Z/2-EQUIVARIANT AND R-MOTIVIC STABLE STEMS

DANIEL DUGGER AND DANIEL C. ISAKSEN

ABSTRACT. We establish an isomorphism between the stable homotopy groups

AR of the 2-completed R-motivic sphere spectrum and the stable homotopy

Ts,w
groups frf/lf of the 2-completed Z/2-equivariant sphere spectrum, valid in the

range s > 3w — 5 or s < —1.

1. INTRODUCTION

This paper is a sequel to [3], where we computed some of the stable homotopy
groups of the 2-completed motivic sphere spectrum over the ground field R. Here
we explain that in a certain range these groups agree with the analogous Z/2-
equivariant (but non-motivic) stable homotopy groups.

There is an equivariant realization functor from R-motivic stable homotopy the-
ory to Z/2-equivariant homotopy theory, induced by assigning to every scheme X
over R the associated analytic space X (C) with complex conjugation [9, Section
3.3]. This induces a map
(1.1) R: 7R, — 722

*7

of bigraded rings, where the domain is the stable homotopy ring of the 2-completed
R-motivic sphere spectrum, and the target is the stable homotopy ring of the 2-
completed Z/2-equivariant sphere spectrum. Each group ﬁ'?{f is finitely-generated,
so the 2-completion on the right is very mild. The reader should beware that the
stable homotopy groups of the 2-completed motivic sphere are not necessarily the
same as the algebraic 2-completions of the stable homotopy groups of the uncom-
pleted motivic sphere. One must account for n-completion as well [5, Theorem
1]. For the purposes of this paper, 7?5* f/f can be defined as the objects
to which the R-motivic and Z/2-equivariant Adams spectral sequences converge,
respectively.

The Z/2-equivariant stable homotopy groups were computed in a range by Araki
and Iriye [1,6], although the method of computation and statements of results are
difficult to navigate. A goal of the work begun in [3] is to better understand the
Araki-Iriye results by lifting as much as possible back to R-motivic homotopy theory
via the map (1.1). The present paper demonstrates that this is possible in a range.

and 7

1.2. Equivariant homotopy groups. Recall that R"! denotes the real line with
the sign representation of Z/2, whereas R™Y denotes the real line with the trivial
representation. For s > w one sets

RSW — (RLO)EB(S*M) ® (]Rl.,l)@w7

and S*"Y is the one-point compactification of R**. These are the bigraded Z/2-

equivariant spheres, and we write 7TSZ74U2 for the Z/2-equivariant stable homotopy
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group [S%%, §%9]. These groups were computed by Araki-Iriye in the range s < 13,
although the calculations for s = 12 and s = 13 were announced without proof [1]
[6].

One way to understand the global structure of w%,/*z is to break the calculation
into pieces as follows. The nth Z/2-equivariant Milnor-Witt stem is the

collection of groups

@wﬂ-ﬁ/-fn,w'
The 0th Milnor-Witt stem is a subring of wfﬁ/f, and the nth Milnor-Witt stem is a
module over this subring.

Tables 1 and 2 at the end of the article give some partial results about Z/2-
equivariant stable homotopy groups. Table 2 uses the s-w axes, whereas Table 1 is
arranged so that the groups in each row belong to a common Milnor-Witt stem.

We now attempt to give a global picture of the current knowledge of Z/2-
equivariant stable homotopy groups. One piece of the global structure relates to
the geometric fixed-point map

7.)2
¢: 7TS74U — Ts—w

from the equivariant to the non-equivariant groups. This map is known to be split
for s > 2w [2, p. 284], and is an isomorphism for s < 0 [1, Proposition 7.0]. These
splittings are represented by copies of ms_,, in Tables 1 and 2.

