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ABSTRACT. Let p be an odd prime and let EO = E
ℎCp
p−1 be the Cp fixed points of height p − 1 Morava E

theory. We say that a spectrum X has algebraic EO theory if the splitting of K∗(X) as an K∗[Cp]-module lifts
to a topological splitting of EO ∧ X. We develop criteria to show that a spectrum has algebraic EO theory, in
particular showing that any connective spectrum with mod p homology concentrated in degrees 2k(p − 1) has
algebraic EO theory. As an application, we answer a question posed by Hovey and Ravenel [9] by producing a
unital orientationMY 4p−4 → EO analogous to theMSU orientation of KO at p = 2.

1. INTRODUCTION

LetE be a spectrum equipped with a unit map S0 → E. A sphere bundle V ∶ Z → BGL1(S) has a Thom
spectrum Tℎ(V ) which comes with a unit map S0 → Tℎ(V ). An E-orientation of the bundle V is a choice
of unital map Tℎ(V ) → E. If V can be written as a pullback of a sphere bundleW ∶ Y → BGL1(S), then
there is a natural unital map Tℎ(V )→ Tℎ(W ) so an E-orientation ofW restricts to an E-orientation of V .

One strategy to understand E-orientations of bundles is to find an E-orientable bundle that is as universal
as possible. We can then show that some other bundle is E-orientable by expressing it as the pullback of this
“universal” orientable bundle. For instance, the map BSU → BGL1(S) is KO-orientable, so any bundle
V ∶ Z → BGL1(S) that factors through the map BSU → BGL1(S) is orientable. This means that any
sphere bundle that comes from a complex vector bundle with vanishing first Chern class is KO-orientable.
Similarly, the map BU [6]→ BGL1(S) is TMF -orientable so any sphere bundle that comes from a complex
vector bundle with vanishing first two Chern classes is TMF -orientable. The localizations LK(1)KO and
LK(2)TMF are the p = 2 and p = 3 cases of a family of cohomology theories called higher real E-theories
EOp−1. Since BSU = BU [4] is the 4-connective cover of BU and BU [6] is the 6-connective cover of
BU , it is natural to guess that there might be an EO-orientation of BU [2p]. However, the standard map
BU [2p]→ BGL1(S) is notEO-orientable when p > 3 according to an observation of Hovey [8, Proposition
2.3.2].

We prove that the canonical bundle over the Wilson space Y4p−4 is EO-orientable. The Wilson space Y2k
is obtained by starting with a p-local even dimensional sphere and attaching even cells to kill odd homotopy
classes [16]. The resulting spaces have even homotopy groups and torsion free even integral homology
groups. Each Wilson space is an infinite loop space of BP n for some appropriate n, for instance Y4p−4 =
BP 2 4p−4 is the (4p − 4)th loop space of BP 2 [16]. The space BU [2p] has an Adams splitting

BU [2p] ≃ BP 1 2p ×⋯ × BP 1 4p−4
= Y2p × Y2p+2 × BP 1 2p+4 ×⋯ × BP 1 4p−4

BU [2p] does not have even cohomology because BP 1 2k doesn’t have even cohomology when k > p + 1.
We think of the Wilson space Y4p−4 = BP 2 4p−4 as an even replacement for BP 1 4p−4. Hovey and
Ravenel [9] computed the Adams Novikov spectral sequence for the Thom spectrumMY4p−4 of the standard
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map Y4p−4 → BU through a range and observed that it looked like several copies of the homotopy fixed
point spectral sequence for EO. Because of this, they asked whether there could be a unital orientation map
MY4p−4 → EO. We answer their question by showing that such a map exists:

Theorem 1.1. Let f ∶ Y4p−4 → BGL1(S) be any map. There is an equivalence EO ∧Mf ≃ EO ∧ Y(4p−4)+
of EO-modules, so there is a map of spectraMf → EO which factors the unit map S0 → EO.

As a replacement for an orientation mapMU [2p]→ EO we obtain an orientation mapMMU 2p → EO
(Theorem 1.3).

Our goal is to prove that certain bundles are EO-orientable. Characteristic classes determine an eas-
ily computed obstruction to orientability. Given a cohomology theory E and a space Z we say that E-
orientability of complex bundles over Z is Chern determined if the condition that V is an E-orientable
bundle over Z is equivalent to some algebraic congruences on the Chern classes ci(V ) ∈ H2i(Z). If E-
orientability of bundles over Z is Chern determined we can easily determine which bundles over Z are
E-orientable.

Consider the case E = KO. The mod 2 reduction of the first Chern class c1(V ) ∈ H2(Z) determines
the � attaching map into the zero cell in Tℎ(V ). Since the zero cell is split in Σ∞+Z and � is detected in
KO∗, a necessary condition for a bundle V to be KO-orientable is that c1(V ) = 0 (mod 2). This is the only
obstruction toKO orientability visible to Chern classes so a spaceZ has Chern-determinedKO-orientability
if every bundle V over Z such that c1(V ) = 0 (mod 2) is KO-orientable. An application of a theorem of
Bousfield (Theorem 1.7) implies that any even space has Chern-determined KO-orientability. The space
BSU is even and 4-connected, so this implies that every complex vector bundle overBSU isKO-orientable.
This proves Theorem 1.1 in the case that p = 2 and f factors through BU .

In the odd prime case we have analogously that �1 ∈ �2p−3(EO) is nonzero. The �1 attaching maps in
a space Z are detected by the P 1 action on the mod p cohomology. This implies that if a bundle V over Z
is EO-orientable, we must have P 1(u) = 0 where u is the Thom class of V in HFp∗(Z). In the case of the
universal bundle overBU , P 1(u) =  p−1uwhere  p−1 is the (p−1)st power sum characteristic class reduced
mod p. Therefore, if V is orientable then  p−1(V ) ∈ H2p−2(BU ) must be divisible by p. Analogously to
the case when p = 2, this is the only obstruction to orientability visibile to Chern classes so a space Z has
Chern-determined EO-orientability if every bundle V overZ with  p−1(V ) = 0 (mod p) is EO-orientable.
We show that every space with cohomology concentrated in degrees divisible by 2p−2 has Chern-determined
EO-orientability. In particular, Y4p−4 satisfies this sparsity condition and is sufficiently connective that  p−1
lives in a zero group. This implies the odd prime case of Theorem 1.1 when f factors through BU . The
case when f is a general sphere bundle requires a bit of extra care with terminology but is fundamentally the
same.

BACKGROUND

Fix an odd prime p. All spectra are implicitly p-completed. Let E = Ep−1 be the Morava E-theory corre-
sponding to the Honda formal group law of height p − 1 over Fpp−1 . Let m be the maximal ideal of E∗ and
let K∗ = E∗∕m = Fpp−1 [u±]. The Morava stabilizer group at height p − 1 contains elements of order p. Let
G be a maximal finite subgroup of Gn containing some element of order p. Such a subgroup is unique up to
conjugacy. LetEO = EℎG. For anEO-moduleM writeEEO∗ (M) = �∗(E∧EOM). A more detailed review
of the facts that we need about the Morava stabilizer group appears at the beginning of Section 3. Bujard [5]
has completely classified finite subgroups of the Morava stabilizer group.

Hopkins and Miller computed the homotopy fixed point spectral sequence H∗
G(E∗) ⇒ EO∗ up to some

permanent cycles on the zero line. The homotopy of EO∗ for p = 3 and p = 5 is illustrated in Figure 1. We
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FIGURE 1. The homotopy of EO at the primes 3 and 5. The y-axis is the homotopy fixed
point filtration. Most classes in filtration 0 are omitted. The lines indicate � and � multipli-
cations, the dashes lines when p = 5 indicate Toda brackets ⟨�1, �1,−⟩ or ⟨�1, �1, �1,−⟩.
The periodicity for p = 3 is 72 and for p = 5 is 800. The Hurewicz image classes are solid,
the remaining classes are open.
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review the facts we need about this spectral sequence in Section 5.2. A more detailed description appears in
section 2 of [12].

Let �1 ∈ �2p−3(S0) be the first nontrivial element of p-primary stable homotopy. The Toda bracket of �1
with itself p times is

⟨�1,… , �1
⏟⏞⏞⏟⏞⏞⏟

p

⟩ = �1.

This Toda bracket is the obstruction to building a (p+1)-cell complex with a single cell in dimension 2k(p−1)
for k ∈ {0,… , p}where all attachingmaps are given by �1. The Toda brackets ⟨�1,… , �1⟩ of length l−1 < p
vanish so there is an l-cell complex with a cell in each dimension k(p − 1) where k ∈ {0,… , l − 1} and
attaching maps �1 when 1 ≤ l ≤ p. Call this complex Xl. The complex Xp is central to the study of EO
theory because EO∧Xp has a natural complex orientable ring spectrum structure (Corollary 3.5). We show
in Lemma 2.2 that Xl is uniquely determined by its HFp homology.

RESULTS ABOUT ORIENTATIONS

Say that a spectrum is k-sparse if it only has cells in dimensions in a single congruence class modulo k. In
this section we apply our results to show that certain complex vector bundles are EO-orientable. We are
working at an odd prime so the p-local map BO → BU is a retract and all of these results apply equally well
to real vector bundles. The only fact from the rest of the paper used here is the following mild generalization
of Theorem 1.1:

Proposition 5.19. Let Z be a (2p − 2)-sparse 2p-connective space. Then every map Z → BGL1(S) is
EO-orientable.

The space MU
ℎCp−1
4p−4 is (2p − 2)-sparse and 2p-connective so Proposition 5.19 implies that any map

MU
ℎCp−1
4p−4 → BGL1(S) is EO-orientable. The space MU

ℎCp−1
4p−4 occurs as the Adams summand of MU 2p.

We will now use the Adams conjecture to deduce that the standard vector bundle onMU 2p isEO-orientable.

Theorem 1.2 (Adams Conjecture). Let l ∈ ℤp be a primitive (p − 1)st root of unity. Let  l be the corre-
sponding Adams operation. The composite

BU BU BGL1(S)

←→
 l ←→J

is null.

Since  l acts as an equivalence on all of the summands of BU other than the Adams summand Y2p−2 =
BP 1 2p−2, we get the following form of the Adams conjecture which is how we will apply it:

Corollary 1.3. A map X → BU → BGL1(EO) is null if and only if the map X → BU → Y2p−2 → BU →
BGL1(EO) is null.

The complex orientation mapMU → ku gives a mapMU 2p → ku 2p and �
p−1 is a map ku 2p → ku 2 =

BU . Composing these gives us a standard mapMU 2p → BU .

Theorem 1.4. Let f be the standard mapMU 2p → BU . There is a unital mapMf → EO.

Proof. ByWilson’s thesis [16], there is a splittingMU 2p ≃
∏

i Σ2(p−1)siY2ki . LetA =
∏

ki≢0 (mod p−1) Σ
2(p−1)siY2ki

and B =
∏

ki≡0 (mod p−1) Σ
2(p−1)siY2ki so that MU 2p ≃ A × B. The map B → MU 2p → BU → Y2p−2

is null. The map A → Y2p−2 factors through Y4p−4, so that the composite A → BGL1(EO) is null by
Theorem 1.1. �
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Corollary 1.5. Let V1,… , Vp ∶ Z → BU be p virtual dimension zero complex vector bundles on a spaceZ.
Let V =

⨂p
i=1 Vi. The structure map V ∶ Z → BU factors throughMMU 2p and so V is EO-orientable.

Proof. Let �∶ MU → ku be the complex orientation. This gives a mapMU 2 → ku 2. TheMU Chern class
cMU
1 ∈ MU2BU corresponds to a map cMU

1 ∈ [ku 2,MU 2]. By naturality of Chern classes, �(cMU
1 ) =

cku1 ∈ [ku 2, ku 2], which is the identity map. Thus, cMU
1 is a section of �:

MU 2 ku 2

← →
�
←→c

MU
1

Given a vector bundle Vi ∈ [Z, ku 2] we get an element cMU
1 (Vi) ∈ [X,MU 2]. Multiplying these together

gives ΠMU =
∏

cMU
1 (Vi) ∈ [Z,MU 2p]. This gives a factorization of the structure map V ∶ Z → BU

throughMU 2p and by Theorem 1.3, V is EO-orientable. �

Corollary 1.6. Let V ∶ Z → BU × ℤ. Then pV is EO-orientable.

