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Abstract. We give a unified approach to the Isomorphism Conjecture of Farrell and Jones on the
algebraick - and L-theory of integral group rings and to the Baum—Connes Conjecture on the
topologicalK -theory of reduced *-algebras of groups. The approach is through spectra over the
orbit category of a discrete group. We give several points of view on the assembly map for a
family of subgroups and characterize such assembly maps by a universal property generalizing the
results of Weiss and Williams to the equivariant setting. The main tools are spaces and spectra over
a category and their associated generalized homology and cohomology theories, and homotopy
limits.
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0. Introduction

Glen Bredon [5] introduced therbit categoryOr(G) of a groupG. Objects are
homogeneous spacés H, considered as lef-sets, and morphisms aéemaps.
This is a useful construct for organizing the study of fixed sets and quotiefis of
actions. IfG acts on a seX, there is the contravariant fixed point functonGy —
SETS given byG/H +— X" = map;(G/H, X) and the covariant quotient space
functor OG) — SETS givenbyG/H + X/H = X xg G/H. Bredon used the
orbit category to define equivariant cohomology theory and to develop equivariant
obstruction theory.

Examples of covariant functors from the orbit category of a discrete gédup
to Abelian groups are given by algebrakttheory K; (ZH), algebraicL-theory
Li(ZH), and thek -theoryK \°>(C# (H)) of the reduced*-algebra offl . In Section
2, we express each of these as the composite of a funct@r)Or— SPECTRA
with the ith homotopy group. We use these functors to give a clean formulation
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of some of the main conjectures of high-dimensional topology: the Isomorphism
Conjecture of Farrell-Jones [15] (which implies the Borel/Novikov Conjecture) and
the Baum—Connes Conjecture in the case of discrete groups.

Our motivation was in part to obtain such a formulation and in part to set the stage
for explicit computations based on isomorphism conjectures. We give computations
of K- andL-groups of group rings in a separate paper [8]. Our formulation is used by
Kimberly Pearson [27] to show that the Whitehead groug@jrand the reducef o-
group Ko(ZG) vanish for two-dimensional crystallographic groups. We also hope
our formulations will prove useful in the further study of isomorphism conjectures
and in the related study of manifolds admitting metrics of positive scalar curvature.

Sections 1, 3, 4 and 7 contain foundational background, independent of assembly
maps and algebraik -theory. Section 2 is devoted fo-theory, and Sections 5 and 6
to assembly maps. More precisely, in Section 1 we discuss the adjointness of mapping
spaces and tensor (or balanced) products over a category, as well as the notions of
spaces and spectra over a category. In Section 2, we define our three main examples
of Or(G)-spectrak @9, L, andK °P. (These are all nonconnective spectra; they have
homotopy groups in negative dimensions.) They are all defined by first assigning to
an objectG/H, the transformation groupoi/H, whose objects are elements of
G/H, and whose morphisms are given by multiplication by a group element, and
then assigning a spectrum to a groupoid. In k&°-case there is an intermediate
step of considering th€*-category of a groupoid and a spectrum af&category,
derived from Bott periodicity.

In Section 3 we discuss freEéW-complexes over a categotgy the universal
free CW-complexEC over a categorg, and homotopy (co)-limit¥£C ®. X of a
C-spaceX. The ideas here are well-known to the experts (see, e.g., [11]), but our
approach, relying on homological methods and avoiding simplicial methods, may
appeal to an algebraist. By approximating-apaceX by a freeC-C W-complex,
we define in Section 4 homology¢ (X; E) and cohomologyH? (X; E) of a space
X with coefficients in a&-spectrumE. We give an Atiyah—Hirzebruch type spectral
sequence for these theories.

With regard to the assembly maps arising in the Isomorphism Conjectures, we give
three points of view in Section 5. L&t be a family of subgroups af, closed under
taking subgroups and conjugation. LEtOr(G) — SPECTRA be a covariant
functor. We define a functor

Ey: G-SPACES— SPECTRA
by settingEo(X) = (G/H — X1, ®orc) E. Thenm, (Eg (X)) is an equivariant
homology theory in the sense of Bredon [5]. LEetG, F) be the classifying space

for a family of subgroups of, i.e. it is aG-C W-complex so thaiz (G, )7 is
contractible for subgroupH in F and is empty forH not in 7. The map

7By (E(G, F)) — m:Ex%(G/G)



SPACES OVER A CATEGORY AND ASSEMBLY MAPS IN ISOMORPHISM CONJECTURES203

given by applyind=y, to the constant map and then taking homotopy groups is called
the (E, 7, G)-assembly mapNe say the(E, F, G)-isomorphism conjecturkolds

if the (E, F, G)-assembly map is an isomorphism. When= 1C, the family of
virtual cyclic subgroups of, (i.e. H € VC if and only if H has a cyclic subgroup

of finite index), the isomorphism conjectures of Farrell-Jones [15] for algebraic
K - and L-theory are equivalent to th& 29, 1C, G)- and (L, W, G)-isomorphism
conjectures, wherk @9 andL (= L(~>°)) are O(G)-spectra associated to algebra-
ic K- and L-theories. WherF = FIV, the family of finite subgroups of;, and
K™P is the OKG)-spectra associated with thHe-theory of C*-algebras, then the
(K'P F7N, G)-Isomorphism Conjecture is equivalent to the Baum—Connes Con-
jecture for the discrete grou@ (see Section 5). Whef = 1, the family consisting
only of the trivial subgroup o6, then the(K29, 1, G), (L, 1, G), and(K'™°P, 1, G)-
assembly maps can be identified with mals(BG; K39(Z)) — K.(ZG),
H.(BG;L(Z)) —> L.(ZG), andH,(BG; K'P(C)) — K\P(CFG).

We give three variant ways of expressing (e F, G)-assembly map: by approx-
imating E by Eo, as above, in terms of homotopy colimits, and in terms of a gener-
alized homology theory over a category. The first definition is the quickest and leads
to an axiomatic characterization; the last two are well-suited for computations.

Let Or(G, F) be the restricted orbit category, where the objects@af#& with
H € F.The(E, F, G)-assembly map is equivalent to the map

. (hocolimE) — m.(hocolimE)
OK(G,F) or(G)
induced by the inclusion of the restricted orbit category in the full orbit category.
SinceE (G, F) is only defined up t@5-homotopy type, it is natural for us to define
homotopy limits and colimits as a homotopy type, rather than a fixed space or spectra;
we take this approach in Section 3.

Given a family 7 of subgroups oiG, define the O¢G)-space{x}r to be the
functor which send&;/H to a point if H is in F and to the empty set otherwise.
Let {x} be the trivial O(G)-space, which sends/H to a point for allH. The third
point of view is to identify thgE, 7, G)-assembly map with the map

HO"O ({x} 1 E) — HO"O ({x}; E)

induced by the inclusion map of QF)-spaces{*} —> {x}.
Section 6 gives a characterization of assembly maps, generalizing that of Weiss—
Williams [42] to the equivariant setting. Associated to a homotopy invariant functor

E: G-SPACES— SPECTRA
we define a new functor

E”: G-SPACES—> SPECTRA
and a natural transformation

AE”® — E,
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whereA(G/H) is a homotopy equivalence for all orbits/ H. HereE” is the ‘best
approximation’ of by an excisive functor, in particular, (E”(X)) is an equivariant
homology theory. Whe&(X) = K9(TI(EG x X)) whereIl is the fundamental
groupoid, then the map, (A(E (G, F))) is equivalent to theK 39, 7, G)-assembly
map. (We defin& @9 of a groupoid in Section 2.) An analogous statement holds for
L-theory and for the topologic& -theory ofC*-algebras. This gives a fourth point
of view on assembly maps.

In Section 7 we make explicit the correspondence betwgspaces and Q6)-
spaces which has been implicit throughout the paper.

We thank Erik Pedersen for warning us about two pitfalls related to the spectra
of algebraickK - and L-theory and Stephan Stolz for discussions on the material of
Section 2.

1. Spaces and Spectra over a Category

This section gives basic definitions and examples of spaces and spectra over a small
(discrete) category and discusses the adjointness of the tensor product and mapping
space. Our main example féris due to Bredon [5]:

DEFINITION 1.1. LetG be a group andr be afamily of subgroupsi.e. a non-
empty set of subgroups @ closed under taking conjugates and subgroups. The
orbit categoryOr(G) has as objects homogenedirsspacess;/ H and as morphisms
G-maps. Theorbit categoryOr(G, F) with respect taF is the full subcategory of
Or(G) consisting of those objects/ H for which H belongs tar. O

Examples of familiesar& = {H c G | X +# () foraG-spaceX, the finite sub-
groups ofG, and the virtually cyclic subgroups ¢f. Notice that the automorphism
group of an objecG/H can be identified with the Weyl groufy (H) = N(H)/H.
Furthermore, ifH is finite, then any endomorphism 6f/H is invertible, but not
in general [23, Lemma 1.31 on page 22]. We will always work in the category of
compactly generated spaces (see [37] and [43, 1.4]).

DEFINITION 1.2. Acovariant(contravarian) C-spaceX over the categorg is a
covariant (contravariant) functor

X:C — SPACES

from C into the category of compactly generated spaces. A map betgvepaces
is a natural transformation of such functors. GivespacesX andY, denote by
home (X, Y) the space of maps étspaces fronX to Y with the subspace topology
coming from the obvious inclusion imﬁceOb(c) map X (c), Y (c)). O

Likewise we can define @&set and arRC-module. For a ring?, a RC-module is
a functorM from C to the category oR-modules. For twaRC-modulesM and N
of the same variance, hgg(M, N) is the Abelian group of natural transformations
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from M to N. We can form kernels and cokernels, so the categoRCemodules is
an Abelian category, and thus one can use homological algebra toRfudpdules
(see [23)]).

Let G be a group. Let 1 be the family consisting of precisely one element, namely
the trivial group. Then QIG, 1) is a category with a single object, ad#ican be
identified with the set of morphisms by sending G to the automorphisrg /1 —
G/1which mapg’ to g’g 1. A covariant (contravariant) @6, 1)-space is the same
as a left (right)G-space. Maps of QIG, 1)-spaces correspond G-maps. For a
different example of an orbit category, & be the cyclic group of order for a prime
numberp. A contravariant OfZ,)-spaceY is specified by &.,-spaceY (Z,/{1}), a
spaceY (Z,/7Z,), and a mag (Z,/Z,) — Y (Z,/{1})%.

EXAMPLE 1.3. LetY be a leftG-space and® be a family of subgroups. Define the
associatedontravariantOr(G, F)-spacemap; (—, Y) by

map; (—, ¥):Or(G, F) — SPACES G/H ~ map;(G/H,Y) =Y. O

The tensor product of a contravariaitspace with a covariarit space yields a
topological space.

DEFINITION 1.4. LetX be a contravariant and be a covariant-space. Define
theirtensor producto be the space

X@ Y= [] X xY(@©)/~
ceOb(c)

where~ is the equivalence relation generated By, y) ~ (x, ¢y) for all mor-
phisms¢:c —> d in C and pointsx € X(d) andy € Y(c¢). Herex¢ stands for
X(¢)(x) andgy for Y (¢)(y). U

The tensor product and the hom space are called the coend and end constructions
in category theory [24, pages 219 and 222]. A lot of well-known constructions are
special cases of it.

Recall that the category of covariant (contravariant)@rl)-spaces is the cate-
gory of left (right) G-spaces. The balanced produttx ; Y of a right G-spaceX
and of a leftG-spaceY’ can be identified with the tensor produttorg,1) Y. The
mapping space mayX, Y) of two left (right) G-spacesX andY can be identified
with hon'br(G,]_) (X,Y).

The main property of the tensor product is the following.

LEMMA 1.5. Let X be a contravariant-space,Y be a covariantC-space andZ
be a space. Denote bwap(Y, Z) the obvious contravarianf-space whose value
at an objectc is the mapping spaamap(Y (¢), Z). Then there is a homeomorphism
natural in X, Y andZ

T=T(X,Y,Z):mapX ®c Y, Z) — hom(X, mapy, Z2))
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Proof. We only indicate the definition of . Given a mapg: X ®: ¥ — Z,
we have to specify for each objecin C a mapT (g)(c): X(¢) — mapY (c), Z).
This is the same as specifying a mjc) x Y(c) — Z which is defined to be the
composition ofg with the obvious map fronX (¢) x Y(c) to X ®¢ Y. O

In particular, Lemma 1.5 says that for a fixed covariérgpaceY the functor
—-®cY from the category of contravariagtspaces to the category of spaces and
the functor magy, —) from the category of spaces to the category of contravariant
C-spaces are adjoint. Similarly ¥ is a covariantRC-module, then there is adjoint
to homg¢ (N, —), namely the tensor product &C-modules— Qg¢ N (see [10, p.

79], [23, p. 166]). Many properties of these products can be proven via the adjoint
property, rather than referring back to the definition. These products are reminiscent
of the analogous situation of a rigRtmoduleX, a left R-moduleY and an Abelian
group Z, the tensor produck ®p Y, the R-module homg (Y, Z). Here there is a
natural adjoint isomorphism

homy (X ®r Y, Z) — homg (X, homy (Y, Z)).

LEMMA 1.6. Let X be a space and let¥ and Z be covariant (contravariant}-
spaces. LetX x Y be the obvious covariant (contravarianfyspace. There is a
homeomorphism, natural i, Y, andZ

T(X,Y,Z):hom(X x Y,Z) — mapX, home(Y, Z2)). O

EXAMPLE 1.7. LetA be the category of finite-ordered sets, i.e. for each nonnegative
integer p we have an object]] = {0,1,..., p} and morphisms are monotone
increasing functions. Aimplicial spaceX. is by definition a contravaria®t-space
and acosimplicial spacés a covarianiA-space. Asimplicial setis a contravarianA-
set. It can be considered as a simplicial space by using the discrete topology. Define a
covariantA-spaceA . by assigning to p] the standarg)-simplex and to a monotone
function the obvious simplicial map. Given a topological sp#¢cehe associated
simplicial setS.Y is given by mapA ., Y),. (The subscripd indicates that we equip
this mapping space with the discrete topology, in contrast to the usual convention.)
The geometric realizationX.| of a simplicial spaceX. is the spac&X. ®a A.. The
geometric realization of a simplicial set has the structure 6#a-complex where
each nondegeneragesimplex corresponds topa-cell.

We get from Lemma 1.5 that these two functors are adjoint, i.e. for a simplicial
spaceX. and a spacé there is a natural homeomorphism

T(X.,Y):map|X.|,Y) — hom(X., S.Y).

