G(p)

To prove VG o FG = p idG, we use I, n°10, One has a commutative diagram

{where A = O(G))s
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or

P P
Sp TS, €&——n(&
P 1o, ~

&
G &
4
F,
G(p){__g___G ,

with 8(g) = (g,...,8), and ’lt'p(g,...gp) =g *.. *+g, Then

Vg o Fy = ”fpgapid(}.

Remark., The above diagram gives a direct definition of VG'

Examples, V: Je >, is the identity, VieX,—sec, 1is zero. This follows

k k

from the facts that F 1is an epimorphism for o< and /—’*k and that
id = F id = 0,

P ™ e P ey

6. The category of affine k-groups,

Recall that k is supposed to be a field., Let _A}._(_:_k be the category of

all affine commutative k-groups.

Theorem i, {(Grothendieck): The category _A_C__k is abelian,

a) -‘591: is an additive category: Clear,

b) Any morphism f£:G —>H of AC, has a kernel: one has

Ker f = GxHe ,0(Ker £) = O(G)/m(H)0(G)
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{m(H) = Ker EH:O(H)———>R). Remark that O(G) —> O{Ker f) is surjective,

c) Any morphism fi:G—>H of ggk has a cokernel: One takes Coker f such

that
o(Coker £) = o(H)" = {teo(n), f(gen) = £(n) YeeO(R), neH(R)}
= {reo(n), (180(£)A (1) = re1}.
Remark that O(Coker f)—> O(H) is injective,

d) There is only one thing more to prove, and this is the fundamental fact,
that any monomorphism is a kernel, and any epimorphism is a cokernel, More

precisely
Theorem 2. Let f:G—>H be & morphism of AC,.

1) The following conditjons are equivalent: f 1s a monomorphism, o(f) is

surjective (i.e. G is a closed subgroup of H), f is a kernel.

2) The following conditions are equivalent: f is an epimorphism, O(f) is

injective, O(f):O(H) —> O(G) makes O(G) & faithfully flat O(H) - module,

0(f) is 2 cokernel.

For a proof see D.G. III, 3.7.4. The main point is (f mono) —>

(f xernel) or equivalently (f monoc) —> (f = Ker{coker f)).

Corollary 1. If k' 1is an extension of k, then G+r—> G@kk' is an exact
functor.

Clear: It respects kernels and cokernels,

Corollary 2. Let O—»K—» G—>H—>0 be an exact sequence, then the

0(G) - algebra 0(G) @O 0(¢) is isomorphic to O(G) @ O(K).

(H)
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Clear: The morphism (g,k)r—>(g,gk) of GxK -—>G><HG is an isomorphism,

Corollary 3, If O0—>K—> G—>H—>0 1is a exact sequence with K algebraic

(resp. finite of rank r); then O(G) is a finitely presented O(H)-rin

(resp. a finitely generated projective O(H)-module of rank r).

Because it becomes so after the faithfully flat scalar-extension

0(H) —= 0(G) (Corollary 2).

Corollary 4. If O~—>K—> G—>H —>0 is an exact sequence, then G

is algebraic (resp. finite) if and only if H and K are. In the finite case,

one has rk(G) = rk(K). rk(H).

If O(G) 1is finitely generated or finite, so is the subalgebra O(H)

and the quotient O(K). The converse and the last assertion follow from corollary 3.

Corollary 5. If f:G—> H is an epimorphism (resp. and if Ker f is algebraic,

resp. finite) and if Re!_lk, and h€H(R), there exists an R-ring S5 faithfully

flat (resp, and finitely presented, resp. finite and projective) and a geG(s)

such that f(g) = hS

Clear from Corollary 4t h is given as a map O(H) —> R; take 5 = 0(G) eO(H)R‘

Corollary 6. If fiG—>H 1is an epimorphism with Ker f algebraic, if Leb_(_k

is a field, and h€H(L), there exists a finite extension L' of L and a

geG(L') with f(g) = hL..

Follows from corollary 5 by the Nullstellensatz,

Remark, If f is an epimorphism (without any hypothesis on Ker f), then f(L)

is surjective for any algebraically closed field L (D,G. III, 3.7.6).

By Cartier Duality the category of commutative k-formal-groups also is

abelian, and Spf (P is & monomorphism (resp, an epimorphism) if and only if @ is

surjective (resp., injective),
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Theorem 3. a) The abelian category AC, satisfies the axiom (AB 5*): it has

directed projective limits, and a directed projective limit of epimorphisms is

an epimorphism,

b) The artinian objects of AC, are the algebraic groups. Any object of

AC, 1is the directed projective limit of ite algebraic guotients.

a) 1is clear from Th,2: one has %_Lin Spq;»i = Sp ]__i_n_;cri and a directed

inductive limit of injective maps is injective,
b) see D,G, II, 2.3.7,

By Cartier duality, the dual statements hold for the category of com-

mutative k-formal-groups,

From now on we shall mainly speak about commutative groups, We say

group instead of commutative group unless otherwise stated., From now on also,

k 1is a field, p denotes the characteristic of k, and TJf= Gal(ks/k). Our
main interest will be the case p £ O, As we shall see, the case p = 0 is

rather trivial,

7. Etale and connected formal-groups.

We already defined and studied etale affine (resp. formal) groups,
They are equivalent to finite (resp. all) Galois modules by
E~_>(E®k ks)(ks) = L\ J ®x).

K/K sep.

finite
If p#0, then U is etale iff Ker F, = e, and this implies that F is an
isomorphism (I,9), It follows that subgroups, quotients and extensjions (direct
limits in the formal case) of etale groups also are etale, The same statement

is true if p = 0O,
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Recall, that the formal-group G = Spf A 1s local {We shall alsc say
connected) if A is local or equivalently if G(K) = {0} for any field K. A

morphism from a connected group to an etale group is zero.

Proposition. Let G be a formal-group.

a) There is an exact sequence (unigue up to isomorphism)

0—>G—> 6 —>7%(G) —>0

where G° is connected, and T, (G) etale. If REMfi and n is the nilradical
of R then G°(R) = Ker(G(R)—> G(R/n)). If p#0, then G 1is the limit of
the Ker(Fy:G—> G(pn)}’ n»0. If k—>k' is an extension then (G@kk')o - G°ekk',
%GB k') = 7 (G)® k',

b) It k is perfect, there is a unique isomorphism G = Gxm (G).

Proof, Write G = Spf A = llspr Ap. Let A° be the local factor A’“o corres-
ponding to the ideal m, = Ker( € :A—> k), Call c° = Spt Ao; by construction,
G°(R) = Ker(G(R) —>G(R/n)) for REMf ; it follows that G° is a subgroup of G.
If k—>k' is an extension, then A@kk' is local, because the residue field
of A% is k; it follows that (G@ k‘)o = 6°® k'. Suppose p £ O, then

"} " ‘
Ker ?g = Spf A/m}" J, where m is the closed ideal of A generated by the

o

p" o o} .
x®, xem,; hence \ﬁ)Ker . Spf( lim A/ml” J) = Spf A = G°. To prove a), it

only remains to show that G/G° is etale.

Remark first that G 1is etale if and only if ¢° = et replacing k

———

by k we can suppose k to be algebraically closed; if ° = e then A = k;

but then all the Am are isomorphic (by translation); hence A = kE

and G is

o
etale. To prove that G/G° is etale is therefore equivalent to prove (G/G°) = e;
if H 1is the inverse image of (G/Go)o in G, then H is an extension of two

connected groups; this implies that H 1is connected (for any field X in g_z:k
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then
0—=>G2(X) —> H(K)—>(G/G°)(K)

o
is an exact sequence, hence H(X) = {0}) hence HCG® i.e. H = 6% and (G/G°) = e.

Suppose now k is perfect. Let k, be the residue field of A,, and
B =Hcm. Then Spf B 1is etale and is a subgroup of G (because B is quotient

biring of A); put Ge = Spf B, Then (G@k'l-(')e = GeﬁkE as is readily checked,

and G 1is the product of 6° and Ge, because this becomes true by going to k.

An affine group G 1is said to be infinitesimal if it is finite and local,
equivalently, if G is algebraic and G(k) = e, By the preceding proposition, we
see that a finite group is an extension of an etale group by an infinitesimal group

and that this extension splits if k is perfect.

Definition. A (not-necessarily commutative) connected formal group G = Spf A is

said to be of finite type if A is noetherian; the dimension of G 1is by defi-

nition the Krull dimension of A,

Let m be the maximal ideal of A; it is well known that A 1is

noetherian if and only if [m/mzzk] < + o0, and that dim G g[m/m‘?:k].

Lemma (p # O). A connected formal group G is of finite type if and only if

Ker F_ is finite. If G is of finite type, then Ker Fg is finite for all n.

If Ker F, is finite, then I:A/m{p}zk] € oo, hence [m/mzzk]< + o,

Conversely, if m/m2 is generated by the classes of X1,...,Xn, then A is a

n
quotient of k[[X,,... ,Kn]] s and A/m"’p } is a quotient of the finite k~ring

c[iexd fex, ) €
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It follows that if p # O a connected formal group of finite type is an

inductive limit of finite groups (G = Llim Ker Fg).

If G 1is an algebraic group-scheme, then the "connected completion”

Ao

G~ of G 1is of finite type:

A0 A
6° = spr G [ Lin Ker Fy if p 4 0].

8. Multiplicatiwe- affine groups.

Lemma, Let G pe & k-group-functor. Then the following conditions are eguivalent:

(1) G 1is the Cartier dual of a constant group.

(i1) G 4is an affine k-group and the k-ring 0(G) is generated by the characters

of G (i.e, homomorphisms from G to #.k).

If G = D([,), then C(R) = Gr ([iA) = «HRY = w (k[[LB),
hence G = Sp k[r], where k{r] is the algebra of the group [~ (note that

AY= Yoy, £V= 1, o= 7'1, yerl), and each Y€l c k|M|= 0(G) is a character
7

of G,

Conversely, if G is affine and O{G) generated by characters, let |
be the group of all characters of G; then the canonical map k[["‘]——*O(G) is
surjective. But it is always injective (pDedekind's lemma on linear independence

of characters), hence k[f‘] =0(G).

Such & group is called diagonaslizable.

Theorem, Let G be a k-group. Then the following conditions are eguivalent:
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(1) GQkks is diagonalizable,

(i1) GQkK is diagonalizable for a field KeM .

(i11) G is the Cartier dual of an etale k-group.

(iv) D(e) is an etale k-formal group.

(v) or (G, e ) =0

(vi) (If p#0), V :G(p-)—> G 1is an epimorphism,
it A is an epimorphism

(vii); (1f p £ 0), VG:G(p-}—)G is an isomorphism,

The implications (i) &= (iv) &> (vii)<—>(vi) are clear,

Proof of (v)<=> (iv). We know that _G_r_k(G,O..sk) is the set of primitive elements
of 0(G); let A = 0(G) and let A' be the ring of ﬁ(G) (i.e, the topological
dual of the coring A), By duality, a primitive element of A corresponds to an

algebra morphism

A k[t] /t?

compatible with the augmentations of A' and k[t]/tz. All primitive elements
are zero if and only if A'C has no quotients isomorphic to k{t]/tz, which

o]
means that A'® = k, 1i.e. ﬁ(G) = e, 1i,e, B(G) etale.

End of the proof, If k! is an extension of k, then condition (v) for G is
equivalent to condition (v) for G®k'. This implies the equivalence of all
conditions except (iii), It is clear that (iii) === (i) (definition); conversely,
if S(G) is etale, then let E be the etale k-group such that £ = ,b(G); we
claim that D(E)=G. This is easy if k = k,, because E is constant; the

general case is proved by going to kg (see D,G, 1V, 1.3.2).
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Such a group is called multiplicative; the multiplicative groups cor-

respond by duality to etale formal groups; they form & thick subcategory ( = stable

by subgroups, quotients, extensions) stable for l:‘f.(_m ,of i(_)_k, called ACtgg1 , and
anti-equivalent to the category of Galois-modules: to GEACm  corresponds the

A
Galois-module X(G) =D(G® k. )(k,) = g;ks(cekks, ,g.ks).

