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Abstract

In this thesis, we study two related concepts: a generalization of normed spaces to a

categorical setting, and a study of the change of base for enriched categories. After

describing the first idea, we will show how it leads to a desire to further understand the

change of base. This, in turn, leads to an interesting comparison between bicategories

and (pseudo) double categories.
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Chapter 1

Introduction

This thesis is about two things: a desire to understand the concept of “normed space”

in a wider categorical context, and, as a result of this, a study of the change of base

for enriched categories. Neither of these projects is completed in this thesis. However,

we hope that the results and ideas that have come from these investigations will be

helpful in future research in these areas.

The desire to understand the concept of “normed space” comes from wanting to

further Lawvere’s work on metric spaces. In his 1972 paper ([33]), Lawvere noted

an interesting connection between metric spaces and category theory. He found that

metric spaces (slighly generalized) and non-expansive mappings are V-enriched cat-

egories and functors for a certain monoidal category V. This discovery led to ideas

from analysis being used in category theory, and ideas from category theory being

used in analysis. One can further develop the theory by asking the following question:

if metric spaces correspond to enriched categories, what do normed spaces correspond

to? As we shall see, one answer is that normed spaces correspond to monoidal func-

tors from compact closed categories to a monoidal category V. Another answer, also

due to Lawvere, is that they are V-compact V-categories. Understanding the simil-

iarities and differences between these two viewpoints requires a study of the change

of base for enriched categories.

The definition of this change of base dates as far back as Eilenberg and Kelly’s

original work on enriched categories ([16]). However, for the purposes for which we

wish to use it, we need to understand more about this change of base. Specifically,

we need to know whether it preserves monoidal and compact enriched categories. De-

termining whether the change of base preserves enriched monoidal categories is fully

1
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explored in this thesis, and has some additional benefits in addition to the actual

result itself.

Determining whether the change of base preserves autonomous monoidal cate-

gories is rather more difficult. Day and Street have defined a type of lax functor that

preserves autonomous objects, and we show that the change-of-base has some of the

properties required by their definition. However, the elements of the definition which

fail to hold for the change-of-base appear to hold on a different level. What is needed

is an alternative viewpoint: rather than viewing enriched profunctors as arrows in a

bicategory, we need to view them as vertical arrows in a double category. As a result

of this, an alternative view of the change of base for enriched categories is presented.

In this alternative view, we view enriched categories as objects of a double category,

rather than as objects of a 2-category or bicategory.

After working out this alternative change of base, we see that viewing enriched

categories as the objects of a double category is a much more natural point of view.

Because of this, and the earlier discussions of structured bicategories, we see that the

most natural way forward is to build a theory of structured double categories. This

program is touched on at the end of the thesis, but is a large undertaking, and will

require further work.

We believe that the ideas presented in the thesis allow for many interesting areas

for future investigation, in both the areas of analysis and of enriched category theory.

1.1 Chapter Overview

As a guide to the reader, here is an overview of the chapters of the thesis.

In Chapter 2, we review the basic concepts which are seen throughout the thesis:

monoidal categories, monoidal functors, and enriched categories. The chapter is use-

ful to read even if one is familiar with the concepts, as the ideas are presented with a

view towards considering enriched categories as metric spaces and monoidal functors
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as norms. This chapter is also used to fix terminology for both monoidal and enriched

categories.

In Chapter 3, we expand upon the idea of norms as monoidal functors. Lawvere’s

idea of normed spaces is also given. The comparison between these requires an un-

derstanding of monoidal functors. Thus, this chapter serves as motivation for why

one would be interested in change of base questions. Some of the concepts that come

from this investigation are also interesting in their own right. In particular, the idea

of a normed module, where one has a sub-scalar invariance rather than the usual

strict scalar invariance, is discussed as a possible alternative to the idea of normed

vector space.

In Chapter 4, we review the classical change of base theory. In some sense, the

chapter is review, but it also slightly differs from the Eilenberg and Kelly ([16]) work,

as here we are focused on monoidal categories rather than closed categories. In ad-

dition, it presents the idea that the change of base (−)∗ is itself a 2-functor, a result

that is generally known, but not stated in the original paper. Finally, many of the

proofs have been simplified through the use of an idea of applying a monoidal functor

“monoidally”.

In Chapter 5, we present the first major result: change of base preserves monoidal

categories. The proof itself has many side benefits, not least of which is giving an

interesting persepective on the monoidal structure of V-cat. We also show that it is

not neccesary that V be braided for V-cat to have monoidal structure.

In Chapter 6, we present the change of base for enriched profunctors. This re-

quires a review of the idea of enriched profunctors, as well as a review of the relatively

recent idea of modules between lax functors.

In Chapter 7, we discuss the difficulties in using the existing notions of structured

bicategory when attempting to prove results about the change of base for enriched
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categories. One of the most interesting aspects of this chapter is the appearance of

special “squares” of functors and profunctors. These squares form the essential basis

for wishing to consider the change of base as a double functor.

In Chapter 8, we discuss the idea of viewing the change of base as a double functor

between double categories. This idea perhaps has the greatest potential for future

work. It shows why one might want to view V-cat as a double category rather than

as a 2-category or bicategory. We also discuss Verity’s previous work on the subject,

and begin the study of structured double categories.

In the final chapter, we review the results presented, discuss open questions, and

point ways to future research.



Chapter 2

Monoidal Categories and Enriched Categories

In this chapter, we will give a brief introduction to the neccesary background elements

of the thesis. The main purpose of this chapter is to fix terminology, as well as present

key examples of monoidal and enriched categories that will be used throughout the

thesis. For those looking for more detail, the book of Kelly ([27]) is a useful reference.

2.1 Monoidal Categories

A monoidal category is a category, together with a multiplication that is associa-

tive and unital to within coherence natural isomorphisms. Specifically, we have the

following:

Definition A monoidal category is a category C, together with a functor C×C
⊗ //C

and an object I ∈ C. In addition, for any objects A,B,C ∈ C, we have natural

associativity isomorphisms aA,B,C : (A⊗ B)⊗ C ∼= A⊗ (B ⊗ C), and natural unital

isomorphisms rA : A⊗ I ∼= A, lA : I ⊗A ∼= A. Furthermore, these isomophisms need

to satisfy certain coherence conditions. Specifically, we need the following pentagon

to commute:

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D
aA,B,C⊗1D //((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

aA⊗B,C,D

��

(A⊗ (B ⊗ C))⊗D

A⊗ ((B ⊗ C)⊗D)

aA,B⊗C,D

��
(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

aA,B,C⊗D

%%KKKKKKKKKKKKKKKK
A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))

1A⊗aB,C,D

yyssssssssssssssss

5
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as well as the triangle

(A⊗ I)⊗B

A⊗B

rA⊗1B

��????????????
(A⊗ I)⊗B A⊗ (I ⊗B)

aA,I,B // A⊗ (I ⊗B)

A⊗B

1A⊗lB
��������������

In future, for ease of use, we will omit the subscripts from the isomorphisms a, l, r.

There are numerous examples of monoidal categories; here we will name the ones

that are most important for our work.

Example 2.1.1. The category set of sets, with product of sets as tensor product;

the unit is a chosen set with a single element. More generally, any category with

finite products can be made into a monoidal category, with ⊗ given by ×, and I by

1.

Example 2.1.2. As another example of using categorical product as monoidal prod-

uct, the category of small categories cat, equipped with the product of categories and

the unit category.

Example 2.1.3. The category ab of abelian groups, with the usual tensor product

⊗; the unit is the integers under addition.

Example 2.1.4. The category veck of vector spaces over a field k, with the usual

tensor product ⊗; the unit is the base field k.

Example 2.1.5. The category bank of Banach spaces over a field k (in this case,

k is either the real or complex numbers), with the projective tensor product ⊗; the

unit is the base field k with its usual norm | · |.

Example 2.1.6. The extended positive real numbers R+ = [0,∞], with arrows given

by ≥, tensor being addition of real numbers, and the unit as 0. This example is very

important for the link between analysis and enriched category theory, as we shall see

below.
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Example 2.1.7. Any bounded lattice considered as a category, where the arrows

are the instances of inequalities. Here the tensor can be taken to be the sup or inf

operation, with the unit being the bottom element or the top element, respectively.

Two examples of this are 2 = (0 ≤ 1,∧, 1) and ([0,∞],∨, 0).

Example 2.1.8. Any monoid (M, ·, 1M) can be considered as monoidal category M,

by taking the category to be the discrete category on the set M , and taking I = 1,

⊗ = ·. The coherence axioms are automatically satisfied since the category is discrete.

Example 2.1.9. For a monoid (M, ·, 1M), one can also make the power-set of M into

a monoidal category MP. Here, the arrows are instances of ⊆, and for subsets A,B,

A⊗B = {a · b : a ∈ A, b ∈ B} and I = {1M}

For future use, we record a basic result about monoidal categories.

Proposition 2.1.10. In any monoidal category (V,⊗, I), lI = rI .

Proof. See Joyal and Street ([24], pg. 23).

2.1.1 Monoidal Functors

One might initially suppose that the most natural arrow between two monoidal cat-

egories would be one that preserves the unit and tensor to within specified isomor-

phisms. That is, a functor C F //D such that FA ⊗ FB ∼= F (A • B) and FI ∼= J .

However, while such functors do exist in nature, an even looser version exists that

does arise in numerous examples, while remaining strong enough to discuss change

of base questions. These monoidal functors merely involve a comparison between the

tensor products.

Definition A monoidal functor between monoidal categories (C, •, I) and (D,⊗,J),

is a functor C N // D, together with natural transformations, called comparison

arrows,

NA⊗NB
ÑA,B //N(A •B)

J
N0 //NI



8

for which the following coherence diagrams commute, for every A,B,C ∈ C:

N(A •B)⊗NC NA⊗ (NB •NC)

(NA⊗NB)⊗NC

N(A •B)⊗NC

Ñ⊗1

��

(NA⊗NB)⊗NC NA⊗ (NB ⊗NC)a // NA⊗ (NB ⊗NC)

NA⊗ (NB •NC)

1⊗Ñ

��

N((A •B) • C) N(A • (B • C))
N(a)

//

N(A •B)⊗NC

N((A •B) • C)

Ñ

��

N(A •B)⊗NC NA⊗ (NB •NC)NA⊗ (NB •NC)

N(A • (B • C))

Ñ

��

NA⊗ J

NA⊗NI

1⊗N0

��
NA⊗NI N(A • I)Ñ // N(A • I) NA

N(r) //

NA⊗ J

NA

r

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

J ⊗NA

NI ⊗NA

N0⊗1

��
NI ⊗NA N(I • A)Ñ // N(I • A) NA

N(l) //

J ⊗NA

NA

l

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

If the comparison arrows are isomorphisms, then the monoidal functor is said to be

strong ; if the comparisons are identities, it is said to be strict.

Example 2.1.11. For any monoidal V, there is always a monoidal functor from V to

the base category set, given by homming out of the monoidal unit: N = C(I,−). This

innocent-looking functor is actually quite important for most monoidal categories. For

example, when V = ab, homming out of I = Z gives the forgetful functor to set.

Similarly, homming out of the base field for vector spaces also gives the forgetful

functor. Not all examples are so straightforward, however. For example, homming

out of the base field in the category of Banach spaces gives the unit ball functor.

When V is graded R-modules, only a small amount of the original information is

contained in this “forgetful” functor: the functor takes a graded R-module M to it’s

0th component.

Example 2.1.12. For well-behaved V, there is a “sub-object” monoidal functor

from V to set, which gives the set of subgroups, or subspaces, or closed subspaces
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in the categories of abelian groups, vector spaces, and Banach spaces, respectively.

See Niefield ([36], pg 170) for futher details. In Niefield and Rosenthal [37], this

assignment is extended to a monoidal functor from V to the monoidal category of

sup lattices sup.

Example 2.1.13. For any x, y ∈ [0,∞], x + y ≥ x ∨ y, so the identity function is a

monoidal functor from ([0,∞],≥,∨) to R+.

Example 2.1.14. IfM andN are monoids, thought of as discrete monoidal categories

M and N, then a monoidal functor between them is a monoid homomorphism.

Example 2.1.15. Suppose that we have a monoid homomorphism M
f //N . This

then induces a pair of functors

MP NP

Pf

  
NPMP

f−1
oo

with Pf a f−1. Both of these are monoidal, with Pf strong.

Example 2.1.16. Both Tannakian categories (Deligne and Milne [15]) and Topolog-

ical Quantum Field Theories (see Atiyah [1] and the reformulation in Kock [31]) can

be described as strong monoidal functors to vec.

There are two more examples which will be important for the next chapter: or-

dered abelian groups, and normed abelian groups. We begin by reviewing the concept

of ordered abelian groups, then show that ordered abelian groups are examples of

monoidal functors.

Definition An ordered abelian group (G,≤) is an abelian group G, together with

an preorder ≤ on G such that for all g, h, x ∈ G,

g ≤ h⇒ g + x ≤ h+ x

An alternative way of defining an ordered abelian group is by giving its “positive

cone”.

Proposition 2.1.17. An order ≤ on an abelian group G is equivalent to giving a

submonoid P of G (known as the positive cone of G).
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Proof. Suppose we have an order ≤ on G. Define P = {g ∈ G : 0 ≤ g}. We need to

show that P is a submonoid of G. Since 0 ≤ 0, 0 ∈ P . If g, h ∈ P , then 0 ≤ h ≤ h+g,

so h+ g ∈ P . This P is a submonoid.

Conversely, suppose we have a submonoid P of G. Define ≤ by g ≤ h if h−g ∈ P .

Since g−g = 0, ≤ is reflexive. If we have g ≤ h ≤ k, then (k−h)+(h−g) = k−g ∈ P ,

so ≤ is transitive. If we have g ≤ h, then (h+x)−(g+x) = h−g ∈ P , so g+x ≤ h+x.

Thus ≤ is an order on G.

Note that the preorder is an order if the submonoid P is a “strict” submonoid,

that is, a ∈ P and −a ∈ P implies a = 0.

With this characterization, we can show how monoidal functors are the same as

orders on an abelian group.

Proposition 2.1.18. If G is an abelian group, considered as a discrete monoidal

category G, then giving an order on G is equivalent to giving a monoidal functor

from G to 2 = (0 ≤ 1,∧, 1).

Proof. Suppose that we have a monoidal functor G N // 2. Define P = N−1{1}.
The unit comparison for the monoidal functor N gives 1 ≤ N(0). Thus N(0) = 1, so

0 ∈ P . The tensor comparison for N gives Ng ∧ Nh ≤ N(g + h). If g, h ∈ P , then

Ng = Nh = 1. This forces N(g + h) = 1, so g + h ∈ P . Thus P is a submonoid of

G, and so defines an order on G.

Conversely, suppose that we have an ordered abelian group G, together with its

positive cone P . Define a monoidal functor N by Ng = 1 if g ∈ P , 0 otherwise.

Since G is discrete, this defines a functor. Since 0 ∈ P , we have 1 ∈ N(0), giving

a unit comparison for N . To show that we have a tensor comparison, note that

Ng ∧ Nh = 1 only when g, h ∈ P . In this case, g + h ∈ P , so N(g + h) = 1 also.

If we have Ng ∧ Nh = 0, then we automatically have Ng ∧ Nh ≤ N(g + h). This

gives the neccesary comparisons for N . Finally, since 2 is a poset, all diagrams are

automatically satisfied, and so N is a monoidal functor.
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Thus, we have another important example of a monoidal functor. Our final exam-

ple will be described in more detail in the next chapter, but is similar to our ordered

abelian group example:

Example 2.1.19. A norm on an abelian group G is equivalent to giving a monoidal

functor from G to R+.

2.2 Enriched Category Theory

Having monoidal structure on a category allows one to “enrich” in that category. In

an enriched category, the homs C(C,D) are now objects of a monoidal category V,

rather than being sets. The category V is required to be monoidal1 so that one can

define composition and identities of these enriched categories.

Definition A V-enriched category C consists of the following data: a set of objects

C, together with, for any a, b ∈ C, an object C(a, b) ∈ V. In addition, the enriched

category has composition arrows

C(A,B)⊗C(B,C)
C(A,B,C) //C(A,C)

and identity arrows:

I
1A //C(A,A)

(note that these arrows are in V). The composition must be associative, so that the

following diagram commutes:

C(a, c)⊗C(c, d) C(a, b)⊗C(b, d)

(C(a, b)⊗C(b, c))⊗C(c, d)

C(a, c)⊗C(c, d)

c⊗1

��

(C(a, b)⊗C(b, c))⊗C(c, d) C(a, b)⊗ (C(b, c)⊗C(c, d))a // C(a, b)⊗ (C(b, c)⊗C(c, d))

C(a, b)⊗C(b, d)

1⊗c

��
C(a, c)⊗C(c, d)

C(a, d)

c

%%KKKKKKKKKKKKKKKK
C(a, b)⊗C(b, d)

C(a, d)

c

yyssssssssssssssss

1The Eilenberg-Kelly notion of a closed category is also sufficient to be able to enrich in. However,
in this thesis, we will only consider monoidal V categories, as they are more commonly used.
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and unitary, so that the following diagrams commute:

I ⊗C(a, b)

C(a, a)⊗C(a, b)

1A⊗1

��
C(a, a)⊗C(a, b) C(a, b)c //

I ⊗C(a, b)

C(a, b)

l

''OOOOOOOOOOOOOOOOOOO
C(a, b)⊗ I

C(a, b)⊗C(a, a)

1⊗1A

��
C(a, b)⊗C(a, a) C(a, b)c //

C(a, b)⊗ I

C(a, b)

r

''OOOOOOOOOOOOOOOOOOO

For most of the monoidal categories mentioned above, the categories enriched in

them are quite familiar.

Example 2.2.1. A set-category is a locally small category.

Example 2.2.2. If we take 1 to be the 1-object, 1 (identity) arrow category, with

the trivial tensor product, then a 1-category is a set.

Example 2.2.3. A cat-category is a 2-category.

Example 2.2.4. An ab-category is known as a pre-additive category in the litera-

ture. There are numerous examples; some common ones are ab itself, veck, and the

category of finite dimensional representations of an algebraic group. A one-object

ab-category is a ring (see Proposition 3.1.6 for proof of this).

Example 2.2.5. veck is itself a veck-category. In addition, a one-object veck-

category is a k-algebra.

Example 2.2.6. As for vector spaces, ban is itself a ban-category, and one-object

ban-categories are Banach algebras. For another example, the category of all Hilbert

spaces and bounded linear maps between them is a ban-category.

Example 2.2.7. For a monoid M , a MP -category can be thought of as the dynamics

of a non-deterministic automata (see, for example, Kasangian and Rosebrugh [25]).

The objects of a MP -category X are thought of as the states of the automata, the

elements of M the inputs, and the homs X(x, y) are the set of inputs which take state

x to state y.

Example 2.2.8. A 2-category is a partially ordered set (which is not neccesarily

anti-symmetric).
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Example 2.2.9. An R+-category is a slightly generalized metric space. On the other

hand, a ([0,∞],≥,∨)-category is an ultrametric space.

Let us expand slightly on this idea of R+ categories being metric spaces, as it is

important for the motivation. A category enriched over ([0,∞],≥,+, 0) is a set X,

together with a function X ×X d // [0,∞] such that:

1. d(x, x) = 0 (the identity arrow)

2. d(x, y) + d(y, z) ≥ d(x, z) (the composition arrow)

It differs from the classical metric spaces in three ways:

1. d(x, y) = 0 6⇒ x = y (isomorphic objects are not neccesarily equal)

2. d can take the value ∞ (completeness of the base category)

3. d(x, y) 6= d(y, x) (non-symmetry)

In his paper, Lawvere gives good reasons why this version of metric space should

be preferred to the classical version. As an example, if one wishes one’s metric to

be the amount of work it takes to walk in a mountainous region, it should be non-

symmetric. In addition, the fact that Lawvere’s metric spaces are non-symmetric will

be important for us in the next chapter.

2.2.1 V-Functors

In addition to enriched categories, one can also formulate the notion of functor be-

tween enriched categories.

Definition A V-functor F between V-categories C,D consists of a function C F //D,

as well as arrows

C(a, b)
F (a,b) //D(Fa, Fb)
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in V, sometimes called the “effect of F on homs” or simply the “strength” of F .

These assignments must preserve composition:

C(a, c) D(Fa, Fc)
F

//

C(a, b)⊗C(b, c)

C(a, c)

c

��

C(a, b)⊗C(b, c) D(Fa, Fb)⊗D(Fb, Fc)
F⊗F //D(Fa, Fb)⊗D(Fb, Fc)

D(Fa, Fc)

c

��

and identities:
I

C(a, a)

1a

��
C(a, a) D(Fa, Fa)F //

I

D(Fa, Fa)

1Fa

''OOOOOOOOOOOOOOOOOOOOO

The maps F (a, b) will usually simply be written as F .

For most of the enriched categories mentioned above, the enriched functors are as

to be expected; however, there are a few interesting examples.

Example 2.2.10. set-functors are ordinary functors.

Example 2.2.11. 1-functors are functions.

Example 2.2.12. cat-functors are 2-functors.

Example 2.2.13. ab-functors are functors which preserve the addition of the arrows.

They include some well known mathematical constructs: if R is a ring, thought of

as one-object ab-category R, then an ab-functor from R to ab is the same as an

R-module (for proof, see Proposition 3.1.6). If R and S are both rings, then an

ab-functor between R and S is the same as a ring homomorphism from R to S.

Example 2.2.14. A 2-functor between ordered sets is an order-preserving function.

Example 2.2.15. A R+-functor F between metric spaces (X, dX) and (Y, dY ) is a

contractive (non-expansive) function: dY (fx, fy) ≤ dX(x, y).
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2.2.2 V-Natural Transformations

In an enriched category, we cannot choose individual arrows. Thus, enriched natural

transformations are slightly more complicated to define than ordinary natural trans-

formations. We must use use the idea that arrows in V from I to C(a, b) take the

place of morphisms from a to b.

Definition Given V functors C
F,G // D, a V-natural transformation F

σ // G

consists of a family of C-indexed maps I
σc // D(Fc,Gc). These are to satisfy the

following V-naturality condition:

C(c, d)⊗ I D(Fc,Gc)⊗D(Gc,Gd)

C(c, d)

C(c, d)⊗ I

r−1

��

C(c, d) I ⊗C(c, d)l−1
// I ⊗C(c, d)

D(Fc,Gc)⊗D(Gc,Gd)

σc⊗G

��

D(Fc, Fd)⊗D(Fd,Gd) D(Fc,Gd)c
//

C(c, d)⊗ I

D(Fc, Fd)⊗D(Fd,Gd)

F⊗σd

��

C(c, d)⊗ I D(Fc,Gc)⊗D(Gc,Gd)D(Fc,Gc)⊗D(Gc,Gd)

D(Fc,Gd)

c

��

2.3 The 2-Category V-cat

Taken together, V-categories, V-functors, and V-natural transformations form a 2-

category. We will describe each of the composites; the proof that these form a 2-

category is found in ([16], pg. 466).

The composition and identities of V-functors are relatively straightforward:

Definition Given the following V-functors

C DF //D EG //

their composite GF is defined as being the composite function on objects, together
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with the following strength:

C(c, d)

D(Fc, Fd)

F (c,d)

��
D(Fc, Fd) E(GFc,GFd)

G(Fc,Fd) //

C(c, d)

E(GFc,GFd)

(GF )(c,d)

''OOOOOOOOOOOOOOOOOOO

The identity V-functor is the identity on objects, and it’s strength is the identity

arrow.

The horizontal and vertical composites of V-natural transformations are only

slightly more complicated.

Definition Given the following V-categories, V-functors, and V-natural transfor-

mations:

C D

F

  
C DG //

�� σ1

C DG //C D

H

??
�� σ2

the vertical composite of σ1 and σ2 is a V-natural transformation from F to H, and

has the following components:

I ∼= I ⊗ I

D(Fc,Gc)⊗D(Gc,Hc)

(σ1)c⊗(σ2)c

��
D(Fc,Gc)⊗D(Gc,Hc) D(Fc,Hc)c //

I ∼= I ⊗ I

D(Fc,Hc)

(σ2σ1)c

''OOOOOOOOOOOOOOOOOOOO

Definition Given the following V-categories, V-functors, and V-natural transfor-

mations:

C D

F1

  
C D

G1

??�� σ1 D E

F2

  
D E

G2

??�� σ2

the horizontal composite of σ1 and σ2 is a V-natural transformation from F2F1 to

G2G1, and has the following components:



17

I ∼= I ⊗ I

D(F1c,G1c)⊗ E(F2G1c,G2G1c)

(σ1)c⊗(σ2)G1c

��
D(F1c,G1c)⊗ E(F2G1c,G2G1c)

E(F2F1c, F2G1c)⊗ E(F2G1cG2G1C)

F2⊗1

��
E(F2F1c, F2G1c)⊗ E(F2G1cG2G1C) E(F2F1c,G2G1c)

c //

I ∼= I ⊗ I

E(F2F1c,G2G1c)

(σ2σ1)c

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

This is σ2G1 · F2σ1. There is a similar description of the horizontal composite as

G2σ1 · σ2F1; these two descriptions are the same.



Chapter 3

Normed Spaces

In this chapter, we will look at two ways of generalizing the notion of “normed space”

to a wider categorical context. As we saw in the previous chapter, one can think

of metric spaces as enriched categories, allowing for an interplay of ideas between

the two subjects. Michael Barr ([2]), and Walter Tholen, Maria Clementino, and

others ([10], [42], [41]) have extended this idea by showing that as metric spaces

correspond to V-categories, so topological spaces correspond to a new notion: (T, V )-

algebras. In this chapter, we generalize in the the opposite direction, by trying to

determine what normed spaces should correspond to. Two answers are given: normed

spaces as monoidal functors, and normed spaces as compact V-categories. After

investigating these two ideas, we will see that a comparison of the two requires a

deeper understanding of the change-of-base functor for enriched categories, which

leads us to the rest of the thesis.

3.1 Norms as Monoidal Functors

In this section, we will look at one way of generalizing normed spaces, via monoidal

functors. The key idea is the relationship between normed vector spaces and a weak-

ened version of them, normed abelian groups.

3.1.1 Normed Vector Spaces and Normed Abelian Groups

We begin by stating a (slightly modified) definition of normed vector space.

Definition A normed vector space is a vector space A (over R or C), together with

a function A
‖·‖ // [0,∞] such that

1. ‖0‖ = 0

18
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2. ‖a‖+ ‖b‖ ≥ ‖a+ b‖

3. ‖αa‖ = |α|‖a‖

We have modified the usual definition in two ways: we are allowing the norm to take

value∞ (as in Lawvere metric spaces) as well as only requiring a semi-norm (that is,

we do not require that ‖a‖ = 0 implies a = 0).

Now, we cannot directly categorify the idea of normed vector space. However,

what we can do is show that the idea of a normed vector space is contained in a

weaker notion, namely that of a normed abelian group. As we shall see, the idea of

normed abelian group is more amenable to categorifcation. Our source for the idea

of normed abelian groups is Grandis’ article [20].

Definition A normed abelian group is an abelian group G, together with a norm

G
‖·‖ // [0,∞] which satisfies 1. and 2. for normed vector spaces. Say the norm is

symmetric if ‖a‖ = ‖ − a‖.

Here are a few examples of normed abelian groups, including a non-symmetric

one:

Example 3.1.1. The abelian group of integers Z, with the usual absolute value.

Example 3.1.2. The abelian groups of integers Z, but with the following (non-

symmetric) norm:

‖a‖ =

{
a if a ≥ 0;

∞ if a < 0.

This example is important for the category of normed abelian groups (see Proposition

3.1.7).

Example 3.1.3. The abelian groups of real numbers and of complex numbers, with

their usual absolute value.

Example 3.1.4. Any normed vector space has an underlying normed abelian group.
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With the notable recent exception of Marco Grandis’ work on normed homology

[19] (where instead of a sequence of abelian groups, one assigns a sequence of normed

abelian groups to a space), normed abelian groups have not often been considered

by the mathematics community. However, one reason that they may not have been

considered is that the metric they define d(a, b) := ‖b − a‖ is not a metric in the

classical sense - it is not symmetric unless the norm is itself symmetric. It does,

however, define one of the more general Lawvere metrics.

Proposition 3.1.5. If (A, ‖ · ‖) is a normed abelian group, then d(a, b) := ‖b − a‖
defines a (Lawvere) metric on A. The metric it defines is symmetric if and only if

the norm is symmetric.

Proof. The triangle inequality follows 2. for the norm:

d(a, b) + d(b, c) = ‖b− a‖+ ‖c− b‖ ≥ ‖b− a+ c− b‖ = ‖c− a‖ = d(a, c)

while the unit axiom follows from 1.:

d(a, a) = ‖a− a‖ = ‖0‖ = 0

Thus d is a metric on A.

If the norm is symmetric, then

d(a, b) = ‖b− a‖ = ‖a− b‖ = d(b, a),

so that the metric is symmetric, while if the metric is symmetric, then

‖ − a‖ = d(0, a) = d(a, 0) = ‖a‖

shows that the norm is symmetric.

Now we would like to show how one can recover the idea of normed vector space

from normed abelian group. The following shows how one can recover mere vector

spaces (more generally, modules) from abelian groups:

Proposition 3.1.6. ab is itself an ab-category, and the following holds:
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1. A one-object ab-category is a ring.

2. An ab-functor from a ring R to ab is an R-module.

Proof. Since ab is closed, it is itself an ab-category. For 1., suppose that we have a

one-object ab-category C. Let its one object be *, and let C(∗, ∗) := R, so that R is

an abelian group. Then the composition is a single bi-linear map R⊗R × //R, while

the unit Z //R is simply an element 1 ∈ R. The associativity and unitary axioms

for a ring are exactly the associativity and unitary axioms for the composition and

unit of this ab-category.

