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FIXED SET SYSTEMS OF EQUIVARIANT INFINITE LOOP SPACES

STEVEN R. COSTENOBLE AND STEFAN WANER

Abstract. We develop machinery enabling us to show that suitable G-spaces,

including the equivariant version of BF , are equivariant infinite loop spaces.

This involves a "recognition principle" for systems of spaces which behave for-

mally like the system of fixed sets of a G-space; that is, we give a necessary and

sufficient condition for such a system to be equivalent to the fixed set system of

an equivariant infinite loop space. The advantage of using the language of fixed

set systems is that one can frequently replace the system of fixed sets of an ac-

tual G-space by an equivalent formal system which is considerably simpler, and

which admits the requisite geometry necessary for delooping. We also apply this

machinery to construct equivariant Eilenberg-Mac Lane spaces corresponding

to Mackey functors.

1. Introduction and statement of results

If G is a transformation group, the (7-spaces which play the role of clas-

sifying spaces are frequently extremely complicated objects. For example, the

equivariant version of the classifying space BF of stable spherical fibrations

must combine information about all the possible orthogonal representations of

subgroups (to reflect the various linear actions of subgroups on fibers), as well

as information about the monoids of equivariant homotopy equivalences asso-

ciated with each such representation. As a consequence, equivariant classifying

spaces must usually be constructed using bar construction-type machinery ap-

plied to complicated categories (see, e.g., [W2, W3]); hence their geometry is

obscure. It is our goal here to describe machinery that can be used to prove

that many classifying G-spaces, including equivariant BF, are equivariant in-

finite loop spaces, and hence the zeroth spaces of equivariant spectra [LMS].

Throughout, we take G to be a finite group.

There are known "recognition principles" for nonequivariant infinite loop

spaces; these are results that characterize infinite loop spaces, and take the form

of a simple test enabling one to determine whether a given space admits deloop-

ings of all orders. In the language of May [Ml, M3], one such test consists of

the determination of whether the candidate space admits an action by an E^

operad. Equivariantly, an analogous recognition principle has been developed

by Hauschild, May, and one of the present authors, and will be outlined here
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486 S. R. COSTENOBLE AND STEFAN WANER

(see Theorem 1(a) below). This principle can be used to show that suitable

G-spaces are equivariant infinite loop spaces. However, this form of the recog-

nition principle is not quite adequate to give deloopings of G-spaces such as

BF , nor does it provide models for equivariant Eilenberg-Mac Lane spaces as-

sociated with ordinary i?0(G)-graded cohomology with coefficients in a general

Mackey functor [LMM].

The problem with an equivariant version of the recognition principle is

twofold. Firstly, in view of the complexity of classifying G-spaces, it is difficult

to construct models for these spaces that easily admit actions by equivariant

E^ operads. Equivariant BF is a particularly difficult example. Secondly, the

object being delooped may not be a G-space, but rather a functor on the orbit

category, such as a Mackey functor. In order to address these problems, we

shall show here that it is possible to extend the equivariant delooping machin-

ery to cover systems of spaces which behave formally like systems of fixed sets

of G-spaces [E]. This may be formalized as follows. Let & be the category

whose objects are the spaces G/H for H c G, and whose morphisms are the

G-maps. A (based) espace is a contravariant functor from & to the category

of (based) topological spaces. Given a based ^"-space Sf, we give a criterion,

in terms of 3?, for the existence of an equivariant infinite loop space L(Sf)

such that the system of fixed-sets L(Sf)    is equivalent to Sf as a ^-space.

As a consequence of this theory, we deduce an (embarrassingly long overdue)

proof that equivariant BF has the G-homotopy type of an equivariant infinite

loop space. We also construct explicit models for the equivariant Eilenberg-Mac

Lane spaces associated with Mackey functors. The theory presented here will

eventually form part of a more comprehensive treatment of equivariant infinite

loop space theory [CHMW] (although work on this is not expected to begin for

some time).

Now let us introduce some notation and state things more precisely. Let

% be a complete G-universe: an infinite-dimensional orthogonal real repre-

sentation of G which contains infinitely many copies of each representation

(including the trivial one). For V c ^ finite dimensional and G-invariant,

denote the one-point compactification of V by S . If X is a G-space with a

stationary basepoint, then the loop space Q X of based maps from S to X

is acted on by G via conjugation. If we denote X ASV by XFX (with G act-

ing diagonally), then we can form the infinite loop space colim^^Q X X.

In general, an equivariant infinite loop space is a space X such that, for ev-

ery finite-dimensional G-invariant V c W, there is a G-space Y(V) and a

G-homeomorphism X = Q, Y(V); moreover there should be compatible re-

lations Y(V) = £1 Y(V ® W) when V and W are perpendicular. We call

Y(V) the V\\l delooping of X. Such infinite loop spaces often are given in the

form colimKc^íí T(V) for a collection of G-spaces T(V) possessing struc-

ture maps T(V) -> Q T(V®W) for V and W perpendicular. (Of course,

what we are really talking about here are the spectra and prespectra of [LMS].)
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EQUIVARIANT INFINITE LOOP SPACES 487

In §§2-3, we introduce G-operads and the associated monads that they pro-

duce. Most pertinently, we show how suitable kinds of G-operads give rise to

monads in the category of ^-spaces. Thus a suitable G-operad ^ gives rise

to an associated monad C: & !T -> <fy, where 'S ¡T denotes the category of

(based) ^-spaces.

If Sf is a ^-space and if each constituent space âf(G/K) is a grouplike

/î-space (in the sense that nQ(äf(G/K)) is a group), then we shall refer to Sf

as grouplike. Our main result is then the following.

Theorem 1. Let % be a CW E^  G-operad.

(a) Let X be a grouplike based G-space of the homotopy type of a G-CW

complex, and suppose that fê acts on X. Then X is G-homotopy equivalent

to an equivariant infinite loop space.

(b) Let Sf be a grouplike based "§-space such that each constituent space

Sf(G/H) has the homotopy type of a CW complex, and suppose that %? acts

on Mf. Then there exists an equivariant infinite loop space X such that Í>JST is

homotopy equivalent to Sf as a S-space.

