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Abstract. We investigate the canonical conjugation, χ, of the mod 2 dual
Steenrod algebra, A∗, with a view to determining the subspace, Aχ∗ , of ele-
ments invariant under χ. We give bounds on the dimension of this subspace
for each degree and show that, after inverting ξ1, it becomes polynomial on a
natural set of generators. Finally we note that, without inverting ξ1, Aχ∗ is far
from being polynomial.

1. Introduction

The mod 2 dual Steenrod algebra, A∗, being a connected commutative Hopf
algebra, has a canonical conjugation or anti-automorphism χ. This map was first
studied by Thom [T] but most of what we know today about χ is due to Milnor
[M]. Our aim is to study the subspace of A∗ consisting of elements invariant under
this conjugation map; we denote this subspace by Aχ∗ . While we are unable to
give a complete description of Aχ∗ , we have established bounds on its dimension
in each degree (Theorem 3.1) and we can show that, after inverting the element
ξ1 ∈ A∗, the invariant subspace becomes polynomial (Theorem 4.1). Finally, our
investigations have also led us to construct a large number of indecomposables in
Aχ∗ (section 5).

We begin by recalling the structure of A∗ and certain well known facts about the
map χ, while in section 2 we deduce some elementary properties of χ. In section 3
we derive our bounds on the dimension of the subspace of invariants and in section
4 we study the result of inverting ξ1. The final section discusses multiplicative
generators for the invariants.

The structure of the Hopf algebra A∗ was determined by Milnor [M]. As an
algebra, A∗ = F2[ξ1, ξ2, ξ3, . . . ], where the degree of ξi is 2i − 1. The coproduct φ
is determined by the formula

φ(ξk) =
k∑
i=0

ξ2i

k−i ⊗ ξi ,

where ξ0 is interpreted as 1.
From [MM] we know that any connected Hopf algebra, H , has a unique bijective

linear map, χ : H → H , called the ‘conjugation’, with the following properties:
1) χ(1) = 1,
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2) χ(xy) = χ(y)χ(x) (i.e. χ is an anti-automorphism),
3) If φ(a) =

∑
a′i ⊗ a′′i where a ∈ H+ (i.e. deg a > 0), then

∑
a′iχ(a′′i ) = 0.

(Since the coproduct φ always satisfies the identity φ(a) ≡ a⊗1+1⊗a mod H+⊗
H+, the last property determines χ inductively.)

Furthermore, if the Hopf algebra is either commutative or cocommutative, then
χ2 is the identity homomorphism.

In the case of the dual Steenrod algebra, property 3 leads inductively to the
following formula for χ (Lemma 10 of [M]).

1.1 Lemma. In the dual Steenrod algebra A∗,

χ(ξn) =
∑

α∈Part(n)

l(α)∏
i=1

ξ2σ(i)

α(i) ,

where Part(n) denotes the set of all ordered partitions of n; and for a given or-
dered partition α = (α(1) |α(2) | . . . |α(l)) ∈ Part(n), σ(i) denotes the partial sum∑i−1
j=1 α(j).

This lemma enables us to determine χ on an arbitrary element of A∗, by virtue
of multiplicativity (which follows from property 2 since A∗ is commutative) and
linearity.

We end this introduction with a few comments on motivation for the problems
discussed in this paper. Expressions like Hm(Σn, π∗(E∧n)) arise in spectral se-
quences for gamma cohomology of an E∞-ring spectrum E [RW]. For E suitably
nice, this is Hm(Σn, (E∗E)⊗(n−1)), the Σn action here being described in [W]; for
n = 2, Σ2 acts by the usual conjugation on E∗E. This paper is therefore concerned
with the very special case of this problem where E = HF2 and n = 2. Note that
this application requires the whole cohomology H∗(Σ2;A∗) not just the zero degree
part H0(Σ2;A∗) = Aχ∗ . With this in mind we shall occasionally comment on the
higher cohomology groups although the main concern of this paper is Aχ∗ .