The second piece of global structure consists of periodicity in w (for each fixed
s) of the kernel of ¢: 75, — ms_qy. Note that when w > s this is 7., itself,
whereas when s > 2w it is a summand (by the preceding paragraph). There are two
difficulties with the periodicity phenomenon. First, the orders of the periodicities
and the values of the periodic groups are rather complicated. See Table 2 of [6] for a
complete description in the range s < 13, and beware that the indexing in that table
differs from ours: the group denoted 7, 4 in [1] and [6] is our 7p44,. Second, there
are exceptions to the periodicity in the range 2w > s > w — 1 [1, Proposition 4.8];
for use with Table 1 this is better written as %s > s —w > —1. These exceptions
are shown in red in the tables. Note, however, that some of the groups in the range
2w > s > w — 1 actually do assume the periodic values.

The groups 77?62 and wszy/f are also computed in [10] for s < 13 using the equi-
variant Adams spectral sequence based on Borel cohomology.

1.3. Motivic homotopy groups. The motivic setup [9] is similar to the equivari-
ant setup. Now S0 is the simplicial circle, S*! is the scheme A! — 0, and S*" is
the appropriate smash product of copies of S0 and S'''. We use the same notation
S5 for motivic spheres and equivariant spheres. Equivariant realization sends one
to the other, so this abuse of notation generally does not lead to confusion.

We write 7, for the R-motivic stable homotopy group [$*%, S%9). The nth
R-motivic Milnor-Witt stem is the collection of groups

R
69wﬂ-uﬂrn,w'

As in the equivariant case, the Oth Milnor-Witt stem is a subring, and the nth
Milnor-Witt stem is a module over the Oth Milnor-Witt stem. Morel’s connectivity
theorem [8] shows that the negative Milnor-Witt stems are zero. Moreover, Morel
has calculated the Oth Milnor-Witt stem in terms of Milnor-Witt K-theory [7,
Section 6].
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Morel’s calculation gives an explicit description of ﬂ'ﬂfl)_l, but it turns out to
be a complicated uncountable group. In order to carry out further calculations,
we find it convenient to work with the stable homotopy groups of the 2-completed
R-motivic sphere. One could complete at odd primes as well, but we do not address
that here.

We will now set aside the R-motivic stable homotopy ring 7

«.%» and instead work
with the stable homotopy ring 7%]5* of the 2-completed R-motivic sphere. This ring
splits into Milnor-Witt stems as before. The 2-complete negative Milnor-Witt stems
are still zero, and the 2-complete 0th Milnor-Witt stem can be easily described with
generators and relations. Moreover, the first, second, and third Milnor-Witt stems
have been completely described [3]. The authors have preliminary data on the nth

Milnor-Witt stems for n < 15; these results will appear in a future article.

1.4. The comparison. The map (1.1) is not an isomorphism in general. We know
that the negative R-motivic Milnor-Witt stems vanish, whereas Table 1 shows that
in the Z/2-equivariant context the negative Milnor-Witt stems are non-trivial. In
the Oth Milnor-Witt stems, the map 7y, — 7?5243 of (1.1) is an isomorphism when
s < 4 but not in general [1, Theorem 12.4(iii)]. Likewise, the computations of [3]
show that ﬁ']}i* vanishes in the first Milnor-Witt stem for weights larger than 2,
whereas the Z/2-equivariant analog of this is false.

Nevertheless, we find that the map (1.1) is an isomorphism in a certain range.
The following is the main result of the paper.

7./2

Theorem 1.5. The realization map ﬁ'ﬂsw — Tshw 1S an isomorphism in the range
s>3w—5o0ors<-—1.

In Tables 1 and 2 the range from the above theorem is shaded. All of the
groups in that region coincide, up to 2-completion, with their 2-completed R-motivic
analogues.

Example 1.6. We computed in [3] that frﬂf) 4 contains an element of order 32. The-

orem 1.5 implies that 7%?/42 also contains an element of order 32. This is somewhat
surprising because the classical image of J in the 7-stem has order 16. In fact,
this phenomenon is already apparent in the results of Araki and Iriye [1]. This
observation calls strongly for a more careful study of the motivic and equivariant
images of J.

We note two immediate consequences of Theorem 1.5. First, consider the map
fr]ﬁw — Ts_qyw induced by taking fixed points of equivariant realization. Theorem
1.5 implies that this map is an isomorphism in the range s < —1 and a split

surjection for s > max{3w — 5,2w}, based on the analogous facts for ¢: WSZ,{E —
Ts—w- Secondly, the known periodicity phenomena in the WSZ/*Q groups can now be

transplanted into the R-motivic context, as in Corollary 1.7.