Suppose that F is an ab-functor from a one-object ab-category R to ab. Let M

denote F (∗). Then the effect of F on homs gives a group homomorphism

R
−·− // ab(M,M),

defining an action of R on M . Then each of the axioms for an R-module exactly are

the same as saying F is an ab-functor:

• r(m+ n) = rm+ rn is equivalent to asking that F (r) be an ab-morphism,

• (r + s)m = rm+ sm is equivalent to asking that F is itself an ab-morphism,

• (rs)m = r(sm) is equivalent to asking that F preserves composition,

• 1m = m is equivalent to asking that F preserves units.

Thus, giving an ab-functor from R to ab is the same as giving an R-module.

Thus, the idea of modules and vector spaces is contained in the category ab and

categories enriched in ab. Next, we show that we can do the same thing with normed

vector spaces and normed abelian groups. In other words, we will show that normed

modules and vector spaces are contained in the category of normed abelian groups

normab and categories enriched in normab.

Definition Let normab be the category with objects normed abelian groups, and

maps group homomorphisms f which are also linear contractions (‖fa‖ ≤ ‖a‖).
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First, however, we must define the monoidal categorical structure of normed

abelian groups, which is simply an extension of the usual projective tensor product

for normed linear spaces.

Proposition 3.1.7. The following defines a norm on A⊗B:

‖z‖ :=
∧{∑

‖ai‖‖bi‖ : z =
∑

ai ⊗ bi
}

This then defines a tensor product on normab, such that with unit object that of

Example 3.1.2, normab becomes a monoidal category.

Proof. See Grandis [20], pgs 10-11.

We also need to define the idea of normed ring and normed module:

Definition A normed ring R is a ring whose underlying abelian group has a norm

| · | on it, and has the additional axioms

|ab| ≤ |a||b| and |1R| ≤ 1

A normed module M over a normed ring (R, |·|) is an R-module, whose underlying

abelian group has a norm ‖ · ‖ on it, and has the additional axiom

‖ra‖ ≤ |r|‖a‖

Example 3.1.8. Both (R, | · |) and (C, | · |) are normed rings.

Example 3.1.9. The finite field Zp is a normed ring when given the norm ‖[a]‖ := a.

Example 3.1.10. Any Banach algebra is a normed ring. For example, the set of

bounded linear operators on a Hilbert space B(H), or the set of continous functions

on a compact set C(X).

We can now prove a result that parallels Proposition 3.1.6.

Proposition 3.1.11. normab is itself a normab-category, and the following holds:

1. A one-object normab-category is a normed ring (R, | · |).
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2. An normab-functor from (R, | · |) to normab is a (R, | · |)-normed module.

Proof. Equipping normab with the operator norm makes it into a normab-category.

We have already seen in Proposition 3.1.6 how one-object ab-categories are rings.

However, the unit and multiplication maps are now contractions, which gives

‖1‖ ≤ 1 and ‖ab‖ ≤ ‖a‖‖b‖

Thus a one-object normab category is a normed ring.

We know that an ab-functor from R to ab gives an R-module. The fact that the

scalar multiplication map is now a contraction also gives that

‖ra‖ ≤ |r|‖a‖

so that we get a normed module.

However, one may have noticed that the definition of normed module differs from

that of normed vector space: it only requires an inequality for the norm of a scalar

multiple, rather than the usual equality. However, if the normed ring is (R, | · |) or

(C, | · |), then the idea of normed module and normed vector space coincide. More

generally, if the normed ring is a field, and the norm preserves inverses, then a normed

module over that normed ring has the usual scalar invariance.

Definition A normed field k is a normed ring (k, |·|) such that for all non-zero x ∈ k,

|x−1| = |x|−1.

Example 3.1.12. Both (R, | · |) and (C, | · |) are normed fields.

Example 3.1.13. The finite field Zp (with norm given above) is not a normed field.

Proposition 3.1.14. If k is a normed field, then a k-normed module is the same as

normed vector space.

Proof. We only need to show that the scalar invariance inequality implies the scalar

invariance equality. Indeed, we have

‖αa‖ ≤ |α|‖a‖ = |α|‖α−1αa‖ ≤ |α||α−1|‖αa‖ = ‖αa‖

where the last equality follows from the axiom for a normed field.
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In summary, we have shown that just as the idea of vector space can be recovered

from the category of abelian groups, so the idea of normed vector space can be recov-

ered from the category of normed abelian groups: a normed vector space is simply a

normab functor. In addition, we have defined a number of interesting new concepts

such as normed module, which extends the usual notion of normed vector space by

only requiring sub-scalar invariance.

Our task now is to categorify the notion of normed abelian group.

3.1.2 Norms as Monoidal Functors

In this section, we will show how the axioms for a normed abelian group can be

expressed in a more general categorical form. To do this, we note that an instance of

≥ is really an arrow in [0,∞], the addition is tensor, and 0 is the identity I. Thus the

axioms for a norm on an abelian group become, if we write ‖ · ‖ as N :

1. N(a)⊗N(b) //N(a+ b)

2. I //N(0)

These two axioms are exactly the neccesary comparison arrows for a monoidal

functor (see Definition 2.1.1). In other words, if we make the abelian group G into

a discrete category G, with + as ⊗, and 0 as I, then a monoidal functor from G to

[0,∞] is a norm on G (note that the coherence axioms follow automatically since the

codomain category is a poset).

Of course, there is one additional piece of information that is not considered in

this analysis, namely the fact that G is not just a monoid, but is actually a group.

To make use of this, we note that G considered as a monoidal category is actually

compact closed, with ∗ = −. Thus we have that a normed abelian group consists of

an compact closed category G, together with a monoidal functor to R+. We thus

generalize to make the following definition:
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Definition For V a monoidal category, a normed space over V is a compact

closed category C, together with a monoidal functor C N //V.

Before we proceed, let us determine if this makes sense. We claim that as metric

space is to category enriched over V, so normed abelian group is to normed space

over V. However, as we have seen earlier (Proposition 3.1.5), every normed abelian

group defines a metric space via d(a, b) := N(b − a). So, by analogy, if this were to

make sense, every normed space over V should define a category enriched over V, in

the same way that a normed space defined a metric space.

Proposition 3.1.15. Let (C, N) be a normed space over V. Then we can define a

V-categorical structure on C, with homs given by C(c, d) := N([c, d]).

Proof. Since C is compact closed, it is closed, and so enriched over itself. Since N

is a monoidal functor, it preserves enrichment (see Proposition 4.2.1), and so just as

d(a, b) := N(a−b) defines a metric space, so C(c, d) := N([c, d]) defines an enrichment

of C over V.

In turn, this allows one to generalize the notion of Banach space:

Definition Suppose that (C, N) is a normed space over V. Say that (C, N) is a

Banach space over V if the V-category N∗C is Cauchy complete.

There are a number of interesting examples of normed spaces over a monoidal

category.

Example 3.1.16. Recall that a category enriched over 2 := (0 ≤ 1,∧, 1) is a partially

ordered set. If G is an abelian group (considered as a discrete monoidal category G)

then, by Proposition 2.1.18, a monoidal functor from G to 2 is an ordered abelian

group. So ordered abelian groups are examples of normed spaces over 2.

Example 3.1.17. Every compact closed category C is normed over set, via N(−) :=

C(I,−). For example, the norm of a finite vector space is its underlying set. If we

extend our definition of normed spaces to include merely closed categories with a
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monoidal functor, then the norm of a Banach space would be its unit ball, which

agrees with ideas from functional analysis.

Example 3.1.18. Tannakian categories (see [15]) are strong monoidal functors from

a compact monoidal category to vec, so are examples of normed spaces over vec.

In summary, we have generalized the notion of normed abelian group (which

contains the notion of normed vector space) to a general categorical context, in which

there are a number of other interesting examples.

3.1.3 Subgroups and Quotient Stuctures

In this section, we will look at how one can extend a few of the other elements of

normed/ordered abelian groups to the wider categorical context.

Suppose that H is a subgroup of a normed/ordered group (G,ϕG), and i the

inclusion map. Then H inherits an ordered or normed stucture in the obvious way:

H

V

ϕH

��?????????????H Gi //G

V

ϕG

���������������

That is, ϕH := ϕG ◦ i. In the case of normed groups, the norm on H is simply the

restriction of the norm from G. In the case of ordered groups, the positive cone of H

is the intersection of the positive cone of G with H.

Subgroups thus present no difficulty. The picture is a little more complicated with

quotient groups, however. Again, let H be a normal subgroup of (G,ϕ), and let [·]
be the quotient map. Then we have the following picture:

G G/H
[·] //G

V

ϕ ��??????

As one can see, there is no direct composition that gives a potential order/norm on

G/H. However, since our V in either case is co-complete, we can try the left Kan
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extension of ϕ along [·], and see what that gives us in each case. The formula for the

left Kan extension (call it L), applied to this case, gives

L([x]) =

∫ g∈G
G/H([g], [x]) · ϕ(g)

The co-end in [0,∞] is simply the inf. Since the category G/H is discrete, the

hom-set G/H([g], [x]) is only non-trivial if [g] = [x]. Thus the above reduces to

L([x]) =
∧
{ϕ(g) : [g] = [x]}

Alternatively, this can be re-written as

L([x]) =
∧
{ϕ(x+ h) : h ∈ H}

This last expression is in fact the usual quotient norm (Conway [12], pg. 70).

The same idea applied to ordered groups also gives the correct structure. In the

case of ordered groups, the left Kan extension becomes

L([x]) =
∨
{ϕ(g) : [g] = [x]}

Thus [x] is in the positive cone of G/H when [x] = [p] for some p in the positive cone

of G. That is, P(G/H) = [P(G)]. As for normed groups, this is the standard ordered

structure on the quotient (Blyth [4], pg. 147).

Thus, both subgroups and quotients of ordered and normed groups have general

categorical expressions which reduce to the familiar notions in both cases. This gives

an example of why the idea of normed spaces as monoidal functors has potential

as an interesting general theory. In addition, it shows that the theories of ordered

structures and normed structures are more closely related than may at first appear.

3.2 Norms as Enriched Compact Spaces

Let us now investigate a slightly different point of view. Returning to Lawvere’s paper

on metric spaces as enriched categories, we find the following:



28

“...although for any given V we could consider “arbitrary” V-valued struc-

tures, there is one type of such structure which is of first importance,

namely for V respectively truth-values [V = 2], quantities [V = R+],

abstract sets, abelian groups, the structure of respectively poset, metric

space, category, additive category...is the generally useful first approxima-

tion possible with V-valued logic for analyzing various problems; it even

seems that there is a natural second approximation, namely the structure

of “[V-compact closed] V-category” which in the four cases mentioned

specializes roughly to partially ordered abelian group, normed abelian

group, [compact closed] category, and (in the additive case) to a com-

mon generalization of the category of [projective] modules on an alge-

braic space and the category of finite-dimensional representations of an

algebraic group. Detailed discussion of this second approximation awaits

further investigation...”

What Lawvere is saying is that as metric spaces are to enriched categories, so

normed abelian groups are to V-compact closed V-categories. In other words, his

version of a normed space is a V-compact closed V-category (for the definition of a

V-compact closed V-category, see Definition 7.1). Before we see how a V-compact

closed V-category could be thought of as a normed abelian group, we need to do a

little preliminary work. To begin with, with introduce a non-symmetric version of

one of the standard metric space axioms.

Definition Say that a R+-category X has identity of indiscernibles (IOI) if, for all

x, y ∈ X,

d(x, y) = 0 = d(y, x)⇒ x = y

These metric spaces have the following useful property:

Lemma 3.2.1. Suppose Y has IOI. Then for any R+-functors X
F,G //Y, if F is

naturally isomorphic to G, then Fx = Gx for all x ∈ X.

Proof. Since we have a V-natural transformation F //G, we get a family of maps

I // Y(Fx,Gx). Since I = 0 and arrows are ≥, this implies 0 = Y(Fx,Gx).
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Similarly, the existence of a V-natural transformation G //F gives 0 = Y(Gx, Fx).

Thus since Y has IOI, Fx = Gx for all x ∈ X.

The following then shows how normed abelian groups relate to V-compact closed

V-categories.

Proposition 3.2.2. A R+-compact closed R+-category with IOI is a normed abelian

group.

Proof. First, suppose that X is a symmetric monoidal V-category. This gives V-

functors

X⊗X
+ //X, I 0 //X

together with the natural associtivity and unit isomorphisms. Since X has IOI, this

forces x+ 0 = x = 0 + x and x+ (y + z) = (x+ y) + z. The symmetry forces x + y

= y + x.

If we now assume that X is compact closed, then we have an equivalence Xop − //X

such that

X(x, y + (−z)) ∼= X(x+ y, z)

Taking x = 0, y = x, and z = x, we get X(0, x + (−x)) ∼= X(x, x) = 0. Similarly,

taking x = −x, y = x, z = 0 gives 0 = X(−x,−x) ∼= X(−x+x, 0). Thus, since X has

IOI, x+ (−x) = 0. So X is an abelian group.

Finally, we can define a norm on this stucture by ‖x‖ := X(0, x). The triangle

axiom for a norm follows by the V-functoriality of +.

Thus while not all R+-compact closed R+ categories are normed abelian groups,

those which have one of the standard metric space axioms are. The notion of V-

compact closed V-category is thus another generalization of the concept of normed

abelian group.
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3.3 Comparison

We have now seen two versions of V-normed space: a normed space as a compact

closed category with a monoidal functor to V, and a normed space as a V-compact

closed V-category. Each of these represents different aspects of a normed space: the

first, the aspect of being a space with a norm; the second, a metric space with addi-

tional structure.

We must now attempt to determine how similar they are for general V, or at the

very least if we can transfer one such structure to the other, and vice versa.

So, begin by supposing that we have a V-compact closed category with unit J .

For any monoidal (V,⊗, I), the functor

V
V(I,−) // set

is monoidal, so it induces a change-of-base from V-cat to cat. If the change-of-

base functor preserves compact categories, then the resulting (ordinary) category X0

will also be compact. Moreover, we can also apply the change-of-base to the V-

monoidal functor X
X(J,−) //V (recall from above that this was the norm of X) to

get a monoidal functor X0
//V. Thus, from a compact closed V-category, we have

formed a normed space over V.

Now suppose that we have a normed space over V, (C, N). Since C is compact,

it is closed, and so is itself a C-category. We then apply the change-of-base N∗ to C

to get a V-category. If the change of base preserves compact categories, this will be

V-compact.

As one can see, transferring these structures back and forth requires knowing

more about the change-of-base functor; in particular, we need to know if it preserves

compact closed categories. In general, a deeper investigation of the change-of-base is

required.



Chapter 4

Classical Change of Base for Enriched Categories

In this chapter, we will describe the classical change-of-base functor. Most of the

ideas in this chapter can be found in Eilenberg and Kelly’s original article on the

subject, “Closed Categories” [16]. The proofs given here, however, are original. They

simplify the original proofs by defining and using the idea of applying a monoidal

functor “monoidally”. The first section describes this idea.

In addition, there are some new results in this chapter. Specifically, in Eilenberg

and Kelly’s article, they only show that the change of base 2-functor (−)∗ is a 2-

functor between monoidal categories and categories. Here, we show a more general

result, namely that (−)∗ can be seen as a 2-functor between monoidal categories and

2-categories. We will also give an example of how one could apply this result.

4.1 Coherence Theorems for Monoidal Functors

Before we begin proving results about change of base, it will be very helpful to prove

several key lemmas regarding monoidal functors, as well as describe notation that we

will use throughout. When working with monoidal functors, and in particular change

of base, one often needs to apply a monoidal functor N “monoidally”. There are two

ways to apply a monoidal functor monoidally:

Definition Let (V,⊗, I) N // (W, •,J) be a monoidal functor. Given an arrow of

the following type in V:

A⊗B f // C

we apply N monoidally to f to get

NA •NB Nf //NC,

31
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defined as the following composite:

NA •NB

N(A⊗B)

Ñ

��
N(A⊗B) NC

N(f) //

NA •NB

NC

Nf

''OOOOOOOOOOOOOOOOOOOOO

Given an arrow of the following type in V:

I
g // A

we apply N monoidally to g to get

J
Ng //NA,

defined as the following composite:

J

NI

N0

��
NI NA

N(g) //

J

NA

N(g)

''OOOOOOOOOOOOOOOOOOOOOO

We will now prove a number of technical lemmas. Most of them say that given

a commuting diagram in V, one can apply N monoidally to many of the arrows

and get a commuting diagram in W (similar to how one can apply a functor to a

commuting diagram and still get a commuting diagram). These will be very useful

for us later, as many of the proofs about change of base require an application of one

of these lemmas. For each of the lemmas below, we begin with a monoidal functor

(V,⊗, I) N // (W, •,J).

Lemma 4.1.1. If the following diagram commutes in V:

I ⊗ A

B ⊗ C

f⊗g

��
B ⊗ C A

h //

I ⊗ A

A

lA

''OOOOOOOOOOOOOOOOOOOOOO
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then the following diagram commutes in W:

J •NA

NB •NC

Nf•Ng

��
NB •NC NA

Nh //

J •NA

NA

lNA

''OOOOOOOOOOOOOOOOOOOOO

The above is also true with the I, J on the right, and l replaced by r.

Proof. Expanding the second diagram gives:

J •NA

NI •NA

N0•1

��
NI •NA

NB •NC

Nf•Ng

��

NI •NA N(I ⊗ A)Ñ //

NB •NC N(B ⊗ C)Ñ //

N(I ⊗ A)

NA

N(lA)

$$JJJJJJJJJJJJJJJ
N(I ⊗ A)

N(B ⊗ C)

N(f⊗g)

��
N(B ⊗ C) NA

Nh //

J •NA

NA

lNA

��

The top region commutes by the coherence of N , the square by naturality of Ñ , and

the bottom right triangle is N applied to the original diagram.

Lemma 4.1.2. If the following diagram commutes in V:

E F
l

//

A⊗B

E

k

��

A⊗B C ⊗Df⊗g // C ⊗D

F

h

��

the the following diagram commutes in W:

NE NF
Nl

//

NA •NB

NE

Nk

��

NA •NB NC •NDNf•Ng // NC •ND

NF

Nh

��
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Proof. Expanding the second diagram gives:

N(A⊗B) N(C ⊗D)N(f⊗g) //

NA •NB

N(A⊗B)

Ñ

��

NA •NB NC •NDNf•Ng // NC •ND

N(C ⊗D)

Ñ

��

NE NF
Nl

//

N(A⊗B)

NE

Nk

��

N(A⊗B) N(C ⊗D)N(f⊗g) // N(C ⊗D)

NF

Nh

��

The top region commutes by naturality of Ñ , and the bottom region is N applied to

the original diagram.

Lemma 4.1.3. If the following diagram commutes in V:

D ⊗ C A⊗ E

(A⊗B)⊗ C

D ⊗ C

f⊗1

��

(A⊗B)⊗ C A⊗ (B ⊗ C)a // A⊗ (B ⊗ C)

A⊗ E

1⊗g

��
D ⊗ C

F

h

''OOOOOOOOO A⊗ E

F

k

wwooooooooo

then the following diagram commutes in W:

ND •NC NA •NE

(NA •NB) •NC

ND •NC

Nf•1

��

(NA •NB) •NC NA • (NB •NC)a // NA • (NB •NC)

NA •NE

1•Ng

��
ND •NC

NF

Nh

''OOOOOOOO NA •NE

NF

Nk

wwoooooooo
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Proof. Expanding the second diagram gives:

(NA •NB) •NC

N(A⊗B) •NC

Ñ•1

��
N(A⊗B) •NC

ND •NC

Nf•1

��
ND •NC

N(D ⊗ C)

Ñ

**TTTTTTTTTT

N(D ⊗ C)

NF

Nh

��????????????

(NA •NB) •NC NA • (NB •NC)a // NA • (NB •NC)

NA •N(B ⊗ C)

1•Ñ

��
NA •N(B ⊗ C)

NA •NE

1•Ng

��
NA •NE

N(A⊗ E)
Ñttjjjjjjjjjj

N(A⊗B) •NC

N((A⊗B)⊗ C)

Ñ
**TTTTTTTT

NA •N(B ⊗ C)

N(A⊗ (B ⊗ C))

Ñ
ttjjjjjjjj

N(A⊗ E)

NF

Nk

��������������
N(D ⊗ C) N(A⊗ E)

N((A⊗B)⊗ C)

N(D ⊗ C)

N(f⊗1)

��

N((A⊗B)⊗ C) N(A⊗ (B ⊗ C))Na // N(A⊗ (B ⊗ C))

N(A⊗ E)

N(1⊗g)

��

The top region is by coherence of N , the two parallelograms by naturality of N , and

the bottom region is N applied to the original diagram.

Lemma 4.1.4. If the following diagram commutes in V:

A

A⊗ I
r−1
A

77ooooooooo

A⊗ I B1 ⊗ C1
b1⊗c1 // B1 ⊗ C1

D

f1

''OOOOOOOO

A

I ⊗ A
l−1
A

''OOOOOOOO

I ⊗ A B2 ⊗ C2b2⊗c2
// B2 ⊗ C2

D

f2

77oooooooo

then the following diagram commutes in W:

NA

NA • J
r−1
NA

77oooooooo

NA • J NB1 •NC1
Nb1•Nc1// NB1 •NC1

ND

Nf1

''OOOOOOO

NA

J •NA
l−1
NA

''OOOOOOO

J •NA NB2 •NC2Nb2•Nc2
// NB2 •NC2

ND

Nf2

77ooooooo
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Proof. Expanding the second diagram gives:

NA

NA • J

r−1
NA

OONA • J NA •NI1•N0 // NA •NI NB1 •NC1
Nb1•Nc1 // NB1 •NC1

N(B1 ⊗ C1)

Ñ
��

N(B1 ⊗ C1)

ND

Nf1

''OOOOOOOOOOOOO

NA

N(A⊗ I)

N(r−1
A )

55kkkkkkkkkkkkkkkkkk

NA •NI

N(A⊗ I)

Ñ

��
N(A⊗ I) N(B1 ⊗ C1)

N(b1⊗c1) //

NA

J •NA

l−1
NA

��
J •NA NI •NAN0•1 // NI •NA NB2 •NC2

Nb2•Nc2 // NB2 •NC2

N(B2 ⊗ C2)

Ñ

OO
N(B2 ⊗ C2)

ND
Nf2

77ooooooooooooo

NA

N(I ⊗ A)

N(l−1
A ) ))SSSSSSSSSSSSSSSSSS

NI •NA

N(I ⊗ A)

Ñ

OO
N(I ⊗ A) N(B2 ⊗ C2)

N(b2⊗c2) //

The top left and bottom left sections commute by coherence of N , the top right and

bottom right by naturality of N , and the hexagon in the middle is N applied to the

original hexagon.

It would be an interesting exercise to try to describe all diagrams in V to which

applying N monoidally to appropriate arrows gives a commuting diagram in W, but

this is beyond the scope of this thesis.

The final lemma shows that applying functors monoidally is “functorial”.

Lemma 4.1.5. Given monoidal functors V N //W M // Z, if f is of the form

A⊗B f // C or I
f // A,

then (MN)f = M(Nf).

Proof. If f is of the form A⊗B f // C, then

(MN)f = MN(f) ◦M(Ñ) ◦ M̃

while

M(Nf) = M(N(f) ◦ Ñ) ◦ M̃,

so the two are equal since M is a functor.
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Similarly, if f is of the form I
f // A, then

(MN)f = MN(f) ◦M(N0) ◦M0

while

M(Nf) = M(N(f) ◦N0) ◦M0,

again equal since M is a functor.

4.2 Change of Base N∗

We now wish to describe, for V N //W monoidal, the “change of base” 2-functor

V-cat
N∗ //W-cat. As such, we will need to describe it’s action on V -categories,

on V -functors, and on V -natural transformations. The results in this section are all

due to Eilenberg-Kelly ([16]). However, the lemmas given above will make most of

the we give here much more straightforward than their original versions.

Proposition 4.2.1. Let N be as above, and X a V-category. Then the following

defines a W-category N∗X:

• N∗X has the same objects as those of X,

• the hom objects are defined by (N∗X)(x, y) := N(X(x, y)),

• the composition is N applied monoidally to the composition in X,

• the identities are N applied monoidally to the identities in X.

Proof. That the composition is associative follows from Lemma 4.1.3, and the com-

position is unital follows from Lemma 4.1.1.

Proposition 4.2.2. Let N be as above, X and Y are V-categories, and X F //Y a

V-functor between them. Then we define a W-functor N∗X
N∗F //N∗Y by:

• N∗F acts on objects as F does,

• the strength of N∗F is (N∗F )(x, y) := N [F (x, y)].
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Proof. The preservation of composition follows from naturality of N , and the identity

axiom follows directly.

Proposition 4.2.3. Let N be as above, and σ a V-natural transformation between

C
F,G //D. Then applying N monoidally to the components of σ gives a W-natural

transformation N∗σ : N∗F //N∗G.

Proof. The W-naturality of N∗σ follows directly from Lemma 4.1.3.

Now that we have described the actions of N∗, we need to show that it defines a

2-functor.

Theorem 4.2.4. Let N be as above. Then defining N∗ on objects, arrows, and 2-cells

as above, V-cat
N∗ //W-cat is a 2-functor.

Proof. First, we need to show that N∗ preserves composition of V-functors. For this,

we need to show that if we have the following V-functors:

C DF //D EG //

then N∗(GF ) = N∗(G)N∗(F ). These two W-functors clearly have equal action on

objects, since N∗ does not change how a functor acts on objects. For strengths, they

are equal since N is a functor, and so preserves composition:

N∗[GF (c, d)] = N [F (c, d) ◦G(Fc, Fd)]

= NF (c, d) ◦NG(Fc, Fd)

= N∗F (c, d) ◦N∗G(Fc, Fd)

= (N∗G ◦N∗F )(c, d)

N∗ clearly preserves identity functors, since it preserves identity arrows.

Next, we need to show that N∗ preserves horizontal and vertical composition of

natural transformations. To begin, we suppose we have V-natural transformations

X Y

F

  
X YG //

�� σ1

X YG //X Y

H

??
�� σ2



39

We need to show that N∗(σ2σ1) = N∗(σ1)N∗(σ2), so we need to show that their

components are equal at an x ∈ X. If we expand the x-component of N∗(σ2σ1) along

the left side, and the x-component of N∗(σ1)N∗(σ2) on the right, we get:

J J ⊗ Jl−1
//J

NI

N0

��
NI

N(I ⊗ I)

N(l−1)

��
N(I ⊗ I)

N(X(Fx,Gx)⊗X(Gx,Hx))

N(σ1⊗σ2)

��
N(X(Fx,Gx)⊗X(Gx,Hx)) NX(Fx,Hx)

N(c) //

J ⊗ J NI ⊗NIN0⊗N0 // NI ⊗NI

NX(Fx,Gx)⊗NX(Gx,Hx)

Nσ2⊗Nσ1

��
NX(Fx,Gx)⊗NX(Gx,Hx)

N(X(Fx,Gx)⊗X(Gx,Hx))

Ñ

��
N(X(Fx,Gx)⊗X(Gx,Hx))

NX(Fx,Hx)

N(c)

��

N(X(Fx,Gx)⊗X(Gx,Hx))

N(X(Fx,Gx)⊗X(Gx,Hx))

1

ssgggggggggggggggggggggggggggggggggg

NI ⊗NI

N(I ⊗ I)

Ñ

wwoooooooooooooooooooooooooooooooooooooooooooooo

The top region commutes by coherence of N , the middle region by naturality of N ,

and the bottom region is an identity.

Finally, we need to show that N∗ preserves horizontal composition. Suppose we

have V-natural transformations:

X Y

F1

  
X Y

G1

??�� σ1 Y Z

F2

  
Y Z

G2

??�� σ2

We need to show that N∗(σ2σ1) = N∗(σ1)N∗(σ2), so we need to show that their

component at an x is equal. If we expand the x-component of N∗(σ2σ1) along the left
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side, and the x-component of N∗(σ1)N∗(σ2) on the right, we get:

J J • Jl−1
//J

NI

N0

��
NI

N(I ⊗ I)

N(l−1)

��
N(I ⊗ I)

N(X(F1x,G1x)⊗ Z(F2G1x,G2G1x))

N(σ2⊗σ1)

��
N(X(F1x,G1x)⊗ Z(F2G1x,G2G1x))

N(Z(F2F1x, F2G1x)⊗ Z(F2G1x,G2G1x))

N(F2⊗1)

��
N(Z(F2F1x, F2G1x)⊗ Z(F2G1x,G2G1x)) NZ(F2F1x,G2G1x)

N(c) //

J • J NI •NIN0•N0 // NI •NI

NY(F1x,G1x) •NZ(F2G1x,G1G2x)

Nσ1•Nσ2

��
NY(F1x,G1x) •NZ(F2G1x,G1G2x)

NZ(F2F1x, F2G1x) •NZ(F2G1x,G2G1x)

NF2•1

��
NZ(F2F1x, F2G1x) •NZ(F2G1x,G2G1x)

N(Z(F2F1x, F2G1x)⊗ Z(F2G1x,G2G1x))

Ñ

��
N(Z(F2F1x, F2G1x)⊗ Z(F2G1x,G2G1x))

NZ(F2F1x,G2G1x)

N(c)

��

NI •NI

N(I ⊗ I)

Ñ

wwoooooooooooooooooooooooooooooooooooooooooooooo

NY(F1x,G1x) •NZ(F2G1x,G1G2x)

N(X(F1x,G1x)⊗ Z(F2G1x,G2G1x))

Ñ

wwooooooooooooooooooooooooooooooooooooooooooooo

N(Z(F2F1x, F2G1x)⊗ Z(F2G1x,G2G1x))

N(Z(F2F1x, F2G1x)⊗ Z(F2G1x,G2G1x))

1

ssgggggggggggggggggggggggggggggggggg

The top region commutes by coherence of N , the middle two regions by naturality of

N , and the bottom region is an identity. Thus N∗ preserves horizontal composition,

and is a 2-functor.