Here i> is the functor which associates to any G-space its system of fixed-

point spaces. Theorem 1(b), in association with suitable models for the fixed

subsets of equivariant BF, then leads to:

Corollary 2. Equivariant BF is G-homotopy equivalent to an equivariant infinite

loop space.

In addition, we give the promised construction of equivariant Eilenberg-

Mac Lane spectra, thereby providing an alternative construction of the ordinary

i?0(G)-graded theory [LMM].

The paper is arranged as follows. In §2 we introduce G-operads and monads,

and discuss the pertinent examples, ^-spaces and monads in the category of

^-spaces are discussed in §3. §4 discusses the relationship between the two

monads, one in the category of G-spaces and the other in the category of &-

spaces, associated with a G-operad. We prove Theorem 1 in §5. §6 and §7 give

applications of Theorem 1; in §6 we prove that equivariant BF is an infinite

loop space, and in §7 we construct the equivariant Eilenberg-Mac Lane spaces

associated with a Mackey functor. Finally, §8 contains the (somewhat messy)

details of some constructions discussed in §4.

The authors are indebted to J. Peter May for many discussions on the subject

(and in particular for his suggestion of the approach we use in §4), to the referee

for many useful suggestions, and to Hofstra University for providing released

time.

2.   G-OPERADS

The notion of an operad is due to May [Ml]; the definition of an equivariant

operad is given in [LMS], and we summarize it here. Recall that, if X is a left

G x ü-space, we can think of G as acting on the left, and n as acting on the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



488 S. R. COSTENOBLE AND STEFAN WANER

right of X ; the left and right actions of n are related by xn = n   x.

Definition 2.1. A G-operad is a pair (W, y), where W is a sequence of G x Lk-

spaces %?(k), k > 0 (as above, we think of ~Lk as acting on the right), and y

is a G-map

y : g?(fc) x ff(i,) x ■ • • x W(ik) -+ W(ix + --- + ik),

satisfying:

(a) £P(0) is a single point *, and there is a distinguished G-fixed point

le^(l);
(b) y satisfies the associativity condition

y(y(c;dx, ... , dk)\ ex, ... , e¡) = y(c; fx, ... , fk)

where  i = i, + ••• + it  and fs = y(ds; ei¡+...+l¡ _+1, ... , eIi+...+/-), or * if

', = <>;

(c) y(\\d) = d for ci G f (Ar), and y(c, 1*) = c for c e &(k) ;

(d) if c e W(k), ^ € ^(/J , a e lk , and t, e I, , then

y(ca;da{x), ... , da(k)) = y(c; dx, ... , dk)o(ix, ... , ik)

and

y(a;dxxx, ... , dkxk) = y(c; dx, ... , dk)(xx e • • • e xk)

where, if i = ix-\-V ik , then a(ix, ... , ik) e X. permutes i letters in blocks

as a permutes k letters, and xx © ■ • ■ © xk € X;- is the evident permutation.

We shall refer simply to a G-operad ^ if the maps y are clear from the

context. The following examples are the most important for us.

Examples 2.2. (a) Let ^ be an infinite-dimensional real G-inner product space.

Let S?(k) - J'ifïï , í¿) be the space of (nonequivariant) linear isometries

Í/ —► ^, with Lk acting through the obvious action on ^ , and G acting by

conjugation via the diagonal action on ^ . The structure maps y are given by

composition, and 1 e -5^(1) is the identity map.

(b) Let V be a finite-dimensional real G-inner product space, and let D(V)

be the unit disc in V. A little disc in F is a (nonequivariant) affine map

f:D(V)^D(V) of the form

f(v) = v0 + rv,

where v0 e D(V) and 0 < r < 1. Let Wv(k) be the space of all /c-tuples

of nonoverlapping little discs in V . I.k acts in the evident way on /c-tuples,

and G acts by conjugation on little discs. The structure maps y are again

given by composition, and \ &WV(\) is the identity map. This is an analogue

of May's "little cubes" operad [Ml], and a variant is used in [CW] to obtain

approximations to equivariant loop spaces.

(c) If ?/ is an infinite-dimensional real G-inner product space, we can define

%(k) = co\irïfêv(k),
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where the colimit is taken over all finite-dimensional subspaces of ^ . If V c

W, then %(k) -> Ww(k) is defined by taking a little disc /: D(V) -> D(V),

given by f(v) = v0 + rv, to the disc g: D(W) -> D(W) given by g(w) =

vQ+rw , considering v0e V c W. Again, this is analogous to the corresponding

colimit of little cubes used in [Ml].

There are several specials types of G-operads we shall want to refer to:

Definition 2.3. Let ? bea G-operad.

(a) W is CW if each W(k) has the G-homotopy type of a G-CW complex.

(b) W is "L-free if ^(k) is a free Xfc-space for each k.

(c) W is complete if, for every subgroup H c G and every epimorphism

p: H -*ïk, W(k)A is nonempty, where A = {(h, p(h)) \ h e H} .

(d) fê is an E^  G-operad if W(k) is a universal principal (G, X^-bundle

for each k, i.e., W(k) is Xfc-free, and W(k)A is contractible for every A c

G x ~Lk such that A n ~Lk is trivial.

The G-operads Sf and <&v given above are X-free CW G-operads (see

[Wl] for the CW condition). 2? and 8^ are both E^ G-operads when

^ is a complete G-universe, i.e., ^ contains infinitely many copies of each

representation of G. ^v is complete if V is large enough; precisely, V must

be so large that there are G-embeddings in V of all of the orbits G/H.

As in [Ml and LMS], a G-operad W gives rise to a monad C in the category

Gy of based G-spaces. If X is a based G-space, we define

CX = '[[W(k)x1 Xkl ~,
k

where ~ is the identification given by

[c;*,x2,..., xk]~[y(c; *, 1, ..., 1); x2,..., xj.