Corollary 1.7. For fized s in the range s > max{3w — 5, 2w}, the complementary

summands of fts_y in fx,, are periodic in w.

We do not give the periods in Corollary 1.7, but specific formulas for these are
known from the equivariant context.

Corollary 1.7 describes a qualitative property of R-motivic stable homotopy
groups that deserves further study and is related to 72 -periodic families in the
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R-motivic Adams spectral sequence (see [3] for an introduction to this basic phe-
nomenon). We expect to return to the topic of motivic periodicity in future work.

The proof of Theorem 1.5 is straightforward. Equivariant realization induces a
map from the R-motivic Adams spectral sequence to the Z/2-equivariant Adams
spectral sequence. The R-motivic and Z/2-equivariant Steenrod algebras agree in
a range of dimensions. This gives an isomorphism on cobar complexes in a range,
which shows that R-motivic and Z/2-equivariant Ext groups agree in a range. In
other words, the Z/2-equivariant and R-motivic Adams Fs-pages agree in a range.
Finally, this induces an isomorphism in homotopy groups in a range. The only
complications arise as matters of bookkeeping.

1.8. Notation. For the reader’s convenience, we record here notation used in the
article.

e M5 is the R-motivic homology of a point with Fo coefficients.

° Mg/ % is the Z/2-equivariant homology of a point with Fy coefficients.

e Ap is the dual R-motivic Steenrod algebra. We grade elements in the form
(t,w), where t is the internal Steenrod degree and w is the motivic weight.

e Az/y is the dual Z/2-equivariant Steenrod algebra. We grade elements
in the form (¢,w), where t is the internal Steenrod degree and w is the
equivariant weight.

e The (t,w) grading convention applies as well to graded modules or comod-

ules over Ag or Agz/s.

Ag is the augmentation ideal of Ag.

ﬁz/g is the augmentation ideal of Agz;.
% is the R-motivic cobar complex.

(@ /2 is the Z/2-equivariant cobar complex.

Extg = Extg, (M5, M3) is the cohomology of the R-motivic Steenrod alge-
bra. This is tri-graded, with a homological degree f and an internal degree
(t,w). We instead grade elements in the form (s, f,w), where s =t — f is
the stem, f is the Adams filtration, and w is the motivic weight.

e Extz, = Exty,, (M?Q,Mgm) is the cohomology of the Z/2-equivariant
Steenrod algebra. We grade elements in the form (s, f,w), where s =t — f
is the stem, f is the Adams filtration, and w is the equivariant weight.

e 7® is the stable homotopy ring of the 2-completed R-motivic sphere. We

grz)aude elements in the form (s,w), where s is the stem and w is the motivic
weight.

° frf/*z is the stable homotopy ring of the 2-completed Z/2-equivariant sphere.
We grade elements in the form (s,w), where s is the stem and w is the

equivariant weight.

For sake of tradition, we refer to Ar and Az, as Steenrod algebras. More pre-
cisely, (M5, Ar) and (Mg/ Q,AZ /2) are Hopf algebroids, not Hopf algebras, because

M5 is a non-trivial Ag-module, and Mg/ % is a non-trivial Az 2-module.

2. THE MOTIVIC AND EQUIVARIANT STEENROD ALGEBRAS

Let H® denote the R-motivic Eilenberg-MacLane spectrum representing motivic
cohomology with Fy coefficients, and let My = 7. .(H®) be the homology of a
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point. Recall that My equals Fa[7, p] where 7 has homological degree (0, —1) and
p has homological degree (—1,—1) [11].

Let Ap = 7y, (H® A H®) be the dual R-motivic Steenrod algebra. Recall that
Ar is equal to

Mo[ro, 71, -, &0, €1, ]/ (0 = 1,77 = T€ks1 + pTit1 + pT0Ekt1),

where & has bidegree (2(2¢ — 1),2° — 1) and 7; has bidegree (20! — 1,2¢ — 1)
[12]. For a summary of the complete Hopf algebroid structure, see [3, Section
2]. Observe that Ag is free as a left M5-module, with basis given by monomi-
als 707t . Tyt L €D where 0 < ¢; < 1 and n; > 0. We abbreviate such a
monomial as 7¢£".