Before describing the full change of base (−)∗, it will be helpful to look at examples

of the change of base N∗ for some of the monoidal functors given in Section 2.1.1.

Example 4.2.5. As we saw in Example 2.1.11, for any monoidal (V,⊗, I), there is

always a monoidal functor V
V(I,−) // set. This induces a change-of-base 2-functor

which Kelly ([27], pg. 10) calls (−)0: V-cat // cat. This 2-functor (−)0 could

be described as the “underlying category” functor. For example, with V = ab, an

additive category gets sent to its underlying category. As another example, the for-

getful functor 2-cat //cat simply forgets the 2-cells. Of course, the less information

V(I,−) retains, the less (−)0 does as well. For example, with V = graded R-modules,

very little information is retained in this forgetful 2-functor.

Example 4.2.6. When G is an abelian group, so that a monoidal G N // 2 makes
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G into an ordered abelian group, the change-of-base G-cat
N∗ // ord sends G (con-

sidered as a G-category) to its underlying poset.

Example 4.2.7. Similarly to above, when G is an abelian group, with a monoidal

G N //R+ makingG into a normed abelian group, the change-of-base G-cat
N∗ //metr

sends the normed abelian group G (considered as a G-category) to its underlying met-

ric space. An elementary version of this result was given in Proposition 3.1.5.

Example 4.2.8. The monoidal functor ([0,∞],≥,∨) // R+ (which is the identity

on objects) shows that every ultrametric space has the structure of a metric space.

Example 4.2.9. The free abelian group functor set F //ab is monoidal. An example

of the change-of-base F∗ is when the set-category is merely a group G. In this case,

the change of base category F∗G is the group ring of G. Similarly, if F is the free

functor from set to veck, then F∗G is the group algebra k[G]. Taking this idea further

suggests that the “groupoid ring” and the “groupoid algebra” of a groupoid G should

also be F∗G, so that the groupoid ring is an ab-enriched category, and the groupoid

algebra is a veck-enriched category.

4.3 Change of Base as a 2-functor (−)∗

In some sense, proving that N∗ is a 2-functor is only the first step in understanding

the change of base. The next step, very important for our proof that N∗ preserves en-

riched monoidal categories, is to understand (−)∗ itself as a 2-functor from monoidal

categories to 2-categories. To begin, we need to define the cells between monoidal

functors: monoidal natural transformations.

Definition Given monoidal functors (V,⊗, I)
N,M // (W, •, J), a monoidal natural

transformation N
α //M is a natural transformation from N to M which preserves

the tensor comparisons Ñ , M̃ :

MA •MB M(A⊗B)
M̃

//

NA •NB

MA •MB

α•α

��

NA •NB N(A⊗B)Ñ // N(A⊗B)

M(A⊗B)

α

��
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and the unit comparisons:

NI MIα
//

J

NI

N0

���������������
J

MI

M0

��?????????????

We also need to define how monoidal functors compose.

Definition Let V N //W M // Z be monoidal functors. Their composite is also a

monoidal functor, with comparisons

M̃N := M̃M(Ñ) and (MN)0 := M0M(N0)

Monoidal natural transformation compose just as natural transformations do, both

horizontally and vertically.

Definition Let moncat denote the 2-category of monoidal categories, monoidal

functors, and monoidal natural transformations. Let 2-cat denote the 2-category

of 2-categories, 2-functors, and 2-natural transformations.

We wish to show that we can define a 2-functor moncat
(−)∗ //2-cat, where (−)∗

on an object V is V-cat. In the previous section, we showed how (−)∗ would act on

monoidal functors: this is the usual change of base 2-functor N∗. We now need to

show how (−)∗ acts on monoidal natural transformations; it should define a 2-natural

transformation.

Proposition 4.3.1. Let N α //M be a monoidal natural transformation, as above.

Given X ∈ V-cat, define α∗(X) as the following W-functor from N∗(X) //M∗(X):

• The objects of N∗(X) and M∗(X) are the same, so we can define α∗(X) to be

the identity function on objects.

• The strength is then a W-arrow from NX(x, y) to MX(x, y): define it to be α

at the component X(x, y).

Then α∗(X) does define a W-functor, and with these as its components, α∗ is a

2-natural transformation from N∗ to M∗.
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Proof. To show that α∗(X) preserves composition, we only need add an α in the

middle of the diagram:

N(X(x, y)⊗X(y, z)) M(X(x, y)⊗X(y, z))α
//

NX(x, y) •NX(y, z)

N(X(x, y)⊗X(y, z))

Ñ

��

NX(x, y) •NX(y, z) MX(x, y) •MX(y, z)α•α //MX(x, y) •MX(y, z)

M(X(x, y)⊗X(y, z))

M̃

��

NX(x, z) MX(x, z)α
//

N(X(x, y)⊗X(y, z))

NX(x, z)

N(c)

��

N(X(x, y)⊗X(y, z)) M(X(x, y)⊗X(y, z))//M(X(x, y)⊗X(y, z))

MX(x, z)

M(c)

��

The top rectangle follows from monoidal coherence of α, and the bottom from natu-

rality of α. The preservation of identities is similar:

J

NI

N0

��
NI MI

α //

J

MI

M0

$$JJJJJJJJJJJJJJJJJ

NI

NX(x, x)

N(1)

��
NX(x, x) MX(x, x)α //

MI

MX(x, x)

M(1)

$$JJJJJJJJJJJJJJJJ

The triangle is monoidal coherence of α, and the bottom region is naturality of α.

Thus α∗(X) is a W-functor.

Next, we need to show that α∗ is natural. That is, given X F //Y a V-functor,

we need to show that

N∗(Y) M∗(Y)
α∗(Y)

//

N∗(X)

N∗(Y)

N∗(F )

��

N∗(X) M∗(X)
α∗(X) //M∗(X)

M∗(Y)

M∗(F )

��

commutes. Since this is equality of W-functors, we need to show that the functions on

objects are equal, and that the strengths are equal. Clearly the functions on objects
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are equal: since α∗(X) and α∗(Y ) are identity on objects, the two composite’s function

on objects are both F . That the strengths are equal is exactly due to naturality of α:

NY(x, y) MY(x, y)α
//

NX(x, y)

NY(x, y)

NF

��

NX(x, y) MX(x, y)α //MX(x, y)

MY(x, y)

MF

��

Thus α∗ is natural.

Finally, we need to show that α∗ is 2-natural. That is, given the following V-

natural transformation:

X Y

F

  
X Y

G

??�� σ

we need to show that

N∗X M∗X
α∗X //

N∗σ //

N∗X

N∗Y

N∗G

||

N∗X

N∗Y

N∗F

""

M∗σ //

M∗X

M∗Y

M∗G

||

M∗X

M∗Y

M∗F

""
N∗Y M∗Y

α∗Y //

To show that these two composite natural transformations are equal, we need to show

that their components J //MY(Fx,Gx) are equal. Expanding each component,

with the right arrows being the right composite, and the left arrows the left composite,

we get:

J MI
M0 //J

NI

N0

��
NI

NY(Fx,Gx)

Nσ

��
NY(Fx,Gx) MY(Fx,Gx)α //

MI

MY(Fx,Gx)

Mσ

��

NI

MI

α

77oooooooooooooooooooooo

The triangle commutes by monoidal coherence of α, and the bottom region commutes

by naturality of α. Thus α∗ is 2-natural.



45

Now that we have gathered all the neccesary components, we can prove that (−)∗

is itself a 2-functor. Note that this result was not shown in the original Eilenberg-

Kelly paper ([16]).

Theorem 4.3.2. Define moncat
(−)∗ // 2-cat on a monoidal category V as V-cat,

on monoidal functors as in Theorem 4.2.4, and on monoidal natural transformations

as in Proposition 4.3.1. Then (−)∗ is a 2-functor.

Proof. We need to show that (−)∗ preserves 1-cell composition, and horizontal and

vertical composition of 2-cells.

To show that (−)∗ preserves 1-cell composition, we need to show that given

monoidal functors V N // W
M // Z, we have (MN)∗ = M∗N∗. Since these are

2-functors, we need to show that they are equal on objects (V-categories), 1-cells

(V-functors) and 2-cells (V-natural transformations).

Given a V-category X, (MN)∗(X) and M∗N∗(X) both have the same set of ob-

jects, namely those of X. They also have the same hom-objects, given byMN(X(x, y)).

Since the compositions and identities of the categories are due to applications of MN

and (M)(N), respectively, they are equal due to Lemma 4.1.5.

To show that (MN)∗ and M∗N∗ are equal on a V-functor X F // Y, we need

to show they are equal as Z-functors. However, this is quite straightforward: they

are both F on objects, while the strengths are (MN)(F (x, y)) and M(N(F (x, y))),

respectively.

To show that (MN)∗ and M∗N∗ are equal on a V-natural transformation σ is

again a direct application of Lemma 4.1.5, as their components at x as Z-natural

transformations are MN(σx) and M(Nσx), respectively. This completes the proof

that (−)∗ preserves 1-cell composition.

Next, we need to show that (−)∗ preserves vertical composition of 2-cells. Let the
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following be monoidal natural transformations:

V W

N

  
V WM //

�� α1

V WM //V W

P

??
�� α2

We need to show that (α2α1)∗ = (α2)∗(α1)∗ as 2-natural transformations. Thus, we

need to show that their components (W-functors) are equal. Because of their defini-

tion 4.3.1, both are the identity on objects. As for their strengths, their composite in

both cases is merely the composite arrows.

Finally, we need to show that (−)∗ preserves horizontal composition of 2-cells.

This follows exactly as for the vertical composition, as the horizontal composition of

monoidal natural transformations and 2-natural transformations are both the usual

horizontal composition.

4.4 Adjunctions in Moncat

To conclude this chapter, we make some brief remarks on why knowing that (−)∗ is a

2-functor is important. One major application will be seen in the next chapter, when

we apply (−)∗ to a monoidal natural transformation to get a 2-natural transforma-

tion. Another application, however, deals with monoidal adjunctions. Since (−)∗ is

a 2-functor, it preserves adjunctions. That is, if F a U is an adjunction in moncat,

then F∗ a U∗ is an adjunction in 2-cat. This tells us that if the initial monoidal

categories have an adjoint relationship, then so will categories enriched over those

monoidal categories.

This can be useful, if we can find monoidal adjunctions. Fortunately, a result

of Max Kelly shows finding monoidal adjunctions is no more difficult than finding

adjunctions.

Theorem 4.4.1. Suppose that F is a monoidal functor. Then F has a right adjoint

U in moncat if and only if it is both strong monoidal and has a right adjoint as a

functor.
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Proof. See Kelly ([26], pg. 264).

Since many of the free functors F between monoidal categories are strong, this

shows that most of the usual adjunctions between monoidal categories extend to

2-adjunctions between categories enriched between them.

Example 4.4.2. The free functor set F // ab is strong, and hence the adjunction

F a U between abelian groups and sets is monoidal. Thus we have a 2-adjunction

F∗ a U∗ between the 2-categories of additive categories and locally small categories.



Chapter 5

Change of Base and Enriched Monoidal Categories

In this chapter, we will prove that the change of base 2-functor N∗ preserves enriched

monoidal categories. In other words, if C is a V-category which has a monoidal struc-

ture, relative to V, then when transfered by N∗ to W, it gets a monoidal structure

relative to W. In the first section, we will present an overview of the idea behind the

proof. All the major ideas are presented, without any of the details. The next few

sections then fill in the details of the proof.

There were two additional benefits that came as a result of the techniques used

in this proof. First of all, an alternative way of defining the tensor product of V-

categories was found. This alternate definition (see section 5.5) is interesting in its

own right, and the idea behind it has the potential to be useful when defining the

tensor products of higher-dimensional enriched categories: see, for example, Leinster

([35]), and Forcey ([17]). Secondly, in this chapter we demonstrate that (−)∗ is itself

monoidal; this in turn shows that it is not neccesary that V be braided for V-cat to

be monoidal.

5.1 Idea of the Proof

Let us begin with the basic definition of a monoidal V-category. Structurally, it is the

same as an ordinary monoidal category, but with functors replaced by V-functors,

the product of categories replaced with the tensor product of V-categories, and an

object of X replaced with a V-functor from the unit V-category.

Definition A monoidal V-category is a V-category X, together with V-functors

X⊗X
⊗X //X, I IX //X

48
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together with associativity and unit 2-cells, which satisfy the equations for a monoidal

category given in section 2.1.

Looking at the above definition, one may think that proving that an N∗ preserves

V-monoidal V-categories is relatively straightforward. In fact, it is, but for one point:

there is an enormous amount of detail that needs to be checked. None of these details

are difficult; once one looks at what needs to be checked for each particular detail, the

result follows almost immediately. However, this indicates that perhaps there should

be a more straightforward way to prove the desired result. The answer, as is usually

the case, is to generalize, and look for higher structure that may prove useful.

The key is to look at the structure of the 2-category V-cat. It itself has a monoidal

structure, given certain conditions on V. In the usual 2-category cat = set-cat, the

monoidal structure is given by product. However, in the general case of V-cat, one

defines the tensor product of V-categories using the tensor product in V. This does

require a certain commutativity condition on the base V (a “braiding”), but this

symmetry is present in most of the familiar V (in fact, as we will show, one needs a

condition slightly less restrictive than a braiding).

So, V-cat becomes a monoidal 2-category. Now, just as one can define the no-

tion of a monoid in a monoidal category, one can similarly define the notion of a

pseudomonoid in a monoidal bicategory (and hence in a monoidal 2-category). In

the particular case we are interested in, pseudomonoids in the monoidal 2-category

V-cat are exactly the monoidal V-categories.

Now, just as there are monoidal functors between monoidal categories, so there

are monoidal lax (or pseudo) functors between monoidal bicategories. As one would

expect, these preserve pseudomonoids, just as monoidal functors preserve monoids.

So, if we can show that N∗ is a monoidal 2-functor, this shows that N∗ preserves

pseudomonoids in V-cat; in other words, N∗ preserves monoidal V-categories. Since

our base V needs to be braided, we may assume our N should be as well. Our result,

then, will be the following: if N is a braided monoidal functor, then N∗ is a monoidal



50

2-functor 1. This will show that N∗ preserves monoidal V-categories.

Now, a monoidal pseudofunctor has a number of complicated elements to it, as

one can see from the definition in section 5.6. If M T //N is a lax functor between

monoidal bicategories, for it to have monoidal structure requires a pseudonatural

transformation of the following form:

N ×N N⊗N

//

M ×M

N ×N

T×T

��

M ×M M
⊗M //M

N

T

��

+3
χ

So, in our particular case of T = V-cat
N∗ //W-cat, we will need a pseudonatural

transformation

W-cat×W-cat W-cat⊗
//

V-cat×V-cat

W-cat×W-cat

N∗×N∗

��

V-cat×V-cat V-cat
⊗ //V-cat

W-cat

N∗

��

+3
χ

Looking at the definition of χ, one can see that χ is the comparison map for N∗,

just as Ñ is the comparison map for N . So if the χ for N∗ was to exist, it would

surely have to come from the Ñ ’s. Just as we raise the dimension of N to get N∗, we

must also raise the dimension of Ñ to get χ. In keeping with the nomenclature, this

would make χ = (Ñ)∗. That is, we must apply the 2-functor (−)∗ to Ñ to get χ.

To do this, we need that Ñ be not just a natural transformation, but a monoidal

natural transformation. After all, (−)∗ only applies to monoidal categories, monoidal

functors, and monoidal natural transformations. But we will show (Proposition 5.3.6)

that if V and N are braided, then indeed Ñ is monoidal. So when N is braided, we

have the following diagram of monoidal categories, monoidal functors, and monoidal

natural transformations:

1Note that N∗ cannot itself be braided, since V-cat is not itself braided unless V is symmetric:
see Day and Street [13].
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W ×W W⊗W

//

V ×V

W ×W

N×N

��

V ×V V
⊗V //V

W

N

��

Ñ +3

We apply (−)∗ to the entire diagram to get:

(W ×W)-cat W-cat
(⊗W )∗

//

(V ×V)-cat

(W ×W)-cat

(N×N)∗

��

(V ×V)-cat V-cat
(⊗V )∗ //V-cat

W-cat

N∗

��

(Ñ)∗
+3

Unfortunately, this is not quite what we require. If we look at the diagram for

χ, we see that we need the top-left object to be V-cat ×V-cat, not (V ×V)-cat.

Fortunately, we can add these objects to our diagram, with the help of the 2-functor

N∗ ×N∗, and the tensor products of V-cat and W-cat:

W-cat×W-cat W-cat⊗
//

V-cat×V-cat

W-cat×W-cat

N∗×N∗

��

V-cat×V-cat V-cat
⊗ //V-cat

W-cat

N∗

��

(V ×V)-cat

(W ×W)-cat

(N×N)∗

��

W-cat×W-cat

(W ×W)-cat
88qqqqqqqq

V-cat×V-cat

(V ×V)-cat
$$I

I
I

I
I

I
I

I
I

(W ×W)-cat

W-cat

(⊗W )∗

JJJJJ

%%JJJJJ

(V ×V)-cat

V-cat

(⊗V )∗
xxxxxxx

<<xxxxxxx

(Ñ)∗
+3

If we can fill in the dotted arrows, and fill in two-cells (or equalities) in each of the

regions, then by pasting the 2-cells together, we will have our desired χ. Filling in the

two dotted arrows is not difficult, but it is an interesting link, as one can see that it is

itself a monoidal comparison for the two-functor (−)∗, making (−)∗ into a monoidal
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2-functor! Moreover, the top and bottom regions show an interesting factorization

for the tensor products on V-cat and W-cat.

Thus, to prove our desired result, we need to show three things: (1) for N braided,

Ñ is monoidal, (2) that (−)∗ is itself monoidal, which gives the dotted arrows and

the equality of the left cell, and (3) the nature of the tensor product of V-categories,

and why it factors as shown in the diagram above. In addition, we will need to define

the concepts of monoidal bicategory, pseudomonoids in a monoidal bicategory, and

monoidal pseudofunctors.

We begin by reviewing the definition of braided monoidal categories.

5.2 Braided Monoidal Categories

Definition Suppose (V,⊗, I) is a monoidal category. A braiding on V is a natural

isomorphism

X ⊗ Y σ(x,y) // Y ⊗X,

such that the following two diagrams commute:

(B ⊗ A)⊗ C (B ⊗ C)⊗ A

(A⊗B)⊗ C

(B ⊗ A)⊗ C

σ⊗1

��

(A⊗B)⊗ C A⊗ (B ⊗ C)a // A⊗ (B ⊗ C)

(B ⊗ C)⊗ A

σ

��

B ⊗ (A⊗ C) B ⊗ (C ⊗ A)
1⊗σ

//

(B ⊗ A)⊗ C

B ⊗ (A⊗ C)

a

��

(B ⊗ A)⊗ C (B ⊗ C)⊗ A(B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

a

��

A⊗ (C ⊗B) C ⊗ (A⊗B)

A⊗ (B ⊗ C)

A⊗ (C ⊗B)

1⊗σ

��

A⊗ (B ⊗ C) (A⊗B)⊗ Ca−1
// (A⊗B)⊗ C

C ⊗ (A⊗B)

σ

��

(A⊗ C)⊗B (C ⊗ A)⊗B
σ⊗1

//

A⊗ (C ⊗B)

(A⊗ C)⊗B

a−1

��

A⊗ (C ⊗B) C ⊗ (A⊗B)C ⊗ (A⊗B)

(C ⊗ A)⊗B

a−1

��

A braiding is a symmetry if it is its own inverse:

B ⊗ A A⊗Bσ
//

A⊗B

B ⊗ A

σ

��

A⊗B

A⊗B

1

��?????????????
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All of the examples considered in section 2.1 have braidings. In all cases the

braiding is quite straightforward; in ab, for example, the braiding is the usual switch

isomorphism of abelian groups A ⊗ B ∼= B ⊗ A defined by a ⊗ b 7→ b ⊗ a. In fact,

all of the braidings in the examples mentioned are symmetric. However, all of our

results only require braided monoidal categories, so we will only assume braidings

rather than symmetries.

Before we go on, we should note that the two axioms for braided monoidal cate-

gories imply a number of other basic results.

Proposition 5.2.1. In any braided monoidal category (V,⊗, I, σ), the following di-

agrams commute:

I ⊗ A A
l
//

A⊗ I

I ⊗ A

σ

��

A⊗ I

A

r

��?????????????

A⊗ I Ar
//

I ⊗ A

A⊗ I

σ

��

I ⊗ A

A

l

��?????????????

Proof. See Joyal and Street ([24], pg. 34).

Unlike the case of monoidal categories, not every diagram built out of the isomor-

phisms a, l, r, σ commutes. However, there is a powerful technique for determining

when such diagrams commute. The idea, found in Joyal and Street’s paper on braided

monoidal categories ([24], pgs. 34-45), is to build the two composites in the free

braided tensor category. The free braid category consists of strings between points in

the plane, and an appearance of the arrow σ is a crossing of two strings. For example,

A⊗B σ //B ⊗ A would appear as follows:

• •

• •���������

////

////

A B

If the two string diagrams are “braid isotopic” - in other words, if one can be

deformed into the other without passing the strings though each other, then the two

composites are equal. For example, the first axiom for a braided monoidal category

asserts the equality of the following two braids, with the left composite being the left
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braid, and the right composite being the right braid:

•
A

•
B

•
C

• • •

• • •

��������

///

///

��������

///

///

•
A

•
B

•
C

• • •

• • •

����������
00

///// 00000

..=

which are indeed braid isotopic. We will use this technique to prove the commutativ-

ity of several diagrams in the next section.

Before we move on, however, we need to define braided monoidal functors.

Definition Suppose (V,⊗, I, σV ) N // (W, •, J, σW ) is a monoidal functor between

braided monoidal categories. N is a braided monoidal functor if the following diagram

commutes for each X, Y ∈ V:

N(X ⊗ Y ) N(Y ⊗X)
N(σV )

//

NX •NY

N(X ⊗ Y )

Ñ

��

NX •NY NY •NXσW // NY •NX

N(Y ⊗X)

Ñ

��

A symmetric monoidal functor is simply a braided monoidal functor between sym-

metric monoidal categories.

The first example of a monoidal functor we gave, example 2.1.11, is always braided

if V is so:

Proposition 5.2.2. For any braided monoidal category (V,⊗, I, σ), the monoidal

functor

V
V(I,−) // set

is braided.

Proof. We need to show that for any X, Y ∈ V, the diagram

V(I,X ⊗ Y ) V(I, Y ⊗X)
V(I,σV )

//

V(I,X)×V(I, Y )

V(I,X ⊗ Y )

V(I,⊗)

��

V(I,X)×V(I, Y ) V(I, Y )×V(I,X)
σset //V(I, Y )×V(I,X)

V(I, Y ⊗X)

V(I,⊗)

��
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commutes. So, we need to show that the for arrows I
f //X, I

g //Y , the composites

I
l−1

// I ⊗ I f⊗g //X ⊗ Y σ // Y ⊗X

and

I
l−1

// I ⊗ I g⊗f // Y ⊗X

are equal. Now, by Proposition 2.1.10, l−1
I = r−1

I , and then by applying Proposition

5.2.1, we can write the second composite as

I l−1
// I ⊗ I σ // I ⊗ I g⊗f // Y ⊗X

The two composites are then equal by naturality of σ.

All other examples given in section 2.1.1 are also braided.

In the next section, we will see what we can prove about the elements of a braided

monoidal category.

5.3 Properties of the Natural Isomorphisms

In this section, we would like to investigate some properties of the natural isomor-

phisms a, l, r, and for a monoidal functor, Ñ . We would like to show that for braided

V, each of these natural transformations is in fact a monoidal natural transformation.

This will be useful for us, as it allows us to apply the 2-functor (−)∗ to them. Of

course, to prove that each of these natural transformations are monoidal, we need

to prove that the categories and functors that they go between are also themselves

monoidal. The main reason we need V braided is to make ⊗ into a monoidal functor.

Interestingly, to prove that l and r are monoidal natural does not require braiding,

while to show that a and Ñ are does. We will begin with the results that do not require

braiding on V.

Proposition 5.3.1. If (V,⊗, I) is a monoidal category, then the functor

V
−⊗I //V
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is a monoidal functor, when equipped with unit comparison

I ⊗ I r // I

and tensor comparison

(X ⊗ I)⊗ (Y ⊗ I)
r⊗1 //X ⊗ (Y ⊗ I) a−1

// (X ⊗ Y )⊗ I

Similarly,

V
I⊗− //V

is also monoidal.

Proof. In this case, the diagrams for a monoidal functor all involve instances of

a, l, r, a−1, so the result follows from the coherence theorem for monoidal categories

(Mac Lane [32], pg. 165).

Proposition 5.3.2. For any monoidal category (V,⊗, I), the coherence natural trans-

formations l and r are monoidal natural transformations.

Proof. We know, by the previous result, that the functors I ⊗ − and − ⊗ I are

monoidal, so the question of whether l and r can be monoidal makes sense. Just

as in the previous proof, the required diagram for monoidal natural transformations

involves only instances of a, l, r, a−1, so the result again follows from Mac Lane’s

coherence theorem.

Proposition 5.3.3. Suppose that (V,⊗, I) and (W, •, J) are monoidal categories.

Then the product category V×W is also a monoidal category, with unit object (I, J)

and multiplication

(x1, y1) ? (x2, y2) := (x1 ⊗ x2, y1 • y2)

Proof. The proof is entirely straightforward, and merely relies on the fact that × is

a functor.

The rest of our results in this section require braided V.
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Proposition 5.3.4. Suppose that (V,⊗, I, σ) is a braided monoidal category. Then

the functor V ×V
⊗ //V is monoidal, when equipped with unit comparison

I
r−1

// I ⊗ I

and tensor comparison

(x1 ⊗ y1)⊗ (x2 ⊗ y2)
(a−1)(1⊗a)σ(1⊗a−1)(a) // (x1 ⊗ x2)⊗ (y1 ⊗ y2).

Proof. The first diagram, without associativities, and with juxtaposition for ⊗, is as

follows:

x1x2y1y2x3y3 x1x2x3y1y2y311σ1
//

x1y1x2y2x3y3

x1x2y1y2x3y3

1σ111

��

x1y1x2y2x3y3 x1y1x2x3y2y3
111σ1 // x1y1x2x3y2y3

x1x2x3y1y2y3

1σ11

��

The braid diagrams for the two composites are then:

• • • • • •

• • • • • •

• • • • • •

��������

///

///

��������

��������
???

??

>>>

x1 y1 x2 y2 x3 y3

• • • • • •

• • • • • •

• • • • • •

��������

///

///

����������
00

///// 00000

..

x1 y1 x2 y2 x3 y3

and

which, upon inspection, are isotopic. The unit axioms similarly follow.

Note that the inverse braiding, σ−1, could also be used. Thus, when we say

that the natural isomorphisms are monoidal natural transformations, we mean with

respect to this particular monoidal structure on ⊗, as there could be others.

Proposition 5.3.5. Suppose that (V,⊗, I, σ) is a braided monoidal category. Then

the coherence isomorphism a is a monoidal natural transformation.

Proof. First, let F and G be the functors F (a1, a2, a3) = (a1⊗a2)⊗a3, G(a1, a2, a3) =

a1⊗ (a2⊗a3). Both of these are monoidal by the previous proposition. Now, to show
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that a is monoidal natural, we need to show that the following diagram commutes:

F (A⊗B) G(A⊗B)a
//

FA⊗ FB

F (A⊗B)

F̃

��

FA⊗ FB GA⊗GBa⊗a // GA⊗GB

G(A⊗B)

G̃

��

Expanded, with A = (a1, a2, a3), B = (b1, b2, b3), this means that the following must

commute (to save space, we write tensor as concatenation):

a1a2b1b2a3b3 a1b1a2b2a3b31σ111
//

a1a2a3b1b2b3

a1a2b1b2a3b3

11σ1

��

a1a2a3b1b2b3 a1b1a2a3b2b3
1σ11 // a1b1a2a3b2b3

a1b1a2b2a3b3

111σ1

��

Translated into braids:

• • • • • •

• • • • • •

• • • • • •

����������
00

///// 00000

..

��������

///

///

a1 a2 a3 b1 b2 b3
• • • • • •

• • • • • •

• • • • • •

��������

��������
???

??

>>>

��������

///

///

a1 a2 a3 b1 b2 b3

and

which, upon inspection, are isotopic.

We have shown that for V braided, a, l, and r are monoidal natural. However, it

is not true that σ itself is monoidal natural, unless the braiding is symmetric. Indeed,

its monoidal naturality diagram is as follows:

A1B1A2B2 A2B2A1B1σ
//

A1A2B1B2

A1B1A2B2

1σ1

��

A1A2B1B2 A2A1B2B1
σσ // A2A1B2B1

A2B2A1B1

1σ1

��
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Translated into braids:

•

A1

•

A2

•

B1

•

B2

• • • •

• • • •

���������

////

////

�����������

�����������
??

??

?????
?????

??
??

•

A1

•

A2

•

B1

•

B2

• • • •

• • • •

���������

���������

////

////
////

////

���������

////

////

and

Which, upon inspection, are not isotopic, showing that, in general, σ is not a monoidal

natural transformation.

Finally, our most important result for this section:

Proposition 5.3.6. Suppose that (V,⊗, I, σV) N //(W, •,J, σW) is a braided monoidal

functor. Then Ñ is a monoidal natural transformation.

Proof. The comparison Ñ goes between the following functors:

V × V

W ×W
N×N

??���������

W ×W

W

•

��?????????

V × V

V

⊗
��??????????

V

W

N

??����������

Ñ
��

We have shown that for V braided, the tensor product for V is itself a monoidal

functor, so that the functors and categories above are all monoidal. We now wish to

show that in addition, Ñ is itself monoidal.

If we let F = •(N ×N) and G = N(⊗), then we need to show that the following

commutes:

F (A⊗B) G(A⊗B)
Ñ

//

FA ∗ FB

F (A⊗B)

F̃

��

FA ∗ FB GA ∗GBÑ∗Ñ // GA ∗GB

G(A⊗B)

G̃

��
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We now expand the above diagram, with A = (x1, y1), B = (x2, y2). Because of

space constraints, we will leave out the associativity isomorphisms, and write both

tensors as juxtaposition.