Proof. It suffices to check this on the universal example BU ×ℤ =
∏p−2

i=0 BP 1 2i. The spaces BP 1 2i are
all even so there is a Kunneth isomorphism

⨂p−2
i=0 KU

0(BP 1 2i) ≅ KU
0(BU ) where the map sends a col-

lection of bundlesV0,… , Vp−2 to their external tensor productV0⊠⋯⊠Vp−2. Thus pV = p(V0⊠⋯⊠Vp−2) =
(pV0)⊠V1⊠⋯⊠Vp−2. To check that the external tensor product is orientable, it suffices to show that each
of the bundles is individually orientable. For i ≠ 0, the composite BP 1 2i → BU → Y2p−2 × ℤ is null so
the bundles Vi are spherically orientable. The remaining case we need to check is that pV0 is EO-orientable.

The space Y2p−2×ℤ is (2p−2)-sparse soEO orientations of bundles over Y2p−2×ℤ are Chern determined.
To show that pV0 isEO-orientable, we need to check that p−1(pV0) is divisible by p. Power sum polynomials
are additive, so  p−1(pV0) = p p−1(V0). �

Corollary 1.7. Let V ∶ Z → BU × ℤ. Then V ⊗p is EO-orientable.

Proof. Let d = dim(V ) and V = V −d. By Corollary 1.4, V
⊗p

isEO-orientable. Then V ⊗p = (V +d)⊗p =
V
⊗p
+
∑p−1
i=1

(p
i

)

V
⊗i
+ dp. Since

(p
i

)

is divisible by p, every term in this sum is orientable. �

We can similarly combine Corollary 1.4 and Corollary 1.5 to see that if V1, . . . , Vp are complex vector
bundles with dimension divisible by p then V1 ⊗⋯⊗ Vp is EO-orientable.

OUTLINE

Given an EO-module M we get an associated K∗[Cp]-module EEO∗ (M)∕m = �∗(E ∧EO M)∕m. This
decomposes into a sum of indecomposableK∗[Cp] representations. We are interested in showing that certain
EO-modules M have a splitting that lifts the decomposition of EEO∗ (M)∕m. Bousfield [4] showed at the
prime 2 that manyKO-modulesM have such splittings. The following theorem is a much simplified special
case (see also [11, Theorem 1.1]).

Theorem 1.8. Let V1 be the trivial representation of F2[C2] and let V2 be the regular representation. Say that
a KO-moduleM is even if KUKO

∗ (M) is even and free. IfM is an even KO-module and KUKO
0 (M)∕2 ≅

V ⊕k
1 ⊕ V ⊕l

2 thenM ≃
⋁k
i=1 Σ

siKO ∨
⋁l
i=1KU where si ∈ 2ℤ∕8ℤ are appropriate shifts.

Meier [11] partially extended the results of Bousfield to the case of TMF (3), but TMF (3)-modules are very
messy and it is impossible to classify their behavior as completely as Bousfield classifiedKO-modules. IfM
is anEO-module thenEEO∗ (M)∕m is naturally aK∗[Cp]-module. If we let Vl be the length l indecomposible
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K∗[Cp] representation, then we have a splittingEEO∗ (M)∕m ≅
⨁p

l=1 V
⊕ml
l . We show in Proposition 3.1 that

E∗(Xl)∕m ≅ Vl asK∗[Cp]-modules, so we might attempt to generalize Theorem 1.7 to odd primes by saying
that ifX is an even EO-module and EEO∗ (M)∕m ≃

⨁

i∈S Vli then EO ∧X ≃ EO ∧
⋁d
i=1 Σ

siXli . For most
spectra this is far from being true – the case when p = 2 works because the only odd dimensional homotopy
class in KO∗ is �vi where v is the periodicity element. By contrast, there are plenty of odd dimensional
classes in EO∗. We call an EO-module algebraic in the case where such a splitting holds:

Definition 5.2. An EO-moduleM is algebraic ifM ≃ EO ∧
⋁

ΣsiXli . A spectrum Z has algebraic EO
theory if EO ∧Z is algebraic.

This is closely related to Meier’s notion of a standard vector bundle, see the discussion on page 15.
As a replacement for the evenness assumption, we consider stronger “sparsity” conditions on the cell

structure of spectra. Inspired by the Adams splitting of ℂℙ∞, we consider (2p − 2)-sparse spectra. The
homotopy of EO∗ has p − 1 different nonzero stems in degrees 2(p − 1)k − 1, but the only such stem with a
nontrivial Hurewicz image is �2p−3 which contains �1 (see Figure 1). As a consequence, every (2p−2)-sparse
connective spectrum has algebraic EO theory:

Theorem 5.13. Let Z be a connective (2p − 2)-sparse spectrum. Then Z has algebraic EO theory.

Theorem 5.13 applies to show thatXi∧Xj has algebraicEO theory. As a consequence, smash products of
algebraicEO-modules are algebraic. Theorem 5.13 can also be used to show that several naturally occurring
spectra have algebraic EO theory, for instance ℂℙ∞ stably splits into a sum of p − 1 spectra which are each
(2p − 2)-sparse, so ℂℙ∞ has algebraic EO theory.

The groups EO2pk−1 are zero for all k, so we get a simpler result for 2p-sparse spectra:

Theorem 5.14. Suppose that M is a 2p-sparse cellular EO-module. Then M is algebraic. In fact, M ≃
⋁

ΣsiEO. If Z is a 2p-sparse connective spectrum, then Z has algebraic EO theory.

We observe thatK∗[Cp]-free summands ofE∗(Z)∕m lift to spectrum level splittings because theE2 page
of the homotopy fixed point spectral sequence for EO ∧Xp is concentrated on the zero line:

Proposition 5.19. IfM is a finite EO-module and �∗(E ∧EOM)∕m ≅ ΣsF ⊕V where F is a freeK∗[Cp]-
module on one generator and V is some complement thenM ≃ EO ∧ΣsXp ∨M ′ for some EO-moduleM ′

with EEO∗ (M ′) = V ′.

For many important spectra, E∗(Z)∕m has a large K∗[Cp]-free summand, so Proposition 5.19 is useful.
Unlike the other results in this paper, Proposition 5.19 directly generalizes to EℎCpk(p−1). We intend to explore
the consequences of this higher height generalization in future work.

As a consequence of our splitting theory, we deduce some closure properties of the category of algebraic
EO-modules. It is clear from the definition that the category of algebraic EO-modules is closed under sums
and retracts. Proposition 5.8 shows that algebraic EO-modules are closed under “unions”. Corollary 5.23
says that algebraic EO-modules are closed under smash products. Proposition 5.24 says that algebraic EO-
modules are closed under ith symmetric powers for i < p. Algebraic EO-modules are not closed under
cofiber sequences, though if a mapM → N of algebraic EO-modules induces an injection or a surjection
EEO∗ (M)→ EEO∗ (N) then the cofiber is algebraic.

If a spectrumX has algebraicEO theory, it is easy to compute the homotopy type ofEO∧X. Let P (1)∗ ⊆
A∗ be the sub Hopf algebra of the Steenrod algebra generated by P 1. Explicitly, P (1)∗ = Fp[P 1]∕(P 1)p with
P 1 primitive. Let P (1)∗ = Fp[�1]∕(�

p
1) be the dual quotient Hopf algebra of A∗. If a spectrum X has

algebraic EO theory, the homotopy type of EO ∧X is determined by the P (1)∗-coaction on HFp∗(X). The
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indecomposable representations of P (1)∗ are cyclic modules of length at most p. LetWl = HFp∗(Xl) be the
P (1)∗-comodule of length l.

Theorem 5.6. Let Z be a spectrum with algebraic EO theory. Decompose HFp∗(Z) into indecomposable
P (1)∗-comodules, sayHFp∗(Z) ≅

⨁

i∈T ΣsiWli where T is some index set. ThenEO∧Z ≃ EO∧
⋁

ΣsiXli .

We also use our determination of the Cp action on E∗(Xp) to prove that the map EℎCp → E is Galois.
This is a special case of the result due to Devinatz [6] that EGℎ → Eℎ is Galois for any finite subgroup G of
any height Morava E-theory. See [15, Theorem 5.4.4(b)]. We then show that for any EO-module there is
a strongly convergent Adams spectral sequence H∗

G(�∗(E ∧EO M)) ⇒ �∗(M). This is also originally due
to Devinatz [6, Corollary 3.4]. Our proof is more explicit and less technical than the proof of Devinatz but
relies on having the spectrum Xp as a “witness” to the equivalence.

In Section 2, we prove that the spectraXl are determined by their Fp-homology. In Section 3, we compute
the Cp action on E∗(Xl)∕m. In Section 4, we prove that the map EO → E is Galois. We also show that
the relative Adams spectral sequence based on EO → E is strongly convergent for all EO-modules and has
E2 page given by group cohomologyH∗

G(E
EO
∗ M). In Section 5, we prove a collection of technical splitting

results that can be used to deduce that a spectrum is algebraic based on its Fp homology. In Section 6, we prove
that Y2p has algebraic EO-theory and that every sphere bundle over Y2p is EO-orientable. In the appendix,
we present the facts about symmetric powers of P (1)∗-comodules that we need for Section 6. None of the
material after Section 5.4 is necessary to prove the results quoted in the introduction.
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2. UNIQUENESS OF Xl

We prove that the spectra Xl are uniquely determined by their Fp cohomology.

Lemma 2.1. Let Z = BP 2k be a skeleton of BP . Suppose that Y is some other finite p-complete spectrum
such that HFp∗(Y ) ≅ HFp∗(Z) as Steenrod comodules. Then Y ≃ Z.

Proof. There is a mapZ → BP including the skeleton of BP which gives a permanent cycle � in the Adams
spectral sequence Exts,tA∗ (Fp,HFp∗(DZ ∧BP )). Because HFp∗(Y ) ≅ HFp∗(Z) there is an isomorphism of E2
pages Exts,tA∗ (Fp,HFp∗(DZ ∧BP )) ≅ Ext

s,t
A∗
(Fp,HFp∗(DY ∧BP )) using the Kunneth isomorphism. We wish

to show that the element � ∈ E0,02 ASS(DY ∧BP ) is a permanent cycle. BecauseZ is even,DZ ∧BP splits
as a wedge of copies of BP and E2ASS(DZ ∧ BP ) ≅ E2ASS(BP ) ⊗ HFp∗(DZ). Both E2ASS(BP ) and
HFp∗(DZ) are even, so E2ASS(DZ ∧ BP ) is even. Thus, the spectral sequence collapses at E2 and � is a
permanent cycle.
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We deduce that there is a map Y → BP . Since Y has no homology above degree 2k, the map Y → BP
factors through BP (2k) = Z. The factored map Y → Z is an isomorphism on homology so Y ≃ Z. �

A spectrum Z with the cohomology of Xl can be obtained as the 2(p − 1)(l − 1)-skeleton of BP , so as a
special case we deduce:

Lemma 2.2. A spectrum Y is equivalent to Xl if and only if HFp∗(Y ) ≅ Wl where Wl = HFp∗(Xl) is
the Steenrod comodule Fp{x0,… , xl−1} with |xk| = 2k(p − 1) and Steenrod coaction given by Ψ(xk) =
�1 ⊗ xk−1 +⋯ for k ≥ 1.

3. THE Cp ACTION ON E∗(Xl)

Set n = p − 1 for the rest of the paper. We begin this section with a brief review of the facts we need
about the Morava stabilizer group. We then compute theK∗[Cp] action on E∗(Xl)∕m and show that E∗(Xp)
is a free E∗[Cp]-module. We will deduce that EO ∧Xp ≃ EℎCn2 . Since n2 is relatively prime to p, EℎCn2 is
complex orientable.