A A
Remark, If E is an etale k-group, then D(E) 1is multiplicative and D(D(E)) = E;
in fact, one already has D(D(E)) = E, [D.G., loc, cit.] It implies that the anti-
equivalence between multiplicative groups and etale groups can also be given

(without speaking about formal-groups at all) by E —>D(E), G—»D(G).

9. Unipotent affine groups, Decomposition of affine groups.

Theorem, Let G be an affine k-group. The following conditions are equivalent.

A
(1) D(G) is a connected formal group.

(11) Any multiplicative subgroup of G is zero.

(i1i1) For any subgroup H of G, H# O, we have _G_rk(H,o_<k) £ 0,

(iv) Any alpebraic quotient of G is an extension of subgroups of ey

(v) (If p#0), NiIm vg = e,

The equivalence of (i) and (ii) is clear (the formal group H 1is con-
nected, iff 7 (H) = e, i.e, iff it has no etale quotients), The equivalence of
(3i) and (iii) follows from the theorem of n°8. The equivalence of (iii) and (iv)
is clear because algebraic groups are artinian, Suppose p # O, If G satisfies
{iv), then for any algebraic quotient H of G, one has V; =0 for large n
(recall that Vesk = 0). It follows that NIm Vg has no algebralc quotients,

hence is e, Conversely, if (v) is true for G, G cannot contain a non-zero

n
multiplicative subgroup H, for Vg:H‘(p )-——-> H 1is an epimorphism for all n.
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Such a group is called unipotent. The unipotent groups correspond by
duality to connected formal groups, They form a thick subcategory,stable for

l]j._m_, of ggk, called ﬂk‘
By duality, the theorem of n®7 gives:

Theorem, An affine group is in a unique way an extension of & unipotent group

by a multiplicative group. This extension splits if k is perfect,

In particular, if k is perfect, any finite group is uniquely the product
of four subgroups which are respectively etale multiplicative, etale unipotent,
infinitesimal multiplicative and infinitesimal unipotent, Therefore the category
Ek of finite {commutative) k-groups splits as a product of four subcategories,
called Fem , Feuw , Fim , Fiu . The categories Few and Fim are dual to each

other, the categories _F:g_gk and Fiu are autodual.

Proposition 1) Let p = 0. Then I"‘k = Fem : any finite (commutative) k-group
- - ™ K —_

is etale and multiplicative,

2) Let p#0 and k be algebraically closed. Any (commutative) finite

k-group is an extension of copies of x , s and (Z/rZ) , r prime.
— p kpTk k

Proof of 1). By duality, it suffice to prove that any finite unipotent group is
zero. Such a group is a product of an etale unipotent group and an infinitesimal
unipotent group; by the first theorem, these two groups are extensions respectively

of etale subgroups of «, and infinitesimal subgreps of e Any etale subgroup

k “k’

of &, must be zero, because eﬁk(.ﬁ) = k has no finite subgroups; an infinitesimal
subgroup of o, is of the form Sp k[T] /T° where n must be such that

AT'C (™)@ k[T]+ k[T]®@(T"), this means (T + T')" = xT® +B1'" and implies

n=1,

Proof of 2}, Let G€§k. If G is etale, then G = r‘k where [~ is a finite

group; but [  1is an extension of groups Z/T Z, r prime, and G is an extension
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of (Z/rZ),. If G is infinitesimal and multiplicative, then G = I s
- 3
where [ is finite and Gr([,k ) = O; this implies [ is p-torsion, and G is

an extension of coples of D((Z/pz)k) = p"ék' If G is infinitesimal and

unipotent, then G 1is an extension of infinitesimal subgroups of e These

are the rg(k’ because (T+‘I")n = O(Tn + ﬁT'" implies n = pr; but rgk
p p
is a p-fold extension of pg"’k (remark that resk/p-k = pr_'ggk).

p

R

Corollary, If m is a prime, and G a finite (commutative) k—group, then

Ll
m . =0 for

6 f and only if rk(G) is a power of m,

arge X

:

It follows from the multiplicativity of the rank, the fact that
rk(G@kﬁ) = rk{G) and the obvicus formulas:
rk((Z/rZ),) = v, ri o, ) = rk( ) = p.

« - length (C® k)
In particular, if P ut‘; = 0, then rk(G) = p k , where

length (G) 4s the length of a Jordan-Holder series of G,

10, Smooth formal-groups,

A (not-necessarily commutative) connected formal group G = Spf A is
said to be smooth if A is a power-series algebra k[[x‘,.,, ,Xn]] . In that case,

the coproduct AA—>a@p is given by a set of formal power series,

PxY) = (@ (X5 Xy Ypseins¥)), 1= 1,005n

and the axioms (Ass) and (Un) give

(as8)P(x,B(1,2)) = d(P(x,1),2)
(un) $(o,v) = P(x,0) = 0



It is easily proved, using the implicit function theorem, that the existence of an

antipodism is a consequence of (A4ss) and (Un). The axiom {Com) can be written.
(Com) dx,v) = 1,0.
Such a set {@i} is a formal-group-law in the sense of Dieudonné,

Theorem, Let G = Spf A be a (not-necessarily commutative) connected formal group

of finite type.

1) If p=0, then G is smooth,

2) If p# 0, the following conditions are equivalent:

a) G is smooth,
-1
) A® K" is reduced.

e) FGtG—éG(p) is an epimorphism,

Remark first that in 2) we have a)==>b); moreover ¢) is equi-

-1
valent to FA: (pL—-?A being injective, or to A(p) = A@kkp being reduced.

-
We then have to prove that if, either p =0, or p# O and A@kkp is reduced,

then A=k [[X',. . ’xn]] .

Let first m be Ker{€ :A—>k) and Szm/mz—ek be & linear form, We

claim that there exists a continuous k-derivation D of A such that for aém,

one has €D(a) = &(a mod mz). Define first &(a) = &((a-€a) mod m2); then
g(ab) = &E(a) S(b) + €(b) S(a); put D = (133) oA: it Na = Zaiebi, then

Da = Zaigbi' One hes E&EDa = Ze(ai) S(bi) = S(ZE(ai)bi) = Sa; it remains

to show that D is a derivation:

D(ab) = (1@8)A(ab) = (198 )(AaAb) « (1@€)Aa.(18 ) Ab
+ (1®E)Ab, (1®8)Aa = aDb + bDa,
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Let now ?i be elements of m such that their classes modulo ® form

a basis of m/m°. The canonical map

e[l ox ] — o fx) -

is surjective, Suppose it is not injective. Let Qeker £, §# 0, with minimal
valuation; certainly 19 (¢) >0 (because Cb (0) = Ef(¢) = 0), By the above

remark, there exists continuous derivations D; of A with Di( gj) = 513 mod m,

Clearly O = Dif(Cb) = Zf(—%—%—)Di( Ej). But the matrix (Dy( gj)) is congruent
J

mod m to the identity matrix, hence is invertible, It follows that —g-%- = 0,
3

If p=90, then (ﬁ must be O, and f 4is injective, If »p # 0, then
there exists Y€ x'/p [[X”..,Xn}] with CI): lyp; extend f to
1/ 1/ 1
gk P [[x1,..,xn]]—->Aakk P; then £'(y)® = £#(Q) = 0. Because A® k /e
is reduced, this implies f'(¥ ) = O. But (P was supposed of minimal valuation,

hence W = O (if not, decompose W as a sum Z)\iwi, 7\ie k'/P, \yie:Ker f,

Wi 40, and note that V(¥)yinf v(w,)) and $-o.

gq.e.d.

The preceding theorem can be strengthened:

1) (Cartier), If p=0, and G = Sp°C is a connected (not-necessarily com-
mutative) formal-group, then C is the universal enveloping algebra of the Lie
algebra ‘?of G, This implies that the category of all connected formal-groups
is equivalent to the category of all Lie algebras over k, By the Poincare-
Birkhoff-Witt theorem, this also implies that, if 7y is finite dimensional, then
G 1is smooth, Moreover, if G 1is commutative, then 32y is abelian’hence

I
G 2( &o)( ) ; by duality, any unipotent (commutative) k-group is a power of the

additive group.
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2) (DieudonnéCartier-Gabriel), If p # O, k 1is perfect, G is any (not-

necessarily commutative) connected formal group of finite type, H a subgroup,

and G/H = Spf A (the quotient which has not been defined in these lectures),

p! p & y
then A is of the form k[[x,,..,,x,,]] [1{1,...,1(1]/(‘{1 seees Yy ). This applies

for instance to A = 6(:_ e’ G an algebraic k-group.
2

Corollary. Suppose p # O, and let G be a connected formal group of finite

type.

1) If k 4is perfect, there exists a unique exact sequence of connected groups

O ey G

red TG G/Gr'ed'_> %

with G, smooth, and G/G., infinitesimal ( = finite).
r
2) For large r, the group G/Ker F’g = In(G—> G(p )) is smooth.

Proof 1) The uniqueness is clear, because any homomorphism from a smooth group
t0 an infinitesimal group is zero {look at the algebras), Let G = Spf A, and

G

red Spf A

red> Where A, = A/n  is the quotient of A by its nilideal.

Because A dék Ay is reduced (see the appendix, n° 12),

AngAan +ndA

and Gred is a subgroup of G, smooth by the theorem, Moreover G/G

red = Spf B,

where B = {xe4,Ax - xeteAeng. If xeB, g(x) = 0, then

x=£g@! (Ax - x®1)en, It implies Bgk +n, and B is artinian, hence

finite,
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k
k by i, we can suppose k perfect and apply !). There exist an i with

2) It is clear that H = G/F‘g is smooth if and only if H®

F(6/6,pq) = O; but FG_ ) = Gi‘e’:)

red because Gred is smooth, Hence

i
FiGa Fi(G P

"d) = Gf-ed and FiG is smooth,

Corollary., Let G be a connected formal group of finite type, and n = dim G,

Then rk(Coker Fé) is bounded and
rk{Ker Fé) = pni’ rk{Coker F’é).

If G is smooth, then FG is an epimorphism, and Ker P‘é >

r
Spf k[[xl""’xn]]/(xv’"’ Xn){p% hence rk(Ker F'é) = pni. In the general case,

k 1is., Replacing

let r be such that H = F'G is smooth, let K = Ker Fr; we have exact sequences:

G

i i i
O —>Ker F‘li(-—» Ker Fé—> Ker FH——> Coker FK -3 Coker FG—>0,

i (1) i
0 —> Ker Fx—-> Kee—>K =~ —> Coker FK—>O g

The second sequence gives rk(Coker Fi} = rk(Ker Ffé) < rk{K} <o, the first one

gives the claimed formula,

Corollary 1) Let 0-—>G'—>G—>G"—> 0 be an exact seguence of connected

formal-groups. Then dim (G) = dim (G') + dim (G"),

2) If fiG'—> G is a homomorphism of connected formal group, with G

smooth, and dim G = dim G', then f is an epimorphism if and only if Ker f is

finite,

1) follows from the snake diagram and the preceding corollary,
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2) We have the equivalence (Ker f finite)<=> (dim(Ker f) = 0)

&=>(dim £(G') = dim G') &> (dim £(G') = dim G). But dim £(G') = dim G gives

i dim G
rk Ker Fth’(G') Zp = rk(Ker Fé),

i
hence Ker F- = Ker F;, and G = UKer Fé = U Ker Fit:(G')

£(G") = 1)

11, p-divisible formal groups.
Suppose p # O,

Definition, A (commutative) formal group G is called p-divisible {or a

Barsotti-Tate group) if it satisfies the three following properties’

1) p,id;:G—>G is an epimorphism,
2) G is a p-torsion groupt G = \3) Ker(p‘j.idG),
3) Ker(p.idG> is finite.