Nx1Ny1Nx2Ny2

Nx1Nx2Ny1Ny2

1σW 1

��
Nx1Nx2Ny1Ny2

N(x1x2)N(y1y2)

ÑÑ

��

Nx1Ny1Nx2Ny2

Nx1N(y1x2)Ny2

1Ñ1

MMMM

&&MMMM

Nx1N(y1x2)Ny2 N(x1y2x2)Ny2
Ñ1 //Nx1N(y1x2)Ny2

Nx1N(x2y1)Ny2

1N(σV )1

��

Nx1Nx2Ny1Ny2

Nx1N(x2y1)Ny2

1Ñ1

MMMM

&&MMMM

Nx1N(x2y1)Ny2 N(x1x2y1)Ny2
Ñ1 //

N(x1y2x2)Ny2

N(x1x2y1)Ny2

N(1σV )1

��

N(x1y2x2)Ny2

N(x1y1x2y2)

Ñ
QQQQQQ

((QQQQQQ

N(x1x2y1)Ny2

N(x1x2y1y2)

Ñ
QQQQQQ

((QQQQQQ

Nx1Ny1Nx2Ny2 N(x1y1)N(x2y2)
ÑÑ // N(x1y1)N(x2y2)

N(x1y1x2y2)

Ñ

��
N(x1y1x2y2)

N(x1x2y1y2)

N(1σV 1)

��
N(x1x2)N(y1y2) N(x1x2y1y2)

Ñ

//

The top and bottom regions commute by coherence of N , the middle region by nat-

urality of Ñ , the top left parallelogram since N is braid monoidal, and the bottom

right parallelogram again by naturality of Ñ .

5.4 (−)∗ is Monoidal

In this section, we will show how (−)∗ itself has monoidal structure.

Proposition 5.4.1. The category moncat is cartesian and hence monoidal.

Proof. Earlier in this chapter, we defined the product of monoidal categories, in propo-

sition 5.3.3. The product of monoidal functors is also readily seen to be monoidal.

If V1
N //W1 and V2

M //W2 are monoidal functors, then their product comparison

is given by Ñ × M̃ , and the axioms hold since the functor × preserves the diagrams

showing that Ñ and M̃ are both themselves monoidal. The unit monoidal category

is the category 1, which has one object and one (identity) arrow.

We now have that both moncat and 2-cat are monoidal 2-categories. We can

then ask whether (−)∗, as a 2-functor between them, is itself monoidal. The answer
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is yes, though, somewhat surprisingly, given the nature of the two categories, it is not

a strong or strict monoidal functor.

Proposition 5.4.2. The functor moncat
(−)∗ //2-cat can be equipped with compar-

isons which make it into a monoidal 2-functor.

Proof. For the unit comparison, we need a functor from the unit category 1 to 1-cat.

Since 1-cat = set, define this functor by sending the single object of 1 to the 1-point

set {∗}. For the tensor comparison, we need a 2-functor

V-cat×W-cat
(̃−)∗ // (V ×W)-cat.

Let X ∈ V-cat and Y ∈W-cat. Define the (V ×W) category (̃−)∗(X,Y) to have

object set X × Y , and homs

[(̃−)∗](X,Y)((x1, y1), (x2, y2)) := (X(x1, x2),Y(y1, y2)).

Given a V-functor X1
F //X2 and a W-functor Y1

G //Y2, define (̃−)∗(F,G)

to have effect on objects given by F ×G, with effect on homs also given by product:

(X1(x1, x2),Y1(y1, y2))
(F (x1,x2),G(y1,y2)) // (X2(Fx1, Fx2),Y2(Gx1, Gx2))

The axioms for a V-functor are then easy to check. The definition of the product of

natural transformations is similarly easy to define and check.

For the tensor comparison axiom, we need the following diagram to commute:

(VW)∗Z∗ (VWZ)∗˜(−)∗

//

V∗W∗Z∗

(VW)∗Z∗

˜(−)∗1

��

V∗W∗Z∗ V∗(WZ)∗
1 ˜(−)∗ //V∗(WZ)∗

(VWZ)∗

˜(−)∗

��

This is easy to check. For X1 ∈ V-cat,X2 ∈W-cat,X3 ∈ Z-cat, both composites

have object set X1×X2×X3, and both have homs (X1(a1, b1),X2(a2, b2),X3(a3, b3)).
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For naturality, we need the following diagram to commute, for V1
N //V2 and

W1
M //W2 monoidal functors:

V2-cat×W2-cat (V2 ×W2)-cat
˜[()?]

//

V1-cat×W1-cat

V2-cat×W2-cat

N?×M?

��

V1-cat×W1-cat (V1 ×W1)-cat
˜[()]? // (V1 ×W1)-cat

(V2 ×W2)-cat

(N×M)?

��

For objects x1, x2 ∈ X, y1, y2 ∈ Y, the left composite is given by

(̃−)∗[N∗ ×M∗(X,Y)]((x1, y1), (x2, y2))

= (̃−)∗(N∗X,M∗Y((x1, y1), (x2, y2))

= (N∗X(x1, x2),M∗Y(y1, y2))

= (NX(x1, x2),MY(y1, y2)),

while the right composite is

(N ×M)∗((̃−)∗)(X×Y)((x1, y1), (x2, y2))

= (N ×M)∗(X(x1, x2),Y(y1, y2))

= (NX(x1, x2),MY(y1, y2)).

Thus, the diagram commutes, and (̃−)∗ is natural.

Showing that the unit axioms hold is similar.

Before we move on, we should note a nice bonus of this proposition: it gives

a direct proof that for V braided, V-cat is a monoidal 2-category. Since (−)∗ is

monoidal, it takes pseudomonoids to pseudomonoids, and so takes a pseudomonoid

in moncat to a pseudomonoid in 2− cat; that is, a monoidal 2-category.
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In fact, this tells us that one doesn’t need V braided for V-cat to be monoidal.

One only needs V to have pseudomonoidal structure in moncat. This is a more gen-

eral object than a braided monoidal category. Specifically, it is a monoidal category

(V,⊗, I), equipped with additional monoidal functors V ×V ? //V and 1 J //V.

The comparison for ? gives a middle-four comparison

(x1 ? x2)⊗ (x3 ? x4) // (x1 ⊗ x3) ? (x2 ⊗ x4)

and the unit comparison gives us

I // J

satisfying coherence axioms. If V is braided, one can take ⊗ = ?, I = J ; the middle-

four comparison is then an instance of the braiding.

5.5 Tensor Product of V-categories

In the previous sections, we have shown that for a braided monoidal category (V,⊗, I, σ),

the tensor product ⊗ is a monoidal functor, and we have demonstrated that (−)∗ is

a monoidal 2-functor. We now combine these two things to define the tensor prodcut

of V-categories.

Definition Let (V,⊗, I, σ) be a braided monoidal category. Define the tensor prod-

uct of V categories by the composite

V-cat×V-cat
(̃−)∗ // (V ×V)-cat

⊗∗ //V-cat

Defining the tensor product of V-categories in this way has several advantages.

The biggest advantage is that we require no additional work to show that our tensor

product of V-categories is again a V-category. If one defines the tensor product di-

rectly, this does in fact take a lot of work to prove: see, for example, Forcey ([17], pgs.

11-19). The second advantage is that knowing that the tensor product of V-categories

factors as above is a neccesary ingredient for our proof that N∗ preserves monoidal

V-categories. The final advantage is that we have gained a greater understanding of

the tensor product construction. Interestingly, the first factor of the tensor product
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always exists, whether the base V is braided or not. It is only the second factor that

requires braiding. In some sense, then, the map

V-cat×V-cat
˜(−)∗ // (V ×V)-cat.

is a “pre”tensor product for V-categories which always exists, regardless of braiding

considerations.

Before moving on, let us expand the definition of the tensor product of V-

categories (as given above) to show that it agrees with the usual definition of the

tensor product of V-categories.

Proposition 5.5.1. Let (V,⊗, I, σ) be a braided monoidal category, and let X and

Y be V-categories. Then the tensor product of V-categories X⊗Y has objects X×Y ,

homs given by

(X⊗Y)[(x1, y1), (x2, y2)] := X(x1, x2)⊗Y(y1, y2),

composition given by the composite

{X(x1, x2)⊗Y(y1, y2)} ⊗ {X(x2, x3)⊗Y(y2, y3)}

X(x1, x2)⊗ {{Y(y1, y2)⊗X(x2, x3)} ⊗Y(y2, y3)}

(1⊗a−1)(a)

��
X(x1, x2)⊗ {{Y(y1, y2)⊗X(x2, x3)} ⊗Y(y2, y3)}

X(x1, x2)⊗ {{X(x2, x3)⊗Y(y1, y2)} ⊗Y(y2, y3)}

1⊗(σ⊗1)

��
X(x1, x2)⊗ {{X(x2, x3)⊗Y(y1, y2)} ⊗Y(y2, y3)}

{X(x1, x2)⊗X(x2, x3)} ⊗ {Y(y1, y2)⊗Y(y2, y3)}

(a−1)(1⊗a)

��
{X(x1, x2)⊗X(x2, x3)} ⊗ {Y(y1, y2)⊗Y(y2, y3)} X(x1, x3)⊗Y(y1, y3)

c⊗c //

{X(x1, x2)⊗Y(y1, y2)} ⊗ {X(x2, x3)⊗Y(y2, y3)}

X(x1, x3)⊗Y(y1, y3)
��

and identities given by:

I
r−1

// I ⊗ I ix⊗iy //X(x, x)⊗Y(y, y).

This is indeed the same tensor product as given in Eilenberg and Kelly ([16], pg.

518), Joyal and Street ([23], pg. 22), or Forcey ([17], pg. 11).
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Finally, let us define the V-category which acts as a unit for this tensor operation:

Definition Let (V,⊗, I) be a monoidal category. The unit V-category I is the

V-category with a single object ∗, and hom I(∗, ∗) := I.

5.6 Monoidal Bicategories

In the previous section, we saw an example of a 2-category with a monoidal operation:

the 2-category V-cat. We will now give the abstract definition of a bicategory with

a monoidal operation. Technically, we do not need the full generality of a monoidal

bicategory for this chapter, since our bicategory is in fact a 2-category. However, we

will need this full generality in the next chapter, when we deal with the bicategory

V-prof.

The definition we give will actually be a Gray monoid rather than a monoidal

bicategory. As Day and Street note in Monoidal Bicategories ([13], pg. 100), the

coherence theorem of the monograph on tricategories ([18]), allows one to prove results

in the simpler Gray monoids, then transfer to the more general monoidal bicategory.

In terms of the monoidal structure, the main difference between the two is that in a

general monoidal bicategory, associators are required at both the object and arrow

level, while in a Gray monoid, associators are only required for the arrows.

Definition A Gray monoid is a 2-category M, together with an object I ∈ M, for

any object A ∈M two 2-functors

M LA,RA //M

which agree on objects (defineA⊗B := LA(B) = RB(A)), and for arrowsA
f //A′, B

g //B′,

an invertible 2-cell

A′ ⊗B A′ ⊗B′
LA′ (g)

//

A⊗B

A′ ⊗B

RB(f)

��

A⊗B A⊗B′LA(g) // A⊗B′

A′ ⊗B′

RB′ (f)

��

+3
cf,g

The following axioms then must hold:



66

1. For all objects A,B:

LI = RI = 1M, LA⊗B = LALB, RA⊗B = RBRA, RBLA = LARB.

2. If both f and g are identites, then cf,g is an identity 2-cell.

3. For all arrows A
f // A′, B

g //B′, C
h // C ′,

L(A)(cg,h) = cLA(g),h, cf,LB(h) = cRB(f),h, RC(cf,g) = cf,RC(g)

4. For arrows A
f,h // A′, B

g,k //B′, and 2-cells f α // h, g
β // k,

A′ ⊗B A′ ⊗B′
LA′ (g)

//

A⊗B

A′ ⊗B

RB(f)

��

A⊗B A⊗B′
LA(g)

// A⊗B′

A′ ⊗B′

RB′ (f)

��

+3
cf,g

A⊗B A⊗B′

LA(k)

!!
KS
LA(β)

A⊗B′

A′ ⊗B′

RB′ (h)

ww

+3

RB′(α)

A′ ⊗B A′ ⊗B′
LA′ (k) //

A⊗B

A′ ⊗B

RB(h)

��

A⊗B A⊗B′LA(k) // A⊗B′

A′ ⊗B′

RB′ (h)

��

+3
ch,k

A′ ⊗B A′ ⊗B′

LA′ (g)

==KS
LA(β)

A⊗B

A′ ⊗B

RB(f)

''

+3

RB′(α)=

5. For arrows A
f // A′, B

g //B′, A′
f ′ // A′′, B′

g′ //B′′,

A′′ ⊗B A′′ ⊗B′
LA′′ (g)

//

A′ ⊗B

A′′ ⊗B

RB(f ′)

��

A′ ⊗B A′ ⊗B′LA′ (g)
// A′ ⊗B′

A′′ ⊗B′

RB′ (f
′)

��

+3
cf ′,g

A′ ⊗B A′ ⊗B′LA′ (g)
//

A⊗B

A′ ⊗B

RB(f)

��

A⊗B A⊗B′LA(g) // A⊗B′

A′ ⊗B′

RB′ (f)

��

+3
cf,g

A′ ⊗B′ A′ ⊗B′′LA′ (g
′) //

A⊗B′

A′ ⊗B′

RB′ (f)

��

A⊗B′ A⊗B′′LA(g′) // A⊗B′′

A′ ⊗B′′

RB′′ (f)

��

+3
cf,g′

A′′ ⊗B′ A′′ ⊗B′′
LA′′ (g

′)
//

A′ ⊗B′

A′′ ⊗B′

RB′ (f
′)

��

A′ ⊗B′ A′ ⊗B′′LA′ (g
′) // A′ ⊗B′′

A′′ ⊗B′′

RB′′ (f
′)

��

+3
cf ′,g′ A′ ⊗B A′ ⊗B′

LA′ (g
′g)
//

A⊗B

A′ ⊗B

RB(f ′f)

��

A⊗B A⊗B′LA(g′g) // A⊗B′

A′ ⊗B′

RB′ (f
′f)

��

+3
cf ′f,g′g=

As we have just seen, V-cat, for braided V, is an example of a Gray monoid/monoidal

bicategory. The bicategory V-prof, to be defined in the next chapter, is also a

monoidal bicategory (again for V braided).
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Now that we have defined Gray monoids, we can define pseudomonoids therein:

they are monoidal objects, moved up a dimension. In this definition, and often

throughout the rest of the thesis, we shall use An to mean A ⊗ A ⊗ · · · ⊗ A ⊗ A (n

times).

Definition A pseudomonoid in a Gray monoid (M,⊗, I) consists of an object A ∈
M, arrows

A2 µ // A, I
η // A

and invertible 2-cells

A2 Aµ
//

A3

A2

µ⊗1

��

A3 A21⊗µ // A2

A

µ

��

+3
α

A2 Aµ
//

A

A2

η⊗1

��

A

A

1

��?????????????

+3
l

A2 Aµ
//

A

A2

1⊗η

��

A

A

1

��?????????????

+3
r

such that the following equalities are satisfied:

A2 Aµ
//

A3

A2

µ1

��

A3 A2
1µ

// A2

A

µ

��

+3
αA3

A2
µ1 ''OOOOOOOOO

A4

A3

µ11

��

A4 A311µ // A3

A2

1µ

''OOOOOOOOOA4

A3
1µ1 ''OOOOOOOOO

+3
1α

+3
α1

A3 A21u //

A4

A3

µ11

��

A4 A311µ // A3

A2

µ1

��
A3

A2
µ1 ''OOOOOOOOO

A2 Aµ
//

A3

A2

1µ

''OOOOOOOOO

A2

A

µ

��

A2

A

µ

''OOOOOOOOOO

+3
cµ,µ

+3
α

α +3

=

and

A2 Aµ
//

A3

A2

µ1

��

A3 A2
1µ

// A2

A

µ

��

+3
α

A3 A2//

A2

A3

1η1

��

A2

A2

1

""EEEEEEEEEEE

+3
1l

A2 Aµ
//

A3

A2

µ1

��

A3 A2A2

A

µ

��

A3 A2

A2

A3

1η1

��

A2

A2

1

""EEEEEEEEEEEA2

A2

1

��

+3
r1

=

=

We can now relate this to the idea of monoidal V-categories by the following

proposition:
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Proposition 5.6.1. A pseudomonoid in the monoidal bicategory V-cat is a monoidal

V-category.

Proof. See Day and Street ([13], pg. 141).

We now need to find what types of morphisms of bicategories preserve pseu-

domonoids.

Definition A weak monoidal homomorphism T between monoidal bicategories (M,⊗, I),

(N , •, J) is a pseudofunctor from M to N , equipped with a pseudonatural transfor-

mation χ, a 1-cell ι, and modifications ω, ζ, κ. The pseudonatural transformation χ

has 1-cell components:

TX • TY
χX,Y // T (X ⊗ Y )

and 2-cell components:

TX ′ • TY ′ T (X ′ ⊗ Y ′)χ
//

TX • TY

TX ′ • TY ′

Tf•Tg

��

TX • TY T (X ⊗ Y )
χ // T (X ⊗ Y )

T (X ′ ⊗ Y ′)

T (f⊗g)

��

+3
χf,g

The arrow ι compares the units:

J
ι // TI

The modification ω has components:

T (X ⊗ Y ) • TZ T (X ⊗ Y ⊗ Z)χ
//

TX • TY • TZ

T (X ⊗ Y ) • TZ

χ•1

��

TX • TY • TZ TX • T (Y ⊗ Z)
1•χ // TX • T (Y ⊗ Z)

T (X ⊗ Y ⊗ Z)

χ

��

+3
ωX,Y,Z

The modifications ζ, κ have components:

TX

TX

1

��

TX

TX • TI

1•ι

zztttttttttttttttt

TX • TI TXχ
//

TX

TI • TX

ι•1

$$JJJJJJJJJJJJJJJJ

TI • TXTX χ
oo

+3
ζX ks

κX

These are to satisfy certain coherence conditions (see [13], pg. 111).
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Finally, we have the following proposition:

Proposition 5.6.2. Weak monoidal homomorphisms take pseudomonoids to pseu-

domonoids.

Proof. The proof is quite straightfoward, and can again be found in Day and Street

([13], pg. 112).

5.7 Proof of Result

We are now in a position to prove our main result for this chapter.

Theorem 5.7.1. Suppose that (V,⊗, I, σ1)
N // (W, •, J, σ2) is a braided monoidal

functor between braided monoidal categories. Then the change of base 2-functor N∗

takes monoidal V-categories to monoidal W-categories.

Proof. As we have seen in the previous section, to prove this result, it suffices to show

that N∗ has the structure of a weak monoidal homomorphism. As in the introduction,

define χ by composing the following 2-cells:

W-cat×W-cat W-cat⊗
//

V-cat×V-cat

W-cat×W-cat

N∗×N∗

��

V-cat×V-cat V-cat
⊗ //V-cat

W-cat

N∗

��

(V ×V)-cat

(W ×W)-cat

(N×N)∗

��

W-cat×W-cat

(W ×W)-cat

(̃−)∗qqqqqq

88qqqqqq

V-cat×V-cat

(V ×V)-cat

(̃−)∗

IIIIIII

$$IIIIIII

(W ×W)-cat

W-cat

(⊗W )∗

JJJJJ

%%JJJJJ

(V ×V)-cat

V-cat

(⊗V )∗
xxxxxxx

<<xxxxxxx

(Ñ)∗
+3

=

=

=

We now need to define the modifications ω, ζ, κ. Since these are higher-dimesional

versions of the equations for a monoidal functor, we can do as we did above: that

is, make the equations for Ñ into composites of two-cells, and apply (−)∗, adding in

extra cells as neccesary, to get the modifications ω, ζ, and κ. However, it is easier
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to work with them directly, as it turns out that the composites they go between are

equal. Indeed, ω should be a 2-cell in the square

N∗XY •N∗Z N∗XYZχ
//

N∗X •N∗Y •N∗Z

N∗XY •N∗Z

χ•1

��

N∗X •N∗Y •N∗Z N∗X •N∗YZ
1•χ // N∗X •N∗YZ

N∗XYZ

χ

��

Given x1, x2 ∈ X, y1, y2 ∈ Y, z1, z2 ∈ Z, the actions of these composite W-functors

are

N(X(x1, x2)⊗Y(y1, y2)) • Z(z1, z2) N(X(x1, x2)⊗Y(y1, y2)⊗ Z(z1, z2))
Ñ

//

NX(x1, x2) •NY(y1, y2) •NZ(z1, z2)

N(X(x1, x2)⊗Y(y1, y2)) • Z(z1, z2)

Ñ•1

��

NX(x1, x2) •NY(y1, y2) •NZ(z1, z2) NX(x1, x2) •N(Y(y1, y2)⊗ Z(z1, z2))
1•Ñ // NX(x1, x2) •N(Y(y1, y2)⊗ Z(z1, z2))

N(X(x1, x2)⊗Y(y1, y2)⊗ Z(z1, z2))

Ñ

��

Thus these composites are in fact equal, by the coherence of Ñ . Similarly, the com-

posites which ζ and κ need to compare are also equal. As a result, we can make ω, ζ,

and κ the identity modifications. The coherence conditions for these modifications

then follow automatially.

Thus, N∗ can be assigned the structure of a weak monoidal homormophism, and

as a result, preserves monoidal V-categories, as required.

5.8 Involutions

In our final section of this chapter, we investigate the involutive structure of V-cat.

One can construct the opposite of a V-category, provided that V is braided. What

is interesting in the above context is that this involutive structure, namely the map

which takes a V-category and gives the opposite V-category:

(V-cat)co ()op
//V-cat,

can be construcuted similarly to the tensor product on V-cat. It too, can be factored

into two parts. The first, which exists whether V is braided or not, can be seen as



71

part of the structure on the 2-functor (−)∗. The second is an application of (−)∗ to

a monoidal functor going from Vrev to V, where Vrev is the monoidal category with

A⊗rev B := B ⊗ A.

Let us begin by formally defining this “reversed” monoidal category.

Definition Suppose that (V,⊗, I, a, l, r) is a monoidal category. Define a new

monoidal category Vrev, with the same objects as V, with the tensor product de-

fined as above, with arev := a−1, lrev = r, and rrev = l.

For V braided, there is always a monoidal functor from Vrev to V:

Proposition 5.8.1. Suppose that (V,⊗, I, σ) is a braided monoidal category. Then

there is a monoidal functor Vrev U //V, defined as the identity on objects, which has

the tensor comparison

A⊗B σ //B ⊗ A

and unit comparison the identity on I.

Proof. To check that this is a monoidal functor, we need to show that the following

diagram commutes:

B ⊗ A⊗ C C ⊗B ⊗ Aσ
//

A⊗B ⊗ C

B ⊗ A⊗ C

σ⊗1

��

A⊗B ⊗ C A⊗ C ⊗B1⊗σ // A⊗ C ⊗B

C ⊗B ⊗ A

σ

��

Translating the composites to braids, we have

•

A
•

B
•

C

• • •

• • •

���������

////

////

���������

���������
???

???

>>>

•

A
•

B
•

C

• • •

• • •

���������

////

////

�����������
000

////// 000000

...

and

The two are indeed braid isotopic. The unit axioms follow from proposition 5.2.1.
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Now, we can investigate the structure on (−)∗. We have seen that (−)∗ is a 2-

functor with a weak monoidal structure. However, it has even more than that: it

also compares the op structures of moncat and 2-cat. We call these op structures

involutions on 2-categories.

Definition An involution on a 2-category A is a 2-functor A R //A such that R is

strong monoidal, and R2 = 1A.

For moncat, the op structure is given by the 2-functor moncat
()rev //moncat.

For 2-cat, the op structure is given by ()co, the reversal of 2-cells.

Now, an involutive monoidal functor between involutive monoidal categories would

compare the op structures, in the sense that we should have a 2-cell:

moncat 2-cat
()∗

//

moncat

moncat

rev

��

moncat 2-cat
()∗ // 2-cat

2-cat

co

��

()rev
ks

so that we get for each V ∈moncat a 2-functor

(V-cat)co [()op]V //Vrev-cat

We can define such a functor as follows. For X ∈ V-cat, Xop will have the same

objects as V , but Xop(x, y) := X(y, x), with composition similarly adjusted. Simi-

larly, the action of a V-functor will remain the same, but the strength will reverse.

Because of these reversals, while ()op does not change the actual 2-cells, they will go

in opposite directions; hence the need for co. This functor then makes ()∗ into an

involutive monoidal 2-functor.

Then, just as we did with the tensor product of V-categories, we can define the

(−)op operation on V-cat as a composite.
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Definition Suppose that (V,⊗, I, σ) is a braided monoidal category. Then define

the opposite V-category operation as the composite

V-catco [()op]V //Vrev-cat
U∗ //V-cat

As with our definition of the tensor product of V-categories, this definition makes

clear that there is a “pre” op-operation on V-cat, and instantly demonstrates, with-

out any further work, how an opposite V-category is again a V-category.



Chapter 6

Change of Base for Profunctors

To show thatN∗ preserved monoidal V-categories, we showed thatN∗ was 2-monoidal,

and so took pseudomonoids in V-cat to pseudomonoids in W-cat. If we wish to

look at whether N∗ preserves autonomous (compact) V-categories, we would like to

do something similar: show that N∗ is an “autonomous” monoidal functor, and so

preserves autonomous objects.

Unfortunately, we cannot do this in the 2-category V-cat, as the notion of an

autonomous object in V-cat does not make sense. The problem is that to describe

autonomous objects in a bicategory, the bicategory itself must be autonomous. This

is analagous to the situation of monoids in V-cat: to describe monoids in V-cat,

V-cat itself must have monoidal structure - which it does, if V is braided. On the

other hand, V-cat does not have autonomous structure.

This problem can be rectified if one considers the bicategory V-prof instead.

Here, the 1-cells are V-profunctors rather than V-functors. Then, V-prof does have

an autonomous structure, and certain types of autonomous objects in V-prof are

exactly the autonomous V-categories.

Thus, if we want to do something similar to the previous chapter, what we need

first of all is a change of base from V-prof to W-prof. As soon as we begin in-

vestigating the change of base for profunctors, several points of interest arise. For

N monoidal, the change of base we get V-prof
N# //W-prof is a lax, rather than

pseudo, functor. In other words, it preserves composition only up to a comparison

arrow. We then show that a monoidal natural transformation can be sent to a new

type of 2-cell between lax functors: a module. Two recent papers ([11], [28]) have

74
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discussed this idea, and argued that modules are the proper 2-cells for lax functors;

the results of this change of base give further evidence that that is the case.

The chapter is laid out as follows. We begin by reviewing the idea of V-profunctors,

and their associated bicategory V-prof. We then describe the change of base lax

functor N#. Finally, we show how monoidal natural transformations can be sent to

modules.

6.1 The Bicategory V-prof

In this section, we describe the basics of the bicategory of V-categories, V-profunctors,

and V-profunctor morphisms. As we will be working directly with this bicategory, it

is necessary to describe explicitly all of these notions, together with their associated

compositions and identities.

6.1.1 V-profunctors

V-profunctors X P //Y are often described as V-functors

Yop ⊗X //V

However, describing V-profunctors in this way requires that V be braided (for Yop⊗X

to be a V-category) and closed (for V to be a V-category). At least initially, we would

like to work in as general a setting as possible, and describe the change of base for

profunctors for any monoidal V. Accordingly, we will give the more elementary def-

inition of a profunctor, in terms of a module together with actions. In fact, there is

another reason for describing them in this way, not just a desire for greater generality:

it is our belief that results are clearer and easier to understand when profunctors are

described as modules rather than as functors.

Definition Given V-categories X,Y, a V-profunctor X P //Y consists of families

of objects of V, as well as left and right actions. So we have, for each x ∈ X, y ∈ Y,

an object P (y, x) ∈ V; the left action consists of a family of V-arrows,

Y(y′, y)⊗ P (y, x)
Pl(y

′,y,x) // P (y′, x)
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and the right action is another family of V-arrows

P (y, x)⊗X(x, x′)
Pr(y,x,x′) // P (y, x′).

These actions must be unitary, so that the following diagrams commute:

Y(y, y)⊗ P (y, x) P (y, x)
Pl

//

I ⊗ P (y, x)

Y(y, y)⊗ P (y, x)

1y⊗1

��

I ⊗ P (y, x)

P (y, x)

l

''OOOOOOOOOOOOOOOOOOO

P (y, x)⊗X(x, x) P (y, x)
Pr

//

P (y, x)⊗ I

P (y, x)⊗X(x, x)

1⊗1x

��

P (y, x)⊗ I

P (y, x)

r

''OOOOOOOOOOOOOOOOOOO

These actions are associative in Y:

Y(y′′, y)⊗ P (y, x) Y(y′′, y′)⊗ P (y′, x)

(Y(y′′, y′)⊗Y(y′, y))⊗ P (y, x)

Y(y′′, y)⊗ P (y, x)

c⊗1

��

(Y(y′′, y′)⊗Y(y′, y))⊗ P (y, x) Y(y′′, y′)⊗ (Y(y′, y)⊗ P (y, x))a //Y(y′′, y′)⊗ (Y(y′, y)⊗ P (y, x))

Y(y′′, y′)⊗ P (y′, x)

1⊗Pl

��
Y(y′′, y)⊗ P (y, x)

P (y′′, x)

Pl

&&MMMMMMMMMMMMMMMMM
Y(y′′, y′)⊗ P (y′, x)

P (y′′, x)

Pl

xxqqqqqqqqqqqqqqqqq

and in X:

P (y, x′)⊗X(x′, x′′) P (y, x)⊗X(x, x′′)

(P (y, x)⊗X(x, x′))⊗X(x′, x′′)

P (y, x′)⊗X(x′, x′′)

Pr⊗1

��

(P (y, x)⊗X(x, x′))⊗X(x′, x′′) P (y, x)⊗ (X(x, x′)⊗X(x′, x′′))a // P (y, x)⊗ (X(x, x′)⊗X(x′, x′′))

P (y, x)⊗X(x, x′′)

1⊗c

��
P (y, x′)⊗X(x′, x′′)

P (y, x′′)

Pr

&&MMMMMMMMMMMMMMMMM
P (y, x)⊗X(x, x′′)

P (y, x′′)

Pr

xxqqqqqqqqqqqqqqqqq

Finally, the actions must be jointly associative:

P (y′, x)⊗X(x, x′) Y(y′y)⊗ P (y, x′)

(Y(y′y)⊗ P (y, x))⊗X(x, x′)

P (y′, x)⊗X(x, x′)

Pl⊗1

��

(Y(y′y)⊗ P (y, x))⊗X(x, x′) Y(y′y)⊗ (P (y, x)⊗X(x, x′))a //Y(y′y)⊗ (P (y, x)⊗X(x, x′))

Y(y′y)⊗ P (y, x′)

1⊗Pr

��
P (y′, x)⊗X(x, x′)

P (y′, x′)

Pr

&&MMMMMMMMMMMMMMMMM
Y(y′y)⊗ P (y, x′)

P (y′, x′)

Pl

xxqqqqqqqqqqqqqqqqq
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Certainly, the definition of a V-profunctor is not as natural as that of V-functor.

