arXiv:2009.08526v2 [math.AT] 30 Sep 2020

THE EQUIVARIANT COHOMOLOGY FOR SEMIDIRECT
PRODUCT ACTIONS

SERGIO CHAVES

ABSTRACT. The rational Borel equivariant cohomology for actions of a com-
pact connected Lie group is determined by restriction of the action to a maxi-
mal torus. We show that a similar reduction holds for any compact Lie group
G when there is a closed subgroup K such that the cohomology of the classi-
fying space BK is free over the cohomology of BG for field coefficients. We
study the particular case when G is a semi-direct product and K is its maxi-
mal elementary abelian 2-subgroup for cohomology with coefficients in a field
of characteristic two. This provides a different approach to investigate the
syzygy order of the equivariant cohomology of a space with a torus action and
a compatible involution, and we relate this description with results for 2-torus
actions.

1. INTRODUCTION

Let G be a compact group and X be a finite G-CW complex. The G-equivariant
cohomology of X with coefficients over a field k is defined as the singular cohomology
of the homotopy quotient H(X;k) := H*(EG xg X;k). It becomes canonically
a module over the cohomology of the classifying space H*(BG;k) (cohomology
coefficients will be omitted as long as there is no ambiguity). We say that X is
G-equivariantly formal over k if the restriction map H(X) — H*(X) is surjective.
In this case, the Leray-Hirsch theorem implies that H}(X) is a free module over
H*(BG).

Freeness of the equivariant cohomology has been generalized to the study of
syzygy modules. A detailed discussion of this topic was started by Allday-Franz-
Puppe [3] for torus actions with cohomology over a field of characteristic zero.
Recall that a finitely generated module M over a commutative ring R is a j-th
syzygy if there is an exact sequence

(1.1) 0—-M—F — - —F

of free modules Fy, for 1 < k < j. If R is a polynomial algebra in n variables over a
field k , then the n-th syzygy modules correspond to the free ones as a consequence
of the Hilbert Syzygy theorem. In [3] Thm.5.7], the authors showed that the syzygy
order of the equivariant cohomology of a space with a torus action is equivalent to
the partial exactness of the Atiyah-Bredon sequence of such a space [5] [T1]. This
sequence is defined in the following way: for a T-space X where T = (S!)", the
filtration of X by the dimension of its orbits Xg = X7 ¢ X; € --- € X,, = X

Date: October 1, 2020.


http://arxiv.org/abs/2009.08526v2

2 CHAVES

induces a sequence
0 — HF(X) — HF(XT) — H**'(X1, Xo) — -+ = H*"" (X, X 1),

These results in equivariant cohomology for torus actions are key to extend the
study of syzygies in equivariant cohomology for any compact connected Lie group
actions by considering the restriction of the action to a maximal tori [22], and
elementary p-abelian groups actions by restriction and transfer of the action to a
torus one [4].

In this paper, we study a more general problem of characterizing syzygies in
equivariant cohomology for compact Lie group actions in terms of the action to
a suitable closed subgroup K < G, and considering coefficients over an arbitrary
field k. This generalizes the relation between compact connected Lie groups (resp.
p-abelian groups) and their maximal tori in equivariant cohomology as discussed
before. The methods developed in this paper also provide a new tool to recover
these results.

Let us consider a compact Lie group G and let K < G be a closed subgroup. We
denote by W = Ng(K)/K the Weyl group of K in G. Let us consider cohomology
with coefficients over a field k (that we omit it in our notation). Suppose that the
canonical map H*(BK) — H*(G/K) arising from the fibration G/K — BK — BG
is surjective and that there is an isomorphism of algebras H*(BK)W ~ H*(BG).
The following result provides a general reduction in equivariant cohomology.

Theorem 1.1. Let X be a G-space such that H*(X)% = H*(X), then W acts
on the K-equivariant cohomology of X and there is a matural isomorphism of
H*(BG)-algebras H%(X) =~ H}X(X)V and a natural isomorphism of H*(BK)-
algebras Hj;(X) = Ho(X) ®p+ ) H*(BK).

Observe that the condition of the map H*(BK) — H*(G/K) being surjective
allows us to describe the cohomology of the homogeneous spaces G/K in terms of the
cohomology of the classifying space of G and K. This applies to the cohomology of
homogeneous spaces of Lie groups [15], [29], [8] and for the equivariant cohomology
of Hamiltonian actions of non-abelian compact connected Lie groups in symplectic
geometry [7]. A pair of groups (G, K) satisfying this condition will be called a free
extension pair following the notation introduced in [7].

As a consequence of Theorem [[LT] we can characterize syzygies in G-equivariant
cohomology in terms of the K-equivariant cohomology.

Corollary 1.2. The module HY(X) is a j-th syzygy over H*(BG) if and only if
H}(X) is a j-th syzygy over H*(BK).

With our methods, we recover in equivariant cohomology classical results for
compact connected Lie groups with cohomology over rational coefficients [30, Ch.IIT.Lem.4.12],
or for finite groups with abelian p-Sylow subgroup with cohomology over a field of
characteristic p [12, Ch.III.Thm.10.3]. Moreover, they also allow us to study the
equivariant cohomology for actions of semi-direct product of groups or groups fit-
ting in a group extension. For example, actions of matrix groups, dihedral and
symmetric groups and torus action with compatible involutions. In particular, the
latter case has been of interest in symplectic geometry. Namely, let M be a symplec-
tic manifold with a symplectic action of a torus 7" and an antisymplectic compatible
involution 7. The maximal elementary 2-abelian subgroup 75 of T" acts on the fixed
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point M7 and if M is T-equivariantly formal over Q, then M7 is Ts-equivariantly
formal over Fo [20],[6], [18].

This situation motivates our study of the equivariant cohomology for semi-direct
product actions; in particular, we use it to approach the symplectic setting described
above by considering the equivariant cohomology for actions of the group 7' x Z/27Z.
We first prove a canonical description of the Fa-cohomology of the classifying space
B(T xZ/27) as a tensor product of the cohomologies of BT and BZ/27Z. Moreover,
we describe the equivariant formality and syzygies in equivariant cohomology for
actions of this group in terms of the maximal 2-elementary subgroup K and the
invariants under the action of the Weyl group W = Ng(K)/K as stated in the
following result.

Theorem 1.3. Let G =T xZ/2Z, let H be the maximal 2-elementary subgroup of
G and W be the Weyl group of H in G. Then (G, H) is a free extension pair over
Fo, and there is an isomorphism of algebras H*(BG) =~ H*(BH)W that extends to
equivariant cohomology for any G-space X . In particular, Hj\(X) is a j-th syzygy
over H*(BQ) if and only if H};(X) is a j-th syzygy over H*(BH).

As consequences of this result, we recover the equivariant formality of the real
locus of conjugation spaces [26] and Hamiltonian torus actions on symplectic man-
ifold when the cohomology of the space contains no 2-torsion.

This document is organized as follows: In Section 2l we discuss free extension
pairs and the reduction of syzygies in equivariant cohomology for a pair of groups
satisfying this property. In Section [B] we approach torus actions and compatible
involutions by looking at the induced action of the semi-direct product of a torus
and a 2-tori. Syzygies in equivariant cohomology for actions of such groups can
be reduced to 2-torus actions as discussed in Section [l In Section Bl we discuss
a topological generalization of Hamiltonian actions on a symplectic manifold with
an anti-symplectic compatible involution using the results discussed in the previous
sections. Finally, in the last section of this document, we study a canonical semi-
direct product action on the big polygon spaces to realize all possible syzygy orders
in equivariant cohomology analogous to the torus actions case [21] and we will relate
these results to the real big polygon spaces recovering some of the work discussed
in [31].

