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Low-dimensional Milnor–Witt stems over R

Daniel Dugger and Daniel C. Isaksen

We compute some motivic stable homotopy groups over R. For 0≤ p− q ≤ 3,
we describe the motivic stable homotopy groups π̂p,q of a completion of the
motivic sphere spectrum. These are the first four Milnor–Witt stems. We start
with the known Ext groups over C and apply the ρ-Bockstein spectral sequence
to obtain Ext groups over R. This is the input to an Adams spectral sequence,
which collapses in our low-dimensional range.

1. Introduction

This paper takes place in the context of motivic stable homotopy theory over R.
Write M2 = H∗,∗(R; F2) for the bigraded motivic cohomology ring of a point, and
write A for the motivic Steenrod algebra at the prime 2. Our goal is to study the
trigraded Adams spectral sequence

E2 = Ext∗,∗,∗A (M2,M2)⇒ π̂∗,∗,

where π̂∗,∗ represents the stable motivic homotopy groups of a completion of the
motivic sphere spectrum over R. This spectral sequence is known to have good
convergence properties [Morel 1999; Dugger and Isaksen 2010; Hu et al. 2011a;
2011b]. Specifically, in a range of dimensions we:

(1) compute the Ext groups appearing in the E2-page of the motivic Adams spec-
tral sequence over R;

(2) analyze all Adams differentials;

(3) reconstruct the groups π̂∗,∗ from their filtration quotients given by the Adams
E∞-page.

Point (1) is tackled by introducing an auxiliary, purely algebraic spectral sequence
that converges to these Ext groups.

To describe our results more specifically we must introduce some notation and
terminology related to the three indices in our spectral sequence. We first have the
homological degree of the Ext groups, also called the Adams filtration degree —
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we label this f and simply call it the filtration. We then have the internal bidegree
(t, w) for A-modules, where t is the usual topological degree and w is the weight.
We introduce the grading s = t − f and call this the topological stem, or just the
stem. The triple (s, f, w) of stem, filtration, and weight will be our main index
of reference. Using these variables, the motivic Adams spectral sequence can be
written

E2 = Exts, f,w
A (M2,M2)⇒ π̂s,w.

Morel [2005] has computed that π̂s,w = 0 for s <w (in fact, this is true integrally
before completion). Write 50 =⊕n πn,n , considered as a Z-graded ring. This is
called the Milnor–Witt ring, and Morel [2004b] has given a complete description
of this via generators and relations. It is convenient to set 5k =⊕n π̂n+k,n , as
this is a Z-graded module over 50. We call 5k the completed Milnor–Witt k-stem.
Related to this, the group π̂s,w has Milnor–Witt degree s−w.

The completed Milnor–Witt ring 50 is equal to

Z2[ρ, η]/(η2ρ+ 2η, ρ2η+ 2ρ),

where η has degree (1, 1) and ρ has degree (−1,−1). Note that 50 is the 2-
completion of the Milnor–Witt ring of R described by Morel [2004b].

We have found that the analysis of the motivic Ext groups over R, and of the
Adams spectral sequence, is most conveniently done with respect to the Milnor–
Witt degree. In this paper we focus only on the range s−w ≤ 3, leading to an anal-
ysis of the Milnor–Witt stems 51, 52, and 53. The restriction to s−w ≤ 3 is done
for didactic purposes; our methods can be applied to cover a much greater range,
but at the expense of more laborious computation. The focus on s−w≤ 3 allows us
to demonstrate the methods and see examples of the interesting phenomena, while
keeping the intensity of the labor down to manageable levels.

1.1. An algebraic spectral sequence for Ext. The main tool in this paper is the
ρ-Bockstein spectral sequence that computes the groups ExtA(M2,M2). This was
originally introduced by Hill [2011] and analyzed for the subalgebra A(1) of A
generated by Sq1 and Sq2. Most of our hard work is focused on analyzing the
differentials in this spectral sequence, as well as the hidden extensions encountered
when passing from the E∞-page to the true Ext groups.

Over the ground field R, one has M2 = F2[τ, ρ], where τ has bidegree (0, 1)
and ρ has bidegree (1, 1). In contrast, over C one has MC

2 = F2[τ ]. The groups
Exts, f,w

AC (MC
2 ,MC

2 ), where AC denotes the motivic Steenrod algebra over C, were
computed in [Dugger and Isaksen 2010] for s ≤ 34 and in [Isaksen 2014b] for
s ≤ 70. The ρ-Bockstein spectral sequence takes these groups as input, having the
form

E1 = ExtAC(MC
2 ,MC

2 )[ρ] ⇒ ExtA(M2,M2). (1.2)
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The spectral sequence converges for the simple reason that the E1-page is finite
for each degree (s, f, w). The differentials in the spectral sequence are extensive.
However, in a large range they can be completely analyzed by a method we describe
next.

As an F2[ρ]-module, ExtA(M2,M2) splits as a summand of ρ-torsion modules
and ρ-nontorsion modules; we call the latter ρ-local modules for short. The first
step in our work is to analyze the ρ-local part of the Ext groups, and this turns out
to have a remarkably simple answer. We prove that

ExtA(M2,M2)[ρ−1] ∼= ExtAcl(F2, F2)[ρ±1],
where Acl is the classical Steenrod algebra at the prime 2. The isomorphism is
highly structured, in the sense that it is compatible with all products and Massey
products, and the element hi in ExtAcl(F2, F2) corresponds to the element hi+1

in ExtA(M2,M2)[ρ−1] for every i ≥ 0. In other words, the motivic Ext groups
ExtA(M2,M2) have a shifted copy of ExtAcl(F2, F2) sitting inside them as the ρ-
local part.

It turns out, that through a large range of dimensions, there is only one pattern of
ρ-Bockstein differentials that is consistent with the ρ-local calculation described
in the previous paragraph. This is what allows the analysis of the ρ-Bockstein
spectral sequence (1.2).

It is not so easy to organize this calculation: the trigraded nature of the spectral
sequence, coupled with a fairly irregular pattern of differentials, makes it close to
impossible to depict the spectral sequence via the usual charts. See [Hill 2011;
Ormsby and Østvær 2013] for calculations of similar complexity.

We analyze what is happening via a collection of charts and tables, but mostly
focusing on the tables. A large portion of the present paper is devoted to explaining
how to navigate this computation.

Figure 2 on page 198 shows the result, namely ExtA(M2,M2) through Milnor–
Witt degree 4. Our computations agree with machine computations carried out by
Glen Wilson and Knight Fu (personal communication, 2014).

1.3. Adams differentials. Once we have computed ExtA(M2,M2), the next step is
the analysis of Adams differentials. Identifying even possible differentials is again
hampered by the trigraded nature of the situation, but we explain the calculus that
allows one to accomplish this — it is not as easy as it is for the classical Adams
spectral sequence, but it is at least mechanical. In the range s−w≤ 3 there are only
a few possible differentials for degree reasons. We show via some Toda bracket
arguments that in fact all of the differentials are zero.

1.4. Milnor–Witt modules. After analyzing Adams differentials, we obtain the
Adams E∞-page, which is an associated graded object of the motivic stable ho-
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motopy groups over R. We convert the associated graded information into the
structure of the Milnor–Witt modules 51, 52, and 53, as modules over 50. We
must be wary of extensions that are hidden by the Adams spectral sequence, but
these turn out to be manageable.

Figure 3 on page 203 describes the results of this process. We draw attention to
a curious phenomenon in the 7-stem of 53. Here we see that the third Hopf map
σ has order 32, not order 16. This indicates that the motivic image of J is not
the same as the classical image of J . This unexpected behavior suggests that the
theory of motivic v1-self maps is not what one might expect. This phenomenon
deserve more study. By comparison, it is known that the C2-equivariant Hopf map
σ also has order 32 [Araki and Iriye 1982].

We also observe that the 1-stem of 51 is consistent with Morel’s conjecture on
the structure of π1,0. (See [Ormsby and Østvær 2014, p. 98] for a clearly stated
version of the conjecture.) The group π1,0 is also discussed in [Heller and Ormsby
2016; Röndigs et al. 2014].

Unsurprisingly, our calculations are similar to calculations of Z/2-equivariant
stable homotopy groups [Araki and Iriye 1982]. There is a realization functor from
motivic homotopy theory over R to Z/2-equivariant homotopy theory, and this
functor induces an isomorphism in stable homotopy groups π̂s,w when s ≥ 3w− 5,
and perhaps in a larger range. Details are in [Dugger and Isaksen 2016].

1.5. Other base fields. Although we only work with the base field R in this article,
the phenomena that we study most likely occur for other base fields as well. This
is especially true for fields k that are similar to R, such as fields that have an
embedding into R.

One might use our calculations to speculate on the structure of 51, 52, and 53

for arbitrary base fields. We leave this to the imagination of the reader.

1.6. Organization of the paper. We begin in Section 2 with a brief reminder of the
motivic Steenrod algebra and the motivic Adams spectral sequence. We construct
the ρ-Bockstein spectral sequence in Section 3, and we perform some preliminary
calculations. In Section 4, we consider the effect of inverting ρ. Then we return in
Section 5 to a detailed analysis of the ρ-Bockstein spectral sequence. We resolve
extensions that are hidden in the ρ-Bockstein spectral sequence in Section 6, and
obtain a description of ExtA(M2,M2). We show that there are no Adams differen-
tials in Section 7. In Section 8, we convert the associated graded information of
the Adams spectral sequence into explicit descriptions of Milnor–Witt modules.

1.7. Notation. For the reader’s convenience, we provide a table of notation to be
used later:

(1) M2 = F2[τ, ρ] is the motivic F2-cohomology ring of R.
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(2) MC
2 = F2[τ ] is the motivic F2-cohomology ring of C.