However, they turn out to be familiar objects for each of the usual monoidal categories.

Example 6.1.1. A set-profunctor X P //Y is the same as a functor Yop×X P //set.

More generally, for any closed braided V, a V-profunctor is the same as a V-functor

Yop ⊗X P //V.

Example 6.1.2. If R and S are rings (1-object ab-categories), then an ab-profunctor

R P // S is an (R, S)-bimodule. Thus the idea of profunctor between ab-categories

generalizes the notion of bimodule.

Example 6.1.3. A 2-profunctor (X,≤) P //(Y,≤) is a relation which is down-closed

in (Y,≤) and up-closed in (X,≤). Indeed, the module P (y, x) ∈ 2 gives a relation ∼,

the left action gives

y′ ≤ y ∼ x⇒ y′ ∼ x,

and the right action gives

y ∼ x ≤ x′ ⇒ y ∼ x′.

Example 6.1.4. An R+-profunctor (X, d) P //(Y, d) is the same as giving a function

Y ×X P // [0,∞] such that∧
y∈Y

d(y′, y) + P (y, x) ≥ P (y′, x)

and ∧
x∈X

P (y, x) + d(x, x′) ≥ P (y, x′)

As we shall see later (Proposition 7.1.2), these are related to Cauchy sequences.

6.1.2 V-forms

We will now define the morphisms of V-profunctors.

Definition A V-morphism of V-profunctors X
P,Q //Y (here also called a V-form)

consists of a V-family of arrows

P (y, x)
ψ(y,x) //Q(y, x)
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which are compatible with the left action:

P (y′, x) Q(y′, x)
ψ

//

Y(y′, y)⊗ P (y, x)

P (y′, x)

PL

��

Y(y′, y)⊗ P (y, x) Y(y′, y)⊗Q(y, x)
1⊗ψ //Y(y′, y)⊗Q(y, x)

Q(y′, x)

QL

��

and the right action:

P (y, x′) Q(y, x′)
ψ

//

P (y, x)⊗X(x, x′)

P (y, x′)

PR

��

P (y, x)⊗X(x, x′) Q(y, x)⊗X(x, x′)
ψ⊗1 // Q(y, x)⊗X(x, x′)

Q(y, x′)

QR

��

6.1.3 Composition and Identities of V-profunctors

The composition of V-profunctors X P //A
Q //Y is usually described as a co-end:

(QP )(y, x) :=

∫ a∈A
Q(y, a)⊗ P (a, x)

However, this definition presumes that one has identified the profunctors with

functors. As noted above, we have taken the point of view that profunctors are best

viewed as modules with actions. In this case, one describes the composite module

QP (y, x) as the co-equalizer of

∑
a,a′∈AQ(y, a)⊗ A(a, a′)⊗ P (a′, x)

∑
a∈AQ(y, a)⊗ P (a, x)

1⊗PR

))∑
a,a′∈AQ(y, a)⊗ A(a, a′)⊗ P (a′, x)

∑
a∈AQ(y, a)⊗ P (a, x)

QL⊗1

55

When working with these co-ends, however, it is easier to give the universal prop-

erty of
∫ a
Q(y, a)⊗P (a, x) explicitly, without reference to any other limits or colimits.

This universal property is best stated when P is merely a right (X,A) module, and

Q a left (A, Y ) module.

Definition Given P , Q as above, the object
∫ a
Q(y, a)⊗P (a, x), comes with a family

of injections

Q(y, a)⊗ P (a, x)
ia //

∫ a

Q(y, a)⊗ P (a, x)
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which make the following commute for each y, a, a′, x:

(Q(y, a)⊗ A(a, a′))⊗ P (a′, x) Q(y, a)⊗ (A(a, a′)⊗ P (a′, x))a //(Q(y, a)⊗ A(a, a′))⊗ P (a′, x)

Q(y, a′)⊗ P (a′, x)

QL⊗1

��

Q(y, a)⊗ (A(a, a′)⊗ P (a′, x))

Q(y, a)⊗ P (a, x)

1⊗PR

��
Q(y, a′)⊗ P (a′, x)

∫ a
Q(y, a)⊗ P (a, x)

ia′

%%KKKKKKKKKKKKKKKK
Q(y, a)⊗ P (a, x)

∫ a
Q(y, a)⊗ P (a, x)

ia

yyssssssssssssssss

and which are universal, in that for any object C with a family of maps

Q(y, a)⊗ P (a, x)
fa // C

which make the following diagram commute:

(Q(y, a)⊗ A(a, a′))⊗ P (a′, x) Q(y, a)⊗ (A(a, a′)⊗ P (a′, x))a //(Q(y, a)⊗ A(a, a′))⊗ P (a′, x)

Q(y, a′)⊗ P (a′, x)

QL⊗1

��

Q(y, a)⊗ (A(a, a′)⊗ P (a′, x))

Q(y, a)⊗ P (a, x)

1⊗PR

��
Q(y, a′)⊗ P (a′, x)

C

fa′

%%KKKKKKKKKKKKKKKKK
Q(y, a)⊗ P (a, x)

C

fa

yysssssssssssssssss

then there is unique map f such that for all a,

Q(y, a)⊗ P (a, x)
∫ a
Q(y, a)⊗ P (a, x)

ia //Q(y, a)⊗ P (a, x)

C

fa

''OOOOOOOOOOOOOOOOOOOOO

∫ a
Q(y, a)⊗ P (a, x)

C

f

��

commutes.

We should make a few notes on how to work with these co-ends. To check that

two maps out of a co-end are equal is easy. Indeed, suppose that we have two maps∫ a
Q(y, a)⊗ P (a, x)

f,g // C. If we show that

Q(y, a)⊗ P (a, x)
ia //

∫ a

Q(y, a)⊗ P (a, x)
f,g // C
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are equal instead, then by the universal property, this implies f = g. Many of our

later proofs will require that we show that two maps out of co-ends, which themselves

go into co-ends, will be equal. As we shall almost always define maps into co-ends by

applying an injection (the ia arrows), this will reduce our diagrams to merely looking

at the actions of the arrows on the objects of the co-ends, rather than on the co-ends

themselves. This calculation is shown explictly in some of our earlier proofs (an ex-

ample can be found in Theorem 6.2.3), but in later proofs, we will merely show the

result of pre-composing with an injection without explicity showing the calculations

that reduced the co-ends to their constituent objects.

The reason for defining this composition object for mere one-sided modules is

that we wish to show that this co-end respects tensoring. This proposition would be

impossible to state if we looked at bimodules, as tensoring a bimodule on one side

does not continue to give a bimodule (in the non-symmetric case).

Lemma 6.1.5. 1. If Q is a left (Y,A) module, then for all v ∈ V , we can make

another left (Y,A) module v ⊗ Q which has module objects (v ⊗ Q)(y, a) =

v ⊗Q(y, a).

2. Suppose that ⊗ preserves colimits in each variable. Then if Q is as above, and

P is a right (A,X) module, we have for all v ∈ V ,

v ⊗
∫ a

Q(y, a)⊗ P (a, x) ∼=
∫ a

(v ⊗Q)(y, a)⊗ P (a, x)

A similar result holds with left replaced by right and vice versa.

Proof. 1. If we define the left action of v ⊗Q as

(v ⊗Q(y, a))⊗ A(a, a′) v ⊗Q(y, a′)
(v⊗Q)L //_______(v ⊗Q(y, a))⊗ A(a, a′)

v ⊗ (Q(y, a)⊗ A(a, a′))

a

$$HHHHHHHHHHHHHHH

v ⊗ (Q(y, a)⊗ A(a, a′))

v ⊗Q(y, a′)

v⊗QL

::vvvvvvvvvvvvvvv

then it is easy to check that this action is associative and unital.
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2. Since ⊗ preserves colimits, the result follows.

With this lemma, it is easy to define the actions of the composite module QP .

By above,

Y(y′, y)⊗
∫ a

Q(y, a)⊗ P (a, x) =

∫ a

Y(y′, y)⊗Q(y, a)⊗ P (a, x),

so we can define the left action of QP , for a ∈ A, by

Y(y′, y)⊗Q(y, a)⊗ P (a, x)
QL⊗1 //Q(y′, y)⊗ P (a, x)

ia //
∫ a

Q(y′, a)⊗ P (a, x),

and similarly for the right action of QP .

The identity profunctor X
IX //X has module the hom-objects of X, IX(y, x) =

X(y, x), with left and right action given by X-composition.

Of course, to do this, we need V to have colimits, and ⊗ to preserve them.

Accordingly, we make the following definition:

Definition Say that a monoidal category V is cocomplete if it has all colimits, and

⊗ preserves these colimits in each variable.

We have described V-profunctors, their morphisms, their compositions, and their

identities. We can now bring this all together and show that, with vertical and

horizontal compositions of V-forms, these form a bicategory. We will give the main

ideas of the proof, without going into all the details, as the result is well-established

in the literature (see, for example, Street [39]).

Theorem 6.1.6. For V cocomplete, there is a bicategory with objects V-categories,

arrows V-profunctors, and 2-cells V-forms.

Proof. The objects of V-prof are V-categories. For X,Y V-categories, define the

category V-prof(X,Y) to have objects V-profunctors and arrows V-forms. The
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composition (vertical composition) of V-forms

X Y

P

��
�� ψ1

X YQ //X Y

R

BB

�� ψ2

is given by simple composition:

(ψ2 ◦ ψ1)(y, x) = ψ2(y, x) ◦ ψ1(y, x).

Simimlarly, the identity V-form, for a V-profunctor X P //X, is simply the identity:

1P (x′, x) := 1P (x′,x)

Because the composition and identities are simply composition and identities in

V, it follows immediately that V-prof(X,Y) is a category.

We now need to give the horizontal composition functors

V-prof(X,Y)×V-prof(Y,Z) C //V-prof(X,Z)

Above, we gave the action of this functor on objects, the co-end composition. We still

need to give the action of this functor on arrows; that is, the horizontal composition

of V-forms

X Y

P1

##
X Y

P2

;;�� ψ1 Y Z

Q1

##
Y Z

Q2

;;�� ψ2

So, we need to define arrows∫ y

Q1(z, y)⊗ P1(y, x)
ψ2∗ψ1 //

∫ y

Q2(z, y)⊗ P2(y, x)

At a component y, define the arrows by the composite

Q1(z, y)⊗ P1(y, x)
ψ2⊗ψ1 //Q2(z, y)⊗ P2(y, x)

iy //
∫ y

Q2(z, y)⊗ P2(y, x)
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These maps satisfy the universal property for the co-end due to the V-form axioms

for ψ1 and ψ2.

Checking that this functor preserves identities is straightforward, since the vertical

identities are simply identity morphisms in V. Checking that the functor preserves

composition is the middle-4 interchange property: given V-forms

X Y

P1

��
�� ψ1

X YQ1
//X Y

R1

BB

�� ψ3

Y Z

P2

��
�� ψ2

Y ZQ2
//Y Z

R2

BB

�� ψ4

we need to show that

(ψ4 ∗ ψ3) ◦ (ψ2 ∗ ψ1) = (ψ4 ◦ ψ2) ∗ (ψ3 ◦ ψ1)

At x ∈ X, y ∈ Y, z ∈ Y, the left composite and right composites are

(ψ4 ∗ ψ3)(z, x) ◦ (ψ2)(ψ1)(z, x) and (ψ4 ◦ ψ2) ∗ (ψ3 ◦ ψ1)(z, x)

respectively. By pre-composing with an injection, this reduces to:

Q2(z, y)⊗Q1(y, x) R2(z, y)⊗R1(y, x)
ψ4⊗ψ3

//

P2(z, y)⊗ P1(y, x)

Q2(z, y)⊗Q1(y, x)

ψ2⊗ψ1

��

P2(z, y)⊗ P1(y, x)

R2(z, y)⊗R1(y, x)

ψ4ψ2⊗ψ3ψ1

''OOOOOOOOOOOOOOOOOOO

This itself is nothing more than bifunctoriality of ⊗.

To check the associativity of the composition, we need to show that given V-

profunctors

W P //X
Q //Y R // Z

we need (RQ)P ∼= R(QP ). At z ∈ Z, w ∈W, these have actions

(RQ)P (z, w) =

∫ x [∫ y

R(z, y)⊗Q(y, x)

]
⊗ P (x,w)
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and

R(QP )(z, w) =

∫ y

R(z, y)⊗
[∫ x

Q(y, x)⊗ P (x,w)

]
To do this, first apply our earlier result about tensoring and co-ends (Proposition

6.1.5), apply the Fubini theorem to switch the co-ends, then apply the associator a.

To check the unit ismorphisms, it suffices to show that P (y, x′) satisfies the uni-

versal property of (FIX)(y, x′) =
∫ x

F (y, x)⊗X(x, x′). Indeed, the required injection

maps are the left actions of F , FL : F (y, x)⊗X(x, x′) //F (y, x′), and the required

universal equations are then exactly the associativity requirement for FL. Checking

that FL satisfies the requirements for a V -form is nothing more than applying the as-

sociativity and mutual associativity axioms for FL and FR. Thus FL witesses the fact

that FIX ∼= F , showing that the hom functors are indeed the identity for profunctor

composition.

6.2 Change of Base as a Lax Functor

We now need to define (−)# on monoidal functors V N //W, so that we get a lax

functor V-prof
N# //W-prof.

Since the objects of V-prof are the same as those of V-cat, we define N# on

objects just as N∗ was defined on objects (see Proposition 4.2.1). In particular, the

hom-objects of N#X are (N#X)(x, y) := N(X(x, y)).

Now, given X P //Y ∈ V-prof, we need to define N#X
N#P //N#Y ∈W-prof.

Since this will again be a profunctor, we need to give a module, as well as a left and

right action. Begin by defining the modules as

(N#P )(y, x) := N(P (y, x))
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Then define the left action (the dotted arrow) as the composite of the two solid arrows:

NY(y′, y)⊗NF (y, x) NF (y′, x)
(N#F )L //________NY(y′, y)⊗NF (y, x)

N(Y(y′, y′)⊗ F (y, x))

Ñ

$$HHHHHHHHHHHHHHH

N(Y(y′, y′)⊗ F (y, x))

NF (y′, x)

N(FL)

::vvvvvvvvvvvvvvv

Similarly, define the right action (the dotted arrow) as the composite of the two

solid arrows:

NP (y, x)⊗NX(x, x′) NP (y′, x)
(N#P )R //________NP (y, x)⊗NX(x, x′)

N(P (y, x)⊗X(x, x′))

Ñ

$$HHHHHHHHHHHHHHH

N(P (y, x)⊗X(x, x′))

NP (y′, x)

N(PR)

::vvvvvvvvvvvvvvv

In other words, recalling from Chapter 4 the idea of applying a functor monoidally,

the actions of N#P are nothing more than applying N monoidally to each of P ’s

actions. That is, we have defined

(N#P )L := NPL and (N#P )r := NPR

As a result, the proof that N#P is a W-profunctor simply requires applying the early

lemmas of Chapter 4.

Proposition 6.2.1. With the components described above, N#P becomes a W-profunctor.

Proof. The identity axioms follow from Lemma 4.1.1, while the three associativity

axioms all follow from Lemma 4.1.3.

Defining N# on a V-form P
α //Q is similar.

Proposition 6.2.2. Suppose that a V-profunctor morphism ψ has components

P (y, x)
ψ(y,x) //Q(y, x).

Then

NP (y, x)
Nψ(y,x) //NQ(y, x)

defines a W-profunctor morphism N#ψ.
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Proof. The axioms for a W-profunctor morphism both follow from Lemma 4.1.2.

We would now like to see how N# respects composition and identities. To look

at composition, we will start with X P //A,A
Q //Y, and take x ∈ X, y ∈ Y. We

then have

(N#Q)(N#P )(y, x) =

∫ a∈A
NQ(y, a)⊗NP (a, x)

and

N#(QP )(y, x) = N

(∫ a∈A
Q(y, a)⊗ P (a, x)

)
Obviously, in general these are not isomorphic. However, we can get an arrow in

one direction. By the universal property of co-ends, it suffices to find an arrow out

of the first co-end into the second. We can find such a comparison arrow, via the

following composite:

NQ(y, a)⊗NP (a, x) N
(∫ a∈A

Q(y, a)⊗ P (a, x)
)

//____NQ(y, a)⊗NP (a, x)

N(Q(y, a)⊗ P (a, x))

Ñ
$$HHHHHHHHHHHHHHH

N(Q(y, a)⊗ P (a, x))

N
(∫ a∈A

Q(y, a)⊗ P (a, x)
)

N(ia)

::vvvvvvvvvvvvv

Since this is merely N applied monoidally to ia, the universal property follows from

Lemma 4.1.3, using the universal property of ia as the original commuting diagram.

We have defined N# on objects, arrows, and 2-cells. Now, we need to describe how

it acts on the composites and identities of these morphisms. As we have just seen,

it only respects composition up to a comparison arrow.. However, as we shall see, it

does preserves identities exactly, so N# is what is known as a normal lax functor.

Theorem 6.2.3. Suppose that (V,⊗, I) N // (W, •, J) is a monoidal functor. Then

with actions on arrows and 2-cells as above, V-prof
N# //W-prof has comparison

arrows that make it into a normal lax functor.

Proof. We will follow the definition of lax functor given in Leinster [34]. We have

described the action of N# on profunctors and their morphisms, so we have given, for

each X,Y ∈ V-prof, the components of a map

V-prof(X,Y)
N# //W-prof(N#X, N#Y)



87

The first thing we need to check is that this defines a functor; in other words, we need

to show that N# preserves vertical composition and identities. Suppose that we have

V-profunctor morphisms

X Y

P

��
�� ψ1

X YQ //X Y

R

BB

�� ψ2

We need to show that N#(ψ2 ◦ψ1) = N#ψ2 ◦N#ψ1. Recall that vertical composition

of profunctor morphisms is simply given by composition: (ψ2 ◦ ψ1)(y, x) = ψ2(y, x) ◦
ψ1(y, x). Thus, N# preserves vertical composition since N is a functor:

N#(ψ2 ◦ ψ1)(y, x) = N((ψ2 ◦ ψ1)(y, x))

= N(ψ2(y, x) ◦ ψ1(y, x))

= Nψ2(y, x) ◦Nψ1(y, x)

= (N#ψ2 ◦N#ψ1)(y, x)

Similarly, vertical identities are simply identity morphisms, so again they are pre-

served since N is a functor.

Above, we defined the comparison arrows ρ for horizontal composition. We need

to show that these form the components of a natural transformation

V-prof(X,Z) W-prof(N#X, N#Z)
N#

//

V-prof(X,Y)×V-prof(Y,Z)

V-prof(X,Z)

C

��

V-prof(X,Y)×V-prof(Y,Z) W-prof(N#X, N#Y)×W-prof(N#Y, N#Z)
N#×N#//W-prof(N#X, N#Y)×W-prof(N#Y, N#Z)

W-prof(N#X, N#Z)

C

��
�� ρ

To check naturality, we need to check that given the following profunctor morphisms:

X Y

P1

##
X Y

P2

;;�� ψ1 Y Z

Q1

##
Y Z

Q2

;;�� ψ2
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and x ∈ X, y ∈ Y, z ∈ Z, the following square must commute:

∫ y
NQ2(z, y) •NQ1(y, x) N(

∫ y
Q2(z, y)⊗Q1(y, x))ρ

//

∫ y
NP2(z, y) •NP1(y, x)

∫ y
NQ2(z, y) •NQ1(y, x)

∫ y Nψ2•Nψ1

��

∫ y
NP2(z, y) •NP1(y, x) N(

∫ y
P2(z, y)⊗ P1(y, x))

ρ // N(
∫ y
P2(z, y)⊗ P1(y, x))

N(
∫ y
Q2(z, y)⊗Q1(y, x))

N(
∫ y ψ2⊗ψ1)

��

By pre-composing with an injection at y, we can expand the above diagram to (note

that some of the instances of · are ⊗, and others are •):

∫ y
NQ2(z, y) ·NP1(y, x) N

∫ y
Q2(z, y) · P1(y, x)ρ

//

∫ y
NP2(z, y) ·NP1(y, x)

∫ y
NQ2(z, y) ·NP1(y, x)

∫
Nψ1·Nψ2

��

∫ y
NP2(z, y) ·NP1(y, x) N

∫ y
P2(z, y) · P1(y, x)

ρ // N
∫ y
P2(z, y) · P1(y, x)

N
∫ y
Q2(z, y) · P1(y, x)

N(
∫
ψ2·ψ1)

��

NP2(z, y) ·NP1(y, x) N(P2(z, y) · P1(y, x))Ñ // N(P2(z, y) · P1(y, x)) N(Q2(z,Gy) ·Q1(Gy, x))
N(ψ2·ψ1) //NP2(z, y) ·NP1(y, x)

NQ2(z,Gy) ·NQ1(Gy, x)

Nψ2·Nψ1

��

NP2(z, y) ·NP1(y, x)

∫ y
NP2(z, y) ·NP1(y, x)

iy

$$JJJJJJJJJJJJJJJ
N(P2(z, y) · P1(y, x))

N
∫ y
P2(z, y) · P1(y, x)

N(iy)

&&MMMMMMMMMMMMMMMM

NQ2(z,Gy) ·NQ1(Gy, x)

∫ y
NQ2(z, y) ·NP1(y, x)

iGy

$$JJJJJJJJJJJJJJJ
NQ2(z,Gy) ·NQ1(Gy, x)

N(Q2(z,Gy) ·Q1(Gy, x))

Ñ

��
N(Q2(z,Gy) ·Q1(Gy, x))

N
∫ y
Q2(z, y) · P1(y, x)

N(iGy)

::

N(Q2(z,Gy) ·Q1(Gy, x))

N
∫ y
Q2(z, y) · P1(y, x)

N(iGy)

~~

Note that the expansion on the right is actually N of the map out of the co-end. By

expanding this, we are reduced to checking that the outer diagram commutes. This

does commute by naturality of Ñ .

For V-profunctors

W P //X
Q //Y R // Z

the hexagon coherence of N# at a given y ∈ Y, x ∈ X reduces to the hexagon
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coherence for Ñ :

N(R(z, y)⊗Q(y, x)) •NP (x,w) NR(z, y) •N(Q(y, x)⊗ P (x,w))

(NR(z, y) •NQ(y, x)) •NP (x,w)

N(R(z, y)⊗Q(y, x)) •NP (x,w)

Ñ⊗1

��

(NR(z, y) •NQ(y, x)) •NP (x,w) NR(z, y) • (NQ(y, x) •NP (x,w))a // NR(z, y) • (NQ(y, x) •NP (x,w))

NR(z, y) •N(Q(y, x)⊗ P (x,w))

1⊗Ñ

��

N((R(z, y)⊗Q(y, x))⊗R(x,w) N(R(z, y)⊗ (Q(y, x)⊗R(x,w))a
//

N(R(z, y)⊗Q(y, x)) •NP (x,w)

N((R(z, y)⊗Q(y, x))⊗R(x,w)

Ñ

��

N(R(z, y)⊗Q(y, x)) •NP (x,w) NR(z, y) •N(Q(y, x)⊗ P (x,w))NR(z, y) •N(Q(y, x)⊗ P (x,w))

N(R(z, y)⊗ (Q(y, x)⊗R(x,w))

Ñ

��

For the normality, we wish to show that for A ∈ V-prof, 1N#(A) = N(1A). Re-

call that the identity profunctor is simply the hom of the category, so 1N#(A)(a, b) =

N(A(a, b)). However, N applied to a profunctor is merely N of the module, so

(N(1A))(a, b) = N(A(a, b)) also. In both cases, the actions are given by composition

in N(A) - namely, an application of Ñ followed by N of composition in A. Thus the

profunctors are, in fact, equal, and so N# is normal.

6.3 The Bicategorical Change of Base ()#

Given a monoidal functor V N //W, we have described a lax functor V-prof
N# //W-prof.

However, this is only part of the change-of-base: we also need to know what to send

a monoidal natural transformation N α //M to. Then, just as we had

moncat
N∗ // 2− cat,

where V is sent to V-cat, we would also like to have

cmoncat
N∗ // bicat,

where V is sent to V-prof, and cmoncat is co-complete monoidal categories (we

need co-completeness to get profunctor composition).
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We need to know what to send monoidal natural transformations to. Recall that

lax transformations are problematic as they do not have whisker composites with pro-

functors. Thus, instead of sending a monoidal natural transformation to a lax natural

transformation, we will define α# as a different type of cell between lax functors: a

module.

To begin, we will show how ()# can be described as a functor.

6.3.1 The Change of Base ()# as a Functor

While bicategories, lax functors, and lax natural transformations do not form a 2-

category, bicategories and lax functors do form a category (Benabou [3]). It thus

makes sense to ask whether ()# is a functor, and indeed it is.

Proposition 6.3.1. Let bicat be the category with objects bicategories and arrows

lax functors. Then

cmoncat
()# // bicat

is a functor.

Proof. We need to show that given monoidal functors V N //V′ M //V′′, (MN)# =

M#N#; in particular, we then need to check that the two are equal on 0-cells, on

1-cells, and on 2-cells.

• 0-Cells. Since M#, N# act on objects as M∗, N∗ do, given a V-category X, the

V-categories (MN)#X and M#N#X are equal, with both having hom objects

MN(X(x, y)).

• 1-Cells. Let F : X //Y be a V-profunctor. It is easy to see that the modules

(MN)#F and (M#N#)F are the same, with both being MN(F (y, x)).

Now, the left action of (MN)#F consists of the solid lines in the diagram below,

with the dotted lines the expansion of the diagonal arrow:
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M(NY (y′, y)⊗NF (y, x)) MN(Y (y′, y)⊗ F (y, x)
M(Ñ)

//_____

MNY (y′, y)⊗MNF (y, x)

M(NY (y′, y)⊗NF (y, x))

M̃

���
�
�
�
�
�
�
�

MNY (y′, y)⊗MNF (y, x) MNF (y′, x)
((MN)#F )L //MNF (y′, x)

MN(Y (y′, y)⊗ F (y, x)

OO

(MN)(FL)

MNY (y′, y)⊗MNF (y, x)

MN(Y (y′, y)⊗ F (y, x)

M̃N

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

The left action of (M#N#)F is the solid lines in the next diagram, with the

dotted lines the expansion of the diagonal arrow:

M(NY (y′, y)⊗NF (y, x)) MN(Y (y′, y)⊗ F (y, x)
M(Ñ)

//_____

MNY (y′, y)⊗MNF (y, x)

M(NY (y′, y)⊗NF (y, x))

M̃

��

MNY (y′, y)⊗MNF (y, x) MNF (y′, x)
((M#N#)F )L //MNF (y′, x)

MN(Y (y′, y)⊗ F (y, x)

OO

M(N(FL))

�
�
�
�
�
�
�
�

M(NY (y′, y)⊗NF (y, x))

MNF (y′, x)

M((N#F )L)

77oooooooooooooooooooooooooooooooo

Comparing the two, one can see that the left actions are equal.

In a similar fashion, one can show that the right actions are equal as well.

• 2-Cells. Given a V-form α : F //G, it is easy to see that

((MN)#α)(y, x) = MN(α(y, x)) = (M#N#α)(y, x)

so that they agree on 2-cells.

Showing that ()# preserves identities is entirely straightforward.

6.3.2 Modules

As we mentioned earlier, lax natural transformations are problematic, in that they

cannot be composed. In addressing this problem, two groups came up with a simi-

lar solution: “modules” between lax functors. The version described by Kelly et al.
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[28] is in a slightly more general context, but when restricted to bicategories and lax

functors, is the same as the idea presented by Cockett et al. [11].

We will first define this concept, then show how α# can be defined as a module.