Acknowledgments. 1 would like to thank Matthias Franz for his collaboration
and helpful discussions to develop this project. His suggestions about generalizing
Hamiltonian torus actions with an anti-symplectic involution in equivariant coho-
mology was a fundamental pillar to obtain the results presented in this paper, as
well as the application on big polygon spaces. I am also grateful to Jeffrey Carlson
his fruitful discussions. Finally, I want to thank Matthias Franz and Félix Baril
Boudreau for their comments and feedback on earlier versions of this document.

2. FREE EXTENSION PAIRS

Let G be a compact connected Lie group and 7" be a maximal torus in 7. The
rational equivariant cohomology of a G-space X is completely determined by the
induced action of T on X; namely, there is an isomorphism of H*(BT';Q)-algebras

(2.1) HE(X;Q) = HE(X; Q) ®u (o) H*(BT;Q)
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and an isomorphism of H*(BG; Q)-algebras

(2.2) HE(X;Q) = Hi(X; Q)Y

where W = Ng(T)/T is the Weyl group of T in G, and the action of W on T
by conjugation extends to one on the Borel construction Xr [28, Thm.2.2]. Such
an isomorphism also holds over Z if H*(G;Z) contains no torsion and over F), if
H*(G;F,) contains no p-torsion as generalized in [I0, Ch.VII]. These results from
Leray and Borel are discussed for principal G-bundles and can be adapted to the
equivariant cohomology setting,

The isomorphism (ZI) can be used to characterize free and torsion-free mod-
ules in G-equivariant cohomology, and more generally, the syzygy modules for any
compact connected Lie group in terms of the restricted action to the maximal torus
T in G |22, Prop.4.2]. The key ingredient is the fact that H*(BT;Q) becomes a
free module over H*(BG;Q) via the map induced by the inclusion T — G. We
generalize this situation by introducing the following definition.

Definition 2.1. Let G be a compact Lie group and K < G be a closed sub-

group. The pair (G, K) has the free extension property over a field k if the map
H*(BK;k) > H*(G/K;Kk) is surjective.

Observe that this is equivalent to the degeneracy at the Fo-term of the cohomo-
logical Serre spectral sequence associated to the fibration G/K — BK — BG and
the trivial action of G on G/K in cohomology. In particular, H*(BK;k) becomes
a finitely generated free H*(BG;k)-module by the Leray-Hirsch theorem. Recall
that we will often omit the coefficient field k in our notation for cohomology.

Proposition 2.2. Let K € H € G be a sequence of groups such that (G, H) and
(H, K) are free extension pairs. The following statements are equivalent.

(1) (G,K) is a free extension pair.

(2) The action of G on H*(G/K) is trivial.

(3) The cohomological Serre spectral sequence arising from the fibration H/K —
G/K — H/K degenerates at Es.

Proof. For any space X, let Px(t) denote the Poincaré series of X with coefficients
in the field k. As (G, H) and (G, K) are free extension pairs, we get that Ppg(t) =
Ppa(t)Pa/u(t)Payk (t) and so H*(BK) is a free module of rank b(G/H)b(H/K).
This implies that the cohomological Serre spectral sequence arisen from the fibration
G/K — BK — BG degenerates at Ey and H*(BK) = H*(BG; H*(G/K)) =
H*(BG) ® H*(G/K)¢ as H*(BG)-modules. Then Pgu(t)Prk (t) = Pok(t) if
and only if G acts trivially on the cohomology of G/K. O

Proposition 2.3. Let F — E % B be a fibration such that the map H*(E) —
H*(F) is surjective. Let X be a connected space and f: X — B be a continuous
map. Then in the pullback fibration F — Xy := f*E L X, the map H*(Xy) —
H*(F) is also surjective and there is an isomorphism of H*(E)-modules H*(Xy) =
H*(X) QH*(B) H*(E).
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Proof. The surjectivity of the map H*(Xy) — H*(F') follows from the commuta-
tivity of the diagram
F— Xy — X

| b
F——F——208
We can choose an additive section a: H*(F) — H*(E) of the surjective map
i*: H*(F) — H*(F) that induces an isomorphism of H*(B)-modules §: H*(B) ®
H*(F) — H*(FE) given by 0(a ® t) = p*(a)«(t) using the Leray-Hirsch theorem.
Similarly, the composite 8 = ¢g* o « is an additive section of j*: H*(X;) — H*(F)
and there is an induced isomorphism of H*(X)-modules ¢: H*(X) ® H*(F) —
H*(Xy) given by ¢(b®t) = ¢*(b)5(t). Under these choices, there is a commutative
diagram
H*(B)® H*(F) —%— H*(E)
J{f*@id J{g*
H*(X) @ H*(F) —*— H*(X;)

Now we will show that the canonical map K: H*(X) ®y« 5y H*(E) — H*(Xy)
given by b® x — ¢*(a)g*(z) is an isomorphism. It follows from the commutative
diagram

H*(X)® H*(F) ———— H*(X;)

|=

H*(X) ®@u+py H*(B) @ H*(F)
J{id@@
H*(X) @+ () H*(B) — —— H*(X[)

where all maps are isomorphisms. That the map K is one of H*(FE)-modules
follows from naturality of the construction with respect to the map f: X — B and
considering the particular case ¢d: B — B. 0

The following result is a particular case of the previous proposition.

Proposition 2.4. Let (G, K) be a free extension pair over k and X be a G-space.
There is a natural isomorphism of H* (BK)-modules.

(2.3) HE(X) = HE(X) Qp+(pey) H* (BK)

where X is a K-space by restriction of the G-action.

Proof. The Borel constructions X and X¢ sit in a pullback diagram
Xk — Xg
BK —— BG

where the horizontal maps are fibrations with fiber G/K. Since (G, K) is a free ex-
tension pair, the map H*(BK) — H*(G/K) is surjective and thus the isomorphism
@3) follows by applying Proposition 2.3l
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O

This result allows us to describe the syzygies in G-equivariant cohomology in
terms of the K-equivariant cohomology analogously to the reduction from non-
abelian compact connected Lie group actions to torus actions [22] Prop.4.2] as we
state in the following result.

Proposition 2.5. Let (G, K) be a free extension pair and X be a G-space. For
any j =1, H (X)) is a j-th syzygy over H*(BG) if and only if H(X) is a j-th
syzygy over H*(BK).

Proof. We use the characterization of syzygies via regular sequences [13] §16.E] and
the following algebraic fact: Let R, .S be rings such that S is a free finitely generated
R-module. Let A be an S-algebra and B and R-algebra such that A ~ B®pgr S as
S-modules. Then A is a j-th syzygy over S if and only if B is a j-th syzygy over
R. The result then follows by combining these facts, the remark after Definition
2.1l and Proposition 2.4 O

Besides the example where G is a compact connected Lie group and K = T is
the maximal torus, we can also find free extension pairs in the following situations.

Example 2.6. Let k denote field of characteristic p and n > 1 any integer. In the
following cases (G, K) is a free extension pair.

e When G is a torus and K is the maximal elementary abelian p-subgroup of
K [I6] §5].

e When G is a finite abelian group and K is the subgroup isomorphic to the
product of cyclic groups of order divisible by p in the elementary decomposition of
G [12, Ch.IIL.§10].

o. Let p = 2. When G = O(n),SO(n),U(n) or SU(n) and K is the maximal
elementary abelian p-subgroup of G [30, Ch.III.§4].

e Let p = 2. When G = SU(2) and H = Qg is the quaternionic group [II
Ex.2.10].

Proposition 2.7. Let n > 1 and G,,, K, be one of the following pair of groups
(a) Let G, = SO(n) and K, = O(n).

(b) Let G, = SU(n) and K,, = U(n).

(¢) Let G,, = Sp(n) and K, = Sp(n) x Sp(1).