(3) A is the motivic Steenrod algebra over R at the prime 2.

(4) A∗ is the dual motivic Steenrod algebra over R at the prime 2.

(5) AC is the motivic Steenrod algebra over C at the prime 2.

(6) Acl is the classical Steenrod algebra at the prime 2.

(7) Ext or ExtR is the cohomology of A, i.e., ExtA(M2,M2).

(8) ExtC is the cohomology of AC, i.e., ExtAC(MC
2 ,MC

2 ).

(9) Extcl is the cohomology of Acl, i.e., ExtAcl(F2, F2).

(10) π̂∗,∗ is the bigraded stable homotopy ring of the completion of the motivic
sphere spectrum over R with respect to the motivic Eilenberg–Mac Lane spec-
trum HF2.

(11) 5k =⊕n π̂n+k,k is the k-th completed Milnor–Witt stem over R.

2. Background

This section establishes the basic setting and notation that will be assumed through-
out the paper.

Write M2 = H∗,∗(R; F2) for the (bigraded) motivic cohomology ring of R. We
use the usual motivic bigrading, where the first index is the topological dimension
and the second index is the weight. Recall that M2 is equal to F2[τ, ρ], where τ
has degree (0, 1) and ρ has degree (1, 1). The class ρ is the element [−1] under
the standard isomorphism M

1,1
2
∼= F∗/(F∗)2, and τ is the unique element such that

Sq1(τ )= ρ.
Let A∗ denote the dual motivic Steenrod algebra over R. The pair (M2,A∗) is

a Hopf algebroid; recall from [Voevodsky 2003] (see also [Borghesi 2007; Hoyois
et al. 2013; Riou 2012]) that this structure is described by

A∗ =M2[τ0, τ1, . . . , ξ0, ξ1, . . . ]/(ξ0 = 1, τ 2
k = τξk+1+ ρτk+1+ ρτ0ξk+1),

ηL(τ )= τ, ηR(τ )= τ + ρτ0, ηL(ρ)= ηR(ρ)= ρ,

1(τk)= τk ⊗ 1+
k∑

i=0

ξ 2i

k−i ⊗ τi , 1(ξk)=
k∑

i=0

ξ 2i

k−i ⊗ ξi .

The Hopf algebroid axioms force 1(τ)= τ⊗1 and 1(ρ)= ρ⊗1, but it is useful to
record these for reference. The dual A∗ is homologically graded, so τ has degree
(0,−1) and ρ has degree (−1,−1). Moreover, τk has degree (2k+1 − 1, 2k − 1)
and ξk has degree (2k+1− 2, 2k − 1).

The groups ExtA∗(M2,M2) are trigraded. There is the homological degree f
(the degree on the Ext) and the internal bidegree (p, q) of A∗-comodules. The
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symbol f comes from “filtration”, as this index coincides with the Adams filtra-
tion in the Adams spectral sequence. Classical notation would write Ext f,(p,q) for
the corresponding homogeneous piece of the Ext group. In the Adams spectral
sequence this Ext group contributes to πp− f,q . We call p− f the stem and will
usually denote it by s. It turns out to be more convenient to use the indices (s, f, w)
of stem, filtration, and weight rather than ( f, p, q). So we will write Exts, f,w for
the group that would classically be denoted Ext f,(s+ f,w). This works very well in
practice; in particular, when we draw charts, the group Exts, f,w will be located at
Cartesian coordinates (s, f ).

The motivic Adams spectral sequence takes the form

E2 = Exts, f,w
A∗ (M2,M2)⇒ π̂s,w,

with dr : Exts, f,w → Exts−1, f+r,w. Here π̂∗,∗ is the stable motivic homotopy
ring of the completion of the motivic sphere spectrum with respect to the mo-
tivic Eilenberg–Mac Lane spectrum HF2. (According to [Hu et al. 2011b], this
completion is also the 2-completion of the motivic sphere spectrum, but this is not
essential for our calculations.)

Our methods also require us to consider the motivic cohomology of C and
the motivic Steenrod algebra over C. We write MC

2 and AC for these objects.
They are obtained from M2 and A by setting ρ equal to zero. More explicitly,
MC

2 equals F2[τ ], and the dual motivic Steenrod algebra over C has relations of the
form τ 2

k = τξk+1.
We will also use the abbreviations

ExtR = ExtA∗(M2,M2),

ExtC = ExtAC∗ (M
C
2 ,MC

2 ).

2.1. Milnor–Witt degree. Given a class with an associated stem s and weight w,
we call s−w the Milnor–Witt degree of the class. The terminology comes from the
fact that the elements of Milnor–Witt degree zero in the motivic stable homotopy
ring constitute Morel’s Milnor–Witt K-theory ring. More generally, the elements
of Milnor–Witt degree r in π̂∗,∗ form a module over (2-completed) Milnor–Witt
K-theory.

Many of the calculations in this paper are handled by breaking things up into
the homogeneous Milnor–Witt components. The following lemma about ExtC will
be particularly useful:

Lemma 2.2. Let x be a nonzero class in Exts, f,w
C

with Milnor–Witt degree t. Then
f ≥ s− 2t .

Proof. The motivic May spectral sequence [Dugger and Isaksen 2010] has E1-page
generated by classes hi j , and converges to ExtC. All of the classes hi j are readily
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checked to satisfy the inequality s+ f − 2w ≥ 0, and this extends to all products.
This inequality is the same as f ≥ s−2(s−w), and t equals s−w by definition. �

In practice, Lemma 2.2 tells us where to look for elements of ExtC in a given
Milnor–Witt degree t . All such elements lie above a line of slope 1 on an Adams
chart (specifically, the line f = s− 2t).

3. The ρ-Bockstein spectral sequence

Our aim is to compute ExtA(M2,M2). What makes this calculation difficult is the
presence of ρ. If one formally sets ρ = 0 then the formulas become simpler and
the calculations more manageable; this is essentially the case that was handled in
[Dugger and Isaksen 2010; Isaksen 2014b]. Following ideas of Hill [2011], we
use an algebraic spectral sequence for building up the general calculation from the
simpler one where ρ = 0. This section sets up the spectral sequence and establishes
some basic properties.

Let C be the (unreduced) cobar complex for the Hopf algebroid (M2,A∗). Recall
that this is the cochain complex associated to the cosimplicial ring

M2
ηR−→−→
ηL

A∗ −→−→−→A∗⊗M2 A∗
−→−→−→−→A∗⊗M2 A∗⊗M2 A∗ · · ·

by taking dC to be the alternating sum of the coface maps. Since we are working
over F2, we do not have to deal with minus signs and can just take the sum of the
coface maps. For u an r -fold tensor, one has d0(u)= 1⊗ u, dr+1(u)= u⊗ 1, and
d i (u) applies the diagonal of A∗ to the i-th tensor factor of u. For u in M2 (i.e., a
0-fold tensor), one has d0(u)= ηR(u) and d1(u)= ηL(u).

The pair (C, dC) is a differential graded algebra. As usual, we will denote r -fold
tensors via the bar notation [x1|x2| · · · |xr ].

The element ξ 2k

1 is primitive in A∗ for any k because ξ1 is primitive. Hence [ξ 2k

1 ]
is a cycle in the cobar complex that is denoted by hk+1. Likewise, τ0 is primitive,
and the cycle [τ0] is denoted by h0.

The maps ηL , ηR , and 1 all fix ρ, and this implies that all the coface maps are
ρ-linear. The filtration

C ⊇ ρC ⊇ ρ2C ⊇ · · ·
is therefore a filtration of chain complexes. The associated spectral sequence is
called the ρ-Bockstein spectral sequence.

The ρ-Bockstein spectral sequence has the form

E1 = ExtGrρ A(Grρ M2,Grρ M2)⇒ ExtA(M2,M2),

where Grρ refers to the associated graded of the filtration by powers of ρ. Since
M2 = F2[τ, ρ], we have Grρ M2 ∼=M2. Similarly, it follows easily that there is an
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isomorphism of Hopf algebroids

(Grρ M2,Grρ A)∼= (MC
2 ,A

C)⊗F2 F2[ρ],
where MC

2 = F2[τ ] is the motivic cohomology ring of C. The point here is that
after taking associated gradeds, the formulas for ηL and ηR both fix τ , whereas the
formulas for 1 are unchanged; and all of this exactly matches the formulas for AC.

Our ρ-Bockstein spectral sequence takes the form

E1 = ExtAC(MC
2 ,MC

2 )[ρ] ⇒ ExtA(M2,M2)

because tensoring with F2[ρ] commutes with Ext. Alternatively, one can view
the identification of the E1-page as a change-of-rings isomorphism. It will be
convenient to denote ExtAC(MC

2 ,MC
2 ) simply by ExtC.

The differentials in the ρ-Bockstein spectral sequence are essentially truncations
of the cobar differential. We make this more precise in Remark 3.1.

Our Ext groups are graded in the form (s, f, w). The filtration by powers of
ρ introduces a fourth grading on the ρ-Bockstein spectral sequence, which we
will not write explicitly since it is apparent in the powers of ρ in any monomial.
The ρ-Bockstein dr differential increases the ρ filtration by r , decreases s by 1,
increases f by 1, and preserves w.

We observe two general properties of the ρ-Bockstein spectral sequence. First,
the element ρ is a permanent cycle because ρ supports no Steenrod operations.
Second, the spectral sequence is multiplicative, so the Leibniz rule can be used
effectively to compute differentials on decomposable elements.