2. Elementary properties of conjugation

Now we make some elementary observations on the properties of the conjugation
χ. For a connected Hopf algebra H, we denote by Hχ the invariant elements of
H under the conjugation map χ : H → H. The identity homomorphism will be
denoted by 1, so that Hχ = Ker(χ− 1).

2.1 Lemma. If H is commutative, Hχ is a subalgebra of H.

Proof. The conjugation χ is always an anti-automorphism. So, when H is commu-
tative, it is a homomorphism of algebras.

We denote by Hd the degree d part of a graded object (e.g. Hopf algebra) H.

2.2 Lemma. If H is a commutative or cocommutative Hopf algebra over F2, then
dimHχd ≥ dimHd/2.

Proof. We have χ2 = 1 by the (co)commutativity hypothesis. Since we are working
over F2, this gives (χ − 1)2 = 0, and so Im(χ − 1) ⊂ Ker(χ − 1). Since dimHd =
dim(Im(χ− 1)d) + dim(Ker(χ− 1)d), we have the result.
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2.3 Remark. In the case of the mod 2 (dual) Steenrod algebra, the above dimension
constraint is sharp in low degrees, although not in general. It first fails in degree
42. More details are in section 3, particularly Example 3.4.

2.4 Lemma. In a commutative Hopf algebra H over F2, Im(χ − 1) is an ideal in
Ker(χ− 1). In particular, Im(χ− 1) is a subalgebra of H.

Proof. Let x ∈ Ker(χ − 1). Then x(χ(y) − y) = xχ(y) − xy = χ(x)χ(y) − xy =
(χ−1)(xy). The second part can be proved directly: (χ(x)−x)(χ(y)−y) = χ(z)−z
mod 2, where z = xy + xχ(y).

2.5 Remark. In this situation, the assertion of Lemma 2.1 that H0(Σ2;H) = Hχ =
Ker(χ − 1) has the structure of an algebra extends to the higher cohomology:
Hn(Σ2;H) = Ker(χ−1)/ Im(χ−1) for n > 0 (where Σ2 acts on H by conjugation)
also has an algebra structure.

We now fix our attention on the dual Steenrod algebra, A∗ = F2[ξ1, ξ2, . . . ],
using the notation (r1, r2, . . . , rk) to denote the monomial ξr11 ξ

r2
2 . . . ξrkk . We shall

frequently need to order the monomials of a given degree in A∗ and the right
lexicographic ordering turns out to be the most useful.

The following unitriangularity property is fundamental and will be used many
times without comment.

2.6 Proposition. With respect to right lexicographic ordering of the monomial
basis, the matrix of the conjugation map in each degree, χ : (A∗)d → (A∗)d, is
unitriangular.

Proof. It follows from Lemma 1.1 that χ(ξk) = ξk + Pk where Pk is a polynomial
in ξ1, . . . , ξk−1 and hence strictly lower than ξk. Consequently for any monomial
M in ξ1, . . . , ξk, we have that χ(M) = M + Q where Q is strictly lower than M .
This is because the right lexicographic ordering has the property that if x < x′ and
y ≤ y′, then xy < x′y′. It then follows that the matrix is unitriangular.

2.7 Remark. This unitriangularity property also holds for certain other orderings.
A simple example is left lexicographic ordering. More interestingly, if we define the
weight w of the monomial (r1, . . . , rk) to be r1 + r2 + · · ·+ rk, then we may obtain
further orderings by combining weight and lexicographic orderings. For example,
the ‘weight/reverse-left lex’ order is defined by a ≺ b if either w(a) < w(b) or
w(a) = w(b) and a follows b in left lexicographic ordering. For all such orderings
the above proof can be easily modified. In fact, all the proof needs is that for all k,
(χ−1)(ξk) is strictly lower than ξk (or that (χ−1)(ξk) is always strictly higher) and
that the ordering is ‘multiplicative’, i.e. x ≤ x′ and y ≤ y′ implies that xy ≤ x′y′.