The term "monad" refers to the presence of natural transformations p : CCX —►

CX and e : X —> CX, coming from the operad structure of W, making the

following diagrams commute:

cccx —^U CCX

CCß Cm

CCX   —£-»   CX

and

CX -^ CCX ¿- CX

= \    U   s=
CX.

Definition 2.4. A based G-space X is a C-space if there is given a based G-

map v : CX —> Z satisfying the associative and unital axioms obtained from
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490 S. R. COSTENOBLE AND STEFAN WANER

the diagrams above by deleting one copy of C. We also say that the operad ^

acts on the space X. If £P is an £'oo- G-operad, we call X an E^-G-space.

Finally, since we are interested in fixed-point information, we consider the
ZJ

space (CX) , where H c G, in the case where W is X-free. If k > 1, let

k = {1, ... , k}, and let 0 = 0. Let Xfc act on k on the right in the usual

way; if we wish it to act on the left we let ai = io~x . Then X = F(k, X) as

a G x Xfc-space, where F(- , -) denotes the space of all functions. Let

nk:W(k)x1 k^W(k)/lk

denote the projection. Assuming that W is X-free, this is a G-fiber bundle with

fiber k. We think of the bundle W(k) xz Xk = W(k) xs   F(k, X) as the

space of maps from the fibers nk (c) into X (thus specifying the topology on

that space of maps). If C e (&(k) xz X )H , then Ç sits over an //-fixed point

c e (W(k)/I.k) . This gives an action of H on nk (c), and C gives an //-map

from nk (c) into X. Conversely, if c e (W(k)/I.k) and if Ç is any //-map

from nk (c) into X,then Ç gives an //-fixed point in (^(A:) xz F(k,X))H.

Topologizing the space of all //-maps from fibers nkl(c) into X, c ranging

over the //-fixed points of W(k)/lk , as a subspace of W(k) xz F(k, X), we

record these observations in the following lemma:

Lemma 2.5. // (W, y) is 1,-free, then ('S'(k) xz X )    is homeomorphic to the

space of H-maps from the various fibers nkl(c) to X, where c ranges over the

points of (C(k)fLk)   .
ZJ

Thus we can (and often shall) think of points / e (CX) as represented by

pairs (c, 0 where c e (^(k)/I.k)H , and Ç: nkl(c) —<■ X is an //-map. These

pairs are taken modulo the equivalence relation inherited from the definition

of CX.

3. Actions of operads on ^-spaces

We wish to construct certain equivariant infinite loop spaces by specifying

their fixed-point data and then applying a coalescence construction. We start

by recalling, from [E], Elmendorf s machinery for such a construction.

Let S be the category whose objects are the (left) G-sets G/H, for H c G,

and whose morphisms are the G-maps.

Definition 3.1. A based §'-space %? is a contravariant functor S —> y, where

!7~ is the category of based spaces. A map of based ^-spaces is a natural

transformation of such functors. The category of based ^-spaces will be called

& !T. We shall call a map n in & HT a weak S-equivalence if n(G/H) is a

(nonequivariant) weak equivalence for each H c G.
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If X is any based G-space, define a ¿/-space OX by letting OX(G///) =

XH =■ FG(G/H, X), where FG(-, -) denotes the space of G-maps. This

clearly defines a functor O: G3~ —<■ & !T, where G^ is the category of based

G-spaces and G-maps.

In [E], Elmendorf constructs a "coalescing" functor E: & £T -» G¡T. This

functor has the property that there are natural transformations r\ : EQ>X -> X

and e: QE3? -» Sf such that r\ is a weak G-equivalence and e is a weak

^-equivalence. Further, on passage to the appropriate homotopy categories, E

becomes a right adjoint to O.

Thus, to construct a G-space with specified fixed-point behavior, we can

construct a ^-space and then apply E. Since E does strange things to the

geometry of the spaces involved, we would like a criterion in terms of $?,

whose spaces may be simple, that will tell us that ESf will be (equivalent to)

an equivariant infinite loop space. Towards this end, we describe how a G-

operad gives rise to a monad in the category *§ ET. We shall only do this for

X-free operads, but this will suffice for our purposes.

As motivation for the following construction, we want the monad C in

S? £F, associated with the G-operad ^, to be compatible with the monad C

in G^. That is, if X is a G-space, then we should have COX s OCX ;

using Lemma 2.5, we can write down what OCX is. This essentially forces the

construction; this property of the construction will be recorded in Proposition

4.1.
Let 8? be a based ,f-space, and let He G. Then we can consider

VKcH%?(G/K) to be an //-space in the following way. Let h e H and K c H,

and let /T: G/h~lKh -* G/K be the G-map given by h~(gh~lKh) = gh~lK.

Since (hxh2r = h2h~, we have äf((hxh2D = Sf(h^)^(h2). Letting h act
on the wedge via äf(hT), we then obtain the desired left //-action.

Now let W be a X-free G-operad, and let ä? be a ^-space. We construct a

¿^-space C3f. Referring to Lemma 2.5, let

H

CSf(G/H) c C    V Sf(G/K)
\KCH

-1,
be the subspace consisting of those //-maps £: nk (c) -+ \JKcHäf(G/K) such

that C(y) 6 Sf(G/H), where //^ is the isotropy group of y under the action

of H on the fiber nk (c).

Proposition 3.2.  C as defined above is a monad in %? &~.

Proof. First we must verify that CSf e %? 3~, for which we must define CSf(f),

for /: G/7 -» G/H. Suppose that /(£/) = gg0H, and let Ç: tt"1«) -»

\J KcH S? (G / K) be an //-map representing an element of CSf (G/H). Then
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492 S. R. COSTENOBLE AND STEFAN WANER

we let Cäf(f)(Q be the composite

nk\g0c)^n-k\c)^    V    r(G/Hy)
yen~ '(c)

4      V     $?(G/Jyl)±\J ê?(G/K)
y'€n-\g0c) K^J

where
(i) a(y') = g~ly';

(ii) C' is C with the obvious change of range;

(iii) ß is the wedge of maps induced by the G-maps

°lJy' = GlJw -^ G/^ôlJg0)y - G/»y,

where f'(gJg y) = gg0(gQ  JSq)v > and trie last map is the projection induced

by the inclusion g0~~ Jg0 c H ;

(iv) A is the folding map.

