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CHROMATIC PICARD GROUPS AT LARGE PRIMES

PIOTR PSTRĄGOWSKI

Abstract. As a consequence of the algebraicity of chromatic homotopy at large primes, we
show that the Hopkins’ Picard group of the K(n)-local category coincides with the algebraic
one when 2p − 2 > n2 + n.

1. Introduction

If C is a symmetric monoidal∞-category, then we can consider equivalence classes of invertible
objects X , that is, those such that there exists a Y satisfying X ⊗ Y ≃ 1. This is often a set,
rather than a proper class, and it inherits a group multiplication induced from the tensor product.
We call the resulting group the Picard group and denote it by Pic(C).

Following ideas of Hopkins, the study of Picard groups was brought into chromatic homotopy
theory [HMS94], [Str92]. In this context, C is usually taken to be the ∞-category of E(n)- or
K(n)-local spectra at a fixed prime.

As a general rule, one expects the answers to be algebraic when the prime is large compared
to the height. To explain what we mean, let us focus on the E(n)-local case first. In this context,
taking rational homology defines a homomorphism

HQ∗ : Pic(SpE(n))→ Pic(Q),

where by the latter we denote the Picard group of graded rational vector spaces, which is
isomorphic to Z. This homomorphism is in fact a split surjection, with splitting k 7→ Sk

E(n).

Then, it is a result of Hovey and Sadofsky that when 2p−2 > n2+n, the algebraic comparison
map is an isomorphism, so that we have Pic(SpE(n)) ≃ Z [HS99a]. This is in stark contrast with
what happens at small primes; for example, we have Pic(SpE(1)) ≃ Z ⊕ Z/2 at p = 2, and
Pic(SpE(2)) ≃ Z⊕ Z/3⊕ Z/3 at p = 3 [HS99a], [GHMR14].

To study the K(n)-local case, one needs a more subtle algebraic invariant. More precisely, we
define the completed E-homology as

E∨
∗ X := π∗LK(n)(E ∧X),

where E is the Morava E-theory spectrum of height n. When it’s finitely generated, E∨
∗ X has a

canonical structure of an L-complete comodule over E∨
∗ E [Bak09] [BH16][1.22]. The latter Hopf

algebroid can be described explicitly as E∨
∗ E ≃ mapc(Gn, E∗), the space of continuous functions

on the Morava stabilizer group, with structure maps induced from the action of Gn [DH04].
If X is K(n)-locally invertible, then E∨

∗ X is an invertible E∨
∗ E-comodule, which gives a

homomorphism Pic(SpK(n))→ Pic(E∨
∗ E) into the algebraic Picard group, given by isomorphisms

classes of invertible comodules.
The algebraic Picard group can be expressed in terms of cohomology of the Morava stabilizer

group; to do so, one observes that an invertible E∨
∗ E-comodule is the same as an invertible

E∗-module equipped with a compatible continuous action of Gn. Since E0 is a regular local ring,
any such module is free of rank one, and so we have a short exact sequence

0→ Pic0(E∨
∗ E)→ Pic(E∨

∗ E)→ Z/2→ 0,

where Pic0(E∨
∗ E) is the subgroup of those invertible modules which are concentrated in even

degrees. Since E∗ is 2-periodic, any such module is determined by its degree zero part, which
yields an isomorphism Pic0(E∨

∗ E) ≃ H1
c (Gn, E

×

0 ) by standard considerations [GHMR14].
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Due to a classical argument using the sparsity of the Adams-Novikov spectral sequence, one
knows that Pic(SpK(n))→ Pic(E∨

∗ E) is injective when 2p− 2 > n2 and (p− 1) ∤ n [HMS94][7.5].
On the other hand, surjectivity was not known except at low heights, where both sides can be
computed explicitly.

Our main result gives a range in which the comparison map is in fact an isomorphism.