In particular, we get for a spadéthe natural map given by the adjoint of the identity
ons.Y

1(Y):1S.Y] — ¥
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which is known to be a weak homotopy equivalence. Her(@g is a functorial
construction of aC W-approximation of the spacB. For more information about
simplicial spaces and sets we refer, for instance, to [4, 7, 22, 25]. O

Next we introduce spectra over a categért et SPACES be the category of
pointed spaces. Recall that objects are compactly generated spaséh base
points for which the inclusion of the base point is a cofibration and morphisms are
pointed maps. We define the category SPECTRA of spectra as follogge&rum
E ={(E®),o(n)) | n € Z}is asequence of pointed spa¢&sn) | n € Z} together
with pointed maps callestructure maps (n): E(n) A S — E(n+ 1). A (strong
map of spectra (sometimes also called function in the literattire&) — E’ is a
sequence of mapg(n): E(n) — E’(n) which are compatible with the structure
mapso (n), i.e. we havef (n+1) oo (n) = o'(n) o (f(n) Aidg) foralln € Z. This
should not be confused with the notion of map of spectra in the stable category (see
[1, 11.2]). Recall that the homotopy groups of a spectrum are defined by

i (E) = colimy oo ik (E (k)

where the system; . (E (k)) is given by the composition

o (k)x
ik (E(k)) 5 itk 1(E() A ST — i1 (E(k + 1))

of the suspension homomorphism and the homomorphism induced by the structure
map. Aweak homotopy equivalencd spectra is a map:E — F of spectra
inducing anisomorphism on all homotopy groups. A specthistalled2-spectrum
if for each structure map, its adjoit(n) — QE(n + 1) = mapSt, Em +
1)) is a weak homotopy equivalence of spaces. We denot®-5yP ECT RA the
corresponding full subcategory SPECTRA.

A pointedC-space resp. ac-spectrum resp.C-Q-spectrum is a functor from
C to SPACES, resp. SPECTRA, res2-SPECTRA. We have introduced tensor
product ofC-spaces in Definitions 1.4 and mapping spacesgpaces in Definition
1.2. These notions extend to pointed spaces, one simply has to replace disjoint unions
11 and Cartesian produdf$ by wedge products and smash productsand mapping
spaces by pointed mapping spaces. All the adjunction properties remain true. Any
C-spaceX determines a pointe@-spaceX; = X | [{*} by adjoining a base point.
Here{x} denotes @-space which assigns to any object a single point. Itis called the
trivial C-space

A C-spectrunk can also be thought of as a sequef€é:) | n € Z} of pointedC-
spaces and the structure maps as maps of paingpdices. With this interpretation it
is obvious what theensor product spectrui® E of a contravariant pointeétspace
and a covarianf-spectrum means. The canonical associativity homeomorphisms

(X ®c Em) A ST — X ®c (E(n) A SH

are used in order to define the structure maps. Itis given on representatives by sending
(x®ce)Aztox®c (enz). More abstractly, itis induced by the following composition
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of natural bijections coming from various adjunctions whgris a pointed space
map((X ®c E(n)) A S, Z) —> map(X ®c E(n), map(St, Z)) —
hom (X, map(E(n), map(st, Z))) — home (X, map(E (n) A SL, Z))
—> mapX ®c (E(n) A SY), 2).

Similarly one defines themapping space spectrunom. (X, E) of a pointed’-space
X and aC-spectrumE using the canonical map of pointed spaces (which is not a
homeomorphism in general)

home (X, E(n)) A ST — home (X, E(n) A S1).

This map assigns to A z the map ofc-spaces fronX to E(n) A ST which sends
x € X(c)top(c)(x) Az € En)(c) AStforc e Ob(C).

A homotopy of maps of spectfg: E — Fisamap of spectr& [0, 1]+ AE —

F whose composition with the inclusigp:E — [0, 1]+ AE, ek Aels f;
fork =0, 1.

Let C andD be two categories. B-D-spaceis a covariant x D°P-space where
DPis the opposite ab which has the same objectsasnd is obtained by reversing
the direction of all arrows i®. This is the analogue of B-S-bimodule for two rings
RandS. Let F:C —> D be a covariant functor. We gefaC-space moy (F (?), ?9
where we use the discrete topology on the set of morphisms. Here ? is the variable in
C and ??is the variable ib. Analogously one definestaD-space mo (?? F(?)).

DEFINITION 1.8. Given a covariant (resp. contravariadtspaceX, define the
induction of X with F to be the covariant (resp. contravariabtspace

FieX =morp(F(?),?) Q¢ X
respectively
F.X = X ® morp(?? F(?)
and thecoinduction ofX with F to be the covariant (resp. contravariabtspace
FiX = homg(morp (?2 F(?)), X)
respectively
Fi X = home(morp (F(?), ?9, X).

Given a covariant (contravariar®}spacel’, definethe restriction ofY’ with F to be
the covariant (contravarianf}spaceF*Y =Y o F. O

There are corresponding definitions tsets andRC-modules (see [10, p. 80],
[23, p. 166] for induction of modules). For exampleMfis a covarianiRC-module,
thenF,M = Rmorp(F(?), ?? Qrc M, where for a sef the notationk S is the free
R-module generated by the s&fThe key properties of (co)-induction and restriction
are the following adjoint properties.
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LEMMA 1.9. There are natural adjunction homeomorphisms

homp(F.X,Y) — home(X, F*Y);
home (F*X,Y) — homp(X, FiY);
F,X®pY — X ® F*Y;
Y ®@p Fu. X — F*Y ®@¢ X;

for aC-spaceX andD-spaceY of the required variance.
Proof. Notice for a covarianD-spaceY that there are natural homeomorphisms
of covarianiC-spaces

morp(?2 F(?) ®p Y — F*Y — homp (morp(F(?), 29, Y)

and analogously for contravariarit Now the claim follows from the adjointness of
tensor product and hom and the associativity of tensor product. O

2. K- and L-Theory Spectra over the Orbit Category

In this section we construct the main examples of spectra over the orbit category

K% Or(G) — Q-SPECTRA
L:Or(G) — Q-SPECTRA
K©P: Or(G) —> Q-SPECTRA

These functors are necessary for the statements of the various Isomorphism Conjec-
tures. First we outline what we would naively like to do, explain why this does not
work and then give the details of the correct construction.

The three functors defined over the orbit category will be related to the more
classical functors

K29 RINGS —> Q-SPECTRA
L:RINGS™ — Q-SPECTRA
KoP: c* ALGEBRAS —> Q-SPECTRA

where RINGSV is the category of rings with involution. The classical functors were
defined by Gersten [17] and Wagoner [39] for algebraitheory, by Quinn—Ranicki

[33] for algebraicL-theory, and by using Bott periodicity far*-algebras (see [40]

for a discussion of Bott periodicity faf *-algebras and also the end of this section
for a functorial approach). The homotopy groups of these spectra give the algebraic
K -groups of Quillen—-Bass, the surgery obstructiogroups of Wall, and the topo-
logical K -groups ofC*-algebras. These are all nonconnective spectra; the homotopy
groups in negative dimensions are nontrivial Zstheory our notation is an abbre-
viation forL = LU for j € Z II {—o0}, j <2, where the superscript refers to
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the K -theory allowed. We would like our functors defined on the orbit category to
have the property that the spec&'9(G/H), L(G/H) andK™°P(G/H) have the
weak homotopy type of the speck&'9(ZH), L (ZH) andK'°P(C* H), respective-

ly, whereZH is the integral group ring and; H is the reduced *-algebra ofH
(see [29] for a definition). We would also like our functor to be correct on mor-
phisms. Notice that a morphism fro/ H to G/K is given by right multiplication

re: G/H — G/K,g'H + g'gK providedg € G satisfiess ™ Hg c K. The
induced homomorphism,: H — K,h — g thg gives a map of rings (with
involution) from ZH to ZK, and, at least if the index af,(H) in K is finite, a
map on reduced *-algebras. We would like the functors applied to the morphism
rg in the orbit category to match up with the ‘classical’ functors on rings, rings with
involution, andC*-algebras.

The naive approach is defiké®9(G/H), L (G/H) andK™P(G/H) as the spec-
traK@9(zZH), L(ZH) and K'°P(C* H), respectively. This definition works fine for
objects, but fails for morphisms. The problem is thah ¢, is not unique, because
for anyk € K, clearly g and gk define the same morphism in the orbit catego-
ry. Hence this definition makes sense onlyjif K — K induces thedentity
on the various spectra associatedktoThis is actually true on the level of homo-
topy groups, but not on the level of the spectra themselves. However, it is important
to construct these functors for spectra and not only for homotopy groups of spec-
tra in order to deal with assembly maps and the various Isomorphism Conjectures.
Thus we must thicken up the spectra. The problems with constructing the functor
K©P: C*-ALGEBRAS — Q-SPECTRA are particularly involved. P. Baum and J.
Block, and P. Baum and G. Comezana have approaches to this construction, quite
different from ours.

The general strategy for a solution of this problem is the following. Let
GROUPOIDS be the category of (discrete) groupoids with functors of groupoids
as morphisms. (A groupoid is a small category, all of whose morphisms are iso-
morphisms.) Let GROUPOID% be the subcategory consisting of those functors
F:Go —> @1 which are faithful, i.e. for any two objects, y in Gg the induced
map mog,(x, y) —> morg, (F(x), F(y)) is injective. In the first step one defines a
covariant functor

GR:0r(G) — GROUPOIDSY

from the orbit category to the category of groupoids as follows. AdeftetS defines
a groupoidS where Ol§S) = S and fors, t € S, mor(s, 1) = {g € G | gs = t}. The
composition law is given by group multiplication. Obviously a map of gfsets
defines a functor of the associated groupoids. The categoHyis equivalent to the
category O¢H, 1) = H and hences/H can serve as a substitute for the subgroup
H.

Next one extends the definition of the algebr&ie and L-theory spectra of the
integral group ring of a group and the topologigatheory spectrum of the reduced
C*-algebra of a group to the category of groupoids. The composition of this extension
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with the functorG R above yields covariant functors from the orbit category to the
category of spectra. We will see that their value at each olgj¢éf is homotopy
equivalent to the corresponding spectrum associated. tbhe main effort is now

to construct these extensions to the category of groupoids, which will be denoted in
the same way as the three functors we want to construct:

K 39: GROUPOIDS—> Q-SPECTRA
L:GROUPOIDS—> Q-SPECTRA
K °P: GROUPOIDYY — Q-SPECTRA

For this purpose we must introduce some additional structures on categories. Recall
that a categorg is smallif the objects inC form a set and for any two objectsand
y the morphisms fromx to y form a set. In the sequel all categories are assumed to
be small. We will recall and introduce additional structure€on

Let R be a commutative ring with unit. We calla R-categoryif for any two
objectsx and y the set mag(x, y) of morphisms fromx to y carries the struc-
ture of aR-module such that composition induce®ailinear map mog(x, y) x
more(y, z) —> more(x, z) for all objectsx, y andz in C.

Suppose thak comes with an involution of ringR — R, r > r. A R-category
with involutionis a R-categoryC with a collection of maps

*y,y. MOl (x, y) —> mMore(y, x) x,y,€ 0bC)
such that the following conditions are satisfied:

Loy yh - f 4+ -8 = A-key(f) + L %xy(g) forall A, u € R, objects
x,y € Ob(C), and morphismg, g:x —> y;

2. %y y 0%y ¢ = id for all objectsx, y € Ob(C);

3. #x (g 0 f) = *xy(f) ox*,.(g) forall x,y,z € Ob(C) and all morphisms
fix — yandg:y — z.

In the sequel we abbreviate. ,(f) by f*. In this notation the conditions above
become(rf + ug)* = A f* + ag*, (f*)* = fand(go f)* = f* o g*.

We call aR-category (with involution) amdditive R-category(with involution
if it possesses a sum and the obvious compatibility conditions with tlRemodule
structures (and the involution) on the morphisms are fulfilled.

The notion of aC*-category was defined by Ghez—Lima—Roberts [18] and we
give the definition below in our language. Equip the complex numbers with the
involution of rings given by complex conjugation.&*-categoryC is aC-category
with involution such that for each two objectsy € Ob(C) there is a nornmj| ||,
on each complex vector space mor, y) such that the following conditions are
satisfied:

1. (more(x, y), || llx,y) is @ Banach space for all objeatsy € Ob(C);
2. llgofllx,z=<Ilgllyz-Il fllx,yforallx, y, z € Ob(C) and allmorphismg: x — y
andg:y — z;
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3. 1f*o fllxx = I 12, forall x, y € Ob(C) and all morphismg: x — y;
4. For everyf € morg(x, y), there is g € more(x, x) sothatf*o f = g* o g.

In the sequel we abbreviafef ||,y by || /]| and we will consider & *-category
as a topological category by equipping the set of objects with the discrete topology
and the set menx, y) with the topology which is induced by the norm.

EXAMPLE 2.1. LetC be a category with precisely one objectThen the structure
of a R-category ort gives mog (x, x) the structure of a centrdd-algebra with unit
idy. The additional structure of an involution is given by a mamore(x, x) —
more(x, x) satisfying:

* O f -8 =n x(f)+ @),
xok=1Id and x(go f) ==(f) ox*(g).

The structure of &*-category ortC is the same as the structure of'&-algebra on
the set ma#(x, x) with id, as unit. The structure of a topological categorycois
the structure of a topological space on giaf, x) such that composition defines a
continuous map. O

Nextwe construct from a category (for example, a groupoid) other categories with
the structures described above. Given a categotiie associatedr-categoryRC
has the same objects @snd its morphism set mgg (x, y) from x to y is given by
the freeR-moduleR more(x, y) generated by the set mdi, y). The composition is
induced by the composition thin the obvious way. Notice that the functor~ RC
is the left adjoint of the forgetful functor from the category Rfcategories to the
category of small categories.

LetG be a groupoid an@& a commutative ring with unit and involution. Th&%
inherits the structure of &-category with involution by defining

(Z A,-f,-) =Y Afih
i=1 i=1

Next we explain how the category with involuti@g can be completed to@*-
categoryC;g. It will have the same objects gsConsider two objects, y € Ob(g).
If morg(x, y) isempty, putmags¢(x, y) = 0. Suppose thatmgtx, y) is nonempty.
Choose some objegte Ob(G) such that mas(z, x) is nonempty, for instance one
could choose = x. For a sefs let/2(S) be the Hilbert space withi as Hilbert basis.
Define aC-linear map

ix.y:2:CMOIg (x, y) —> B(I2(Morg(z, x)), [2(Morg(z, y)))

by sendingf € morg(x,y) to the bounded operator frodf(morg(z, x)) to
12(morg(z, y)) given by composition withf. On the target of, ., we have the
operator norrmj| ||. Define:

lullx,y:= llix,y;z @)l for u € morgg(x, y) = C morg(x, y).
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One easily checks that this norfin ||, , is independent of the choice af The
Banach space of morphisms@j¢g from x to y is the completion of ma#; (x, y)
with respect to the norm ||, ,. We will denote the induced norm on the completion
morcxg(x, y) again by|| |x,y, and sometimes abbreviate fpy||. One easily checks
thatx, ,:morgg(x, y) — morgg(y, x) is an isometry since it is compatible with
applying the maps, ,., andi, .., and taking adjoints of operators. Therefore it
induces an isometry denoted in the same way

*y,y! morc;kg(x, y) — morc;«g(y,x).

Composition defines@-bilinear map mag; (x, y) x morgg (y, z) —> morgg (x, 2)
which satisfieg{g o flx,. <llglly.z - | fllx,y- Hence itinduces a map on the comple-
tions

MOTrc:g(x, y) X MOfcxg(y, z) —> MOlcxg (X, 2)

with the same inequality for the norms. This is the compositio@i/ig. One easily
verifies thatC}'G satisfies all the axioms of@*-category.