3. Bounds on dimension

In this section we state and prove the following theorem which gives bounds on
the dimension of the invariant subspace Aχ∗ in a given degree.

3.1 Theorem. Let the dimension of the (dual) Steenrod algebra in degree d be
denoted Dd. Then Dd−1/2 ≤ dim((χ− 1)A∗)d ≤ Dd/2 and hence

Dd/2 ≤ dim(Aχ∗ )d ≤ Dd − (Dd−1/2) .
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In fact the upper bound on dim(Aχ∗ )d can be improved upon; see Lemma 3.3
and Example 3.4.

The lower bound on dim(Aχ∗ )d was given by Lemma 2.2; the rest of the the-
orem is a combinatorial corollary of the following proposition. Let a monomial
(r1, r2, . . . , rk) (i.e. ξr11 ξ

r2
2 . . . ξrkk ) be called ‘uniterminal’ if rk = 1.

3.2 Proposition. In (A∗)d, the uniterminal monomials have linearly independent
images under χ− 1.

Proof. We use right lexicographic ordering and claim that the lowest uniterminal
monomial which has (r1 +1, r2, . . . , rk−2, rk−1 +2) as a summand in its image under
χ−1 is (r1, . . . , rk−1, 1). Assuming this claim we argue as follows. Let Q be a linear
combination of images under χ− 1 of uniterminal monomials. We may write Q as
Q = (χ−1)(P ) where P is a linear combination of uniterminal monomials. Suppose
that (r1, . . . , rk−1, 1) is the highest monomial which appears in P . Then our claim
shows that (χ− 1)(P ) will have (r1 + 1, r2, . . . , rk−2, rk−1 + 2) as a summand, and
so cannot be zero. The proposition then follows.

Now to prove the claim. From Lemma 1.1,

χ(ξk) = ξk + ξ2
k−1ξ1 + ξk−1ξ

2k−1

1 + Pk−2 ,

where Pk−2 is some polynomial in ξ1, . . . , ξk−2. Looking at the second term on
the right-hand side of the above expression, we see that the largest monomial in
(χ−1)(r1, . . . , rk−1, 1) which does not contain a ξk is (r1 +1, r2, . . . , rk−2, rk−1 +2).

Now we need to see that no earlier uniterminal monomial has this term in its
image under χ− 1. Suppose it does appear in the image of (j1, . . . , jk′−1, 1), with
(j1, . . . , jk′−1, 1) < (r1, . . . , rk−1, 1) so, in particular, k′ ≤ k. If k′ ≤ k − 1, then
by 2.6 (χ− 1)(j1, . . . , jk′−1, 1) will have no summands with ξk−1-exponent greater
than 1, so cannot have (r1 + 1, r2, . . . , rk−1 + 2) as a summand. If k′ = k, then the
fact that (j1, . . . , jk′−1, 1) < (r1, . . . , rk−1, 1) implies that (j1 +1, j2, . . . , jk−1 +2) <
(r1 + 1, r2, . . . , rk−1 + 2). In this case, the image of (j1, . . . , jk′−1, 1) cannot contain
(r1 + 1, r2, . . . , rk−1 + 2) as a summand.

So dim((χ − 1)A∗)d ≥ Rd where Rd is the number of uniterminal monomials
in degree d. In order to complete the proof of Theorem 3.1 we now obtain some
information about Rd.

3.3 Lemma. 1) Rd ≥ Dd−1/2 ,
2) Rd = Dd−1 −Rd−1 .

Proof. We pair up each uniterminal monomial in degree d with another degree d
monomial that is not uniterminal by the pairing

(r1, r2, . . . , rk−2, rk−1, 1)←→ (r1 + 1, r2, . . . , rk−2, rk−1 + 2).