There is an embedding of K,, on Gn41 such that (Gn41,K,) is a free extension pair
over Fa in case (a) and over an arbitrary field in cases (b) and (c).

Proof. Let ¥,, = RP",CP"™ or HP™ and L = O(1),U(1) or Sp(1) in cases (a), (b)
or (c¢) respectively. There is a transitive action of G,,4+1 on X, and thus the equivari-
ant cohomology HE  (¥,) is isomorphic to H*(B(Gp+1)s). Using homogeneous
coordinates on ¥,,, we see that the isotropy group of x = [0:---:0: 1] is given by
(Gn+1)e = K, and thus the inclusion map (Gy+1)z — Gpny1 induces an embedding
of K,, into G, +1. On the other hand, the restriction map Hénﬂ(En) — H*(%,)
is the restriction of the first characteristic class to a finite approximation which
shows that ¥,, is G,41-equivariantly formal. Combining both facts we have that
(Gny1, Kp) is a free extension pair and the cohomological Serre spectral sequence
associated to the fibration ¥,, - BK,, - BG, 1 degenerates at the FEs-page.
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This argument can be generalized for any Grassmanian as follows. Let ¥, x =
Gr(n, k) be the Grassmannian of k-dimensional planes in K. There is a canonical
transitive action of K,, on ¥, ; and thus H}’}n(Emk) ~ H*(B(X,)x) for a chosen
X € Gr(n,k). If X ={eyq,..., ey, we see that (X,,)x = S(Gr x Gn—p).

There is a short split exact sequence

OHS(GkXGn_k)—)GkXGn_kHL—)()

that induces an isomorphism in cohomology H*(BG})® H*(BG,—) ~ H*(BL)®
H* (BS(Gk xGp—p) and H* (BS(Gk X Gn—k)) ~ (H* (BGk)®H* (BGn_k))®H* (BL)
k. Recall that H*(XZ,, ;) = H*(Gk)/I, and so X, is K,-equivariantly formal; in
particular, this implies that (K, S(Gk x Gn—)) is a free extension pair. O

Recall that for K < G a closed subgroup of a Lie group G, the Weyl group of
K in G is defined as W = Ng(K)/K where Ng(K) denotes the normalizer of K in
G.

Theorem 2.8. Let (G,K) be a free extension pair. Let W be the Weyl group
of K in G and suppose that there is an isomorphism of algebras H*(BK)W =~
H*(BG). Then for any G-space X such that H*(X)® = H*(X), W acts on the
K -equivariant cohomology of X and there is a natural isomorphism of H*(BG)-
modules Hj-(X)W =~ H}(X).

Proof. The map ¢, given by the conjugation of a chosen element g € G induces
the identity map in the cohomology of H*(BG). This can be shown using Milnor’s
join construction of BG. Moreover, this map induces a map Xg — Xz where
X is a é-space with the action of G induced by the map c,. Notice that the G-
equivariant cohomology of X is isomorphic to its G-equivariant cohomology. Since
G acts trivially on the cohomology of X, a (Serre) spectral sequence argument shows
that the map ¢, induces the identity on H%(X). Therefore, there is a well defined
action of W on both H*(BK) and Hj:(X) and the previous argument shows that
H{(X) < HE (X)W, Moreover, the canonical map HE(X) Qux(pey H*(BK) —
H}(X) of algebras is W-equivariant and an isomorphism by Proposition 4] and
thus H%(X) = HA(X)W as H*(BG)-modules since W acts trivially on H}(X)
and H*(BK)" ~ H*(BG) by assumption. O

Observe that Propositions 2.4l and Theorem 2.8 can be summarized in Theorem
[T as discussed at the beginning of this document. In the rest of this section, we
discuss the case when G is a semi-direct product; we first start with the following
result.

Proposition 2.9. Let G and K be groups. Suppose that there is a subgroup N € G
and a group homomorphism ¢: K — Aut(G) such that ¢(k)|n is the identity for
all ke K. Then (G, N) is a free extension pair if and only if (G x4 K, N x K) also

1S.

Proof. Under these assumptions, there are canonical isomorphisms H*(B(N x
K)) ~ H*(BN)® H*(BK) and H*((G x4 K)/(N x K)) = H*(G/N). The com-
mutative diagram

H*(BN)® H*(BK) —— H*((G x4 K)/(N x K))

| |

H*(BN) H*(G/N)
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and the surjectivity of the vertical arrows implies that the top horizontal arrow is
surjective if and only if the bottom also is. O

It is not difficult to check from the definition of free extension pairs and the fact
that the classifying space functor preserves finite products, that the product of two
free extension pairs is again a free extension pair.

In the following remark we discuss a more general criterion for the product
property of free extension pairs.

Remark 2.10. Let (G,N) and (K, L) be two free extension pairs. Suppose that
there is a group homomorphism ¢: K — Aut(G) such that ¢r,(N) € N then the
map H*(B(N x L)) — H*(BN) is surjective if and only if (G x, K,N x, L) is a
free extension pair.

Let G = N x T be a semi-direct product group. The G-equivariant cohomology
can be computed stepwise as in the direct product case; namely, for a a G-space
X, there is an isomorphism of k-algebras H}(X) =~ H}(Xn) As a consequence of
Proposition 2.9 and Remark 210, we can recover the free extension property for the
matrix groups G,, and K, of Proposition[2.1since K,, =~ G,, x K,,/G,,. Notice that
the group L = K,,/G,, is unique up to isomorphism for all n > 1. We summarize it
in the following corollary.

Corollary 2.11. Let L = K, /G,. The pairs (Gn41,L™) and (K,,L™) are free
extension pairs. In particular, for k = Fo, L™ can be replaced by the its mazimal
elementary abelian 2-subgroup.

3. TORUS ACTIONS AND COMPATIBLE INVOLUTIONS

In this section, we will consider cohomology with coefficients over k = Fo (and
we will omit it in our notation). Let X be a space with an action of a torus T
and let 7: X — X be an involution. We say that 7 is compatible if 7(g - z) =
gt 7(z) for any g € T and x € X. Examples of such spaces appear naturally
as toric varieties in algebraic geometry, Hamiltonian torus actions on symplectic
manifolds and topological generalizations of these spaces as quasitoric manifolds,

torus manifolds and moment angle complexes [17], [24], [14].

The aim of this section is to describe the equivariant cohomology for any T-
space X with a compatible involution 7. Firstly, notice that in this case there is a
well defined action of the group G = T %, Z/27Z where Z/27 acts on T by inversion.
Conversely, an action of G on X induces an action of T' with a compatible involution
7 on X. Therefore, the equivariant cohomology of a T-space with a compatible
involution can be approached by studying the G-equivariant cohomology of X.

More generally, let m and n be positive integers. We will consider actions of
the semidirect product group G = T x K where T = (SY)", K = (Z/2Z)™ and
o-g=g ! for ge T and a generator o € K. By our assumption on the base field
k, the cohomology of the classifying spaces BT and BK are polynomial rings. In
fact, we will show that under our assumptions there is a canonical isomorphism of
algebras H*(BG) =~ H*(BT)® H*(BK) and thus H*(BG) is a polynomial algebra
in (n + m)-variables as we state in the following result.

Theorem 3.1. There is a unique graded algebra isomorphism H*(BG) = H*(BT)®
H*(BK) such that
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e The canonical map i*: H*(BG) — H*(BT) induced by the inclusion is
surjective and ker(i*) =~ (H*(BK)%) is the ideal generated by the positive
degree cohomology of BK .

e The canonical map p*: H*(BK) — H*(BG) induced by the projection is
injective and Coker(p*) =~ H*(BT).

e There is an algebra homomorphism ¢ : H*(BT) — H*(BG), such that the
composite i* o ¢ is the identity over H*(BT) and Coker(yp) =~ H*(BK).

e The map j*: H*(BG) — H*(BK) induced by the inclusion j: {e} x K —
G has kernel (H*(BT)") and the composite j* o p* is the identity over
H*(BK).