Definition Given two lax functors A F,G // B, a module F
M // G consists of a

family of functors, parametrized by the objects of A and B:

A(a, b)
M(a,b) // B(Fa,Gb)

together with a right action:

A(a′, b) B(Fa′, Gb)
M

//

A(a′, a)×A(a, b)

A(a′, b)

C

��

A(a′, a)×A(a, b) B(Fa′, Fa)× B(Fa,Gb)
F×M // B(Fa′, Fa)× B(Fa,Gb)

B(Fa′, Gb)

C

��

M̃L
��

and a left action:

A(a, b′) B(Fa,Gb′)
M

//

A(a, b)×A(b, b′)

A(a, b′)

C

��

A(a, b)×A(b, b′) B(Fa,Gb)× B(Gb,Gb′)
M×G // B(Fa,Gb)× B(Gb,Gb′)

B(Fa,Gb′)

C

��

M̃R
��

These actions must satisfy left and right associativity axioms:

F ×M M
M̃L

//

F × F ×M

F ×M

F̃×M
��

F × F ×M F ×MF×M̃L // F ×M

M

M̃L

��
=

M ×G M
M̃r

//

M ×G×G

M ×G

M×G̃
��

M ×G×G M ×GM̃R×G //M ×G

M

M̃R

��
=

(where F̃ and G̃ are F and G’s composition comparisons), left and right unit axioms:

F ×M M
M̃L

//

1×M

F ×M

F0×M

��

1×M

M

1

&&NNNNNNNNNNNNNNN

=
M ×G M

M̃R

//

M × 1

M ×G

M×G0

��

M × 1

M

1

&&NNNNNNNNNNNNNNN

=
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(where F0 and G0 are F and G’s unit comparisons), and mixed associativity:

M ×G M
M̃R

//

F ×M ×G

M ×G

M̃L×G
��

F ×M ×G F ×MF×M̃R // F ×M

M

M̃L

��
=

Example 6.3.2. Suppose that the bicategories each have only a single object. Then

the bicategories A and B are monoidal categories (V,⊗, I), (W, •, J), and lax func-

tors F,G between them are monoidal functors. In this case, a module between the

monoidal functors F,G reduces to a functor V M //W, together with actions

FA1 •MA2
M̃ //M(A1 ⊗ A2) and MA1 •GA2

M̃ //M(A1 ⊗ A2)

As Jeff Egger has noted, one-sided versions of these modules have appeared implicitly

in many contexts; in particular, in the work of Kock on monoidal monads [29, 30].

6.3.3 α# as a Module

We will now show that given a monoidal natural transformation N
α //M , we can

form a module N#

α# //M#. The first thing we need is a family of functors

V-prof(X,Y)
α#(X,Y)

//W-prof(N#X,M#Y)

Thus, given a X P //Y ∈ V-prof, we need N#X
α#P //M#Y ∈W-prof. Define

(α#P )(y, x) := MP (y, x)

We also need left and right actions. In contrast to earlier definitions of profunctors,

the definitions of the two actions are quite different. The left action is given by:

MY(y′, y)⊗MF (y′, x) MF (y′, x)//________MY(y′, y)⊗MF (y′, x)

M(Y(y′y)⊗ F (y, x))

M̃
$$HHHHHHHHHHHHHHH

M(Y(y′y)⊗ F (y, x))

MF (y′, x)

M(FL)

::vvvvvvvvvvvvvvv



94

while the right action is

MF (y, x)⊗MX(x, x′) M(F (y, x)⊗X(x, x′))
M̃

//

MF (y, x)⊗NX(x, x′)

MF (y, x)⊗MX(x, x′)

1⊗α

��

MF (y, x)⊗NX(x, x′) MF (y, x′)//________ MF (y, x′)

M(F (y, x)⊗X(x, x′))

OO

M(FR)

Lemma 6.3.3. With the components described above, α#P becomes a W-profunctor.

Proof. Since (α#P )L = NPL, the left unit and associativity axioms follow from Lem-

mas 4.1.1 and 4.1.3, respectively. Noting that (α#P )R is NPL pre-composed with

α, one can show the other axioms by again using Lemmas 4.1.1 and 4.1.3, using the

additional fact that α is a monoidal natural transformation.

For example, the right unit axiom is

MF (y, x)⊗N(I) MF (y, x)⊗M(I)
1⊗α

//

MF (y, x)⊗ J

MF (y, x)⊗N(I)

1⊗N0

��

MF (y, x)⊗ J

MF (y, x)⊗M(I)

1⊗M0

((RRRRRRRRRRRRRRRRRRR

MF (y, x)⊗NX(x, x) MF (y, x)⊗MX(x, x)
1⊗α
//

MF (y, x)⊗N(I)

MF (y, x)⊗NX(x, x)

1⊗N(i)

��

MF (y, x)⊗N(I) MF (y, x)⊗M(I)//MF (y, x)⊗M(I)

MF (y, x)⊗MX(x, x)

1⊗M(i)

��
MF (y, x)⊗MX(x, x) M(F (y, x)⊗X(x, x))

M̃

//

MF (y, x)⊗M(I)

MF (y, x)⊗MX(x, x)
��

MF (y, x)⊗M(I) M(F (y, x)⊗ I)M̃ //M(F (y, x)⊗ I)

M(F (y, x)⊗X(x, x))

M(1⊗i)

��
M(F (y, x)⊗X(x, x)) MF (y, x)

M(FR)
//

M(F (y, x)⊗ I)

M(F (y, x)⊗X(x, x))
��

M(F (y, x)⊗ I)

MF (y, x)

M(l)

((RRRRRRRRRRRRRRRRRRR

MF (y, x)⊗ J

MF (y, x)

l

��

The top left triangle is monoidal naturality of α, the square below it by naturality of

α, and the rest of the diagram follows by Lemma 4.1.1.

We have defined α# on profunctors; now we need to define it on their morphisms.

Suppose we have a V-form P
σ //Q. We need components

(α#F )(y, x)
α#σ // (α#G)(y, x)

Define them by

MF (y, x)
Mσ(y,x) //MG(y, x)
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Lemma 6.3.4. With the components as above, α#σ becomes a W-form.

Proof. The first axiom for a W-form follows directly from Lemma 4.1.2. The second

requires the commutativity of

MF (y, x) •MX(x′x) MG(y, x) •MX(x′, x)Mσ•1 //

MF (y, x) •NX(x′, x)

MF (y, x) •MX(x′x)

1•α

��

MF (y, x) •NX(x′, x) MG(y, x) •NX(x′, x)Mσ•1 //MG(y, x) •NX(x′, x)

MG(y, x) •MX(x′, x)

1•α

��

MF (y, x) MG(y, x)
Mσ

//

MF (y, x) •MX(x′x)

MF (y, x)

MFR

��

MF (y, x) •MX(x′x) MG(y, x) •MX(x′, x)Mσ•1 //MG(y, x) •MX(x′, x)

MG(y, x)

MGR

��

The top diagram commutes by naturality of α, the bottom by Lemma 4.1.2.

Now that we have defined how α# acts on profunctors and their morphisms, we

need to check it defines a functor.

Lemma 6.3.5. With components as described above,

V-prof(X,Y)
α#(X,Y)

//W-prof(N#X,M#Y)

is a functor.

Proof. Recall that the identity V-form is given by

1P (y, x) := 1P (y,x)

while composition is

σ2σ1(y, x) := σ2(y, x) ◦ σ1(y, x)

Since we defined

α#σ(y, x) := Mσ(y, x)

it follows that α#(X, Y ) is a functor since M is.

Of course, in addition to the family of functors, we also need to define the left and

right actions for α# itself. That is, we would need actions:
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V-prof(X ′, Y ) W-prof(N#X
′,M#Y )α#

//

V-prof(X ′, X)×V-prof(X, Y )

V-prof(X ′, Y )

C

��

V-prof(X ′, X)×V-prof(X, Y ) W-prof(N#X
′, N#X)×V-prof(N#X,M#Y )

N#×α# //W-prof(N#X
′, N#X)×V-prof(N#X,M#Y )

W-prof(N#X
′,M#Y )

C

��

(α#)L

��

V-prof(X, Y ′) W-prof(N#X,M#Y
′)α#

//

V-prof(X, Y )×V-prof(Y, Y ′)

V-prof(X, Y ′)

C

��

V-prof(X, Y )×V-prof(Y, Y ′) W-prof(N#X,M#Y )×V-prof(M#Y,M#Y
′)

α#×M# //W-prof(N#X,M#Y )×V-prof(M#Y,M#Y
′)

W-prof(N#X,M#Y
′)

C

��

(α#)R

��

To define the right action, let us begin by simplifying what the two composites

look like, for P ∈ V-prof(X′,X), Q ∈ V-prof(X,Y). The top right composite

reduces to the co-end ∫ a∈X′

MQ(y, a) •NP (a, x)

while the bottom left composite is

M

[∫ a∈X′

Q(y, a)⊗ P (a, x)

]

Thus, we can define an arrow from the first to the second, via the composite

MG(y, a) •MF (a, x) M(G(y, a)⊗ F (a, x))
M̃

//

MG(y, a) •NF (a, x)

MG(y, a) •MF (a, x)

1•σ

��

MG(y, a) •NF (a, x) M
(∫ a∈X

G(y, a)⊗ F (a, x)
)

//_____ M
(∫ a∈X

G(y, a)⊗ F (a, x)
)

M(G(y, a)⊗ F (a, x))

OO

M(ia)

For the left action, the top right composite is∫ b∈Y
MQ(y, b) •MF (b, x)

while the bottom left composite is

M

(∫ b∈Y
Q(y, b)⊗ F (b, x)

)
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In this case, the action arrow is then merely

MQ(y, b) •MP (b, x) M̃ //M(Q(y, b)⊗P (b, x))
M(ib) //M

(∫ b∈Y
Q(y, b)⊗ F (b, x)

)

Before we show that these are actions for α# we need to show that these actions

both define V-forms.

Lemma 6.3.6. With components as described above, both (α#)L and (α#)R define

V-forms.

Proof. First, notice that the right action, (α#)R, is simply the comparison V-form

(M∗Q)(M∗P ) //M∗(QP ). Since we already know this is a V-form (see remarks

before Theorem 6.2.3), it follows that (α#)R is also a V-form.

Showing that the left action (α#)L is a V-form requires a bit more work, because

of its use of α. By precomposing with an injection, the compatibility with left action

axiom for (α#)L reduces to

MQ(y′, x) ·MP (x, x′) M(Q(y′, x) · P (x, x′)
M̃

//

MQ(y′, x) ·NP (x, x′)

MQ(y′, x) ·MP (x, x′)

1·α
��

MQ(y′, x) ·NP (x, x′) M(Y(y′, y) ·Q(y, x) · P (x, x′))M(Y(y′, y) ·Q(y, x) · P (x, x′))

M(Q(y′, x) · P (x, x′)

M(QL·1)

��

M(Y(y′, y) ·Q(y, x)) ·NP (x, x′)

MQ(y′, x) ·NP (x, x′)

MQL·1

��

MY(y′, y) ·M(Q(y, x) · P (x, x′))

M(Y(y′, y) ·Q(y, x) · P (x, x′))

M̃

��

M(Y(y′, y) ·Q(y, x)) ·NP (x, x′) MY(y′, y) ·M(Q(y, x) · P (x, x′))

MY(y′, y) ·MQ(y, x) ·NP (x, x′)

M(Y(y′, y) ·Q(y, x)) ·NP (x, x′)

M̃ ·1
��

MY(y′, y) ·MQ(y, x) ·NP (x, x′) MY(y′, y) ·MQ(y, x) ·MP (x, x′)1·1·α //MY(y′, y) ·MQ(y, x) ·MP (x, x′)

MY(y′, y) ·M(Q(y, x) · P (x, x′))

1·M̃
��

M(Y(y′, y) ·Q(y, x)) ·MP (x, x′)

MQ(y′, x) ·MP (x, x′)

M(QL)·1

zzuuuuuuuuuuuuuuuuuuuuuuu
M(Y(y′, y) ·Q(y, x)) ·MP (x, x′)

M(Y(y′, y) ·Q(y, x) · P (x, x′))

M̃

**UUUUUUUUUUUUU

M(Y(y′, y) ·Q(y, x)) ·NP (x, x′)

M(Y(y′, y) ·Q(y, x)) ·MP (x, x′)

1·α
**UUUUUUUUUUUUU

MY(y′, y) ·MQ(y, x) ·MP (x, x′)

M(Y(y′, y) ·Q(y, x)) ·MP (x, x′)

M̃ ·1

��

The top and left regions commute by bifunctoriality of tensor, the top right by co-

herence of M , and the bottom right by naturality of M̃ . After precomposing with an
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injection, the compatibility with right action axiom for (α#)L reduces to

MQ(y, x) ·MP (x, x′′) M(Q(y, x) · P (x, x′) ·X(x′, x′′))

MQ(y, x) ·NP (x, x′′)

MQ(y, x) ·MP (x, x′′)

1·α

��

MQ(y, x) ·NP (x, x′′) M(Q(y, x) · P (x, x′)) ·MX(x′, x′′)M(Q(y, x) · P (x, x′)) ·MX(x′, x′′)

M(Q(y, x) · P (x, x′) ·X(x′, x′′))

M̃

��
MQ(y, x) ·MP (x, x′′)

M(Q(y, x) · P (x, x′′))

M̃

))RRRRRRRRRRRRRRRRRR
M(Q(y, x) · P (x, x′) ·X(x′, x′′))

M(Q(y, x) · P (x, x′′))

M(1·PR)

uullllllllllllllllll

MQ(y, x) ·M(P (x, x′) ·X(x′, x′′))

MQ(y, x) ·MP (x, x′′)
1·M(PR)ttiiiiiiiiiiiiiii

MQ(y, x) ·M(P (x, x′) ·X(x′, x′′))

M(Q(y, x) · P (x, x′) ·X(x′, x′′))
M̃ **UUUUUUUUUUUUUUU

MQ(y, x) ·NP (x, x′′) M(Q(y, x) · P (x, x′)) ·MX(x′, x′′)

MQ(y, x) ·N(P (x, x′) ·X(x′, x′′))

MQ(y, x) ·NP (x, x′′)

1·N(PR)

��

MQ(y, x) ·N(P (x, x′) ·X(x′, x′′)) M(Q(y, x) · P (x, x′)) ·NX(x′, x′′)M(Q(y, x) · P (x, x′)) ·NX(x′, x′′)

M(Q(y, x) · P (x, x′)) ·MX(x′, x′′)

1·α

��

MQ(y, x) ·N(P (x, x′) ·X(x′, x′′)) M(Q(y, x) · P (x, x′)) ·NX(x′, x′′)

MQ(y, x) ·NP (x, x′) ·NX(x′, x′′)

MQ(y, x) ·N(P (x, x′) ·X(x′, x′′))

1·Ñ
��

MQ(y, x) ·NP (x, x′) ·NX(x′, x′′) MQ(y, x) ·MP (x, x′) ·NX(x′x′′)1·α·1 //MQ(y, x) ·MP (x, x′) ·NX(x′x′′)

M(Q(y, x) · P (x, x′)) ·NX(x′, x′′)

M̃ ·1
��

MQ(y, x) ·MP (x, x′) ·NX(x′x′′)

MQ(y, x) ·MP (x, x′) ·MX(x′, x′′)

1·1·α

��
MQ(y, x) ·MP (x, x′) ·MX(x′, x′′)

M(Q(y, x) · P (x, x′)) ·MX(x′, x′′)

M̃ ·1
**UUUUUUUUUUUUUUU

MQ(y, x) ·MP (x, x′) ·MX(x′, x′′)

MQ(y, x) ·M(P (x, x′) ·X(x′, x′′))

1·M̃

��

MQ(y, x) ·N(P (x, x′) ·X(x′, x′′))

MQ(y, x) ·M(P (x, x′) ·X(x′, x′′))

1·α

!!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

MQ(y, x) ·NP (x, x′) ·NX(x′, x′′)

MQ(y, x) ·MP (x, x′) ·MX(x′, x′′)

1·α·α

��

The top region commutes by bifunctoriality of tensor, the top left region by monoidal

naturality of α, the region below it by naturality of α, the top right region by bifunc-

toriality of tensor, the region below it by coherence of M , and the bottom region by

naturality of M̃ . Thus (α#)L satisfies both axioms for a V-form.

We can now bring everything together and show that α# is a module.

Theorem 6.3.7. Suppose that V
N,M //W are monoidal functors, with N α //M a

monoidal natural transformation between them. Then, with the components described

above, α# defines a module between the lax functors N# and M#.

Proof. We have shown that the components of our putative module α# are well-

defined. It remains to show the five axioms of left and right associativity, left and

right units, and mixed associativity. We will show the two most complicated of these

(mixed associativity and left associativity); the remaining three are easy to check.
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For the mixed associativity, we need to show that

α# ×M# α#
(α#)R

//

N# × α# ×M#

α# ×M#

(α#)L×M#

��

N# × α# ×M# N# × α#

N#×(α#)R // N# × α#

α#

(α#)L

��

=

To expand this, we will have to abbreviate our notation. We will write (W,X) for

V-prof(W,X), and N,M,α for N#,M#, α#. Then expanding the above, this means

that for V-categories W′,W,X,X′, this composite of V-forms:

(W′,X)× (X,X′) (NW′, NX)× (NX,MX′)
α×M

//

(W′,W)× (W,X)× (X,X′)

(W′,X)× (X,X′)

C×1

��

(W′,W)× (W,X)× (X,X′) (NW′, NW)× (NW,MX)× (MX,MX′)
N×α×M // (NW′, NW)× (NW,MX)× (MX,MX′)

(NW′, NX)× (NX,MX′)

C×1

��

�� αL ×M

(W′,X′) (NW′,MX′)α
//

(W′,X)× (X,X′)

(W′,X′)

C

��

(W′,X)× (X,X′) (NW′, NX)× (NX,MX′)// (NW′, NX)× (NX,MX′)

(NW′,MX′)

C

��

�� αR

must be equal to this composite of V-forms:

(W′,W)× (W,X′) (NW′, NW)× (NW,MX′)
N×α

//

(W′,W)× (W,X)× (X,X′)

(W′,W)× (W,X′)

1×C

��

(W′,W)× (W,X)× (X,X′) (NW′, NW)× (NW,MX)× (MX,MX′)
N×α×M // (NW′, NW)× (NW,MX)× (MX,MX′)

(NW′, NW)× (NW,MX′)

1×C

��

�� N × αR

(W′,X′) (NW′,MX′)α
//

(W′,W)× (W,X′)

(W′,X′)

C

��

(W′,W)× (W,X′) (NW′, NW)× (NW,MX′)// (NW′, NW)× (NW,MX′)

(NW′,MX′)

C

��

�� αL

Suppose we have V-profunctors P ∈ (W′,W), Q ∈ (W,X), R ∈ (X,X′). Then by

precomposing with an injection, the top composite reduces to the right side and the
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bottom composite to the left side of:

M(R(x′, x) ·Q(x,w)) ·NP (w,w′) MR(x′, x) ·M(Q(x,w) · P (w,w′))

MR(x′, x) ·MQ(x,w) ·NP (w,w′)

M(R(x′, x) ·Q(x,w)) ·NP (w,w′)

M̃ ·1

��

MR(x′, x) ·MQ(x,w) ·NP (w,w′) MR(x′, x) ·MQ(x,w) ·MP (w,w′)1·1·α //MR(x′, x) ·MQ(x,w) ·MP (w,w′)

MR(x′, x) ·M(Q(x,w) · P (w,w′))

1·M̃

��

M(R(x′, x) ·Q(x,w)) ·MP (w,w′) MR((x′, x) ·Q(x,w) · P (w,w′))
M̃

//

M(R(x′, x) ·Q(x,w)) ·NP (w,w′)

M(R(x′, x) ·Q(x,w)) ·MP (w,w′)

1·α

��

M(R(x′, x) ·Q(x,w)) ·NP (w,w′) MR(x′, x) ·M(Q(x,w) · P (w,w′))MR(x′, x) ·M(Q(x,w) · P (w,w′))

MR((x′, x) ·Q(x,w) · P (w,w′))

M̃

��

MR(x′, x) ·MQ(x,w) ·MP (w,w′)

M(R(x′, x) ·Q(x,w)) ·MP (w,w′)

M̃ ·1

wwooooooooooooooooooooooooooooooooooooooooooooo

The top left region commutes by bifunctoriality of tensor, the bottom right region by

coherence of M .

Expanding the left associativity axiom, we are required to show that

(W′′,W)× (W,X) (NW′′, NW)× (NW,MX)
N×α

//

(W′′,W′)× (W′,W)× (W,X)

(W′′,W)× (W,X)

C×1

��

(W′′,W′)× (W′,W)× (W,X) (NW′′, NW′)× (NW′, NW)× (NW,MX)
N×N×α// (NW′′, NW′)× (NW′, NW)× (NW,MX)

(NW′′, NW)× (NW,MX)

C×1

��

�� ρ× α

(W′′,X) (NW′′,MX)α
//

(W′′,W)× (W,X)

(W′′,X)

C

��

(W′′,W)× (W,X) (NW′′, NW)× (NW,MX)// (NW′′, NW)× (NW,MX)

(NW′′,MX)

C

��

�� αL

is equal to

(W′′,W′)× (W′,X) (NW′′, NW′)× (NW′,MX)
N×α

//

(W′′,W′)× (W′,W)× (W,X)

(W′′,W′)× (W′,X)

1×C

��

(W′′,W′)× (W′,W)× (W,X) (NW′′, NW′)× (NW′, NW)× (NW,MX)
N×N×α// (NW′′, NW′)× (NW′, NW)× (NW,MX)

(NW′′, NW′)× (NW′,MX)

1×C

��

�� N × αL

(W′′,X) (NW′′,MX)α
//

(W′′,W′)× (W′,X)

(W′′,X)

C

��

(W′′,W′)× (W′,X) (NW′′, NW′)× (NW′,MX)// (NW′′, NW′)× (NW′,MX)

(NW′′,MX)

C

��

�� αL

Suppose we have V-profunctors P ∈ (W′′,W′), Q ∈ (W′,W), R ∈ (W,X). Then by

precomposing with an injection, the top composite reduces to the left side and the
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bottom composite to the right side of:

MR(x,w) ·M(Q(w,w′) · P (w′, w′′)) M(R(x,w) ·Q(w,w′)) ·MP (w′, w′′)

MR(x,w) ·N(Q(w,w′) · P (w′, w′′))

MR(x,w) ·M(Q(w,w′) · P (w′, w′′))

1·α

��

MR(x,w) ·N(Q(w,w′) · P (w′, w′′)) M(R(x,w) ·Q(w,w′)) ·NP (w′, w′′)M(R(x,w) ·Q(w,w′)) ·NP (w′, w′′)

M(R(x,w) ·Q(w,w′)) ·MP (w′, w′′)

1·α

��

MR(x,w) ·N(Q(w,w′) · P (w′, w′′)) M(R(x,w) ·Q(w,w′)) ·NP (w′, w′′)

MR(x,w) ·NQ(w,w′) ·NP (w′, w′′)

MR(x,w) ·N(Q(w,w′) · P (w′, w′′))

1·Ñ

��

MR(x,w) ·NQ(w,w′) ·NP (w′, w′′) MR(x,w) ·MQ(w,w′) ·NP (w′, w′′)1·α·1 //MR(x,w) ·MQ(w,w′) ·NP (w′, w′′)

M(R(x,w) ·Q(w,w′)) ·NP (w′, w′′)

M̃ ·1

��

MR(x,w) ·NQ(w,w′) ·NP (w′, w′′)

MR(x,w) ·MQ(w,w′) ·MP (w′, w′′)

1·α·α

!!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
MR(x,w) ·MQ(w,w′) ·NP (w′, w′′)

MR(x,w) ·MQ(w,w′) ·MP (w′, w′′)

1·1·α

}}||||||||||||||||||||||||||||||

MR(x,w) ·MQ(w,w′) ·MP (w′, w′′)

MR(x,w) ·M(Q(w,w′) · P (w′, w′′))

1·M̃
ttiiiiiiiiiiiiiii
MR(x,w) ·MQ(w,w′) ·MP (w′, w′′)

M(R(x,w) ·Q(w,w′)) ·MP (w′, w′′)

M̃ ·1
**UUUUUUUUUUUUUUU

MR(x,w) ·M(Q(w,w′) · P (w′, w′′))

M(R(x,w) ·Q(w,w′) · P (w′, w′′))

M̃

**UUUUUUUUUUUUUUU
M(R(x,w) ·Q(w,w′)) ·MP (w′, w′′)

M(R(x,w) ·Q(w,w′) · P (w′, w′′))

M̃

ttiiiiiiiiiiiiiii

The top and right regions commute by bifunctoriality of tensor, the left region by

monoidal naturality of α, and the bottom region by coherence of M .

As mentioned above, the remaining three axioms are easy to check, and so α# is

indeed a module.

cx



Chapter 7

Change of Base and Compact Monoidal Categories

In this chapter, we will investigate whether change of base preserves compact (au-

tonomous) monoidal categories. As mentioned at the beginning of the last chapter,

autonomous monoidal categories are best described in the bicategory V-prof rather

than the 2-category V-cat. Accordingly, in the last chapter we gave a change of base

for profunctors, and in this chapter we will continue the investigation of this change

of base. We will show that while N# fails to be preserve general autonomous objects,

there may yet be hope that it preserves autonomous monoidal categories; we simply

need to change the context in which we are working.

We wish to show just that as N∗ preserved monoidal objects, so N# preserves au-

tonomous objects. Now, compact categories are generally thought of as being “two-

sided” objects. Thus one’s initial impression may be that for this to be possible, N#

must be strong monoidal, and this would require N itself to be strong monoidal.

However, in their investigation of autonomous objects in an autonomous bicate-

gory, Day, McCrudden and Street [14] showed that to preserve autonomous objects, a

lax functor does not need to be strong monoidal. Specifically, a monoidal lax functor

preserves autonomous objects if it is itself autonomous (it preserves the autonomous

structure of the bicategories it goes between with certain comparisons) and is special

(it preserves adjoints and units up to isomorphism). So, a monoidal lax functor like

N# can preserve autonomous objects, provided that it has some additional structure.

So, we would like to see whether N# is special autonomous. To show that N# is

special is relatively straightforward, as it essentially comes down to the fact that N#

is a 2-functor when restricted to V-cat. To show that N# is autonomous, we need to
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see how it compares the autonomous structures of V-prof and W-prof. However, the

dualization in these bicategories is given by taking the opposite V-category, and it is

not hard to show thatN# preserves opposite categories exactly: N#(Xop) = (N#X)op.

There are additional coherence axioms to check, and to formulate these, one needs

N# to be monoidal. Surprisingly, of the three parts required to preserve autonomous

monoidal objects, this is the part that fails: N# is not monoidal, even though N∗ was.

However, this does not show that N# does not preserve autonomous monoidal cat-

egories, only that N# does not preserve all autonomous monoidal objects in V-prof.

The autonomous monoidal categories are only a subset of these. Specifically, since

N# is not monoidal, it will not preserve all promonoidal categories. While it does

not preserve promonoidal categories, we know from Chapter 5 that it does preserve

monoidal categories, and we will show that it has most of the structure of an au-

tonomous monoidal lax functor. We will discuss how we may be able to put this

knowledge to good use in the final chapter. For now, however, we would like to indi-

cate how close N# is to being an autonomous monoidal lax functor.

We begin by reviewing the idea of a Cauchy-complete V-category, due to Lawvere,

then move into the definitions of autonomous monoidal bicategory and autonomous

objects therein.

7.1 Cauchy Complete V-categories

Definition Say that a V-category X is Cauchy-complete if every profunctor Y P //X

with a right adjoint is representable by a functor. That is, there exists a V-functor

F so that P (x, y) ∼= Y(x, Fy).

Proposition 7.1.1. To show that X is Cauchy-complete, it suffices to show that

every profunctor 1 P //X with a right adjoint is representable by a functor.

Proof. See Bourceux ([5], pg 319).

As first shown by Lawvere, this categorical notion of Cauchy complete and the

classical notion of Cauchy complete coincide when we are dealing with metric spaces:
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Proposition 7.1.2. If V = R+, then a metric space (X, d) is Cauchy complete in

the classical sense exactly when it is Cauchy complete in the V-categorical sense.

Proof. By the previous proposition, to show that (X, d) is Cauchy complete in the

V-categorical sense, it suffices to show that every profunctor 1 P //X with a right

adjoint is representable by a functor 1 F //X. However, such a functor is merely a

point of X. Now, recall that a metric space is (classically) Cauchy-complete when it is

isomorphic to its Cauchy completion. This is the metric space with Cauchy sequences

(xn), as points, and metric dC((xn), (yn)) = limn d(xn, yn). Thus, to show our desired

result, we will show that every pair of adjoint profunctors P a Q between 1 and X

corresponds to a Cauchy sequence of X, and vice versa.

Suppose we have such a pair of adjoint profunctors. These are functions X
P,Q //R+

with some additional properties (see Example 6.1.4). Since they are adjoint to one

another, they are equipped with a unit 11
// gf and a co-unit fg // 1X . Since

we are enriched in the poset R+, the existence of unit reduces to the condition∧
x∈X

Px+Qx = 0

while the existence of a co-unit reduces to the condition

∀x, y ∈ X, Py +Qx ≥ d(y, x).

By the first condition, for each n, we can find an xn ∈ X so that Pxn + Qxn <
1
n
.

This is Cauchy since, by the second condition,

d(xn, xm) ≤ Pxn +Qxm <
1

n
+

1

m

so that, given ε, we can take N so that 2
N
< ε.

Conversely, suppose that we have a Cauchy sequence (xn). Define functions

P (x) = dC((x), (xn)) and Q(x) = dC((xn), (x))

To show the unit condition, we need to show that

∧x∈X lim
n
d(x, xn) + lim

n
d(xn, x) = 0
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To show this, given ε, since (xn) is Cauchy, we can find N large enough so that

d(xN , xn) < ε
2
. Then simply take x = xN . To show the co-unit condition, we use the

triangle inequality:

Py +Qx = lim
n
d(y, xn) + d(xn, x) ≥ limnd(y, x) = d(y, x)

Thus P a Q is a pair of adjoint profunctors.

By using the Cauchy complete condition, we can access the V-functors inside

V-prof as the arrows with right adjoints. An example of this is the concept of a map

monoidal object.

Definition A map monoidal object in a monoidal bicategoryM is a monoidal object

(X, p, I) such that both p and I have right adjoints.

When X is Cauchy complete and the monoidal bicategory is V-prof, map monoidal

objects are familiar.

Proposition 7.1.3. Suppose that X is a map monoidal object in V-prof. If X is

also Cauchy-complete, then X is a monoidal V-category.