We know that rk(Ker p idG) = ph, heN. This h is called the height
ht(G) of G, Using 1), this gives

rk(Ker pj idG) = pj'ht(G).

The multiplicativity of the rank gives the exactness of the sequences

J+k Pj

j inclusion Ker p Ker pk 0

0—> Ker p
Conversely, if we have a diagram

4 i,
6,—1> 6, — 2> Gy—>...
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where the Gi are finite k-groups with the following properties .

a) rk(Gj) = ph‘j, h a fixed integer,

i J
b) the sequences O———)Gj ——j-> Gj“ _}_’___> Gj+l

are exact,

then 1lim (G,,i,) e p-divisible formal group, of height h, and
Ker{p" 1d36 —> G)=G,,

This gives an alternative definition of p-divisible groups.

The (Serre) dual of a p-divisible group G is the p-divisible group G'

defined as follows:

Let G, = Ker(p® 1d.), and let p :G

53C541 -—-)GJ be induced by p id..

G

Put G:i = D(Gj)’ and 15 = D(pj)zG';——> G5+1’

p-divisible formal group, with ht{G') = ht{G); it is clear that p5 = D(i}'),

then G'= Llim (6], i}) isa

so that (G')' can be identified with G.
Examples 1) The constant formal group (Qp/ 2 P)k is a p-divisible group of
height 1; conversely, any constant p-divisible group of height h is isomorphic

to (Q/Z )}‘:.

2) Let A be a (commutative) algebraic k-group, such that pid sA —> A

is an epimorphism, Then, it can be shown that Ker(p.id A) is finite; define

Alp) = Lj) Ker(p‘j idh)'

A,
Then A(p) is a p-divisible group, containing A° = () Ker (P.‘jG). For instance,
J

for A= g, one finds A(p) = \jJ A= (&p/zp);.
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If A is an abelian variety of dimension g, one knows that p idA is an epi-~
morphism, with rk{Ker p idG) = ng. It follows that A(p) is a p-divisible

group of height 2g (see Chapter V),

Proposition, Let G be a k-formel group. Then G is p-divisible if and only i

the following conditions are satisfied.

D (E)(E) 2 (@/Z), r finite.

o
2) ° is of finite type, smooth, and ker(V:c® P — @) 1s rinite.

If G is p-divisible, then G° and 7 (G) are, and conversely (replace k
by k, then G 1is the product of G° and KO(G)). We already know that the etale
group E is p-divisible iff BE(k) = (Q?/ Zp )¥. We therefore can suppose G

connected,

Suppose G is p-divisible, then Ker FG gKer(VGFG) = Ker(p idG) is finite,
hence G is of finite type: on the other hand G(p) also is p-divisible, hence

Ker VG gKer(FGvG) = ker (p idG(p)) is finite, and F, is an epimorphism,

because p idG(V) = FGVG is,

Conversely, if G is smooth, and Ker VG finite, FG and VG are eplmorphisms

(n° 9), hence also p idG = V‘GFG; this implies also an exact sequence

0 —3 Ker (FG)%Ker {(p idG) —>Ker (VG) )

and Ker (p idG) also is finite, Finally U Ker (p idG) 2U Ker (F‘é) a G,

~
Example, If & is an algebraic unipotent k-group, then 2° is never p-divisible,

unless A is finite,

Remark, The above exact sequence gives for any p-divisible group G the formula

height (G) = dim (G) + dim (G').
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Proposition. Let G be 8 connected, finite type, smooth formal group. There

exist two subgroups H,KCG with H p-divisible, an = 0 for large n, HNK

finite, and G = H + K.

Let p'G = Im(p" idG:G——9 G); the subgroups pnG of G are smooth
(quotients of G) and form a decreasing sequence, There exist an n such that
p"G¢ O Ker F, = pznGﬂKer Fo (Ker FG is finite, hence artinian), This implies
PG = th, because pnG/pznG is connected, smooth, with monomorphic Frobenius
(or dimension zero), Put H = p"G, K = Ker (p" idG). Then G = H + K, p id; is
epimorphic, and an = 0, Therefore Ker (p idH) is finite, hence H 1is p-divisible,

and HNKsKer (p° idH) is finite,

12. Appendix,

Theorem. Let k be perfect field with characteristic p# 0,A and B two

complete noetherian k-rings with residue field k, If A and B are reduced,

A
A
so is A9 B,

1) Let X be a positive integer. We say that a k-ring R has property (N )
if R is local artinian with residue field k, and if x<€R, &£ =0 implies

xe nr; (wr_ = maximal ideal of R),

R

Lemma !, If R and S have property (N, ), 3o has R@kS.

Let X be a basis of the k-vector space R such that the xiem; are

a basis of m§ for all r. Let 2€R®S, with z° = 0; we can write 2z ain&yi,

hence in@ y§ = 0, This implies the existence of elements X, .ek and

i,3

sJGZS with

2 M,y % =00 - Zj"i,f’s
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Because k 1s perfect, each 7\1 3 can be written as /~§ 3 and we have
4 ’

P
(Z/*id xi)p = 0, hencezlu.i RS € 'im' hence /“i,j = 0 for xi¢ wio. If

= 0, hence ye 2 ; in any case

*
xi§:an, then /u'ij‘ 0 for all j, hence y 3

i

o ol o
x;@ yiEmRQS + R@ms g(mﬁesf( , and €M oa-

2) Let A bve a local complete noetherian k-ring with residue field k. Put
A= A/mi, and let A(r) be the greatest o such that Ar has property

(No( ) a’-(r) is the greatest integer such that

°<A(1)
P
xeA, xem @xcml

Then «A(i} ~$°<A(2)< ng(P)s cee
Lemma 2, A is reduced iff 1lim D(A(r) = +.00,
r
If xe€A with xP =20, xem, x¢ , then o((r) N for all r.

Conversely, suppose A is reduced, let V, = {xea, Pe mi}. Then (V,) is a

decreasing sequence of ideals of A, and NV, = 0, By definition, x{r) is the
greatest integer with V.G m; X(r), and OV, =0 implies Lim e (r) = o

(Chevalley's theorem, see Zariski-Samuel, Chapter VIII, 8 5).

3) Let now A and B be as in the theorem and put C = A ®B, then lemma !

gives

ou(r) » int (a( (r), (r)),

and we conclude by Lemma 2,



CHAPTER ITI

WITT GROUPS AND DIEUDONNE MODULES

Let p be a fixed prime number,

1., The Artin~-Hasse exponential series,

let k be a ring, We denote by Ak the affine k-group which associates
with REM  the multiplicative group 1 + tR[[t]] of formal power-series in R
with constant term 1 (as a k-functor, /\k is obviously isomorphic to 9_:). For
(n)

nyi, let /\k be the closed subgroup such that

(n) n n
/\k (R) = 1 + t R[[t]]= {1 + ath s} s
one has obvious exact sequences

(n+1
0— Akn )_'>A1((n)"""‘ & —> 0

ry A s n
where the first morphism is the inclusion, the second one being (1+ant +oe) —> 84

The k-group Ak hence appears as the inverse limit of the Ak/ /\l((n”) , each
(n+1)

N being an n-fold extension of the additive group, (If k is a field,

AJA
then /\k is a unipotent group),
Let F=1-1t+,. . bea fixed element of A(k) = 1 + tk [[t]].

Then we have an isomorphism of k-schemes (where le = {1,2,...} ).

N+
@ ‘Qk_al\k

by P((a,)) = TTR(aze").
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If k=@ , then take F(t) = exp(-t); one has F(at)F(bt) = F({a+b)t), so

N

that (P is an isomorphism of k-groups from O(k* to Ak' If k is a field with

characteristic p, it is not possible to find F€1 + tk {[tn with
F(t) = 1 -t +,,.,F(at)F(bt) = Flet);

1
we find first F(T) =1 -t + ,,, + (-t)p_ /(p-1)}! + ... and for the coefficient
of T° we find O =1 and the computation fails. But remark that for any F

one certainly has a formula
(1) F(at)R(bt) = [] F(A (a,0)t));
i>0

where A (X,Y)€ k[x,Y].

The idea is to find an F such that most of the ?\i vanish. Actually we shall

find F with 7\i =0 1if i is not a power of p,

A classical formula asserts

(2) exp(-t) = D (1 - t"}#(n)/"

where i+ is the Moebius function. Recall first that M(n) = 0 if n is divisible
. k .

by the sgquare of a prime I/M-(p‘...pk) = (-1)" if P,s...,p, &re distinct

primes and (1) = 15 for n>1, one has

2 m(a) = 0.

d|n
1t follows that

t=>_ -%tndlzn/-t(d)zzf—"(d—dl%-%tdm

n>! d >1

M(d)

d
> a log (1-t7),

£
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which gives (2), Let

#{(n)/n .

Tet+... 3

(3) Ft) = ] (=7

n,pj =

if Z(p) = {a/b€@, (p,b) = 1}, then
(8) F<t>e/\<z(p>>.

If m{n) # O, then either (n,p) =1, or n=pn', (n',p) = 1, It follows

from {2) and {3) that exp(-t) = F(t)/‘f‘(tp)"/p, or

2 2
F(t) = exp(-t)?(tp)i/p = exp(~t-tP/p)F(tP )Ufp = ,,,, 80 that

F(t) = , with
o) (t) = exp L(t)
2 i
L(t) = -t -tP/ptP /p% - ... - P /pt - ..
The formila (1) for F can be written L(at) + L(bt) = 3 L(A(a,b)td)

where A, € ZP)IX,Y]. Going to @, it follows immediately that A, = O if i

is not a power of p, which give a formula

i
(6) F(at)F(bt) = iﬂo F(w,(a,b)t? ).

2

The Artin-Hasse exponentisl is defined as the morphism

such that

(7 B((ase.00)st) = [ ] Fant? ).
n z0
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From (6), it follows easily that there exists formula
(8) E((ay),t)-E((by),t) = E((S4(a,,..,84,b,,..,b5),t)

where siez(p)[xo""’xi’ Yo,...,Yi]. Moreover because of (7), any

PEA(R), ReM can be uniguely written

Zp) ’

P(t) = E(Z,t"),
) (n,rp_g=1 *n

with 5, eRM, From this and (10), it follows

Proposition. The Z)-group A Z is isomorphic to the {n/(n,p) = 1}-power
(p)

of the subgroup image of E.

By base-change a similar statement applies to A _; it shows that the
P
Artin-Hasse exponential plays over 'Fp a somewhat similar role as the usual

exponential over ().

2, The Witt rings (over Z).

By (5) and (7}, we can write

n
(9 E((&o,...),t) = exp(~ Z tP @n/Pn):
nz0
with
n Pn-" n
(10) Q)n(ao,,,,}aag«\pa: + ... +pay.

The formula (8) can also be written



(") %n(aosu- )an},#én(bo’*"ibn) = @n(so)OG'}sn)'

Lemma, We have Sp€ Z[X,,...,X,].

We already know that the coefficients of 8; 1lie in Z(p)C ®. On the

other hand, it is clear from (10) that they lie in Z[p"]. But Z(p)f\Z[p"1]= zZ.

Theorem, There exists a unigue commutative group law on 9_‘; with the following

eguivalent properties:

o
E: S .
(1) E:Q5 ©f Z(p).._> /\z(p) is a homomorphism
™ :
(ii) Each ¢n:9 — gﬁz is a homomorphism,

Each (i), (i1} is equivalent to the fact that (with + for the law we

are constructing)

(12) (ay) + (b,) = (Sy(a,,..., &g, by,... by)).