Let FmlGrps be the category of pairs (k,Γ) where k is a perfect characteristic p field and Γ is a formal
group over k. The morphisms (k,Γ) → (k′,Γ′) are pairs consisting of a field homomorphism f ∶ k → k′
and an isomorphism of formal groups f ∗Γ → Γ′. The Hopkins-Miller theorem says there is a functor
FmlGrps → E∞-Rings which sends a pair (k,Γ) to the corresponding Morava E theory E(k,Γ). This
implies that there is an action of the automorphism group Aut(Γ) on E(k,Γ) by E∞ ring maps. The group
Gn = Aut(Γ) is called the Morava stabilizer group. See section 2 of [2] for a nice overview of the Morava
stabilizer group.

The Morava stabilizer group of a height n Morava E-theory contains elements of order d if and only
if the degree of ℚp(�d) over ℚp divides n where �d is a primitive dth root of unity. In particular, ℚp(�p)
has degree p − 1, so there are p-torsion elements in Gn if and only if p − 1 divides n. In this paper we
study the simplest such case, when n = p − 1. Let E = E(Fpn ,Γn) where Γn is the height n Honda formal
group over Fpn and let Gn = Aut(Γn) be the corresponding Morava stabilizer group. There is a Gn-action on
E∗(Z) = �∗(LK(n)E ∧Z) for any spectrum Z by letting Gn act in the standard way on E and trivially on Z.

There is an isomorphismE∗ ≅ W(Fpn )Ju1,… , un−1K. Letm = (p, u1,… , un−1) be themaximal ideal ofE∗
and let K∗ = E∗∕m = Fpn [u±]. For Z a torsion free spectrum, E∗(Z)∕m ≅ K∗(Z) where K is any Morava
K-theory corresponding toE. LetE∗E = �∗(LK(n)E∧E). There is an isomorphismE∗E ≅ Homcts(Gn, E∗)
where for g ∈ Gn the evaluation map

E∗E Homcts(Gn, E∗) E∗

←→
≅ ←→

evg

is the image of the map

E ∧ E E ∧ E E←→
g∧id ←→m

under the functor �∗(LK(n)(−)).
Let G be a maximal finite subgroup of Gn containing an element of order p. According to Corollary 1.30

and Theorem 1.31 of [5], any two such subgroups G are conjugate in Gn and G is abstractly isomorphic to
the semidirect product Cp ⋊ Cn2 where the action is given by the surjection Cn2 → Cn ≅ Aut(Cp). Let
EO = EℎG. For an EO-module M we write EEO∗ (M) = �∗(E ∧EO M). There is an action of G on E
by EO-automorphisms so this gives a G action on EEO∗ (M) for any M . We will show in the next section
that for any EO-module is a relative Adams spectral sequenceH∗

G(E
EO
∗ (M)) ⇒ �∗(M). Our plan is to use

this Adams spectral sequence to understandM so we will need to compute the E∗[G]-module structure on
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EEO∗ (M). To allow explicit calculation, we compute the K∗[G]-module structure on EEO∗ (M)∕m and then
use Nakayama’s lemma to make the conclusions we need about EEO∗ (M).

Let � ∈ Cp be a generator. There is an isomorphism K∗[Cp] = K∗[� ]∕(�p − 1) ≅ K∗[s]∕(sp) where the
map sends � ↦ s + 1. The coproduct is given by �(s) = s ⊗ 1 + 1⊗ s + s ⊗ s. Let Vl be the cyclic module
over K∗[s]∕(sp) of length l.

Proposition 3.1. E∗(Xl)∕m ≅ Vl as K∗[Cp]-modules.

To prove this, we are going to pass from information about the Steenrod coaction on HFp∗(Z) to infor-
mation about the Morava stabilizer group action on E∗(Z) through the BP ∗BP -coaction on BP ∗(Z) by
considering the maps BP ∗(Z)→ HFp∗(Z) and BP ∗(Z)→ E∗(Z).

If Z is a torsion free connective spectrum then BP ∗(Z) is BP ∗-free so HFp∗(Z) = Fp⊗BP ∗BP ∗(Z) and
E∗(Z) = E∗ ⊗BP ∗BP ∗(Z). Let �∶ BP → E and � ∶ BP → HFp be the maps induced by the complex
orientations of E and HFp.

BP HFp BP ∗BP HFp∗ HFp

E E∗E = Homcts(Gn, E∗)

←→�

←

→ �

←→�

←→ �

If BP ∗(Z) ≅ BP {zBPi }i∈S , we write zEi = �(z
BP
i ) and zHFpi = �(zBPi ) so then E∗(Z) ≅ E∗{zEi }i∈S and

HFp∗(Z) ≅ Fp{z
HFp
i }i∈S . ForE some cohomology theory, let IEd (Z) = ker(E∗(Z)→ E∗(Z(d)))whereZ(d)

is the cofiber of the inclusion of the (d − 1)-skeleton of Z.
Consider the map BP ∗BP → A∗. This sends t1 ↦ −�1. If Z is torsion free and zHFpk ∈ HFp∗(Z) has a

nontrivial P 1∗ action P 1∗ (z
HFp
k ) = zHFpk−2n then

Ψ(zHFpk ) = 1⊗ zHFpk + �1 ⊗ zHFpk−2n (mod A∗ ⊗Fp I
HFp
k−2n(Z)).

In this case there are lifts zBPk , zBPk−2n ∈ BP ∗(Z) and

Ψ(zBPk ) = 1⊗ zBPk − t1 ⊗ zBPk−2n (mod BP ∗BP ⊗BP ∗ I
BP
k−2n(Z)).

For g ∈ Gn and � ∈ BP ∗BP we can evaluate �(g) ∈ E∗ using the map BP ∗BP → E∗E = Homcts(Gn, E∗).
A strict automorphism g of a p-typical formal group Γ corresponds to a certain power series, namely g(s) =
s +Γ

∑Γ aisp
i ∈ E∗JsK. Then ti(g) = ai.

Lemma 3.2. If g ∈ Gn and zBPk ∈ BP k(Z) has coaction Ψ(zBPk ) =
∑

�i ⊗ zBPi where �i ∈ BP ∗BP , then
g∗(zEk ) =

∑

i �i(g)z
E
i .

Proof. Recall that E∗E ≅ Hom(Gn, E∗) where for each g ∈ Gn there is a commutative diagram:

�∗(LK(n)(E ∧ E)) Hom(Gn, E∗)

�∗(LK(n)(E ∧ E)) E∗

←→�∗(g∧idE ) ←→ evg

← →
�∗(m)

Consider the maps

E ∧Z E ∧ E ∧Z

←→Ψ←→

m∧idZ
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where Ψ∶ E ∧Z = E ∧S0 ∧Z → E ∧E ∧Z is the unit map in the middle. If we let Gn act by the standard
action on the leftmost E factor and trivially on the other factors, these maps are Gn-equivariant. Because the
left unit mapE∗ → E∗E is flat, there is an isomorphism �∗(E∧E∧Z) ≅ E∗E⊗E∗ E∗(Z). Thus, the action
of g on E∗(Z) factors as:

E∗(Z) E∗(Z)

E∗E ⊗E∗ E∗(Z) E∗E ⊗E∗ E∗(Z)

←→Ψ

← →
g∗

←→
g∗⊗1

← →m∗

Since m∗◦(g∗⊗ 1) = evg under the isomorphism E∗E ≅ Hom(Gn, E∗), we see that g∗(z) = (evg⊗1)◦Ψ(z).
We have a commutative diagram:

BP ∗(Z) BP ∗BP ⊗BP ∗ BP ∗(Z)

E∗(Z) E∗E ⊗BP ∗ E∗(Z)

E∗(Z)

←→Ψ
←→ ←→

← →Ψ

←

→g∗

←→ evg⊗1

We deduce that g∗(zE) = (evg ⊗�)(Ψ(zBP )) as desired. �

Recall that � ∈ Cp is a generator. Let v = t1(� ) ∈ E2n. It is well known that v is a unit (see for instance
[13, bottom of page 438]). Specializing Lemma 3.2 to the case we care about, if

Ψ(zBPk ) = 1⊗ zBPk + t1 ⊗ zBPk−2n (mod BP ∗BP ⊗BP ∗ I
BP
k−2n(Z))

then
�∗(zEk ) = zEk + vzEk−2n (mod IEk−2n(Z)).

Proof of Proposition 3.1. The spectrum Xl is torsion free so the above discussion applies. Recall that
HFp∗Xp ≅ Fp{x0,… , xp−1}

where |xk| = 2kn. For 0 ≤ k < p − 1,

Ψ(xHFpk ) = 1⊗ xHFpk + �1 ⊗ xHFpk−1 (mod A∗ ⊗Fp I
HFp
2(k−1)n(Z))

This implies that in BP ∗Xp,

Ψ(xBPk ) = 1⊗ xBPk − t1 ⊗ xBPk−1 (mod BP ∗BP ⊗BP ∗ I
BP
2(k−1)n(Z))

and the action of � on E∗(Xp) is given by

�∗(xEk ) = xEk − xEk−1 (mod IE2(k−1)n(Z)).

In matrix form when p = l = 5 this looks like:

⎛

⎜

⎜

⎜

⎜

⎝

1 v ∗ ∗ ∗
0 1 v ∗ ∗
0 0 1 v ∗
0 0 0 1 v
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠
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This matrix is conjugate to a length l Jordan block, so E∗(Xl)∕m does not split and hence it is a length l
indecomposable K∗[Cp] representation. �

In particular, � acts trivially on K∗ = K∗(X1) = V1 and K∗(Xp) = Vp is a free K∗[Cp]-module. By
Nakayama’s lemma, we deduce that E∗(Xp) is a free E∗[Cp]-module.

Corollary 3.3. E∗(Xp) is a free E∗[Cp]-module.

Lemma 3.4. IfM is a finite EO-module thenM ≃ (E ∧EOM)ℎG.

Proof. Let G act on E ∧EO M by E automorphisms over EO. There is a natural equivariant map M =
EO∧EOM → E∧EOM whereG acts trivially onM , so we get a natural transformationM → (E∧EOM)ℎG.
WhenM = EO this is an equivalence by definition. The functorM ↦ �∗(E∧EOM)ℎG is exact, so it follows
that this natural transformation is an equivalence on all finite EO-modules. �

Corollary 3.5. EO ∧Xp ≃ EℎCn2

Since n2 is relatively prime to p, EℎCn2 is complex orientable.

Proof. EO ∧ Xp ≃ (E ∧ Xp)ℎG. Now E ∧ Xp ≃
⋁

p E and since E∗(Xp) is a free E∗[Cp]-module, this
equivalence can be chosen to be Cp equivariant, where the action of Cp on

⋁

p E is given by permuting the
p factors. It follows that

(E ∧Xp)
ℎCp ≃

(

⋁

p
E

)ℎCp

≃ E

and so

EO ∧Xp ≃
(

E ∧Xp
)ℎG ≃

(

(

E ∧Xp
)ℎCp

)ℎCn2
≃ EℎCn2 . �

4. THE MAP EO → E IS GALOIS AND THE E-BASED ADAMS SPECTRAL SEQUENCE FOR EO-MODULES

Here we present a proof that the maps EO → EℎCn2 is a Galois extension. This is a special case of [15,
Theorem 5.4.4(b)] which Rognes attributes to Devinatz [6]. We wanted to prove that EO → E is Galois, but
failed to do so. We cite Devinatz for this. We then conclude that the E-based Adams spectral sequence is
strongly convergent forEO-modules and hasE2 page given by group cohomologyH∗

Cp
(EEO∗ (M))⇒ �∗(M).

The E2 page and convergence of this spectral sequence are also due to Devinatz [6, Corollary 3.4]. Recall
that n = p − 1.

Definition 4.1 (Rognes [15, Definition 4.1.3]). A map R → S of E∞ ring spectra is an E-local G-Galois
extension for a discrete group G if:

(1) G acts on S via R-algebra maps.
(2) The natural map i∶ R → SℎG is an E-equivalence.
(3) The map ℎ∶ S ∧R S → F (G+, S) adjoint to

G+ ∧ S ∧R S S ∧R S S← →
act∧id ← →mult

is an E-equivalence.