Proof. Since the multiplication and unit arrows both have right adjoints and X is

Cauchy-complete, they are both representable by functors, and X is thus a monoidal

V-category.

To determine when the change of base preserves autonomous monoidal categories,

we need to see that autonomous monoidal V-categories are certain types of objects

in V-prof. First, however, we need to give the definition of autonomous monoidal

V-category.

Definition An monoidal V-category (X,⊗, I) is autonomous if it is equipped with

an equivalence Xop (−)∗ //X such that there is a V-natural isomorphism

X(X,Z ⊗ Y ∗) ∼= X(X ⊗ Y, Z).
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Recall that we could describe monoidal V-categories as pseudomonoids in V-cat,

or, as above, as map monoidal objects in V-prof. To do this, however, first required

that we describe the monoidal structure of V-cat or V-prof. Similarly, to describe

autonomous monoidal categories as autonomous objects, we first need to describe the

autonomous structure of V-prof.

7.2 Autonomous Structure of V-prof

The definition of autonomous bicategory was first given in Day and Street’s paper

[13], here we present the definition given in Street’s later paper [40].

Definition Suppose that (M,⊗, I) is a monoidal bicategory. For objects A,B ∈M,

say that B is a right bidual for A if there exists a morphism A⊗B e //I such that for

each C,D, the functorM(C,B⊗D) //M(A⊗C,D) which sends f to (e⊗1)(1⊗f)

is an equivalence of categories. This means that there is a unique-up-to-isomorphism

morphism I n // B ⊗ A such that (e ⊗ 1)(1 ⊗ n) is isomorphic to the identity of A,

and (1⊗ e)(n⊗ 1) is isomorphic to the identity of B. We say that the unit is n and

the counit e. If every object inM has both a right and left bidual, thenM is called

autonomous. The right bidual of an object A will be denoted by Ao.

The prototypical example of an autonomous monoidal bicategory is V-prof; we

will sketch the proof of this result. The biduals are given by taking (−)op. Note that

the unit and co-unit maps can not be represented by functors, so V-cat itself is not

autonomous.

Before we sketch the proof, it will be helpful to recall the Yoneda density lemma:

Lemma 7.2.1. Suppose that V is a monoidal closed category, and X F // V is a

V-functor. Then

Fx ∼=
∫ y

Fy ⊗X(y, x)

Proof. See Kelly [27], pg. 53 (3.71).

Now we can show that V-prof has autonomous structure.
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Theorem 7.2.2. For V symmetric, V-prof has the structure of an autonomous

monoidal bicategory.

Proof. For V symmetric, V-prof is a symmetric monoidal bicategory, so that we

need only show each object has a right bidual. We will show that A has right bidual

Aop. Define

I n //Aop ⊗A by n(a′, a, ∗) := A(a, a′),

with right action

A(a, a′)⊗ I //A(a, a′)

given by the right unit isomorphism r, and left action

A(a′1, a
′
2)⊗A(a2, a1)⊗A(a1, a

′
1) //A(a2, a

′
2)

given by the braiding followed by two compositions.

Similarly, define

A⊗ Aop e // I by e(∗, a, a′) := A(a′, a),

with right action

A(a′1, a1)⊗A(a1, a2)⊗A(a′2, a
′
1) //A(a′2, a2)

given by braiding then composition, and left action

I ⊗A(a′, a) //A(a′, a)

given by by left unit isomorphism l.
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To show that these form a dual pairing, consider

(e⊗ 1)(1⊗ n)(a1, a2) =

∫ a3,a4,a5

(e⊗ 1)(a1, (a3, a4, a5))⊗ (1⊗ n)((a3, a4, a5), a2)

=

∫ a3,a4,a5

e(a3, a4)⊗ 1(a1, a5)⊗ 1(a3, a2)⊗ n(a4, a5)

=

∫ a3,a4,a5

A(a4, a3)⊗A(a1, a5)⊗A(a3, a2)⊗A(a5, a4)

∼=
∫ a4,a5

A(a4, a2)⊗A(a1, a5)⊗A(a5, a4) (Yoneda in a3)

∼=
∫ a5

A(a1, a5)⊗A(a5, a2) (Yoneda in a4)

∼= A(a1, a2) (Yoneda in a5)

as required. The other composite follows similarly.

In an autonomous monoidal bicategory, we can define an autonomous monoidal

object.

Definition Suppose that (A,m) is an pseudomonoid in an autonomous monoidal

bicategoryM. A morphism Ao d //A is called left dualization for A when there exist

2-cells

I A
j

//

Ao ⊗ A

I

OO

n

Ao ⊗ A A⊗ Ad⊗1 // A⊗ A

A

m

��

�� α

A⊗ Ao A⊗ A
1⊗d

//

I

A⊗ Ao

OO

j

I A
e // A

A⊗ A

OO

m�� β

Satisfying two coherence conditions (see [14], pg. 2). These structures are unique up

to isomorphism. When a pseudomonoid A admits both left and right dualizations,

then it is called autonomous.

Finally, we have the following result, which tells us how to identify autonomous

(compact) monoidal V-categories.

Proposition 7.2.3. An autonomous monoidal V-category is an autonomous pseu-

domonoid in V-prof in which the unit, multiplication, and dualization profunctors

are all representable by V-functors.

Proof. See [14], pg. 8.
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7.3 N# as Autonomous Monoidal

Now that we understand autonomous monoidal objects in an autonomous monoidal

bicategory, we can look at the types of morphisms which preserve them. We first

need to define two types of lax functors: special, and autonomous.

Definition A lax functor M F //N is special when:

• the identity constraint is always invertible (the lax functor is “normal”)

• for A
f // B a map, the composition constraint F (g) ◦ F (f) // F (g ◦ f) is

invertible.

Special is needed so that the lax functor is a pseudo-functor when restricted to

the category of maps.

Definition Suppose thatM F //N is a lax monoidal functor between autonomous

monoidal bicategories. F is called autonomous when it is equipped with a pseudo-

natural family

(FX)o
κX // F (Xo)

and two modifications:

I F (X ⊗Xo)

FX ⊗ (FX)o

I

e

��

FX ⊗ (FX)o FX ⊗ F (Xo)
1⊗κ // FX ⊗ F (Xo)

F (X ⊗Xo)

χ

��
I

FI
ι ''OOOOOOOOOO F (X ⊗Xo)

FI
Fewwooooooo

ε
+3

FI F (Xo)⊗ FX

I

FI

ι

��

I (FX)o ⊗ FXn // (FX)o ⊗ FX

F (Xo)⊗ FX

κ⊗1

��
FI

F (Xo ⊗X)
Fn ''OOOOOOO F (Xo)⊗ FX

F (Xo ⊗X)
χwwoooooo

ζ
ks

satisfying two coherence conditions (see pgs.13-14 of [14]).

Then we have the following:

Theorem 7.3.1. IfM F //N is a special lax autonomous monoidal functor between

autonomous monoidal bicategories, and X is an autonomous monoidal object in M,

then FX can be given the structure of an autonomous monoidal object in N .

Proof. See [14], pg. 15.
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7.3.1 N# is Special

Let us now investigate whether N# satisfies the conditions of the theorem above.

Theorem 7.3.2. If (V,⊗, I) N // (W, •, J) is a monoidal functor, then the lax func-

tor N#, when restricted to the Cauchy complete V-categories, is special.

Proof. Earlier, we saw that N# is normal (as part of theorem 6.2.3), so all that

remains is to to prove the second condition. Suppose that we have V-profunctors

X P //A
Q //Y

with P a map. Since all V-categories under consideration are Cauchy complete, we

can represent P by a functor F , so that P (a, x) ∼= A(a, Fx). Then note that the

composition constraint∫ a

NQ(y, a) •NP (a, x) //N

(∫ a

Q(y, a)⊗ P (a, x)

)
becomes ∫ a

NQ(y, a) •NA(a, Fx) //N

(∫ a

Q(y, a)⊗A(a, Fx)

)
.

Then, using the Yoneda density lemma in W on the left and in V on the right, we

see that the composition constraint is really a map between identical objects:

NQ(y, Fx) //NQ(y, Fx)

Thus, if we can show that the composition constraint is the identity, we are done.

That is, we need to show that

NQ(y, Fx) NQ(y, Fx)
1

//

∫ a
NQ(y, a) •NA(a, Fx)

NQ(y, Fx)

m

��

∫ a
NQ(y, a) •NA(a, Fx) N(

∫ a
Q(y, a)⊗A(a, Fx))//____ N(

∫ a
Q(y, a)⊗A(a, Fx))

NQ(y, Fx)

OO

N(m−1)

commutes, where m is the Yoneda isomorphism. Note that in the forward direction,

the Yoneda isomorphism is given by the action of the profunctor NQ. Thus, we can
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expand the above as

NQ(y, Fx) N(
∫ a
Q(y, a)⊗A(a, Fx)

N(m)
//

NQ(y, a) •NA(a, Fx)

NQ(y, Fx)

(NQ)L

��

NQ(y, a) •NA(a, Fx) N(Q(y, a)⊗A(a, Fx))Ñ // N(Q(y, a)⊗A(a, Fx))

N(
∫ a
Q(y, a)⊗A(a, Fx)

N(ia)

��

N(Q(y, a)⊗A(a, Fx))

NQ(y, Fx)

N(QL)
jjjjjjjjjjj

ttjjjjjjjjjjj

The left triangle commutes by definition of (NQ)L, and the right triangle is N of the

Yoneda isomorphism.

Thus, the composition constraint is invertible, and N# is special.

7.3.2 Autonomous

We would now like to see to what extent N# has the structure of an autonomous lax

functor. For M = V-prof, N = W-prof, and F = N#, we can define the κ arrow

for an autonomous functor to be the identity, since N# preserves opposites exactly.

Proposition 7.3.3. Suppose that (V,⊗, I, σV) N //(W, •, J, σW) is a braided monoidal

functor. Then the change of base N# preserves opposite categories exactly: that is,

for a V-category X, N#(Xop) = (N#X)op.

Proof. Since both the change of base and opposite categories keep the same objects,

both N∗(X
op) and (N∗X)op have objects those of X. The homs are also equal, as

N∗(X
op)(y, x) = N((Xop)(y, x)) = N(X(x, y)) = (N∗X)(x, y) = (N∗X)op(y, x)

To show that the composition maps are equal, we expand out the composition in

N∗(X
op) on the left side and in (N∗X)op on the right (recalling that composition in

the opposite V-category uses the braiding followed by composition):

N(X(y, z)⊗X(x, y)) N(X(x, y)⊗X(y, z))

NX(y, z) •NX(x, y)

N(X(y, z)⊗X(x, y))

Ñ

��

NX(y, z) •NX(x, y) NX(x, y) •NX(y, z)
σW // NX(x, y) •NX(y, z)

N(X(x, y)⊗X(y, z))

Ñ

��

N(X(x, y)⊗X(y, z)) NX(x, z)
Nc

//

N(X(y, z)⊗X(x, y))

N(X(x, y)⊗X(y, z))

NσV

��

N(X(y, z)⊗X(x, y)) N(X(x, y)⊗X(y, z))N(X(x, y)⊗X(y, z))

NX(x, z)

Nc

��
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Since the last two arrows are the same, the diagram commutes by monoidal naturality

of Ñ , and so the composition arrows are equal.

Finally, since identites remain the same in the opposite V-category, the identity

arrows in N∗(X
op) and (N∗X)op are also equal.

Moreover, one can also define the modications ε, ζ as isomorphisms. Indeed, for a

V-category X, the composites they go between are

J NIι
//

N#X⊗N#Xop

J

e

��

N#X⊗N#Xop N#(X⊗Xop)
χ // N#(X⊗Xop)

NI

N#(e)

��

and

NI N#(Xop ⊗X)
N#n

//

J

NI

ι

��

J N#Xop ⊗N#Xn // N#Xop ⊗N#X

N#(Xop ⊗X)

χ

��

Proposition 7.3.4. In both of the diagrams above, the left composite profunctor is

isomorphic to the right composite profunctor.

Proof. In the first diagram, the left composite has module

e(∗, x, x′) = N#X(x′, x) = NX(x′, x)

On the other hand, the right composite is a functor followed by a profunctor, so has

module

(N#e)(∗, χ(x, x′)) = N#e(∗, (x, x′)) = Ne(∗, (x, x′)) = NX(x′, x)

Thus the modules are equal. It is also straightforward to check that the actions are

equal.

In the second diagram, the left composite has module

(N#n)(x′, x, ∗) = NX(x, x′)

On the other hand, the right composite is given by∫ y′∈Xop,y∈X
χ(x′, x, y′, y)⊗n(y′, y, ∗) =

∫ y′,y∈X
N(Xop⊗X)((x′, x), (y′, y))⊗NX(y, y′)
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Applying the Yoneda density result, with

N(Xop ⊗X)op F //W

given by

(x′, x) 7→ NX(x, x′)

gives that the above is also isomorphic to NX(x, x′), as required. Again, it is straight-

forward to show that the actions are equal.

To check the coherence equations, however, we need N# to be monoidal.

7.3.3 Monoidal

For N# to be monoidal, we would need, first of all, a profunctor

NX⊗NY
χ //N(X⊗Y).

This is easy to define, as we know that there is a functor between these W-categories:

so we merely make this functor into a profunctor. However, to be a pseudonatural

transformation, for profunctors P,Q, we would need an isomorphism of profunctors

NX′ ⊗NY′ N(X′ ⊗Y′)χ
//

NX⊗NY

NX′ ⊗NY′

NP⊗NQ

��

NX⊗NY N(X⊗Y)
χ // N(X⊗Y)

N(X′ ⊗Y′)

N(P⊗Q)

��

If we take the adjoint of the bottom χ, then for objects x, y, x′, y′, the left composite

is

NP (x′, x)⊗NQ(y′, y)

while the right composite is

N(P (x′, x)⊗Q(y′, y))

In general, then, we only have a comparison Ñ .

There are two reasons we need N# to be monoidal. One is to show that it pre-

serves monoidal objects, and the other is to express the coherence diagrams to make
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N# autonomous monoidal. However, we do not need N# to be monoidal to pre-

serve monoidal categories (the map monoidal objects). We already know it preserves

those. This merely shows that N# does not preserve all monoidal objects in V-prof.

Monoidal objects in V-prof are the promonoidal categories of Brian Day: the above

shows that N needs to be strong to preserve these. That is, N# preserves monoidal

categories, but not neccesarily promonoidal categories unless N is strong.

For the second reason, the statement and results about autonomous monoidal

functors require that the functor be monoidal. However, the instances where the

isomorphism is used (pgs 13-14 of [14]) only require a comparison to define the paste

composite. In fact, the direction of comparison required is exactly the direction we do

have as described above. That is, we do not neccesarily need N# to be monoidal to

show that it preserves autonomous monoidal categories. So the lax functor N# does

not meet the requirements to be autonomous monoidal, but appears to have enough

of the neccesary structure to still preserve autonomous objects.

What is apparent is the importance of squares such as those that appear above.

In these squares, we have two parallel V-functors (the horizontal arrows), and two

parallel V-profunctors (the vertical arrows). To express the idea that N# is au-

tonomous, we do not need this square to be an isomorphism. Instead, we merely

need a comparison arrow. As we shall see in the next chapter, the arrow going in the

indicated direction tells us that we have a horizontal transformation. This is a type

of transformation that is more than a 2-natural transformation, but less than a full

pseudonatural transformation. To express this more clearly, we need to understand

double categories, and specifically the double category of V-categories, V-functors,

and V-profunctors.



Chapter 8

Change of Base as a Double Functor

In chapter 6, we saw that given a monoidal natural transformation N α //M , we can

define a module between lax functors N#

α# //M#. However, this a structural prob-

lem with this. Bicategories, lax functors, and modules do not form a 2-dimensional

structure; one needs to add a certain type of 3-cell (a “modulation”) to get a (weak) 3-

dimensional structure. This leads to a disparity when one tries to define a full change

of base cmoncat
()# // bicat, as there are no appropriate 3-cells for cmoncat to

send to modulations.

Furthermore, as we saw in Chapter 7, another problem exists with using bicate-

gories. The existing theory of structured bicategories is not adequate to express the

particular nature of the change of base. Problems arise when one tries to use this

theory that seem to be more related to the particular trappings of bicategory theory,

rather than problems with the change of base functor itself.

All of this leads one to believe that there must be a better arrow to send α to;

modules seem to be not quite the answer. In fact, if we take a step further back,

one can see another problem. Given a monoidal functor V N //W, we have given

two definitions of what N should be sent to: N∗ and N#. This is already a clue that

something has gone astray - N should be sent to a single arrow.

The way to resolve both this difficulty with N , and the problem of where to send

α to, is resolved by considering double categories. In a double category, between

objects, one has two types of arrows - horizontal and vertical - and cells between

a pair of horizontal and vertical arrows. V-cat is ideally suited to be made into a

double category, as it has two types of arrows between its objects: V-functors and

115
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V-profunctors. (We will be dealing with a “pseudo” double category, where the ver-

tical composition is bicategorical in nature).

Though double categories, and in particular, the double category V-CAT have

not received as much attention as bicategories and the bicategory V-prof, they are

even more powerful, and to define the full change of base, are absolutely neccesary.

Given V N // W, we can use our previous definitions of N∗ and N# to define a

single arrow: a “double lax functor” N∗ between the double categories V-CAT and

W-CAT which is N∗ horizontally and N# vertically. Moreover, there are nice 2-

cells between double lax functors: horizontal transformations. As we shall see, one

can define α as a horizontal transformation between N∗ and M∗. As opposed to the

definition of α# as a module, the definition of α∗ as a horizontal transformation is

entirely natural. Moreover, the “squares” that appeared when trying to define N# as

an autonomous lax functor are exactly the squares that are used in the definition of

a horizontal transformation.

Even better, pseudo double categories, lax double functors, and horizontal trans-

formations define a (strict) 2-category! This is a vast improvement over the situation

of bicat, which at best could be a (weak) 3-category. We then show that assignments

of V to the double category V-CAT, N to a double lax functor, and α to a horizontal

transformation is 2-functorial. That is, we can define a 2-functor

cmoncat
()∗ // doublecat

This 2-functor contains, in the horizontal direction, the original 2-functor

cmoncat
()∗ // 2− cat,

but now also handles V-profunctors, and their cells between them. It is the best re-

sult one could hope for, and it is not possible without considering double categories.

We conclude the chapter by showing that just as the original 2-functor (−)∗ was

monoidal, so too is this larger version.
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Though independently found here, the idea of considering change of base as tak-

ing values in double categories was first discovered by Dominic Verity in his PhD

Thesis ([43]). There are some differences between that work and the present account,

however. There, double categories are the most general possible; that is, they are

weak both horizontally and vertically. In addition, in Verity’s thesis, the emphasis is

on showing that an adjoint pair of monoidal functors gets sent to an adjoint pair of

double functors; here, our focus is in showing the 2-functorial nature of the change of

base. Of course, the fact that this double-categorical change of base was discovered

independently by two separate parties further underlines how important the idea is.

8.1 Double Categories

We begin the chapter by reviewing the definitions of double category, lax double func-

tor, and horizontal transformation. We will also describe the elements of the double

category V-CAT.

Succinctly, one can describe a pseudo double category as a pseudo category-object

in cat ([21], pg. 210). Intuitively, this means that a pseudo double category has

objects, two types of arrows (horizontal and vertical), and cells between a square of

horizontal and vertical arrows. The horizontal arrows, together with certain cells,

will form a 2-category, while the vertical arrows and other tyeps of cells will form a

bicategory. We will now give an explicit definition:

Definition A (pseudo) double category C consists of:

• a set of objects C,

• for any two objects X, Y in C, a set of “horizontal” arrows C0(X, Y ) and a set

of vertical arrows C1(X, Y ),

• for horizontal arrows F,G and vertical arrows P,Q, in the following configura-

tion:

W Z
G
//

X

W

P ��

X YF // Y

Z

Q
��



118

a set of “cells”,

• for horizontal arrows, composition and identities that make the objects and

horizontal arrows into a category,

• for vertical arrows, composition and identities,

• for cells

Y1 Y2G1

//

X1

Y1

P

��

X1 X2
F1 // X2

Y2

Q

��
Y2 Y3G2

//

X2

Y2

Q

��

X2 X3
F2 // X3

Y3

R

��
ψ1 ψ2

a horizontal composite

Y1 Y3G2G1

//

X1

Y1

P1

��

X1 X3
F2F1 // X3

Y3

P3

��
ψ2ψ1

which is associative,

• for cells

Z1 Z2H
//

Y1

Z1

P2

��

Y1 Y2G // Y2

Z2

Q2

��

Y1 Y2G //

X1

Y1

P1

��

X1 X2
F // X2

Y2

Q1

��

ψ2

ψ1

a vertical composite

Z1 Z3H
//

X1

Z1

P2P1

��

X1 X2
F // X2

Z3

Q2Q1

��
ψ2 ∗ ψ1

which is associative,

• such that the composition of cells satisfies the middle-four interchange:

(ψ4ψ2) ∗ (ψ3ψ1) = (ψ4 ∗ ψ3)(ψ2 ∗ ψ1),
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• Denote the cells whose vertical boundaries are identies as “vertically trivial”.

For each horizontal arrow F , we require a vertically trivial cell

X Y
F

//

X

X

1X

��

X YF // Y

Y

1Y

��
1F

• such that the objects, horizontal arrows, and vertically trivially cells, together

with the compositions and identities described above, form a 2-category C0.

• Denote the cells whose horizontal boundaries are identites as “horizontally triv-

ial”. For each vertical arrow P , we require a horizontally trivial cell

Y Y
1X

//

X

Y

P

��

X X
1X // X

Y

P

��
1P

• For vertical cells X
P1 // Y

P2 // Z
P3 //W , a horizontally trivial cell

W W
1W

//

X

W

(P1P2)P3

��

X X
1W // X

W

P1(P2P3)

��
αP1,P2,P3

which is horizontally invertible,

• such that the objects, vertical arrows, and horizontally trivial cells, together

with the compositions, identities, and the associator cells described above, form

a bicategory C1 in which the units isomorphisms are strict.

There is a surprising number of examples of categories with two different types of

arrows between the objects, which are related by cells.

Example 8.1.1. Sets as objects, horizontal arrows as functions, vertical arrows re-

lations. A cell ψ : (P, F,G,Q) is a containment of relations: that is, there is a cell ψ

if P (y, x) implies Q(Gy, Fx).
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Example 8.1.2. Rings as objects, horizontal arrows as ring homomorphisms, bimod-

ules as vertical arrows. A cell ψ : (M,F,G,N) is an group homomorphism M
ψ //N

such that ψ(rms) = f(s)ψ(m)g(s).

Example 8.1.3. Given a monoidal category (V,⊗, I) with colimits, one can form

the double category of V-matrices: objects are sets, horizontal arrows are functions,

and vertical arrows are V-matrices. A V-matrix M between sets X, Y is simply a

function X × Y M(−,−) // V . Vertical composition is a “matrix” product:

NM(z, x) =
∑

M(z, y)⊗M(y, x)

where the sum is the colimit in V. Cells ψ : (M,F,G,N) are indexed families of

arrows in V from M(x, y) to N(fx, gy). This double category is useful for describing

relational algebras: see Paré [38] and Clementino and Tholen [41].

Example 8.1.4. Any 2-category can be made into a double category with only

identities for vertical arrows.

Example 8.1.5. Similarly, any bicategory can be made into a double category with

only identites for horizontal arrows.

Example 8.1.6. A 2-category can also be made into a double category where the

horizontal and vertical arrows are both the arrows of the 2-category, and the cells of

the double category 2-cells between the composite arrows of the 2-category.

Example 8.1.7. The key example for our work is, for cocomplete monoidal V, the

double category V-CAT. Here the horizontal arrows are V-functors, the vertical

arrows V-profunctors, and a cell ψ, between functors (F,G) and profunctors (P,Q)

is a morphism of profunctors

X′ Y′oo
G∗

X

X′

P

��

X Y
F∗ //Y

Y′

Q

��

+3
ψ

A cell will thus have components

P (y, x)
ψ(y,x) //Q(Gy, Fx)
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As we have already noted in the previous chapter, this type of cell appears frequently

when one works with V-prof. Other examples include recent work on Cartesian Bi-

categories ([7], pg. 104), and work on general change of base questions ([8], pg. 101).

Since this is the double category we will be working with, let us also describe the

cell compositions and identites explicity. The vertical cell identity

X Y
F

//

X

X

1X

��

X YF //Y

Y

1Y

��
1F

is the effect of F on homs: X(x′, x) F //Y(Fx′, Fx).

The horizontal cell identity

W W
1W

//

X

W

P

��

X X
1X //X

W

P

��
1P

is given by the identity arrow P (y, x) 1 // P (y, x).

The vertical composition of cells

Z1 Z2H
//

Y1

Z1

P2

��

Y1 Y2G //Y2

Z2

Q2

��

Y1 Y2G //

X1

Y1

P1

��

X1 X2
F //X2

Y2

Q1

��

ψ2

ψ1

must have components∫ y1

P2(z, y1)⊗ P1(y1, x)
(ψ2ψ1)(z,x) //

∫ y2

Q2(Hz, y2)⊗ P1(y2, Fx)
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On an element y1, it is given by the composite

P2(z, y1)⊗P1(y1, x)
ψ2⊗ψ1 //Q2(Hz,Gy1)⊗P1(Gy1, Fx)

iGy1 //
∫ y2

Q2(Hz, y2)⊗P1(y2, Fx)

The horizontal composition of cells

Y1 Y2G1

//

X1

Y1

P

��

X1 X2
F1 //X2

Y2

Q

��
Y2 Y3G2

//

X2

Y2

Q

��

X2 X3
F2 //X3

Y3

R

��
ψ1 ψ2

is given by composition

P (y, x)
ψ1(y,x) //Q(G1y, F1x)

ψ2(G1y,F1x) //R(G2G1y, F2F1x).

8.1.1 Lax Double Functors

The idea of lax functors between bicategories extends to an idea of lax double functors

between (pseudo) double categories.

Definition Suppose that C and D are double categories. A lax double functor L

between C and D consists of:

• a functor L0 between the horizontal arrow categories,

• a lax functor between the vertical arrow bicategories agreeing with the above on

objects; call its identity comparisons ρC and composition comparisons ρ(p, q),

• a map between the cells which preserves horizontal composition.

Finally, the vertical composition is preserved up to the comparison maps:

• For a horizontal arrow X
F // Y ,

LX LY
LF

//

LX

LX

1LX

��

LX LY
LF // LY

LY

1LY

��
LY LY

LY

LY

1LY

��

LY LYLY

LY

L(1Y )

��
1LF ρY =

LX LX

LX

LX

1LX

��

LX LXLX

LX

L(1X)

��
LX LY

LF
//

LX

LX

L(1X)

��

LX LY
LF // LY

LY

L(1Y )

��
ρX L(1F )
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• For cells ψ1 : (p1, f, g, q1), ψ2 : (p2, g, h, q2),

LZ1 LZ2LH
//

LY1

LZ1

LP2

��

LY1 LY2LG // LY2

LZ2

LQ2

��

LY1 LY2
//

LX1

LY1

LP1

��

LX1 LX2
LF // LX2

LY2

LQ1

��

LZ2 LZ2

LX2

LZ2

LX2 LX2LX2

LZ2

L(Q2Q1)

��
Lψ2

Lψ1

ρ =

LX1

LY1

LP1

��
LY1

LZ1

LQ1

��
LZ1 LZ1

LX1

LZ1

LX1 LX1LX1

LZ1

��
LZ1 LZ2LH

//

LX1

LZ1

��

LX1 LX2
LF // LX2

LZ2

L(Q2Q1)

��

ρ L(ψ2ψ1)

Example 8.1.8. Suppose we have two 2-categories, viewed as (vertically trivial)

double categories. Then a lax double functor between them is a 2-functor.

Example 8.1.9. Suppose we have two bicategories, viewed as (horizontally trivial)

double categories. Then a lax double functor them is a lax functor.

Example 8.1.10. As a particular case of the above, suppose we have two monoidal

categories, viewed as one-object bicategories, and hence as (horizontally trivial) dou-

ble categories with only one object. Then a lax double functor between them is a

monoidal functor.

8.1.2 Horizontal Transformations

The key idea that is required for our change of base result is the notion of a horizontal

transformation. Essentially, it is a natural transformation horizontally, while also

taking vertical arrows to cells in a natural way.

Definition Suppose that we have lax double functors C L,K // D. A horizontal

transformation L
α //K consists of the following data:

• For each X ∈ C, a horizontal arrow LX
αX //KX,

• For each vertical arrow X
P // Y in C, a cell

LY KY
αY

//

LX

LY

LP

��

LX KX
αX // KX

KY

KP

��
αP
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The horizontal arrows αX form a natural transformation between L0 and K0, and

the following conditions also hold:

• For a cell ψ : (P, F,G,Q),

LW LZ
LG

//

LX

LW

LP

��

LX LYLF // LY

LZ

LQ

��
Lψ

LZ KY
αZ

//

LY

LZ

LQ

��

LY KYαY // KY

KY

KQ

��
αQ =

LW KW
αW

//

LX

LW

LP

��

LX KXαX // KX

KW

KP

��
αP

KW KZ
KG

//

KX

KW

KP

��

KX KYKF // KY

KZ

KQ

��
Kψ

• For an object X,

LX KX
αX

//

LX

LX

1LX

��

LX KXαX // KX

KX

1MX

��
KX KX

KX

KX

1MX

��

KX KXKX

KX

K(1X)

��
1αX ρKX =

LX LX

LX

LX

1LX

��

LX LXLX

LX

L(1X)

��
LX KX

αX
//

LX

LX

L(1X)

��

LX KXαX // KX

KX

K(1X)

��
ρX α1X

• For vertical morphisms X P // Y
Q // Z,

LZ KZ
αZ

//

LY

LZ

LQ

��

LY KYαY // KY

KZ

MQ

��

LY KYαY //

LX

LY

LP

��

LX KXαX // KX

KY

MP

��

KZ KZ

KX

KZ

KX KXKX

KZ

K(QP )

��
αQ

αP

ρ =

LX

LY

LP

��
LY

LZ

LQ

��
LZ LZ

LX

LZ

LX LXLX

LZ
��

LZ KZ
αZ

//

LX

LZ
��

LX KXαX // KX

KZ

L(QP )

��

ρ α(QP )

Example 8.1.11. A horizontal transformation between 2-categories and 2-functors,

viewed as double categories and double functors, is a 2-natural transformation.