EXAMPLE 2.2. LetG be a group. It defines a groupaidwith one object ands
as its automorphism group. Th&® is just the group ringRG andC)g is just the
reduced grou*-algebraC; G under the identifications of Example 2.1. O

The assignment of @*-categoryC g to a groupoidj gives a functor
C*: GROUPOIDSY —> C*-CATEGORIES

where C*-CATEGORIES is the category of small*-categories. The inj-
condition that a functorF:Go — G is faithful is used to guarantee that
the map mogg,(x, y) —> morgg, (F(x), F(y)) extends to maFxg,(x, y) —>
Morc:g, (F (x), F(y)), for all x, y € Ob(Go).

Remark 2.3We make a few remarks on functoriality (or lack thereof)@f-
algebras, which motivate our use©f-categories. First note that the assignment of
aC*-algebraCH to a groupH cannot be extended to a functor from the category of
groups to the category 6f*-algebras. For instance, the reducgdalgebraC (Z*Z)
ofthe free group on two lettersis simple [31] and hence admi&bomomorphism
to the reduced *-algebraC of the trivial group.

There is a notion of th€*-algebra of a groupoid, but it is poorly behaved with
respect to functoriality. To a discrete group@id one can associate the complex
groupoid ringCg, which as &C-vector space has a basis consisting of the morphisms
in the groupoid. The product of two basis elements is the composite if defined and
is zero otherwise. The completion 6f in B(I2(G), [2(G)) in the operator norm is
called the reduced*-algebra of the groupoid and which we den6tgg-alg. If G
is connected (any two objects are isomorphic), &hig the automorphism group of
an object, then it can be shown (via Morita theory) that the spe&cfi(Cg-alg)
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andK'™°P(C* H) have the same weak homotopy type. The second naive approach to
the construction of a functor

K©P: Or(G) —> Q-SPECTRA

is to defineK'°P(G/H) to beK'"°P(C*G/H-alg). While this approach is basically
correct for algebrai& - andL-theory, it fails forC*-algebras because th&-algebra

of a groupoid does not define a functor from the category GROUPOIRSC*-
ALGEBRAS. Indeed, consider the groupdijfiz] with n objects and precisely one
morphism between two objects. Notice that the obvious functor Tfuhto G[1]

has an obvious right inverse. Hence it would induce a surjectivthomomorphism
between the associatétf-algebras but this is impossible foe 2 as the associated
C*-algebra ofg[n] is the simple algebras, (C). Another counterexample comes
from a morphism in the orbit category. L&t be any infinite group and consider

the map of groupoid&/1 — G/G whereG acts onG/1 effectively and tran-
sitively by left multiplication andG acts trivially onG/G. An easy computation

with the operator norm shows that this map of groupoids does not extend to a map
of the reducedC*-algebras of the groupoids. We take the trouble to discuss this
because mistakes have been made in the literature on this point and to motivate our
definition of the functorC;}: GROUPOIDYY — C*-CATEGORIES. Below we

will define theK ©°P-functor fromC*-CATEGORIES to SPECTRA. Note that after
applying homotopy groups, one gets maps onkhtheory of reduced *-algebras

of the groupoids, independent of Morita theory and without maps o@thalgebras
themselves. O

We recall some basic constructions we will need later.
Let C be aR-category. We define a new-categoryCq, called thesymmetric
monoidal R-category associated t6 with an associative and commutative sum

@ as follows. The objects idg aren-tuplesx = (x1, x2, ..., x,) consisting of
objectsx; € Ob(C) forn = 0, 1, 2,.... We will think of the empty set as O-tuple
which we denote by 0. Th&-module of morphisms from = (x1,...,x,) to

MOIcg, (X, Y)'=@1<i<m, 1< j <n MOlc(xi, yj).
Given a morphisnmy: x — y, we denote byf; ;:x; —> y; the component which
belongstoi € {1,...,m} andj € {1,...,n}. If x or y is the empty tuple, then
more,, (x, y) is defined to be the triviak-module. The composition of:x —> y
andg: y — zforobjectst = (x1,...,xm),y = (y1,..., yn) @Ndz = (z1, ..., 2p)
is defined by

n
(o fik=Y_gko fij-
j=1

The sum orCg is defined on objects by sticking the tuples together, i.exfet
(X1, .y Xim) andx = (y1,..., yn) define

leBX: (xl’---’xm’yl’---’yn)-
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The definition of the sum of two morphisms is now obvious. Notice that this sum
is (strictly) associative, i.6x @ y) @ z andx & (y ® z) are the same objects and
analogously for morphisms. Moreover, there is a natural isomorphism

Xy — yPdx

and all obvious compatibility conditions hold. The zero object is given by the empty
tuple 0. These data define the structure of a symmetric monBidategory orcg.
Notice that the functo€ +— Cg is the left adjoint of the forgetful functor from
symmetric monoidaR-categories t@R-categories.

Given a category, define itsidempotent completio®(C) to be the following
category. An object inP(C) is an endomorphisnp:x — x in C which is an
idempotent, i.ep o p = p. A morphism inP(C) from p:x — xtog:y — yis
a morphismf:x — y in C satisfyingg o f o p = f. The identity on the object
p:x —> x in P(C) is given by the morphismp: x — x in C. If C has the structure
of a R-category or of a symmetric monoid&+category, therP(C) inherits such a
structure in the obvious way.

For a category, let Iso(C) be the subcategory af with the same objects as
C, but whose morphisms are the isomorphismg.dff C is a symmetric monoidal
R-category, then so is 1%$0).

LetC be a symmetric monoiddt-category, all of whose morphisms are isomor-
phisms. Then itgroup completioris the following symmetric monoidat-category
C". An object inC is a pair(x, y) of objects inC. A morphism inC”from (x, y) to
(x, y) is given by equivalence classes of triples f, g) consisting of an objectin
C and isomorphismg:x & z — x andg:y & z — y. We call two such triples
(z, f, &) and (Z/, f’, g) equivalent if there is an isomorphismz — z’ which
satisfiesf’ o (idx @ h) = f andg’ o (id, @ h) = g. The sum orC"is given by

XeX,N)=xEx,ydy).

If CisaC*-category, thedg andP(C) inheritthe structure of &*-category where
one should modify the definition d?(C) by requiring that each objegt: x —> x
is a self-adjoint idempotent, i.e.o p = p andp* = p. MoreoverCq, P(Ce) and
(Iso(P(Cg)))" inherit the structure of topological categories where the set of objects
always gets the discrete topology.

Next we can construct the desired functors from GROUPOIDS and
GROUPOIDY! to Q-SPECTRA. The covariant functaronconnective algebraic
K -theory spectrum of a groupoid with coefficientskin

K 89 GROUPOIDS—> Q-SPECTRA

assigns to a groupoid the nonconnectiv -theory spectrum of the small additive
category(Iso(P(RGg)))". (See [28] for the construction of the nonconnectikre
theory spectrum of a small additive category.)
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Next we define the covariant functperiodic algebraicL-theory spectrum of a
groupoid with coefficients iR

L = L": GROUPOIDS—> Q-SPECTRA

where we assume th&tis a commutative ring with unit and involution. Th&y and
henceRGg inherit an involution. We apply the construction of the periodic algebraic
L-theory spectrum in [33, Example 13.6 on page 139]. If one uses the idempotent
completion, one gets the projective version

LP: GROUPOIDS— Q-SPECTRA

Taking the Whitehead torsion into account yields the simple version
LS: GROUPOIDS— Q-SPECTRA

More generally, one obtains fgre Z 11 {—o0}, j < 2,
L¥: GROUPOIDS— Q-SPECTRA

whereL ) is LS, LN, LPfor j =2,1,0.
Nextwe construct the covariant functenconnective topologic& -theory spec-
trum

K'°P: GROUPOIDSY — Q-SPECTRA
We do this by composing the functor

C*: GROUPOIDSY —> C*-CATEGORIES
with the functor

K °P: C*.CATEGORIES—> Q-SPECTRA

which we are about to construct. LEtdenote both the complex numbers and the
obviousC*-category with precisely one object denoted b\ have introduced the
categoryCq before. We denote bythen-fold sum of the object.lin this notatiorCg
hasasobjecta: |n =0,1, 2,...},thesumisn®n =m +nform,n =0,1,2,...
and the Banach space of morphisms frarto » is just given by thén, m)-matrices
with complex entries. Let be anyC-category. We define a functor

®:Cqp x Cp — Cg

as follows. We assign to an objecte Cq and an objeck € Cgq the objectn ® x
which is then-fold direct sum®!_,x. Let f:m — n be a morphism irCg and
g:x —> ybeamorphismidg. Definef ® g: m®@x — n®y, to be the morphism
whose component from thi¢h copy ofx in m ® x to the jth copy ofy inn ® y
is fi,j - & wheref; ; € Cis the component of from theith coordinate ofn to
the jth coordinate of:. One easily checks that ® g is a functor. For objects:
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andn in Cg and an objeck in Cq we have(m ®n) @ x = m Q@ x) ® (n ® x).
For an object: in Cg and objectst andy in Cq we have a natural isomorphism
nR®x®y) = m®x)® (nm® y). Obviously this functor sends the subcategories
{0} x Cq andCg x {0} to {0}, where{0} and{0} denote the obvious subcategories
with one object.

LetC be anyC*-category. Thenthe construction above appligd{@). It extends
to a functor

®: (1s0(Cg))" x (IS0(P(Cg)))” —> (ISP (Ca)))”

in the obvious way. Notice thatiso(P(Cg)))” inherits fromC the structure of a
topological category for which the set of objects is discrete. With respect to these
topological structures the functor above is a functor of topological categories. Given a
topological categor®, let BD be its classifying space [34] (whose construction takes
the topology into account). Given topological categofieandD’, the projections
induce a homeomorphism

B(D x D) — BD x BD'.
Hence the functor above induces a map

B(1so(Cg))"x B(Iso(P(Cg)))" —> B(Is0(P(Ce)))”

for any C*-categoryC. Since it send(Iso(Cg))” Vv B(Iso(P(Cg)))" to the base
point B{0} c B(Iso(P(Cg)))", we obtain a map, natural &

i B(1so(Cg))" A B(IsO(P(Ce)))” —> B(ISA(P(Ca)))"

The category Is(Cg) can be identified with the disjoint unidr,, = ¢ GL(n, C).
Let GL(C) = colim,_~GL(n,C). Let Z x GL(C) be the symmetric monoidal
category whose objects (and monoidal sum) are given by the integers, and so
that mok, G (cy(m, n) is empty ifm # n and isGL(C) if m = n. There is
an obvious functor Is@Cg) — Z x GL(C). Using Quillen’s group completion
theorem [19, pp. 220-221], it follows tha@lso(Cg)" has the homotopy type of
Z x BGL(C). Letb: §2 —> Blso(Cg)” be a fixed representative of the Bott ele-
ment in2(BIso(Cg)") = K~2({pt.}). Thenb andy yield a map, natural id,

S2 A B(Iso(P(Cg)))"—> B(so(P(Ca)))"
Its adjoint is also natural i and denoted by
B: B(Iso(P(Cg)))" —> QZB(ISO(P(C@)))A.

Define thenonconnective topological -theory spectruri °P(C) of the C*-category

C by the space (Iso(P(Cg)))"in even dimensions, by the spa@d (Iso(P(Cg)))”

in odd dimensions and by the structure maps which are the identity in odd dimen-
sions and@3 in even dimensions. (Another construction is suggested by [14, Remark
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VIIl.4.4. on page 186].) We claim that the proof of Bott periodicity f-algebras
carries over taC*-categories. Hendé '°P(C) is aQ2-spectrum. We will only be inter-
ested in the case whefds C;'G for a connected groupoid and in this case the claim
follows from Bott periodicity for the reduced gro}y-algebra of the automorphism
group of an object iy and Lemma 2.4.

We make some remarks about the constructions of the spectra of groupoids above
and give some basic properties.

There are obvious equivalences of additive categories RGg respP(RGg), t0
the category of finitely generated fr&g-modules, resp. finitely generated projective
RG-modules, as defined in [23, Section 9]. Notice that these module categories are
not small, in contrast tRGg and P(RGg). A functor F:Gog — G1 induces a
functor from the category of finitely generated free, resp. projecivi;modules
to the corresponding category ov@r by induction. However, if we have a second
functorG: g1 — Go, then the functor induced on the module categorie&hyF
and the composition of the functors induced ByandG on the module categories
are not the same, they agree only up to natural equivalence. In order to avoid this
technical problem, we prefer the small categRd,, and its idempotent completion
since there the composition of the functors inducedFbgnd G is the same as the
functor induced byG o F, so that we get honest functors from GROUPOIDS to
Q-SPECTRA. _

As mentioned earlier, the functok&'9, L (1), andK P defined on the orbit cat-
egory are given by the composition of the groupoid-valued fun&@&r and the
spectra-valued functors defined above. The automorphism group of the atijéct
G/ H for the identity element € G is just the subgrougl. Hence the next lemma
proves what we have already claimed before, namely, that the spectra we assign to
G/H are homotopy equivalent to the spectra associatddl.tm particular, we get
foralln e Zandj € Z U {—o0}, j < 2,

7. (KA9G/H)) = K29ZH)
m(LO(G/HY) = LY (ZH)
7. (K°P(G/H)) = K, (C*H)

LEMMA 2.4.

() If Fi:Go — g1 fori = 0, 1 are functors of groupoids anfl: Fp — Fiis a
natural transformation between them, then the induced maps of spectra

K39(F): KA9(Go) —> KA9(Gy)

are homotopy equivalent and analogously df’ andK ©P;

(2) Let G be a groupoid. Suppose thgtis connected, i.e. there is a morphism
between any two objects. For an object Ob(G), letg, be the full subgroupoid
with precisely one object, namety Then the inclusion,: G, — G induces a
homotopy equivalence
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K293, ): K¥9(g,) — KA9(g)

and K9G, ) is isomorphic to the spectrui®9 associated to the group ring
R autg(x). The analogous statements hold Edd ) andK P,

Proof. Obviously (2) follows from (1). We indicate the proof of (1) in the case of
K P, the other cases are analogous if one inspects the definitions in [28, 33]. One eas-
ily checks that a natural transformation betwédero F1 induces a natural transfor-
mation between the induced functors frolo(P (C; Gog,)))™ t0 (ISO(P(CrG1g)))"
Let [1] be the category having two objects, namely 0 and 1, and three morphisms,
namely the identities on 0 and 1 and one morphism from 0 to 1. Then the natu-
ral transformation above can be viewed as a functor of topological categories from
(Iso(P(C)Gog)))" x [1] to (ISO(P(C}G14)))" Since the classifying space of a prod-
uct is the product of the classifying spaces and the classifying space of [1]lis [0
we obtain a map

h: B(ISO(P(C}Gog)))" x [0, 1] —> B(ISO(P(C*G1,)))"

One easily checks that this induces the desired homotopy of maps of spectra.