The monomials left unpaired are characterized by the fact that they begin with
zero and are not uniterminal. The number of these is clearly less than or equal
to the total number beginning with zero, which is Dd −Dd−1. This gives the first
claim. The actual number unpaired is given by (Dd −Dd−1)− (Rd −Rd−1), since
the number of uniterminal monomials starting with zero in degree d is Rd −Rd−1.
This gives the second part.

Note that this gives a recursive formula for the Rd’s in terms of the Dd’s. Alter-
natively, letting P i be the polynomial algebra F2[ξ1, . . . , ξi] (P 0 = F2), it is clear
that Rd =

∑
i≥1 dim(P i−1)d−(2i−1).
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3.4 Example. In degree 42, A∗ has dimension 92. The number of uniterminal
monomials, R42, is 44 while D41 is 86. So the bounds in Theorem 3.1 tell us that
46 ≤ dim(Aχ∗ )42 ≤ 49. If we are prepared to put in more effort (calculating Rd
precisely), then we obtain a sharper upper bound of 48. Further effort (consulting
the matrix of χ− 1) shows the actual dimension of the χ invariants to be 47. Note
also that the lower bound here is not sharp; in fact 42 is the first degree in which
this happens.

4. Conjugation invariants with ξ1 inverted

In this section we adjoin a formal inverse to ξ1, denoting the resulting object by
A∗[ξ−1

1 ]. This is regarded as containing A∗ in the usual way. Since ξ1 is invariant,
A∗[ξ−1

1 ] inherits an action of χ and the subspace of invariants turns out to be much
more manageable. In fact we show (Theorem 4.1) that it is a polynomial ring on
certain natural invariant elements, ε2, ε3, · · · . Clearly Aχ∗ is the intersection of A∗
and A∗[ξ−1

1 ]χ. So one might conclude that, since we have simple descriptions of A∗
and A∗[ξ−1

1 ]χ, we can easily obtain a description of Aχ∗ . However, this turns out
to be far from the case—the problem of finding the highest power of ξ1 dividing a
given polynomial in ξ1, ε2, ε3, · · · seems to be difficult in general. In fact, low degree
calculations quickly reveal that the algebra Aχ∗ is complicated; in particular it is
far from being polynomial.

At the end of this section we show how Theorem 4.1 generalizes nicely to give a
description of the invariants of (A∗/〈ξ1, . . . , ξn−1〉)[ξ−1

n ].
Note that A∗[ξ−1

1 ]χ = Aχ∗ [ξ−1
1 ]. That is to say, if we adjoin ξ−1

1 to the ring Aχ∗ ,
we obtain the same object as if we take the χ-invariants of the ring A∗[ξ−1

1 ].

4.1 Theorem. Let k = F2[ξ1, ξ−1
1 ]. Then

Aχ∗ [ξ−1
1 ] = k[ε2, ε3, . . . ] ,

where ε2 = ξ2χ(ξ2) and, for n ≥ 3, εn = ξ2ξn + χ(ξ2ξn). Furthermore

H i(Σ2;A∗[ξ−1
1 ]) = 0 for i > 0 .

The proof of the second statement is straightforward: in A∗ we have (χ−1)ξ2 =
ξ3
1 . It follows that in A∗[ξ−1

1 ], 1 is the image under χ− 1 of ξ−3
1 ξ2. But Im(χ− 1)

is an ideal in Ker(χ − 1) and so, since 1 ∈ Im(χ − 1), these two objects must be
equal.

Now we consider the first statement. It is evident that the elements εn are
invariant and we claim that they are also algebraically independent. This fol-
lows from the fact that, for each n ≥ 2, εn has a summand involving ξn, whereas
ε2, . . . , εn−1 have no such summands. (The highest right lexicographic monomial of
εn is ξ3

1ξn if n ≥ 3 and ξ2
2 if n = 2.) Thus, since the invariants form a subalgebra,

k[ε2, ε3, . . . ] ⊂ Aχ∗ [ξ−1
1 ]. The opposite inclusion will follow directly from Proposition

4.3.