When we build the cobar complex, we will use the augmentation ideal Ar of Ag,
i.e., the kernel of the augmentation map Agr — Mk. Observe that Ag is also free
as a left My-module, with the same basis as for Ag except that the monomial 1 is
excluded.

Similarly, let H%/? denote the Z /2-equivariant Eilenberg-MacLane spectrum cor-
responding to the constant Mackey functor with value Fy. Write Mg/ 2= T (H z/ 2)
for the coefficient ring and Az, = T (H%? N H?/?) for the Z/2-equivariant dual
Steenrod algebra.

We will now recall an explicit description of Mf/ 2 [4, Proposition 6.2]. It contains
M5 as a subring, but also contains a “dual copy” in opposing dimensions. Figure 2

gives a complete description of Mg/ 2, Every dot denotes a copy of g, vertical lines
represent multiplication by 7, and diagonal lines represent multiplication by p.

w

A

FIGURE 1. The equivariant coefficient ring Mg/ 2 (homological grading)

In words, Mgﬂ in bidegree (¢, w) consists of a copy of Fy when:

(1) t>0and w>t+2, or
(2) t<0and w<t.

The element in bidegree (0, 2) is called 6, and the other elements in the “dual copy”

are typically named T,fpl for £ > 0 and [ > 0. This naming convention respects the

product structure, although one must remember that neither 7 nor p is actually
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invertible. Any two elements of the form T%L multiply to zero. These details about
the product structure will not be needed in our analysis.
The dual Z/2-equivariant Steenrod algebra Az, has the same description as the

R-motivic Steenrod algebra, but with M replaced with Mg/ * [4, Theorem 6.41].

In particular, note that Az, is free as a left Mg/ 2 module on the same basis. More

/

explicitly, Az /o is equal to Mg 2 OmE Agr. The augmentation ideal ﬁZ/Q of Az s is

also free as a left Mf/ 2—module, with the same basis as for Az, except that the
monomial 1 is excluded, so Ay /2 1s equal to Mg/ 2 Oz Ap.

Equivariant realization from R-motivic homotopy theory to Z/2-equivariant ho-
motopy theory yields a map (Agr,M§) — (.AZ/Q,M? 2) of Hopf algebroids. This

map is just the evident inclusion of Mk into Mf/ 2, and of Ag into Az/s.
Lemma 2.1. Let 7™ have bidegree (t,w). Then t < 3w+ 1.

Proof. The bidegree of each &; satisfies the inequality ¢ < 3w. Similarly, if i > 1,
then the bidegree of 7; also satisfies t < 3w. Therefore the bidegree of 7¢£™ satisfies
the inequality ¢t < 3w if g = 0.

On the other hand, if ¢g = 1, then write 7°¢™ as 7076/5", where e, = 0. The
bidegree of 75,5” satisfies the inequality ¢ < 3w, so the bidegree of 7'07'€l§" satisfies
t<3w+1. (]

Lemma 2.2. Let (t,w) be the bidegree of the element = in Mg/z. Then one has

PRl
t < 3w —6.

Proof. In Figure 2, the elements of the form # all lie on or above the line ¢t =
3w — 6. O

3. COBAR COMPLEXES AND Ext GROUPS

Next we proceed to the cobar complexes of Ag and Az, respectively. These co-
bar complexes are differential graded algebras whose homologies give the R-motivic
and Z/2-equivariant Ext groups. We will obtain an isomorphism of Ext groups in
a range by establishing an isomorphism of cobar complexes in a range.

Let Ci and C7 /2 be the R-motivic and Z/2-equivariant cobar complexes. By

definition, Cﬂ’é is equal to
ﬁR ®M]§ ﬁ]R ®M“§ T ®MD§ ﬁ]]{,
where there are f factors in the tensor product. Similarly, C’g /2 is equal to
Az/g ®M§/2 -AZ/Q ®M§/2 s ®M§/2 -AZ/Q.