Theorem 1.1 (2.5). When 2p− 2 > n2 + n, Pic(SpK(n))→ Pic(E∨
∗ E) is an isomorphism.

The proof of Theorem 1.1 rests on the recent chromatic algebraicity result of the author
which states that if p > n2 + n+ 1, then there exists an equivalence hSpE ≃ hD(E∗E) between
the homotopy categories of E-local spectra and differential E∗E-comodules [Pst18].

In fact, to prove the isomorphism between Picard groups, we do not need the equivalence of
homotopy categories, but only the weaker statement that any E∗E-comodule can be canonically
realized as a homology of a certain E-local spectrum. Thus, Theorem 1.1 holds in a slightly
larger range of primes than chromatic algebraicity.

As was pointed to us by Paul Goerss, an alternative proof could be obtained using the descent
spectral sequence for S0

K(n) → E, which is K(n)-local pro-Galois extension with Galois group

Gn [Rog05]. Unfortunately, the Morava stabilizer group is profinite rather than finite, and to our
knowledge no construction of the needed spectral sequence in this case appears in the literature.

Since it is of potential interest, we present the alternative approach in Remark 2.6, but it
should be interpreted as conditional on the construction of the descent spectral sequence. The
proof given in the main body of the paper is independant from this argument.

1.1. Acknowledgements

I would like to thank my supervisor Paul Goerss for his support and guidance, as well as for
helpful comments on the structure of this paper.

2. Chromatic Picard groups at large primes

We let p denote the prime and n the height, both of which are fixed. By E we denote the
Morava E-theory spectrum, this is an even periodic Landweber exact spectrum associated to
the Lubin-Tate ring E0 ≃ W (Fpn)[[u1, . . . , un−1]]. In particular, E0 is a complete regular local
ring of dimension n, with maximal ideal m = (p, u1, . . . , un−1).

The completion functor M → lim
←−

M/mkM on E∗-modules is neither right or left exact, but

it has a right exact left derived functor which we denote by L0 [HS99b][Appendix A]. We say a
module M is L-complete if the natural map M → L0M is an isomorphism. If M,N are modules,
then we denote their L-complete tensor product by M⊗̂E∗

N := L0(M ⊗E∗
N).

We let K denote the associated Morava K-theory spectrum; this is the unique E-module with
homotopy groups K∗ ≃ E∗/m. The spectrum K is Bousfield equivalent to the classical Morava
K-theory spectrum K(n) satisfying K(n)∗ ≃ Fp[v

±1
n ].

Following [HMS94], [Str92], for a spectrum X we define its completed E-homology as

E∨
∗ X := π∗LK(E ∧X).

One can show that E∨
∗ X is an L-complete E∗-module, and if it is finitely generated, then it has

a structure of a comodule over E∨
∗ E [HS99b][8.5], [Bak09], [BH16][1.22]. If X is finite, or more

generally if E∗X is L-complete, then E∨
∗ X ≃ E∗X [Hov04][3.2].

We would like to understand the Picard group Pic(SpK) of equivalence classes of invertible
K-local spectra. We begin by recalling the following fundamental result.

Theorem 2.1 ([HMS94](1.3)). A spectrum X is K-locally invertible if and only if E∨
∗ X is free

of rank one over E∗; equivalently, is an invertible E∨
∗ E-comodule.

As a consequence of Theorem 2.1, we obtain a homomorphism E∨
∗ : Pic(SpK)→ Pic(E∨

∗ E)
from the K-local Picard group into the Picard group of E∨

∗ E, given by isomorphisms classes of
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E∨
∗ E-comodules which are invertible under the tensor product. One can describe E∨

∗ E and the
associated Picard group in terms of the Morava stabilizer group, which we now recall.

Since E is even periodic, it is complex orientable and the associated formal group is the
universal deformation of the Honda formal group law Γ of height n over Fpn . This endows E0

with an action of the Morava stabilizer group Gn := Aut(Fpn ,Γ), which by the Goerss-Hopkins-
Miller theorem lifts to an action on E by maps of commutative ring spectra [GH].