3. CW-Approximations and Homotopy Limits

In this section we give the basic definitions and properties of spaces #nd
complexes over a small categofy We show that the Whitehead Theorem and
CW-approximations carry over from spacesdspaces. We emphasize the par-
allels between a category and a group, thinking of a group as a category with a single
object, all of whose morphisms are invertible. We defifte the universal free con-
tractibleC-space, and use this to define the homotopy colidi®. X, the analogue

of the Borel constructio® G x¢g X.

Consider the set Qb) as a small category in the trivial way, i.e. the set of objects
is Ob(C) itself and the only morphisms are the identity morphisms. A map of two
Ob(C)-spaces is a collection of mapg(c): X (¢) — Y(c)|c € Ob(C)}. Thereisa
forgetful functor

F:C-SPACES — Ob(C)-SPACES
Define a functor
B:0b(C)-SPACES — (C-SPACES

by sending a contravariant @h-spaceX (—) 10 [ [ copc) MOre(—, ¢) x X(c). In
the covariant case one uses et —).

LEMMA 3.1. The functorB is the left adjoint ofF".
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Proof. This means that there is a natural bijection
T(X,Y):home(B(X),Y) — homppc)(X, F(Y))

for all Ob(C)-spacesX and for allC-spacesY. Actually T(X, Y) will even be a
homeomorphism. Fof: B(X) = [[.copc) MOrc(—, ¢) x X(c) —> Y (—) define
T(X,Y) f byrestrictingf to X (—) = {id_} x X(—). Theinvers&' (X, Y) L assigns
to a mapg of Ob(C)-spaces the following transformation:

B(X) = [] more(— ) x X(c) — Y(-),
ceOb(c)

(@, x) = Y(9) 0 g(c)(x). -

Let R be aring. There is also an adjoint to the forgetful functor flRGMOD to
Ob(C)-SETS. It is defined a8 (X (—)) = ®ccobc)R(More(—, c) x X(c)). A free
RC-module is a module isomorphic to one in the imageBofNotice the analogy
between Lemma 3.1 and the adjoint pair consisting of the forgetful functor Rem
modules to sets and the functor assigning to &'dbe freeR-moduleR S generated
by S.

We have already mentioned that the category aid)d)-spaces is the category
of G-spaces and the category @bu(G, 1))-spaces is the category of spaces. Under
this identification the forgetful functoF just forgets theG-action andB sends a
spaceZ to theG-spaceG x Z whereG acts in the obvious way.

Notice that the notions of coproduct, product, pushout, pullback, colimit, and limit
exist in the category af-spaces. They are constructed by applying these notions in
the category SPACES objectwise. For instance, the pushout of a diagtaspates
X1 «<— Xo —> X2 is defined as the functof: ¢ — SPACES whose value at an
objectc in C is the pushout of the diagram of spacéf(c) «— Xp(c) — X2(c).

We mention that sometimes in the literature the terms direct limit and inverse limit
are used instead of colimit and limit. We will always use the names colimit and limit.
Given aC-spaceX and a spac#, we obtain th&€-spaceX x Y by assigning to an

objectc the spaceX(c) x Y. TakingY = [0, 1], it is now clear what daomotopy of
maps of’-spacesneans. A map’: X — Y of C-spaces is aofibration (fibration)

of C-spacedf it has the homotopy extension property (homotopy lifting property) for
all ¢-spaces. Iff is a (co)-fibration of-spaces, its evaluatiofi(c): X (¢c) — Y (¢)

is a (co)-fibration of aut)-spaces for all objectsin C. The proof of this fact is a
simple abstract manipulation of the homotopy lifting (extension) property and various
adjunctions. Notice that the converse is not true.

Next we extend the notion of @W-complex for spaces t6-spaces. We will
see that the notion of a freeC W-complex is very similar to the the notion of an
ordinaryC W-complex and that standard results and their proof€fdr-complexes
generalize in a straightforward manner to the case of ¢r€é8¥V-complexes. This
leads to easy proofs of known and new results whose strategy is very close to classical
ideas and patterns.
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DEFINITION 3.2. Acontravariant freec-C W-complexX is a contravariard-space
X together with a filtration

p=X_1CXoCX1CXoC---CXyC---CX=|J X,
0

such thatX = colim,,_, ~ X,, and for anyn = 0 then-skeletonX,, is obtained from
the (n — 1)-skeletonX,,_1 by attaching free contravariagtn-cells, i.e. there exists
a pushout of-spaces of the form

Lies, MOte(—, i) x S" 1—5X, 1

| |

[ies, more(—, ¢c;) x D" —— X,

where the vertical maps are inclusiodg,is an index set, and the are objects of
C. We refer to the inclusion functor mgi—, ¢;) x intD" — X as a free-n-cell
based at;. A free C-C W-complex haglimension < n if X = X,,. The definition
of acovariant freeC-C W-complexs analogous. O

Note that the trivial contravariant (covariabspace which sends every object
to a pointis not in general a freeC W-complex unless has a final (initial) object.

The more general notion of&C W-complex was defined by Dror Farjoun [11,
1.16 and 2.1] (see also [30]). We shall deal almost exclusively &l C-CW-
complexes. For a freé-C W-complex X, the cellular chain complexC.(X)(-),
¢ — C4(X(c)) is aCc-chain complex of fre&C-modules. Notice that a free C W -
complexX defines a functor frord to C W-COMPLEXES, but not any functor from
Cto CW-COMPLEXES is a fre€-C W-complex.

If Y is a G-CW-complex, then magg(—, Y) (which sendsG/H + Y#)is an
example of afree QIG)-C W-complex. AG-cell of Y of orbittypeG/H corresponds
to a OnG)-cell of mag; (—, Y) based aG/H. Recall that the category of Q&, 1)-
spaces coincides with the category @fspaces. Under this identificationfaee
Or(G, 1)-CW-complex is the same ad@e G-C W-complex.

Recallthatamag': X — Y of spaces ig-connectedor n = 0 if and only if for
all pointsx in X the induced mag(f, x): mx (X, x) — m (Y, f(x)) is bijective
for all k < n and surjective fok = n. It is aweak homotopy equivalendeit is
n-connected for alk = 0.

DEFINITION 3.3. A mapf: X — Y of C-spaces isi-connecteda weak homo-
topy equivalencgif for all objects ¢ the map of spaceg(c): X(c) — Y (c¢) is
n-connected (a weak homotopy equivalence). O

The constant map G — {x} is a weak homotopy equivalence, but not a homo-
topy equivalence of QG, 1)-spaces.

The following result is well-known for ordinarg W-complexes [43, IV. Theorem
7.16 and 7.17 on page 182]. See also [11, Proposition 2.9] and [30, Theorem 3.4].
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THEOREM 3.4.Let f: Y — Z be a map of’-spaces andX be acC-space. The
map on homotopy classes of maps betwkepaces induced by composition wjth
is denoted byf: [X, Y]¢ — [X, Z]°.

1. Then f is n-connected if and only iff, is bijective for any freeC-CW-
complexX with dim(X) < n and surjective for any fre€-C W-complexX
with dim(X) < n.

2. Thenyf is a weak homotopy equivalence if and only.ifis bijective for any free
C-CW-complexX.

Proof. We only give the proof of the second assertion in the special case where
Z is the trivialC-space, i.eZ(c) = {x} for all objectsc in C. Thenitis easy to figure
out the full proof following the classical proof in [43, IV. Theorem 7.16 and 7.17 on
page 182].

We begin with the ‘if’ statement. Suppose that, [Y]¢ consists of one element
for each free-C W-complexX . We then choos& = mor.(—, ¢) x S¥, for a fixed
¢ € Ob(C). From Lemma 3.1 we obtain a natural homeomorphism

home(more(—, ¢) x SK, ¥) — map(Sk, Y(c))
and thus a natural bijection
[more(—, ¢) x $¥,¥]¢ — [SK, Y (o)].

Hence for all objects in ¢ any map froms to ¥ (c) is nullhomotopic. This implies
that f is a weak homotopy equivalence.

Next we prove the ‘only if’ statement. Suppose thidas a weak homotopy equiv-
alence. We must show for any fréeC W-complex X that any map of’-spaces
g: X —> Y is nullhomotopic, or in other words, extends to the coneXorThe
cone onX is obtained fromX by attachingC-cells. Therefore it suffices to show
that any map ofZ-spaces mor(—, ¢) x S"~1 — Y can be extended to a map
more(—, ¢) x D" —> Y. Such a problem reduces to extending a map fi¥m’
to Y(c¢) to D". This can be done a5(c) has the weak homotopy type of a point by
assumption. O

COROLLARY 3.5. A weak homotopy equivalence between fre8W-complexes
is a homotopy equivalence.

Proof. Let f:Y — X be a weak homotopy equivalence between fra&W -
complexes. By Theorem 3.4, there ig:aX —> Y sothatf,[g] =[f o g] = [idx].
Thusg is a weak homotopy equivalence. To show thas the homotopy inverse
of f, we need only show that has a right homotopy inverse, but this follows by
Theorem 3.4 again. O

DEFINITION 3.6. Let(X, A) be a pair o-spaces. A-C W-approximation
(u,v): (X', A) — (X, A)
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consists of a freé-C W-pair (X', A’) together with a map of pail&, v) of C-spaces
such that both: and v are weak homotopy equivalences @&paces. AC-CW-
approximation of a spac¥ is ac-C W-approximation of the pai(X, ¢). O

This is a categorical generalization of the notion af & -approximation for a
topological spac& (see [43, V.3]). By takind f, g) to be the identity in Theorem
3.7 below we see thatC W-approximations exist and are unique up to homotopy.

THEOREM 3.7.Let (X, A) be a pair ofC-spaces.

(1) (Existencg There exists &-C W-approximation of X, A);

(2) (Uniquenesk Given a map of pairs(f, g):(X,A) — (¥, B) of C-
spaces and give-C W-approximations(u, v): (X', A’) — (X, A) and
(a,b):(Y',B') —> (Y, B), then there exists a map of pairs’, g’)
(X', A"y — (Y, B) so that the diagram

l ’ (u,v)

(f', g')l l(f, g

(a.b)
(Y, B)) — (¥.B)
commutes up to homotopy. Furthermore, the m&p g’) is unique up to homo-
topy.

Proof. Existence of &-C W-approximation is an inductive construction done by
attaching:-cells to obtain a-connected map and finally taking a colimit. Uniqueness
follows from the relative versions of Theorem 3.4 and Corollary 3.5. O

DEFINITION 3.8. Let EC denote any fre€-C W-complex so thatEC(c) is con-
tractible for all objects. o

SinceEC is aCc-C W-approximation of the trivial-space EC exists and is unique
up to homotopy type. Note there is a contravarigdtand a covariankC. They are
not closely related, but one can identify the contravar&antvith the covarianf CP.
There are functorial constructions@iC W-approximations and hence fBC, which
we describe at the end of this section. However, often it is useful to have smaller and
more flexible models.

If ¢ = Or(G, 1), thenEC can be identified withE G, a contractible fre&-C W -
complex. IfC has a final object, then we may take the contravaridito be the
trivial C-space, which is a singlé-0-cell based at the final object. Similarly,df
has an initial object, the trivial-space is a covariariiC. If G is acrystallographic
group i.e. a discrete subgroup of the isometriesRdf so thatR” /G is compact,
then(G/H — (R™)H) is a contravarianEOr(G, FIN'), whereFIN is the family
of finite subgroups. More generally, E(G, F) is classifying space for a family
of subgroups of a discrete group, then(G/H — E(G, F)) is a model for
EOr(G, F). This example is expanded on in Section 7.
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EXAMPLE 3.9. Letw be the category whose objects are the nonnegative integers
and whose morphisms are given by the arrows below, their composites, and the
identity maps.

0—1—2—3— ...

Then we may take a contravariafib to be(Ew) (i) = [i, 0c0), whose zero skeleton

is obtained by intersecting each space with the integers. For each nonnegative integer
i, there isC-0-cell and &-1-cell based at. We may take the covariaiie to be the

trivial C-space. O

DEFINITION 3.10. Theclassifying space of a categogyis the spacC = EC ®¢
{x}, where{x} is the trivialC-space an@&C( is a contravariant-C W-approximation
of the trivial C-space. O

The classifying spac8C is aC W-complex defined only up to homotopy type.
We will recall its functorial definition later in this section.

THEOREM 3.11.Let f:Y —> Z be a weak homotopy equivalence of covariant
C-spaces. Then for any contravariant fréeC W-complexX the induced map

idx@cfZX@cY — X®cZ

is aweak homotopy equivalence. A similar statement holds for weak homotopy equiv-
alences of contravariant-spaces.

Let X be a covariant (contravariant) fre@-CW-complex andf: Y — Z be a
weak homotopy equivalence of covariant (contravarigmtpaces. Then the induced
map

home(id, f) : home(X,Y) — home(X, Z)

is a weak homotopy equivalence.

Proof. We will prove the claim by induction over the skeletons and the celfs in
We only consider the casei@®. f. The functor— ®. Y is compatible with colimits,
using the standard trick from category theory that a functor with a right adjoint
commutes with arbitrary colimits (see [24, Chapter V, Section 5]). Hence the pushout
specifying howX,, is obtained fromX,,_; by attaching cells remains a pushout after
applying— ®¢ Y. Moreover, the left vertical arrow in this pushout is a cofibration
and idy, ®c f is the pushout of three weak homotopy equivalences. Hence it is
itself a weak homotopy equivalence by excision theorem of Blakers—Massey [43,
VI1.7]. Analogously one argues to show that the colimit of the magpg ®¢ f is
idxy ®c f andeachinclusioX, ®: ¥ — X,+1 ®c Y isacofibration. Thisimplies
that idy ®¢ f is a weak homotopy equivalence. The proof of the assertion for hom
is similar. O

Nextwe give some definitions, which are in close analogy with group cohomology
and homological algebra.
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DEFINITION 3.12. LetM be a covarianZC-module, X a covariant-space, ané
a covariant-spectrum. Define theolimitand thdimit of M overc to be the Abelian
groups

coclimM =7ZQ®yz.M and IiCmM =homy.(Z, M).

Define thecolimit of X overC and thdimit of X overC to be the topological spaces

coclimX ={*x}®:X and IiCmX = home ({x}, X).

Define thecolimit of E overC and thdimit of E overC to be the spectra

coclimE = ¥} ®:E and IicmE: home ({x}, E). O

The above definitions are standard and the universal properties follow from the
adjunctions in Lemmas 1.5 and 1.6. H&reepresents the trividiC-module, with
Z(c) = Z and {x} is the trivial C-space. It is also convenient to define colimits
and limits of contravariant functors ovér by applying the above definitions to the
functors considered as covariant functorg8h We next discuss the higher derived
functors of the above limits.

DEFINITION 3.13. If M is a covarianZC-module, define

H;(C; M) = H;(C+(EC) ®zc M) and
H'(C; M) = H' (Homgzo(C«(EC), M)).

If X is a covariant-space, define tHeomotopy colimiand thehomotopy limibf X
overC as

hoccolimX =EC®:;X and h%IimX = home(EC, X).