Lemma 3.1. The Z/2-equivariant cobar complex 02/2 is isomorphic to Mf” Opmz
Ci-

Proof. Use that Ay /2 1s equal to Mg/ 2 Oz Ag. Then CZf /2 can be rewritten as
M§/2 ®MD2R Oﬂj{t |:|

Lemma 3.2. The map C]fé — C£/2 18:

e an injection in all degrees.



7/2-EQUIVARIANT AND R-MOTIVIC STABLE STEMS 7

e an isomorphism in degrees satisfying t — f > 3w — 5.
e an isomorphism in degrees satisfying t < f — 1.

Proof. By Lemma 3.1, we are considering the obvious map Cﬂg — Mg/ 2 Omr Cﬂg .

Since the map My — Mf/ ? is injective and CD{ is free over My, it follows that the
map C]fé — Mgﬂ Omzr C’H{ is injective for every f > 0.

Consider a typical element # [C1]---|Cy] of the cokernel of the map. By Lemma
2.1, each (; has bidegree (t;, w;) satisfying ¢; < 3w; + 1. Summing over i, we obtain
that [C1]---|C¢] has bidegree satisfying ¢ < 3w + f. Finally, Lemma 2.2 implies
that the bidegree of %[gﬂ -+ |C] satisfies t < 3w+ f — 6. Therefore, the cokernel
vanishes in bidegrees satisfying t — f > 3w — 5.

Similarly, each ¢; has bidegree (¢;, w;) satisfying ¢; > 1, so [(1] - - - |(¢] has bidegree
satisfying t > f. Then the bidegree of %[Cﬂ -+ |(s] also satisfies t > f. Therefore,
the cokernel vanishes in bidegrees satisfying ¢t < f — 1. O

Remark 3.3. The inequalities in Lemma 3.2 are sharp in the following sense. The
element 0[ro11|7071| - - - |7071] Of C%/z lies on the line t — f = 3w — 6, and it does not

belong to the image of C’H{. Also, the element 0[1o|70] - - - |70] of C’%V/Q lies on the line

t = f, and it does not belong to the image of CH{.

The following lemma from homological algebra will let us deduce an Ext isomor-
phism from the cobar isomorphism of Lemma 3.2. The two parts are dual, and the
proofs are simple diagram chases.

Lemma 3.4. Let C. — D, be a map of homologically graded chain complexes (so
the differentials decrease degree).

(a) Suppose that C; — D; is an isomorphism for all i > n+1, and an injection for
i =n. Then the map H;(C) — H;(D) of homology groups is:
e an injection for i =n,
e an isomorphism for i > n+ 1.
(b) Dually, suppose that C; — D; is an isomorphism for all i < n —1, and a
surjection for i =mn. Then the map H;(C) — H;(D) of homology groups
e is an isomorphism fori <n —1,
e q surjection for i =n.

We will use the grading (s, f,w) for Ext groups, where s is the stem, f is the
Adams filtration, and w is the weight. An element of degree (s, f,w) occurs at
Cartesian coordinates (s, f) in a standard Adams chart. Recall that s = ¢ — f,
where t is the internal Steenrod degree.

Proposition 3.5. In degree (s, f,w), the map Extg — Extz,o is:
e an injection if s = 3w — 6.
e an isomorphism if s > 3w — 5.

Proof. The claims follow immediately from Lemmas 3.2 and 3.4 because Ext can
be computed as the homology of the cobar construction. O

Proposition 3.6. In degree (s, f,w), the map Extg — Extz 5 is an isomorphism
if s < —1.
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Proof. Lemmas 3.2 and 3.4 imply that the map is an isomorphism if s < —2 and is
a surjection if s = —1. In order to obtain the isomorphism for s = —1, we need to
investigate the cobar complex a little further.

In degrees satisfying s = 0, i.e., t = f, the cokernel of the map Cy — 02/2 of

cobar complexes consists elements of the form 2 [r9|7o| - - - |7]. All of these elements
are cycles in the Z/2-equivariant cobar complex. A diagram chase now shows that
Extg — Extz/; is an isomorphism if s = —1. O

The following finiteness condition for Extr implies that there are only finitely
many Adams differentials in any given degree. We will need this fact in Section 4
when we analyze the Adams spectral sequence.