Remark 3.1. Here is a method for deducing ρ-Bockstein differentials from explicit
cobar calculations. Let u be an element in C, and assume that u is not a multiple
of ρ. If possible, write dC(u)= ρdC(u1)+ ρ2v2, where u1 has a tensor expression
that does not involve ρ; then the ρ-Bockstein differential d1(u) is zero. Otherwise,
d1(u) equals dC(u) modulo ρ2.

If d1(u) is zero, then if possible write dC(u)=ρdC(u1)+ρ2dC(u2)+ρ3v3, where
u2 has a tensor expression that does not involve ρ; then d2(u) is zero. Otherwise,
d2(u) equals ρ2v2 modulo ρ3.

Inductively, assume that

dC(u)= ρdC(u1)+ · · ·+ ρr−1dC(ur−1)+ ρrvr ,

where each ui has a tensor expression that does not involve ρ. If possible, write
vr = dC(ur )+ ρvr+1, where ur has a tensor expression that does not involve ρ;
then dr (u) is zero. Otherwise, dr (u) equals ρrvr modulo ρr+1.

The method described in Remark 3.1 is mostly not needed in our analysis; in
fact, we will eventually show how to deduce most of the differentials in a large
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range of the spectral sequence by a completely mechanical process. Still, it is often
useful to understand that the ρ-Bockstein spectral sequence is all about computing
ρ-truncations of differentials in C. Proposition 3.2 and Example 3.3 illustrate this
technique.

Proposition 3.2. (1) d1(τ )= ρh0.

(2) d2k (τ 2k
)= ρ2k

τ 2k−1
hk for k ≥ 1.

Part (2) of Proposition 3.2 implicitly also means that dr (τ
2k
) is zero for all r < 2k .

Proof. Note that dC(x) = ηR(x) − ηL(x) for x in M2. In particular, dC(τ ) =
[τ + ρτ0] − [τ ] = ρ[τ0] = ρh0. Now use Remark 3.1 to deduce that d1(τ )= ρh0.

Next we analyze dC(τ
2k
). Start with

dC(τ
2k
)= ηR(τ

2k
)− ηL(τ

2k
)= [(τ + ρτ0)

2k ] − [τ 2k ] = ρ2k [τ 2k

0 ].
Recall that τ 2

0 = τξ1+ ρτ1+ ρτ0ξ1 in A∗, and so τ 2k

0 = τ 2k−1
ξ 2k−1

1 modulo ρ2k−1
.

Thus, dC(τ
2k
)= ρ2k

τ 2k−1[ξ 2k−1

1 ] modulo ρ2k+1. Remark 3.1 implies that d2k (τ 2k
)=

ρ2k
τ 2k−1

hk . �

Proposition 3.2 is essentially the same as the content of [Ormsby and Østvær
2013, Theorem 5.5; Hill 2011, Theorem 3.2].

Example 3.3. We will demonstrate that d6(τ
4h1) = ρ6τh2

2. As in the proof of
Proposition 3.2, dC(τ

4) = ρ4[(τξ1 + ρτ1 + ρτ0ξ1)
2]. Use the relations τ 2

0 =
τξ1+ ρτ1+ ρτ0ξ1 and τ 2

1 = τξ2+ ρτ2+ ρτ0ξ2 to see that this expression equals
ρ4τ 2[ξ 2

1 ] + ρ6τ [ξ2] + ρ6τ [ξ 3
1 ] modulo ρ7.

Since h1 = [ξ1] is a cycle, we therefore have

dC(τ
4h1)= ρ4τ 2[ξ 2

1 |ξ1] + ρ6τ
([ξ2|ξ1] + [ξ 3

1 |ξ1]
)

modulo ρ7.
The coproduct on ξ2 implies that dC([ξ2])= [ξ 2

1 |ξ1]. We also have that

dC(τ
2)= ρ2[τ 2

0 ] = ρ2τ [ξ1] + ρ3[τ1] + ρ2[τ0ξ1],
as in the proof of Proposition 3.2. Recall that the cobar complex is a differential
graded algebra, so there is a Leibniz rule for dC . Therefore,

dC(τ
2[ξ2])= ρ2τ [ξ1|ξ2] + ρ3[τ1|ξ2] + ρ3[τ0ξ1|ξ2] + τ 2[ξ 2

1 |ξ1].
We can now write

dC(τ
4h1)= ρ4dC(τ

2[ξ2])+ ρ6τ
([ξ2|ξ1] + [ξ 3

1 |ξ1] + [ξ1|ξ2]
)

modulo ρ7. From Remark 3.1, one has di (τ
4h1)= 0 for i < 6 in the ρ-Bockstein

spectral sequence, and d6(τ
4h1)= ρ6τ

([ξ2|ξ1] + [ξ 3
1 |ξ1] + [ξ1|ξ2]

)
.
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Finally, the coproduct in A∗ implies that

dC([ξ2ξ1])= [ξ 3
1 |ξ1] + [ξ1|ξ2] + [ξ2|ξ1] + [ξ 2

1 |ξ 2
1 ].

This shows that [ξ2|ξ1] + [ξ 3
1 |ξ1] + [ξ1|ξ2] = h2

2 in Ext.

The long analysis in Example 3.3 demonstrates that direct work with the cobar
complex is not practical. Instead, we will use some clever tricks that take advantage
of various algebraic structures. But it is useful to remember what is going on behind
the scenes: these computations of differentials are always giving us clues about the
cobar differential dC .

The following result is useful in analyzing ρ-Bockstein differentials:

Lemma 3.4. If dr (x) is nontrivial in the ρ-Bockstein spectral sequence, then x and
dr (x) are both ρ-torsion-free on the Er -page.

Proof. First note that if y is nonzero on the Er -page then y is ρ-torsion if and
only if ρr−1 y = 0. The reason is that the differentials ds for s < r can only hit
ρs-multiples of y.

Now suppose that dr (x) = ρr y, where ρr y is nonzero on the Er -page. This
immediately forces y to be ρ-torsion-free. Since dr is ρ-linear, this implies that x
must also be ρ-torsion-free on the Er -page. �

4. ρ-localization

The analysis of the ρ-Bockstein spectral sequence is best broken up into two pieces.
There are a large number of ρ-torsion classes in the E∞-page. If one throws away
all of this ρ-torsion, then the end result turns out to be fairly simple. In this section
we compute this simple piece of ExtR. More precisely, we will consider the ρ-
localization ExtR[ρ−1] of ExtR. Inverting ρ annihilates all of the ρ-torsion.

The h1-localizations of Ext groups [Andrews and Miller 2015; Guillou and Isak-
sen 2015a; 2015c] has proven to be an interesting calculation that is useful for
understanding global structure. Localization with respect to ρ is similarly useful.

Let Acl denote the classical Steenrod algebra (at the prime 2), and write Extcl =
ExtAcl(F2, F2).

Theorem 4.1. There is an isomorphism from Extcl[ρ±1] to ExtR[ρ−1] such that:

(1) The isomorphism is highly structured, i.e., preserves products, Massey prod-
ucts, and algebraic squaring operations in the sense of [May 1970].

(2) The element hn of Extcl corresponds to the element hn+1 of ExtR.

(3) An element in Extcl of degree (s, f ) corresponds to an element in ExtR of
degree (2s+ f, f, s+ f ).
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The formula for degrees appears to be more complicated than it is. The idea is
that one doubles the internal degree, which is the stem plus the Adams filtration,
while leaving the Adams filtration unchanged. Then the weight is always exactly
half of the internal degree.

Proof. Since localization is exact, we may compute the cohomology of the Hopf
algebroid (M2[ρ−1],A∗[ρ−1]) to obtain ExtR[ρ−1]. After localizing at ρ, we have
τk+1=ρ−1τ 2

k +ρ−1τξk+1+τ0ξk+1, and so the Hopf algebroid (M2[ρ−1],A∗[ρ−1])
is described by

A∗[ρ−1] =M2[ρ−1][τ0, ξ0, ξ1, . . . ]/(ξ0 = 1),

ηL(τ )= τ, ηR(τ )= τ + ρτ0, ηL(ρ)= ηR(ρ)= ρ,
1(τ0)= τ0⊗ 1+ 1⊗ τ0, 1(ξk)=

∑
ξ 2i

k−i ⊗ ξi .

Since these formulas contain no interactions between the τi and the ξ j , there is a
splitting

(M2[ρ−1],A∗[ρ−1])∼= (M2[ρ−1],A′∗)⊗F2 (F2,A′′∗),

where (M2[ρ−1],A′∗) is the Hopf algebroid

A′∗ =M2[ρ−1][τ0],
ηL(τ )= τ, ηR(τ )= τ + ρτ0,

1(τ0)= τ0⊗ 1+ 1⊗ τ0,

and (F2,A′′∗) is the Hopf algebra

A′′∗ = F2[ξ0, ξ1, . . . ]/(ξ0 = 1),

1(ξk)=
∑

ξ 2i

k−i ⊗ ξi .

Notice that A′′∗ is equal to the classical dual Steenrod algebra, and so its cohomology
is isomorphic to Extcl. By careful inspection of the degrees of elements, Exts, f

cl
contributes to Ext2s+ f, f,s+ f

R under this isomorphism.
For A′∗, we can perform the change of variables x = ρτ0 since ρ is invertible,

yielding
(M2[ρ−1],A′∗)∼= F2[ρ±1]⊗F2 (F2[τ ],B),

where (F2[τ ],B) is the Hopf algebroid defined in Lemma 4.3 below. The lemma
implies that the cohomology of (M2[ρ−1],A′∗) is F2[ρ±1], concentrated in homo-
logical degree zero. �

Remark 4.2. The proof of Theorem 4.1 describes a splitting of the ρ-inverted
motivic Steenrod algebroid. This ρ-inverted splitting occurs more generally in the
motivic context over any field of characteristic different from 2.
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Lemma 4.3. Let R = F2[t] and let B = R[x], with Hopf algebroid structure on
(R,B) given by the formulas

ηL(t)= t, ηR(t)= t + x, 1(x)= x ⊗ 1+ 1⊗ x, 1(t)= t ⊗ 1.