If E is a covariant-spectrum, define theomotopy colimiaind thehomotopy limit
of E overC as

hoccolimE =EC®:E and h%IimE = hom¢(EC, E). O

One must be careful about the varianceshghin the above definitions. In the
left-hand appearances &fC we are taking the contravariant version, while on the
right we want the covariant version. In the definition of the higher linfitsand
colimits H;, the ZC-chain complexC,(EC) can be replaced by any projectie-
resolution ofZ. As above we define homology, cohomology, hocolimits, and holimits
of contravariant functors by considering them as functors defined on the opposite
category. For properties dff; and H', see, for example, [23] and for properties
of homotopy limits see for instance [4], [12, §9] and [21]. One obtains functorial
definitions if one uses the functorial constructiBR2'C for EC. Since EC maps to
{x}, there are maps hocolpx — colim:X and lim: X — holim:X. They are
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not, in general, weak homotopy equivalences, although the first maj isi& free
C-CW-complex. The basic property of homotopy limits is thaXi— Y is a weak
homotopy equivalence, then so are the induced maps hqeklim— hocolim:Y
and holimY — holim. X; this follows from Theorem 3.11.

EXAMPLE 3.14. Letw be the category from Example 3.9. LidtandN be covariant
and contravarianfZC-modules, respectively. Then it is easy to see #idtv; M) is
colim; oM (j) for i = 0 and zero fori > 0, thatH'(w; M) is M(0) fori = 0
and zero fori > 0, thatH;(w; N) is N(0) fori = 0 and zero foi > 0, and that
Hi(w; N)is lim; oo N(j) fori = 0, Milnor's Iim}_)ooN(j) fori = 1, and zero for
i > 1.

Let X andY be covariant and contravariaf¥spaces, respectively. Then with the
Ew'’s from Example 3.9 hocoligy X is the infinite mapping telescope of

X0 — X1 — X2 — X@) — ---.

Clearly holim, X = X (0) and hocolim, Y = Y (0). Now holim,, Y is a bit bigger,
it is the subspace of

map([0, c0), Y(0)) x map([1, co), Y (1)) x map([2, 0), Y(2)) x ---,

consisting of all tuplegyg, y1, y2, . . .) so thatthe composite af,[co) RIN Y(i) —
Y (i — 1) equalsy;_1 restricted to{, oo). O

DEFINITION 3.15. LetX be aC-space and aZC-module. LetX’ — X be a
C-CW-approximation. IfX is contravariant and/ is covariant, define

Hy (X; M) = Hy(C(X) ®7¢ M),

whereC, (X’) is the cellular chain complex of’. There is a similar definition ik
is covariant anadV is contravariant. IfX and M have the same variance, define

H (X; M) = HP (homye(C(X'), M)). O

WhenC = Or(G, 1), Hl‘j(X; M) is Borel equivariant homologﬁf(X; M) =
H,(EG xg X; M). WhenC = Or(G) andX is the the fixed point functo&/H —
7zH of a G-CW-complexZ, thean(X; M) is Bredon equivariant homology &f
with coefficients inM.

Remark 3.160ne of the original motivations for Bredon’s introduction of the
orbit category was equivariant obstruction theory, and it is clear that all the ingredi-
ents are in place for the development of obstruction theory for the studyradips
between a freé-C W-space and @-space, but we leave the task of finding the precise
formulation to a reader motivated by specific applications. Local coefficient systems
are particularly subtle, see [26]. O
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Next we recall functorial constructions of classifying spaces ardW-
approximations (see for instance [4,21,34]). We will need some of the details later in
Section 6. View the ordered sei][= {0, 1, 2, ..., p} as a category, namely, objects
are the elements and there is precisely one morphism frtoy if i < j and no
morphism otherwise. Continuing with the terminology from Example 1.7, we get a
covariant functor

[]: A — CATEGORIES

from the category of finite ordered sets into the category of small categories. The
nerveof a category is the simplicial set

N.C:A — SETS [p] + func(p], C).
More explicitly, N,,C consists of diagrams it of the form

0 b1 b2 bp-1
cQ—> ClL—> C2—> " —> Cp.
The bar resolution modelBP2'C for the classifying space of a categagyis the
geometric realizatiofiv.C| of its nerve where we regard a simplicial setas a simplicial
space by using the discrete topology. It has the nice properties (see [34]) that it is
functorial, thatBP2(C x D) = B¢ x BPaD, that BPac = BPa'(¢oP), and that
a natural transformation from a functdf to a functor F; induces a homotopy
between the mapB®2'Fy and B°@'Fy on the bar resolution models. In particular, an
equivalence of categories gives a homotopy equivalence on the bar resolution models
of the classifying spaces. From Example 1.7 we getBR8%C comes with a canonical
CW-complex structure such that there is a bijective correspondence between the set
of sequences of composable morphisms
o) é1 2 dp—1
cQg—>ClL—>C2—> +—> Cp
where no morphism is the identity and the setpatells. Any functor induces a
cellular map. We will justify the term ‘model of the classifying space’ shortly.
Given two objects ? and ??@ndefine the category [ | ?? as follows. An object

is a diagram 2% ¢ 5 27 inc. A morphism from 2% ¢ 5 2210 2% ¢ £ 22isa
commutative diagram ig of the shape

S
idl ¢l idl
2 o P

Let mor.(?, ?? be the category whose set of objects is ai8r?? and whose
only morphisms are the identity morphism of objects. Consider the functor

pr 200177 —> Mo (279 (2% ¢ 529 > (Boa:?—29.
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LEMMA 3.17. The map of contravariant x C°P-spaces
B"pr: B2 ¢ | 2?7 — B"®mor.(?, 22 = more(?, ??)

is aC x COP-C W-approximation.
Proof. First we verify thatB®@pr is a weak homotopy equivalence. Fix objects
¢, ¢’ of C. Define functors

jimore(c,c’) — clClc (ci c’) — (c'—d> c> c’).

pric,c’): clClc — more(c,c) (c L4 —'3> N (Boaic — ).

These give homotopy equivalences after applydfi§, since ptc, ¢) o j is the iden-
tity and there is a natural transformatisn;j o pr(c, ¢’) — id defined by assigning

to an object — d L4 ¢ in clC|c the morphisminc|C| ¢

id Bow ,

C C C

|dl al |dl
B

c =2 c

We next show thaBPa 2| ¢ | ?? is a fre& x C°P-C W-complex. The canonical
skeletal filtration on the classifying space of a category induces a filtrati®R¥r? |,
C | ?? such that

BP2) |22 = colim,—.oo B2 2| C | ?2.
Moreover, there is a pushout of contravariént C°P-spaces

(n.d.Ny?|,C|??) x SP~A—5 B, 2|27

l |

(n.d.N, ?|.C|??) x DP——BP?|C|??

wheren.d.N,? | C |?? is the set of nondegenergtesimplices of the nerve
of ? | C |??. This set can be identified with the disjoint union of thé-sets
more(?, co) X more(cp, ?? where the disjoint union runs over the sequences

¢o 1 2 $p-1
CQ—>Cl—>C—> "+ ———>Cp

where no morphism; is the identity. Such sequences thus give the indexing set for
the p-cells. O
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From Example 1.7 we get that for aidyspaceX, there is a weak homotopy
equivalence of-spaces

1:15.X| — X.

such thatS.X]| is functor fromC to CW-COMPLEXES. Notice that this does not
mean thatS.X| itself is a freeC-C W-complex.

DEFINITION 3.18. Let X be a contravariant-space. The tensor product tak-
ing over the variable ?? yields contravariahspacesX ®c BP¥?|c|?? and
X ®c more(?, ?9. Define a map of contravariadtspaces

bar id®c BP@r ~
Px: X ®c B ?|C|?? —— > X Q@cmore(?,?9 > X

where the second map is the canonical isomorphism given®yp — X (¢)(x).
Define a map of contravariagtspaces

1®cid
ax:|S.X| ® B"?4C4?? — X ®c B™?]C|?? 25 X. D

LEMMA 3.19. Let X be a contravariant-space. Then:

(1) px is a weak homotopy equivalence of contravariérgpaces, i.epx(c) is a
weak equivalence of spaces for all objecis C.

(2) Suppose thakX is a contravariant functor fron® to CW-COMPLEXES i.e.
for each objectc in C there is aCW-structure onX(c¢) and each morphism
fic—> ¢ inCinduces a cellular maX (f): X(¢') —> X(c). Suppos€’ is
a contravariant freeD x C°P-C W-complex. Then the contravariam-space
X ®c Y inherits the structure of a freB-C W-complex.

(3) The mapux: |S.X| ®c B°@?|C|?? — X is aC-CW-approximation.

Proof. (1) Fix an object in C. Then
Bpr(c, ?2: B®® ¢ | ¢ |22 — more(c, 29

is a weak homotopy equivalence of fréeC W-complexes, hence is&homotopy
equivalence. Thupx (¢) is a homotopy equivalence.

(2) We will only indicate what the skeleta and cells are. phgkeleton ofX ®. Y
iSUj+j=pX; ®cY;j. AfreeD x COP- j-cell of Y based atd, c) together with d-cell of
X (c) gives rise to a fre@-i + j-cell based ai. More precisely, itb: D! — X (¢) is
acharacteristic map foriacell of X (¢) and if &: morp(?, d) xmore (¢, 29 x D/ —
Y is a characteristic map for a free x C°P-j-cell of Y based atd, c¢), then the
characteristic map

morp(?,d) x D' x D/ — X ®c Y
is given by

(fsa,b) = [®(a), ¥(f,idc, b)].
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(3) Follows from Lemma 3.17, ( 1), (2) above, and Theorem 3.11. O

If one takesX = {x} in the construction above, one obtains the contravabhant
C-CW-approximationof {x}

EPAC = (%} ®c B"¥ 2| C|?2.

More explicitly it is given as follows. For an object ?dret ?| C be thecategory of
objects under ?An object in 2, C is a morphismp: ? — ¢ in C with ? as source.
A morphism in 2, C from ¢g: ? —> ¢g 10 ¢1: ? —> ¢1 iS given by a morphism
h:co —> c1 in C satisfying¢1 = h o ¢9. A morphismyr:c —> d in C defines a
functory | C:d | ¢ —> ¢ | C by composition withyr from the right. Then

EP¥c:c: —s SPACES ¢+ B¢ |C.

One easily checks thd@P2'C @, {x} = BP2'C and thereby justifies our notation.

4. (Co-)Homology Associated to Spectra over a Category

In this section we introduce the homology and cohomology theories associated to a
spectrum over a category. We then explain a kind of Atiyah—Hirzebruch type spectral
sequence.

DEFINITION 4.1. Let (X, A) be a pair of pointed’-spaces. Denote the reduced
cone of the pointed spaceeby cond A). For ac-spectrunE of the opposite variance
as(X, A) define

ES(X, A) = 7,(X Us congA) ®c E).
For ac-spectrumk of the same variance &¥, A), define
EZ(X, A) = n_,(home(X Uy congA), E)).
If Ais justa point, we omi# from the notation. O

If C is the trivial category consisting of precisely one object and one morphism,
then the homology and cohomology as defined in Definition 4.1 reduces to the clas-
sical definition of the reduced homology and cohomology of a pair with coefficients
in a spectrum. This is obvious for homology whereas for conomology one uses the
natural bijection induced by the adjunction

Tprk(MapX, E(k))) — [X A SPT E(k)].

Notice that writing homology and cohomology in terms of tensor product and map-
ping space spectra is analogous to the definition of the homology and cohomology
of a chain complex, with coefficients in a moduld/ as the homology of’, ® M,
respectively, HoriC,, M).
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LEMMA 4.2. The homology and cohomology groups defined in Definition 4.1 are
generalized reduced homology and cohomology theories for painspaces.

Proof. The proof is exactly as in the case of spaces, i.e. whdsethe trivial
category. For instance, let us check the long cohomology sequence of(X pdir
of pointedC-spaces. The following diagram is a pushout

A — 5 XUs (AA[O,1]4)

| J

J
{¥} ————— X Uy coned

wherei is the cofibration given by the inclusion apdandq are the projections.
The functor hom(—, Y) for a fixed pointed covariant-spaceY has a left adjoint,
namely— ®c Y. Hence the following diagram is a pullback and hamidg,)) is
a fibration for alln € Z.

home (¢.idg())
home (X Uy congA), E(n)) ———— > home(X Uy (A A [0, 1]4), E(n))
home(j, idE(n))l lhomc(i, idg @)
home (p.idg ()
home ({*}, E(n))V: home (A, E(n))

Hence we get fon € Z fibrations of pointed spaces

honk(q’idE(tz))
homg (X U congA), E(n)) ———————— home(X Ua (A A [0, 1]4), E(n))

hOfTb(i,idE(n))
Y home(A, E(n)).

They are compatible with the structure maps. Now the colimit over their long homo-
topy sequences yields the desired long cohomology sequence of the pair since the
canonical projection fronX U (A A [0, 1]4+) to X is a homotopy equivalence of
pointedC-spaces.

The suspension isomorphism is induced by the following identifications:

Tprk(hOMe (X A ST, E(k))) = 7,11 (MapSt, home (X, E(K)))
= mp4k(S2home (X, E(k))) = mpiks1(home(X, E(K))). O

Recall that a weak homotopy equivalenc€ efpaces is &-mapX — Y sothat
X (c) — Y (c)isaweak homotopy equivalence for all objects Ob(C). The WHE-
axiom says that a weak homotopy equivaleric — Y of pointed spaces induces
isomorphisms on homology, resp. cohomology. This is not necessarily satisilﬁfﬂ for
andEZ as the following example shows. L6tbe a group and = Or(G, 1). Recall
that a contravariant pointed @, 1)-space is a space with a base point preserving
right G-action. LetE be the ordinary Eilenberg—MacLane spectrum wilE) = Z,



232 JAMES F. DAVIS AND WOLFGANG LUCK

considered as a covariant @, 1)-spectrum by the triviats-action. The projection
p. EGL —> {x}4 is aweak homotopy equivalence of pointed @y 1)-spaces. We
get

EgCY(EGH) = Hy(BG) and EPMOY({x)1) = Hy (%),

where H,. is ordinary homology. Obviously these two groups do not coincide in
general.

Our goal is to get unreduced homology and cohomology theories for (unpointed)
C-spaces which satisfy both the disjoint union axiom and the WHE-axiom. To be
more precise, a homology theory means that homotopic maps of pairspces
induce the same maps on the homology groups, that there are long exact sequences
of pairs(X, A), and for a pushout af-spaces

i1
Xo — X1

]

J2

Xo — X
the map(j2, i1): (X2, Xg) —> (X, X1) induces an isomorphism on homology pro-
vided thatio: Xog —> X2 is a cofibration ofC-spaces. If the homology theory
satisfies the WHE-axiom, it suffices to require that for each ohjettie map
i2(c): Xo(c) —> X>(c) is a cofibration of spaces. The disjoint union axiom says that
for an arbitrary disjoint union the obvious map from the direct sum of the homology
groups of the various summands to the homology of the disjoint union is an isomor-
phism. (For cohomology the direct sum has to be substituted by the direct product and
the map goes the other way round.) For this purpose we &l -approximations
(Definition 3.6) in order to generalize the usual procedure for spaeespaces (cf.
[38, 7.68]).