4.2 Proposition. 1) Consider a monomial (r1, r2, . . . , rk). If r2 is odd, then the
image of this monomial under χ− 1 cannot be expressed as the image under χ− 1
of a linear combination of lower monomials.

2) Let x ∈ A∗ be invariant and let (r1, r2, . . . , rk) be the highest monomial ap-
pearing in x. Then r2 is even.
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Proof. We claim that, if r2 is odd, then the monomial (r1, r2, r3, . . . , rk) is the
first to have (r1 + 3, r2 − 1, r3, . . . , rk) as a summand of its image under χ − 1.
Firstly, these two monomials are adjacent in the right lexicographic ordering, so
by 2.6, (r1, r2, r3, . . . , rk) is the lowest monomial whose image can contain (r1 + 3,
r2 − 1, r3, . . . , rk). Secondly,

χ(r1, r2, r3, . . . , rk) = χ(r1, 0, r3, . . . , rk)χ(ξ2)r2

= χ(r1, 0, r3, . . . , rk)(ξ2 + ξ3
1)r2 .

From this, and the fact that
(
r2
1

)
≡ 1 mod 2, it is clear that (χ−1)(r1, r2, r3, . . . , rk)

does contain a summand (r1 + 3, r2 − 1, r3, . . . , rk). (Comparison of exponents of
ξk, ξk−1, . . . , ξ3 shows that this term cannot arise in any other way.)

The second part follows from the first, for suppose x is invariant, that is,
(χ− 1)(x) = 0, with highest monomial (r1, r2, . . . , rk). Then (χ− 1)(r1, r2, . . . , rk)
can be expressed as the image under χ−1 of a linear combination of lower monomi-
als, namely x− (r1, r2, . . . , rk). If r2 is odd, then this contradicts the first part.

4.3 Proposition. If x ∈ Aχ∗ , then there exists some integer s ≥ 0 such that ξs1x ∈
F2[ξ1, ε2, ε3, . . . ].

Proof. We prove the proposition by a recursion on a well-founded ordering. This
will require us to compare monomials and polynomials of different degrees. We do
this by using the right lexicographic ordering as a total ordering on all monomials
(elsewhere we use right lexicographic ordering only to compare monomials of the
same degree). Having ordered the monomials, we derive an ordering on polynomials
as follows. First compare their highest monomials; if these are equal, then compare
their next highest monomials and so on. So, for example, the monomial (4, 5, 1)
is less than (1, 0, 0, 1), despite the former having a higher degree, and (1, 6, 0, 1) +
(4, 5, 1) + (21, 1) is less than (1, 6, 0, 1) + (1, 0, 0, 1) + (24). It is easy to see that this
ordering is well-founded, by which we mean that any nonempty set of polynomials
has a minimal element. We then claim that, whenever x is such that the proposition
is true for all x′ less than x, it is true for x. This claim implies the proposition: if
the set of elements for which the proposition is false is nonempty, then this set will
have a least element whose existence contradicts the claim.

We now prove the claim. Let l = (r1, r2, . . . , rk) be the leading monomial of x. By
4.2, r2 is even. Let z = ξr11 ε

r2/2
2 εr33 . . . εrkk . Recalling the definition of the εn’s, we see

that the leading monomial in z is ξr1+t
1 ξr22 ξ

r3
3 . . . ξrkk , where t = 3(r3 + r4 + · · ·+ rk).

This is the leading term of ξt1x and we set x′ = ξt1x+z, noting that this is invariant,
as it is the sum of two invariants. Since the leading monomial of z is equal to that of
ξt1x, the leading term of x′ will be strictly lower. Thus x′ is less than x and, by the
hypothesis of the claim, the proposition is true for x′, say ξs1x

′ ∈ F2[ξ1, ε2, ε3, . . . ].
Then ξs+t1 x = ξs1x

′ + ξs1z is also in F2[ξ1, ε2, ε3, . . . ] and the claim is proved.