CSf(f) so defined is independent of the choice of g0 , and functorial in /,

making CSf a ,f-space.

As for the monad structure, we need natural transformations p.: CCSf —►

CSf and e : Sf —> CSf. p is constructed as follows. Suppose that

C-.7t;\c)^  V CSf(G/K)
KCH

is an //-map representing a point of CCâf(G/H). Then, for each y G Ttkl(c),

is an // -map. Let i = X -i, ,/ ; the structure map of the operad gives us a

point d = y(c; (cy))'L¡ 6 W(i)/'L[, where c e W(k) is any point over c, and so

forth. Moreover, the maps Ç(y) assemble together to give an //-map

p(C):n;\d)^  V Sf(G/H)
KCH

representing an element of C%?(G/H).

e is constructed by sending x e 3f(G/H) to the function £: 7tj"'(l) —»

CSf(G/H) that takes the single point in the domain to x. That p and e

satisfy the axioms for a monad can now be checked, using the properties of the

G-operad ^.   D

Having the monad C, we can define a C-object in S? &~, or a C-S?-space, to

be a ^-space J" with a Jf-map i^ : Cáf —► ^ satisfying the usual axioms. If

Mf is a C-^-space, then it follows from the definition that each space Sf(G/H)

is an /z-space, and that the structure maps Sf(G/H) —► Sf(G/K) are /¡-maps.
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We should also comment that it can be shown, as in [Ml], that the monads C

that we have constructed in G3~ and S ET both preserve weak equivalences.

4. Coalescence and monads

Given a X-free G-operad %, we have thus far defined two monads, C : GET

-» GET and C: SET -* S ST. We also have the functor O: GST _» 5? y and

we now comment that the two monads correspond via this functor.

Proposition 4.1. There is a natural homeomorphism OC = CO. Moreover, the

following diagrams commute:

occ <S>fi OC

CCO CO

and

O^OC

CO

Proof. With a bit of work, using Lemma 2.5, this is straightforward from the

constructions.   D

We would like a similar relationship involving a coalescence functor. The

details of this are a bit involved, and so are left to the last section, §8, but

we state the results here. For each G-operad ^, we shall, using a variant

of the technique in [E], construct a functor Ew: S ZT -> GET and a natural

map r] : O-E^Jf -► 3?, which will be a ^-equivalence if ^ is complete. This

construction will be covariant in g7. Moreover, we shall have

Proposition 4.2. There is a natural G-map X^\ E^C —» CE^  which is a G-

equivalence if W is complete. Moreover, the following diagrams commute:

em
E^C

V

and

F    -^ F   C

D
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5.   ^-SPACES ARE EQUIVARIANT INFINITE LOOP SPACES

We first recall the geometric bar construction, as given in [Ml]. Let C and D

be monads in GET, suppose that there is a map of monads fl-*C, and suppose

that X is a D-G-space. Then we can form a simplicial G-space Bt(C, D, X)

by letting Bn(C, D, X) = CDnX, with face and degeneracy maps given by the

monad structures (for details, see [Ml]). We call the geometric realization of

this B(C,D,X).
Similarly, if C and D are monads in S ET, C coming from a G-operad ^,

and if 3f is a D-S'-space, we can define simplicial G-spaces Bt(EwC, D, 3f)

and Bm(CEw,D,âf), with

Bn(E9C,D,3f) = EwCDn3f   and   Bn(CEw, D, 3?) = CE%Dn3f.

The simplicial structure on Bt(EwC, D, 3f) is the evident one, and the struc-

ture on BJyCE^, D, 3f) uses the map CE^D —► CE^C —► CCE^ -> CE^
coming from Proposition 4.2. If W is complete, Ag> induces a G-equivalence

5(A, 1, l):5(£g,C,.D,<r)^.B(C£r,Z), J").

We may also form bar constructions in the category S ET. For example, we

can form the ¿/-space B(C, £>, 3f), constructed from the simplicial S -space

5B(C,D,<r) = CZ>"^.
We now prove Theorem 1 by a sequence of lemmas.

Lemma 5.1. // ^ « complete and fl-»C is an equivalence of monads, then

there is an equivalence <&B(EWC, D, 3/) ~ 3/.

Proof. Consider the maps

<3>B(EWC, D, 3f)

= B(®E^C, D, 3f) -^ B(C, D, <T) i- B(D, D, JT) -^J*.

a is the equivalence induced by the natural equivalence O/^J^ —> ̂ given in

Proposition 8.1, ß is induced by the equivalence D —► C, and e is induced by

the action map un+x : Dn+X3f -» ^. e(G///) : 5(Z), D, 3f)(G/H) -> 3f(G/H)

is a deformation retraction for each //, by the usual simplicial argument [Ml,

§9 and §11]. Since these three maps are all equivalences, the result follows.   O

We say that a G-map is a group completion if it is a nonequivariant group

completion on all fixed-sets. See [S or M3] for discussions of group completion.

Let O be the monad in GET defined by OX = colim^ Q X X. Let Cv

and Cy be the monads associated with the G-operads ^v and 9^. of Examples

2.2(b) and (c).

Lemma 5.2. There are compatible maps of monads k: Cv —> D, X such that

the colimit k: C% -» Q^ is a group completion.   D

The construction of the maps is simple; for the proof of the group completion

result see [CW]. For the next result, write E% for E%, .
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Lemma 5.3. Let D -> C% be a map of monads, and let X be a D-G-space. Then

B(CV, D, X) -> B(Qoo , D, X) is a group completion. Similarly, if 3f is a D-

S-space, then B(C%E%, D, 3f) -» B(QooE^,, D, 3f) is a group completion.

Proof. Since taking fixed-sets commutes with geometric realization, we can re-

duce to the nonequivariant case, where we appeal to [M3, Theorem 3.1], which

shows that the geometric realization of a group completion is a group comple-

tion.   D

The following step was first shown by Hauschild, but has not yet appeared in

print. We first need a lemma about equivariant geometric realization.