Then the cohomology of (R,B) is isomorphic to F2, concentrated in homological
degree 0.

Proof. Let CB be the cobar complex of (R,B), and filter by powers of x . More
explicitly, let FiCB be the subcomplex

0→ x iB→
∑

p+q=i

x pB⊗R xqB→
∑

p+q+r=i

x pB⊗R xqB⊗R xrB→ · · · .

This is indeed a subcomplex, and the associated graded Grx CB is the cobar complex
for (R,Grx B). Although (R,B) is a Hopf algebroid because of the nontrivial
right unit ηR , the pair (R,Grx B) is isomorphic to a Hopf algebra because ηL(t)=
ηR(t)= t and 1(x)= x ⊗ 1+ 1⊗ x modulo higher powers of x . The associated
cohomology is the infinite polynomial algebra F2[t, h0, h1, h2, . . . ], where hi =
[x2i ]. One easy way to see this is to note that the dual of Grx B is the exterior
algebra F2[t](e0, e1, e2, . . . ), where ei is dual to x2i

.
Our filtered cobar complex gives rise to a multiplicative spectral sequence with

E1-page equal to F2[t, h0, h1, . . . ] and converging to the cohomology of (R,B).
The classes hi are all infinite cycles, since [x2i ] is indeed a cocycle in CB. Essen-
tially the same analysis as in Proposition 3.2 shows that d1(t) = h0. This shows
that the E2-page is F2[t2, h1, h2, . . . ]. The analysis from Proposition 3.2 again
shows d2(t2)= h1, which implies that the E3-page is F2[t4, h2, h3, . . . ]. Continue
inductively, using that d2i (t2i

)= hi . The E∞-page is just F2. �

Remark 4.4. We gave a calculational proof of Lemma 4.3. Here is a sketch of a
more conceptual proof.

The Hopf algebroid (R,B) has the same information as the presheaf of groupoids
which sends an F2-algebra S to the groupoid with object set HomF2−alg(R, S) and
morphism set HomF2−alg(B, S). One readily checks that this groupoid is the trans-
lation category associated to the abelian group (S,+); very briefly, the image of
x in S is the name of the morphism, the image of t is its domain, and therefore
t + x is its codomain. Notice that this groupoid is contractible no matter what S
is — this is the key observation. By [Hovey 2002, Theorems A and B] it follows
that the category of (R,B)-comodules is equivalent to the category of comodules
for the trivial Hopf algebroid (F2, F2). In particular, one obtains an isomorphism
of Ext groups.
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5. Analysis of the ρ-Bockstein spectral sequence

In this section we determine all differentials in the ρ-Bockstein spectral sequence,
within a given range of dimensions.

5.1. Identification of the E1-page. From Section 3, the ρ-Bockstein spectral se-
quence takes the form

E1 = ExtC[ρ] ⇒ ExtA(M2,M2).

The groups ExtC have been computed in [Dugger and Isaksen 2010; Isaksen 2014b]
through a large range of dimensions. Figure 1 gives a picture of ExtC.

Recall that this chart is a two-dimensional representation of a trigraded object.
For every black dot x in the chart there are classes τ i x for i ≥ 1 lying behind x
(going into the page); in contrast, the red dots are killed by τ . To get the E1-page
for the ρ-Bockstein spectral sequence, we freely adjoin the class ρ to this chart.
With respect to the picture, multiplication by ρ moves one degree to the left and
one degree back. So we can regard the same chart as a depiction of our E1-page if
we interpret every black dot as representing an entire triangular cone moving back

0 1 2 3 4 5 6 7 8 9 10

0
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6

0 2 4 6 8 10 12 14 16 18 20
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c0

Ph1 Ph2

h2
3

d0

h4

Pc0
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P2h1
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c1

P2h2

�g

Figure 1. ExtC=ExtAC(MC
2 ,MC

2 ). Black dots: copies of MC
2 . Red

dots: copies of MC
2 /τ . Lines indicate multiplications by h0, h1, and

h2. Red arrows indicate infinitely many copies of MC
2 /τ connected

by h1 multiplications. Magenta lines indicate that a multiplication
hits τ times a generator. (For example, h0 · h0h2 equals τh3

1.) Data
from [Dugger and Isaksen 2010] or [Isaksen 2014a].
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(via multiplication by τ ) and to the left (via multiplication by ρ); and every red
dot represents a line of ρ-multiples going back and to the left. For example, we
must remember that in the (2, 1) spot on the grid there are classes ρτ i h2, ρ5τ i h3,
ρ13τ i h4, and so forth. In general, when looking at coordinates (s, f ) on the chart,
one must look horizontally to the right and be aware that ρk x is potentially present,
where x is a class in ExtC at coordinates (s+ k, f ).

There are so many classes in the E1-page, and it is so difficult to represent the
three-dimensional chart, that one of the largest challenges of running the ρ-Bockstein
spectral sequence is one of organization. We will explain some techniques for
managing this.

5.2. Sorting the E1-page. To analyze the ρ-Bockstein spectral sequence it is use-
ful to sort the E1-page by the Milnor–Witt degree s−w. The ρ-Bockstein differen-
tials all have degree (−1, 1, 0) with respect to the (s, f, w)-grading, and therefore
have degree −1 with respect to the Milnor–Witt degree.

Table 1 shows the multiplicative generators for the ρ-Bockstein E1-page through
Milnor–Witt degree 5. The information in Table 1 was extracted from the ExtC chart
in Figure 1 in the following manner. Lemma 2.2 says that elements in Milnor–Witt
degree t satisfy f ≥ s− 2t . Specifically, elements in Milnor–Witt degree at most 5
lie on or above the line f = s− 10 of slope 1.

This region is infinite, and in principle could contain generators in very high
stems. However, in ExtC there is a line of slope 1

2 above which all elements are
multiples of h1 [Guillou and Isaksen 2015b]. The line of slope 1 and the line of
slope 1

2 bound a finite region, which is easily searched exhaustively for generators
of Milnor–Witt degree at most 5.

Note that the converse does not hold: some elements bounded by these lines
may have Milnor–Witt degree greater than 5.

s−w element (s, f, w)

0 ρ (−1, 0,−1)
0 h0 (0, 1, 0)
0 h1 (1, 1, 1)
1 τ (0, 0,−1)
1 h2 (3, 1, 2)
3 h3 (7, 1, 4)
3 c0 (8, 3, 5)
4 Ph1 (9, 5, 5)
5 Ph2 (11, 5, 6)

Table 1. Multiplicative generators for the ρ-Bockstein E1-page.
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0 1 2 3 4

hk
0 τ τ 2 τ 3 h3 τ 4 τh0h3

hk
1 τhk

0 τ 2hk
0 τ 3hk

0 h0h3 τ 4hk
0 τh2

0h3

τh1 τ 2h1 τ 3h1 h2
0h3 τ 4h1 τh3

0h3

τh2
1 τ 2h2

1 τ 3h2
1 h3

0h3 τ 4h2
1 τh1h3

τh3
1 τ 2h3

1 τ 3h3
1 h1h3 τ 4h3

1 τh2
1h3

h2 τh2 τ 2h2 h2
1h3 τ 3h2 τc0

h0h2 τh0h2 τ 2h0h2 c0 τ 3h0h2 τh1c0

h2
2 τh2

2 hk
1c0 τ 2h2

2 Ph1

τh3 hk
1 Ph1

Table 2. F2[ρ]-module generators for the ρ-Bockstein E1-page.

Our E1-page is additively generated by all nonvanishing products of the ele-
ments from Table 1. Because the Bockstein differentials are ρ-linear, it suffices to
understand how the differentials behave on products that do not involve ρ. Table 2
shows F2[ρ]-module generators for the E1-page, sorted by Milnor–Witt degree.

5.3. Bockstein differentials. Proposition 3.2 established some ρ-Bockstein differ-
entials with a brute force approach via the cobar complex. We will next describe a
different technique that computes all differentials in a large range; these are sum-
marized in Table 3.

All our arguments will center on the ρ-local calculation of Theorem 4.1, which
says that if we invert ρ, then the ρ-Bockstein spectral sequence converges to a copy
of Extcl⊗F2F2[ρ, ρ−1], with the motivic hi corresponding to the classical hi−1.

When identifying possible ρ-Bockstein differentials, there are two useful things
to keep in mind:

• Relative to our ExtC chart, the differentials all go up one spot and left one spot.

• Relative to Table 2, the differentials all go to the left one column.

(s, f, w) x dr dr (x) proof

(0, 0,−1) τ d1 ρh0 Lemma 5.4
(0, 0,−2) τ 2 d2 ρ2τh1 Lemma 5.6
(0, 0,−4) τ 4 d4 ρ4τ 2h2 Lemma 5.8
(1, 1,−3) τ 4h1 d6 ρ6τh2

2 Lemma 5.10
(2, 2,−2) τ 4h2

1 d7 ρ7c0 Lemma 5.10
(7, 4, 3) τh3

0h3 d4 ρ4h2
1c0 Lemma 5.8

(9, 5, 5) Ph1 d3 ρ3h3
1c0 Lemma 5.7

Table 3. Bockstein differentials.
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Combining these two facts (which involves switching back and forth between
the chart and table), one can often severely narrow the possibilities for differentials.

Lemma 5.4. The ρ-Bockstein d1 differential is completely determined by:

(1) d1(τ )= ρh0.