4.4 Remark. The only properties of εn used in the proof are that εn is invariant and
has a certain highest term. In particular we could replace ε2 by ε̃2 = (χ−1)(ξ−1

1 ξ3).
This gives an alternative proof that Im(χ − 1) = Ker(χ − 1) once ξ1 is inverted,
since ε̃2 ∈ Im(χ− 1) and εn ∈ Im(χ− 1) for all n ≥ 3 and we can re-run the whole
programme of the proof of 4.3 with ‘Im(χ− 1)’ in place of ‘Ker(χ− 1)’.

Now we mention a generalization of Theorem 4.1. We consider the situation
where we kill off the first n − 1 generators, ξ1, . . . , ξn−1, of A∗ and invert the nth
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generator: let A∗〈n〉 denote (A∗/〈ξ1, . . . , ξn−1〉)[ξ−1
n ], where 〈ξ1, . . . , ξn−1〉 is the

ideal generated by ξ1, . . . , ξn−1. Note that ξn is invariant in A∗/〈ξ1, . . . , ξn−1〉, so
A∗〈n〉 inherits a well defined map χ. (In fact, ξn, ξn+1, . . . , ξ2n−1 are all invariant.)

4.5 Theorem. Let k = F2[ξn, ξ−1
n ]. Then

A∗〈n〉χ = k[ε〈n〉n+1, ε〈n〉n+2, . . . ],

where ε〈n〉m = ξ2nξm + χ(ξ2nξm) if m 6= 2n and ε〈n〉2n = ξ2nχ(ξ2n). Furthermore

H i(Σ2;A∗〈n〉) = 0 for i > 0 .

The proof of this result is entirely analogous to that of Theorem 4.1. For the
second part, it is sufficient to note that the image under χ − 1 of ξ2n is ξ2n+1

n

(modulo ξ1, . . . , ξn−1). For the first part, one observes that the ε〈n〉m’s are all
invariant and algebraically independent and so k[ε〈n〉n+1, ε〈n〉n+2, . . . ] ⊂ A∗〈n〉χ.
Then one shows that if θ = ξ

en+1
n+1 ξ

en+2
n+2 . . . ξekk where e2n is even, then there exists an

r such that ξrnθ can be expressed as the leading term of a monomial in the ε〈n〉m’s
(modulo ξ1, . . . , ξn−1). Using this, one runs through the recursion argument of
Proposition 4.3 with the following lemma in place of Proposition 4.2.

4.6 Lemma. If θ is the leading term of a polynomial in A∗/〈ξ1, . . . , ξn−1〉 which
is invariant, then the exponent of ξ2n in θ is even.

The argument is broadly the same as that of Proposition 4.2: if the exponent of
ξ2n in θ is odd, then (χ−1)θ contains the summand ξ2n+1

n ξ−1
2n θ and one checks that

there cannot exist any monomial θ′ less than θ such that (χ − 1)θ′ also contains
this summand.

5. Some generators

A natural question to ask is: what is the lowest degree in which we can find
an invariant polynomial which involves ξn? For n = 1, ξ1 itself is invariant so the
answer is 1. For n = 2 one can see that it is 6, since, for example, ε2 = ξ2χ(ξ2) is
invariant. For n ≥ 3 one might guess that εn = (χ− 1)(ξ2ξn) had the lowest degree
among invariants involving ξn, yielding the answer 2n + 2. However, we shall see
that, at least for n ≤ 7, we can find an invariant in degree 2n + 1 with a summand
ξ2
1ξn. The following lemma implies that no lower degree invariants involve ξn.