Lemma 5.4. If Kt is a simplicial G-space, and if X is an unbased G-CW

complex with dim X   < conn Kn for all n and J, then the natural map

\F(X,KJ^F(X,\KJ)

is a weak G-equivalence, where \ - \ denotes geometric realization.

Proof. Let H c G; weshowthat \F(X, KJ\H - F(X, \KJ)H is a weak equiv-

alence, by induction on the skeleta of X . At the beginning of the induction,

\FH((X°)+, ÜTJH ^((*°)+, \KJ) (where " + " denotes the addition of a dis-
joint basepoint, and FH(—, -) is the space of //-equivariant based maps) is an

equivalence since geometric realization commutes with products. Now consider

the fibration sequence

FH(Xr+l/Xr,Kn) - FH((Xr+l)+, Kn) -+ FH((Xr)+,Kn).

The base space of this fibration is connected, because, by assumption, Xr has

only cells of dimension smaller than the connectivity of Kn . By [Ml, 12.7], it

follows that

\FH(Xr+l/Xr, XJ - \FH((Xr+l)+, KJ - \FH((Xr)+, K,)\

is a quasifibration. We now have a commutative diagram

\FH(Xr+l/Xr,KJ -► \FH((Xr+l)+,KJ -► \FH((Xr)+, K)\

FH(Xr+l/Xr, \KJ) -► FH((Xr+x)+, |*J) -► FH((Xr)\ \K,\)

of quasifibrations, where the vertical arrows are inclusions. The rightmost arrow

is a weak equivalence by induction. As for the leftmost arrow, Xr+ /Xr is a

wedge of spheres G/J+/\Sr+ , so we can reduce to the nonequivariant case, and

appeal to [Ml, 12.3]. Thus the middle arrow is an equivalence, giving us the

inductive step; since X is, by assumption, finite dimensional, this completes

the argument.   D

Suppose now that D is a monad with a map of monads D —* Ci X   . Then

we have a natural map I /)->! ii I   —>X   , allowing us to form the space

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



496 S. R. COSTENOBLE AND STEFAN WANER

5(X   , D, X) if X is a D-space.  Similarly, letting Ev = Ew , if we have a

natural map EVD -» Q^X^/Î^, we can form the space B(LVEV, D,3f) when

3f is a DS-space.

Lemma 5.5. 77ze inclusions

B(Q.V1V , D, X) -> nVB(lV ,D,X)

and

B(QVIVEV ,D,3f)^ nVB(lVEv, D, 3f)

are weak G-equivalences.

Proof. Let Kn be either Bn(lv, D, X) = 1VD"X or Bn(LvEv, D, 3f) =

lvEvD"3f. Then KJn is (IF7! - l)-connected for each n and each J c G.

Let H c G and consider the fibration sequence

FH(SV, Kn) - /y/)(F)+, /y -» F„(5(F)+, AT,).

The base space of this fibration is connected, because 5(F), considered as an

//-CW complex, has only cells of dimension smaller than the connectivity of

Kn . By [Ml, 12.7], it again follows that

\FH(SV, KJ\ - \FH(D(V)+ , KJ -» \FH(S(V)+ , KJ\

is a quasifibration. We now have a commutative diagram

\FH(SV,KJ -► \FH(D(V)+, KJ\ -► \FH(S(V)+, KJ\

I
FH(SV, \KJ) -. FH(D(V)+, \Kt\) -► FH(S(V)+, \Kt\)

of quasifibrations. The rightmost arrow is a weak equivalence by the previous

lemma. Since D(V) is equivariantly contractible, the middle vertical arrow

above is also an equivalence, thus the leftmost vertical arrow is an equivalence,

as desired.   D

Proof of Theorem 1. The following arguments mimic [M3, §VII.3]. Let W be

an JE^-G-operad, let X be a C-G-space, and let 3f be a CS-space. Let

3¡v = ^ x ?, and let 3V act on X and 3f via projection to ^ . Write Dv

for the monad (in either GST ox S ET) associated with 3¡v .

We first prove part (a) of the theorem. Start by noticing that there is an inclu-

sion X —> B(DV , Dv , X), and a deformation retraction B(DV, Dv, X) -» X

[Ml].

Since i7 is an ^-operad, the projection 2¡v -» ^v is an equivalence

of operads, and so Dv —> Cv is a weak equivalence of monads. Therefore,

B(DV, Dv , X) -» ¿(C^ , Dv , X) is a weak equivalence.

Since colimK 5(CK , Z>K, X) =■ 5(C^ , Z>^, X) and

colinvB(QV1V ,Dv,X)*á B(Qoc, Dv, X),
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Lemma 5.3 implies that the map

colimK B(CV ,DV,X)^ colimF B(CiVlV ,DV,X)

is an equivalence.

Putting these facts together with Lemma 5.5, we see that the G-map

X -► colim B(DV,DV,X)^ colim B(CV , Dv, X)

-► colim 5(QKXK,DV,X)^ colim QVB(1V, Dv, X)

is a group completion. If X and ^ have the homotopy types of G-CW com-

plexes, and if X is grouplike, then we conclude that X is G-homotopy equiv-

alent to colimK Q 5(X  , Dv, X), and so is an equivariant infinite loop space.

Part (b) is similar: Consider the composite

colim B(EvCy ,Dv,3f)^ colim B(CVEV,Dv,3f)

-* colim B(QVlVEy ,Dv,3f)

-* colim nvB(lvEv,Dv,3f).

Again, this is a group completion by Proposition 4.2 and Lemmas 5.3 and 5.5.

On the other hand, Lemma 5.1 shows that OcolimK B(EVCV , Dv,3f) ~ 3f,

so if 3f and f are CW, and 3? is grouplike, colimK Q.VB(1VEV, Dv, 3f) is

an equivariant infinite loop space with fixed-point system homotopy equivalent

to 3f.   D

6. Equivariant BF

We show that BGF, the G-space classifying equivariant stable spherical fi-

brations (see [W2, 3.3]), is an equivariant infinite loop space. We do this by

constructing a model 3§GE? e S ET of its fixed-point system, and giving 3§GE?

the structure of an E^-2?-space.