If we let G act on the left S factor on S ∧R S and by precomposition on F (G+, S), the map ℎ is an S[G]-
algebra map. If ℎ is an equivalence of spectra, it is automatically also an equivalence of S[G]-modules.
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Definition 4.2 ([15, Definition 4.3.1]). Let R be an E∞ ring spectrum. An R-module N is faithful if any
R-moduleM such that N ∧RM ≃ 0 is already zero. A map R → S of E∞ rings is faithful if S is faithful
as an R-module.

Definition 4.3 ([3, Definition 3.7]). LetR → S be a map of homotopy associative ring spectra. The category
of S-nilpotent R modules is the smallest subcategory  of R-modules such that

(1) S ∈
(2) If X ∈ and Y is a spectrum then X ∧ Y ∈ .
(3) If X → Y → Z is a cofiber sequence in R-modules and two of X, Y , and Z are in then so is the

third.
(4) If X ∈ and Y is a retract of X then Y ∈ .

R is S-nilpotent if R is an S-nilpotent R-module.

Lemma 4.4. Let R → S be a map of homotopy associative ring spectra and suppose that f ∶ ΣdR → R is
a nilpotent self map of R. Then C(f ) ∧RM is S-nilpotent if and only ifM is.

Proof. IfM is S-nilpotent, then ΣdM → M → C(f ) ∧R M is a cofiber sequence, and since bothM and
ΣdM are S-nilpotent, so is C(f ) ∧RM . Conversely, suppose that C(f ) ∧RM is S-nilpotent. We show by
induction that C(f i) ∧R M is S-nilpotent for all i by induction. Suppose that C(f j) ∧R M is S-nilpotent
for j ≤ i. The octahedral axiom gives us the following diagram, where the straight lines are all cofiber
sequences:

C(f i) ∧RM

Σ(i+1)dM M C(f i+1) ∧RM

ΣidM

ΣidC(f ) ∧RM

←

→
Σidf

← →
f (i+1)

←

→

←→

← →

←

→
f i
←

→

←

→

Since C(f i)∧RM and C(f )∧RM are S-nilpotent, C(f i+1)∧RM is S-nilpotent too. Because f is nilpotent,
f i is null for large enough i. Thus,M is a retract of an S-nilpotent spectrum C(f i) ∧RM ≃M ∨M and so
M is S-nilpotent. �

Lemma 4.5. Let R → S be a map of E∞ ring spectra and suppose that R is S-nilpotent. Then the map
R→ S is faithful.

Proof. Let M be an R-module such that S ∧R M ≃ 0. Let  be the category of R-modules N such that
N ∧RM ≃ 0.  is closed under retracts because ifN ′ is a retract ofN thenN ′∧RM is a retract ofN ∧RM
and retracts of zero are zero.  is closed under cofiber sequences because if N1 → N2 → N3 is a cofiber
sequence and N1, N2 ∈ , then the cofiber sequence N1 ∧R M → N2 ∧R M → N3 ∧R M shows that
N3 ∧RM ∈ . Lastly, ifN ∈  then (N ∧RN ′) ∧RM ≃ 0 soN ∧RN ′ ∈ . This implies that  contains
the category of S-nilpotent R-modules, so R ∈  andM = R ∧RM ≃ 0. �

Proposition 4.6. EO is E-nilpotent and EℎCn2 -nilpotent. As a consequence, the maps EO → EℎCn2 and
EO → E are faithful.

This is a special case of [6, Theorem 3.3]. Compare [15, Proposition 5.4.5]. In order to prove this we need
the following lemma:
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Lemma 4.7. There is a cofiber sequence Σ2n−1Xp → C(�1)→ Xp.

Proof. Let F be the fiber of the inclusion of the bottom cell S0 → Xp. There is a homology isomorphism
HFp∗ F ≅ HFp∗ Σ2n−1Xp−1 so by Lemma 2.2 we deduce that F ≃ Σ2nXp−1.

Let �̃1 ∶ S2n
2−1 → Xp−1 be the attaching map forXp and let �1 ∶ Σ2n−1Xp−1 → S0 be the fiber of the the

inclusion of the bottom cell S0 → Xp. The composition �1◦(Σ2n−1�̃1) is the Toda bracket ⟨�1,… , �1⟩ = �.
The octahedral axiom gives us the following diagram, where the straight lines are all cofiber sequences:

Xp

S2pn−2 S0 C(�1)

Σ2n−1Xp−1

Σ2n−1Xp

←

→
Σ2n−1�̃1

← →
�

← →

←→
←

→

←→
�1

←

→

←

→

�

Proof of Proposition 4.6. EℎCn2 is a retract of E so EℎCn2 is E-nilpotent. Lemma 4.7 says there is a cofiber
sequence:

Σ2n−1Xp → C(�1)→ Xp.
Smashing this with EO gives a cofiber sequence

Σ2n−1EℎCn2 → EO ∧ C(�1)→ EℎCn2

so that EO ∧ C(�1) is E-nilpotent. Since �1 is nilpotent, EO is E-nilpotent too. �

Theorem 4.8. The map EO → EℎCn2n is a faithful Cp-Galois extension.

To prove this, we need the following lemma:

Lemma 4.9. Let k be a field of characteristic p, let � ∈ k[Cp] be the trace element
∑

g∈Cp g, and let f be a
vector space map k[Cp] → k. Then the map k[Cp] →

∏

Cp
k adjoint to the map Cp × k[Cp] → k given by

(g, v)↦ f (gv) is an isomorphism if and only if f (�) ≠ 0.

Proof. If V is a d-dimensional k-vector space, a collection of d maps fi ∶ V → k have product an isomor-
phism V →

∏

k if and only if the fi generate V ∗, so it suffices to check that f generates (k[Cp])∨ as a
Cp-representation. Let � ∈ Cp be a generator. Because f (�) ≠ 0 and (� − 1)� = 0 we deduce that f is not
in (� − 1)k[Cp]∨. However, (� − 1)(k[Cp])∨ is the unique maximal subrepresentation of (k[Cp])∨, so f lies
in no proper subrepresentation of (k[Cp])∨ and f generates (k[Cp])∨ as a representation. �

Proof of Theorem 4.8. Let R = EℎCn2 , let n be the maximal ideal of R∗ and let L∗ = R∗∕n. We defined
EO → E as the inclusion of the G fixed points, so Cp acts on R by EO-algebra maps and i∶ EO →

RℎCp ≃ EℎG is an equivalence. So conditions (1) and (2) are satisfied. The map EO → R is faithful by
Proposition 4.6.

It remains to check condition (3). It suffices to show that ℎ is an isomorphism after taking homotopy. By
Nakayama’s lemma we can check that ℎ is a surjection by checking that it is a surjection after quotienting by
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the maximal ideal of R. Since �∗(R ∧EO R) and �∗
(

∏

Cp
R
)

are free R∗-modules of the same dimension,
it will follow that ℎ is an equivalence.

The map ℎ∶ R ∧EO R →
∏

Cp
R has g component given by the composite

R ∧EO R R ∧EO R R←→
g∧id ←→m

so we need to show that the sum of the g-conjugates of m∶ L∗ ⊗�L �∗(R ∧EO R)→ L∗ is an isomorphism.
SinceR ≃ EO∧Xp, we have an equivalence of left R-modulesR∧EOR ≃ R∧Xp. If we let Cp act trivially
on Xp, this isomorphism is Cp equivariant. Consider the following diagram:

R R ∧EO R R

R ∧Xp

←→�L

← →
id

←

→

←→

←→m

←

→

All maps are R-module maps where R acts on R ∧EO R on the left. The map �L is Cp-equivariant, but m is
not equivariant for the action of Cp on the left factor. Now taking homotopy and quotienting by n gives:

L∗ L∗[Cp] L∗

←→e

← →
id

←→m

where all maps are of L∗-modules and e is Cp equivariant. Let � =
∑

g∈Cp g be the trace element. Since e is
an equivariant map from the trivial representation, it must be some nonzero multiple of the map 1 ↦ �. We
deduce that m(�) is a unit. By the lemma, we are done. �

We wish the following were a corollary:

Not A Corollary 4.10 (Devinatz [6]). The map EO → E is a faithful Galois extension.

Proposition 4.11. For any EO-moduleM there is a spectral sequence

HFPSS(M)∶ H∗
G(E

EO
∗ (M))⇒ �∗(M)

and for any connective spectrum X there is a map ANSS(X)→ HFPSS(EO ∧X).

The convergence is [6, Theorem 3.3] and the identification of the E2 term is [6, Theorem 3.1]. The map
of spectral sequences is explained in section 11.3.3 on page 109 of [7].

Proof. The left unit mapE∗ → EEO∗ E is flat, so given anEO-moduleM there is anE-based Adams spectral
sequence [1, Theorem 2.1]

ExtEEO∗ E(E∗, E
EO
∗ (M)) ⇒ �∗

(

L̂EOE M
)

.

Amap of EO-modulesM → N is an E-equivalence if E ∧EOM → E ∧EON is an equivalence. By Propo-
sition 4.6, this is true if and only ifM → N is itself an equivalence, so for any EO-module, LEOE M ≃ M .
Proposition 4.6 implies that EO is E-nilpotent and the canonical maps Id → LEOE → L̂EOE are equiva-
lences. By Not A Corollary 4.10 the Ext group that determines the E2 page of the spectral sequence is group
cohomology, so we can rewrite the E2 page as:

H∗
G(E

EO
∗ (M))⇒ �∗(M).



AN ORIENTATION MAP FOR HEIGHT p − 1 REAL E THEORY 15

The map BP → E induces a map from the Adams Novikov spectral sequence to the E-based Adams
spectral sequence. The E-based Adams spectral sequence for a spectrum X corresponds to a cosimplicial
object with ith term E∧(i+1) ∧X where the face maps are unit maps and the degeneracy maps are multiplica-
tion. The mapX → EO∧X induces a map of cosimplicial objects E∧(i+1) ∧X → E∧EO(i+1) ∧EO (EO∧X)
where E∧EO(i+1) ∧EO (EO ∧X) corresponds to the EO-based Adams spectral sequence for EO ∧X. Thus,
there is a corresponding map of spectral sequences ANSS(X)→ HFPSS(EO ∧X). �

There is a particularly convenient description of a minimal Adams resolution:

Proposition 4.12. Any EO-moduleM has an E-based Adams resolution:

M M ∧Xp Σ|�|M ∧Xp Σ|�|M ∧Xp Σ|�|+|�|M ∧Xp ⋯←→ ←→ ←→ ←→ ←→

5. SPLITTINGS

Recall that n = p − 1.

Definition 5.1. A cellular EO-module is an EO-moduleM equipped with an Atiyah-Hirzebruch filtration
M0 → M1 → ⋯ → M with M = hocolimMi, such that M0 =

⋁

j∈S0 Σ
sjEO and there are cofiber

sequences
⋁

j∈Si Σ
sjEO → Mi → Mi+1. A cellular EO-module is k-sparse for k a divisor of 2p2n2 if all

of the suspensions sj used in the filtration have the same congruence class mod k. A connective spectrum is
k-sparse for k an integer if it has a cell structure with only cells in a particular congruence class mod k.

If Z is a connective spectrum then EO ∧Z is cellular. A cellular EO-module has an Atiyah-Hirzebruch
spectral sequence. If a spectrumZ is k-sparse for k a divisor of 2p2n2, thenEO∧Z is k-sparse. To show that
a connective spectrum is k-sparse it suffices to check that HFp∗(Z) is concentrated in a single congruence
class mod k.

Given an EO-moduleM , we get an associated K∗[Cp]-module EEO∗ (M)∕m, which has a decomposition
into a sum of indecomposable K∗[Cp]-modules. We call the EO-module “algebraic” if this splitting lifts to
a splitting ofM into the standard EO-modules EO ∧Xl.

Definition 5.2. An EO-moduleM is algebraic ifM ≃ EO ∧
⋁

ΣsiXli . A spectrum Z has algebraic EO
theory if EO ∧Z is algebraic.

An algebraic EO-module is evidently cellular. A cellular EO-module M is algebraic if and only if all
differentials in the Atiyah-Hirzebruch spectral sequence forM vanish except for the d2n differential.