5.1 Lemma. The monomials ξn and ξ1ξn are not summands of any invariant el-
ements.

Proof. The image of ξn under χ − 1 contains the monomial ξ1ξ2
n−1, which imme-

diately precedes ξn in the right lexicographic ordering. Since ξn is the highest
monomial in its degree, nothing else can have this monomial ξ1ξ2

n−1 in its image.
Hence ξn cannot be a summand of an invariant polynomial (cf. the proof of Propo-
sition 4.2). Similarly, ξ1ξn has ξ2

1ξ
2
n−1 in its image and is the only monomial which

does so.

However, the above argument cannot be applied to ξ2
1ξn. The highest term in

its image is ξ3
1ξ

2
n−1, but this does not immediately precede ξ2

1ξn in the ordering—
ξ2ξ

2
n−1 occurs between them and is seen to also have ξ3

1ξ
2
n−1 in its image. In fact
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ξ2
1ξn is a summand (and necessarily the leading term) of an invariant for small n

and we make the following

5.2 Conjecture. For each n ≥ 3, there exists a polynomial dn in degree 2n + 1,
invariant under χ and with leading term ξ2

1ξn.

We have been able to construct such elements for n = 3, 4, 5, 6, 7. We describe
below one particular choice of such elements but first we need more notation.

Notation. We define certain elements of A∗, which are evidently invariant.

an = ξnχ(ξn) ,

bm1,m2,...,mn = (χ− 1)(ξm1ξm2 . . . ξmn) .

The following elements are examples of the dn’s of Conjecture 5.2.

d3 = b2,3/ξ1 ,

d4 = (b2,4 + a3
2)/ξ1 ,

d5 = (b2,5 + a2a
2
3 + a2

2b3,4)/ξ1 ,

d6 = (b2,6 + a2a
2
4 + a2

3b3,5 + a6
2a4 + a4

2a
3
3 + a11

2 )/ξ1 ,

d7 = (b2,7 + a2a
2
5 + a2

4b3,6 + a2
2a

4
3a5 + a9

2a3a5 + a6
3b4,5 + a7

2a
3
3b4,5 + a14

2 b4,5

+ a3
2a

4
3b2,3,4,5 + a10

2 a3b2,3,4,5 + a3
2a

3
4b3,4 + a13

2 a4b3,4 + a5
3a

2
4 + a17

2 a
2
3)/ξ1 .

Note that the above expressions are all quotients by ξ1 of some sum starting with
b2,n. In fact a conjecture equivalent to 5.2 is

5.2′ Conjecture. For each n ≥ 3, there exists an invariant polynomial xn, not
equal to b2,n, but such that

xn ≡ b2,n mod 〈ξ1〉 ,

where 〈ξ1〉 denotes the ideal generated by ξ1.

We would then obtain dn by setting dn = (b2,n + xn)/ξ1. (The invariance of xn
implies that of dn since a quotient of one invariant by another is invariant.) Note
that we refer to “dn” rather than “a choice of dn” because all choices are easily
seen to be equivalent modulo invariants in ξ1, · · · , ξn−1.

The importance of these elements dn is that they are indecomposable and hence
necessary members of any set of multiplicative generators for Aχ∗ . To prove that
they are indecomposable, suppose the converse. Then it would be possible to
express the summand ξ2

1ξn as a nontrivial product of two elements which occur
as summands in invariant elements. Lemma 5.1 states that this is not the case.

The same argument can be used to show that the elements an for n ≥ 2 are
indecomposable too; one considers the summand ξ2

n. We can also show that ‘most’
of the elements bm1,m2,...,mn are indecomposable. However, in order to do this we
need a lemma.

5.3 Lemma. 1) The monomial ξn1 . . . ξnk where k ≥ 2 and 1 ≤ n1 < · · · < nk is
not a summand of any invariant polynomial.