Fix a complete G-universe 1/, and let V c % be a finite-dimensional G-

invariant subspace. If H c G is a subgroup, let FH(V) be the topological

category whose object space 6bFH(V) is the Grassmannian of //-invariant

|F|-dimensional subspaces of % © V. The morphisms, from an object Y to

an object Z, are the //-homotopy equivalences SY —> Sz of the one-point

compactifications; we topologize the morphism space mapFH(V) as a bundle

over obFH(V) x obFH(V) via the source and target maps. As in [M2], we can

form the classifying space BFH(V) — B(*, FH(V), *) of the category using a

bar construction. It has as basepoint the subspace 0 © F c ^ © V.

If /: G/K - G/H is given by f(gK) = gg0H, define f : FH(V) -» Ff (F)
by sending an //-invariant subspace Y to the subspace ^0F, and sending a

y z — i
morphism a: S   -»5    to g0ag0   . Since the bar construction is functorial,

this gives a map B(f*): BFH(V) -» BFK(V). Using these maps we define a

¿?-space ^^(F) by 3§GSf(V)(G/H) = BFH(V).
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Lemma 6.1. The G-space E3SGEF(V) classifies \V\-dimensional equivariant

spherical fibrations.

Proof. We prove the lemma by comparing EE%GEF(V) to a model for BQF

constructed along the lines of [W2]. Referring to [W2, §2], consider the topolog-

ical category sf whose object space is the space of projections p(H, W): GxH

5 -» G/H, topologized as the disjoint union over the subgroups H of G of

the Grassmannians of //-invariant |F|-dimensional planes W in ^© F; the

morphisms from p(H, W) to p(K, Z) are the equivariant fiberwise basepoint-

preserving homotopy equivalences. There is a continuous functor tp from sf to

the category of G-spaces, given by taking basespaces. The G-space B(* , sé, tp)

classifies |F|-dimensional spherical fibrations, by the theory of [W2].
TJ

There is a natural equivalence e : B(*, sé , cp)   -* BFH(V), given by the fol-
IT

lowing construction on the simplicial level. An element of B(*, sé , tp) can be

represented by a tuple (*[/„ , • • ■ , fx]a) where f: p(Hi_x, Wi-X) -» p(Hi, W¿)

and a: G/H -» G///0. We let e(*[fn, ... , fx]a) = (*[y/n, ... , y/,]*); here
y/¡: Z(_j -> Z¡, where, if the composite cp(fi) o---ocp(fx) oa(eH) = giH¡, then

Z( = giWi, the translate of the plane W¡. c % © F, and y/^gjW) - gi+xw' if

/¡•[^,-> ̂3 = [^/+i > ̂ 'l • To see that e is an equivalence for each //, use the
zj

techniques in [W2, 2.3.2]; show that each component of both B(*, sf , tp) and

BFH(V) is the basespace of a principal fibration with contractible total space,

with e lifting to a fiberwise equivalence, and show that e gives a one-to-one

correspondence of components.

Now, since E is left adjoint to O [E], we get a G-map £e: B(*, s¡f , tp) ->

E3§GEF(V) that is an equivalence on all fixed-sets, and hence a G-equivalence.

D

If V c W, addition of W - V (the orthogonal complement of F in W)

defines a functor FH(V) -» ¿^(W) for all //, and so a ,f-map ^G^(F) -»

^G.^(ÍF). Letting

^c^r = colim^'G^r(F),

we obtain a jf-space such that BGF = Et38GEF classifies equivariant stable

spherical fibrations.

Now let i? be the linear isometries operad of Example 2.2(a), and let L be

the associated monad in S ET. We give 3êG^ the structure of an EZS-space.

Thus we need to construct v : L38GE?~ —► 38GE?.

An element z e L3§G^(G/H) is represented by an //-map

KCH

for some F, where nk: ¿¿?(k) xz A: —» 5f(k)/~Lk . Now, there is an inclusion

5f(k) = f{Wk , ^) -» J^(^, 2f)* which takes an isometry Ô : 2f* - 2C to its

restrictions (6X, ... , 0fc) to the A: summands. This, in fact, shows ¿f(k) as the

subspace of A;-tuples of mutually orthogonal isometries ^ —* %. The adjoint
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of this inclusion is a map S?(k) x k -> <f{$¿, í¿) taking (0, i) to 6i. Further,

this map is X^-invariant, giving a map Sf(k) x^. k —► J*"^, ^0. In this way,

we think of the points of nk (c) as giving k mutually orthogonal isometries

of % to itself. If c G (^f(k)/lk)H , then the //-action by conjugation on the

isometries in nk (c) is the same as a permutation action given by a certain

homomorphism H -> Xfc .

With C representing z as above, we have now to define p(z) e&GE?~(G/H).

Let {6 } en-\,c) be the collection of isometries associated with the fiber nk\c).

Then we can define a functor

ö*: n fhív)^^w)
yen~\c)

where, because c is //-fixed, fF = 0 0(F) is an //-invariant subspace of

^. 0, is defined by taking a collection (Z ) of subspaces in % © V to the

subspace 00 (Z) of %! ® W, and it assembles morphisms similarly. Let

// act on the category on the left by [h(Zy)]y, = hZh-¡ ,, and similarly on

morphisms. Then it is not hard to see that 0„ restricts to a functor

the point being that //-invariant collections of subspaces assemble into H-

invariant subspaces, and //-invariant collections of homotopy equivalences as-

semble into //-homotopy equivalences. Applying the functor B, which com-

mutes with fixed-points and products, gives

50,:  (\{BFHf(V)\    ^BFH(W).

Since C specifies a point of the space on the left, by applying B6t we obtain a

point !/(()e BFH(W). Including W into a G-invariant subspace, and passing

to the colimit, we obtain v(z) e £%GEF(G/H).