When p = 3, our definition of an algebraic EO-module is closely related to Meier’s definition of a “stan-
dard vector bundle” [11, Definition 3.9]. In Meier’s nomenclature a standard vector bundle is an E∗[G]-
module that is isomorphic to EEO∗ (M) for some algebraic EO-moduleM .

In Section 5.1, we prove Corollary 5.4 that ifM is an algebraicEO-module thenEEO∗ (M)∕m determines
M up to lost information about shifts. We show in Theorem 5.6 that if Z is a spectrum with algebraic EO
theory, the P 1 action onHFp∗(Z) determines the homotopy type ofEO∧Z. We also show in Proposition 5.8
that a “union” of algebraicEO-modules is algebraic. In Section 5.3 we produce conditions to check thatEO-
modules are algebraic. We show in Theorem 5.13 that a 2n-sparse spectrum has algebraic EO theory and we
show in Theorem 5.14 that a 2p-sparse EO-module is algebraic. In Section 5.4 we prove the results quoted
in the introduction. None of the material after Section 5.4 is necessary to prove the main results quoted in
the introduction.

In Section 5.5 we show that if M is an EO-module such that EEO∗ (M) is a projective E∗-module and
EEO∗ (M)∕m has a free K∗[Cp] submodule then there is a splittingM ≃ EO ∧ Xp ∨N . In Section 5.6 we
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prove a formula for the smash product of algebraic EO-modules and show that algebraic EO-modules are
closed under smash product.

5.1. DETERMINING THE HOMOTOPY TYPE OF AN ALGEBRAIC EO-MODULE

In this section we’ll show that ifM is an algebraic EO-module, the splitting ofM can be deduced from the
G-module decomposition of EEO∗ (M)∕m, up to some lost information about shifts. We then show that if Z
is a spectrum with algebraic EO theory, the splitting of EO ∧ Z can be deduced from the P (1)∗-comodule
structure of HFp∗(Z).

IfM is an algebraicEO-module then in particular it is torsion free soE2AHSS(M) is a freeEO∗-module.

Lemma 5.3. Let g ∈ G be an element of order n2. Let v ∈ K∗(S2k+�) be a generator for � ∈ {0, 1}. There
is a primitive n2 root of unity ! independent of k and � such that g∗(v) = !kv.

Proof. Let Γ be the Lubin Tate formal group associated to En. Suppose that ℎ ∈ Gn has power series
representation a0s +Gn

∑Gn
i≥1 ais

pi . Let BPP be periodic BP -theory so that BPP ∗ BPP parameterizes not-
necessarily-strict p-typical power series. Note that BPP ∗ BPP = ℤp[v

±
0 , v1,…][t

±
0 , t1,…]. Let Z be a

spectrum and let z ∈ BPP ∗(Z). Write zK for the image of z inK∗(Z). Suppose thatΨ(z) = tk0⊗z+
∑

i �i⊗zi
Then ℎ∗(zK ) = ak0z

K +
∑

i>1 �i(g)z
K
i .

In particular, the element g of order n2 has power series expansion !s +Gn
∑Gn
i≥1 ais

pi where ! is some
primitive n2 root of unity. The coaction on a generator v of BPP ∗ S2k+� is given byΨ(v) = tk0⊗v. It follows
that g(v) = !kv. �

For s ∈ ℤ∕2n2 write ΣsVl for the K∗[G]-module K∗(ΣsXl).

Corollary 5.4. Suppose that M is an algebraic EO-module and EEO∗ (M)∕m ≅
⨁

k∈T ΣskVlk as K∗[G]-
modules, where T is some index set and s ∈ ℤ∕2n2. Then M ≃ EO ∧

⋁

k∈T Σ2nskXlk where sk is some
particular lift of sk to ℤ∕2p2n2.

So we can use EEO∗ (M) to determine an algebraic EO-moduleM up to loss of information about shifts.
We show now that the Atiyah-Hirzebruch spectral E2n page recovers the full homotopy type of an EO-
module.

Lemma 5.5. Suppose thatM andN are two algebraicEO-modules, and suppose there is an isomorphism of
bigradedEO∗-modules f ∶ E2AHSS(M)→ E2AHSS(N). LetE2AHSS(M) ≅ EO∗{[xi]}i∈S and suppose
that d2n(f ([xi])) = f (d2n([xi])) for all i ∈ S. ThenM andN are equivalent.

Proof. An algebraic EO-module M is of the form EO ∧
⋁

i∈S ΣsiXli where si ∈ ℤ∕2p2n2 and li ∈
{1,… , p}. The lengths and shifts are both determined by the E2nAHSS(M) – a summand of the form
EO ∧ ΣsiXli corresponds to a summand of E2nAHSS(M) which is an li-dimensional EO∗-module on gen-
erators {[x0],… , [xi−1]} with differential d2n([xk]) = �[xk−1] for k > 0 and [x0] a permanent cycle in the
si stem. A decomposition ofM into summands of the form EO ∧ΣsiXli corresponds exactly to a decompo-
sition of E2nAHSS(M) into summands of the form E2nAHSS(EO ∧ ΣsiXli ). It follows that E2nAHSS(M)
determinesM . �

Theorem 5.6. Let Z be a spectrum with algebraic EO theory. Decompose HFp∗(Z) into indecomposable
P (1)∗-comodules, sayHFp∗(Z) ≅

⨁

i∈T ΣsiWli where T is some index set. ThenEO∧Z ≃ EO∧
⋁

ΣsiXli .



AN ORIENTATION MAP FOR HEIGHT p − 1 REAL E THEORY 17

Proof. Pick an integral lift of the map HFp∗(Z) →
⨁

i∈T ΣsiWli to a map Hℤ∗(Z) → Hℤ∗
(

⋁

ΣsiXli

)

.
This map induces an isomorphism

f ∶ E2AHSS(EO ∧Z)→ E2AHSS
(

EO ∧
(

⋁

ΣsiXli

))

.

I claim that for {[xi]}i∈S a basis for Hℤ∗(Z), we have d2n(f ([xi])) = f (d2n(xi)).
Consider the map AHSS(Z)→ AHSS(EO∧Z). BecauseZ is torsion free, the shortest possible Atiyah-

Hirzebruch differential is a d2n which is detected by the P 1 action on HFp∗(Z). Let � be the reduction
map Hℤ → HFp. Suppose that x ∈ Hℤi(Z) and y ∈ Hℤi−2n(Z). If P 1(�(x)) = c�(y) where c ∈ Fp is
some constant, then d2n([x]) = c�[y]. Since 1 and � have nontrivial image in EO∗ we deduce a differential
d2n([x]) = c�[y] in E2nAHSS(EO ∧ Z). Because the map f ∶ Hℤ∗(Z) → Hℤ∗

(

⋁

ΣsiXli

)

was a lift of
a map that commutes with P 1, we have also that P 1(�(f (x))) = �(f (y)). We deduce that f (d2n([x])) =
c�f ([y]) = d2n(f ([x])). The hypotheses of Lemma 5.5 are met and we conclude that EO ∧ Z ≃ EO ∧
⋁

ΣsiXli . �

Corollary 5.7. If X and Y are connective spectra with algebraic EO theory and HFp∗(X) ≅ HFp∗(Y ) as
P (1)∗-comodules, then EO ∧X ≃ EO ∧ Y .

Now we show that algebraic EO-modules are closed under “unions.”
Proposition 5.8. Suppose that M1 → M2 → ⋯ is a diagram of algebraic EO-modules such that each
mapMi → Mi+1 induces an injection EEO∗ (Mi)∕m → EEO∗ (Mi+1)∕m. Then hocolimMi is an algebraic
EO-module.
Proof. Write EEO∗ (M)∕m ≅

⨁

j∈S Vlj as K∗[Cp]-modules. To show thatM is algebraic, we need to show
that this splitting lifts to a splitting of M . Pick some summand Vlj of E

EO
∗ (M)∕m. Because Vlj is finite

dimensional, for some i sufficiently large, EEO∗ (Mi)∕m → EEO∗ (M)∕m → Vlj is a surjection. Since the
map EEO∗ (Mi)∕m → EEO∗ (M)∕m is an injection, we deduce that there is a splitting EEO∗ (Mi) ≅ Vlj

⨁

W
and becauseMi is algebraic, this lifts to a splittingMi ≃ EO ∧Σ

sjXlj for some sj ∈ ℤ∕2p2n2. This gives a
map �j ∶ EO∧ΣsjXlj →M which induces the inclusion Vlj → EEO∗ (M)∕m. Summing the maps �j as j ∈ S

varies gives a map fromEO∧
⋁

j∈S Σ
sjXlj →M which induces an isomorphismE∗

(

⋁

j∈S Σ
sjXlj

)

∕m →

EEO∗ (M)∕m. By Nakayama’s lemma, this also induces an isomorphism E∗
(

⋁

j∈S Σ
sjXlj

)

→ EEO∗ (M)

which implies that there is an isomorphism of E2 pages HFPSS
(

EO ∧
⋁

j∈S Σ
sjXlj

)

→ HFPSS(M). It
follows that the map EO ∧

⋁

j∈S Σ
sjXlj →M is an equivalence, and henceM is algebraic. �

5.2. A BRIEF REVIEW OF THE HOMOTOPY FIXED POINT SPECTRAL SEQUENCE FOR EO

There is a map ANSS(S0)→ HFPSS(EO) from the Adams Novikov spectral sequence for the sphere to the
homotopy fixed point spectral sequenceH∗

G(E∗)⇒ EO∗. Hopkins and Miller computed the homotopy fixed
point spectral sequence for EO up to some permanent cycles on the zero line. The E2 page is isomorphic to
Fp[�, �, u±] in positive filtration, where � ∈ (2n − 1, 1) and � ∈ (2pn − 2, 2) are the images of �1 and �1 in
ANSS(S0) and u ∈ (2pn2, 0) is a norm class. There are two differentials d2n+1(u) = ��n and d2n2+1(�un) =
�n2+1 inHFPSS(EO). All other differentials are generated by these two using the Leibniz rule. TheE∞ page
has a horizontal vanishing line at filtration 2n2 + 2. The element up is a permanent cycle, which gives EO
theory a 2p2n2 periodicity. The homotopy of EO∗ for p = 3 and p = 5 is illustrated in Figure 1. See the
account of this spectral sequence in [12, section 2] for more details.
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5.3. CONDITIONS FOR AN EO-MODULE TO BE ALGEBRAIC

ForZ a connective spectrum, we use the cellular filtration ofZ to get filtrations ofBP ∗(Z) andE∗(Z)which
gives algebraic Atiyah-Hirzebruch spectral sequences. If Z is torsion free, this has the following form:

algAHSS(Z)∶ ExtBP ∗BP (BP ∗, BP ∗)⊗ Hℤ∗(Z)⇒ ExtBP ∗BP (BP ∗, BP ∗(Z))
algAHSS(EO ∧Z)∶ H∗

G(E∗)⊗ Hℤ∗(Z)⇒ H∗
G(E∗(Z))

The map ANSS(Z) → HFPSS(EO ∧ Z) induces a map algAHSS(Z) → algAHSS(EO ∧ Z). The homol-
ogy of Xl is Hℤ∗(Xl) = ℤ{x0,… , xl−1} with xi in degree 2in, so the E2 page of algAHSS(EO ∧ Xl) is
isomorphic modulo trace classes to Fp[�, �, u±]{[x0],… , [xl−1]}.

For a connective spectrum Z, denote by HId(Z) the Hurewicz image of �d(Z)→ EOd(Z).

Proposition 5.9. Let 1 ≤ l < p and let �(l) ∈ EO2nl−1(Xl) be the Hurewicz image of the attaching map
for the top cell of Xl+1. Then �(l) is nonzero and spans the Hurewicz image in EO2nl−1(Xl). If k ≠ l then
the Hurewicz image in EO2kn−1(Xl) is zero. If l < p, projection onto the top cell Xl → S2n(l−1) induces an
isomorphism HI2nk−1(Xl)→ HI2nk−1(S2n(l−1)).

