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THE MOD-2 CONNECTED KU-HOMOLOGY OF THE

EILENBERG-MACLANE SPACE K(Z2, 2)

DONALD M. DAVIS AND W. STEPHEN WILSON

Abstract. We compute the mod-2 connected KU -homology of
the Eilenberg-MacLane space K(Z2, 2), using a novel Adams spec-
tral sequence analysis.

1. Introduction

Let k(1) denote the connected spectrum for mod-2 complex K-theory, and k(1)∗(−)

the associated reduced homology theory. It is the connected version of the Morava

K-theory K(1). The coefficient ring is k(1)∗ = Z2[v], with |v| = 2, and the mod-

2 cohomology groups as a module over the mod-2 Steenrod algebra A are given by

H∗(k(1)) ≈ A/A(Q1), where Q1 is the Milnor primitive of grading 3. (All cohomology

groups have coefficients in Z2.) By a standard change-of-rings theorem, the Adams

spectral sequence (ASS) converging to k(1)∗(X) hasE2 = ExtE(Q1)(H̃
∗(X),Z2), where

E(Q1) is the exterior algebra over Z2 with single generator Q1. Any E(Q1)-module

H̃∗X splits as F (X)⊕T (X), where F (X) is a free E(Q1)-module, and T (X) a trivial

E(Q1)-module. The E2-term of the ASS converging to k(1)∗(X) consists of filtration-

0 Z2’s annihilated by v, corresponding to an E(Q1)-basis of F (X), and v-towers

{vix : i ≥ 0} for x in a Z2-basis of T (X). See Figure 1.2 for a depiction of two

v-towers.

In this paper, we compute the ASS for k(1)∗(K2), where K2 is the Eilenberg-

MacLane space K(Z2, 2). One reason for doing this, aside from its intrinsic interest,

is to develop methods that might be useful in computing integral complex and real

connective KU - and KO-homology groups ku∗(K(Z2, n)) and ko∗(K(Z2, n)). Partial
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calculations of these were made for small values of n in [3] in order to detect Spin

manifolds with nonzero dual Stiefel-Whitney classes.

We now develop some notation which will be used in stating our result. Let P

denote a polynomial algebra and E an exterior algebra over Z2. For an algebra B,

we let B = I(B) denote the kernel of the augmentation, and for an exterior algebra

E[S], we write E[S] for E[S]. We will show in Section 2 that

ExtE(Q1)(T (K2),Z2) = P [v]⊗ E[x9, x17, x2e , e ≥ 2, x2e+2+2, e ≥ 2],

(1.1)

with |xi| = i and v ∈ Ext1,3
E(Q1)

(Z2,Z2). The bulk of our proof will be in finding the

pattern of differentials among these v-towers. In Figure 1.2, we illustrate our first

differential, d2(x9) = v2x4, using the usual (t − s, s) depiction of the ASS. This will

leave in k(1)∗(K2) a truncated v-tower on x4 of height 2; i.e., nonzero elements x4

and vx4.

Figure 1.2. A differential in the ASS of k(1)∗(K2)
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Let ye = x2e , ze = x2e+2+2, p2 = x9, p3 = x17, and for e ≥ 2, pe+2 = peyeze. Let

Λk,ℓ = E[yi, i ≥ k, zj , j ≥ ℓ].

Let

h(e) =
2e + (−1)e+1

3
+

⌊
e

2

⌋
and h′(e) =

2e+1 + (−1)e

3
−

⌊
e

2

⌋
.