Lemma 3.7. In each degree (s, f,w), the group Ext]%f’f’w) is a finite-dimensional

Fy-vector space.

Proof. As described in [3, Section 3], there is a p-Bockstein spectral sequence con-
verging to Extr. It suffices to show that the Ej-page of this spectral sequence is
finite-dimensional over Fs in each tridegree. In degree (s, f,w), this E;-page con-
sists of elements of the form p*z, where k > 0 and x belongs to the C-motivic Ext
group in degree (s + k, f,w + k).

The C-motivic Ext groups have a vanishing plane, as described in [3, Lemma
2.2]. In this case, the vanishing plane implies that k < s + f — 2w if z is non-zero.
Since k is non-negative this means there are only finitely-many values of k that
contribute to the Ej-page of our spectral sequence in degree (s, f, w).

Finally, the C-motivic Ext groups are degreewise finite-dimensional. This follows
from the fact that the E-page of the motivic May spectral sequence is degreewise
finite-dimensional. O

4. HOMOTOPY GROUPS

We now come to our main results comparing R-motivic and Z/2-equivariant
homotopy groups.

Theorem 4.1. The map ﬁ']ﬁw — ﬁ'f/w? 18:

e an injection if s = 3w — 6.
e an isomorphism if s > 3w — 5.

Proof. Proposition 3.5 gives an isomorphism (in a range) between the F>-pages of
the R-motivic and Z/2-equivariant Adams spectral sequences. Inductively, Lemma
3.4 gives isomorphisms (in a range) between the E,-pages of the spectral sequences
for all r. The finiteness condition of Lemma 3.7 guarantees that for each degree
(s, f,w), there exists an r such that the E-page is isomorphic to the E,.-page.
Therefore, we obtain an isomorphism of E..-pages in a range.

The FE-pages are associated graded objects of the stable homotopy groups.
This implies that the stable homotopy groups are isomorphic as well.

The same style of argument applies to the claim about injections. O

Theorem 4.2. The map ﬁ'Ew — ﬁ'?/u? is an isomorphism if s < —1.
Proof. The argument from Theorem 4.1 implies that the map is an isomorphism
for s < —2 and a surjection for s = —1. In order to obtain the isomorphism for
s = —1, we have to investigate the Adams Fs-pages slightly further.
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Recall from the proof of Proposition 3.6 that in degrees satisfying s = 0, the

cokernel of the map Cyp — C7 /2 of cobar complexes consists of elements of the

form G [ro[mo| - - |7o]. Therefore, in degrees satisfying s = 0, the cokernel of the

map Extr — Extz /5 consists of elements of the form %hf). These elements are all
permanent cycles in the Z/2-equivariant Adams spectral sequence. In other words,
there is a one-to-one correspondence between R-motivic and Z/2-equivariant Adams
differentials from the O-stem to the (—1)-stem.

A diagram chase now establishes that the R-motivic and Z/2-equivariant Fo-
pages are isomorphic for s = —1. This passes to an isomorphism of stable homotopy
groups. ]

We restate Theorem 4.1 in an equivalent form that is useful from the Milnor-Witt
degree perspective.

Corollary 4.3. On the nth Milnor-Witt stems, the map 7% — 72 s

s,8—n s,8—n
e an isomorphism if 2s < 3n + 5.
e an injection if 2s = 3n + 6.

Proof. This is a straightforward algebraic rearrangement of Theorem 4.1, using that
n=s—uw. (]

5. EQUIVARIANT STABLE HOMOTOPY GROUPS

Table 1 summarizes some of the calculations of Araki and Iriye [1,6]. The indices
across the top indicate the stem s, while the indices at the left indicate the Milnor-
Witt degree s —w. The R-motivic and Z/2-equivariant stable homotopy groups are
isomorphic in the shaded region, as described in Theorem 1.5. This is a companion
to [6, Table 2], which gives the values of the periodic summands. The red symbols
in Table 1 are exceptions to the periodicity.