Proof. Consider the map of spectral sequences ANSS(Xl) → HFPSS(EO ∧ Xl). In the degree we are
considering, HFPSS(EO ∧Xl) only contains elements in filtration one and in the degree we’re considering
ANSS(Xl) contains no elements in filtration zero, so no filtration jumping can happen and it suffices to
understand the image of the map ANSS(Xl)→ HFPSS(EO ∧Xl). We will first handle the case when l = 1
and Xl = S0, and then we will use algebraic Atiyah-Hirzebruch spectral sequences to deduce the case for
larger l.

Suppose that l = 1. We have that �2n−1(EO) = Fp{�1}. Wewant to show that if k ≠ 1 thenHI2nk−1(EO) =
0. We will show that this is true on theE2n+1 page ofANSS(S0)→ HFPSS(EO). Refer to Figure 1 on page 3
for the E∞ page of HFPSS(EO) for p = 3 and p = 5. Because the only element of the 0-line of ANSS(S0) is
1 ∈ �0, nothing else in the zero line ofHFPSS(EO) is in the Hurewicz image, so we need only study positive
filtration. TheE2 page ofHFPSS(EO) is isomorphic in positive filtration to Fp[�, �, v]where � ∈ (2n−1, 1),
� ∈ (2pn − 2, 2) and v ∈ (2pn2, 0). So |�| ≡ −1, |�| ≡ −2 and |v| ≡ 0 (mod 2n). The elements of the E2
page in degree −1 (mod 2n) are ��invj . There is a differential d2n(v) = ��n, so all elements on the E∞ page
in degree −1 (mod 2n) are of the form �vj and hence are in the 1-line. I claim that if j ≠ 0 then �vj is not
in the image of the map on E2 pages. The only element of the Novikov 1-line in the degree of �vj is �npk+1.
There is a Massey product in the Novikov E2 page �npk+1 = ⟨�npk, p, �1⟩ with indeterminacy in filtration
greater than 1. Because the homotopy fixed point spectral sequence contains no elements in the same stem
as �vj in filtration greater than 1, the indeterminacy of this Massey product maps to zero in the E2 page of
the homotopy fixed point spectral sequence. By sparsity �npk ↦ 0. It follows that �npk+1 ↦ 0 too, and �vj
is not in the Hurewicz image. This settles the l = 1 case.

Now we use the algebraic Atiyah Hirzebruch spectral sequence to reduce the case l > 1 to the case l = 1.
Figure 2 on the next page is an illustration of algAHSS(EO ∧ X3). Because the cells of Xl are in degrees
congruent to 0 (mod 2n), and because ��n = 0 ∈ EO∗, the only elements of algAHSS(EO∧Xl) in degrees
congruent to −1 (mod 2n) are those of the form �vj[xi]. By the l = 1 case, the only such elements that are
hit in the E2 page of the map algAHSS(Xl) → algAHSS(EO ∧ Xl) are �[xi]. Since each attaching map in
Xl is given by an �, there are Atiyah-Hirzebruch differentials d2n([xi+1]) = �[xi] so all of these elements are
zero in homotopy except for �[xl]. If l < p, this is a permanent cycle which detects �(l). �

Lemma 5.10. Suppose that Y is a connective 2n-sparse spectrum with cells in degrees 0 (mod 2n). Then
the map Y → Y(2nk) induces an injection HI2n(k+1)−1(Y ) → HI2n(k+1)−1(Y(2nk)). The map Y

(2nk)
(2nk) → Y(2nk)
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FIGURE 2. The algebraic AHSS for EO∗X3 at p = 3

induces a surjection HI2n(k+1)−1
(

Y (2nk)(2nk)

)

→ HI2n(k+1)−1(Y(2nk)). Thus HI2n(k+1)−1(Y ) is a subquotient of

HI2n(k+1)−1
(

Y (2nk)(2nk)

)

.

Proof. ConsiderAHSS(EO∧Y ). TheHurewicz imageHI2(k+1)n−1(S0) is zero unless k = 0 andHI2n−1(S0) =
Fp{�} so the classes in HI2in−1 Y are exactly those detected by an element of the form �[x] for x ∈ Hℤ∗ Y .
Since the degree of � is 2n − 1, the degree of �[x] is 2n − 1 + |x|. For �[x] to be in degree 2n(k + 1) − 1,
the homology class x should be in degree 2nk. We deduce that every class in HI2n(k+1)−1(Y ) is detected in
Atiyah-Hirzebruch filtration 2nk so that HI2n(k+1)−1(Y ) is a subquotient of HI2n(k+1)−1

(

Y (2nk)(2nk)

)

. �

Lemma 5.11. LetM = EO∧
⋁

i∈T ΣsiXli be an algebraicEO-module. Suppose that f ∶
⋁

S ΣsiEO →M
is some EO module map such that the homotopy class of each component ΣsiEO → M is contained in
Fp{Σsi�(li)}i∈U ⊆ �s(M) where U ⊆ T is the subset of i ∈ T such that li < p and si + 2n(li − 1) = s. Then
C(f ) is an algebraic EO-module.

Proof. First suppose we are only attaching one cell along a map ΣsEO →M . By assumption, f∗ ∈ EOsM
is some linear combination

∑

i∈U aiΣsi�(li). If all ai are zero, then C(f ) ≃ M ∨ Σs+1EO is algebraic.
Otherwise, suppose that a1 ≠ 0 and that for all i ∈ U such that ai ≠ 0, l1 ≥ li. By Lemma 5.12 there is an
automorphism � ofM such that �−1∗ (�

(l1)) = f∗ and �−1∗ (�
(li)) = �(li) for i > 1. Then �◦f = Σ2ns1�(l1) so

that
C(f ) ≃ C(�◦f ) = EO ∧ Σs1Xl1+1 ∨

⋁

i∈T ⧵{1}
ΣsiXli .

We conclude that C(f ) is an algebraic EO-module.
Now consider the case where we are attaching multiple cells, say f ∶

⋁

S ΣsiEO → M . Filter C(f ) by
picking a total order on S and letting fi be the restriction of f to

⋁

j≤i Σ
sjEO. Then let Ni = C(fi). Note

that Ni is the cofiber of the composite ΣsiEO →
⋁

S ΣsiEO → M → Ni−1, and this composite satisfies
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the hypotheses of the lemma so Ni is an algebraic EO-module for each i. Since C(f ) = hocolimiNi, by
Proposition 5.8 C(f ) is algebraic. �

To finish the proof of Lemma 5.11 we need the following lemma:

Lemma 5.12. Fix d an integer and let
X =

⋁

i∈S
Σd−2nliXli

where li < p for all i ∈ S. LetU = EOd−1(X) = Fp{�(li)}i∈S′ . FilterU byUl = Fp{�li | li < l} and suppose
that f ∶ EOd−1(X) → EOd−1(X) is a filtered endomorphism. Then there is an endomorphism f̃ ∶ X → X
that induces f on EOd−1(X).

Proof. The collapse map p∶ Xl → Σ2nXl−1 sends �(l) ↦ �(l−1). This follows from the commutativity of
the following diagram, where the columns are cofiber sequences:

S2n(l+1)−1

Xl Σ2nXl−1

Xl+1 Σ2nXl

←→�(l) ←

→

�(l−1)

←→
p

←→ ←→

←→
p

The multiplication by c map c ∶ Xl → Xl sends �(l) ↦ c�(l). If X =
⋁p−1
l=1 Σ

d−2nl⋁
Sl
Xl, any block upper

triangular matrix of integers represents an endomorphism of X, and this endomorphism of X induces the
corresponding filtered endomorphism of EOd−1(X). �

Theorem 5.13. Let Z be a connective (2p − 2)-sparse spectrum. Then Z has algebraic EO theory.

Proof. By Proposition 5.8 we may argue by cellular induction on Z. If Z has one cell, the statement is
immediate. Suppose that Y is a connective 2n-sparse spectrum with cells in dimension less than or equal
to 2nk. Suppose also that Y has algebraic EO theory, say EO ∧ Y ≃ EO ∧

⋁

i∈T ΣsiXli and that Z is the
cofiber of f ∶

⋁

S S
2nk−1 → Y . It follows that EO ∧Z is the cofiber of EO ∧ f .

By Lemma 5.10, HI2nk−1(Y ) is a subspace of HI2nk−1(Y2n(k−1)) ≅
⨁

T ′ Fp[Σ2nk�] where T ′ ⊆ T is the
subset of i ∈ T such that si + 2nli = 2nk. Under the isomorphism �∗(EO ∧ Y ) ≅ �∗

(

EO ∧
⋁d
i=1 Σ

siXli

)

,
the module HI2nk−1(Y ) is the subspace of classes of Fp{Σsi�(li)}i∈S where si + 2nli = 2nk, and such that
the element �1[x] ∈ AHSS(Y ) that maps to the element of AHSS(EO ∧ Y ) that detects �(li) is a permanent
cycle. By Lemma 5.11, it follows that C(f ) has algebraic EO theory. �

Theorem 5.14. Suppose that M is a 2p-sparse cellular EO-module. Then M is algebraic. In fact, M ≃
⋁

ΣsiEO. If Z is a 2p-sparse connective spectrum, then Z has algebraic EO theory.

Proof. It suffices to show that EO2pk−1 = 0 for all k. The 0-line of HFPSS(EO) consists of the fixed
points of the action of G on E∗. Since E∗ is even, so is the zero line. We need to show that there are
no elements in positive filtration in the 2pk − 1 stem on the E∞ page of HFPSS(EO). Recall that the E2
page of HFPSS(EO) is isomorphic to Fp[�, �, vpm] in positive filtration and that the elements of the E2 page
representing nonzero odd degree homotopy elements are all of the form ��ivj where i < p− 1. These are in
degrees |�| = 2p − 3 ≡ −3 (mod 2p), |�| = 2pn − 2 ≡ −2 (mod 2p) and |u| = 2pn2 ≡ 0 (mod 2p). Now
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|��i| ≡ −3 − 2i (mod 2p) so if |��i| ≡ −1 (mod 2p) then −3 − 2i ≡ −1 (mod 2p) implies that 2i ≡ −2
(mod 2p) so i = (p − 1) + pk but then ��i = 0 ∈ EO∗. �

Proposition 5.15. LetX be a torsion free connective spectrumwith cells in degrees between k and k+2pn−2.
Suppose thatM is a retract of EO ∧X. ThenM has algebraic EO theory.

In order to prove this, we use the following lemma, which has messier hypotheses:

Lemma 5.16. Suppose thatM is a cellularEO-module, sayM = hocolimMi andMi+1 is the cone of some
map fi ∶

⋁

j∈Si Σ
sijEO → Mi where sij ∈ ℤ∕2p2n2. Suppose that E ∧EO f ≃ 0. Suppose also that there

are integral lifts s̃ij such that for some k ∈ ℤ and for all i, j ∈ Si we have k ≤ s̃ij ≤ k + 2pn − 2. ThenM
is an algebraic EO-module.

Proof. We argue by cellular induction. Suppose that Mi is an algebraic EO-module, say Mi ≃ EO ∧
⋁

t∈T ΣstXlt . We need to show that the cone of fi ∶
⋁

j∈Si Σ
sijEO → Mi is algebraic. It suffices by

Lemma 5.11 to show that the homotopy of each component map fij ∶ ΣsijEO →Mi lies in the subgroup of
�sij (M) generated by Fp{Σst�(lt)}t∈T ′ where T ′ ⊆ T is the subset of t ∈ T such that st + 2n(lt − 1) = sij
and lt < p. By assumption, fij is detected in AHSS(Mi) by some element �[x] where � ∈ EO∗ and x is
some cell ofMi such that the image of � under EO → E is zero. We also know that |x|+ |�| = sij and that
k ≤ |x|, sij ≤ 2pn − 2. It follows that 0 ≤ |�| ≤ 2pn − 2. The only element of the kernel of EO∗ → E∗
in these degrees is �. We deduce that fij is detected in the necessary subspace. By Lemma 5.11, Mi+1 is
algebraic. �

Proof of Proposition 5.15. First note that EO ∧ X satisfies the hypotheses of Lemma 5.16 – EO ∧ X has
a cellular filtration where each cell is in dimension between k and k + 2pn − 2. Because X is torsion free,
E∧X(i) splits as a sum ofE-theories, so each attaching map fi ∶

⋁

Si
Σi−1EO → EO∧X(i−1) → EO∧X(i)

must be zero on E-theory.
Now letM be a retract of EO ∧X and letMi be the corresponding retract of EO ∧X(i). Since E ∧X(i)

splits as a sum of E-theories, and E ∧EO Mi is a retract of E ∧ X(i), it follows that E ∧EO Mi does too.
Thus, the attaching maps to form Mi from Mi−1 must be in the kernel of �∗(Mi−1) → EEO∗ (Mi−1). The
dimensions of the cells ofM are still in the range from k to k + 2pn − 2, soM satisfies the hypotheses of
Lemma 5.16 as well andM is an algebraic EO-module. �

5.4. ORIENTATIONS

Herewe give proofs of the theorems quoted from this section in the introduction. At this point these arguments
are straightforward.