Example 8.1.12. A horizontal transformation between monoidal categories and

monoidal functors, viewed as double categories and double functors, is a monoidal

natural transformation.

Example 8.1.13. A horizontal transformation between bicategories and lax functors,

viewed as double categories and double functors, is a lax natural transformation which

forces the lax functors to be equal on objects. As Grandis and Paré have observed

[22], these special transformations appear in the work of Carboni and Rosebrugh on

lax monads of bicategories [9].
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Example 8.1.14. In the work of Susan Niefield and others (see, for example, [6]), a

category Lax(Bop, Span) is described. The objects are lax functors from the opposite

of a bicategory B to the bicategory of sets and spans. While not described as such,

the morphisms in Lax(Bop, Span) are horizontal transformations between lax double

functors from Bop, considered as a double category, to the double category of sets,

functions, and spans.

The previous two examples show instances where horizontal transformations ap-

peared implicitly before the concept itself was defined, showing how fundamental

these morphisms are.

8.1.3 The 2-Category Dblcat

Our last background work is to describe the compositions of lax double functors and

horizontal transformations. A somewhat surprising aspect of these structures (given

that we are dealing with pseudo objects and lax arrows) is that pseudo double cate-

gories, lax double functors, and horizontal transformations form a (strict) 2-category.

We will not prove this here, but the result can be found in Grandis and Paré ([22],

pg. 207).

An interesting aspect of that work, however, is that this 2-category actually lives

inside a larger double category. The double category consists of pseudo double cat-

egories, lax double functors (horizontal), co-lax double functors (vertical), and cells

between them. There are several surprising aspects of this double category: first of

all, that there are viable cells between lax and co-lax double functors, and secondly,

that this double category is itself strict. (The horizontal arrows and cells of this dou-

ble category give rise to the 2-category dblcat we consider here.)

When restricted to double categories which are monoidal categories (that is, dou-

ble categories with one object and only identity horizontal arrows), this gives a strict

double category of monoidal categories, monoidal functors, co-monoidal functors, and

cells between them. This double category itself may be interesting to investigate as

a different domain for change of base questions. For now, however, we will restrict
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ourselves to the usual 2-cat cmoncat and the 2-category dblcat.

The composition of lax double functors is straightforward, once one recalls that

lax functors between bicategories themselves compose strictly (see Benabou [3] and

Section 6.3.1).

Definition Given double categories and lax double functors C L // D K // E , the

composite of K and L is given by composing the functors, composing the lax functors,

and composing the action on cells.

The horizontal and vertical composition of horizontal transformations both use

the horizontal composition in the codomain double category.

Definition Suppose that we have lax double functors and horizontal transformations

C D

N

��
�� α1

C DM //C D

L

BB

�� α2

Then (α2α1)X is given by α2X ◦ α1X, and for X P // Y , (α2α1)P is given by the

horizontal composite

NY MY
α1Y

//

NX

NY

NP

��

NX MX
α1X //MX

MY

MP

��
α1P

MY LY
α2Y

//

MX

MY
��

MX LX
α2X // LX

LY

LP

��
α2P

Definition Suppose that we have double functors and horizontal transformations

C D

N1

##
C D

N2

;;�� α1 D E

M1

##
D E

M2

;;�� α2
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Then (α2 ∗ α1)X is given by M2(α1X) ◦ α2(N1X), for X P // Y , (α2 ∗ α1)P is given

by the horizontal composite

N2N1Y M2N1Y
α2(N1Y )

//

N2N1X

N2N1Y

N2N1P

��

N2N1X M2N1X
α2(N1X) //M2N1X

M2N1Y

M2N1P

��
α2(N1P )

M2N1Y M2M1Y
M2(α1Y )

//

M2N1X

M2N1Y
��

M2N1X M2M1X
M2(α1X) //M2M1X

M2M1Y

M2M1P

��
M2(α1P )

8.2 Change of Base as a 2-functor to dblcat

Now that we have defined the 2-category dblcat, we can describe the change of base

cmoncat
()∗ // dblcat

We begin by describing the action of this functor on arrows.

8.2.1 N∗ as a Lax Double Functor

We have already definedN∗ on the horizontal (V-functors) and vertical (V-profunctors)

so that N∗ is a 2-functor horizontally and a lax functor vertically. Since a cell

ψ : (P, F,G,Q) is a V-form P
ψ // G∗QF∗, we define N∗(ψ)(y, x) by N(ψ(y, x));

this is a W-form by Proposition 6.2.2. We now show that with these assignments,

N∗ defines a lax double functor.

Proposition 8.2.1. Suppose that (V,⊗, I) N // (W, •, J) is a monoidal functor.

Then, with assignments as described above, V-CAT
N∗ //W-CAT is a lax double

functor.

Proof. We have already shown that N∗ is a 2-functor horizontally (Theorem 4.2.4)

and a lax functor vertically (Theorem 6.2.3). We still need to show the two additional

axioms for a lax double functor. The first one requires that for X F //Y ∈ V-cat,

N∗X N∗YN∗F
//

N∗X

N∗X

1N∗X

��

N∗X N∗Y
N∗F // N∗Y

N∗Y

1N∗Y

��
N∗Y N∗Y

N∗Y

N∗Y

1N∗Y

��

N∗Y N∗YN∗Y

N∗Y

N∗(1Y )

��
1N∗F ρY =

N∗X N∗X

N∗X

N∗X

1N∗X

��

N∗X N∗XN∗X

N∗X

N∗(1X)

��
N∗X N∗YN∗F

//

N∗X

N∗X

N∗(1X)

��

N∗X N∗Y
N∗F // N∗Y

N∗Y

N∗(1Y )

��
ρX N∗(1F )
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Recall that N# is normal, and so the identity comparisons ρX and ρY are identity

V-forms. Thus the above reduces to checking that 1N∗F = N∗(1F ). The components

of 1N∗F are the effect of N∗F on homs, so that 1N∗F (y, x) = NF (y, x). On the other

hand, the components of N∗(1F ) are N of the components of the effect of F on homs,

so that N∗(1F )(y, x) is also NF (y, x).

The second axiom requires that for cells ψ1 : (p1, f, g, q1), ψ2 : (p2, g, h, q2),

N∗Z1 N∗Z2N∗H
//

N∗Y1

N∗Z1

N∗P2

��

N∗Y1 N∗Y2N∗G // N∗Y2

N∗Z2

N∗Q2

��

N∗Y1 N∗Y2N∗G //

N∗X1

N∗Y1

N∗P1

��

N∗X1 N∗X2
N∗F // N∗X2

N∗Y2

N∗Q1

��

N∗Z2 N∗Z2

N∗X2

N∗Z2

N∗X2 N∗X2N∗X2

N∗Z2

N∗(Q2Q1)

��
N∗ψ2

N∗ψ1

ρ =

N∗X1

N∗Y1

N∗P1

��
N∗Y1

N∗Z1

N∗Q1

��
N∗Z1 N∗Z1

N∗X1

N∗Z1

N∗X1 N∗X1N∗X1

N∗Z1

��
N∗Z1 N∗Z2N∗H

//

N∗X1

N∗Z1

��

N∗X1 N∗X2
N∗F // N∗X2

N∗Z2

N∗(Q2Q1)

��

ρ N∗(ψ2ψ1)

At objects x ∈ X, y ∈ Y, z ∈ Z, this reduces to

N
∫ y2 P2(Hz, y2) · P1(y2, Fx) N

∫ y2 Q2(Hz, y2) · P1(y2, Fx)ρ
//

∫ y1 NP2(z, y1) ·NP1(y, x)

N
∫ y2 P2(Hz, y2) · P1(y2, Fx)

∫
Nψ1·Nψ2

��

∫ y1 NP2(z, y1) ·NP1(y, x)
∫ y1 NQ2(z, y1) ·NP1(y1, x)

ρ //
∫ y1 NQ2(z, y1) ·NP1(y1, x)

N
∫ y2 Q2(Hz, y2) · P1(y2, Fx)

N(
∫
ψ2·ψ1)

��
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If we pre-compose with an injection at y1, then we can expand the above diagram to

∫ y2 NQ2(Hz, y2) ·NP1(y2, Fx) N
∫ y2 Q2(Hz, y2) · P1(y2, Fx)ρ

//

∫ y1 NP2(z, y1) ·NP1(y, x)

∫ y2 NQ2(Hz, y2) ·NP1(y2, Fx)

∫
Nψ1·Nψ2

��

∫ y1 NP2(z, y1) ·NP1(y, x) N
∫ y1 P2(z, y1) · P1(y, x)

ρ // N
∫ y1 P2(z, y1) · P1(y, x)

N
∫ y2 Q2(Hz, y2) · P1(y2, Fx)

N(
∫
ψ2·ψ1)

��

NP2(z, y1) ·NP1(y1, x) N(P2(z, y1) · P1(y1, x))Ñ // N(P2(z, y1) · P1(y1, x)) N(Q2(Hz,Gy1) ·Q1(Gy1, Fx))
N(ψ2·ψ1)//NP2(z, y1) ·NP1(y1, x)

NQ2(Hz,Gy1) ·NQ1(Gy1, Fx)

Nψ2·Nψ1

��

NP2(z, y1) ·NP1(y1, x)

∫ y1 NP2(z, y1) ·NP1(y, x)

iy1

$$JJJJJJJJJJJJJJJ
N(P2(z, y1) · P1(y1, x))

N
∫ y1 P2(z, y1) · P1(y, x)

N(iy1 )

&&MMMMMMMMMMMMMMMM

NQ2(Hz,Gy1) ·NQ1(Gy1, Fx)

∫ y2 NQ2(Hz, y2) ·NP1(y2, Fx)

iGy1

$$JJJJJJJJJJJJJJJ
NQ2(Hz,Gy1) ·NQ1(Gy1, Fx)

N(Q2(Hz,Gy1) ·Q1(Gy1, Fx))

Ñ

��
N(Q2(Hz,Gy1) ·Q1(Gy1, Fx))

N
∫ y2 Q2(Hz, y2) · P1(y2, Fx)

N(iGy1
)

::

N(Q2(Hz,Gy1) ·Q1(Gy1, Fx))

N
∫ y2 Q2(Hz, y2) · P1(y2, Fx)

N(iGy1
)

~~

(where, to save space, · represents the tensor product in both V and W). The internal

regions all commute by definition of the maps out of the co-ends. The outer diagram

commutes by naturality of Ñ . Thus N∗ is a lax double functor.

8.2.2 α∗ as a Horizontal Natural Transformation

Suppose now that we have monoidal functors V
N,M //W and a monoidal natural

transformation N α //M . We wish to show that we can define a horizontal transfor-

mation N∗
α∗ //M∗. For an object X ∈ V-CAT, define α∗X as it was defined in the

V-cat case (see Proposition 4.3.1). The next proposition shows how we can define

α∗ on a profunctor. In contrast to the definition of α# as a module, the definition of

α∗ as a horizontal transformation is entirely straightforward: in effect, it is nothing

more than α itself.

Proposition 8.2.2. Suppose that (V,⊗, I)
N,M // (W, •, J) are monoidal functors,

and N α //M is a monoidal natural transformation between them. Given a profunctor
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X P //Y ∈ V-prof, we can define a cell in W-CAT

N∗Y M∗Yα∗Y
//

N∗X

N∗Y

N∗P

��

N∗X M∗X
α∗X //M∗X

M∗Y

N∗Q

��
α∗P

with component at x ∈ X, y ∈ Y given by

NP (y, x)
αP (y,x) //MP (y, x)

Proof. We need to show that α∗P is a V-form, so we need to show that it satisfies

compatibility with left and right actions of the associated profunctors. For the right

action, we need the following diagram to commute:

N(P (y, x)⊗X(x, x′)) M(P (y, x)⊗X(x, x′))α___ //___

NP (y, x) •NX(x, x′)

N(P (y, x)⊗X(x, x′))

Ñ

��

NP (y, x) •NX(x, x′) MP (y, x) •NX(x, x′)α•1 //MP (y, x) •NX(x, x′)

M(P (y, x)⊗X(x, x′))

NP (y, x′) MP (y, x′)α
//

N(P (y, x)⊗X(x, x′))

NP (y, x′)

N(PR)

��

N(P (y, x)⊗X(x, x′)) M(P (y, x)⊗X(x, x′))M(P (y, x)⊗X(x, x′))

MP (y, x′)

M(PR)

��

MP (y, x) •NX(x, x′)

MP (y, x) •MX(x, x′)

1•α
��

MP (y, x) •MX(x, x′)

M(P (y, x)⊗X(x, x′))

M̃

��

NP (y, x) •NX(x, x′)

MP (y, x) •MX(x, x′)

α•α

++VVVVVVVVVVVVVVVVVVVVVVV

The top right triangle is bifunctoriality of •, the bottom square is naturality of α,

and the middle region is monoidal naturality of α. The left action axiom is similar,

and so α∗P is a W-form.

Now that we have defined α∗ on objects and vertical arrows, we need to show that

it defines a horizontal transformation.

Proposition 8.2.3. Suppose that (V,⊗, I)
N,M // (W, •, J) are monoidal functors,

and N α //M is a monoidal natural transformation between them. With actions on

objects and vertical arrows as above, α∗ is a horizontal transformation between the

lax double functors N∗,M∗.
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Proof. We know from Proposition 4.3.1 that α∗X defines a natural transformation.

It remains to show the other three axioms. For the first, we need to show that for a

cell ψ : (P, F,G,Q),

N∗W N∗ZN∗G
//

N∗X

N∗W

N∗P

��

N∗X N∗Y
N∗F // N∗Y

N∗Z

N∗Q

��
N∗ψ

N∗Z M∗Yα∗Z
//

N∗Y

N∗Z

N∗Q

��

N∗Y M∗Y
α∗Y //M∗Y

M∗Y

M∗Q

��
α∗Q =

N∗W M∗Wα∗W
//

N∗X

N∗W

N∗P

��

N∗X M∗X
α∗X //M∗X

M∗W

M∗P

��
α∗P

M∗W M∗ZM∗G
//

M∗X

M∗W

M∗P

��

M∗X M∗Y
M∗F //M∗Y

M∗Z

M∗Q

��
M∗ψ

The horizontal composition of cells in W-CAT is simply composition, so this reduces

to showing that the following diagram commutes, for x ∈ X, w ∈W,

MQ(w, x) MW (Gw,Fx)
Mψ
//

NP (w, x)

MQ(w, x)

α

��

NP (w, x) NQ(Gw,Fx)
Nψ // NQ(Gw,Fx)

MW (Gw,Fx)

α

��

This commutes by naturality of α.

For the second axiom, we need to show that for a V-category X,

N∗X M∗Xα∗X
//

N∗X

N∗X

1N∗X

��

N∗X M∗X
α∗X //M∗X

M∗X

1MX

��
M∗X M∗X

M∗X

M∗X

1MX

��

M∗X M∗XM∗X

M∗X

M∗(1X)

��
1α∗X ρM∗X =

N∗X N∗X

N∗X

N∗X

1N∗X

��

N∗X N∗XN∗X

N∗X

N∗(1X)

��
N∗X M∗Xα∗X

//

N∗X

N∗X

N∗(1X)

��

N∗X M∗X
α∗X //M∗X

M∗X

M∗(1X)

��
ρX α∗1X

Since both ρ’s are identities, we only need to show that 1α∗X = α∗1X. At x′, x ∈ X,

1α∗X is the effect on homs of α∗X, which is simply NX(x′, x)
αX(x′,x) //MX(x′, x).

On the other hand, α∗1X is α applied to the identity of X(x′, x), so it is also αX(x′, x).

For the final axiom, we need to show that given X
P // Y

Q // Z ∈ V-prof,

N∗Z M∗Zα∗Z
//

N∗Y

N∗Z

N∗Q

��

N∗Y M∗Yα∗Y //M∗Y

M∗Z

MQ

��

N∗Y M∗Yα∗Y //

N∗X

N∗Y

N∗P

��

N∗X M∗X
α∗X //M∗X

M∗Y

MP

��

M∗Z M∗Z

M∗X

M∗Z

M∗X M∗XM∗X

M∗Z

M∗(QP )

��
α∗Q

α∗P

ρ =

N∗X

N∗Y

N∗P

��
N∗Y

N∗Z

N∗Q

��
N∗Z N∗Z

N∗X

N∗Z

N∗X N∗XN∗X

N∗Z
��

N∗Z M∗Zα∗Z
//

N∗X

N∗Z
��

N∗X M∗X
α∗X //M∗X

M∗Z

N∗(QP )

��

ρ α∗(QP )
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At objects z ∈ Z, x ∈ X, this reduces to checking that the following commutes:

N(
∫ y
Q(z, y)⊗ P (y, x) M(

∫ y
Q(z, y)⊗ P (y, x)

α∗(QP )
//

∫ y
NQ(z, y) •NP (y, x)

N(
∫ y
Q(z, y)⊗ P (y, x)

ρ

��

∫ y
NQ(z, y) •NP (y, x)

∫ y
MQ(z, y) •MP (y, x)

∫
α∗Q•α∗P //

∫ y
MQ(z, y) •MP (y, x)

M(
∫ y
Q(z, y)⊗ P (y, x)

ρ

��

If we pre-compose with an injection to y ∈ Y, this reduces to checking that the

following commutes:

N(Q(z, y)⊗ P (y, x)) M(Q(z, y)⊗ P (y, x)α
//

NQ(z, y) •NP (y, x)

N(Q(z, y)⊗ P (y, x))

Ñ

��

NQ(z, y) •NP (y, x) MQ(z, y) •MP (y, x)α•α //MQ(z, y) •MP (y, x)

M(Q(z, y)⊗ P (y, x)

M̃

��

This last diagram is exactly monoidal naturality of α. Thus all axioms are satisfied,

and α∗ is a horizontal transformation.

8.2.3 The Full Change of Base (−)∗

Finally, we show that with the components defined in the previous sections, (−)∗ is a

2-functor between (Cocomplete Monoidal Categories, Monoidal Functors, Monoidal

Natural Transformations) and (Double Categories, Lax Double Functors, Horizontal

Transformations).

Theorem 8.2.4. With components defined on objects as in Proposition 4.2.1, on

arrows as in Proposition 8.2.1, and on 2-cells as in Proposition 8.2.3,

cmoncat
(−)∗ // dblcat

defines a 2-functor.

Proof. In Theorem 4.3.2, we saw that (−)∗ defines a 2-functor from moncat to 2-cat.

In Theorem 6.2.3, we saw that (−)# defines a functor between (Cocomplete Monoidal

Categories, Monoidal Functors) and (Bicategories, Lax Functors). All that remains



133

to show is that (−)∗ preserves horizontal and vertical composition and identities of

horizontal transformations. Suppose that we have monoidal natural transformations

V W

N

  
V WM //

�� α1

V WM //V W

P

??
�� α2

We need to show that (α2)∗ ◦ (α1)∗ = (α2 ◦ α1)∗. Since the original (−)∗ is a 2-

functor, these horizontal transformations have identical action on objects. To show

that they have equal action on a profunctor X P //Y, recall that vertical composition

of horizontal transformations is merely horizontal composition. Moreover, horizontal

composition of cells in W-CAT is simply composition in W. Thus,

(α2 ◦ α1) ∗ (P )(y, x) = (α2P )(y, x) ◦ (α1P )(y, x)

= α2P (y, x) ◦ α1P (y, x)

= (α2)∗(P )(y, x) ◦ (α1)∗(P )(y, x)

= (α2)∗ ◦ (α1)∗(P )(y, x)

so that they are equal. In the same way, vertical identities are preserved.

Preservation of horizontal composition is similar, since the horizontal composition

of natural transformations and horizontal transformations is done in the same way.

Indeed, suppose that we have monoidal natural transformations

V W

N1

$$
V W

N2

;;�� α1 W Z

M1

##
W Z

M2

;;�� α2

Recall that at an object X ∈ V, (α2 ? α1)X has components

N2N1X
α2(N1X) //M2N1X

M2α1X //M2M1X

The horizontal composition of horizontal transformations is defined in exactly the

same way on both objects and cells, using the horizontal composition of W-CAT,
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which, again, is simply composition. So

((α2)∗ ? (α1)∗)(P )(y, x) = (α2)∗(N1P )(y, x) ◦M2(α1)∗P (y, x)

= α2(N1P (y, x)) ◦M2(α1(P (y, x)))

= (α2 ? α1)P (y, x)

= (α2 ? α1)∗(P )(y, x)

Thus (−)∗ does preserve horizontal composition, and so is a 2-functor.

8.3 (−)∗ is Monoidal

In Chapter 5, one of the first steps in showing that N∗ preserved monoidal categories

was to show that (−)∗ was monoidal. In fact, this had additional value in that it gave

a direct proof that V-cat had a monoidal structure. Here, we give this first step in

moving our work to double categories, by showing that the double category version

of (−)∗ is monoidal.

Theorem 8.3.1. The 2-functor cmoncat
(−)∗ // dblcat is monoidal.

Proof. To show that (−)∗ is monoidal, define the identity comparison maps as in

Proposition 5.4.2. To define the tensor comparison maps, we need arrows

V-CAT×W-CAT
ψ // (V ×W)-CAT

As these are arrows in dblcat, these should be lax double functors. From Proposition

5.4.2, we know how to define this comparison on objects and horizontal arrows. Defin-

ing it on profunctors is similar. Suppose we have profunctors X1
P //X2 ∈ V-prof,

Y1
Q //Y2 ∈W-prof. Then we can define

ψ(P ×Q)((x2, y2), (x1, y1)) := (P (x2, x1), Q(y2, y1))

We need to show that this assignment carries with it comparisons that make T into

a lax functor. So, suppose now that we have profunctors

X1
P1 //X2

P2 //X3
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and

Y1
Q1 //Y2

Q2 //Y3

We then need to be able to compare

ψ(P1, Q1) ◦ ψ(P2, Q2) and ψ((P1, Q1) ◦ (P2, Q2))

Evaluated at objects (x1, y1), (x3, y3), the first expression reduces to(∫ x2,y2

P2(x3, x2)⊗ P1(x2, x1),

∫ x2,y2

Q2(y3, y3)⊗Q1(y2, y1)

)
while the second reduces to(∫ x2

P2(x3, x2)⊗ P1(x2, x1),

∫ y2

Q2(y3, y3)⊗Q1(y2, y1)

)
To get an arrow out of the first co-end, we simply define it on each component of each

part of the product as an injection. Checking that all axioms are satisfied is tedious

but straightforward.

Suppose now that we have cells

W1 Z1G1

//

X1

W1

P1

��

X1 Y1
F1 //Y1

Z1

Q1

��

α1 and

W2 Z2G2

//

X2

W2

P2

��

X2 Y2
F2 //Y2

Z2

Q2

��

α2

with α1 ∈ V-CAT and α2 ∈W-CAT. Since ψ is defined on functors and profunctors

as product, we define

(P1(w1, x1), P2(w2, x2)
ψ(α1,α2) // (Q1(G1w1, F1x1), Q2(G2w2, F2w2))

as α1 × α2. That ψ preserves composition of cells follows from the fact that × is a

functor.

Finally, the fact that ψ is associative and unital also follows directly from the fact

that × is associative and unital.
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This shows that if V is a pseudomonoid in cmoncat (in particular, if V is

braided), then V-CAT will be a pseudomonoid in dblcat. In other words, V-CAT

is a monoidal double category.

The results of this chapter suggest that the best structure that V-categories form

is not a bicategory, but a double category. Certainly, much work can be done in the

bicategory V-prof. However, if we take the idea that the arrows and 2-cells between

monoidal categories are just as important as the monoidal categories themselves, then

we must accept the fact that double categories are needed. The consequences of this

are discussed in the final chapter.



Chapter 9

Conclusion

In this final chapter, we discuss the various possibilities for future work that are a

result of this thesis. There are a number of different areas that could be investigated;

some from the initial discussions of normed vector spaces, others from the results

about change of base, and a few simply from the methodology and ideas behind some

of the proofs.

9.1 Structured Double Categories

We believe that the most important result of this thesis is the (re)discovery of the

fact that change of base for enriched categories, when including profunctors, is best

viewed as a double functor between double categories. To re-iterate: without viewing

V-cat as a double category, one cannot have the full 2-categorical change of base

and include V-profunctors. Moreover, as we have seen, the squares in the double

category V-CAT appear in numerous situations, showing again the importance of

understanding the double category V-CAT.

This should lead to new ideas in the area of structured higher categories. Much

of the recent work of the Australian school on structured bicategories (monoidal bi-

categories, cartesian bicategories, autonomous bicategories, etc.) has been focused

on bicategories, since this was seen as the most natural structure for V-categories

and their profunctors. However, the change of base for V-categories indicates that

V-categories and their profunctors should be viewed together with V-functors, so

that the result is a double category. Thus, the structured bicategory notions should

be re-worked into structured double category notions: cartesian double categories,

monoidal double categories, autonomous double categories, etc. As we have seen,

this would also permit a greater understanding of the roles of the special squares that

137
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appear so often in the definitions of structured bicategories. As nearly all examples

of structured bicategories are of the enriched category variety, we would not be los-

ing any important examples by asking that we work with double categoies instead

of bicategories. We would also hope that by moving our work to structured double

categories, we will be able to show that N∗ preserves autonomous objects, which we

could not do when using structured bicategories.

Moreover, the very fact that V-cat should be viewed as a double category is itself

interesting for higher category theory. Much of higher category theory has been con-

cerned with defining “weak n-categories”, where weak 2-categories are bicategories.

The reason for this was because of the central status of the prototypical bicategory

V-prof. However, if the proper weakening step is not 2-category to bicategory, but

instead 2-category to weak double category, then perhaps the entire project of n-

category theory needs to be rethought. That is, instead of trying to define weak

n-category, perhaps one should be trying to define weak n-double categories. Indeed,

the very fact that weak double categories, double functors, and horizontal transfor-

mations form a 2-category, while bicategories, lax functors, and lax natural transfor-

mations do not is reason enough to think that higher-dimensional double categories

have a greater potential than higher-dimensional bicategories.

9.2 Two versions of Normed Space

As we have seen, there are two versions of what normed space should correspond

to: one views them as monoidal functors from compact categories, the other as V-

compact closed categories. Much of the thesis was taken up in trying to understand

how one could transfer between these two ideas. Ultimately, this led to viewing V-

categories as objects of a double category, and in the end, the desired transfer of

structure was not achieved. This still leaves a very large project: determine under

what conditions these two structures are the same.

Even if they are not the same, however, this still leaves the rather large area of
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applying the ideas of normed vector spaces to category theory, using one or the other

view of normed vector spaces. It would be interesting to see how many of the major

theorems of analysis (such as the Hahn-Banach theorem) have corresponding versions

in category theory.

9.3 Cauchy-Completeness

One benefit of moving from the bicategory V-prof to the double category V-CAT is

that it eliminated the need to consider Cauchy complete V-categories. The Cauchy-

completeness requirement was neccesary to be able to access the V-functors as the

maps in V-prof. However, in the double category V-CAT, the V-functors exist

as the horizontal arrows, and so we do not need to require that our categories be

Cauchy-complete.

This leads to an interesting thought: by doing analysis in the double category

of metric spaces, can we eliminate the need to require that metric spaces be Cauchy

complete? The essential element of this project that must be determined is the nature

of how Cauchy-completeness is used. If it is used, as it is for categories, merely to

access a certain type of arrow, then potentially it could be eliminated. While Cauchy-

completeness is not a very large restriction on a metric space, it is still an obtrusive

technical condition. For example, surprisingly often, a paper in analysis will make

some construction, then be forced to take the Cauchy-completion to get a space that

is amenable to the standard theorems of analysis. What one really wants, of course, is

to work with the original space. If the requirement of Cauchy-completeness was found

to be unncessary by using the double category of metric spaces, it would simplify a

rather annoying technical restriction in the work of analysts.

9.4 Meta-Theorem for Monoidal Functors

In Chapter 4, we introduced the idea of applying a monoidal functor monoidally.

The meta-theorem for monoidal functors would say something along the lines of the
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following: if D is a commutative diagram, and F is applied monoidally to the arrows

of D, then the resulting diagram is still commutative. All of the early propositions

of Chapter 4 are of this type. Unfortunately, a general statement seems difficult

to formulate. We would like to be able to say that the new diagram FD should

have F applied monoidally where it is appropriate, but also change instances of the

associativity or unit isomorphisms as appropriate (see, for example, the stament of

Lemma 4.1.3). If a general statement could be formulated, the resulting theorem

would be probably easy to prove. As in most areas of category theory, it is only in

formulating the actual statement that poses any difficulty. Such a theorem would be

both interesting technically and useful theoretically.

9.5 Normed Modules

One of the more interesting discoveries of Chapter 3 was that the idea of normed

module is the same as the usual notion of normed vector space, assuming (as analysts

do) that the vector space is over R or C. That is, the sub-scalar invariance of normed

modules implies the exact scalar invariance of normed vector spaces. This tells us

that the sub-scalar invariance notion for modules is the correct one. This, in turn,

leads to the interesting possibility that there may be normed modules that exist in

nature that have not yet been discovered as normed modules. That is, they have

been found, but were discarded for lacking the scalar invariance of normed vector

spaces. As with earlier, one could also investigate how many results from normed

vector spaces carry over to the more general normed modules. Were interesting ex-

amples of normed modules to be found, they would surely enrich the study of analysis.

The ideas from this thesis could be applied in a number of different areas. Hope-

fully some of the ideas presented here will allow further interesting connections be-

tween the areas of functional analysis and category theory.
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