The action of Gn on E induces an isomorphism E∨
∗ E ≃ mapc(Gn, E∗), where the latter is the

space of continuous functions on the Morava stabilizer group [DH04]. If M is an E∨
∗ E-comodule,

then this identification endows it with an action of Gn, and if M is finitely generated over E∗,
then this action is continuous in the m-adic topology and any such continuous action determines
a comodule structure [BH16][5.4].

We deduce that the data of an invertible E∨
∗ E-comodule is the same as that of a an invert-

ible E∗-module equipped with a compatible continuous action of Gn, this allows one to give a
homological description of Pic(E∨

∗ E), as we recalled in the introduction.
Our goal is to prove that the homomorphism Pic(SpK) → Pic(E∨

∗ E) is an isomorphism at
large primes. We start with injectivity, which is classical, but since the proof is enlightening,
and not particularly difficult, we briefly recall the argument.

Proposition 2.2 ([HMS94](7.5)). If 2p − 2 ≥ n2 and (p − 1) ∤ n, then the comparison map

E∨
∗ : Pic(SpK)→ Pic(E∨

∗ E) is injective.

Proof. Suppose that X ∈ Pic(SpK); since E∨
∗ X is free of rank one, in particular finitely gener-

ated, we have the K-local E-based Adams spectral sequence of the form

Êxt
s,t

E∨

∗
E(E∗, E

∨
∗ X)⇒ πt−sX

and an isomorphism Exts,tE∨

∗
E(E∗, E

∨
∗ X) ≃ Hs

c (Gn, E
∨
t X) between the E2-term and the continu-

ous cohomology of the Morava stabilizer group [BH16][3.1, 4.1].
The E2-term is concentrated in internal degrees divisible by 2p− 2 and if (p− 1) ∤ n, then it

has a horizontal vanishing line at n2, the homological dimension of the Morava stabilizer group
[Hea15][4.2.1]. It follows that under the given assumptions the spectral sequence collapses for
degree reasons.

Now, suppose that X is in the kernel of E∨
∗ : Pic(SpK) → Pic(E∨

∗ E), so that we have an
isomorphism E∨

∗ X ≃ E∨
∗ S

0
K ≃ E∗. As observed above, the E-based Adams spectral sequence

collapses, and it follows that the chosen isomorphism is necessarily an infinite cycle and so
descends to an equivalence X ≃ S0

K . This ends the argument. �

We move on to the surjectivity of the comparison map; this is the heart of the problem. We
start with two short, technical lemmas.

Lemma 2.3. We have lim
−→

ExtE∗
(E∗/m

k,K∗) ≃ K∗, concentrated in homological degree zero.

Proof. Since E∗ is 2-periodic and the above modules are even graded, it is enough to prove that
lim
−→

ExtE0
(E0/m

k,K0) ≃ K0, concentrated in homological degree zero. Since E0 is a regular

local ring, local duality implies that lim
−→

ExtiE0
(E0/m

k,K0) ≃ Extn−i
E0

(K0, E0)
∨, where by (−)∨

we denote the Matlis dual [BH98]. Because K0 ≃ E0/m is the unique simple E0-module, it is
Matlis self-dual and we deduce that it is enough to show that ExtE0

(K0, E0) ≃ K0, concentrated
in homological degree n.

More generally, we claim that ExtE0
(E0/Ik, E0) ≃ E0/Ik, concentrated in homological degree

k, where Ik = (p, u1, . . . , uk−1) for any 0 ≤ k ≤ n. This is clear for k = 0 and the general case
follows by induction from the long exact sequence of Ext-groups associated to

0→ E0/Ik−1 → E0/Ik−1 → E0/Ik → 0,

which ends the proof. �
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Lemma 2.4. Let X ≃ lim
←−

Xi be a limit diagram of K-local spectra such that Xi and X are

K-locally dualizable. Then, for any K-local spectrum Y we have LK(Y ∧X) ≃ lim
←−

LK(Y ∧Xi).