(2) The elements h0, h1, h2, h3, and c0 are all permanent cycles.

(3) d1(Ph1)= 0.

Proof. The differential d1(τ )= ρh0 was established in Proposition 3.2.
The classes h0 and h1 cannot support differentials because there are no elements

in negative Milnor–Witt degrees. The classes h2 and h3 must survive the ρ-local
spectral sequence, so they cannot support differentials. Comparing chart and table,
there are no possibilities for a differential on c0.

Finally, if d1(Ph1) is nonzero, then it is of the form ρx for a class x that does
not contain ρ. This class x would appear at coordinates (9, 6) in the ExtC chart.
By inspection, there is no such x . �

Remark 5.5. We have shown that Ph1 survives to the E2-page, but we have not
shown that it is a permanent cycle. The ExtC chart shows that ρ3h3

1c0 is the only
potential target for a differential on Ph1. If Ph1 is not a permanent cycle, then the
only possibility is that d3(Ph1) equals ρ3h3

1c0. We will see below in Lemma 5.7
that this differential does occur.

Lemma 5.4 allows us to compute all d1-differentials, using the product structure.
The resulting E2-page, sorted by Milnor–Witt degree, is displayed in Figure 4,
which due to its size appears at the end of the article (pages 206–208).

Table 4 gives F2[ρ]-module generators for part of the E2-page. Recall from
Lemma 3.4 that ρ-torsion elements cannot be involved in any further differentials,
so we have not included such elements in the table. We have also eliminated the
elements that cannot be involved in any differentials because we know they are
ρ-local by Theorem 4.1.

0 1 2 3 4

τh1 τ 2 τ 3h1 τ 4 τh1h3

τh2
1 τ 2h1 τ 3h2

1 τ 4h1 τh2
1h3

τ 2h2
1 τ 2h2 τ 4h2

1 τc0

τ 2h3
1 τh2

2 τ 4h3
1 τh1c0

c0 τ 2h2
2 Ph1

hk
1c0 τh3

0h3 hk
1 Ph1

Table 4. Some F2[ρ]-module generators for the ρ-Bockstein E2-page.
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Note that τh1 is indecomposable in the E2-page, although τh2
1 does decompose

as τh1 · h1. The multiplicative generators for the E2-page are then

h0 , h1 , τh1, h2 , τ
2, τh2

2, h3 , c0 , τh3
0h3, τc0, Ph1,

where boxes indicate classes that we already know are permanent cycles.

Lemma 5.6. The ρ-Bockstein d2 differential is completely determined by:

(1) d2(τ
2)= ρ2 · τh1.

(2) The elements τh1, τh2
2, and τc0 are permanent cycles.

(3) d2(τh3
0h3)= 0.

(4) d2(Ph1)= 0.

Proof. The differential d2(τ
2)= ρ2τh1 was established in Proposition 3.2.

Comparison of chart and table shows that a Bockstein differential on τh1 could
only hit h2

0 or ρ2h2
1. The first is impossible since the target of a d2 differential

must be divisible by ρ2, and the second is ruled out by the fact that h2
1 survives

ρ-localization. So no differential can ever exist on τh1.
Similarly, chart and table show that there are no possible differentials on τh2

2,
and no possible d2 differential on either τh3

0h3 or Ph1.
It remains to consider τc0. The only possibility for a differential is that d2(τc0)

might equal ρ2h1c0. But if this happened we would also have d2(h2
1τc0)= ρ2h3

1c0,
which contradicts the fact that τh2

1c0 is zero on the E2-page, while ρ2h3
1c0 is

nonzero. �

Once again, Lemma 5.6 allows the complete computation of the E3-page (in our
given range), which is shown in Figure 4 (pages 206–208), sorted by Milnor–Witt
degree. Table 5 gives F2[ρ]-module generators for part of the E3-page. Recall from
Lemma 3.4 that ρ-torsion elements cannot be involved in any further differentials,
so we have not included such elements in the table. We have also eliminated the
elements that cannot be involved in any differentials because we know they are
ρ-local by Theorem 4.1.

0 1 2 3 4

τ 2h2 τ 4 τh3
0h3

τh2
2 τ 4h1 τc0

c0 τ 4h2
1 Ph1

hk
1c0 τ 4h3

1 hk
1 Ph1

τ 2h2
2

Table 5. Some F2[ρ]-module generators for the ρ-Bockstein E3-page.
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The multiplicative generators for the E3-page are

h0 , h1 , τh1 , h2 , τ
2h0, τ

2h2, τh2
2 , h3 , c0 , τ

4, τh3
0h3, τc0 , Ph1,

where boxes indicate classes that we already know are permanent cycles.

Lemma 5.7. The ρ-Bockstein d3 differential is completely determined by:

(1) d3(Ph1)= ρ3h3
1c0.

(2) The elements τ 2h0 and τ 2h2 are permanent cycles.

(3) d3(τ
4)= 0.

(4) d3(τh3
0h3)= 0.

Proof. As we saw in Lemma 5.4, h1 and c0 are permanent cycles. Therefore, h3
1c0

is a permanent cycle. We know from Theorem 4.1 that h3
1c0 does not survive ρ-

localization. Therefore, some differential hits ρr h3
1c0. The only possibility is that

d3(Ph1) equals ρ3h3
1c0.

Inspection of the E3-page shows that there are no possible values for differentials
on τ 2h0. For τ 2h2, there is a possibility that d4(τ

2h2) equals ρ2h2
2. However, this

differential is ruled out by Theorem 4.1.
By inspection, there are no possible values for d3 differentials on τ 4 or τh3

0h3.
�

The d3 differential has a very mild effect on the E3-page of our spectral sequence.
In Table 5, the elements Ph1 and hk

1 Ph1 disappear from column four, and the
elements hk

1c0 disappear from column three for k ≥ 3. Everything else remains the
same, so we will not include a separate table for the E4-page. The multiplicative
generators are the same as for the E3-page, except that Ph1 is thrown out. Figure 4
depicts the E4-page, sorted by Milnor–Witt degree.

Also, all these generators are permanent cycles except possibly for τ 4 and τh3
0h3.

In particular, every element of the E4-page in Milnor–Witt degrees strictly less
than 4 is now known to be a permanent cycle. All the remaining differentials will
go from Milnor–Witt degree 4 to Milnor–Witt degree 3.

Lemma 5.8. The ρ-Bockstein d4 differential is completely determined by:

(1) d4(τ
4)= ρ4τ 2h2.

(2) d4(τh3
0h3)= ρ4h2

1c0.

(3) The other generators of the E4-page are permanent cycles.

Proof. The differential equation d4(τ
4)= ρ4τ 2h2 was established in Proposition 3.2.

We know that h2
1c0 is a permanent cycle, but we also know from Theorem 4.1

that h2
1c0 does not survive ρ-localization. Therefore, some differential hits ρr h2

1c0

for some r . Looking at the chart, the only possibility is that d4(τh3
0h3) equals ρ4h2

1c0.
�
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The multiplicative generators of the E5-page are the permanent cycles we have
seen already, together with τ 4h0 and τ 4h1.

Lemma 5.9. The ρ-Bockstein d5 differential is zero.

Proof. We only have to check for possible d5 differentials on τ 4h0 and τ 4h1. In-
spection of the ExtC chart shows that there are no classes in the relevant degrees.

�

Figure 4 displays the E6-page, sorted by Milnor–Witt degree.

Lemma 5.10. The ρ-Bockstein d6 differential is completely determined by:

(1) d6(τ
4h1)= ρ6τh2

2.

(2) The element τ 4h0 is a permanent cycle.

Proof. Lemma 3.4 implies that τ 4h0 is a permanent cycle because of the differential
d1(τ

5)= ρτ 4h0.
By Theorem 4.1, we know that τ 4h1 does not survive ρ-localization. Since

ρrτ 4h1 cannot be hit by a differential, it follows that τ 4h1 supports a differential.
The two possibilities are that d6(τ

4h1) equals ρ6τh2
2 or d8(τ

4h1) equals ρ8h1h3.
We know from Theorem 4.1 that h1h3 survives ρ-localization. Therefore, we must
have d6(τ

4h1)= ρ6τh2
2. �

The multiplicative generators for the E7-page are τ 4h2
1, together with other

classes that we already know are permanent cycles. Figure 4 displays the E7-page,
sorted by Milnor–Witt degree.

Lemma 5.11. The ρ-Bockstein d7 differential is completely determined by:

(1) d7(τ
4h2

1)= ρ7c0.

Proof. By Theorem 4.1, we know that τ 4h2
1 does not survive ρ-localization, and

since ρrτ 4h2
1 cannot be hit by a differential it follows that τ 4h2

1 supports a differen-
tial. The two possibilities are that d7(τ

4h2
1) equals ρ7c0 or d8(τ

4h2
1) equals ρ8h2

1h3.
We know from Theorem 4.1 that h2

1h3 survives ρ-localization. Therefore, we must
have d7(τ

4h2
1)= ρ7c0. �

Finally, once we reach the E8-page, we simply observe that all the multiplicative
generators are classes that have already been checked to be permanent cycles.

5.12. The ρ-Bockstein E∞-page. Table 6 describes the ρ-Bockstein E∞-page in
the range of interest. The table gives a list of M2-module generators for the E∞-
page. We write x (ρk) if x is killed by ρk , and we write x(loc) for classes that are
nonzero after ρ-localization.