Note that h′(1) = 1, h(2) = h′(2) = 2, h(3) = h′(3) = 4, and for e ≥ 3, h′(e) <

h(e+ 1) < h′(e+ 1). For e = 4, 5, 6, 7, and 8, h(e) is 7, 13, 24, 46, 89, while h′(e) is

9, 19, 40, 82, and 167. One easily establishes, by induction on e, that

|pe| = 2h(e) + 2e + 1. (1.3)

Our main theorem is
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Theorem 1.4. In the v-tower portion of the ASS converging to k(1)∗(K2), whose E2

term was given in (1.1), there are differentials

dh(e)(peM) = vh(e)yeM and dh′(e)(zeM
′) = vh

′(e)yepeM
′

for e ≥ 2, annihilating all v-towers, leaving just v-torsion of the sort described just

before Figure 1.2. Here M is any monomial in E[pe+1] ⊗ Λe+1,e, and M ′ is any

monomial in E[pe+1] ⊗ Λe+1,e+1. Then k(1)∗(K2) consists of the truncated v-towers

just described plus a family of Z2’s annihilated by v, enumerated in Proposition 2.2.

In Table 1, we list the first few generators, including their grading, the v height, and

the gradings of the first four exterior generators with which the v-tower is tensored.

Table 1. First few generators

generator grading v-height M (′) . . .
y2 4 2 8, 16, 17, 18
y2p2 13 2 8, 16, 17, 32
y3 8 4 16, 31, 32, 34
y3p3 25 4 16, 31, 32, 64
y4 16 7 32, 59, 64, 66
y4p4 47 9 32, 59, 64, 128
y5 32 13 64, 113, 128, 130

It was shown in [4, Appendix], building on [6], that, for the first periodic MoravaK-

theory K(1), one has K(1)∗(K2) = 0. This is just the v-localization of our k(1)∗(K2),

and so is equivalent to the fact that no infinite v-towers survive. Our proof does not

use the fact that K(1)∗(K2) = 0, and thus gives a new proof of this, relying just on

ASS manipulations. This also follows from [1], where they show KU∗(K2) = 0.

Although it was [3] that motivated this paper, the known result thatK(1)∗(K2) = 0

and the small size of H∗(K2) inspire a search for the differentials in the Atiyah-

Hirzebruch spectral sequence (AHSS) that annihilate everything. The second author

attempted to find these differentials periodically for decades. The ASS differentials

dr that we find in this paper are the same as the AHSS differentials d2r+1 (the proof

is the same) and solves the problem.
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2. Determining E2

In this section, we compute the E2 term of the ASS converging to k(1)∗(K2). It

is well-known ([7]) that H∗(K2) is a polynomial algebra on elements u2i+1 for i ≥ 0

defined by

u2 = ι2, u3 = Sq1 ι2, u5 = Sq2 Sq1 ι2, u9 = Sq4 Sq2 Sq1 ι2, . . . .

We have Q1u2 = u5, Q1u3 = u2
3, Q1u5 = 0, and for i ≥ 1,

Q1u2i+2+1 = (Sq3+Sq2 Sq1) Sq2
i+1

Sq2
i

· · ·Sq1 ι2

= Sq2
i+1+3 Sq2

i

· · ·Sq1 ι2 + Sq2
i+1+2 Sq2

i+1(Sq2
i−1 · · ·Sq1 ι2)

= 0 + (Sq2
i−1 · · ·Sq1 ι2)

4 = u4
2i+1.

Let TPn[x] = P [x]/xn. From the Q1-action just described, we easily obtain that

H∗(K2) = T (K2)⊗ F ′(K2), where

T (K2) = P [u2
2]⊗ TP4[u9 + u3

3]⊗ TP4[u17 + u2u
3
5]⊗

⊗

i≥5

E[u2
2i+1] (2.1)

is a trivial E(Q1)-submodule of H∗(K2), corresponding to the homology of H∗K2

with respect to the differential defined by the Q1-action, and

F ′(K2) = (E[u2]⊗P [u5])⊗ (E[u3]⊗P [u2
3])⊗

⊗

i≥3

(E[u2i+2+1]⊗P [u4
2i+1])

satisfies that F ′(K2) is a free E(Q1)-submodule. Then F (K2) = F ′(K2)⊗T (K2), and

we obtain the following result for the filtration-0 Z2’s in k(1)∗(K2) annihilated by v,

which we mostly ignore.