2) The monomial ξ2
n1
ξn2 . . . ξnk is not a summand of any invariant polynomial

if n1 + 1 < n2 < n3 < · · · < nk and either n1 > 1 or k > 2.
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Proof. The proof of the first part is just a generalization of that of Lemma 5.1. One
sees easily that any monomial ξn1 . . . ξnk , where k ≥ 2 and 1 ≤ n1 < · · · < nk, is the
highest monomial in its degree with respect to right lexicographic ordering. The
image under χ−1 of this monomial has leading term ξ1ξ

2
n1−1ξn2 . . . ξnk if n1 > 1 and

ξ2
1ξ

2
n2−1ξn3 . . . ξnk if n1 = 1. In either case the leading term immediately precedes

ξn1 . . . ξnk and hence cannot occur in the image of any other monomial.
For the second part, we consider the cases k = 2 and k > 2 separately. In both

cases the argument is similar to the one above, but two steps are required.
Suppose k = 2. First, by considering the partition (1 |n2 − 1) of n2, we see that

the image under χ− 1 of the monomial ξ2
n1
ξn2 has ξ1ξ2

n1
ξ2
n2−1 as a summand. The

only other monomial which has this summand in its image is ξn1+1ξ
2
n2−1. Thus

any invariant element which has ξ2
n1
ξn2 as a summand must also have a summand

ξn1+1ξ
2
n2−1. Second, provided n1 > 1, we can consider the partition (2 |n1 − 1)

of n1 + 1 to see that the latter monomial has ξ2ξ4
n1−1ξ

2
n2−1 as a summand of its

image. One can see that this cannot occur as a summand in the image of any other
monomial; hence, for n1 > 1, there is no invariant with ξ2

n1
ξn2 as a summand.

Now let k > 2. By considering the partition (1 |n2 − 1) of n2, we see that
the image under χ − 1 of the monomial ξ2

n1
ξn2 . . . ξnk has ξ1ξ2

n1
ξ2
n2−1ξn3 . . . ξnk as

a summand. If n1 + 1 < n2, then the monomial ξn1+1ξ
2
n2−1ξn3 . . . ξnk will also

have this as a summand in its image and will be the only other monomial that
does. Thus, any invariant element with a summand ξ2

n1
ξn2 . . . ξnk must also have a

summand ξn1+1ξ
2
n2−1ξn3 . . . ξnk . Now, considering the partition (2 |nk − 2) of nk,

we see that the latter monomial has ξ2ξn1+1ξ
2
n2−1ξn3 . . . ξnk−1ξ

4
nk−2 as a summand

of its image and again one checks that no other monomial has this in its image.
Thus, ξ2

n1
ξn2 . . . ξnk cannot be a summand of an invariant polynomial.

5.4 Proposition. The element bm1,m2,··· ,mn is indecomposable if either 2 < m1 <
· · · < mn and n ≥ 2 or 2 ≤ m1 < m2 < · · · < mn and n > 2. Furthermore, if n ≥ 3
is such that dn does not exist, then b2,n is indecomposable.

Proof. Suppose m1, · · · ,mn satisfy the above conditions. Then the leading term of
bm1,m2,··· ,mn is either ξ3

1ξm2 . . . ξmn if m1 = 2 or ξ1ξ2
m1−1ξm2 . . . ξmn if m1 > 2. Any

attempt to write either of these terms as a nontrivial product of monomials will
involve at least one factor which, by Lemma 5.1 or Lemma 5.3, cannot occur as a
summand of an invariant polynomial. Hence bm1,m2,...,mn cannot be decomposable.
Finally, if dn does not exist, then ξ3

1ξn, the leading term of b2,n, cannot be written as
a nontrivial product of summands of invariants and b2,n must be indecomposable.

Now note that the b∗···∗ family alone provides Aχ∗ with far too many generators
for it to be polynomial (by transcendence degree considerations).

These three families a∗, b∗···∗, d∗, together with ξ1, are actually sufficient gener-
ators up to degree 48. However, in degree 49 a new generator is necessary and our
guess is that this is the first of a new infinite family, a generalization in some sense
of the mysterious d∗ family.
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