Hence the uniqueness; it remsins to be shown that the law defined by (12) is a
commutative group law with unit element (0,0,~). The associativity, commutativity
and unit element axioms can be expressed by polynomials identities, with coefficients
in Z , in the coefficients of the S;. These identities are satisfied after

going from 2 to Z[p"] , because the d’n @ZZ p"‘] define an isomorphism

o

z[p_1]—>0n2>1 1] Because ZC Z[p"‘], we are done. The existence of an

inverse element can be proved if p # 2 by the remark that an(‘Xo"x1 yeo) =
-cpn(xo,x],., - )}' in the general case, the antipodism over Z[p‘ll is given by

polynomials with coefficients in Z[p"’}; but these coefficients are also in Z(p),

hence are in Z,

The Z -scheme 02 s together with the above law, is called the

Z~-group of Witt vectors of infinite length relative to p and denoted by W
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If w=(a,)EWR) = N, a, is the n*M-component of w and ® (w) the nth.

phantom-component of w. The phantom components define a group isomorphism from

We, Z[p '] to gg';[-p_]].

Let TiWe—> W be the monomorphism defined by
(13) (ags. .. raps...)) = (Oy8058y5...).

Then Py(Tw) = 0, G (Tw) = p§ no1(¥), n 315 it follows that T is group-homo-
morphism, called the translation, We define the group W, of Witt-vectors of
length n by the exact sequence of group functors

™

By
(1) 0—3W —> W ——> W;—>0

(i.e. by W,(R) = Coker TYR) for each R). By the definition of the group law

in W, it is clear that (a,,a,,...) = (8greeesp 150,...) % Tn(an,anﬂ,...),

which means that as a scheme, W, is Q;, the projection morphism W—>W,

being (a5,...)—> (8,,...,8, 1), The group law on W, is (a,,...,a ;) +
(Posevasby 1) = (Sy(ag,b5)5...,8, 1(8 ;. 0058, ¢ Byse.esbp 1)) in particular

W, = o¢ . The snake diagram gives from (14) translation homomorphism TiWy—> W41,
such that T(ao,...,a -1) = (0,8,,...,3, ), projection homomorphisms RiW , ,—>*W,

such that R(a_,...,a;) = (aO,...,an_‘) and exact sequences

I k]
(15) 0o—s W—T ¥, B 5w >0.

Moreover, the projections W—-—bwn give rise to an isomorphism

W Lim W, .

n
Let z:gz—?w be the morphism & —y(2,0,...). We have (?n'c(a) 2 af s

E(T(a),t) = F(at).
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Theorem, There exists a unique ring-structure on the Z-group W such that either of

the two following conditions is satisfied,

(1) each P W —»gz is a ring-homomorphism.
(ii) T{(ab) = T(a) T(b), a,beRe_y_g_z,

We first replace Z by P . Z[p"’]. Then (c&n);NP-——,gcfg is an isomorphism,
hence the existence and uniqueness of a ring structure on W, satisfying (1);
moreover, because (@n( T(a)) = (apn), this ring-structure satisfies (ii);
conversely, consider a ring structure on the P-group es'{,‘ such that (apn).(bpn) =

n
((ab)p); the multiplication is given by polynomials of the form (x,)-(y,) =

i 3
(- ag) xiyj), with Zag) aP P = (ab)pn; this gives a§3) + 0 except

when 1= 3 =n, and (xn)-(yn) = (x,y,). This ends the proof for P.

The multiplication in WP we just found is given by polynomials

Ma(X,,.0 Xy, YooY e PIX LY,
(aoyooo) X (boy---) = (Mn(ao’o'vybo,oo.)>;

by definition, §;((M)) = (X)) §,((1)), 1= 0,... . n easy lomms

(D.G,V, B 1.2) proves that M€ zl}(o,...,Yo,...,] : the above formula defines then
a Zmorphism WXW—>W, The fact that it gives a ring structure satisfying (i)
and (ii), with unit element <T(1) = (1,0,...) can be expressed by identities
between polynomials with coefficients in Z ; these identities are true over P

and Z—*P is injective,

The Z-ring W is called the Witt ring, each W, 1is a quotient ring
of W, +the canonical morphisms RytW——>W,  and R:Wml-——> W, are ring-

homomorphism (but not T!),
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3, The Witt rings (over k).

From now on, k is a field, with characteristic p. We denote by

Wk, W.,, the k-rings W@zk, Wnk sz; remark that the phantom-components

n
W,—> o are now (an)r—éag (hence the name).

Because Wk =W we can identify Vép) and Wk and the

®
[Fp “:P o

Frobenius morphism F:Wk—av Wk is given by
P P
Flag,... 8p,...) = (8g,.00580,...)0

Tt is a ring-homomorphism (because F commutes with products), Similar statements

are true for /\k and the W,.

Propesition a). The Verschiebung morphism of A, is q)(t)—>Cf(tp), the

Verschiebung morphism of Wk is T, the Verschiebung morphism of an is

R.T = T.R,
b) If x,yewk(R), REM , then V(rx.y) = x.Vy.
a) If 1+ ct eAR) F 1 5T PP d
= et € , then Fe = 3 cpt, an
(FCP)(tp) a +Zc§tnp = CPp = V(FQ ). But F is an epimorphism, hence
P
Vi = w(t ), forally,
On the other hand, the definition of E and T shows that
(16) E(Tx,t) = E(x,tP);

but E(x,tP) = VE (x,t) = E(Vx,t) and E is monomorphism, hence Vx = Tx.

Projecting this formula on Wy, we find V, « = R,T = T.R.
n



b} Because FiW —> W_ is an epimorphism, we can suppose y = Fz, Then

V(Fx,y) = V(Fx,Fz) = VF(xz) = pxz = x.pz = x,VFz = x. Vy.
Corollary. If x,y€W(R), then
B(x.Vy,t) = E(Fx.y,tp).
Corollary, If X = (&g,...,8,...)€W(R), then px = (o,a‘;,...,as, ..

Corollary, Suppose k is perfect; then W(k) is & discrete valuation ring,

complete, and W(k)/pW(k) = k.
One has FW(k) = W(k) becanse k is perfect, hence
pW(k) = T'F'W(k) = T'W(k) and W(k) = 1im W(k)/p"W(k).
Moreover W(k)/pW(k) = Wi(k) = ot(k) = k.

Proposition (Witt), Let k be perfect, and let A be complete noetherian local

with residue field k. Let 7CstA—> k be the canonical projection. There exist a

unique ring-homomorphism

usWlk) —> A

compatible with the projections W(k) —>k and. IT. If moreover A is a

discrete valuation ring with p. 1A #0, then A is a free finite W(k)-module

of rank [A/pAsk]; in particular if pA = A, then u is an isomorphism.

Proof. (After Cartier), Consider the ring-morphisms given by the phantom compo-

nents d)nzwn”(A)'—? A, If m is the maximal ideal of A, then

! 1
Cﬁn((xn))(-:mﬂ+ if x,€m; this gives a commutative square
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> A
Wn”(A)
W (=) can,
n+1
én
Wnﬂ(k) >4/ n+l

1 n
Let o-tk—>k be given by oo (A) = A/e and put u, z@no Wn”(d' ); then,

if a,,...,2,€4

n n n N}
(m<(a® ) (a®)) = af + pa + o2 mod. m'
utn o pexas TC an = ao p’ e P n - .

Let
u = 1im SW(k) > “’
L %

Then u is a ring-morphism and mu( op,...s o) =o¢,. This gives the existence
of u. Let u':W(k)—sA be another such homomorphism; then €' = u'T tk—> A
is compatible with multiplication and such that nt' = Id; such a ' is unique,
as is well-known (because - (x ) must be in N (ﬂ~1(o(p~n))pn which has only

one element (Cauchy)); on the other hand, any x€W(k) can be written

X 2 (oxgrotyseer) = (60:0,0...) % (0, ¢ ,0...) + (0,0,0¢,,... )+,
1/ 2 1/ 2
= T(oxo) *+ pT(X Pyep (e, Pyt

s 2 . V2
and  u'(x) must be zT'(ox) +pT (X, 7) +p T(X, P )4:-hence the unicity

of u,
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The last statement follows from the fact that if a',...,aeﬁﬁ are a
basis of A modulo pA, then they generate the W(k)-modulo A, {Berbaki, Alg.
Comm, Chap, III, 8 2, Prop., 12, Cor, 3). Therefore A is finitely generated as

W(k)~module, without torsion because p™. 1 A # 0, hence free of rank I:A/pxzk].

4, Duality of finite Witt groups

For m, ny!, we put

m
¥ = Ker {F :Wnk —> W, ).

Between these finite k-groups, we have homomorphisms

t
mwn — mwnH
f r
VW 1 \LW
m-1"n >mn,

where 1 1is the canonical inclusion, and f,t,r are induced by F,T,R, Clearly,
i and t are monomorphisms, f{ and r are epimorphisms, and for the group mwn’

we have F = if, V= rt,

For any RE€M, let W'(R) be the set of all («g,ey;...) € W (R)
such that a, = O for large n, and a,; nilpotent for all n, It is easy to
check that W'(R) is an ideal in Wk(R) and that E(w,t) is a polynomial for

weW'(R); in particular E(w,1) is defined for wE€W'(R), and we have a group-

homomorphism

j1)" L— B
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given by wr—sE(w,1). If xe€W(R), yeW (R), then xyeW(R) and E(xy,1)€R";

moreover, one has
E(T%.5,1) = B(T(x Fy),1) = E(x. Fy,1).

The morphism (x,y}l—>E(xy,1) from LY W to M is bilinear, hence gives a

group-homomorphism W —> D(Wk). [ This can be shown to be an isomorphism
(0.G. V8 4.45) but we shall not need this fact_/.

Let. oWy —> W, be the section of R W .—> W, defined by
o { T ogn_}) = (“o"""xn—-t’ Open.) ["'n is not a group homomorphism]; it

is clear that o, sends W, in W,

Theorem. For xe_ W (R), ye . W (R), define

<%y> = Elop(x) op(y), 1).

Then <x,y> is bilinear, gives an lsomorphism

mn ¥ DnHy)

and satisfies

<Xty > = <fX,y>
<K, ry> = <ix,y>.

Let x,x'e W (R), ye W (R); then op(xsx') ~ op(x) - oy (x') 1is

in Ker R, = Im 'I'“, hence

c-n(x+x') = oplx) + o (x) + Tn(u),
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where u€W'(R), This implies «<x + X',y> = <X,¥y> + <X',y> +
n
E(1"(u)e o(3),1)5 but E(T'(w)- oy(3),1) = Bl Fo (3),1), and Fop(y) =

O'm( Fny) = 0, This proves the bilinearity of <, > .
On the other hand, c‘n(fx) a Fa-n(x), ey (EY) = To,(y), hence

<tx,y > = BE(Fo(x): op(y),1) = E(o(x)-Top(y),1) = <x,ty > ; also

op(ix) = op(x), op(ry) = o (y), hence <ix,y> = <x,ry>.

It remains to prove that ( , s gives an isomorphism between W, and

D(nhgn); but, because of the exact sequences

19 = >
0 -—-——men —e m *qwn > qwn 0
and
3 i
0 > Wy > W +q an >0

and the adjointness of t and f, and r and i, we are reduced by induction

on m and n to the case m=n =1, In that case W, = o, and <, > is

P
not zero, hence the given homomorphism pEKT> D(pgs k) is not zero; but,

because 2%k is simple, it is an isomorphism, and the proof is complete.

5. Dieudonné modules (Affine unipotent groups).

From now on, the field k 1is supposed to be perfect.

Let _V‘l’ be the inductive system of Acu.

T T T
WW, Wag > Wy > ..