Proposition 2.2. The Poincaré series for the filtration-0 Z2’s in k(1)∗(K2) annihi-

lated by v is PF ′ · PT , where

PF ′ =
1 + x2

1− x5
·

1

1− x6
·
∏

i≥5

1 + x2i+1

1− x2i+4
−

1

1 + x3

and

PT =
1

1− x4
·
1− x36

1− x9
·
1− x68

1− x17
·
∏

i≥5

(1 + x2i+1+2).

Proof. The formula for PF ′ is obtained from the Poincaré series for all of F ′ divided

by (1 + x3).
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The product structure of Ext0E(Q1)(T (K2),Z2) will be important in studying the dif-

ferentials in the ASS. This is just the Z2-dual (T (K2))
∗. The H-space multiplication

of K2 makes H∗K2 and H∗K2 into dual Hopf algebras, and H∗K2 is an exterior alge-

bra, as it is dual to the primitively-generated polynomial algebra H∗K2. The action

of Q1 makes these into dual differential Hopf algebras, and by [2, Lemma 4.5] their ho-

mologies with respect to this differential are also dual Hopf algebras. Thus (T (K2))
∗

is a Hopf algebra which is a subquotient of the exterior algebra H∗K2. Since exterior

algebras over Z2 are characterized by the property that squares of nonunits are 0, a

subquotient of an exterior algebra is an exterior algebra. Hence Ext0E(Q1)
(T (K2),Z2)

is an exterior algebra, and, counting generators in (2.1), we obtain (1.1).

3. Differentials

In this section we establish the differentials in the ASS for k(1)∗(K2), which were

stated in Theorem 1.4. Our proof will use the following lemmas.

Lemma 3.1. In an ASS in which Er = P [v] ⊗ E[x, y] ⊗ B, for some algebra B,

suppose dr(x) = vry. Then dr(y) = 0, dr(xy) = 0, and, after the differential, the

v-tower part remaining is P [v]⊗E[xy]⊗ B. In Er+1, xy is not a product class.

Proof. If dr(y) = vrz 6= 0, we would have dr(dr(y)) = v2rz 6= 0, contradicting d2r = 0.

Since dr is a derivation, dr(xy) = vry2, but y2 = 0. The statement about what

remains after the differential is true even if there are additional dr-differentials in B,

since we can consider the differentials as being filtered.

Lemma 3.2. In the ASS whose E2-term was given in (1.1), x2e is an infinite cycle,

and vix2e must be hit by a differential for some i ≤ 2e−1.

Proof. Let f : CP∞ → CP∞ denote the H-space squaring map, and g : CP∞ → K2

correspond to the nonzero element ofH2(CP∞;Z2). The composite g◦f is trivial, and

so g∗ : k(1)∗(CP∞) → k(1)∗(K2) sends all elements in im(k(1)∗(CP∞)
f∗
−→ k(1)∗(CP∞))

to 0. Let βi ∈ k(1)2i(CP∞) be dual to yi, where y generates k(1)∗(CP∞). By [5,

Theorem 3.4], f∗(β2i) = viβi. Thus vig∗βi = g∗(v
iβi) = 0. Since g∗βi is dual to ui,

and x2e is dual to u2e−1

, we obtain that g∗(β2e−1) = x2e , hence v2
e−1

x2e = 0.
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The remainder of this note is devoted to the proof of Theorem 1.4. The novelty of

the proof is using higher differentials to deduce lower differentials. We need to get

some terminology straight before we proceed. We sometimes write V x to mean vix

for some i. We write Er for the pages of the ASS, ignoring v-torsion. For example,

by (1.1), we start with E2 = P [v]⊗E[p2, p3]⊗Λ2,2, which ignores all of the elements

on the zero line killed by multiplication by v1. When we have dr(y) = vrx, both the y

and x are not in Er+1. Our preference is to think in terms of reduced groups, ignoring

the v-tower on 1, so that our computations eventually kill all v-towers, but it is just

as well to leave the v-tower on 1 there.