Proof. Consider the collection of all K-local spectra Y such that the needed condition holds.
Since X and Xi are dualizable, smashing with them preserves K-local limits and we deduce that
this collection is closed under limits. Since it also contains S0

K by assumption, we deduce that
it is necessarily all of SpK by [HS99b][7.5]. �

The following is the main result of this note.

Theorem 2.5. Let 2p− 2 > n2 + n. Then, E∨
∗ : Pic(SpK)→ Pic(E∨

∗ E) is an isomorphism.

Proof. If 2p− 2 > n2 + n, then 2p− 2 ≥ n2 and (p− 1) ∤ n and we’ve seen in Proposition 2.2

that under these conditions the homomorphism between Picard groups is injective.
To verify surjectivity, we have to prove that if M ∈ Pic(E∨

∗ E), there exists a K-locally
invertible spectrum X with E∨

∗ X ≃ M . Observe that as an E∗-module, M is necessarily free
of rank one [HS99b][A.9] and, without loss of generality, we can assume that it is even graded.
Then, for each k ≥ 1 we have M/mkM ≃ E∗/m

k as an E∗-module and so

E∨
∗ E⊗̂E∗

M/mkM ≃ E∗E⊗̂E∗
M/mkM ≃ E∗E ⊗E∗

M/mkM ,

where the first isomorphism is [HS99b][A.7] and the second follows from the fact that the last
term is an E∗/m

k-module and so is already L-complete. Thus, we deduce that M/mkM is an
E∗E-comodule in the usual, non-complete sense.

Under the assumption 2p − 2 > n2 + n, in [Pst18][2.14] we construct the Bousfield splitting
functor β : ComodE∗E → hSpE valued in the homotopy category of E-local spectra with the
property that E∗βM ≃M for any M ∈ ComodE∗E .

By construction, we have E∗β(M/mkM) ≃ M/mkM and since the latter is L-complete, we
deduce from [Hov04][3.2] that E∨

∗ β(M/mkM) ≃ E∗β(M/mkM) ≃ M/mkM . Since these are
concentrated in degrees divisible by 2p − 2 > n, the universal coefficient spectral sequence
collapses and induces an isomorphism ExtE∗

(E∗/m
k,K∗) ≃ K∗β(M/mkM) up to regrading.

We let Xk := LKβ(M/mkM); by the above, this is a K-local spectrum with E∨
∗ Xk ≃M/mkM

and, up to regrading, K∗Xk ≃ ExtE∗
(E∗/m

k,K∗). The first condition implies that E∨
∗ Xk is

degreewise finite and so Xk is a finite K-local spectrum of type n by [HS99b][8.5].
We have maps Xk → Xk−1 induced from the projections M/mk →M/mk−1, well-defined up

to homotopy, and we let X := holim
←−−−

Xk denote the corresponding homotopy limit. Here, by the
latter we mean that we pick a lift of the tower of Xk to the ∞-category SpK and we compute
the limit there. It is classical that up to equivalence the homotopy limit does not depend on the
choice of that lift, since it can be defined using the triangulated structure alone.

We first show that X is invertible. Since Xk are dualizable, we have X ≃ D(lim
−→

DXk),

where D := F (−, S0
K) is the K-local Spanier-Whitehead dual and the colimit is the K-local

one. Thus, it is enough to show that lim
−→

DXk is invertible; which we will verify by showing that

K∗(lim−→
DXk) ≃ K∗. We have

K∗(lim−→
DXk) ≃ lim

−→
K∗Xk ≃ lim

−→
ExtE∗

(E∗/m
k,K∗)

where we have used the description of K∗Xk given above. Then, the needed statement follows
from Lemma 2.3, and we deduce that lim

−→
DXk, hence X , is invertible.