The reader is invited to construct a single Adams chart that captures all of this
information. We have found that combining all of the Milnor–Witt degrees into
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0 1 2 3 4

hk
0(ρ) τh1(ρ

2) τ 2hk
0(ρ) τ 3h3

1(ρ) h3
0h3(ρ) τ 4hk

0(ρ)

hk
1(loc) τh2

1(ρ
2) τ 2h2

1(ρ
2) τ 2h2(ρ

4) h1h3(loc) τ 2h2
2(ρ

4)

τh3
1(ρ) τ 2h3

1(ρ
2) τ 2h0h2(ρ) h2

1h3(loc) τh1h3(ρ
2)

h2(loc) h2
2(loc) τh2

2(ρ
6) c0(ρ

7) τh2
1h3(ρ

2)

h0h2(ρ) h3(loc) h1c0(ρ
7) τc0(ρ

3)

h0h3(ρ) h2
1c0(ρ

4) τh1c0(ρ
2)

h2
0h3(ρ) hk+3

1 c0(ρ
3)

Table 6. F2[ρ]-module generators for the ρ-Bockstein E∞-page.

one picture makes it too difficult to get a feel for what is going on. For example,
at coordinates (3, 3), one has six elements h3

1, τh3
1, τ 2h3

1, τ 3h3
1, ρ5c0, and ρ6h2

1h3.
Each of them is related by h0, h1, and ρ extensions to other elements.

6. From the ρ-Bockstein E∞-page to ExtR

Having obtained the E∞-page of the ρ-Bockstein spectral sequence, we will now
compute all hidden extensions in the range under consideration. The key arguments
rely on May’s convergence theorem [May 1969] in a slightly unusual way. We use
this theorem to argue that certain Massey products 〈a, b, c〉 cannot be well-defined.
We deduce that either ab or bc must be nonzero via a hidden extension.

Remark 6.1. As is typical in this kind of analysis, there are issues underlying the
naming of classes. An element x of the Bockstein E∞-page represents a coset of
elements of ExtR, and it is convenient if we can slightly ambiguously use the same
symbol x for one particular element from this coset. This selection has to happen
on a case-by-case basis, but once done it allows us to use the same symbols for
elements of the Bockstein E∞-page and for elements of ExtR that they represent.

For example, the element h0 on the E∞-page represents two elements of ExtR,
because of the presence of ρh1 in higher Bockstein filtration. One of these elements
is annihilated by ρ and the other is not. We write h0 for the element of ExtR that
is annihilated by ρ.

Table 7 summarizes these ambiguities and gives definitions in terms of ρ-torsion.

Once again, careful bookkeeping is critical at this stage. We begin by choosing
preferred F2[ρ]-module generators for ExtR up to Milnor–Witt degree 4. First, we
choose an ordering of the multiplicative generators of ExtR:

ρ < h0 < h1 < τh1 < h2 < τ
2h0 < τ

2h2 < τh2
2 < h3 < c0 < τ

4h0 < τc0.

The ordering here is essentially arbitrary, although it is convenient to have elements
of low Milnor–Witt degree appear first.
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(s, f, w) generator ambiguity definition

(0, 1, 0) h0 ρh1 ρ · h0 = 0
(1, 1, 1) h1

(1, 1, 0) τh1 ρ2h2 ρ2 · τh1 = 0
(3, 1, 2) h2

(0, 1,−2) τ 2h0

(3, 1, 0) τ 2h2 ρ4h3 ρ4 · τ 2h2 = 0
(6, 2, 3) τh2

2 ρ2h1h3 ρ6 · τh2
2 = 0

(7, 1, 4) h3

(8, 3, 5) c0 ρh2
1h3 ρ7 · c0 = 0

(0, 1,−4) τ 4h0

(8, 3, 4) τc0

Table 7. Multiplicative generators of ExtR.

0 1 2 3 4

hk
0(ρ) τh1(ρ

2) τ 2h0(ρ) τ 2h2(ρ
4) h3

0h3(ρ) τ 4h0(ρ)

hk
1(loc) τh1 ·h1(ρ

2) τ 2h0 ·hk
0(ρ) h0 ·τ 2h2(ρ) h1h3(loc) τ 4h0 ·hk

0(ρ)

h2(loc) (τh1)
2(ρ2) h2

0 ·τ 2h2(ρ) h2
1h3(loc) τ 2h2 ·h2(ρ

4)

h0h2(ρ) (τh2
1)h1(ρ

2) τh2
2(ρ

6) c0(ρ
7) τh1 ·h3(ρ

2)

h2
0h2(ρ) h2

2(loc) h3(loc) h1c0(ρ
7) τh1 ·h1h3(ρ

2)

h0h3(ρ) h2
1c0(ρ

4) τc0(ρ
3)

h2
0h3(ρ) hk+3

1 c0(ρ
3) h1 ·τc0(ρ

2)

Table 8. F2[ρ]-module generators for ExtR.

Next, we choose F2[ρ]-module generators for ExtR that come first in the lexico-
graphic ordering on monomials in these generators. For example, we could choose
either h2

0h2 or τh1 · h2
1 to be an F2[ρ]-module generator; we select h2

0h2 because
h0 < h1. We do this for each element listed in Table 6.

The results of these choices are displayed in Table 8. This table lists F2[ρ]-
module generators of ExtR. We write x (ρk) if x is killed by ρk , and we write
x(loc) for classes that are nonzero after ρ-localization.

Our goal is to produce a list of relations for ExtR that allows every monomial to
be reduced to a linear combination of monomials listed in Table 8. We will begin
by considering all pairwise products of generators.

Lemma 6.2. Through Milnor–Witt degree 4, Table 9 lists the products of all pairs
of multiplicative generators of ExtR.
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h0 h1 τh1 h2 τ 2h0

h0 −
h1 0 −
τh1 ρh1 · τh1 − −
h2 − 0 0 −
τ 2h0 − ρ(τh1)

2 ρ5τh2
2 h0 · τ 2h2 τ 4h0 · h0

τ 2h2 − ρ2τh2
2 ρ2τ 2h2 · h2 −

τh2
2 0 ρc0 ρτc0 τh1 · h1h3

h3 − − − 0
c0 0 − h1 · τc0 0
τ 4h0 − 0
τc0 ρh1 · τc0 −

Table 9. ExtR multiplication table.

In Table 9, the symbol − indicates that the product has no simpler form, i.e., is
a monomial listed in Table 8.

Proof. Some products are zero because there is no other possibility; for example
h1h2 is zero because there are no nonzero elements in the appropriate degree.

Some products are zero because we already know that they are annihilated by
some power of ρ, while the only nonzero elements in the appropriate degree are
all ρ-local. For example, for degree reasons, it is possible that h0h1 equals ρh2

1.
However, we already know that ρh0 is zero, while h2

1 is ρ-local. Therefore, h0h1

must be zero. Similar arguments explain all of the pairwise products that are zero
in Table 9.

Some of the nonzero pairwise products are not hidden in the ρ-Bockstein spec-
tral sequence. For example, consider the product τ 2h0 ·h2. Then τ 2h0 ·h2+h0 ·τ 2h2

is zero on the ρ-Bockstein E∞-page, but τ 2h0 ·h2+h0 ·τ 2h2 might equal something
of higher ρ filtration in ExtR. The possible values for this expression in ExtR are
the linear combinations of ρ3 ·τh2

2 and ρ5h1h3. Both of these elements are nonzero
after multiplication by ρ, while τ 2h0 · h2+ h0 · τ 2h2 is annihilated by ρ in ExtR.
Therefore, we must have τ 2h0 · h2+ h0 · τ 2h2 = 0 in ExtR.

The same argument applies to the other nonhidden extensions in Table 9, except
that they are somewhat easier because there are no possible hidden values.

The remaining nonzero pairwise products are hidden in the ρ-Bockstein spectral
sequence; they require a more sophisticated argument involving Massey products
and May’s convergence theorem [May 1969]. This theorem says that when there
are no “crossing” differentials, one can compute Massey products in ExtR using
the ρ-Bockstein differentials. The precise definition of a crossing differential is
too technical to include here. See [Isaksen 2014b, Theorem 2.2.1] for details.
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We will demonstrate how this works for the product h0 · τh1. Consider the
Massey product 〈ρ, h0, τh1〉 in ExtR. If this Massey product were well-defined,
then May’s convergence theorem and the ρ-Bockstein differential d1(τ ) = ρh0

would imply that the Massey product contains an element that is detected by τ 2h1

in the ρ-Bockstein E∞-page. (Beware that one needs to check that there are no
crossing differentials.) The element τ 2h1 does not survive to the E∞-page. There-
fore, the Massey product is not well-defined, so h0 · τh1 must be nonzero. The only
possible value for the product is ρh1 · τh1.

The same style of argument works for all of the hidden extensions listed in
Table 9, with one additional complication in some cases. Consider the product
h1 · τ 2h0. Analysis of the Massey product 〈ρ, τ 2h0, h1〉 implies that the product
must be nonzero, since τ 3h1 does not survive to the ρ-Bockstein E∞-page. How-
ever, there is more than one possible value for h1 · τ 2h0: it could be any linear
combination of ρ(τh1)

2 and ρ5h2
2. We know that ρ · τ 2h0 is zero, while h2

2 is ρ-
local. Therefore, we deduce that h1 · τ 2h0 equals ρ(τh1)

2. This type of ρ-local
analysis allows us to nail down the precise value of each hidden extension in every
case where there is more than one possible nonzero value. �

Proposition 6.3. Table 10 gives some relations in ExtR that are hidden in the ρ-
Bockstein spectral sequence. Together with the products given in Table 9, they form
a complete set of multiplicative relations for ExtR up to Milnor–Witt degree 4.

Proof. These relations follow from arguments similar to those given in the proof of
Lemma 6.2. The most interesting is the relation h2

0 · τ 2h2+ (τh1)
3 = ρ5c0, which

follows from an analysis of the matric Massey product〈
ρ2, [ h0 τh1 ],

[
h0 · τ 2h2

(τh1)
2

]〉
.