For compactness, we use the following notation to indicate abelian groups:

(1) o =Z.

(2) n=2Z/n
B)n-m=Z/ndZ/m
(4) n* = (Z/n)*

The symbols 7, indicate that the classical stable homotopy group 7 splits via the
fixed point map.

Table 2 has essentially the same information as Table 1, except it is organized
differently: the rows here are labelled by the weight rather than Milnor-Witt stem.
We include this table for expository purposes, as it is easier to understand the
results of the paper with the information in this format. Note the following:

e In Table 1, the Milnor-Witt stems are along the rows; in Table 2, they are
along the upward diagonals.

e The periodicities from Section 1.2 are along the columns in both tables,
but there is a vertical reflection between the tables.

e In Table 1, the range of exceptions to periodicity is the wedge § > s —w >
—1. In Table 2, it is the wedge 2w > s > w — 1.

e For space considerations, the two tables cover slightly different ranges.
Some of the data from Table 1 was left out of Table 2 because the ex-
pository goals could be accomplished without it.
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Different grading conventions are useful for studying different specific phenomena.
We find that the Milnor-Witt grading in Table 1 is convenient for most purposes

in R-motivic and Z/2-equivariant homotopy theory.

7
TABLE 1. Some values of s

/2

SX| -2 -1 0 1 2 3 4 5 6

7 7 7 2'7‘(‘7 4-71'7 8-71'7 48'4'7'(‘7 16-71'7 16-71'7 16-2-7‘(7

6| mg 7w oo-mg 2-mg 2%2-mg 2% mg 2-mg 2-mg 2°-Tg

5 s s 2'7‘(’5 22'7'['5 2'71'5 12'7‘(5 5 5 5

4 T4 Ty o0 Ty T4 T4 2-71'4 2 T4 2-7‘(‘4 4 - 4

3|\m m3 2-m3 4-m3 8-m3 24-8-m3 8-m3 8-m3 8-m3

2wy mo o00-my 2-my 2%2-mg 2-my To 2 2

1 1 1 2'7'('1 22'7'['1 2'71'1 24 0 0 0

0|m m o0-7g 00 00 o0 o0 ) 00 -2
—-110 0 0 0 0 12 0 0 2
—-210 0 00 2 22 22 2 2 22
—-310 0 2 22 2 12 0 0 0

7 8 9 10 11 12 13

71240-16-2-m7 16-2-7w; 16-2-7w7 16- 77 2016-4-77; 16 -77 48

6 2-7‘(‘6 4-71'6 4-2-71’6 6-22-7'('6 22-7'('6 22-7T6 22

5 240'71'5 23'7'['5 25'7'['5 22'7'['5 504 0 3

4 22'71'4 24'7'['4 22 3 0 0 0

31480-12-4 24 -4 24 -2 24 504 - 24 24 24 - ¢

210 0 2 6-2 2 0 0

1] 240 23 26 23 504 - 2 2 6

0| co-2? oo - 24 00 - 22 003 00 00 00
—1]120-2 2 2 0 252 0 3
—2] 22 42 8-4-2 24 .23 16 - 22 16 - 2 16 -
-3 | 240 23 25 22 504 0 3
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TABLE 2. Another perspective on 71'?/“]2

-2 -1 0 1 2 3 4 5 6
610 0 o0 4 0 12 2 0 o0 -2
510 0 2 0 2 22 0 00 0
410 0 o0 22 22 12 00 0 2
310 0 2 2 0 00 0 2 8 -3
210 0 00 0 00 24 o 8-m3 4-my
110 0 0 00 2-m 2-m 8-m3 2-my T
010 0 co-my 2°2-m 22-my 24-8-m3 2-ms s 2% . 7

—-11]0 0 2-7‘(‘1 2-71'2 8-71'3 2-71'4 5 2-7‘(‘6 16-2-71’7

—2|mg m 00-mg 4-m3 Wy 12 - 75 2-mg 16-m 22-mg

-3 1 ) 2-7‘(‘3 T4 2-71'5 22-71'6 16-71'7 2-7‘(‘8 2-7‘(‘9
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