Proof. To compute the cohomology of BG, notice that the short exact sequence
1-T-GC—->K-—1

yields a fibration of classifying spaces

(3.1) BT — BG — BK.

Observe that the action of 7 (BK) on H*(BT) is induced by the action of K on T
and hence on BT'. In fact, each generator o € K, induces an action on the integral
cohomology H*(BT};Z) given by multiplication by -1 and thus trivial in cohomology
over Fy. Therefore, the Es-term of the Serre spectral sequence associated to the
fibration 3] is given by

EY? ~ HP(BK; HY(BT)) = H*(BG)
and then we have an isomorphism of algebras
E, =~ H*(BK)® H*(BT)

We will show that this spectral sequence degenerates at this term by induction on
m = rank K. Let us assume then that m = 1. By degree reasons, the only possible
non-zero differential ds is determined by ds : E§’2 — Eg”o. Choose generators
x; € H*(BT) for 1 <i <nand te H'(BK). Under these identifications, we have
that d3(x;) = a;t® with either a; = 0 or a; = 1.

The sub-extension

T T xZ/2 —— 7,/2

1 1xZ/2 — 7)2

induces a map of spectral sequences EP*9 — Eg’*q, where Ey =~ H*(BZ/2) is the Es
page of the spectral sequence associated to the bottom exact sequence. This implies
that ds = 0 since the right vertical arrow is the identity map and ds = 0 as the

spectral sequence E* degenerates at the Fs-term. We have then an isomorphism
of H*(BK)-modules

H*(BK) ® H*(BT) ~ H*(BG).

On the other hand, since H*(BT) is a finitely generated polynomial algebra,
we can choose a multiplicative section ¢ : H*(BT) — H*(BG) of the surjective
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map of H*(BG) — H*(BT) induced by the inclusion map. Therefore, such a
map together with the canonical map p*: H*(BK) — H™*(BG) gives rise to an
isomorphism of graded H*(BK)-algebras

0: H*(BK)® H*(BT) — H*(BG)
given by 6(a® B) = p* (@)@ (6).

Under this isomorphism, the canonical map induced by the inclusion j : B(1 x
K) — BG might satisfy j(z;) = w? for some 1 < i < n. If that is the case, then
we consider the section ¢(z;) = ¢(z;) + w? if p(z;) = w? and p(z;) = @(x;) if
P(x;) = 0. As discussed before, it induces an isomorphism of algebras

0: H*(BK)® H*(BT) —» H*(BG);
furthermore, such a section is unique since it is determined by the condition

j*¢@ = 0, and thus it makes the isomorphism 6 unique as well. Therefore, the
composite

j¥0: H*(BK)® H*(BT) — H*(BG) - H*(BK)
has kernel H*(BT)". Now notice that the composite

H*(BT) % H*(BG) 5> H*(BT)

where ¢* is induced by the inclusion T — G is the identity on H*(BT) since
i*(w) = 0 and ¢ was constructed as a section of this map. This implies that the
maps

H*(BT) % H*(BG) and H*(BG) > H*(BT)
coincide with the canonical inclusion and restriction respectlvely Using a similar
argument over the composite H*(BK) £— H*(BG) - H*(BK) which is the

identity over H*(BK), we conclude that the map H*(BZ/2) -~ H*(BG) has
kernel H*(BT)*.

The inductive argument follows in a similar fashion, noticing that G =~ (T %
K) % 7,/27 where rank(K) = m—1 and looking at the fibration B(T x K) — BG —
BZ/2Z. 0

Now we will study the algebraic properties of the G-equivariant cohomology
as a module over H*(BG). Notice that for any G-space X, there is an induced
involution 7 on the space Xr; moreover, the Borel constructions X and (X7),
are homotopic. Using this remark we prove the following result.

Proposition 3.2. Let X be a G-space and assume that X is T -equivariantly formal.
Then X is G-equivariantly formal if and only if the Borel construction Xt is G/T-
equivariantly formal.

Proof. Write G = T x K where K = (7) ~ G/T. Firstly, let us suppose that X is
G-equivariantly formal, by Theorem B.Iland the above remark we get isomorphisms

H*(X7) =~ Hi(X) =~ H*(BG) @ H*(X)
~ H*(BK)® H*(BT) ® H*(X)
~ [I*(BK) ® H*(Xr)
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and so X7 is K-equivariantly formal. Reversing the above sequence of isomor-
phisms, the converse of the statement holds. However, we need to be careful with
the H*(BG)-module structure of H%(X) and the H*(BK)-module structure of
H}(X7). From the diagram

and the canonical isomorphism H*(BG) ~ H*(B1)® H*(BT) constructed in The-
orem [3] the H*(B7)-module structure on H*(X7) coincides with the restriction
of the H*(BG)-module structure on H(X) to the action of those elements of the
form a®1 e H*(Bt) ® H*(BT) ~ H*(BG). O

Now we will apply this theorem to the conjugation spaces introduced by Haussmann-
Holm-Puppe [26]; among these spaces, complex Grassmannian, toric manifolds,
polygon spaces and some symplectic manifolds fit. A conjugation space X satisfies
that H°(X) = 0 by definition and thus it becomes T-equivariantly formal for any
action a torus T. They also satisfy the following property [26, Thm.7.5].

Theorem 3.3. Let X be a conjugation space with conjugation 7. Suppose that
a torus T acts on X and that the action is compatible with 7. Then Xrp is a
conjugation space where the conjugation on Xt is the one induced by 7.

This theorem shows that X is 7-equivariantly formal. Then immediately from
Theorem we obtain the following result.

Corollary 3.4. Let X be a T-space which is also a conjugation space with a com-
patible involution 7. Then X is G-equivariantly formal.

4. REDUCTION TO 2-TORUS ACTIONS

In this section, we will use the results from section 2 on free extension pairs to
study the equivariant cohomology for torus actions and compatible involutions by
reducing to the maximal elementary 2-abelian subgroup (or 2-torus). Let H = Ty x
K =~ (Z/2Z)™*™ denote the maximal 2-torus subgroup in G = T x K where To < T
is the maximal 2-torus subgroup in 7. Since (S',7Z/27Z) is a free extension pair over
Fs, by Proposition 2.9] Remark and Theorem Bl it follows that (G, H) is a
free extension pair as well. Let us choose generators H*(BT) =~ Fy[z1, - .2,] and
H*(BH) =~ Fa[t1,...,tn,Y1,.--,Yn] so that H*(BT3) = Fa[t1,...,t,] and the map
induced by the inclusion Ty — T maps z; to t7 for all 1 <4 < n. We now compute
explicitly the module structure of H*(BH) over H*(BG@) as stated in the following
lemma.

Lemma 4.1. The map i*: H*(BG) — H*(BH) induced by the inclusion i: H —
G is given by i*(c;) = t2 + t;(wy + -~ wy,) for all 1 <i < n and i*(w;) = wj for
alll <j<m.
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Proof. By theorem Bl we can assume that m = n =1 and so H*(BG) = Fa[z, w]
and H*(BH) = Fa[t,w]. Notice that the statement i*(w) = w is clear as it
follows from the map induced by the inclusion of Z/27Z into the second factor of
S % Z/27 which factors through H*(BH ), Now write i*(z) = at? + Stw + yw? for
a, B, € Fy. As before, the inclusion of Z/27Z into the first and second factor of G
show that o = 1 and v = 0 respectively. To compute 3, we consider the inclusion
of G into SO(3) by identifying G with O(2) as in Proposition 27 . Recall that
H*(BSO(3)) =~ Fa|ws,ws3] where |w;| = i for ¢ = 2,3 and the inclusion H — SO(3)
induces the map ¢: H*(BSO(3)) — H*(BH) given by ¢(ws) = 2 + tw + w? and
d(wz) = t>w + wt?. Since ¢ factors through i*, this implies that 3 = 1 and so
i*(z) =t + tw. O

In Theorem Bl we showed that the cohomology of H*(BG) behaves as the
cohomology of the classifying space of the direct product T' x K. However, Lemma
[T implies that their cohomology as modules over the Steenrod algebra are not.