The following series of statements will be proved by induction. They imply Theorem

1.4.

Eh′(e−1)+1 = P [v]⊗E[pe, pe+1]⊗ Λe,e (1, e)

dh(e)(pe) = vh(e)ye (2, e)

Eh(e)+1 = P [v]⊗ E[yepe, pe+1]⊗ Λe+1,e for e ≥ 4 (3, e)

dh′(e)(ze) = vh
′(e)yepe (4, e)

Before we move on to the proof, we provide an overview of how it will go.

The only differentials possible go from v-towers to v-towers. Once v-torsion is

created, its generator cannot be a differential source and its truncated tower is too

short to be the target of a differential.

Our inductive proof loosely deals with some of the lowest degree elements remaining

at each stage. Two differentials of different degree are forced on us each time, namely

dh(e+2)(pe+2) = vh(e+2)ye+2, (2, e+2), and dh′(e) = vh
′(e) = vh

′(e)yepe, (4, e). Since these

must happen, the involved elements cannot be sources or targets of lower degree

differentials. This is important, because, in principle, some differential could be

happening in some very high degree. If this happened, the Er we describe would be

incorrect and we would need some subquotient of our description instead. However,

as our induction proceeds and we eventually get to that high degree, our results are

forced and we see that this could not have happened. Because this possibility does
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not happen and our proof shows it, we will ignore it and write the Er as it really is

without the fuss of the possibility that does not happen.

The derivation property of Adams differentials implies that the differentials respect

products. The only minor concern for that comes early with e = 2 and 3, due to the

fact that h(2) = h′(2) and h(3) = h′(3), where dh(e)(peze) = vh(e)(yeze+peyepe) = yeze,

since p2e = 0.

We propose to prove our result using induction from the following statements:

(1, e) and (2, e) ⇒ (3, e)

(3, e) and (2, e+ 1) ⇒ (2, e+ 2) and (4, e)

(3, e) and (4, e) ⇒ (1, e+ 1)

We begin knowing statement (1, 2), which is just our E2. By Lemma 3.2, V y2

must be hit by a differential from an odd-dimensional class (abbr. “hit by an odd

class”) of grading ≤ 9. The only such class is p2, so we obtain d2(p2) = v2y2, which is

statement (2, 2). Using Lemma 3.1, we deduce a subquotient version of (3, 2). Note

that (3, 2) is not valid because h′(2) = h(2), so there is a second d2-differential. A

similar situation happens when e = 3. Since h′(3) = h(3), (3, 3) is only true as a

subquotient because (4, 3) gives a second d4-differential. By Lemma 3.2, V y3 must be

hit by an odd class of grading ≤ 17. By Lemma 3.1, it cannot be d2(y2p2). Therefore

it must be d4(p3) = v4y3. This gives (2, 3).

That started our induction.

The first and third induction statements follow directly from Lemma 3.1, together

with our earlier remarks that there cannot be extraneous differentials. The sec-

ond line is the heart of the proof. By (3, e) we are working with generators in

E[yepe, pe+1] ⊗ Λe+1,e. If we applied (2, e + 1) to this, Lemma 3.1 would give us

v-towers on E[yepe, ye+1pe+1] ⊗ Λe+2,e. By Lemma 3.2 and the derivation property,

V ye+2 must be hit by an odd generator x with 2e+2 + 5 ≤ |x| ≤ 2e+3 + 1. Only one

of the two odd degree generators, ye+1pe+1, is in this range, but by Lemma 3.1 and

(2, e + 1), dh(e+1)(ye+1pe+1) = 0, and this is exactly the differential that would be

required to hit V ye+2. We still need an odd generator in the appropriate range. The
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only way to get this is using Lemma 3.1 and the differential (4, e). This creates a

generator yepe · ze = pe+2, enabling the differential (2, e+ 2).
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