If this matric Massey product were defined, then May’s convergence theorem and

(s, f, w) relation

(3, 3, 2) h2
0h2+ τh1 · h2

1 = 0
(3, 3, 0) h2

0 · τ 2h2+ (τh1)
3 = ρ5c0

(9, 3, 6) h2
1h3+ h3

2 = 0
(6, 3, 4) h0h2

2 = 0
(3, 4, 0) h3

0 · τ 2h2 = ρ6h1c0

(7, 5, 4) h4
0h3 = ρ3h2

1c0

(6, 3, 2) h0h2 · τ 2h2 = ρ2 · τc0

(10, 5, 6) h2
1 · τc0 = 0

Table 10. Some relations in ExtR.
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Figure 2. ExtR = ExtA(M2,M2). Black dots: copies of F2. Red
lines: multiplications by ρ. Green lines: multiplications by h0.
Blue lines: multiplications by h1. Red (or blue) arrows indicate
infinitely many copies of F2 connected by ρ (or η) multiplications.
Dashed lines indicate h0 or h1 multiplications that are hidden in
the ρ-Bockstein spectral sequence.

the differential d2(τ
2) = ρ2τh1 would imply that it is detected by τ 4h2

1 in the
ρ-Bockstein E∞-page. But τ 4h2

1 does not survive to the ρ-Bockstein E∞-page.
For every monomial x in Table 8 and every multiplicative generator y of ExtR,

one can check by brute force that the relations in Tables 9 and 10 allow one to
identify xy in terms of the monomials in Table 8. �

Figure 2 displays ExtR, sorted by Milnor–Witt degree. The picture is similar to
the E∞-page shown in Figure 4 (pages 206–208), except that the hidden extensions
by h0 and by h1 are indicated with dashed lines.

7. The Adams spectral sequence

At this point we have computed the trigraded ring

ExtR = Ext∗,∗,∗A (M2,M2)

up through Milnor–Witt degree four. We will now consider the motivic Adams
spectral sequence based on mod 2 motivic cohomology, which takes the form

Exts, f,w
A (M2,M2)⇒ π̂s,w.

This spectral sequence is known to have good convergence properties [Morel 1999;
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Dugger and Isaksen 2010; Hu et al. 2011a; 2011b]. Recall that we are writing π̂∗,∗
for the motivic stable homotopy groups of the completion of the motivic sphere
spectrum with respect to the motivic Eilenberg–Mac Lane spectrum HF2. The
Adams dr differential takes elements of tridegree (s, f, w) to elements of tridegree
(s−1, f +r, w). In particular, the Adams dr differential decreases the Milnor–Witt
degree by 1. So it pays off to once again fracture the E2-page into the different
Milnor–Witt degrees.

It turns out that there are no Adams differentials in the range under consideration:

Proposition 7.1. Up through Milnor–Witt degree four, there are no differentials in
the motivic Adams spectral sequence.

Proof. The proof uses Table 8 and the ExtR charts in Figure 2 to keep track of
elements.

The elements ρ, h0, and h1 are permanent cycles, as there are no classes in
Milnor–Witt degree −1. For τ 2h0, we observe that there are no classes of Milnor–
Witt degree 1 in the range of the possible differentials on τ 2h0. Similarly, there are
no possible values in Milnor–Witt degree 2 for differentials on τh2

2, h3, and c0.
For degree reasons, the only possible values for dr (τh1) are hr+1

0 and ρr+1hr+1
1 .

However, h2
0 · hr+1

0 is nonzero on the Adams Er -page, while h2
0 · τh1 is zero. Also,

ρ2 ·ρr+1hr+1
1 is nonzero on the Adams Er -page, while ρ2 ·τh1 is zero. This implies

that there are no differentials on τh1.
The only possible value for dr (h2) is ρr−1hr+1

1 . However, h1 · ρr−1hr+1
1 is

nonzero on the Adams Er -page, while h1 · h2 is zero. This implies that there are
no differentials on h2.

The only possibility for a nonzero differential on τ 4h0 is that d2(τ
4h0) might

equal ρ10h2
1h3. However, ρ · τ 4h0 is zero on the Adams E2-page, while ρ ·ρ10h2

1h3

is not. This implies that there are no differentials on τ 4h0.
It remains to show that τ 2h2 and τc0 are permanent cycles. We handle these

more complicated arguments below, in Lemmas 7.3 and 7.6. �

Lemma 7.2. The Massey product 〈ρ2, τh1, h2〉 contains τ 2h2, with indeterminacy
generated by ρ4h3.

Proof. Apply May’s convergence theorem [1969], using the ρ-Bockstein differen-
tial d2(τ

2) = ρ2 · τh1. This shows that τ 2h2 or τ 2h2 + ρ4h3 is contained in the
bracket. By inspection, the indeterminacy is generated by ρ4h3. �

Lemma 7.3. The element τ 2h2 is a permanent cycle.

Proof. As shown in Table 11, let τη and ν be elements of π̂1,0 and π̂3,2, respectively,
that are detected by τh1 and h2. The product ρ2 · τη is zero because there is no
other possibility. For degree reasons, the product τη · ν could possibly equal ρ2ν2.
However, ρ2 · τη · ν is zero, while ρ2 · ρ2ν2 is not. Therefore, τη · ν is also zero.
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(s, w) element Ext definition

(−1,−1) ρ ρ {±1} → (A1− 0)
(0, 0) ε 1 twist on S1,1∧ S1,1

(0, 0) ω h0 1− ε
(1, 1) η h1 Hopf construction†‡

(1, 0) τη τh1 ηtop+ ρ2ν

(3, 2) ν h2 Hopf construction†

(0,−2) τ 2ω τ 2h0 realizes to 2
(3, 0) τ 2ν τ 2h2 νtop+ ρ4σ

(6, 3) τν2 τh2
2

(7, 4) σ h3 Hopf construction†

(8, 5) ε c0 ρε = η · τν2

Table 11. Notation for π̂∗,∗. † = [Dugger and Isaksen 2013];
‡= [Morel 2004a].

We have just shown that the Toda bracket 〈ρ2, τη, ν〉 is well-defined. Moss’s
convergence theorem [1970] then implies that the Massey product 〈ρ2, τh1, h2〉
contains a permanent cycle. We computed this Massey product in Lemma 7.2, so
we know that τ 2h2 or τ 2h2 + ρ4h3 is a permanent cycle. We already know that
ρ4h3 is a permanent cycle, so τ 2h2 is also a permanent cycle. �

For completeness, we will give an alternative proof that τ 2h2 is a permanent
cycle that has a more geometric flavor. There is a functor from classical homotopy
theory to motivic homotopy theory over R (or over any field) that takes the sphere
S p to S p,0. Let νtop be the unstable map S7,0→ S4,0 that is the image under this
functor of the classical Hopf map S7→ S4.

Lemma 7.4. The cohomology of the cofiber of νtop is a free M2-module on two
generators x and y of degrees (4, 0) and (8, 0), satisfying Sq4(x) = τ 2 y and
Sq8(x)= ρ4 y.

Proof. Consider the cofiber sequence

S7,0→ S4,0→ Cνtop→ S8,0,

where Cνtop is the cofiber of νtop. Apply motivic cohomology to obtain a long
exact sequence. It follows that the cohomology of Cνtop is a free M2-module on
two generators x and y of degrees (4, 0) and (8, 0).

For degree reasons, the only possible nonzero cohomology operations are that
Sq4(x) and Sq8(x)might equal τ 2 y and ρ4 y, respectively. It follows by comparison
to the classical case that Sq4(x)= τ 2 y.
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The formula for Sq8(x) is more difficult. Consider S4,4∧Cνtop, which has cells
in dimensions (8, 4) and (12, 8). The cohomology generator in degree (8, 4) is the
external product z∧ x , where z is the cohomology generator of S4,4 in degree (4, 4).
The cohomology generator in degree (12, 4) is z ∧ y.

Now we can compute Sq8 in terms of the cup product (z ∧ x)2. According to
[Voevodsky 2003, Lemma 6.8], the cup product z2 equals ρ4z in the cohomology
of S4,4. Also, the cup product x2 equals y in the cohomology of Cνtop by compari-
son to the classical case. By the Künneth formula, it follows that (z∧x)2=ρ4(z∧y)
and that Sq8(x)= ρ4 y. �

Another proof of Lemma 7.3. Lemma 7.4 shows that the stabilization of νtop in
π̂3,0 is detected by τ 2h2+ρ4h3 in the motivic Adams spectral sequence. There are
elements ρ and σ in π̂−1,−1 and π̂7,4 detected by ρ and h3 in the motivic Adams
spectral sequence. Therefore, τ 2h2 is a permanent cycle that detects νtop+ρ4σ . �

Lemma 7.5. The Massey product 〈τh1, h2, h0h2〉 contains τc0, with indetermi-
nacy generated by ρ · τh1 · h1h3.

Proof. Recall that there is a classical Massey product 〈h1, h2, h0h2〉 = c0. This
implies that the motivic Massey product 〈τh1, h2, h0h2〉 contains τc0.

By inspection, the indeterminacy is generated by ρ · τh1 · h1h3. �

Lemma 7.6. The element τc0 is a permanent cycle.

Proof. As shown in Table 11, let τη and ω be elements of π̂1,0 and π̂0,0 detected
by τh1 and h0. As in the proof of Lemma 7.3, the product τη · ν is zero. Also, the
product ων2 is zero because there are no other possibilities.