Remark 4.2. The mod2-cohomology of the classifying spaces BG and B(T x K)
is isomorphic as Fa-algebras but not as modules over the Steenrod algebra.

Proof. As before, we may assume n = m = 1. For x € H?(BG) generator, write
Sqt(z) = azw + Bw? for o, € Fo. By naturality of the Steenrod operations, we
have that i*(Sq!(z)) = Sq'(i*(x)) where i* is the map induced by the inclusion
H — G. Therefore, a(t?w + tw?) + fw® = Sq¢' (£? + tw) = t*w + wt? by Lemma
AT and so @« = 1,8 = 0. On the other hand, a similar argument applied to the
inclusion j: H — T x K shows that S¢*(z) = 0 as j*(z) = 2. O

Notice that for m > 2, there is a group isomorphism G = ((S1)" x (Z/2Z)™ 1) x
7/27 where the action of the last factor of Z/27Z is trivial on (Z/2Z)™~'. Therefore,
as in the proof of Theorem [B.I] for the results of this section we may assume that
m = 1 and the general statement will follow by induction.

Let S be any commutative ring and consider the polynomial ring S[a,b]. Let
z =a?+ ab € S[a,b]. Since a® = z — ab, one can check that

(4.1) Sla,b]/S[z,b] = aS[z,b] = {p(z,b) € S[z,8] : alp(z, b)}.
We will use this fact to prove the following proposition.

Proposition 4.3. H*(BH) is a free module of rank 2™ over H*(BG); moreover, it
is freely generated by the elements of the form t{1s? - - - t&n where €; € {0,1} for all i,
and the canonical multiplicative structure of H*(BH) as an Fa-algebra induces an
H*(BG)-algebra structure completely determined by multiplication of the elements
of this basis.

Proof. Let R =K[e1,-+ ,cn,w] =~ H*(BH), M = K[t1,...,tn,w] = H*(BG) and
set y; = t? +t;we M for i =1,...,n. Recall that M is an R-module by extending
the action ¢;-1 = y; and w-1 = w. Consider the filtration of M by the R-submodules

(42) F():k[yl,yQ,...,yn,w]gFlg"'an:M
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where F; = k[t1,...,t;,Yi+1,---Yn,w] for i = 1,...n — 1. We will prove by

induction that Fj is a free R-module of rank 2¢ for i = 0,...,n. The statement for
i = 0 is immediate. For ¢ > 0, set S; = Kk[t1,...,%i—1,Yi+1,- - -, Yn] and notice that
(4.3) Fi/Fi_1 = Si[ti, w]/Silyi, w] = t;S[ys,w] = t;: Fi 1

as in ([@I) and thus it is a free R-module by induction. This implies that the short
exact sequence of R-modules

(4.4) 0= Foy = F — F/F —0

splits and hence F; =~ F;_1 @ F;/F;_1. Finally, we have then that F; is a free R-
module of rank 2~! 4+ 2¢=!1 = 2¢ by induction again. The claim about the basis
elements follows also by iterating ([@1l) and (@3] in the decomposition

(4.5) Fy=FR®FN/Fo® @ F/Fr

forallk =1,...,n.

Combining Propositions and we can state the following result.

Corollary 4.4. Let X be a G-space. H}\(X) is a j-th syzygy over H*(BG) if and
only if H}y(X) is a j-th syzygy over H*(BH). O

Proposition 2.4 shows that the H-equivariant cohomology of X is determined
by the G-equivariant cohomology of X. As in the case for compact connected Lie
groups and their maximal torus for rational coeflicients, we can also describe the G-
equivariant cohomology of X in terms of the Weyl invariants of the H-equivariant
cohomology of X. Recall that the Weyl group of H in G is defined as the quotient
W = Ng(H)/H where Ng(H) denotes the normalizer of H in G. We first proof
the following proposition.

Proposition 4.5. Let W = Ng(H)/H be the Weyl group of H in G. Then W =
(Z/2)™ and there is an isomorphism of algebras H*(BG) =~ H*(BH)W where the

action on the cohomology of H*(BH) is induced by the conjugation action of W on
H.

Proof. Write H = {(g1,€), ..., (gn,€),(1,7)) where g? = 1 in the i-th factor S* of T'.
We claim that Ng(H) =~ (Z/4)" x Z/2Z where (Z/4)" = {01, ...,0,) is generated by
elements 02 = g; and Z/27Z acts on Z/4 by inversion. Notice that for any (g,0) € G
where g € T and o € (1), (g,0) commutes with every element in H of the form
(9i,€) and so we only need to look at the conjugation of the element (1,e) € H by
(g,0). Namely, if (g,0) € Ng(H) we have that (g,0)(1,7)(¢9,0) = (¢%,7) € H and
thus we get g € (01,...,0,). This implies that W = (Z/2Z)™ is generated by the
cosets (0;,e)H for i =1,...,n.

Recall that for any topological group the map induced in the cohomology of
the classifying space by the conjugation of a fixed element is the identity map

[2, Ch.II Thm.1.9] and so i*(H*(BG)) < H*(BH)". It only remains to check
the reverse inclusion to finish the proof. We now compute the induced action on
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the cohomology of H*(BH). Choose a decomposition H*(BH) = Kk[t1,...,ty, w]
where the variables ¢; are dual to the generators g; and w is to 7 in Fo[ H]. For a fixed
i€ {l,...,n}, notice that any (0;,e)H € W acts trivially on the generators (g;,e) €
H; on the other hand, we have that (6;,e)H - (1,7) = (6;,e)(1,7)(0:9:,7) = (gi,T)
This implies that the induced map ¢; by the action of (6;,e)H on the cohomology
ring Folt1, ..., ¢y, w] is given by ¢;(t;) = t; for j # ¢, vi(t;) = t;+w and ¢;(w) = w.
This follows, for instance, from a group cohomology argument.

By Proposition F3] consider an element P = >}, , Pit; € H*(BH)" where
Pr € H*(BG) are uniquely determined. We will show that P; = 0 if I(k) # 0 for
some 1 < k < n. Let I € A be such that I(k) # 0, then o (Prt;) = Prt; + wPrty,
where Iy (j) = I(j) if j # k and Ix(k) = 0. Under this notation, we have that
vi(tr,) =ty and then the equation P = ¢y (P) implies that P;, + wP; = Py, and
so Pr = 0 as desired. O

Actually, the isomorphism of Proposition can be extended to a natural
isomorphism in equivariant cohomology as we state in the following consequence of
theorem 228

Corollary 4.6. Let X be a G-space, H the mazximal 2-torus in G and W the Weyl
group of H in G. Suppose that G acts trivially on the cohomology of X. Then there
is a natural isomorphism of H*(BG)-algebras

HE(X) = Hy (X))
induced by the inclusion H — G.

5. EQUIVARIANT COHOMOLOGY FOR THE REAL LOCUS

Let M be a symplectic manifold with an action of a torus 7. A consequence
of the work of Frankel [20], Atiyah [6] and Kirwan [27] in equivariant cohomology
for Hamiltonian torus actions is that the action on M is Hamiltonian if and only if
M is T-equivariantly formal. Moreover, if M admits a compatible anti-symplectic
compatible involution 7, the real locus M7 inherits a canonical action of T5 and
MT is Tr-equivariantly formal as shown in [18], and extended later in [9]. This can
be summarized in the following result.