The ring Wk) operates on _W’ as follows, First, we denote by o-:at———»a(p)

n
the Frobenius homomorphism W{(k)-— W(k}, and by a]——;a(p ) its nth power,

nE-:Z(al———»a(p) is bijective, because k is perfect,) Let aeW(k) and
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weW (R),REM,; then we define

1-n
a¥®ws= a(p L.W,

t-ny t=n
(p /k is the image of a(p )in W(R), and b.w€W (R) the product

where a
of bEW(R) and weW (R) = WR)/T'W(R). By this definition, W,(R) becomes
a W(k)-module, and T:sW (R)— W..1(R) 1is a homomorphism of W(k)-module,

because
T -n -
T(a * w) = T(a(p n)R-W) = T(F(a(p )R)-w) =P Tw=oa * T,

For any GeAc w ., we define the Dieudonné module M{(G)} of G to

be the W(k)-module
M(G) = 1_}_;2 Acuk(G,Wnk)

(equivalently M{(G) = Ind (A c uk) {3, _g)). Of course, G}—>M(G) 1is a contra-

variant functor from Acu, to category Mod W(k) of all W(k)-modules, This
construction obviously commutes with automorphisms kaa k , in particular with

fiitk—sk, If M is a W(k)-module, let M(p) = M® W(k) ¢+ as a group

W(k),o
-1
uP) - M, but the external law is (w,m}._.aw(p ) m; if feé._c_z_zk((},wnk), then

£P) g a homomorphism from alP) 4o Wl(qﬁ) = W,. Hence a map fe—»t{P)  from
M(G) to H(G(p)); it is clear that (wf)\(p) = w(p)f(p) for weW(k), and this
map induces an isomorphism,

u(o) Pl (e,

by means of which we always identify M(GP) with M(c)(P)

The two morphisms F, and VG define two morphisms

G
F= M(FG):M(G)(p)—a M(G), and V= M(VG):M(G) —»M(G)(p) or equivalently

group-homomorphisms F, ViM(G) —M(G) with F(am) = a(p)Fm, V(a(p)m) = aVm,
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aeW k), meM(G), By construction, if Eeﬂk(s,wnk) represents meM(G),Fm

and Vm are represented by Fwnk om and ank om,

The morphism Tzwnk—> Wn Hk being a monomorphism, the maps

Mk(c,wnk)-——»_éﬂk((},wn”k) are injective, and Egk((},wnk) can be identified

with a submodule of M(G); more precisely
Acu (G, W,,) = {meM(G), V'm = 0}.
It follows that any element of M(G) is idlled by a power of V.

Let Dy be the (non-commutative) ring generated by W(k) and two

elements F and V subject to the relations

Fw = w(p)F, w{p)v = Vw, FV= VF=p

It can be easily seen that any element of D can be written uniquely as a finite

sSum

> a_iVi tag * Z aiFi'

i>0 i>0
If Geﬁk, then M(G) has a canonical structure of a left D~module; if K is

a perfect extension of k, there is a canonical msp of Dy-modules

(%) w(x)wg)n(a) —M(G®, K)

{(remark that Dy W(K)Qw( 10 Dy, and that the left hand side can also be written

Dy @Dk M(G)).
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Theorem. The functor M induces an anti-equivalence between Acu, and the

category of all D, -modules of V-torsion. For any perfect extension K of k,

(#) 4is an isomorphism, Moreover

G is algebraic ¢=> M(G) is a finitely generated D, -module,

G is finite &> M(G) is a W(k)-module of finite lengih.

Proof in D.G. V, 8 1, n° 4,

6. Dieudonné modules {p-torsion finite k-groups)

Proposition. The functor Gk M(G) induces an anti-eguivalence between

Feu, (resp. Fiuw ) and the category of D, -modules, which are W(k)-modules of

finite length, killed by a power of V and on which F _is bijective (resp, and

killed by a power of F),

This follows from the theorem, and the fact that if G 1is finite,
then G is etale (resp, infinitesimal) if and only if FG is an isomorphism

(resp. Fg = 0 for large n).

Examples, If G = (Z/pZ) €Few, then M(G) = k with F =1, V= 0; if

#

G = pS iy, then M(G) = k with F=0, V=

‘
o

Proof. We can suppose k algebraically closed, in either case G 1is the unigue
simple object of Feu (resp: Fiu, ); hence M(G) 4is the unigue simple object of

the corresponding category) and it is clear that the proposed modules are simple.
Corollary, For GE€ Feu, or &ﬁ{, we have

I‘k(G) = plength (M(G)).

We can replace k by _12, and it is enough to check the formulas for the simple

groups, in which case it follows from the examples above,
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Let m,n be two positive integers; consider the canonical injection
m¥— W,; it defines an element u€M( W ), clearly V'u = Flu = 0, hence 2

map of D-modules (D = D ):

m n
Am,nm/(m-* + DV )—> M(, W, ).

Proposition. Amn is bijective.
;]

Using the exact seguences connecting the mwn’ we are easlly reduced

to the case m=n = 1; but D/DF + DVZk and M(twi) = M(qu) = k.

Take m = n. Any element in I)/(DFn + DVn) can be written in 2 unique

T~ 1

~ 1
way X = w Vn deeetw V4 Wy + w1F Heeet W g F where wiewn_|i|(k); we

len

therefore have a canonical W(k)-linear projection
TC MW, ) — W, (k)
defined by T (A (x)) = Wy

Let Q be the quotient field of W(k), and W, be the W(k)-module

Q/W(k); it can be identified with the direct limit of the system

W(k)/ ——E-pW(k)/ 2 —_— 3

pW(k) pu(k) e
but this system is also
T T

W1(k) — Wz(k} -——;WB(k) —_ .

Hence W, = lim W (k) = _W’(k),
For any Dk«-module M, we denote by M¥ the following D -module: as

W(k)-module, M* = @w(k)(n,woo); it feM®, then (FE)(m) = £(vam)(P),

-1
(veY(m) = f(F‘m)(p ). It is clear (duality of finite length modules over a
principal ideal ring) that M——»M® induces a duality in the category of

D -modules which are of finite length over W(k).
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Let now Ge_l_"_;lak, then there exists n such that Vg = 0, Fg = 03 it
follows that M(G) = ﬁgk((},nwn); moreover Vp(g) = O, F:I;(G} = 0, and
M(D(G)) = Fiuw (D(G),,W,). Let mD(G)—> W, be an element of M(D(G)); let
ah s W —>D(, W ) be the isomorphism given in the n® 1, and look at the

composed homomorphism

ah
n B(m) .
g D( ) ———"— D(DG) ¥G ;

this gives a D-linear map
¢mzn(c)-"_’ H{nwn>;

composing this with %"‘(n“n)—""‘n(k) and the canonical injection Wn(k)—ﬂvlm,

we get a W(k)-linear map M(G) —>W , i.e, an element of M(G)¥. Hence a map
*
(%) M(D(G)) ~———M(G) .

This map is independent of the choice of the integer n: if we replace

m:D(G)—> W, by m' = itm = tim: D(G)—> n+t¥W

1+1» then D(m)ah, is replaced

by D(m')ahnM = D(itm)ah,,; = D(m)D(it)ah,,; = D(m)ah,fv; hence @, is replaced

by @ = M(D(m)an, fv) = M(i‘v)M(D(m)a.hn) = M(fv)cp, and T, @, is replaced by
A e M(EV) @p.  But M(£v)1D/(DF* + DV") —»D{(DFH+1 + V1Y is of course

x—>FVx = px, and ® M(fv) = 7 4 p= T,
We therefore have a well-defined W(k)-linear map (%),
Theorem. For all G€Fiw, (**) is an isomorphism of D, ~modules,
The proof runs as follows,
a) (#*) commutes with F and V,
b} Theorem is true if G = n¥.

¢) Any G is a subgroup of a (nwn)r.
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For the details, see D,G, V, 8 4, n° 5,

In short, the autoduality G+——»D(G) of Fiw corresponds, via the
Dieudonné functor, to the autoduality Mi—» M* in the category of Dy~module

of finite length killed by a power of V and F,
Let now GE€Fim , we define the Dieudonné module M(G) by

*

M(G) = M(D(G))".

It follows from the Cartier duality between _Fli_n_zk and Feu that the functor

G— M(G) just defined induces an antieguivalence between Fim  and the category

of all Dy-modules of finite length on which F is nilpotent and V bijective.

We can describe M(G) as follows. Suppose first G is diagonalisable:
G = D rk). Then D(G)% r‘k, and M(D{G)) = 1_13_%( rk,wnk) = lim Gr([° sW (k)=
-Q-E(r’wm) = Mw(k)(w(k) Gzr Py wm), hence

M) = Wk) a,lr.

In general, G is defined by a Galois module | and M(G) is the set of inva-

riants under the Galois group [] of M(G@ki); hence
~ Y
M) = (w(k) @, M) .
Moreover, F and V are easily described by duality:
FA®X) = APlgpx
(» ")
VAex) = A dx.

Let Ep be the category of all finite k-groups of p-torsion. Any G
k

in Ep decomposes uniquely as HxK, with HE€ Fiu = Feu ,K€Fim and we define
k

M(G) as M(H) xM(X).
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Theorem a) The functor Gf—>M(G) is'an antiequivalence between the category

E_pk = Fiu x Few = Fim  of all finite k-groups of p-torsion, and the category of

all triples (M’FM’VM) vhere Mis a finite length W(k)-module and Fy and ¥,

two group endomorphisms of M such that

Fy(An) = x(P)FM(ng
v PSR AT (m)

FMVM = VMFM = Pe idM.

b) G is etale, infinitesimal, unipotent or multiplicative according as

FM is isomorphic, Fy nilpotent, Vi nilpotent, or Vy isomorphic.

¢) For any GEFp , one has

k(G) = plength M(G)‘

d) If K 4is a perfect extension of k, there existsa functorial isomorphism

H(G@kK) sw(x)sw(k)m(a).

e) There exists a functoriel isomorphism

M(D(G)) = M(c)¥.

Let (M, F,, VM) be as in the theorem. There exists m with

Zm m
FM M = FM, then M = Ker F;;QIm F§ =M, & M1 where M, ,M, are stable by F

and V, F‘"Mo =0 and F[M, is bijective; similarly M =M @ M M = M, @X,,,

with VM, = O, v"u]o =0, V[M, is bijective, vh«tH is bijective. But

FV = VF = p, hence M“ = 0; this implies M = Moo® Mo1 @ H!o'
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The proof is now straight forward and left as an exercise,

8, Dieudonne modules (p-divisible groups).

Let us first prove a lemma,

“ -
Lemma. Let ... My LN My,—s ... —M, Dbe a gystem of W(k)-modules with

the following propert ies,

n

p
1) The sequence Moa——M .,

k¢
-2, Hn—m--’ 0 is exact for ail n.

2) M, is of finite length for all n.

Let M= lim M. Then M is a finitely generated W(k)-module and the canonical

map M——s M identifies M, with M/p™M, for all n.

It follows from !} that

n
P ki
Mg —> ¥ —> ¥y—> 0

is exact for all n and m (where W= s, 07,y 0 ... 0 7%y ;). Taking the
inverse limit over m, we find an exact sequence

n A
M—E M M0

{the %_i_xq functor is exact for finite length modules ~ D,G. V8 2, 2,2 &)]
where A, 1is the canonical projection, hence the last assertion. Let now
M.,y be elements in M generating M/pM = H, ; consider the W(k)-module
homomorphism Cp:w(k)r-——) M such that ¢(a1,,..,ar) =am +.,.. +aum, It
induces surjective maps W(k)r/p"'w'(k)r——) M/p® M for all n hence is surjective

as an inverse limit of surjective maps of finite length modules,

Alternative proof,  Apply Bourbaki, Alg. Com., Ch. 3, 8 2, n® 11, Prop. 14 and

Cor. 1 to A = wik)/p W(k), W o= M.
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We say that a formal group G is of p-torsion if

1) G= UKer p® idg

2) Ker p id, is finite.

We have exact sequences

n
0—» Ker p"— Ker p™*'— B, ger p"*!

n
0 > Ker pn > Ker pm+n__I_J__) Ker pm

the latter show by induction that Ker p" is finite for all n, Define

M(G) = %M(Ker ).