DEFINITION 4.3. Let(X, A) be a pair of’-spaces. Letu, v): (X', A’) — (X, A)
be aC-CW-approximation. For &-spectrukE of the opposite variance &X, A),
define thehomology of X, A) with coefficients irE by

Hy (X, A;E) = Ej (X, A))
and
C . _ C .
Hy(X;E) = H; (X, 4; E).

Given acC-spectrumE of the same variance a¥, A), define thecohomology of
(X, A) with coefficients irE by

HY (X, A; E) = EZ (X!, A))
and
HY(X;E) = HY (X, ¥; E). O



SPACES OVER A CATEGORY AND ASSEMBLY MAPS IN ISOMORPHISM CONJECTURESZ233

The above homology and cohomology are well-defined by the existence and unique-
ness of’-C W-approximations. Furthermore, by Theorem 3.4, given a map of pairs of
C-spacesX, A) — (Y, B), there is an induced map of thewC W-approximations
which is uniquely up to homotopy determined by the property that the following dia-
gram commutes up to homotopy

(X',A) — (X, A)

l |

Y',B') —— (Y, B)

Thus for a map of -pairs, there are corresponding maps of homology and cohomol-
ogy groups. We always have natural maps

HS (X, A;E) — ES(X, A)
and
EL(X, A) — H! (X, A; E).
They are isomorphisms {{X, A) is a freeC-C W-pair, but not in general.

LEMMA 4.4, Hg(X, A;E)andHY (X, A; E) are unreduced homology and coho-
mology theories on pairs @f-spaces which satisfy the WHE-axiom. The homology
theory satisfies the disjoint union axiom. The cohomology theory satisfies the disjoint
union axiom provided thef is aC-Q2-spectrum.

Proof. The first claim follows from Lemma 4.2 and Theorem 3.4.

The homology theory satisfies the disjoint union axiom for finite disjoint unions.
We get the disjoint union axiom for arbitrary coproducts, if we show that the homolo-
gy theory commutes with arbitrary colimits. This follows from the fact that the functor
— ®c¢ E (k) has a right adjoint and commutes therefore with arbitrary colimits and
that two colimits of systems of Abelian groups commute.

To check the disjoint union axiom for the cohomology theory, it suffices to do this
for a disjoint union] [;.; X; of freeC-C W-complexes. We conclude from Theorem
3.11 for any free-C W-complexY that hom (Y, E) is a Q-spectrum sincé& is a
C-Q-spectrum and hence

mp(home (Y, E)) = 7,1k (home (Y, E(k))),
providedp + k = 0. Now the claim follows from the adjunction homeomorphism
hom ((]_[ Xi) , E(k)) =, [ [home((Xi)+. E(K)). O
iel + iel

Notice that without the condition th&tis aC-2-spectrum the associated conomology
theory does not have to satisfy the disjoint union axiom.
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LEMMA 4.5. Let X be aC-space with a filtration
=X_1CXoCX1CX2C---CX

such thatX = colim,,_, - X,,. LetE be aC-spectrum with the opposite, respectively
the same, variance as.
(1) The natural map
colim, oo Hy (Xu: E) — HS(X: E)
is an isomorphism fop € Z.
(2) LetE be ac-Q-spectrum. There is a natural exact sequence
0— liml, HY (X, E) > HY(X; E) — liMymsso HY (X E) — 0

forall p € Z.

Proof. The proof is exactly as in the case whéris the trivial category which is
due to Milnor and can be found for instance in [38, 7.53,7.66,7.73] or [43, Theorem
XIlII.1.1 on page 604 and Theorem XIII.1.3 on page 605]. O

Lemmas 4.4 and 4.5 imply

LEMMA 4.6. Let E and F be C-spectra andf: E — F be a (strong) map of-
spectra. It induces a natural transformation

foo HS(X; E) — HE(X; F).

If f is a weak equivalence, thénis an isomorphism. The analogous statement holds
for cohomology provided th& andF are C-Q2-spectra. O

Any cohomology theory on the category@i-complexes satisfying the disjoint
union axiom can be represented b@apectrum. This is a consequence of Brown'’s
representation theorem and proven for instance in [38, Chapter 9]. The proof goes
through with some obvious modifications also in the case ofdrédV-complexes.

This does not contradict the remark in [11, 5.8] since in our setting we allow for
freeC-C W-complexes only cells of the type me¥, ¢) and the objects of form a

set by assumption whereas in [11] all homotopy types of orbits can occur and these
homotopy types do not form a set.

Finally, we remark that a filtration ot gives a spectral sequence.

THEOREM 4.7.Let X be a contravariant-space with a filtration
=X_1CXoCX1CX2C---CX

such thatX = colim,,_, o X;,.

(1) LetE be a covariant-spectrunt. Then there is a spectr@homology sequence

r r . r r 1 H
E, . dy i EL— Ep—r,q+r—l whoseE-term is given by
1 c )
Epq=Hp1gXp. Xp-1: E)
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and the first differential is the composition
1 .51 c c

dp’q. Ep,q = Hp+q(XP’ Xp-1.BE) — Hp+q_1(Xp_1, E)

) 1

— Hy Xy 1, X, 2sE)=E, 4,

where the first map is the boundary operator of the g&,, X,_1) and the
second induced by the inclusion. TB&-term is given by

o H r
Ey, = collm,_onp,q.

This spectral sequence converges‘1£16+q(X; E), i.e. there is an ascending fil-
tration F,, ,,—, H5 (X, E) of HS, (X, E) such that

c
F,q.H

C ~

(2) Let E be a contravariant-Q-spectrum. Then there is a spectral (cohomology)
sequence?, df " E;  — El it whoseE1-term is given by

) +
EY?" = HI™ (X, Xp-1; E)
and the first differential is the composition
dr EL, = H(X,, Xpo1, E) — HITU(X, E)

+q+1
— HE (X1, Xpi B) = Ep g,

where the first map is induced by the inclusion and the second is the boundary
operator of the pairX,;1, X,). The E°°-term is given by

o0 i r
Ep,q = rI|_>moo Ep,q.
There is a descending filtration F7" "7 lim, o H'(X,; E) of
lim,_. H(X,; E) such that there is an exact sequence

0— FP9 lim HETI (X, E)/FPTR072 lim HE (X, E) — ELY
n— 00 n—oo

— limi

+ . +
m—>ooHCp q(xp—i-m, Xp; E) — I|ml Hcp q(Xp_’_m, Xp—1§ E).

m— 00

If one of the following conditions is satisfied

(a) The filtration is finite, i.e. there i8 = — 1 such thatX = X,,;
(b) The inclusion ofX,, into X, 1 is p-connected fop € Z and there isn € Z
such thatr, (E(C)) vanishes for all objects € Ob(C) andg > m;

then the spectral sequence convergeroJ’q(X; E), i.e. there is a descending
filtration F7"~P H'(X, E) of H'(X, E) such that

FPaglTi(x,E)/FPTLa-1glTi(x, E) = ERY.
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Proof. Again this is a variation of the case whetés the trivial category (see
[38, 7.75,15.6 and Remark 3 on page 352]) or [43, Theorem XIII.3.2. on page 614
and Theorem XIII.3.6. on page 616]. O

Suppose in Theorem 4.7 thatis a freeC-C W-complex andX,, its n-skeleton.
Then theE2-term, respectivelyE,-term, of the spectral sequence in Theorem 4.7
can be identified with

E3 = HS(X: H({x}: E)) = HS(X: 14 (E)),
respectively
EPT = HY(X; H ((x); E)) = HE (X; n_q (E)).

One gets the same spectral sequence as in Theorem 4.7 if one takes a dual point
of view. Namely, one does not filtéf by its skeleta, but uses a Postnikov decompo-
sition of E. The Atiyah—Hirzebruch spectral sequence [38, 15.7] is a special case of
Theorem 4.7. Quinn’s spectral sequence [32, Theorem 8.7] coincides with Theorem
4.7 when the stratified system of fibrations is given by a group action.

Taking X = EC, filtering by skeleta, and identifying the? and E*°-terms, one
gets thehomotopy colimit spectral sequence

Hy,(C; my(E)) = mpyg (hoccolimE)

and thehomotopy limit spectral sequence
HP(C;m_g(E) = m—p—y (hoclim E)

analogous to those of Bousfield—Kan [4, XII, 5.7 on page 339 and XI, 7.1 on page
309].

5. Assembly Maps and Isomorphism Conjectures

In this section we give three equivalent definitions of assembly maps, each of which
corresponds to a certain point of view. Then we explain the Isomorphism Conjectures
for the three O¢G)-spectra introduced in Section 2. We will define assembly maps
given the following data: a (discrete) groap a non—empty family of subgroups,
closed under inclusion and conjugation, and a covarianG®@spectrunk.

5.1. ASSEMBLY BY EXTENSION FROM HOMOGENEOUS SPACES TO
G-SPACES

Let E be a covariant QiG)-spectrum. We define an extensiontfo the category
of G-spaces by

Eop: G-SPACES—> SPECTRA X — map;(—, X)1 ®or(c) E.
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Recall that

map; (—. X)1 ®orc) E= || X¥ AEG/H)/ ~,
HcG

where~ is the equivalence relation generated(®y, y) ~ (x, ¢y) for x € XX,
y € E(G/H) and¢: G/H — G/K. This construction is functorial i, i.e. a map
of Or(G)-spectrd : E — Finduces amap af-SPACES-spectry,: Ey, —> Fo.

Let E(G, F) be a classifying space @f with respect to a family* (see [5] or
[10]), i.e. aG-CW-complex such that th& -fixed point set is contractible ## € F
and empty otherwise. Such classifying spaces were introduced by tom Dieck [9, 10]
and are unique up t6-homotopy type. We will give another point of view on these
spaces in Section 7. The projection induces a map

Eo(PN: E%(E(G, 7)) — Ew(G/G) = E(G/G)

which is calledassembly maprhe mapr, (Eo,(pr)) is the(E, F, G)-assembly map
referred to in the introduction. O

5.2. ASSEMBLY AS HOMOTOPY COLIMIT

We first discuss the behavior of homotopy limits under change of category. Consider
a covariant functof: ¢ — D. We introduced, X in Definition 1.8. Since&C is a
freeC-CW-complex, we can apply Theorem 3.4 to the weak homotopy equivalence
of C-spaceF*ED — {x}, and get @-mapEC — F*ED, which is unique up to
homotopy. Itinduces a map Bf-spaces: F,EC — ED by Lemma 1.9. LeK be

a covariantD-space. Then thassembly map

F,: hoccolimF*X — hocDoIimX

is given by the composition

o & f®opid
EC®Q®c F'X > F,kECQp X ——— ED®p X

where the mag is the homeomorphism from Lemma 1.9. This assembly map is
unigue up to homotopy. There is also an assembly map if the covariapaceX is
replaced by a covariam-spectrunE. If one uses the functorial modef&’2c and
EPaD _there is a functorial construction of the maB?c —> F*EPaD and hence
of the assembly map.

Let

1:0r(G, F) — Or(G)
be the inclusion functor. Define tlzesssembly map

L. hocolimI*E — hocolimE = E(G/G),
Oor(G,r) Or(G)



238 JAMES F. DAVIS AND WOLFGANG LUCK

where the homotopy colimit over the orbit category Bfis E(G/G) because
the orbit category has the terminal objeG/G. This assembly map can be
identified with the assembly map defined earlier by taki@r(G) = {x} and
EOr(G, F) = map;(—, E(G, F)). The (E, F, G)-assembly map is obtained by
applying homotopy groups. g

5.3. ASSEMBLY FROM THE HOMOLOGICAL POINT OF VIEW

Let {x} ~ be the OtG)-space defined by settir{g} ~-(G/H) to be a point ifH € F
and to be empty otherwise. Let iffg} —> {*} be the inclusion map of Q6)-
spaces. It follows from definitions that tkig, 7, G)-assembly map can be identified
with the map

HP"O (in0): HY'D (%) E) — HP"O (%) E) = m(E(G/G)). -

DEFINITION 5.1. The(E, F, G)-Isomorphism Conjecturfor a discrete grous,
a family of subgroupsr, and a covariant Qi)-spectrunk is that the(g, F, G)-
assembly map is an isomorphism. For an integehe (E, F, G, i)-Isomorphism
Conjecture is that théE, F, G)-assembly map is an isomorphism in dimension

Of course for an arbitraryE, 7, G), the Isomorphism Conjecture need not be
valid. However, the Isomorphism Conjecture is always true (and therefore pointless!)
whenF is the family of all subgroups. The main problem is giv@randE to find
asmall family F for which the Isomorphism Conjecture is true. The progeto
choose for the functori€, L 4’, andK P will be discussed later in this section.

The main point of the validity of théE, 7, G)-Isomorphism Conjecture is that
it allows the computation of.(E(G/G)) from 7. (E(G/H)) for H € F and the
structure of the restricted orbit category (Gt F). Here are two examples which
were historically important in algebrai¢-theory.

EXAMPLE 5.2. LetG be an amalgamated free productf and H, along a sub-
group K. Let F be the smallest family (closed under subgroups and conjugation)
containingH;, and H,>. The E(G, F) can be taken to be a tree, where the isotropy
group of an edge is conjugate &b and the isotropy group of a vertex is conjugate
to Hy or Hy. The(E, F, G)-Isomorphism Conjecture and the material in Section 4,
give a long exact Mayer-Vietoris exact sequence

- — mi(E(G/K)) — i (E(G/Hy) & i (E(G/ H2))

— mi(E(G/G)) — -+ O
EXAMPLE 5.3. LetG be a semidirect product given by the action of an infinite
cyclic group on a grouX . Let F be the family of all subgroups & . ThenE (G, F)
can be taken to be R, with the isotropy grouX at every point. Th&E, 7, G)-

Isomorphism Conjecture and the material in Section 4, give a long exact Wang exact
sequence

- — i (E(G/K)) — mi(E(G/G)) — 7i—1(E(G/K)) —> - O
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The following observation both motivates Isomorphism Conjectures and can be
helpful in computation ofH,.(BG) for a generalized homology theofy and a
discrete groupi.

LEMMA 5.4. LetSbe afixed spectrum an@ be a discrete group. Define &r(G)-
spectrunE byE(G/H) = (EG xg G/H)+ A S. For any familyF of subgroups of
G, the(E, 7, G)-Isomorphism Conjecture is valid.

Proof. Let V:Or(G) — SPACES be the covariant funct®nG/H) = G/H.
Note that the O¢G)-spaceV has a lefiG-action defined by left multiplication of an
elementg onG/H. We have

Ew(E(G, F)) = E(G, /) ®ore) (EG xg G/H)+ A S)
= (EG x¢ (E(G, H)" ®orG) V))+ A S
= (EG xG E(G,F));+ AS

A (EG xGG/G)L A S
— Ew(G/G).