Theorem 5.1. Let M be a symplectic manifold with a symplectic action of a torus
T and a compatible anti-symplectic involution 7. If M is T-equivariantly formal,
the real locus M7 is Ts-equivariantly formal.

In this section we generalize the notion of spaces with a torus action and a
compatible involution to a large class of groups, and we study the equivariant coho-
mology for the fixed point subspace under the compatible involution to generalize
Theorem [5.1] into a topological setting. We first introduce the following definition
motivated by the case when X is a complex variety and the involution is induced
by the complex conjugation.

Definition 5.2. Let X be a space with involution 7. The real locus of X is defined
as the fized point subspace X7 .

Let G be a compact group, X be a G-space and 7x be an involution on X. We
say that 7x is a compatible involution of X if there is a group homomorphism
76: G — G such that 7& = id and 7x(g - z) = 7¢(g) - 7x(x) for any g € G and
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xz € X. The condition of compatibility is equivalent to an action of the group
G, = G % Z/2Z on X. To simplify our notation, the involutions 7x and 7¢ will
be both referred as 7, and their domain can be inferred from the context. Notice
that the subgroup G7 of 7-fixed points of G acts on the real locus X7.

Definition 5.3. Let H be a T-invariant subgroup of G. We say that (G, H) is a
T-free extension if both (G,H) and (G™,H") are free extensions.

Notice that if 7 acts trivially on H, then X is the real locus of X. We proceed
to prove the following result.

Theorem 5.4. Let G be a compact group and let X be a G-space with a compatible
involution involution 7. Suppose that there is a T-invariant 2-torus H in G such
that (G, H) is a T-free extension. For any splitting H, ~ H™ x L and for any
integer j = 1, if HE (X) is a j-th syzygy over H*(BG-), then so is HE, (XL as
a module over H*(BGT).

Proof. As H is a 2-torus, (G, H) is a free extension if and only if (G, H;) is. In
fact, it follows from the commutativity of the diagram

H*(BH,) —— H*(G,/H,)

| |

H*(BH) — H*(G/H)

where the map H*(G,./H,) — H*(G/H) is an isomorphism and H*(BH,) —
H*(BH) is surjective. If X is a j-th syzygy over H*(BG,), it follows from Propo-
sition [Z4] that it also is a j-th syzygy as a module over H*(BH,) =~ H*(B(H x 7)).
We can use now the tools for syzygies for 2-torus actions discussed in [16] In fact,
from Theorem [I6, Thm.2.1] applied to the subgroup L < H,, we obtain that
HI";T/L(XL) ~ Hj(XT) is a j-th syzygy over H*(B(H,/L)) =~ H*(BHT™). Finally,
as (G, H) is a 7-free extension pair, from Proposition we get that X is also a
j-th syzygy over H*(BGT). O

This theorem applies, for instance, to the groups G = T x (Z/2Z)" for any
n = 0 which generalize torus actions and torus actions with compatible involutions
where H is the maximal 2-torus in G. It also applies to SO(n) with the canonical
T-action that makes the isomorphism SO(n) x, Z/27Z = O(n). In this case, H is
the maximal 2-torus in SO(n). In particular, we have a generalization of Theorem
BEdl given by the following result.

Theorem 5.5. Let G =T x Z/27 and X be a G-space. If H%(X) is a j-th syzygy
over H*(BG), then so is H}, (X7) as a module over H*(BTy). In particular, if X
is G-equivariantly formal, then the real locus X7 is Ts-equivariantly formal.

Example 5.6. Let X be a T-space. Suppose X is also a conjugation space with a
compatible conjugation 7. Then from Theorem and corollary 3.4 we have that
the real locus X7 is Th-equivariantly formal.

The assumptions of Theorem cannot be weakened. For example, If X is a
G-space such that it is simultaneously T-equivariantly formal and 7T-equivariantly
formal, it is not necessarily true that X is G-equivariantly formal or that its real
locus X7 is Th-equivariantly formal as the next example shows.
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Example 5.7. Let X = {(u,2) e Cx R : |[u]? + |2]? = 1} = S?, let T = S* act on
X by g- (u,2) = (gu, z); more precisely, by scalar multiplication in the first factor.
Let 7 be the involution 7(u, z) = (&, —z) which is compatible with the torus action.
Notice that XT = {(0,1),(0,—-1)} = S% and X" = {(—1,0),(1,0)} = S°. Therefore,
the action of T on X7 is the multiplication by +1 and thus it is a free Th-space.
This implies that its Th-equivariant cohomology is not free over H*(BT3). On the
other hand, H#(X) is a free H*(BT)-module since X and X7 have the same Betti
sum.

One of the main issues of this example is that X¢ = . Even requiring X # &,
a counterexample can be found and its construction will be motivated by [32, Sec.
5]. First we recall the following construction of topological spaces.

Definition 5.8. Let f : X — Y be a G-map between G-spaces X and Y. The
mapping cylinder is defined as the G-space My = (X x [0,1])uY/ ~ where (z,1) ~
f(x), with the action given by g-(x,t) = (gz,t) for (z,t) € X x[0,1] and the action
on Y. Notice that it is well defined at the points of the form (x,1) since f is a
G-map.

The space M is G-homotopic to Y and therefore H* (M) =~ H*(Y'). Also, the
fixed point subspace (M) =~ Mc where f¢: X¢ — Y% Nowlet g: X — Z
be a G-map and M, the corresponding mapping cylinder. Then the space My, =
My Ux 0y My has cohomology groups fitting in the long exact sequence

0— H'(Myg) — H(Y)® H(Z) - HY(X) — H'(My,) — -+

following from the Mayer-Vietoris long exact sequence. Moreover, M , becomes a
G-space and (M )¢ ~ Myc g4o. In particular, we have

Proposition 5.9. Let m,n,r be distinct positive integers, h : S™ — S™ a map
between spheres and consider f = hxid: S™x 8" — S"xS" and g: S™xS" — S™
the projection on the first factor. Then H*(My,,) is free over Z/2Z where a copy of
Z,/27 happens in degrees 0,m, m+71+1,n+r and it is zero otherwise. In particular,
b(My,q) = 4.

Using this construction, we have the following proposition.

Proposition 5.10. There is a topological space M with an action of a torus T
and a compatible involution T such that ME # &, M is T-equivariantly formal
and Z/2Z-equivariantly formal, but the real locus M7 is not Ty-equivariantly formal
with respect to the induced action of the 2-torus To €T on M. ]

Proof. Let X = 8% ,Y = S%2 and h : X — Y be the Hopf map, which can be
written as h(u,z) = (2uz,|u|? — |2]?). Here S is seen as the unit sphere in C?
and S2 as the unit sphere in C x R. Let T = S' act on S® and S? as the complex
multiplication in the first component respectively, and 7 be the involution on S2 and
S? given by the complex conjugation in the first component respectively. Then 7 is
compatible with the torus action and X7 =~ 8!, X7~ 52, YT =~ SO and Y™ =~ S'.
Now let Z = S° be the unit sphere in C3, let T act on Z by multiplication in the
first component and 7 be the involution on Z given by the complex conjugation in
the first component, and multiplication by —1 in the second and third component.
Then Z7 =~ 83 and Z7 =~ S°; moreover, the action of the 2-torus 75 € T on Z7 is
free.