Theorem, G-—>M(G) is an antiequivalence between the category of p-torsion formal

groups and the category of txiplezg (¥, FM’VH) vhere M is a finitely generated

W(k)-module and Fy, V, two group endomorphisms of M with

A (m) = WP, (m)
Py = w(m)
Py = Yfy = P i

It follows from the lemma that M(G) is finitely generated and that

L = M(G)/p™(G). Conversely if M is as before, then we define G as lim G,

where M(G,) = M/pM.

From the definitions and what was already proved follow immediately:

1) G is finite if and only if M(G) is finite, and in that case M(G) is the

— e} e T D i

same as defined in 8 7,

2) G is p-divisible if and only if M(G) is torsion-less (= free), and

height (G) = dim M(G),
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3) For any perfect extension K/k, there is a functorial isomorphism

M(GQkK) o W(K) wﬁ() M(G),

4y If G is p-divisible, with Serre dual G', then

M(G') = Modw(k>(M(G), wik)),

(p) G hH

with ( £)(m) = r(vum) s (VM(G')f)(m = f(FMm

F
M(G)
Proof of 4 Let M(G) = M; then M = Un M/p™, and M/p"M = M(Ker p" id,); but

« . n s 1 n =
G' is defined as lim D(Ker p 1dG), hence M(G ) = lim M(D(Ker p 1dG))

lim (M[P“M)* = ]‘.ggxodw(k)(l{/pnM,W(k)/an(k)) = Mody ) (M, W(k)).

9. Dieudonné modules (connected formal group of finite type).

By a similar discussion {replacing p by F), we have the following
results: if G is a connected finite type formal group, define M(G) =

&M(Ker FnG); it is a module over the F-completion ﬁk of Dy.

Theorem, G—»M(G) is an antieguivalence between the category of connected

formal groups of finite type and the category of finite type ’ﬁk-modules M such

that M/FM has finite length, Morsover

1) G finite <= M(G) has finite length <= F'M(G) = O for n large.

2) G smooth &P FiM(G) —> M(G) is injective; in that case

dim (G) = length(M(G)/FM(G)).



CHAPTER IV

CLASSIFICATION OF p-DIVISIBLE GROUPS

k i3 a perfect field (unless otherwise stated)}charac (k) # 0; we denote

by B(k) the quotient field of W(k), and extend n—»x(P) to an automorphism

of B(k); the set of fixed points of xp-—-px(p)

W( Fp) =Z, (resp. B( le) = Qp)-

in Wk) {(resp. B(k)) is

1. Isogenies.

A F-lattice (resp. F-space) over k is a free W(k)-module (resp. a B(k)-
vector space), of finite rank, together with an injective (resp. injective = bijective)
group endomorphism F such that F( Ax) = 7\(p) Fx. If M 1is a F-lattice, then

B(k)ew(k

M has a natural F-space structure,

)

To each p-divisible group G, we associate the F~lattice M(G), and the
F-space E(G) = B(k)® W(k)M(G); the functor G—>M{(G) is an antiequivalence
between p-divisible groups and those F-.lattices M for which M DpM.

If X is a perfect extension of k, and M a F-lattice over k, we

define M, as WiK)® M, similarly for F-spaces,

w(k)

Lemma, Let G and H be two p-divisible groups of the same height and f:G-—3 H

be a homomorphism. The following conditions are equivalent

a) Ker f is finite,

b) f is an epimorphism,

e) M(f):M(H) —>M(G) 4is injective,
d) Coker M(f) is finite,

e) E(f£):E(H)— E(G) is an isomorphism.
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This is clear: (a) &> (d), (b)e=>(c), and {(c)&=> (d) &=>(e). Such an

f is called an isogeny.

Proposition. Let G and H be two p-divisible groups., Then E(G) and E(H)

are isomorphic if and only if there exists an isogeny f:G—>H.

Let C(Q:E(H)——> E(G) be an isomorphism; there exists m such that
P(M(H)) cp ™HG), then pmcp:H(H)——-> M(G) corresponds to an isogeny f. The

converse is clear,

Two such groups are called isogenous. The classification of p-divisible
groups upto isogeny is therefore equivalent to classification of F-spaces of the

form E(G).

A F-space E is called effective if it contains a lattice (i.e. 2

W(k)-submodule M such that E = B(k)@w(k)M) stable by F, i.e. if it comes

from an F-lattice. It comes from a p-divisible group if and only if it contains

-1
a lattice stable by F and pF .

2, The category of F-spaces

It is a Qp—-linear category: an abelian category, such that Hom(E,,Ez)
has a natural (finite dimensional, in fact) Gp—vector space structure, the

composition mep (f,g)—> g o f being Qp—bilinear [note that Qp is the
centre of B(k)_/.

It hes tensor products and internal Hom: If E,, E2 are F-spaces, then

E, ® E, and L{_o_n_z(E’,E ) are the usual ® and Hom of B(k)-vector spaces and

Fx@y) = x®Fy, (Fu)(x) = u(F"x)(p), x€E,,y€E,,ucHon(E,,E,).

(

We denote by A1 the F-space (B(k), x—»X p))’ by 41 (n) the F-space

P v
B(k),x — p n(P) me gual ¥ of E is Hom(E, 4@ ), the n'll twist E(n) of

% is E@MN(n).
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We have the usual canonical isomorphisms
Hom(A, Hom(B,C)) = Hom(A®B,C)
Hom(D,A) = A
Hom({A,B) = Hom(“D1 ,Hom(4,B))
A®(B®C) = (A®@B)® C ...

In particular

E(m){(n) = E(m+n)
E(m) = E(-n).

If G is a p-divisible group and G! its Serre dual, then
B(G') = Hom(E(G),T(-1)) = B(G)(~1)

(because Serre duality sends F to V = pF'").

These constructions commute with the base-extension functor

Er—>» EK = B(X)® E(K/k a perfect extension}.

B(k)
3, The F.spaces EA‘, A 20,

@ Let A» 0 be a rational number; write A= lsF’ with r,se€m, r>0,
(r,s) = 1, We define the F-lattice M over le by
VLA Z,[1]/(1" - p°),

F acting by multiplication by T, and similarly, the F-space E’* over F,

by

EX = @[T - p%);
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If OSAS!, then r 3s; define }—{7\3 ZP[F]/(Fr"S~ v®), then .ﬁ/\ is a

lattice in EA and a Dieudonné module; actually, let GA be the p~divisible

group over le defined by the exact sequence

I‘_ S
0—s N W(p) —F=Ts W(p)

n,
where W(p) = 1_1_73 (Ker p .W‘Fp—-—awwp). It is clear that
My = BN, oM y=s,

Hence height (G™) = r, daim (G1) = s, It is also clear that (G, )'= G, 5.

We put EI?' = (EJ\ )k = Blk) ® E;\. It has a B(k)-basis € 5.8,

Q,

[ei = class of T ] such that, if x :Zaiei, then

. 2Py

= p%alP) (p)
Fx pa e, + a €yt . 180’

In particular
(F7- 523 = p*(alP a e o (P 2 dey).
Let W(k)(pt/r) and B(k)(pl/r )} be defined by

W'/ ) = WXV =p),B()(p"/ T ) = BG[X])/(X =D );

/e

1 1
denote the class of X by p , then W(k)(p /e } 1is a complete descrste

valuation ring with residue field k and maximal ideal generated by pi/ e . We

(p)

1
extend Xf—3aX to Wk) (p /r ) and B(k)(p!/" ) by putting

(!/r P, p1/r ]
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Let FoeW(k)(p'/T ) —> W(k)(p'/T ) be defined by

Fs( Zwipi/r) - Z wg‘p) p(s+i)/r

and similarly for B(k)(p’/ T ). Then the F-lattice (W(k)(p"/" ),Fg) is isomorphic

to MRZ\; the F-space (B(k)(pvr ),Fs) isomorphic to E,.

Proof. Send pi’/ ¥ to the class of 'I‘i
© Let a,b€ N be such that ar - bs = 1, Consider B - ) [it is the
A

unique unramified extension of degree r of B( le) =Qp_7 and let K°° be the

associative B( (Fpr )-algebra with unit generated by an element E such that

o((p“b)

gr = p, Eo: = g , x€B( n?pl. ).

r=t
It is a left vector space of dimension r over B( [ ,. ) with basis LeesB
p

hence an algebra of degree ¥’ over @p' Moreover, because -b is invertible
™) A A
modulo r, & = mplieso(er, and K’ has centre Qp’ Finally, K
L. hanad | 1
is a division-algebra: jet X = Z e.i@g be a right zero divisor, By multi-
1=0

plication by suitable powers of p and g , Wwe can suppose that a € W ¥ i)’
P

and ao$ pW( II'-pr). The matrix of the right multiplication by X in the basis

-1
Tyeuus Ei is (write o for (p~P))

ao 32 veo ar_ 1
el
a &
par— 1 [<] =2
r-1 r-1
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o

Its determinant is congruent to a a} ... = Norm(a ) mod p; it therefore

cannot be zero, contradiction.
Suppose now k O ,, and consider
P

A L BK)® k™,
X ()B(IFP)

W(k)aw .

(‘Fpr)

It is a B(k)-vector space with basis Ei E] la‘gl, i=90,,..,r-1 and a right

i i+
Kk-vector space; we make it a F-space over k by defining Fg = g S,

Proposition. a) The F-space B(k)®B(lF ) ' is isomorphic to E?.

pI‘

b} Its endomorphisms are the right multiplication by elements of Kj\.

A

We send the F.space E = B(k)® to B(k)(pi/r ) by mapping

B0 ¥ o) :

i/
El to pl’ I‘; it is easy to check that this mapping is an isomorphism of F-spaces
hence a), To prove b), we first remark that the F-space structure end the
A
k}\-vector space structure on E commute: each multiplication XX ,ox €K

is a F-space endomorphism. We use now the following lemma,
Lemma, Let H be any F-space over k; the map P—>®P(e,) is a bijection from

et ALy

i~ — —g——— ———".  o—

This is clear from the definition of Ekh.

Using this lemma, it is enough to prove that the elements x of E

. r s A
with F x = p°x are the 1®x,xXE€ K’%, Let

Ir'-1
i
X = _S_ oaiag ,“ieB(k);
1=
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r r
then F'x =Zpso<§p )@ gi, and Fx = px implies d§p ). oy, e

. 1 A
uieB(wpr), i.e. x= 1®Zo<ig c1®@x’",

Let A' = s'/r', with r',s'em,(s',r') =i, be another yedive rational,
bd b 3

Proposition, a) If A4 A, then Hom(Ei\,EkA’) = 0,

b) let m= g.e.d, (r,r'), then

' A+ Al m
EkAQEkA 3(Ek+ )s

A )\' A+ A
KQQPK o-.}gn(x ).

1
a) By the above lemma, we have to look to those erk)“ with {Fr - p)x = O3

¥
' r '
but Ek7‘ has a basis f; such that, if X =3 bf, then r'x = Zb§p ) P15,

m)
' . '
hence F & x = ij@a ) ps 4 fj; on the other hand, if Fx = PSX, then

* ¥
Frx=pFx= Zb_j p*T £,. Because sr' £ s'r, and ¥ )\(p)} = v{(N)

for AeB(k), this implies x = O,

b) Let e;,... e!'_' be the canonical base of Eky\ , and A+ A A, = So/l‘o,

with s = sr' + r's/m, v, = rr'/m, Then

r
F o(ei@es) = e, ®F ej=p e®@p e}-= pso(eier).

It follows that, i and j being fixed, and indices running module (r,r'), the

1

A A
vectors e @ ej-!-k’ k=0,...,r -1, spana sub-F-space of Ek ®E is0m-
. A+ A'
morphic to Ek . This gives m linearly independent subspaces,hence an

' Al
isomorphism F.Z\Q Ek’\ ™= (Ek * )m.
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Taking k big enough, this gives a map of the endomorphism algebras

A Al A+ A
®g, ¥ — M (K )s

x 1
this map is injective because K ®Q K" is simple, hence bijective because
P

both sides have dimension (rr')2 over Qp, As & corpllary, take K‘ = nEM in ¢);

we find isomorphisms

A St
Mk (—n) —Mk .