Now it is not difficult to check that v does define a map of ^-spaces

Laecf? -* ^G^, and that this makes 3§G^ into an .^-.f-space. Since J? is

an ¿^-G-operad and each ^G^(G/H) is clearly group-like, Theorem 1 now

allows us to conclude

Corollary 2.  BGF is an equivariant infinite loop space.   D

This completes the argument in [HW, §4], where it is assumed that Sphc,

the spherical fibration analogue of Af-theory, is a cohomology theory, and hence

admits an equivariant transfer. This was used to prove an equivariant version

of the Adams conjecture. One should be able to use SphG and its transfer

to further study homotopy equivalence of representations; the Becker-Gottlieb
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techniques used in [HW] convert questions about such equivalences into ques-

tions about equivalences of spherical fibrations with simpler group actions.

7. Equivariant Eilenberg-Mac Lane spaces

Let T be a Mackey functor in the sense of Dress [D1, D2]. Then we can think

of T as a discrete based ¿/-space, with 0 as the basepoint in each T(G/H).

We show here that there are spaces K(T, V) such that $>Q,VK(T, V) ~ T.

We do this by defining an action of the little discs operad on T.

Let W = W%, be the little discs operad of Example 2.2(c), defined using a

complete G-universe %, and let C be the corresponding monad in S Ef.

Define v: CT(G/H) -+ T(G/H) as follows. A typical element of CT(G/H)

may be represented by an //-equivariant map Ç: 5 -» \/KcH T(G/K) where 5

is a finite //-set, and Ç(s) e T(G/HS) for each s. Represent 5 as a disjoint

union of //-orbits

5 = H/Kx II • • ■ II H/Kr,

with each K¡c H. Let v(Q = xx H-h xr, where xi = i"(C(eK()), where

i^-.nG/K^nG/H)

is the induction map of the Mackey functor T induced by the inclusion K¡ c

H. Now v(Q is independent of the choice of decomposition of 5, by the

//-equivariance of Ç and the properties of the induction.

Alternatively, we may think of T as being a contravariant functor on the

category of G-sets and stable G-maps between them [LMM]. Then 5 = nk\c)

can be thought of (as in §6) as an //-invariant collection of little discs, which

gives us a stable //-map H/H —* S. We extend this to a stable G-map G/H —>

G xH S and apply the functor T to get the desired induction map. That v

defines an action of fê now follows from the functoriality of T.

The required spaces K(T, V) are then

K(T, V) = colim QWB(1W+VEw+V , Dw+V , T),
w

where, as before, Dw+V — Cw+V x C.

8. Coalescence revisited

In this section we give the details of the construction of the coalescence

functor E9:S Ef —> GET, and the natural equivalence X9 : EWC —> CE% . The

construction of Ew is similar to the construction of Elmendorf s coalescence

functor [E], but modifications are necessary in order to allow the definition of

V
Suppose given a ¿/-space 3f and a X-free G-operad £? . We shall construct

E<g,3f using the categorical bar construction of [M2]. For this purpose, we

construct a topological category C 3f as follows. The space of objects is the
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Space C3f(G/G). Recall that this space is constructed by first forming the

G-space

W3f = y 3f(G/H)
HCG

(the action of G being described in §3), then letting C3f(G/G) c (CW3ff

be the subspace consisting of G-maps Ç: nk (c) -* W3f such that Ç(s) e

3f(G/Gs) for all sen~[(c); here c e (W(k)/lkf. We can also think of

CW3f = ]JW(k) xz F(k, WSf)i ~,
k

and we could describe the subspace C3f(G/G) in these terms. We shall use

both interpretations, whichever is most convenient at the time, but it should be

clear in context which one we have in mind.

We want the morphisms in C 3f to be essentially the G-maps between the

various fibers nk (c) and nj (d). Precisely, to describe the space of mor-

phisms of C 3f, first consider the G-space

MW3f = ]\W(k) x W(l) xz x2 F(l, W3f) x F(k, /)/ ~ .
k,l

Here Xfc x X; acts on F(k, 7) by ((a, x)f)(i) = f(ia)x~ , thinking of the

permutation groups as acting on the right on the sets A: and 7. The equivalence

relation is the one that has

[c, d, C, f] ~ [c , d', C', /],

if C(/) = * (the basepoint in W3f), where £:{1,...,/-1}-» W3f is the re-

striction of C , /' is the restriction of / to k- f~x(l), d' = y(d ; 1, ... , 1, *),

and c = y(c; ...) where the ellipsis is filled in with a * corresponding to every

element of /"'(/) » and a 1 corresponding to every element of k not in f~x(l).

That is, as usual, things mapping to the basepoint can be thrown out. There are

two G-maps

50: MW3f -» CW3f   and   T: MW3f -» CW3f;

S0[c ,d,Ç,f] = [c,Çof], and T[c, d, Ç, f] = [d, Ç]. The morphism space

of C 3f is then the subspace

MG3fc T~\cG3f)

consisting of points [c, d, (, f] such that c - cLk e W(k)/Lk and d =

dl¡ G &(l)ßi are both fixed by G, the induced maps £: nj\c) -> W3f

and /: nk\c) -^ nj\d)  are both  G-maps, and f(s) e 3f(G/Gs)  for all
C C

s. The restriction of T gives the target map M 3f -> C 3f. The source

map 5 is a modification of 50 : thinking of an element in M 3f as given by

[c, d, C, /] as above, S[c, d, Ç, /] is the G-map £: 7t^'(c) -> IFJ*", where

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



502 S. R. COSTENOBLE AND STEFAN WANER

£(s) = f*Cf(s), fs: G/Gs -» G/Gf{s) being the restriction of / to the orbit of

To complete the description of the topological category C 3/ ,v/e need the

composition map M 3? xcg^ M 3?—> M 3f and the identity map C 3f —>

M 3f. Composition is induced by the maps

f(1, war) x F(k, 7) x fQ, k) - f(1, war) x f(], 7),

while the identity is given by [c, Ç] \-> [c, c, (, 1].