EQUIVARIANT COHOMOLOGY FOR SEMIDIRECT PRODUCT ACTIONS 17

Let M = Mjy 4 be the construction of Proposition [7.91 We have that the Betti
sums b(M) = b(MT) = b(M™) = 4 and thus M is T-equivariantly formal but M~
is not Th-equivariantly formal since b((M7)72) = 2 < b(M™). O

6. ACTIONS ON BIG POLYGON SPACES

Big polygon spaces provide remarkable examples for the study of torus equivari-
ant cohomology since their equivariant cohomology is not free over the cohomology
of the classifying space of the torus but realize all other possible syzygy order. They
will also allow us to realize all possible syzygies in G-equivariant cohomology. These
spaces where introduced in [2I] where their non-equivariant and T-equivariant coho-
mology was determined and an upper bound for their syzygy order was conjectured.
This was proved later in [23]. They generalize chain spaces and polygon spaces stud-
ied in different contexts in [19] and [25] for instance. The real analogous of these
spaces is also studied in [31] for the case of 2-torus actions and cohomology with
Fy-coefficients. Before discussing these spaces, we will review the construction of a
cohomology class that will be useful for the results of this section. We use the equi-
variant homology for 2-torus actions; for its construction and properties we follow
the work in [4].

Let G be a 2-torus, M be a closed G-manifold of dimension m and N € M be a
closed G-invariant submanifold of M of dimension n. Let j¢: HS(N) — HS (M)
denote the map induced in equivariant homology by the inclusion j: N — M; sim-
ilarly, j&: HE(M) — HE:(N) denotes the map induced in equivariant cohomology.
As M and N satisfy Poincaré duality (cohomology with coefficients over a field
of characteristic two), there are isomorphism PDy: HE(M) — HS_, (M) and
PDy: H}(N) — HS . (N). Consider the composite map
PDy}

el .k
vnor: HE(N) 225 HG (N) 5 HE (M) HE~" (M) 2% HE " (N).

Under this construction, we introduce the following definition.

Definition 6.1. The G-equivariant FEuler class of N with respect to M denoted
by eq(N < M) is defined as the cohomology class vy p(1) € HE ™ (N).

Consider the following example (compare with [21, Lem.4.2]).

Example 6.2. Let G = G1 x G2 be a 2-torus of rank 2 where G; = {1,¢9},G> =
{1,7}. Let G act on C where g acts as the multiplication by —1 and 7 as the complex
conjugation. Let z,w denote the generators of H*(BG1) and H*(BG3) dual to g
and 7 respectively. Then the equivariant Euler class e (0 € C) = ax?+Brw+yw? €
H?(BG). Let K = {1, s} and t be the generator of H*(BK). Consider the following
cases

e Let s act on C in the same fashion as g and let j; : K — G be the map
sending s to g, then the induced map in cohomology is given by ji(z) =t
and j¥(w) = 0. Notice that ex(0 = C) = t? since g acts non-trivially in
both components of C = R@R and the Euler class is multiplicative. From
the naturality of the Euler class we get at? = jf(eq(0 < C)) = eq, (0 =
C) = t2; therefore, a = 1.

e Let s act on C in the same fashion as 7. As before, the map jo : K — G
sending s to 7 induces the map in cohomology mapping = to 0 and w to t.
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In this case, ex(0 € C) = 0 since 7 acts trivially on one real factor of C.
Therefore, by naturality, we obtain v = 0
e Finally, let s act on C as g7, and j3 : K — G sends s to (g,7) and, in
cohomology, both z,w are sent to ¢t. Since s acts trivially on one real factor
of C, ex (0 = C) = 0 and by naturality, t* + 8t* = j¥(eq(0 < C)) = ex (0 =
C) = 0. Therefore, 5 = 1.
So we have proved that eq(0 € C) = z(z + w).

Definition 6.3. Let a,b,n be positive integers and M = (S2e+20=1)n < (C* x CP)".
Let ¢ = (Iy,...,1l,) € R™ be such that l; > 0 for all i and such that it cannot be split
as the sum of two vectors {1 and £2 of equal sum. The big polygon space is defined

as

n

Xap(l) = {(u,z) eM: Z liu; = O}

i=1
The space X, (¢) inherits an action of an n-dimensional torus 7' by componen-
twise complex multiplication on the variables z;. In this case, X, ;(¢) becomes a
compact orientable T-manifold of dimension (2a 4+ 2b— 1)n — 2a and its equivariant
diffeomorphic type depends on ¢ [21], Lem.2.1]. Moreover, the complex conjugation
on M induces a compatible involution 7 on X, 5(¢) and its real locus is the real big

polygon space.

The first property of the G-equivariant cohomology of X, ;(¢) is that it is not
free over the cohomology of H*(BG) as we show in the following result.

Proposition 6.4. H(X) is not free over H*(BG). In fact, H:(X) is not a j-th
syzygy for j = (n +1)/2.

As a consequence of Theorem B3 we can recover a theorem of Puppe [31}
Thm.1.2] that bounds the syzygy order of the real big polygon spaces.

Corollary 6.5. The equivariant cohomology of the real big polygon space X™ under
the action of the 2-torus Ty is a j-th syzygy j < (n +1)/2.

Proof. By Corollary[d4] it is enough to restrict to the action of the maximal 2-torus
H of G. Let us denote by X the big polygon space to simplify notation. On the
one hand, the integer cohomology of X is free and its Betti sum is b(X) = 2™ [21]
Prop.3.3]. On the other hand, when a > 2, the Fa-cohomology of the fixed point
subspace X is isomorphic to a quotient of an exterior algebra on n-generators by
a non-trivial ideal [19, Prop. 4.2 ] and so b(X%) < 2". The same bound holds
when a = 2 by using that X ~ §! x XT/SO(2) and the computation of the Betti
sum. This shows that b(X*) < b(X) and thus X is not G-equivariantly formal by
the Betti sum criterion for 2-torus actions [33] Prop.I11.4.16]. The last assertion of
the Corollary follows from the fact that X is a compact manifold and it satisfies
Poincaré duality over Fa-cohomology. O

To bound the syzygy order of the G-equivariant cohomology of the big poly-
gon spaces we use a similar approach as in the torus case. Firstly, we need to
explicitly describe the generators of the non-equivariant and equivariant homol-
ogy of the spaces M and M\X. Namely, for any subset J < {1,2,...,n}, write
Jo=A{1,....n}\J and J v j = J U {j}, and define £(J) = >, ;l;. We say that J
is short if £(J) < £(J¢). We also define the manifolds

Vi={(u,z) e M :Vj¢J (uj,z) ==}
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Wi={(u,z)e M :Yj, k¢ J uj =uk,z =z, =0}

where * € §29720=1 ~ (C® x {0}) is a chosen base point. Notice that V) is homeo-
morphic to a product of |J| spheres of dimension d and W; =~ V; x S22~1. These
homeomorphisms imply that V; € Wy, dim Vy = |J|d and dim Wy = |J|d+ (2a—1).

Let [Vy],[Wy] be the respective homological orientation classes of V; and W
and [Vy]m, [Ws]ng their equivariant lifting. Then H, (M) is free with basis {[V;] :
J < {1,...,n}} and Hy(M\X) is free with basis {[Vs],[W,] : J short} [2I, Lem.
3.2].

Analogously to [2I| Lem. 4.5, Prop.4.6] we have the following description in
H-equivariant cohomology.

Proposition 6.6. Let t: M\X — M be the inclusion map.