The first, second, and fourth equalities are clear. The third equality holds since one
can identify any leftG-spaceX with the left G-spaceX” ®or) V by Theorem

7.4 (1). The mapA is the assembly malo,(pr). Since{e} € F, we seeE(G, F) =

E(G, )l is contractible, and hencEG xg E(G,F) — EG xg G/G is a
homotopy equivalence. The Atiyah—Hirzebruch spectral sequence then ghisws
weak homotopy equivalence. O

Given a contravariant functé: Or(G) — Q-SPECTRA, there is a dual assem-
bly map obtained by reversing arrows and repla@ngs) by honoys), hocolimits
by holimits, and homology by cohomology. The analogue of the last lemma remains
valid.

Now we consider the covariant @F)-spectra of Section 2. Wheh equals the
algebraick -theory spectr# @9 or the algebraid.-theory spectra (—>) of Section
2 andF is the family)C of virtually cyclic subgroups o6, then the Isomorphism
Conjecture is the one of Farrell-Jones [15]. An elementlofs a subgroup oG
which in turn has a cyclic subgroup of finite index. Farrell and Jones use Quinn’s
version of the assembly map which can be identified with the one presented here by
the characterization givenin Section 6 and the fact that the source of Quinn’s assembly
map is a homology theory on the category®iC-C W-complexes [32, Proposition
8.4 on page 421]. The Isomorphism Conjecture computes the algebrgioups,
resp.L{~°-groups, of the integral group ring @ in terms of the corresponding
groups for all virtually cyclic subgroups 6f. HereL(=>°) = lim;_, _o, L/). For the
integersz, L) () is independent of, and conjecturely./)(ZG) is independent
of j for any torsion-free grouy. The Isomorphism Conjecture f&?3/9 has been
proven rationally for discrete cocompact subgroups of virtually connected Lie groups
by Farrell and Jones [15]. Th& @9, 1¢, G, i)-Isomorphism Conjecture for such
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groups withi < 2 also follows from [15]. The Isomorphism Conjecture E8H has

been proven for crystallographic groups if one inverts 2 by Yamasaki [44]. Notice that

after inverting 2 the spectruin!’ is independent of. The Isomorphism Conjecture

for K&9 and L {(~°°) together imply the Novikov Conjecture and (for dimensions

greater than 4) the Borel Conjecture. The Borel Conjecture says that two aspherical

closed manifolds with isomorphic fundamental groups are homeomorphic and any

homotopy equivalence between them is homotopic to a homeomorphism. A survey

on these conjecturesis given in [16]. Related issues are discussed in [41, Chapter 14].
WhenE equals the topological -theory spectrunk °P defined in Section 2 and

F is the family FZ\ of finite subgroups o5, then the Isomorphism Conjecture is

the Baum—Connes Conjecture [3, Conjecture 3.15 on page 254]. The identification

is not obvious and will explained at the end of Section 6. For information about the

Baum—-Connes map we refer to [3] or [20].

EXAMPLE 5.5. LetE be a covariant QiG)-spectrum andc = 1 the trivial fam-
ily. The domain of the(E, 1, G)-assembly map i€y (E(G,1) = EG4 Ag
E(G/1). Now suppose there is a functdrGROUPOIDS! — SPECTRA so
thatE(G/H) = J(G/H). Then the morphism of groupoids/1 — 1/1 gives a
map of spectr&(G /1) — E(1/1) which isG-equivariant, wher&(G /1) is given
the G = aufor)(G/1)-action andE(1/1) is given the trivialG-action. Now sup-
posel has the additional property that given functors of groupéidso —> G; for

i = 0, 1 and a natural transformatidit Fo — F1, then the maps of spectiarFp)
andJ(Fy) are homotopic. (See Lemma 2 to see that these hypotheses are valid where
EisK?a9 LU} orK'™P) SinceG/1 —> 1/1 is a natural equivalence of groupoids,
the mapE(G/1) — E(1/1) is a homotopy equivalence, which is in addition a
G-map. It follows that

Ew(E(G/1) = EG4 Ag E(G/1) — BG4 AE(1/1)

is a weak homotopy equivalence.
Thus the(E, 1, G)-assembly map for the three @¥)-spectra of Section 2 can
be identified with the ‘classical’ assembly maps

A: H;(BG; K¥9(Z)) — Ki(ZG),
A:H;(BG; L)\ (2)) — L7(z6),
A: H;(BG; K'%P(C)) — KIP(CF(G)).

The lastmap has aninterpretation in terms of taking the index of elliptic operators. The
Novikov Conjecture is equivalent to the conjecture that the middle map is rationally
injective and is implied by the conjecture that the last map is rationally injective,
which is in turn implied by the Baum—Connes conjecture.

Itis easy to check that there are finite grodpsor which none of the three assem-
bly maps above is an isomorphism. However, itis conjectured that @hetorsion-
free, that all three maps are isomorphisms. IndeedKRY, 1C, G), (L~ e, G),
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and(K'°P, FIN/, G) Isomorphism Conjectures applied to a torsion free gréugre
equivalent to the conjectures that the maps labglade isomorphisms. This is obvi-
ous intheK™P, FIN, G)-case, and is shown by Farrell-Jones [15, 1.6.1 and Remark
A.11]in the other two cases. O

6. Characterization of Assembly Maps

In this section we characterize assembly maps by a universal property. This is
useful for identifying different constructions of assembly maps (for example, assem-
bly maps arising controlled topology, or from geometric techniques) and generalizes
work of Weiss and Williams [42] from the case of a trivial group to the case of a
general discrete grou@.

We first review the nonequivariant version. lEetbe a spectrum. Then one can
define a functor

Eo: SPACES— SPECTRA X — X4 AE.

When this functor is restricted to the category# -complexes, it is excisive, in
particularr,(Eew(—)) is a generalized homology theory.
Now suppose

F: SPACES— SPECTRA

is a (weakly) homotopy invariant functor, i.e. it takes (weak) homotopy equivalences
to (weak) homotopy equivalences'hen Weiss—Williams [42] construct a functor

F»: CW-COMPLEXES—> SPECTRA
and natural transformations
AR F® — F; Br:F® — (F |(s)%:

which induce a (weak) homotopy equivalence of spe&gré{+}) and (weak) homo-
topy equivalences of spectB (X) for all C W-complexesX. ThusF” is a (weakly)
excisive approximation fof. The mapAg(X) should be thought of as an assembly
map, and wheX = BG andF = Ka9(T1(X), applying homotopy groups gives the
classicalK -theory assembly map

H, (X; K9Z)) — K29%Z71X).

We now proceed to give the equivariant version of the above. We associate to a
covariant O(G, F)-spectrunk an extension

Ej,: G-SPACES— SPECTRA X  map;(—, X)+ ®orG.7) E.

*The example to be kept in mind B(X) = K&9(I1(X)), the algebraick -spectrum of the
fundamental groupoid. This functor is homotopy invariant, but is neither excisive as a functor of
X, nor continuous as a functor of topological categories.
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Notice that this construction depends on If E is a OnG)-spectrum, we
have introducedEy, already in Section 5. There is a natural transforma-
tion S (E |or(G,f))g; —> Eo, of G-SPACES-spectra. AG-F-space(G-F-CW-
comple) is a G-space G-CW-complex) such that the isotropy group, of each
pointx € X is contained in the family. The mapS(X) is an isomorphism iX is a
G-F-CW-complex but not in general. For instance #r= G/G and.F the trivial
family 1 we get(E |orG,7))5,(G/G) = E(G/1)/G andEw(G/G) = E(G/G). We
will omit the superscripfF in EJ, when it is clear from the context. Notice that this
construction is functorial ik, i.e. a map of O¢G, F)-spectral : E — F induces

a map ofG-SPACES-spectriiy,: Eo, —> Fo,. Recall that a map (isomorphism) of
spectrd: E — Fis a collection of maps (homeomorphisnf&)): E(n) — F(n)
which are compatible with the structure maps. An isomorphis@ggectra is a map
of C-spectra whose evaluation at each object is an isomorphism of spectra.

LEMMA 6.1. LetE be a covarian©Or(G, F)-spectrum. Then:

(1) The canonicalmaBo,(X) Ug,,(r) Ewe(Y) —> Eo(X Uy Y)isanisomorphism,
wheref: A — Y isaG-map andA is a closedG-invariant subset oX .

(2) The canonical magolim;,_, ooEos(X,) —> Eg(colim,_, ~ X,,) is an isomor-
phism, wher&Xg — X; — X2 — - - - is a sequence df-cofibrations.

(3) The canonical mag A Eo(X) — Ew(Z x X) is anisomorphism, wherg
is a space an is a G-space.

(4) The canonical maf,(G/H) — E(G/H) is an isomorphism for alH € F.

Proof. It can be checked directly that théf-fixed point set functor
map; (G/H, —) commutes with attaching @-space to a-space along &-map
and with colimits ofG-cofibrations indexed by the nonnegative integers. Parts (1)
and (2) follow from the fact that ®or(g, ) E commutes with colimits, since it has
an right adjoint by Lemma 1.5. Parts (3) and (4) follow from the definitioBE«gf O

LEMMA 6.2. LetE be acovarian©Or(G, F)-spectrum. Then the extensin—> Eo,
is uniquely determined on the category®{F-C W-complexes up to isomorphism
of G-F-CW-COMPLEXESspectra by the properties of Lemma 6.1.

Proof. LetE — Egbe another such extension. There ia pifori not necessarily
continuous) set-theoretic natural transformation

T(X): Es(X) = X+ ®0r(G.) E — Eg(X)

which sends an element representedbyG/H — X, e) € map;(G/H, X) x
E(G/H) toEg(x)(e). Since anyG-F-C W-complex is constructed from orbi€s/ H
with H € F via products with disks, attaching @-space to aG-space along a
G-map, and colimits over the nonnegative integdr€X) is continuous and is an
isomorphism for allG-F-C W-complexesX. O

Lemma 6.2 is a characterizationBfi— Eo, up to isomorphism. Next we give a
homotopy theoretic characterization.
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A covariantfunctoE: G-F-C W-COMPLEXES—> SPECTRAIs calledyeak-
ly) F-homotopy invarianif it sendsG-homotopy equivalences to (weak) homotopy
equivalences of spectra. The funciiis (weakly F-excisiveif it has the follow-
ing four properties. First, it is (weaklyJ-homotopy invariant. Secondk(9) is
contractible. Third, it respects homotopy pushouts up to (weak) homotopy equiv-
alence, i.e. if theG-F-CW-complex X is the union ofG-CW-subcomplexes(
andX» with intersectionXg, then the canonical map from the homotopy pushout of
E(X2) — E(Xp) <— E(X2), which is obtained by gluing the mapping cylinders
together alond:(Xo), to E(X) is a (weak) homotopy equivalence of spectra. Finally,
E respects countable disjoint unions up to (weak) homotopy, i.e. the natural map
VielE(Xi) — E(L;¢; Xi) is a (weak) homotopy equivalence for all countable
index setd . The last condition implies that the natural map from the homotopy col-
imit of the systenE(X,,) coming from the skeletal filtration of@-F-C W-complex
X, i.e. the infinite mapping telescope, EGX) is a (weak) homotopy equivalence
of spectra. Notice theE is weakly F-excisive if and only ifr, (E(X)) defines a
homology theory on the category 6f-F-CW-complexes, satisfying the disjoint
union axiom for countable disjoint unions.

THEOREM 6.3.

(1) SupposeE: Or(G, F/) —> SPECTRAIs a covariant functor. Thelko, is F-
excisive.

(2) Let T:E — F be a transformation ofweakly F-excisive functoré& and F
fromG-F-CW-COMPLEXESto SPECTRAso thatT (G/H) is a(weak homo-
topy equivalence of spectra for af € F. ThenT(X) is a (weak) homotopy
equivalence of spectra for aff-F-C W-complexesX.

(3) Forany(weakly F-homotopy invariant functde fromG-F-C W-COMPLEXES
to SPECTRA there is a (weakly)F-excisive functorE” from G-F-CW-
COMPLEXESto SPECTRAand there are natural transformations

Ag E® — E; BE:E” — (E lorG.»)%:
which induce(weak homotopy equivalences of spectta=(G/H) for all
H e F and (weak) homotopy equivalences of speBigdX) for all G-F-CW-
complexesX. Given a family#" c F, E is (weakly F'-excisive if and only if
Ag(X) is a(weak homotopy equivalence of spectra for@H.F'-C W-complexes
X.

Proof. (1) Follows from Lemma 6.1.
(2) Use the fact that a (weak) homotopy colimit of homotopy equivalences of spectra
is again a (weak) homotopy equivalence of spectra.
(3) DefineE”(X) by the spectrum
map; (— x A, X)a ®or(c.7)xa B* 2L Or(G, F)
XA ?? ®or(G.r)xa E(— X AL)

where—, resp.., runs over O(G), resp.A, the subscript/ in map; (— x A., X)g4
indicates that we equip this mapping space in contrast to the usual convention with
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the discrete topology ang®2'? | Or(G, ) x A |?? was introduced at the end

of Section 3. Define the transformatisig (X): E?(X) — E(X) by the following
diagram

E(X)
c1
maQ;(— X A., X)d ®OF(G,]:)><A E(— X A)

Pmapt;(—xA.,X)d‘@id
map; (— x A., X)a ®orc.7)xa B ?LON(G, F) x A 2?2 ®orc.r)xa E(— x A)

Where pmag, (—xa.,x), Was introduced in Definition 3.18 and here and in the next
diagramc;, refers to the canonical map whose definition is obvious from the context.
Define the transformatioBg (X): E®*(X) — (E lorG, 7)) %(X) by the following
diagram

map; (— x A., X)a ®crg. 7 xA B2 ?2LONG, F) x A 2?2 ®pyg.7)xa E(— x AL)
id®id®E(pr)l
map; (— x A., X)a ®oyc.7)xA BP 2L ONG, F) x A|?? Qpg.7)xA E(—)
id®c2®idl§
map; (— x A., X)d ®or.7)xA B*¥ 2L ON(G, F) 122 x BP 2| A |22 ®0,.7)xA E(-)
c3|=

(Map; (— x A, X)q ®p BP¥ 2| A |?2?®, (¥}) ®or,7) B2, 0r(G, F)|?? ®orq,7) E(-)

(id®c4)®id®idlg
(map; (— x A, X)g ®4 B2} A) ®orc.7) B*¥ 2] 0r(G, F) |?? ®orc.7) E(-)
(C5®id)®id®idlz
(map(A., mag; (—, X)) ®a B*¥?| A) ®orc,7) B* 2| O1(G, F) | ?? ®orc,7) E(-)
(id®q)®id®idl

(Map(A., map; (—, X))a ®a A.) ®orc,F) B** 2} OK(G, F) |?? ®orc.F) E(—)
amam(_‘x)(@id
map; (—, X) ®orG,7) E(—)

where the canonical map BP¥?| A —> A»is defined in [4, Example XI.2.6 on
page 293] andmag, (-, x) was introduced in Definition 3.18.

