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Abstract

The term “saturated,” referring to a class of morphisms in a category, is used

in the literature for two nonequivalent concepts. We make precise the relationship

between these two concepts and show that the class of equivalences associated with

any monad is saturated in both senses.

0 Introduction

In [1], we drew attention to the fact that the concept of “saturation” of a class of mor-

phisms appears in the literature with two different meanings. In [1], [2], and [3], the

saturation of a class of morphisms S in a category denotes the double orthogonal S⊥⊥

in the sense of Freyd–Kelly [8]. On the other hand, in the book by Gabriel–Zisman [9]

and in subsequent articles such as [4], the saturation of a class of morphisms S in a cate-

gory C consists of the morphisms rendered invertible by the canonical functor from C to

the category of fractions C[S−1].

In the present paper we show that, although the two concepts do not coincide in

general, the saturation of a class of morphisms S in the first sense contains the saturation

of S in the second sense. We also prove that the class of equivalences associated with any

monad is saturated in both senses. In fact, whenever a functor F has a right adjoint, the

class of morphisms rendered invertible by F is saturated in both senses.
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1 Terminology

Most of the following terminology is taken from [2], [3], [6], [8], and [9]. For any functor

F : C → D between two given categories, we define

S(F ) = {morphisms f in C such that Ff is invertible}, (1.1)

and say that morphisms in S(F ) are F -equivalences.

A morphism f :A → B and an object X in a category C are called orthogonal , as

in [8], if the function

C(f,X): C(B,X)→ C(A,X)

is bijective. For a class of morphisms S (resp. a class of objects D), we denote by S⊥ the

class of objects orthogonal to every f in S (resp. by D⊥ the class of morphisms orthogonal

to all X in D). Objects in S⊥ were called left closed for S in [4], [5], or in [9, I.4]. We

call S⊥⊥ the internal saturation of S, and say that S is internally saturated if S⊥⊥ = S.

Observe that every class of the form D⊥ is internally saturated, since D⊥⊥⊥ = D⊥.

Given a class of morphisms S in a category C, let C[S−1] denote the category of fractions

of C with respect to S (see [9]). There is a canonical functor FS: C → C[S−1] such that

FSf is invertible for every f in S and, if a functor F : C → D renders all the morphisms

in S invertible, then there is a unique functor G: C[S−1]→ D such that GFS = F .

The external saturation Ŝ of a class S of morphisms is the class of all morphisms

rendered invertible by the canonical functor FS: C → C[S−1]. Thus, according to (1.1),

Ŝ = S(FS). (1.2)

The class S is said to be externally saturated if S = Ŝ. We find that this language is

justified by the fact that this kind of saturation is not intrinsic in the category C, as

internal saturation is.

The universal property of the category of fractions implies the following, which was

already pointed out in [4, Proposition 1.1].

Proposition 1.1 A class of morphisms S is externally saturated if and only if S = S(F )

for some functor F . 2
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For any functor K:A → C between two given categories, the shape category ShK of K

has the same objects as C, and morphisms in ShK fromX to Y are natural transformations

C(Y,K−) −→ C(X,K−).

There is a canonical functor DK : C → ShK which is the identity on objects and is defined

as DKf = C(f,K−) on morphisms. Additional information about shape categories can

be found e.g. in [6], [7]. This concept is relevant in our context, since S⊥⊥ is precisely the

inverse image under DK of the invertible morphisms in ShK when K is the full embedding

of S⊥ into C. In other words, using the notation (1.1),

S⊥⊥ = S(DK), (1.3)

where K:S⊥ ↪→ C is the full embedding. (By a standard abuse of terminology, we often

denote by the same symbol a class of objects and the full subcategory with these objects.)

2 Comparing internal and external saturation

Let C be any category.

Theorem 2.1 If a class S of morphisms in C is internally saturated, then it is externally

saturated.

Proof. If S is internally saturated in C, then S = S⊥⊥ = S(DK), as pointed out in (1.3).

Hence, by Proposition 1.1, S is externally saturated. 2

The converse of Theorem 2.1 does not hold, as the following two examples illustrate.

Example 2.2 Let A be the category of Abelian groups and T :A → A the functor

taking each object of A to its torsion subgroup. Then S(T ) is externally saturated but

not internally saturated. Indeed, consider the zero morphism z: Z → 0, which satisfies

{z}⊥ = {0} and therefore {z}⊥⊥ is the class of all morphisms in A. Since z is in S(T ),

we have {z}⊥⊥ ⊆ S(T )⊥⊥, so S(T )⊥⊥ is the class of all morphisms in A, which is strictly

larger than S(T ).
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Example 2.3 Let C be the multiplicative monoid of the integers Z, viewed as a category

with a single object. Let p be any prime, and Let Z(p) denote the multiplicative monoid of

the rationals whose denominator is not divisible by p in their reduced form. Then Z(p) is

isomorphic to the category of fractions C[S−1], where S is the set of integers not divisible

by p. Thus, S is externally saturated. However, S is not internally saturated. In fact,

any category with a single object has only two internally saturated classes of morphisms;

namely, the class of all morphisms and the class of the invertible morphisms.

Although they do not coincide in general, the two saturations are related as follows.

This result implies of course Theorem 2.1.

Theorem 2.4 Let S be any class of morphisms in a category C. Then

(a) S ⊆ Ŝ ⊆ S⊥⊥;

(b) (Ŝ)⊥ = S⊥.

Proof. Let K denote the full embedding S⊥ ↪→ C. The canonical functor DK : C → ShK

renders all the morphisms in S invertible, and hence it factors through the canonical

functor FS: C → C[S−1]. This implies that S(FS) ⊆ S(DK), so part (a) follows from (1.2)

and (1.3). Then we also obtain

S⊥⊥⊥ ⊆ (Ŝ)⊥ ⊆ S⊥,

and, since S⊥⊥⊥ = S⊥, we infer (b). 2

In some cases, the two concepts of saturation coincide. The following situation is

especially relevant.

Theorem 2.5 If a functor F has a right adjoint, then S(F ) is both internally and exter-

nally saturated.

Proof. If G is right adjoint to F , then [2, Lemma 1.2] and [2, Theorem 1.3] say that

S(F ) = S(GF ) = D(G)⊥, where D(G) denotes the class of objects which are isomorphic
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to GX for some X. Hence, S(F ) is internally saturated, and it is also externally saturated

by Proposition 1.1. 2

Recall from [10, Ch. VI] that, if (T, η, µ) is any monad (also called a triple), then

T = GF for some pair of adjoint functors G, F , which are not uniquely determined in

general. By [2, Theorem 1.3], we then have S(T ) = S(F ). Therefore, we obtain the

following.

Corollary 2.6 If (T, η, µ) is any monad, then S(T ) is both internally and externally

saturated. 2

This applies e.g. to the case when F is a localization; that is, F : C → D is left adjoint

to the embedding K of some full subcategory D into C. The functor T = KF is then

part of an idempotent monad. The class S(F ) admits a calculus of left fractions and

the canonical functor from C to C[S(F )−1] has a right adjoint. Moreover, the category

of fractions C[S(F )−1], the shape category ShK , and the Kleisli category of KF are

isomorphic, and they are equivalent to D; see [5, § 2], [6, Corollary 2.3], and [9, I.4].
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