{In particular “f{-n) = V;); and

A+n
N~k .

Hence Ap—> KN gives a homomorphism

Qz — Br((D.p),

which is injective (because KA is a skew-field, hence cannot be split if

r#1, i.e., A€Z), and known to be surjective,

A -A o
@ For AeQ, A€0 we define B to be the dual of Ek (note that E =T1),
From the relations between dual, tensor products, and internal Hom, and using the

twist operation we obtain for A, A€ Q@

! A+A " m
a) EQ'GERA = (E ), m= g.c.d (r,r") )

] ’- m
b) Hon(5}, EN) 28NN ma gcd (myr1)
JENORE AN W
= A A
d) If A= %, r>0, (s,r) = 1, then dim B* = r. If kju:pr then End(Ek)

is a central division algebra over Qp’ with invariant Ameod 1, EKA is
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effective if and only if A30, Ef(\ comes from & p~divisible group if and only

if 0sALI,

¥
e) Hom(Eli\,EkA) -0 if A4 N,

4, Classification of F.spaces over an algebraically closed field,

'
A 1]
Lemma 1. If k is algebraically closed, any extension of E_~ by EZ\,?\, re@,

splits.

s A

1
Let O——rE'kA-—e B e Ek—-—-.‘vo be an exact seguence of F-spaces;

for any n, we have an exact seguence

' +
O——>EK7\ M, B(-n) —> Ekj\ o0

that splits if and only if the first one splits; taking n large enough, we can
therefore suppose A, A >0, Write A = s/r, A' = s'/r' as usual, It is suf-
ficient to prove

1

1
(%) Fr - ps:EkA__, Eky\ is surjective.

1
Indeed, let XEE be such thav @(x) = e,; then (F° - p®)(x) eEkA . If (%)

1

is true, there exists a yGEkA with (F = p®)(y) = (F' - p®)(x). Replacing

X by x -y, we can suppose (I“r - p)x) =0, and x gives & splitting,
r 5 1‘(!"—1) Y’(I"-Z) 8 s(r',.]) r' sr‘
We have (F - p°)}(F + F P° *e.. 4P )=Fr -P
' ' |
and it is enough to show that F'F - pST i A —s e is surjective. If

k %

!
e,‘,...,er", is the canonical basis of Ek)\ , We have

(7T PN 8y e;) = Z(p“'aﬁpr Do a)el;

1771
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it is therefore sufficient to show that, if o¢ ’ﬁQZ: the map
x—» pP LP%)
from B(k) to B(k) is surjective.

o] iX
if @>o then, taking x = Zpiﬂ b(p >, we find
i=0

pﬁx(p“) - X = - b,

o - ot -3
If P<O, we write pr(p ) X = pﬁx(P) -p e (ps x(p ))(p ), and are
reduced to the preceeding case, If ﬁ = 0, we use successive approximation: let

b&B(k) be fixed, and suppose x€B(k) and me€ 7Z are such that

ot o 3
x(p ) - X - bepmw(k); if x, =x+ oy, yEW(K), then xgp ) xgp ) -b=
o
1
pm(y(p ). ¥+ (x(p) - x - b)/p™), and this belongs to p' W(k) if and only if
-IDO( = (p<) m -
vy -3+ {x ~x=-b)/p = 0, denoting by z—3Z the residue map

W(k)—>k, Because k is algebraically closed, this equation has a solution.

-1
Lemma 2. Let F' + a,F‘n ., 4 anew(k)[F] {non-commutative polynomial ring)

k algebraically closed. There exists r,s& M, coprime, and elements

1
b, se.usby s weW(k)(p'/T), with u invertible, such that, in W(k)(p /r)[f"],
we have
n N1 Nt N2 s/r
*3¢t = -
(%) Fea P~ v +a = (bF +bF +..+4 )F-p

v(ai)

Let A= inf ( n

); write A = s/r, s and r coprime, and put

ai = pisz’r“i; then «iew(k), and o 1s unit for at least one i>0. Let us

is/r 1

look for b, of the form p By ﬁ_ew(k). Putting v = u ', we can write
1" P

() ass
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n n-1 -
W) A WP )a’r“n Ve va, =

s/r - 1 s/r s/r
BoF H(b = B T B )F 4 4(by g = 97 Bup)F =P By g

so that (#*) is equivalent to

(o™
v = bg
(1) s/r
e =b -p by
(p) 8/2
an.’v = bn.1 -Pp bn_z

s/r
apv = P by .

is/r is/r
Replacing a by p o5 and by by p / ﬁi’ we find the system

n
LR L b,
(o™ 1)
o(‘\*‘ = b1 -~ b
(p)
Kno1 ¥V =by g - Pp2

xXpV = =bpyy

and we have a solution if and only if we can find & unit v in W(k)(p‘/ T} such
that

n n-1
v(p ) + ot,u(p )* ves * Xpv = 0,

This equation, we solve by successive approximation, Modulo p'/ T, it gives



and this has a non-zero solution because one of the &i is non-zerc and k is

algebraically closed; we can therefore start the induction and suppose we have a

unit vie:w(k) with

1
LD

i/r
1 i *

n
vgp >+O< +...+O(nv

iaOmodp

i
Writing Vig) TV v P /r x, and solving

(p™) ™" (i+1)/r
Vi+’ "‘«1 Vi*1 P R

+
+
R
o]
B2
hA
L]
o
8

we find an eguation

which has a solution in k.

Lemma 3, Let k be algebraically closed, and let E be a non-zero F-space.
and

2 non-zero morphism E“_’Ek;\’

There exists 2 Ae@

Taking a non-zero simple quotient of E, we can suppose E simple,
i,e, a simple B(k)[Fl-module, But B(k)[F] is an (non-commutative) euclidean
ring, and such a module is a quotient B(k)[F]/P = B(k)[F]/B(k)[FIP where
PeB(k)[F] is a monic polynomial Fos aIFn-!*...mn. Replacing E by an E(-m},m
large, we replace F by p"F, and we can suppose 2, € W(k). Hence E is
defined by the F-lattice M = W(k)[F]/P. Then, by lemma 2, we can write
P= Q(F-ps/r)u, where QeW(k)(p’/")[F], uew(k)(p'/’)*, and (r,s) = 1, Then

x—>xu"| gives an epimorphism

W06 /HI®. M—s W) (e [F/ (=T

W(k)
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but, as a W(k)[F]-module, the right-hand side is Mk7\, and the induced map

M_-*w(k)(p’/")aw(k)mw—e»{‘

is a non-zero F-.lattice homomorphism,

Proposition. Each E{‘ is a simple F-space (i.e. does not contain any proper

non-gero F-subspace).

We can suppose k algebraically closed, If E 1is a proper F-subspace

of Hk?‘, there exist {lemma 3) & non-zero morphism

A I
E/E—E .

If p# A, the composite map E’Z\

—— Ek’ut is zero by section 3, E) e) hence
A= M3 then this composite map must be an isomorphism, because End(E;\) is a

skew-field; this gives E = O,

Theorem {Manin)., If k 1is algebraically closed, the category of F-spaces over k

is pemi-simple, its simple objects being the Eﬁ + any F-space is isomorphic to &

m
direct sum > (Ek?\) AL

By lemma 3 and the above proposition, the simple F.spaces are just the
EkA3 by the proposition, any F.space is an extension of E?. By lemma 1, such an

extension splits,

Corollary., If is algebraicslly closed, any F-gspace over k is isomorphic to

e x

an F-space over the prime field.

2n F-space B,

Corollary. f k is algebraically closed, any p-divisible group over k is

Pt

isogeneous to a product of Gf\.
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5. Slopes.

Let E be an F-space over k, k algebraically closed, Let A€Q, The

component of slope A in E 1is the sum of the sub F-spacesof E isomorphic to

Ek; the multiplicity of the slope A is the B(k)-dimension of this component

(e.g., if A= s/r, the multiplicity of A in Elz\ is r).

The slope-sequence of E is the non-decreasing sequence
A1<K2 ceegAp

(n = [EsB(k)]) of all slopes of E, each one repeated according to its multi-

plicity.

2
The Newton polygon P of E is the polygon OA,...A, in @, where A; has
coordinates (i, 7\'+...+ 7\1); the extremal points of P have integral coordinates

and the slopes of its sides are the ?\i

The slope~function w» of E 1is the function w3 @ —> @ defined by

W(A) = i: inf(Ay, A)
=1

Each of these three objects determine the two others and determine E upto iso-

morphism; for instance the set above P 1is



{x]7 3A(x - n) s (A),VA}-

Proposition. Let M be an F-lattice, and o the slope function of B(k)@w(k)M;

then, for & , Pe N, &# 0, the difference

length

PN pBM) - (B/x )

is bounded,

We can replace k by ;, hence suppose k algebraically closed.

If M and M' are two lattices giving isomorphic F-spaces, there exists

an exact sequence of W(k)[Fl-modules
0—>M—3 M! —> N—>0

where N has finite length, The snake-lemma, applied to the diagram

o
A 4
=
x
=
A 2
=
x
=
4

» NN ——> O

=3
%
3

v

=
-

L 2

N—>2O0
where @(x,y) = F¥x + pa ¥, gives the inequality

length M/q:(MZ) - length M'/CP(M'Z) < 2 length N;
therefore, if the proposition is true for M(resp, M'), it is true for M'(resp. M),

¢} It is therefore sufficient to prove the proposition for the F-lattices M;\ .

In that case, M has a basis e,,...,e, with F‘e1 = e2,...,Fe = e,

jo | r

Fer = pse‘; if & = ar + b, Ogbgr-1, then
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8 oL a+1)s &« a+]
etap ebﬂ""’F er—-b'a p( ) et""’F er”p( )s €y

and F&M + pQ M is generated by

pinf((a‘”)s:p)ej,j = 1,...,b.

Pinf(as,ﬁ) ei’ i= b@'T,.oo)r and

The length of the quotient is

€= (r - b) inf (as, @) + b inf ((a+1)s,8).

If Bgas, then (= rg3;
if as Ps(aﬂ)s, then €= (r - b) as + bf;

if (a+1)s\<p then € = (r - b} as + bla+l)s = s,

On the other hand w (B/o( ) = rinf {B/x, A), hence
e P’/cx) = ot inf {B/x,s/r) = inf (Br,ecs), and the proposition follows

easily.

The slopes, slope sequence,,,,, for a p~divisible group G over k
(not necessarily algebraically closed, nor even perfect) are defined as the

corresponding object for the F-space E(G®k k).

The slopes of G are in the interval [0,1}. The above proposition

givess

Corollary. If w is the slope function of the p~divisible group G, then, for

«,?em,o(;lo

ri(Ker Fg‘n Ker pP 14g) = goxeo (B /e )i, 8)

where A(o¢,B) is bounded.



In particular W(A) = 0 for AgO,

@w(A) = lim 51- log_ (rk(Ker Fg(f\l(er p’w :LdG)), for A0,
o —> 00 P
X s AXER

W(A) = dim G for A height (G).

6, The characteristic polynomial of an endomorphism.

If M is an F-lattice (resp. E is an F-space) and @ an endomorphism
of M (resp, E), then the determinant det (@) of @ is in zp (resp.q;,p): if

p = dim M (resp. n = dim E), then /\ncp is the multiplication by det (<) and

(p)

commutes with F; this implies det () = det (<), hence the assertion,

More generally, the characteristic polynomial
det{p ~ T id)

of ¢ is in Zp{‘l‘](resp. Qp[T]).

If <p is an endomorphism of M, then it is well-known that
length (M/@(M)) = v (det(Q)).
{Note that v{(0) = o).