Since Xk and X are K-locally dualizable, LK(E ∧ X) ≃ lim
←−

LK(E ∧ Xk) by Lemma 2.4.
After passing to homotopy groups, we obtain the Milnor exact sequence

0→ lim
←−

1(M/mkM)[−1]→ E∨
∗ X → lim

←−
M/mkM → 0

and since M is free of rank one, the lim
←−

1-term vanishes. We deduce that the second map must

be an isomorphism, which ends the proof since M ≃ lim
←−

M/mkM . �
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Remark 2.6. The following alternative approach to the proof of Theorem 2.5, based on the
descent spectral sequence, was pointed to us by Paul Goerss. As explained in the introduction,
the needed spectral sequence does not seem to appear in the literature, and what follows should
be interpreted as conditional on its existence.

If C is a presentably symmetric monoidal ∞-category, then the Picard group can be lifted
to the Picard space, which we will denote by Pic(C) [MS16]. The latter is the ∞-groupoid of
invertible objects in C; it is an E∞-space with multiplication induced from the tensor product.

The Picard group itself can be recovered through the relation Pic(C) = π0Pic(C). The higher
homotopy groups of the Picard space are easy to describe, as we have πtPic(C) ≃ πt−1autC(1,1)
for t > 0, where 1 is the monoidal unit and autC denotes the space of self-equivalences.

By the work of Devinatz and Hopkins, the map S0
K → E of commutative ring spectra is a

K(n)-local pro-Galois extension in the sense of Rognes with Galois group Gn [DH04], [Rog05].
One then expects that there should exist a descent spectral sequence

Hs
c (Gn, πtPic(ModE))⇒ πt−sPic(SpK)

with differentials dr of degree (r, r − 1) and where the action of Gn on ModE is induced from
that on E. A spectral sequence of this precise from does not appear in the literature, but a
construction for finite Galois groups can be found in [MS16], [GL16].

To get hold on the E2-term, we need to understand the homotopy of the Picard space of
ModE , but this is not difficult. Since E is even periodic and E0 is regular local, any invertible
E-module is free and so π0Pic(ModE) ≃ Z/2 [BR05]. Moreover, because E is the monoidal unit
of ModE , we have π1Pic(ModE) ≃ E×

0 and πtPic(ModE) ≃ Et−1 for t ≥ 2.
If (p− 1) ∤ n, then the Morava stabilizer group is of finite homological dimension n2 and the

E2-term has a horizontal vanishing line. Furthermore, by standard considerations Hs(Gn, Et)
vanishes unless t is divisible by 2p− 2 [Hea15][4.2.1].

It follows that if 2p − 2 ≥ n2 and (p − 1) ∤ n, then if drawn using the Adams grading, the
−1 ≤ t− s ≤ 1 region of the above spectral sequence looks like

H1
c (Gn,Z/2)

0

H1
c (Gn, E

×

0 )

H0
c (Gn,Z/2)

0

H0
c (Gn, E

×

0 )

t− s
,

with only zeroes above. We deduce that in this range this spectral sequence collapses and yields
a short exact sequence

0→ H1
c (Gn, E

×

0 )→ π0Pic(SpK)→ Z/2→ 0.

This means that the topological Picard group Pic(SpK) ≃ π0Pic(SpK) fits into a short exact
sequence of the same form as the algebraic one, as explained in the introduction. One can then
verify that Pic(SpK) → Pic(E∨

∗ E) fits into a map of short exact sequences which is then an
isomorphism by the five-lemma, giving a different proof of Theorem 2.5.

In fact, the bound obtained in this way is slightly sharper, as one only needs 2p − 2 ≥ n2,
rather than 2p − 2 > n2 + n. This comes from the fact that this argument avoids the use of
the E-local category, since the homological dimension of E∗E is n2 + n, while the homological
dimension of Gn is just n2.
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