We have just shown that the Toda bracket 〈τη, ν, ων〉 is well-defined. Moss’s
convergence theorem [1970] then implies that the Massey product 〈τh1, h2, h0h2〉
contains a permanent cycle. We computed this Massey product in Lemma 7.5, so
we know that τc0 or τc0+ ρ · τh1 · h1h3 is a permanent cycle. We already know
that ρ · τh1 · h1h3 is a permanent cycle, so τc0 is also a permanent cycle. �

8. Milnor–Witt modules and π̂∗,∗

In this section, we will describe how to pass from the Adams E∞-page to π̂∗,∗. We
recall certain well-known elements [Dugger and Isaksen 2013; Morel 2004a]:

(1) ε in π̂0,0 is represented by the twist map on S1,1∧ S1,1.

(2) ω = 1− ε in π̂0,0 is the zeroth Hopf map detected by h0.

(3) ρ in π̂−1,−1 is represented by the inclusion {±1} → (A1− 0).

(4) η in π̂1,1 is represented by the Hopf construction on the multiplication map
(A1− 0)× (A1− 0)→ (A1− 0).
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(5) ν in π̂3,2 is represented by the Hopf construction on a version of quaternionic
multiplication.

(6) σ in π̂7,4 is represented by the Hopf construction on a version of octonionic
multiplication.

The element 1− ε is detected in the Adams spectral sequence by h0. Thus it,
rather than 2, deserves to be considered the zeroth motivic Hopf map. Because it
plays a critical role, it is convenient to name this element ω.

The motivic Adams E∞-page is the associated graded module of the motivic
homotopy groups π̂∗,∗ with respect to the adic filtration for the ideal generated
by ω and η. Note that this ideal also equals (2, η) because of the relation ρη =
−1− ε = ω− 2.

The elements ρ, h0, and h1 detect the homotopy elements ρ, ω, and η in the
zeroth Milnor–Witt stem 50. The relation 2= ω−ρη implies that h0+ρh1, rather
than h0, detects 2. This means that we must be careful when computing the additive
structure of Milnor–Witt stems.

In the Adams chart, a parallelogram such as

y

x

indicates that 2 times the homotopy elements detected by x are zero (or detected
in higher Adams filtration by a hidden extension) because (h0+ ρh1)x = 0. On
the other hand, a parallelogram such as

y

x

indicates that 2 times the homotopy elements detected by x are detected by y
because (h0+ ρh1)x = y.

We will choose specific homotopy elements to serve as our 50-module gener-
ators. Because of the associated graded nature of the Adams E∞-page, there is
some choice in these generators. For the most part, the 50-module structures of
the Milnor–Witt modules in our range are insensitive to these choices, so this is
not of immediate concern. However, we would like to be as precise as we can to
facilitate further study.

These observations allow us to pass from the Adams spectral sequence to the
diagrams of 50, 51, 52, and 53 given in Figure 3.

8.1. The zeroth Milnor–Witt module. For 50, the Adams spectral sequence con-
sists of an infinite sequence of dots extending upwards in each stem except for the
0-stem. These dots are all connected by 2 extensions, so they assemble into copies
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Figure 3. Milnor–Witt modules. Empty circles: copies of Z2. Solid
circles: copies of Z/2. Circles with n inside: copies of Z/n. Blue
lines: η-multiplications going to the right. Red lines: ρ-multiplica-
tions going to the left.

Remaining conventions:

• Lines labeled n indicate that the result of the multiplication is n
times the labeled generator; for example, ρ ·ρη=−2ρ or η·ρ3=−2ρ2

in 50.

• Two blue (or red lines) with the same source indicate that the multi-
plication by η (or ρ) equals a linear combination. For example, η ·τν2

equals (ρε− 4σ)+ 4σ = ρε in 53.

• Arrows pointing off the diagram indicate infinitely many multipli-
cations by ρ or by η.

• Elements in the same topological stem are aligned vertically. For
example, η3, ν, η(τη)2, and ρ3ν2 all belong to the 3-stem. Their
weights are 1, 2, 1, and 1, respectively; this can be deduced from
their stems and Milnor–Witt degrees.



204 DANIEL DUGGER AND DANIEL C. ISAKSEN

of Z2. The 0-stem is somewhat more complicated. Here there are two sequences
of dots extending upwards: elements of the form ρkhk

1 and elements of the form
(h0+ρh1)

k = hk
0+ρkhk

1. The former elements assemble into a copy of Z2 generated
by ρη, while the latter elements assemble into a copy of Z2 generated by 1.

8.2. The first Milnor–Witt module. For 51, there are three elements in the 3-stem
of the Adams spectral sequence. These elements assemble into a copy of Z/8
generated by ν; note that hk

0h2 = (h0 + ρh1)
kh2 because h1h2 = 0. The two

elements τh1 and ρτh2
1 in the 1-stem do not assemble into a copy of Z/4 because

(h0+ ρh1)τh1 is zero.
We will now discuss precise definitions of the 50-module generators of 51.
Recall that there is a functor from classical homotopy theory to motivic homo-

topy theory over R that takes a sphere S p to S p,0. Let ηtop in π̂1,0 be the image of
the classical Hopf map η. By an argument analogous to the proof of Lemma 7.4,
ηtop is detected by τh1+ ρ2h2. Therefore ηtop+ ρ2ν is detected by τh1.

Definition 8.3. Let τη be the element ηtop+ ρ2ν of π̂1,0.

Another possible approach to defining τη is to use a Toda bracket to specify a
single element. However, the obvious Toda brackets detecting τh1 all have inde-
terminacy, so they are unsuitable for this purpose.

In terms of algebraic formulas we could write

51 =50〈τη, ν〉/(2 · τη, 8ν, ην, ρ2 · τη, η2 · τη− 4ν),

but we find Figure 3 to be more informative.

8.4. The second Milnor–Witt module. The calculation of 52 involves the same
kinds of considerations that we already described for 50 and for 51. The names
of the generators (τη)2 and ν2 reflect the multiplicative structure of the Milnor–
Witt stems.

It remains to specify a choice of generator detected by τ 2h0. Recall that there is
a realization functor from motivic homotopy theory over R to classical homotopy
theory. (This functor factors through Z/2-equivariant homotopy theory, but we
won’t use the equivariance for now.)

Definition 8.5. Let τ 2ω be the element of π̂0,−2 detected by τ 2h0 that realizes to 2
in classical π0.

In terms of algebraic formulas we could write 52 as

50〈ν2〉/(2ν2, ην2)⊕50〈τ 2ω, (τη)2〉/(ρ ·τ 2ω, 2(τη)2, η2(τη)2, ρ(τη)2−η·τ 2ω).

The unreadability of this formula illustrates why the graphical calculus of Figure 3
is so helpful.
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8.6. The third Milnor–Witt module. The structure of 53 is significantly more
complicated. We will begin by discussing choices of generators.

Definition 8.7. Let τ 2ν be the element νtop+ ρ4σ in π̂3,0.

A precise definition of the generator τν2 detected by τh2
2 has so far eluded us.

For the purposes of this article, it suffices to choose an arbitrary homotopy element
detected by τh2

2. The distinction between the choices is not relevant in the range
under consideration here, but it may be important for an analysis of higher Milnor–
Witt stems.

Lemma 8.8 gives a definition of the generator detected by c0, assuming that τν2

has already been chosen.

Lemma 8.8. There is a unique element ε in π̂8,5 detected by c0 such that ρε−η·τν2

equals zero.

Proof. Let ε′ be any element detected by c0. The relation ρc0+h1 ·τh2
2 = 0 implies

that ρε′−η ·τν2 is detected in higher Adams filtration. Note that ω kills ρε′−η ·τν2

because it kills both ρ and η. Therefore, ρε′− η · τν2 cannot be detected by h3
0h3.

If ρε′ − η · τν2 is detected by ρ2h1c0, then we can add an element detected by
ρh1c0 to ε′ to obtain our desired element ε. Similarly, if ρε′− η · τν2 is detected
by ρ3h2

1c0, then we can add an element detected by ρ2h2
1c0 to ε′. �

Remark 8.9. The classical analogue of ε is traditionally called ε; we have changed
the notation to avoid the unfortunate coincidence with the motivic element ε in π̂0,0.

Having determined generators for 53, we now proceed to analyze its 50-module
structure. For the most part, this analysis follows the same arguments familiar
from the earlier Milnor–Witt stems. The 3-stem and the 7-stem present the greatest
challenges, so we discuss them in more detail.

In the 3-stem, τ 2ν generates a copy of Z/8; these eight elements are detected by
τ 2h2, h0 ·τ 2h2+ρ3 ·τh2

2, and h2
0 ·τ 2h2+ρ5c0. The element ρ3 ·τν2 also generates

a copy of Z/8; these eight elements are detected by ρ3 · τh2
2, ρ5c0, and ρ6h1c0.

Finally, ρ4σ generates a copy of Z/8; these eight elements are detected by ρ4h3,
ρ5h1h3, and ρ6h2

1h3.
In the 7-stem, σ generates a copy of Z/32; these 32 elements are detected by

h3, h0h3+ ρh1h3, h2
0h3+ ρ2h2

1h3, h3
0h3, and ρ3h2

1c0. The element ρησ generates
a copy of Z/4; these four elements are detected by ρh1h3 and ρ2h2

1h3. The ele-
ment ρε− 4σ also generates a copy of Z/4; these four elements are detected by
h2

0h3+ ρ2h2
1h3+ ρc0 and h3

0h3+ ρ2h1c0.
The η extension from η2σ to η2ε is hidden in the Adams spectral sequence. This

is the same as the analogous hidden extension in the classical situation [Toda 1962].
This is the only hidden extension by ρ, ω, or η in the range under consideration.
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