Next we show thatBg(X) is a (weak) homotopy equivalence provid-
ed thatX is a G-F-CW-complex. SinceE is (weakly) F-excisive, the map
E(pn:E(G/H x A,) — E(G/H) is a (weak) homotopy equivalence for &ll
F. Hence the first map in the diagram abovexidd ® E(pr) is a weak homotopy
equivalence because of Theorem 3.11. The next four maps are allisomorphisms. The
map

id ® g: map(A., map; (—, X)) ®a B°¥ 2| A
—> MapA., mag; (—, X))a ®a A.
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is a weak homotopy equivalence of @, F)-spaces [4, XI1.3.4 on page 331].
Because of Theorem 3.11 the map

(id ® ¢) ® id: (Map(A., map; (—, X))q ®a B2, A)
®or (6.7 B* 2| OK(G, F) | ??
— (map(A., map; (—, X))a ®a A) ®orG, 7 B 240G, F) | ??

is a weak O(G, F)-homotopy equivalence of @&, F)-spaces. Since the domain
andtarget are free Qf;, F)-C W-complexes by Lemma 3.19, itis a homotopy equiv-
alence of O¢G)-spaces by Corollary 3.5. Hence the m@p® ¢) ® id ® id in the
diagram above is a homotopy equivalence.

As we assume thaY is aG-F-CW-complex mag (—, X) is a OnG, F)-CW-
complex. Sinc@map, (—, x) isaOKG, F)-CW-approximation by Lemma 3.19 Corol-
lary 3.5 implies that it is a homotopy equivalence of(GyF)-C W-complexes.
Hence the last map in the diagram abavgyp, (. x) ® id is a homotopy equiva-
lence. This shows th&g (X) is a (weak) homotopy equivalence.

In the caseX = G/H for H € F the composition of the (weak) homotopy
equivalenceBg (G/H) with the canonical isomorphism map—, G/H) QorG. )
E(—) — E(G/H) agrees wittAg(G/H). HenceAg (G /H) is a (weak) homotopy
equivalence for alG/H with H € F. This finishes the proof of Theorem 6.3. 0

The mapAg is called amassembly map fdE.

EXAMPLE 6.4. For a topological spacg, the fundamental groupoid1(X) is the
category whose objects are pointsXnand whose morphism set mgfy) (x, y) is

given by equivalence classes of paths froto y, where the equivalence relation is
homotopy rel0, 1}. Amap of spaces gives a map of fundamental groupoids. A homo-
topy equivalence of spaces gives a natural equivalence of fundamental groupoids.
If X is path-connected anth € X, then the inclusion of the fundamental group
m1(X, xo) — T1(X) is a natural equivalence of groupoids.

LetK 3l9: GROUPOIDS—> SPECTRA be the functor from Section 2. By Lem-
ma 2,K @9 has the property that a natural equivalence of groupoids gives a homotopy
equivalence of spectra.

One can define a homotopy invariant functérCW-COMPLEXES —>
SPECTRA byE(X) = K&9(I1(X)). We apply Theorem 6.3 in the case where
G is the trivial group (note that fo¢ = 1, Theorem 6.3 is due to Weiss—Williams
[42]). The mapBg gives a homotopy equivalence frot°(X) to X A K239(z),
whereK @9(7) is the algebraid -spectrum of the ring.. After one applies theth
homotopy group to the assembly map

Ag:E”®(X) — E(X)
one obtains the algebralic-theory assembly map

A H,(X: K¥97Z)) — K297, X).
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Next consider a discrete group and a family of subgroupg. One can then
define anF-homotopy invariant functor

E: G-CW-COMPLEXES— SPECTRA

by settinge(X) = KAYTI(EG x¢g X)). If X is simply-connected, there is a natural
equivalence of groupoids

G = O0rG, 1) — M(EG xg X).

Using this identification, we have a fourth point of view on (Ké'9, =, G)-assembly
map, namely it is

T(AE(E(G, F))): o (E®(E(G, F))) — m.(E(E(G, F)).

The case of algebrait-theory is analogous. For a map of spages— Y, the
map of groupoidd1(X) — II(Y) need not be a morphism in GROUPOIS
However, all relevant maps in the definitionAg andBg have this property, so that
the analogous point of view holds also for the topologicetheory ofC*-algebras

Next we give for a covariant @6)-spectrum E an equivalent defini-
tion of E% which is closer to the construction in [42]. Let sigfX) be
the category having as morphisms pait§/H x [n], o) which consists of
an objectG/H x [n] in Or(G,F) x A and aG-map o:G/H x A, — X.
A morphism from (G/H x [n],o) to (G/K x[m],t) is a morphism
fxu:G/H x [n] — G/K x [m]in Or(G, F) x A such that the composition of
the induced ma;/H x A, — G/K x A, with t is o. This is the equivariant
version of the construction in [35, Appendix A] applied to the simplicial $&t
associated to a spade We get a covariant functdf(— x A.) from simp;(X) to
SPECTRADYG/K x [m], o) — E(G/K x A,,).We briefly indicate how one can
identify

E”(X) = hocolimE(— x A.).
simpg (X)

Let P:simp;(X) — Or(G) x A be the obvious forgetful functor. It suffices to
construct a natural isomorphism of @) x A-spaces

B 2|, simpg(X) ®simpg (x) MOTor(G)yxA(?2 P(?)
— map; (— x A, X) ®org)xa B ?22,0r(G) x A} — x.

It will be implemented by the following natural bijection of simplicial sets for a given
objectG/K x [m]in Or(G) x A wherep runsoverQ1, 2, ...

Np ?] simpg (X) ®simp; (x) MOlorG)xa(G/K x [m], P(?)) —
map; (— x A., X) ®orGyxa Np G/K x [m] [ Or(G) x A — x..
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An element in the source is represented fet 2G/H x [n], o) by the pair

((G/H x [n],0) —> (G/Hp x [no], 00) —> -+ —> (G/H), x [np], 0p))
x(G/K x [m] — G/H x [n]).

It is sent to the element in the target represented by

(0p:G/Hp x Ay,
x (G/K x[m] — G/H x [n] — G/Hg x [ng] — -+ —> G/H), x [np]).

— X) x

This is indeed a bijection sinc&/Hg x [ng] — --- — G/H, x [n,] and o,
determineng, ..., 0p1.

Next we explain why Theorem 6.3 characterizes the assembly map in the sense
thatAg: E”® — E is the universal approximation from the left by a (weakiy)
excisive functor of a (weakly)F-homotopy invariant functoE from G-F-CW-
COMPLEXESto SPECTRA. The argumentisthe same asin [42, page 336]. Namely,
let T:F — E be a transformation of functors froii-7-C W-COMPLEXES to
SPECTRA such thdt is (weakly) F-excisive andl (G/H) is a (weak) homotopy
equivalence foralH € F. ThenforanyG-F-C W-complexX the following diagram
commutes:

0 . AFX
FA(X) —  F(X)

T%(X) l l T(X)

% AEX)
E*(X) —— E(X)

andAg(X) andT?(X) are (weak) homotopy equivalences. Hence one may say that
T(X) factorizes oveAg(X).

One may be tempted to define a natural transforma&idfy, — E as indicated
in the proof of Lemma 6.2. The8(X) is a well-defined bijection of sets but is not
necessarily continuous because we do not want to assumié thabntinuous, i.e.
that the induced map from horaX, Y) to homp (E(X), E(Y)) is continuous for all
G-F-CW-complexesX andY . The construction above uses the (weak)omotopy
invariance ofE instead.

Finally we say how one can identify the Baum—Connes-map of [3] with the map
induced on homotopy groups by the assembly map

(K"P)oo(E(G, FIN)) —> (K'P)ot(G/G).

This problem has been considered by many people including Baum, Bloch, Carlsson,
Comezana, Higson, Pedersen, Roe, and Stolz. Our characterization of the assembly
map allows the proof of this identification for all possible model&&® if it has

been done for one model. We shall use the following construction due to Caglsson

al. [6].
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There is a functoP from the category of;-spaces to the category of spectra with
G-action and strong maps as morphisms such that the functor

Q: G-CW-COMPLEXES— SPECTRA

obtained fromP by taking theG-fixed point set ofG-spectra has the following
properties.

(1) There are identifications of the homotopy groupsf (G, FIN)) with the
source of the Baum—Connes map an®@gt;/ G) with the target of the Baum—
Connes map such that the Baum—Connes map itself agrees with the map induced
by the projectiorQ(E (G, FIN)) — Q(G/G).

(2) There is a weak equivalence of @")-spectra

U:K"™P — Qlorg)-

(3) Q is weakly FIN -excisive.

Then we obtain from Theorem 6.3 f@r the family of all subgroups and’ =
FIN a commutative diagram of spectra whose vertical maps are all weak homotopy
equivalences.

(KP)os(E (G, FIN)) ——— (K'P)o(G/ G)

Uy (E(G,FIN)) Uy (G/G)
(Qlor))%(E(G, FIN)) —— (QlorG))%(G/G)
BQ(E(G, 7)) BQ(G/G)

Q™(E(G, FIN)) ———— Q¥(G/G)

AQ(E(G,.FZ/\/)) AQ(G/G)

Q(E(G, FIN)) — > Q(G/G)

Hence the map induced on homotopy groups by the top horizontal arrow is the
Baum-Connes map.

7. G-Spaces and Or(G)-spaces

In this section we discuss the orbit category in more detail, and give a correspondence
betweenG-spaces with isotropy itF and OKG, F)-spaces. This in turn will give
a correspondence between classifying spacés wfth respect taF and models of
EOr(G, F) and will thereby give a source of natural examples. As usualy le¢ a
discrete group and a nonempty family of subgroups closed under conjugation and
inclusion. AG-spaceX is aG-F-spacef the isotropy subgroup of each point i
is contained inF. Let Or(G, F) be the restricted orbit category whose objects are
G/H for H € 7 and whose morphisms a€&maps.

Next we explain how one gets frodi-F-spaces to QIG, F)-spaces andice
versa We will get a correspondence up to homeomorphism, not only up to homotopy
(cf.[11, Theorem 3.11], [13, 30]).
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DEFINITION 7.1. Given a leftG-spaceY, define theassociated contravariant
Or(G, F)-spacemap;(—, Y) by

Or(G, F) —> SPACES G/H + map;(G/H,Y) =Y,

Let V be the covariant QIG, F)-space given by sending/H to itself. Given a
contravariant O(G, F)-spaceX define theassociated lefG-F-spaceX by

)2 =X Qor(G,F) V.

The left action of an elemegte G is given by id®orG, ) Lg WhereL,: G/H —
G/H is the map of covariant Q6, F)-spaces given by left multiplication with
O

The notation for the functoV is intended to be reminiscent of the cosimplicial
spaceA. from Example 1.7.

LEMMA 7.2. The functors in Definition 7.1 are adjoint, i.e. for a contravariant
Or(G, F)-spaceX and a leftG-spaceY there is a natural homeomorphism

T(X,Y):map; (X, Y) — homorc.r (X, map;(—, ¥)).

Proof. If we neglect the&5-action onY, we get from Lemma 1.5 a natural home-
omorphism

mapX,Y) — homorc. 7 (X, map—, Y)).

Using the transformation, and theG-action onY one defines appropriatg-
actions on the source and target of this map and checks that this m@p is
equivariant. Hence it induces a homeomorphism on@hfixed point set which
is just T (X, Y). Of course one can define for instari€ex, Y) 1 explicitly. Given
X — map;(—, Y) we definel (X, Y)~1(f) by specifying for eacls/ H amap
X(G/H) x G/H — Y. Itsends(x, gH) to the value off (G/H)(x) atgH. O

LEMMA 7.3. The map
fiX(G/1) — X x> [x,1]

is aG-homeomorphism.
Proof. The inversef ~1: X — X(G/1) assigns to an element represented by
(x, gH) the elemenX (¢,1)(x) Wwheregey: G/1 — G/H sends’ tog'gH. O

Let X be a contravariant @6, F)-space. Obviously the projection
pr:G/1 — G/H inducesamag (pr) : X(G/H) — X(G/1)!. Now one easily
checks using Lemma 7.3 above the following:
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THEOREM 7.4.

(1) Given a leftG-F-spaceY, the adjoint of the identity omap; (—, Y) under the
adjunction of Lemma 7.2 is a natur&-homeomorphism

T(Y):map; (-, Y) — Y.
It is induced by the map

[[ map;(G/H.Y) x G/H — ¥, (¢, gH) = ¢(gH).
Her

(2) Given a contravarian©r(G, F)-spaceX, the adjoint of the identity o under
the adjunction of Lemma 7.2 is a natural mapi G, F)-spaces

S(X): X — map;(—, X).

Given H € F, the map S(X)(G/H) maps the elemenk € X(G/H)
to the element inmap;(G/H, X) = (X ®or:.» V)H represented by
(x,eH) € X(G/H) x G/H. It is an isomorphism 0Or(G, F)-spaces if and
only if for eachH € F the projectionpr: G/1 — G/H induces a homeomor-
phismX (pr): X(G/H) — X(G/1)". This condition is satisfied ¥ is a free
Or(G, F)-CW-complex.

(3) If Y is left G-F-CW-complex, thermap;(—,Y) is a free Or(G, F)-CW-
complex. There is a bijective correspondence betweelGtoells inY of type
G/H and theOr(G, F)-cells inmap;(—, Y) based at the objeat;/H. The
analogous statement holds for a fl@e(G, F)-C W-complexX and X. O

The bar resolution is a natural construction, however, it is a ‘very big’ model.
Models with a fewer number of cells can be very convenient for concrete calculations
and arise often as follows.

DEFINITION 7.5. LetG be a group and be a family of subgroups. Alassifying
spaceE (G, F) of G with respect toF is a leftG-C W-complex such thak (G, )
is contractible forH € F and empty otherwise. O

The existence oE (G, F) and proofs that for ang-F-C W-complexX there
is precisely oneG-map up toG-homotopy fromX to E(G, ) and thus that two
such classifying spaces atehomotopy equivalent, is given in [9],[10, 1.6]. Another
construction and proof of the results above come from Theorem 3.4 and the following
result which is a direct consequence of Theorem 7.4.

LEMMA 7.6. Let G be a group andr be a family of subgroups.

(1) If E(G, F) is a classifying space aff with respect taF, then the associated
contravariantOr(G, F)-space
ma; (—, E(G, F))
is a model forEOr(G, F);



SPACES OVER A CATEGORY AND ASSEMBLY MAPS IN ISOMORPHISM CONJECTURESZ251

(2) Given a modeEOr(G, F), then theG—spaceEOr(/E, F) is a classifying space
of G with respect torF. O

EXAMPLE 7.7. Sometimes geometry yields small examples of classifying spaces
and resolutions. We have already mentioned this in the case whesa crystal-
lographic group. Generalizing this, It be a discrete subgroup of a Lie grodp
with a finite number of components. K is a maximal compact subgroup &f
thenL /K is homeomorphic t&®"” andL /K can be taken as a model fBXG, FIN),
whereZZV is the family of finite subgroups. Generalizing further,debe a group of
finite virtual cohomological dimension. Then there is finite-dimensional classifying
spaceE (G, FIN) (see [36, Proposition 12]) and hence a finite-dimensional model
for EOr(G, FIN). Many examples of such groups are discussed by Serre in [36].
More examples of nice geometric models oG, FZV) can be found in [3, Section

2]. O
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