(i) HE (M) is a free H*(BH)-module with basis {[Vj]u, J S {1,...,n}}.
(ii) HE(M\X) is a free H*(BH)-module with basis {[VJ]H, (Wila, J short }.
(i) G ((Vilm) = Vil and oI ((Wilu) = Yjes 0wy +w)° [V

Proof. Notice that b(M) = b(M*H) as M =~ ($22=1)? and so M is H-equivariantly
formal. Moreover, we obtain that the restriction map

H (M) — Hy (M)

which is the edge homomorphism of the homological spectral sequence with Es-term
given by Ey = Hy(M)® H*(BH) and converging to HH (M) is surjective since the
basic elements [V;] have a lifting in H};(M). Therefore, as in the Leray-Hirsch
Theorem, the spectral sequence collapses and so {[Vi]g, J < {1,...,n}} is a basis
of HE (M) over H*(BH), thus proving (i). The proof of (ii) follows in a similar
fashion.

To prove (iii) we will use the H-equivariant Euler class to compute explicitly
the map (2 on the generators of HX (M\X).

Let K = K1 x Ko where K1 = {1,g}, Ko = {1,7} , g denotes the action induced
by multiplication by —1 and 7 the complex conjugation in C, and let z, w denote the
canonical generators of H*(BK;) and H*(BK>) dual to the generators of K; and
K respectively. Similarly to[6.2) we get ex (S51 < ) = 2°(x+w)?, or equivalently,
[SE ) = 2 (z + w)°?[S] Kk -

Now the proof for the case of the torus action on the big polygon space found in
[21l, Lem.4.5] can be imitated in our situation to show that (4i7) holds. Firstly, the
identity i ([V;]u) = [Vs]g follows from the naturality of the equivariant homology,
that is, from the commutative diagram

HE (V)

L

HE(M\X) —*— HH (M)

To compute i ([W;]), we need to “enlarge” the acting group. For J < [n],
define 7; to be the involution on M given by the complex conjugation on the
variables u; : j € J and z; : j € J, and write 05 = Tje. Set Hy =Ty x 77 X 05
and H — Hj the map induced by the identity on 75 and the map which sends 7
to (17,07). Thus we get a map H*(BHy) = k[t1,...,tn, wr,w,] - H*(BH) =
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k[t1,...,tn, w] sending w, and w, to w which is the identity in the other variables.
Moreover, we have maps in equivariant homology

HI (M) — HE (M)

Notice that the H j-action on M induces an action of H on M; such an action
coincides with the initial action of H on M described at the beginning of the
section. Also, we have similar restriction maps for the H j-invariant submanifolds
X,M\X c M.

Set M = M n (C* x {0})* = (S?*~1)". For J < [n], let A be the inclusion of
S2a=1 into the factors j € J of M. Notice that there is a homeomorphism W, ~
Vy x A je; moreover, such homeomorphism yields to an equivariant decomposition
Hjy = (Kjx75)x(Kjexoy) where K; € T is the 2-subtorus of non-trivial factors
in the position j € J. Therefore, by the Kiinneth theorem in equivariant homology
for 2-torus actions (compare with [2I, Prop.4.1]) we have that

[WJ]HJ = [VJ]KJXTJ X [AJC]KJCX(TJ

By naturality of the Euler class, we have

(6.1) i ((Wilm,) = i (Valkxn,) % 65777 ([Age] K e o)

K jgXTg

As above, it is straightforward to check that iy ([Vilk,xr,) = [Vilk,xrs,
so it only remains to compute the last term of ([GI). Without loss of generality
we can assume that J = &, so Aje = A is the diagonal of M, oy =1, 1) is
trivial and Hy = H. So we need to compute it ([A]g). Since in Hy(M) we
have that [A] = Z?Zl[Aj] and M is H-equivariantly formal, we have then in
equivariant homology that [A]lg = 3J7_,[A;]n. Consider the inclusion Ky — H
into the j-th factor of 7> and denote the image by K;. This map induces in

cohomology an identification of « with ¢;. Observe that A; = VjT2 = VjKj and thus
(Al = [VjKj ]k, x7- We obtain by naturality of the Euler class and the above

computation that [A;]g = t5(t; + w)°[V;]g. Finally this implies that

(6:2) AT = 3 80 +w) [Vl

For the general case, using this computation, for any J we have again by (6.1]) that
i (Walm,) = i (Vi xry) % 577 ([Age] K e xos)
= [VJ]KJXTJ X Z t_l;(tg + wa’)b[‘/j]Kchch
j¢J
= Z t5(t; + we) [Vyoyla,
Jj¢J
The computation for the H-equivariant cohomology follows by naturality and using

the restriction map H*(BH ;) — H*(BH) which sends w, to w.
(]

Let R = H*(BH) = Fa[t1,...,tn,w] and write y; = t;(t; + w). Let n = 2m +1
and £ = (1,...,1). We will use the Koszul resolution of L = R/(y%,...,4%) to



EQUIVARIANT COHOMOLOGY FOR SEMIDIRECT PRODUCT ACTIONS 21

identify the H-equivariant cohomology of the big polygon space X = X, ;(¢) with
the Koszul syzygies appearing in such resolution. The assumption on ¢ is made so
for J < [n] is short if and only if ¢(J) < m.

The following result follows from the analogous case of equivariant cohomology
for torus actions on the big polygon spaces [2I], §5] and only an outline of the proof
will be presented.

Theorem 6.7. Letn = 2m + 1, m > 1. The G-equivariant cohomology of the
equilateral big polygon space

X = {(u,z) (§2a+2b=1) Z u; = O}

is an m-th syzygy but not an (m + 1)-st syzygy.

Proof. Let ¢ : M\X — M be the inclusion and let ¢ be the induced map in
equivariant homology. For simplicity set d = 2a + 2b — 1; The equivariant Poincaré-
Alexander-Lefschetz duality [4, Thm.7.6] implies that there is a short exact sequence

(6.3) 0 — Cokeriff[nd] — H}(X) — kerifl[nd — 1] — 0.

From Proposition[6.6 we have that Hj;(M\X) =~ P (R-[Vilu ®R-[W,]u) and
|J|<m

H} (M) = ®jcR - [Vs]a as R-modules. By Proposition (iii), the Kernel of

the map

@ R-[Vilu® @ R-[Wilg — HI (M)

[ J|<m [ J|<m
is the free R-submodule of H (M\ X) generated by the elements Wila—2 e, YeIViosla
where |J| < m since (2 ([Vy]g) = [Vy]g and H([W,]w) = jes 8t +w) [Viosla
On the other hand, the map
D R-Wiln— @ R-[Vi]cH(M)
|J|=m [J]=m+1
can be identified with the map d,,, 1 in the Koszul resolution of L = R/(y%,...,y?)
described above whose kernel is the Koszul syzygy K,,1+2. So we obtain that
ker(tf) = P R[-|J|d—d] @ Kmi2[-md—d + 2]
|J]<m
The degree shifts follows from the fact that dim Wy = |J|d + d and dim V; = |J|d
and the convention that the Koszul syzygies are generated in degree 0.

Similarly, we can see that im(¢) ~ ®\J|<m [Vi]g @ im(dy+1) and thus
Coker(1fl) = HY(M)/im(:[) =~ B R-[Vy]u ® Coker(d+1).
[J|>m+1
Notice that from the Koszul resolution it follows that Coker(dy,+1) = im(dm42) =
K,, the m-th Koszul syzygy of L. Summarizing, we obtained that
Coker(1f )= @ R[-|J|d]® Kn[—(m + 1)d].
[J|>m+1

and thus both ker(:Z) and Coker(¢) are m-th syzygies. To finish the proof, it is
enough to show that the sequence (63)) splits. This will follow from [31], Lem.3.12]



22

CHAVES

and using that the singular Cartan model as a free R-model for the G-equivariant
cohomology. |

Finally, from we can obtain the syzygy order of the equilateral real big

polygon spaces recovering also one of the main results in [3T, Thm.1.2].

Corollary 6.8. The equivariant cohomology of the equilateral real big polygon space
X7 under the action of the 2-torus Ty is an m-th syzygy but not an (m+1)-st syzygy.
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