Lemma 5.17. Let Z be a space and suppose that every spectrum Y with HFp∗(Y ) isomorphic to HFp∗(Z)
as P (1)∗-comodules has algebraic EO-theory. Then EO-orientability of complex bundles over Z is Chern
determined.

Proof. Suppose that V is a complex bundle over Z with  p−1(V ) = 0 (mod p). We need to show that
V is EO-orientable. Since  p−1(V ) = 0 (mod p), HFp∗(Tℎ(V )) ≅ HFp∗(Z) as P (1)∗-comodules. By
hypothesis, this implies that both Tℎ(V ) andZ have algebraic EO-theory and by Corollary 5.7 EO∧Z and
EO ∧ Tℎ(V ) are homotopy equivalent so V is orientable. �

Theorem 5.18. Let Z be a (2p − 2)-sparse space. Then EO-orientability of complex bundles over Z is
Chern-determined. In particular, let  p−1 be the (p − 1)st power sum polynomial over Z. Then a complex
vector bundle � over Z is EO-orientable if and only if  p−1 ≡ 0 (mod p).
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Proof. Theorem 5.13 says that the hypothesis of Lemma 5.17 is satisfied. �

Proposition 5.19. Let Z be a (2p − 2)-sparse 2p-connective space. Then every map Z → BGL1(S) is
EO-orientable.

Proof. Y4p−4 is (2p − 2)-sparse so both Tℎ(f ) and Σ∞+ Y4p−4 are (2p − 2)-sparse. By Theorem 5.13 we
deduce that they have algebraic EO-theory. If u is the Thom class in HF ∗p (Tℎ(f )) then for connectivity
reasons, P 1(u) = 0 so the Thom isomorphism respects the P (1)∗-module structure. The theorem follows by
Corollary 5.7. �

We immediately deduce:

Theorem 1.1. Let f ∶ Y4p−4 → BGL1(S) be any map. There is an equivalence EO ∧Mf ≃ EO ∧ Y(4p−4)+
of EO-modules, so there is a map of spectraMf → EO which factors the unit map S0 → EO.

5.5. FREE E∗[Cp] SUMMANDS OF EEO∗ (M) LIFT TO SUMMANDS OF M

We can split off copies of EO ∧Xp from an EO-moduleM without assuming thatM is sparse or induced:

Proposition 5.20. Suppose that M is an EO-module such that EEO∗ (M) is a projective E∗-module. The
map

�0 EO–Mod(EO ∧Xp,M)→ HomEEO∗ E(E∗(Xp), EEO∗ (M))
given by f ↦ �0(E ∧EO f ) is an isomorphism, natural inM . IfM is a finite module, the map

�0 EO–Mod(M,EO ∧Xp)→ HomEEO∗ E(E
EO
∗ (M), E∗(Xp))

given by f ↦ �0(E∧EO f ) is an isomorphism, natural inM . IfM is a cellularEO-module andEEO∗ (M) ≅
E∗(ΣsXp) ⊕ V ′ where V ′ is some E∗[G]-module, thenM ≃ EO ∧ ΣsXp ∨M ′ for some EO-moduleM ′

with EEO∗ (M ′) = V ′ as E∗[G]-modules.

Proof. There is a relative Adams spectral sequence

ExtEEO∗ E(E∗, E
EO
∗ (DXp ∧M))⇒ �∗(DXp ∧M) = �∗ EO–Mod(EO ∧Xp,M).

Because E∗(Xp) is E∗-free, there is a Kunneth isomorphism

EEO∗ (DXp ∧M) ≅ E∗(DXp)⊗E∗ E
EO
∗ (M).

The EEO∗ E coaction on E∗(DXp) is free, so we see that EEO∗ (DXp ∧M) has a free coaction too. It follows
that the spectral sequence collapses on the E2 page and

�∗EO(EO ∧Xp,M)→ HomEEO∗ E(E∗, E∗(DXp)⊗E∗ E
EO
∗ (M))

is an equivalence. Because E∗(Xp) is E∗-free, E∗(DXp) ≅ E∗(Xp)∨ and because E∗(Xp) is a finite dimen-
sional free E∗-module,

HomEEO∗ E(E∗, E∗(DXp)⊗E∗ E
EO
∗ (M)) ≅ HomEEO∗ E(E∗(Xp), EEO∗ (M)).

We know that E ∧Xp = E ∧EO (EO ∧Xp) = E ∧EO EℎCn2 so E∗(Xp) = EEO∗ (EℎCn2 ) is a summand of
EEO∗ E and hence is a relatively injectiveEEO∗ E-comodule. BecauseEEO∗ E is a cofreeEEO∗ E-comodule, for
V some otherEEO∗ E comodule there is an isomorphism betweenEEO∗ E⊗E∗V with the standard “diagonal”
coaction andEEO∗ E⊗E∗ V with coaction just on the left tensor factor, so we see that relative injectives form a
tensor ideal. ThusE∗(DXp)⊗E∗E

EO
∗ (M) is a relative injective and ExtEEO∗ E(E∗, E

EO
∗ (DXp∧M)) vanishes
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in positive degrees. It follows that the edgemap �0 EO–Mod(EO∧Xp,M)→ HomEEO∗ E(E∗(Xp), EEO∗ (M))
is an isomorphism.

Since EEO∗ M is projective as an E∗-module, there is also a relative Adams spectral sequence

ExtEEO∗ E(E
EO
∗ (M), E∗(Xp)) ⇒ �∗ EO–Mod(EEO∗ (M), E∗(Xp)).

BecauseE∗(Xp) is relatively injective, this is concentrated on the zero line. It follows that the Adams spectral
sequence collapses and the edge map

�0 EO–Mod(M,EO ∧Xp)→ HomEEO∗ E(E
EO
∗ (M), E∗(Xp))

is an isomorphism.
IfM is cellular and EEO∗ (M) ≅ E∗

(

ΣsXp
)

⊕V ′ then there is a map f ∶ EO∧ΣsXp →M inducing the
inclusion of the summand E∗

(

ΣsXp
)

on relative E-theory. Since EO ∧Xp is compact, f factors as a map
f (k) ∶ EO ∧Xp →M (k) whereM (k) is any sufficiently large skeleton ofM . Skeleta ofM are finite so each
f (k) splits and these splittings can be chosen compatibly. We conclude that f splits. �

Proposition 5.21. Suppose that Z is a spectrum with E∗(Z) a free E∗-module and there is a splitting
HFp∗(Z) = ΣsWp⊕U as P (1)∗-comodules. Then there is a splitting EO ∧Z ≃ ΣsEO ∧Xp ∨M whereM
is some EO-module.

Proof. Consider the subquotient Z(s+2n2)
(s) of Z. Because 2n2 ≤ 2pn − n, Proposition 5.15 says that Z(s+2n2)

(s)

has algebraic EO theory. SinceHFp∗
(

Z(s+2n2)
(s)

)

= ΣsWp⊕U ′ there is a splittingEO∧Z
(s+2n2)
(s) ≃ ΣkEO∧

Xp ∨ EO ∧Z′. This implies that

E ∧Z(s+2n2)
(s) ≃ E ∧EO EO ∧Z

(s+2n2)
(s) ≃ ΣsE ∧Xp ⊕E ∧Z′,

so E∗
(

Z(s+2n2)
(s)

)

≅ E∗(ΣsXp) ⊕ E∗(X) as E∗[G]-modules. Thus E∗(ΣsXp) is a subquotient of E∗(Z)
and E∗(ΣsXp) is a free E∗[Cp]-module so this subquotient is split: E∗(Z) ≅ E∗(ΣsXp) ⊕ E∗(Z′). By
Proposition 5.19, there is a splitting EO∧Z ≃ EO∧Σs′Xp ∨M ′ where s′ ≡ s (mod 2n2) and EEO∗ (M ′) ≅
E∗(Z′). By comparing Atiyah-Hirzebruch spectral sequences as in the proof of Theorem 5.6 we see that
s′ ≡ s (mod 2p2n2). �

5.6. A FORMULA FOR THE SMASH PRODUCT OF ALGEBRAIC EO-MODULES

Recall that P (1)∗ = Fp[t]∕(tp)withΔ(t) = t⊗1+1⊗t, so that P (1)∗ is dual to the subalgebra of the Steenrod
algebra generated by P 1. LetWl be the indecomposable P (1)∗-comodule of length l. The following lemma
indicates how tensor products decompose:

Lemma 5.22. Given 1 ≤ r ≤ s ≤ p,

Wr ⊗Ws =
r

⨁

i=c+1
Σ2r−2iWp ⊕

c
⨁

i=1
Σ2r−2iWs−r+2i−1

where

c =

{

r if r + s ≤ p
p − s if r + s ≥ p

and the first sum is empty if r + s ≤ p.
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Proof. According to [14, Theorem 1], if Vl is the length l representation of K∗[Cp], replacing Wl with Vl
everywhere in the formula gives the tensor decomposition for Vr ⊗ Vs. By Lemma A.1, this suffices. �

In other words, to decompose Wr ⊗ Ws, first apply the corresponding sl2 decomposition rule for irre-
ducible sl2-modules of dimension r and s:

Wr ⊗Ws = Wr−s+1 ⊕⋯⊕Wr+s−1

When l is larger than p, there is no indecomposable P (1)∗ comodule namedWl. IfWp+l shows up in the list
for l > 0, then replaceWp+l ⊕Wp−l withW ⊕2

p . This gives the decomposition rule.

Corollary 5.23. Let 1 ≤ r ≤ s ≤ p and let c be as in Lemma 5.21. Then:

EO ∧Xr ∧Xs ≃ EO ∧

( r
⋁

i=c+1
Σ2r−2iXp ∨

c
⋁

i=1
Σ2r−2iXs−r+2i−1

)

.

Proof. Xi ∧ Xj is 2n-sparse so by Theorem 5.13 Xi ∧ Xj has algebraic EO theory. Apply Theorem 5.6 to
Lemma 5.21. �

Corollary 5.24. IfM andN are algebraic EO-modules, then so isM ∧EO N .

Proposition 5.25. Suppose thatM is an algebraic EO-module and i < p is an integer. Let SymiEO(M) =
M∧EOi

ℎΣi
be the ith symmetric power ofM relative to EO. Then Symi(M) is algebraic and

EEO∗
(

SymiEO(X)
)

∕m = Symi
(

EEO∗ (X)∕m
)

where the right hand side is the symmetric power in K∗[Cp]-modules.

It follows that the formula for symmetric powers ofK∗[Cp]-modules determines the symmetric powers of
EO-module. Corollary 2.7 of [10] gives a generating function for these symmetric powers which we quote
as Theorem A.5.