The last construction that we need is of a G-space J 3f that we shall think

of as giving a continuous functor from C 3f into GET, assigning to each point

of C ar the subset of the corresponding fiber nk (c) consisting of those points

not mapping to the basepoint, but with a disjoint basepoint attached. In detail,

we first define

JW3f = ]Jff(k)x1 F(k, W3?)xV / ~,
k

where k+ denotes k with a disjoint basepoint * added, and in addition to the

usual identifications we identify [c, Ç, i] ~ [c, £, *] if £(/') = *. There is a

G-map
T: jwar ^cwar

sending [c, Ç, i] >-> [c, Ç]. There is also a map P: CW3T -> JW3T send-

ing [c, C] ̂  [c » C, *], that we think of as giving the basepoint in each fiber

of T. Let JGar = T~\cG3T), and let T and P also denote their restric-

tions to JG3T and CG3f.   We think of JG3f as a functor on CG^ via
c c c

the evident basepoint-preserving map M 3f xccr J 3f —> J 3f covering

the map T: MG3f -* CG3T. To see this as a functor CG3f — G9~, let

/^(y) = r-1^) for y e CG^.

Now we can define E<g3f : Let Bt(CG3T, CG«T, /G<r) be the simplicial

space defined by letting Bn(CG3f, CG<T, /G<T) consist of all (n + 2)-tuples

(c; /j,..., f„',i), where /,,...,/„ are composable maps in C 3f, c =

T(/,) 6 CG<T, and i e J°3f(S(fn)). Actually, we make one modification

to this definition, by identifying all points of the form (c; fx, ... , fn; *). In

other words,

Bn(cG3f, cGar,jGar)

=   (C     ¿£    X-(*G ™ Ad    <ZC     X„G&? ' " '   X „G op J\d     ¿%E J      f\pG&> J    ¿&    .

With the action of G on the last factor, this makes 5„(CG,T, CG3f, JG3f) a

based simplicial G-space, as in [M2] (see also [E]). Finally, let

be the geometric realization of this simplicial space. This construction is clearly

a covariant functor of both 3T and ^ . It is a coalescence functor because we

have:
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Proposition 8.1. There is a natural S-map r¡: QE^ar —> 3f which is a in-

equivalence if & is a complete G-operad.

Proof.  r¡ is induced by a map 07 3f —> 3f, but we shall write it out in full.

Q>E^3f(G/H) = B(cGar, cGar, (farf)

is the realization of Bt(CG3f, CG3T, (JG3T)H), which has typical element

(c0; fx, ... , /„; [cn,C, t]). Here we think of cn e (W(k)ßk)G, Ç: n7l(cn) -

war being a G-map with Ç(s) e 3T(G/GS) for all 5, and te nk\cn)+ an H-

fixed point, n sends this element to p*Ç(t) e 3f(G/H), where p : G/H -> G/Gt

is induced by the inclusion H c Gt ; if t = * then n sends this point to the

basepoint of 3T(G/H). It is now easy to see that this respects the simplicial

structure, and gives a S -map, natural in 3T and W .

To see that r\ is an equivalence when fê is complete, let H c G, and

let c e (^(A;)/Xfc) be a point such that nk (c) = G/// as a G-space; let

í € 7t^ (c) be a point such that Gt = H. With these choices, we can de-

fine an inclusion 3T(G/H) -+ B(CG3T, CG3T', (JG3T)H) by sending x to

([c, Cx]', ; TA £*> t]), where Çx: ̂ V) -* W3f is the G-map defined by

Cx(t) - x . This shows that 3f(G/H) is a retract of 5(CG,T, CG3f, (JG3ff) ;
by the usual arguments we can construct a simplicial deformation to show that

3f(G/H) is actually a deformation retract [Ml].   D

The point of replacing Elmendorf s construction with this one is that it makes

the definition of Àw : E^ C -> CEW possible; this we now do. We have to define

A&>. I3(L.    CáT , C    LáT , J    Líf J —> CD(C   <âT,C   ¿C , J   ¿C ) .

This will come largely from the structure of the operad.   Indeed, there is a
c c

natural functor p : C C3T —> C 3T given by that structure, being part of the

map p : CC3T —► Cáf. There is also a G-map

i/: fear ^c far

defined as follows: Let [c, Ç, r] € /GCT, so that c e (&(k)ßk)G, Ç: ̂ "'(c)

-* f^CiT with C(j) G C3T(G/GS) for all 5, and r e 7r^(c)+. Let |i[c, C]

= [</,{], with </ € (W(l)/1,)G, and £: jr^V) -» *F^- Also, let Ç(i) G

C3T(G/Gt) be represented by [e, p] where é> e (W(m)/lm)G', and

HCG,

is a G(-map. The structure of the operad gives us, for each element u e it~l{e),

an element t * u e njl(d). This comes from the map

W(k) x W(mx) x • • • x W(mk) x {1} x mx -» f (/) x 7
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given by (c; ex, ... , em; 1, u) i-» (y(c ; e¡), u) ; here we represent t by 1 e k ,

and think of m = mx, while I — mx-\-h mk . Now we let v[c, Ç, t] = [e, y/]
_i (-<

where y : nm (e) -> J 3f is defined by y/(u) - [d, £, í * u] = [p[c,(],/* w].

Finally, we define

Mco; f\ >•••»/«; Ie« » f. ']) = ie » /] »

where j/[cn, C, /] = [e, ^] as above, and

y/'(u) = (p(c0) ;p(fx),..., p(fn) ; y/(u))

= (ß(c0);/i(f1),..., ß(fn); [p[cn, Q, t*u]).

That this defines a natural G-map is now straightforward to check. Since Àw is

defined using the operad structure, it is also simple to check that the diagrams

of Proposition 4.2 commute. Finally, we show:

Proposition 8.2. If & is complete, then Xw is a G-equivalence.

Proof. First notice that the diagram

0£^C —Î*-» OC£r

C     ^— C<&E9

commutes, as can be checked from the definitions of the maps involved. How-

ever, we have already shown that n is an equivalence, therefore Ar must be

an equivalence.   D
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