This applies for instance to the case of the F-lattice of a p-divisible

group G, and gives for any endomorphism (¢ of a p-divisible group G
rk(Ker (P) = pv(det M(‘?))’

(where, by convention, p® = 0, and rk(H) = O if H is not finite).

If k is a finite field with g = p® elements, then F  is W(k)-linear,

hence is an endomorphism of the F-lattice M (resp. of the F-space E).
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-
Theorem (Manin), Let k be a finite field with g = p° elements, E &n

F-space, {).. the algebraic closure of wt ©._ —» . the valuation such
space, @, the ale of Qo @, —»0 the valustion such

that +v(q) = 1 (i.e. +(p) = 1/2); let

P(T) = det(F; -Tid) = m(T, - T)

‘Cieﬁp . Then the slopes of E are the w( 'ti) (counted with their multiplicities).

By replacing E by BE(-n), which replaces T, by g T;» @nd the

slopes (7\1) by (A,. ), we can suppose that E comes from an F-lattice M,

i+n
By the above proposition, the slope function «» of E 1is determined by w(A) =0

if Ag0, and for A0

() w(A) = lim L length M((FP™u + ),
o —>0

o Ax€EN

Note that B(k) ¢ Qp. We can find a basis e, of Eeé such that the

(k) Q P
matrix of F in this basis is triangular with diagonal entries Ti;

in the proof of the proposition of n°® 5, the right hand side of (%) is also

i

as remarked

equal to the analogous expression, M being replaced by the lattice N in

®B(k) Q

p generated by the e;. But Fle, = ¥ e

1 3 ®p °nd

length N/(Fa“N + q)‘“N) =3 inf(ew( “C;}, Ao ),

This gives w(A) = Zinf(w( 'Ci), A), whence the theorem.

7. Specialization of p-divisible groups,

If S 1is & scheme over Wp’ a p~divisible group G over 3 is a
system (Gn,in) of finite locally free commutative group-schemes over 8, together

with homomorphisms in:Gn-——> Gn+1 with the properties given in Ch. III.
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For each s€ 8, the fibres (Gn) give a p-divisible group Gg.

Theorem (Grothendieck). Let s'€S be a specialisation of s,w (resp w!')

the slope-function of Gy(resp, Gg1). Then (' 3. Equivalently, the Newton-

pelygon of G,, is above the Newton-polygon of G.

Each Ker Fg‘ and each Ker pB idG is a finite locally free commutative

group scheme; moreover
Ker F¥ , Ker pﬁ < Ker psup(o(, 6).
By the following lemma, it follows that
rk{Ker Fg(ﬂ Ker pB idG)s‘ > rk(Ker Fg(\ Ker pB idG)s.

This gives immediately ws'( A) é(.;s( A).

Lemma, Let S be a scheme, Z a finite locally free S-scheme, X and Y two

finite locally free closed subschemes of Z. If s'€8 is & specialisation of

s€ S, then

rk(X r\x)s, > rk(XOY) .

Proof, Take 5 = Spec R affine, Z = Spec A, X = Spec A/I, Y = Spec A/J; then
XNY = Spec A(I +J), But A/T and J are locally free R-modules and A/(I + J)
is the cokernel of the R-linear map (p:J—» A/I. Remark now that the rank of

g does not increase by specialization,

Remark, If G is of height r, then o)s(r) is the dimension of Gs. Hence

wgi1(2) = w (Z); equivalently, the extremities of the Newton polygon are invariant

under specialization,



92

8. Some particular cases,

let G be a p-divisible group (k perfect), The slope sequence of G:
Ay & Ay geee Ay With O€A;, A g1

determines G@k k upto isogeny. We know that G splits as a product GgxG,,

where G, is etale and G, connected. But G is etale (resp. connected) if
and only if A= O (resp A>0). Hence the slopes of G, (resp. G,) are the

A; which are = O (resp.>0).
The Serre dual G' of G has the slope sequence
T=A €= Ay €eve ST -2y
Applying the preceeding decomposition also to G', we find:

Proposition. The p-divisible group G can be uniquely written as a product

G = Ggx E}'XGm,

where the slopes of G, (resp, G, resp. G,) are the slopes of G which are

= 0 {resp £ 0,1, resp = 1),

- By my
In particular, if k =k, then G, = ( G)\p/zp)k > Gy = (g4 (P)) .

/r

Proposition, If G is iSogenous to G;( Gﬁr—t)/r),

(resp, then G is iso-

morphic to it.

Equivalently: if A= 1/r, or (r-1)/r, any F-lattice M in Ek')\

is isomorphic to MZ\ By duality, it is enough to prove the statement for

A= 1/r. Then E;\ has a basis e,,...,e,, with Fe‘ = e, Fey = e3,...,Fer_; =

: m
e, Fer = pe , For each i, let m, = inf{mlp eieﬂ}. Then
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B3y 3 eer 30y 2W ® 05

replacing if necessary the basis (ei) by a basis (F‘"p6 ei)’ we can suppose

-1 : :
that m =m, = ... =m =0, ie, €M and p e, €M, forall i, This

implies MDH;\. Let meM, m#MIZ\; write

m = Zaiei, aieB(k).

[+ 4

There exists o with F“m#:MA, F +1melllf‘; replacing m by F®m, we can

suppose m#H?, meEM, FmGMkm; but

Fxnapane1+ae + ...t 8

182 n—1%n’

hence a.,...,a ;€ Wk), an¢W(k), panﬁ‘.W(k). This implies

ae = Fm- 2ae - a

n®n 182 «-- €Y,

-1

and a contradiction,

Example. If k = k, then any p-divisible group G of height 0,1,2,3 is isomorphic

to one of the following:

0

height O

height 1 : Gg, G,

2 2
height 2 : G, G» G %Gy G1/2'

: 3 2 2 3
height 3 : Go’ GO*GI, GOXGP G}, G1

/3" 72/3

. . s Lo 3 2 2 3 4 2
For height 4, it is isomorphic to Go, GoxG‘, GOKG,, G * G1, GI, Gox G1/2,

2 2
Gy> G, xG1/2, G, * 61/2’ G‘/h’ Gy/,» oOr isogenous to (61/2) .



CHAPTER ¥

p-ADIC COHOMOLOGY OF ABELIAN VARIETIES

k is a field, p = charac {k),

t. Abelian varieties, known facts,

The following facts are known, see Lang's or Mumford's Abelian Varieties.

a) If A is an abelian variety, of dimension g, over k, and @ seees Pp

are endomorphisms of A, then
rk Ker(n1 @ renet nrq’r)

is a polynomial in Boyeeeshy with rational coefficients, homogeneous of degree 2g

(by convention, the rank of & non-finite group is 0).

For instance, rk Ker(n idG) = n28 rk Ker(idG) = n°8,

The characteristic polynomial P of the endomorphism @ is defined by

2z n2g+.

P(n) = rk Ker(@ - n idG) a {~1) «-rk(Ker ¢ ).

b) There exists an abelian variety A', the dual of A, with the following

properties:

1) for any n, Ker{n idh) and Ker(n idh') are Cartier dual of each other,

this duality being compatible with the inclusion and projection

Ker{n idA) —3 Ker{nm idA) —n-) Ker{m idA) y

m
Ker(n idA,k‘-”- Ker{nm idA)e——Ker(m idA‘)'
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2) There exists an isogeny (epimorphism with finite kernel) of A to A',

2, Points of finite order and endomorphisms.

Let A be an abelian variety over k, and fa prime number, For any

n . 2ng
ng mN, Ker( £ idA) is a finite group of rank £ . We define

ML) = Uker( £ 1d,).
n A

= 2g
A(E)Qk k —(@l(zp .
If L4 p, then A(L) 4is an etale formal-group, and we define

H'(A, L) = Homzl(A(Z )8, k, (D.z/zg;
it is a free module of rank 2g over ZC (and also a Galois module).
If 0= p, then A(p) is a p-divisible group, of height 2g. We define
Ht(A,p) = M(A(p)) = Dieudonné module of A(p);
it is an F-lattice over k, and in particular a free module of rank 2g over W(k).

Evidently A+r—» H’(A, €), £ any prime, is & functor. In particular,
any endomorphism (p of the abelian variety A gives rise to an endomorphism
1 .
HI((p, £) of H(A,L). Ve denote by vy the canonical valuation on

Zz(resp. wk) ir £ = p).

Lemma, If (p is an endomorphism of A, then for any prime £, (£#p or L = p),
1

the highest power of { which divides rk(Ker @ ) is £ ve(det H (¢, 1)) .

Eguivalently

\f (rk(Ker ¢ )) = vy (det(H’(C?, 4n.
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We can suppose k is algebraically closed, As we have seen ;Ker (p is the

product of its components of { -torsion:
Ker ¢p = n(Ker PNA(L))
and rk(Ker @NA(L)) is a power of £, hence

A7) (rk Ker @)
rk(Ker (@NA(L)) = R .

For each { , ¢ induces an endomorphism of Hi(A,Z )} and we have an exact sequence

1
W n, ) e Oy 0 ) N0,
where N is of length Ve (det H‘(Cp,[ )).

If f # p, N is the Pontrjagin dual of Ker pNA({ ), hence the

relation., If £ = p, N is the Dieudonné module of Ker @NA(p), and

rk(Ker cP(\A(p)) = plength (%) as we have seen,

Theorem. If p is an endomorphism of A, then, for any ¢ , (£#0p, or £ = p),

we have
rk(Ker @) = det H'(cp, £).
This follows from the preceding lemma, by the method of Mumford, p.181.

Coroilary. If (p is an endomorphism of A, then the characteristic polynomial

of @ is also the characteristic polynomisl of Hl(cp, ) for all £ . It has

integral coefficients,

Because a rational number is integral if it is a Ff-adic integer for

all £ .
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3. Structure of the p-divisible group A{p).

We remark first that A'(p) (A' the dual abelian variety to A) is
canonically isomorphic to the Serre dual of A(p). Because A' and A are
isogenous, this implies that A(p) is isogenous to its Serre dual. Equivalently,

if the slope seguence of A(p) is
A €A \<7\2g,

then 7\i 1,

+ 7\2g~—i =

Remark, If 7\i = :}, then 7\2g-—i = 2;_8., and s + (r -~ s} = r, From these follows

i i
the well-known fact that the dimension of A{p) is g, i.e. rk(Ker F';) = p g,

For instance, if g = 1, then A(p)@k % is isogenous (hence isomorphic)

to either G x G1 or G1/2' More generally:

Proposition, Let A be an abelian variety of dim g, over the algebraically

closed field k. Then A(k) contains at most pg points of order p, Moreover,

the following conditions are equivalent,

1) A(k) contains pB points of order p.

2) A(p) is isomorphic to G5 GE,
g g
3) Ker(p id,tA—> A) is isomorphic to (z/pz)kx(p/ék) .
We have A(p) = ﬁox(ﬁp/z ): 3 the slopes of a° are the 7\i>0, the
p

r
slopes of (Qp/ zp) are the A, = 0, Hence r is the multiplicity of the slope

0, hence also the multiplicity of the slope 1, This implies rgg, and the
equivalence r = g &> the slopes of A(p) are g times O and g times 1.

The proposition follows easily.
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Such an abelian variety is called ordinary.

The theorems of 8 2 and Chapter IV, 8 6 gives

Theorem (Manin). Let k be a finite field with q = pa elements, A an

abelian variety over k,

2g 2
P(T) = ;’ (fl -7 =T 5+...+qn

- a
T 1 € Q p’ the characteristic polynomial of the Frobenius endomorphism FA of A,

Then the slopes of A(p) are w( T) where w 1is the valuation Qp—)@

such that w(q) = 1.

If g=1, i.,e. A 1is an elliptic curve, then

Example,
P(T) = % = Te(F?) + q,

and we find the (easy) statements:

r(F*) = 0 (mod p) &=>A(p) = G /2

Tr(F*) # 0 (mod p) <=> A(p) = G x G, i.e. A is ordinary.
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