Proof. Using the binomial formula for the symmetric powers of a sum, the theorem reduces to the case of
M = EO ∧ Xl. In this case SymiEO(EO ∧ Xl) = EO ∧ Symi(Xl) so we need to show that Symi(Xl)
has algebraic EO theory. If E is a spectrum with trivial G action and X has a G-action, then E ∧ XℎG ≃
(E ∧ X)ℎG, so there is a homotopy orbit spectral sequence HΣi

∗ (E∗(X∧i
l )) ⇒ E∗

(

Symi(Xl)
)

. Since i is
p-locally invertible and there is a Künneth formula, we deduce that E∗(Symi(Xl)) = Symi(E∗(Xl)) and
HFp∗

(

Symi(Xl)
)

= Symi
(

HFp∗Xl
)

. Because Xl is 2n-sparse, so is Symi
(

HFp∗Xl
)

and thus Symi(Xl) is
2n-sparse and has algebraic EO theory. �

6. Y2p HAS ALGEBRAIC EO-THEORY

As a fun application of our theory, we show that Y2p has algebraic EO theory.

Theorem 6.1. Let Y2p = BP 1 2p. Suppose Z is any spectrum with HFp∗(Z) ≅ HFp∗(Y2p) as P (1)∗-
comodules. Then Z has algebraic EO theory.

By Lemma 5.17 we deduce:

Corollary 6.2. EO-orientability of complex bundles over Y2p is Chern-determined.

To understand EO ∧ Y2p we first need to compute HF ∗p (Y2p) as a P (1)
∗-module. First we check:
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Lemma 6.3. As a P (1)∗-module, HF ∗p (Y2p) = Fp[cp, cp+n, cp+2n,…] with the P (1)∗-module structure:

P 1(ci) = (i + n)ci+n

Note that this implies that Fp{cp, cp+n, cp+2n,…} is a P (1)∗ submodule of HF ∗p (Y2p) and so HF ∗p (Y2p) =
Sym(Fp{cp, cp+n, cp+2n,…}). Furthermore Fp{cp, cp+n, cp+2n,…} is the free P (1)∗-module on the generators
cp+pnk for all k.

Proof. According to [16], the cohomology of Y2p is as indicated as an Fp-algebra. There is a map of spectra
�∶ BP 1 → ku including an Adams summand. Call the splitting map �. These induce maps between the
loop spaces of BP 1 to the loop spaces of ku. Because �(v1) = �p−11 we have a commutative diagram of
infinite loop spaces:

Y2p BP 1 2p ku 2p

ℂℙ∞ × Y2p BP 1 2 ku 2 = BU

←→
�

←→v1 ←→ �p−1

←→
�

← →

←→�

By [16, main theorem], BP 1 2 ≃ ℂℙ∞ × Y2p so the map Y2p → BP 1 2 is a retract of spaces and the
vertical dashed map exists. Thus, the map Y2p → BU is a retract and we get a surjection HF ∗p (BU ) →
HF ∗p (Y2p). Since Y2p is 2p-connective, this factors through HF

∗
p (BU )∕(c1,… , cn) where HF ∗p (BU ) = Fp[ci].

In HF ∗p (BU ) we have the formula:

P 1ci = ci n − ci+1 n−2 + −⋯ − ci+n−1 1 + (i + n)ci+n

Because  i ∈ (c1,… , cn) for i ≤ n, we deduce that P 1(ci) = (i + n)ci+n. �

The last input we need for this is Corollary A.8 which computes the following symmetric powers formula:

Symk(Wp) =

{

W d
p p ∤ k

W1 ⊕W d
p p|k

IfM = Fp[Cp]{x1,… , xd} is a free Cp-module then the trivial summands in Sym(M) are generated by
(xk11 ⋯ xkdd )

p.

Proof of Theorem 6.1. We showed in lemma 6.3 that

HF ∗p (Y2p) = Sym(Fp{cp+nk})

as P (1)∗-representations. By Corollary A.8, this splits into a sum of free modules and trivial modules where
the trivial modules are generated by elements of the form (cp+npk1⋯ cp+npki )

p, so these all live in degrees
congruent to zero mod 2p. By Proposition 5.20, we can expressEO∧Y2p =M∨

⋁

∞ E whereM has cells in
degrees 0mod 2p. By Theorem 5.14,M splits as a sum ofEO’s. On the other hand,HF ∗p (MY2p) ≅ HF ∗p (Y2p)
as P (1)∗-representations because P 1(u) ∈ HF 2p−2p (Mf ) = 0. The same logic applies toEO∧Mf and shows
that it has the same splitting asEO∧Y2p. Matching the summands gives a Thom isomorphism. The composite
Mf → EO ∧Mf → EO ∧ Σ∞+ Y4p−4 → EO is a unital mapMf → EO. �
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APPENDIX A. SYMMETRIC POWERS OF P (1)∗ MODULES

In this appendix, we show that the representation rings of Fp[Cp] and P (1)∗ are isomorphic, that the
symmetric powers are the same for each, and discuss a formula for the symmetric powers.

For A a Hopf algebra, let Rep⊗(A) be the representation tensor category of A and let R(A) be the repre-
sentation ring.

Lemma A.1. Let Vl be the length l cyclic module over Fp[Cp] and letWl be the length l cyclic module over
P (1)∗. The map �∶ R(Fp[Cp])→ R(P (1)∗) sending Vl ↦ Wl is an isomorphism of representation rings.

There is no lift of � to a functor because that would imply an isomorphism of Hopf algebras Fp[Cp] ≅
P (1)∗ by Tannakian reconstruction.

Proof. It is clear that � is an isomorphism of the underlying graded abelian groups, where the tensor product
is forgotten. We need to show � respects decompositions of tensor products. By direct computation, it is not
hard to show that V2⊗Vl ≅ Vl−1⊕Vl+1 for 1 < l < p so V2 tensor generates the category of Fp[Cp]-modules
(see [14, Theorem 1]). This implies that V2 is a generator for R(Fp[Cp]). To check that a map is a ring
homomorphism, it suffices to check that f (xy) = f (x)f (y) for x and y each pair of elements in a generating
set. In this case, our generating set has one element, so it suffices to show �([V2]2) = �([V2])2. The formula
is given by

�([V2]2) = �([V1] + [V3]) = �([V1]) + �([V3]) = [W1] + [W3] = [W2]2 = �([V2])2 �

Let Aq be the Hopf algebra Fp[q, t]∕(tp) with the coaction Δ(t) = t ⊗ 1 + 1⊗ t + t ⊗ t. Let Rep⊗q-free(Aq)
be the full subcategory of Rep⊗(Aq) spanned by representations that are free as Fp[q]-modules. Consider the
following diagram of Hopf algebras:

Aq

Fp[Cp] P (1)∗

←
→

�1 ←
→
�0

The algebras A1 and A0 are specializations of Aq: A1 = Aq∕(q − 1) = Fp[Cp] and A0 = Aq∕(q) = P (1)∗. It
is fun to note that this diagram is the kernel of Verschiebung on the following diagram of formal groups:

ku ku∗(ℂℙ∞)

KU HFp KU∗(ℂℙ∞) HF ∗p (ℂℙ
∞)

←

→
←

→
←

→
←

→

Lemma A.2. The map �∗1 ∶ Rqf (Aq)(Aq) → R(A1) induced by tensoring down along Aq → A1 admits a
section � such that �0◦� = �.

Proof. We set �(Vi) = Ui. Since V2 generates R(A1), it suffices to check that �([V2]2) = [U2]2. Let {x1, x2}
be a basis for U2 so that the action is given by t(x1) = x2. Then U2 ⊗U2 has basis {x1 ⊗ x1, x1 ⊗ x2, x2 ⊗
x1, x2⊗x2}. The vector x1⊗x2 −x2⊗x1 is fixed and generates a U1. On the other summand t(x1⊗x1) =
x2 ⊗ x1 + x1 ⊗ x2 + qx2 ⊗ x2. Also, t(x2 ⊗ x1 + x1 ⊗ x2) = 2x2 ⊗ x2. The matrix representation on
{x1 ⊗ x1, x2 ⊗ x1 + x1 ⊗ x2, x2 ⊗ x2} is given by:

⎛

⎜

⎜

⎝

1 0 0
1 1 0
u 2 1

⎞

⎟

⎟

⎠
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Basic linear algebra shows that this is conjugate to a length 3 Jordan block, so {x1⊗x1, x2⊗x1+x1⊗x2, x2⊗
x2} ≅ U3. Thus,U2⊗U2 ≅ U1⊕U3 and so �([V2])2 = [U2]2 = [U1]+[U3] = �([V1]+[V3]) = �([V2]2). �

Theorem A.3. Let F be a not necessarily multiplicative, not necessarily additive natural transformation
from the identity functor on the category of tensor categories to itself. For any tensor category C , F gives a
map of sets R(F )∶ R(C)→ R(C). Then the following diagram commutes:

R(A1) R(A0)

R(A1) R(A0)

←→
�

←→ R(F ) ←→ R(F )

←→
�

We are only going to apply this when F is one of the functors Symn. In that case, it says that �∶ R(A1)→
R(A0) is homomorphic for Symn. I would like to say that � is an isomorphism of Λ-rings, but neither the
domain nor the codomain is actually a Λ-ring.

Proof. Suppose that V ∈ Rep⊗(A1), that U ∈ Rep⊗(Aq) andW = �(V ) ∈ Rep⊗(A0). Suppose that F (U )
has indecomposable decomposition

⨁n
i=1 aiUi. Then because F is natural and � commutes with⊕,

F (V ) = F (�1(U )) = �1(F (U )) = �1

( n
⨁

i=1
aiUi

)

=
n

⨁

i=1
aiVi

and likewise

F (W ) = F (�0(U )) = �0(F (U )) = �0

( n
⨁

i=1
aiUi

)

=
n

⨁

i=1
aiWi

We see that �(F (V )) = F (�(V )) so � is homomorphic for F as desired. �

We still have the issue of computing symmetric powers for Fp[Cp]-modules. Hughes and Kemper [10]
compute the symmetric powers for Fp[Cp]-modules. They have the following results:

Lemma A.4 ([10, Lemma 2.3 and Theorem 2.4]). Let K = Fp and let RKCp be the representation ring of
Fp[Cp]-modules. The ring RKCp is generated by V1,… , Vp. Define

R(Fp[Cp])[�] = R(Fp[Cp])[t]∕(t2 − V2t + 1).

Then � is invertible,

Vn =
�n − �−n

� − �−1
=
n−1
∑

j=0
�n−1−2j

and R(Fp[Cp])[�] ≅ ℤ[�]∕f (�) where

f (x) =
(x − 1)(x2p − 1)

x + 1
.

Theorem A.5 ([10, Corollary 2.7]). Let �t(V ) ∈ R(K[Cp])[�]JtK be the generating function
∞
∑

d=0
(Symd V )td .
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Then

�t(Vn+1) =
n
∏

j=0
(1 − �n−2j t)−1 (mod tp)

Theorem A.6 ([10, Theorem 2.11]).
Symr+p Vn ≅ Sym

r Vn ⊕ V ⊕d
p

Together, we can use these to compute the case that we need:

Theorem A.7.

Symk Vp =

{

V d
p p ∤ k
V1 ⊕ V d

p p|k

Proof. Let R = R(Fp[Cp])∕(Vp). In R we want to show that

Symk Vp =

{

0 p ∤ k
V1 p|k

In R(Fp[Cp]), Vp =
�p−�−p
�−�−1 and � is a unit, so it is equivalent to quotient by �2p−1

�2−1 . This divides the

polynomial f (�) = (x−1)(x2p−1)
x+1 so R ≅ ℤ[�]∕g(�) where g(x) = x2p−1

x2−1 = Ψ2p where Ψ2p is the cyclo-
tomic polynomial. Thus � is a primitive 2pth root of unity in R and  r(�p,… , �2−p) = 0 for 1 ≤ r < p.
Theorem A.5 says the generating function for Sym(Vp) is given by

�t(Vp) =
p−1
∏

j=0
(1 − �p−2j t)−1 (mod tp)

=
p−1
∑

i=0
ℎi(�p,… , �2−p)

and some multiple of nℎi is generated by the  i. We deduce that some multiple nℎi(�p,… , �2−p) = 0 and
because R is torsion free this implies ℎi = 0. Hence, Sym(Vp) = 1 (mod p, Vp). By Theorem A.6, we are
done. �

Combining Theorem A.3 and Theorem A.7 gives:

Corollary A.8.

SymkWp =

{

W d
p p ∤ k

W1 ⊕W d
p p|k
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