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Abstract

If G is a compact Lie group and M a Mackey functor, then Lewis, May and

McClure [4] define an ordinary cohomology theory H$
G
(® ;M) on G-spaces, graded by

representations. In this article, we compute the :}p-rank of the algebra of integer-

degree stable operations !M, in the case where G¯:}p and M is constant at :}p. We

also examine the relationship between !M and the ordinary mod-p Steenrod algebra

!
p
.

The main result implies that while !M is quite large, its image in !
p

consists of only

the identity and the Bockstein. This is in sharp contrast to the case with M constant

at :}p for q1p ; there !M F!
q
.

1. The exact triangle for !:/p

In their article [4] and in their book [5] (with Steinberger) Lewis, May and

McClure promoted the point of view that equivariant cohomology theories and their

representing spectra ought to be graded not on integers, but on representations of the

ambient group. One may define an equivariant cohomology theory as a collection of

G-homotopy-invariant functors ²km+V
G

(X)´ on pointed G-spaces, one for each integer

m and each fixed-point-free (virtual) representation V, together with a coboundary

homomorphism δ : km+V
G

U km+"+V
G

satisfying long exact sequences; and suspension

isomorphisms σ
W

:km+V
G

(X)U km+V+W
G

(ΣWX), where ΣWX¯XgSW¯Xg(We²¢´).
Thus for fixed V, the groups km+V

G
(X) form a :-graded equivariant cohomology

theory in the sense of Bredon [1] and these various theories are knitted together via

the suspension isomorphisms.

An ordinary equivariant cohomology theory is one satisfying Bredon’s dimension

axiom in integer degrees. That is, setting V¯ 0, we require Hm
G
(G}H)¯ 0 for all

m1 0 and all subgroups H%G.

To each G-map f : G}HUG}K is associated a morphism f*: H!
G
(G}K)UH!

G
(G}H).

Unlike Bredon cohomology, however, there is a natural transfer map f! : H!
G
(G}H)U

H!
G
(G}K) formed by embedding G}H in a large representation W and forming a

Pontryagin–Thom construction, then using the suspension isomorphism σ
W

. The

various groups and maps ²H!
G
(T), f*, f!´, with T ranging over orbits G}H, form an

example of a Mackey functor.

For finite G, a Mackey functor can be defined as a pair of functors M*, Mk from the

category &
G

of finite G-sets and G-maps to abelian groups, which
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(a) agree on objects,

(b) carry disjoint unions to dirct sums and

(c) carry pullback squares

X Y

Z W

f

i

hg

MX MY

MZ MW

f!

i!

h*g*

to commutative squares

Any Mackey functor M gives rise to an ordinary cohomology theory H$
G
(® ;M)

(uniquely on G-complexes and their equivalents) (see [4]).

Example 1. Let A be an abelian group and A the constant Mackey functor sending

any orbit G}H to A, with f* the identity and f! multiplication by the Euler

characteristic of the fibre of f. Then Hm
G
(X ;A)¯Hm(X}G ;A) in integer degrees m.

(Hm+V
G

(X ;A) is more complicated for V1 0.)

Example 2. Let ΛA be the Mackey functor sending G}G to A and G}H to 0 for

H1G, with f* and f! both zero for all morphisms except the identity on G}G. Then

Hm+V
G

(X ;ΛA)¯Hm(XG ;A) for all m and V.

Let H:
p

denote the representing spectrum of the ordinary theory associated to the

constant Mackey functor :}p. Thus H:
p
(m­V)¯K(:

p
,m­V) is an ‘equivariant

Eilenberg–Mac Lane space’. Note that when V¯ 0 this is the classical Eilenberg–

Mac Lane space K(:}p,m) with trivial G-action, so there is no real conflict of

notation.

Let !:/p
denote the graded group ²Hh q

G
(H:

p
;:}p)´

q`:. For an integer q, a G-

spectrum map ΣqH:
p
UH:

p
restricts on integer indices to a map of ordinary

nonequivariant Eilenberg–Mac Lane spectra. Thus there is a homomorphism

Ω : !:/p
U!,

where ! is the (nonequivariant) mod-p Steenrod algebra.

Our main theorem is:

T 3. Let G be the cyclic group of prime order p.

(a) There is an exact triangle

!:/p !¿

(+1)

!⊗(⊕ H∗(Ri B:/p; :/p))˜
i=1

∞

where B:}p is the usual classifying space of :}p.
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Operations in equivariant :}p-cohomology 523

(b) The image of Ω is the graded :}p-vector subspace with basis consisting just of the

identity operation in degree 0 and the Bockstein operation in degree 1.

The structure of the proof is as follows. We give the fibre sequence leading to the

proof of part (a) in Section 2, as well as statements of results necessary to understand

the spaces involved and to generate the exact sequence. We give the proofs of these

statements in Section 3, together with some fundamental lemmas on the fixed-point

structure of K(:
p
,m­V).

The proofs in Section 3 are elementary; however, it is worth examining some of the

concepts from the stable point of view. In Section 4 we discuss the relation of the

proofs in Section 3 with the ideas of naive G-spectra and complete G-spectra.

In Section 5 we construct another fibre sequence involving K(:
p
,m­V) and in

Section 6 we study the associated exact sequence. Part (b) of the main theorem then

follows from a dimensional comparison of exact sequences.

This is a subject in which even the cohomology of a point cannot be taken for

granted. The original computation for R coefficients (with R a ring) is due to Stong

[7] and Waner [8]. This is reproduced in the Appendix, together with the cohomology

of EG and Eh G.

The author is indebted to Peter May for his encouragement and for suggesting this

line of inquiry and to Steve Costenoble, John Greenlees, Gaunce Lewis and Stefan

Waner for enlightening conversations on the subject. The author also wishes to thank

the referee for his valuable suggestions in rewriting part of the paper.

From now on the ambient group G will always be :}p and all cohomology

(equivariant and non-) will be with :}p (or :}p) coefficients unless otherwise

indicated.

2. G-homotopy of representing spaces

To prove Theorem 3 we compute Hh m+q+V
G

(K(:
p
,m­V)) in a stable range as m and

V grow large and show that a similar exact triangle holds in this range for these

groups. This will allow us to conclude that

(!:/p
)qF lim

KL
m+V

[K(:
p
,m­V),K(:

p
,m­q­V)]

G

F lim
KL
m+V

Hh m+q+V
G

(K(:
p
,m­V))

and that the triangle passes to the stable level.

The proof of this will follow from a series of lemmas, whose proof will be deferred

to the end of this section.

L 4. Let KΛ
m

be the representing G-space for the cohomology group

Hm
G
(® ;Λ:}p) of Example 2. If V is a fixed-point-free representation then :

(a) (KΛ
m
)e is contractible ;

(b) (KΛ
m
)GDK(:

p
,m) ;

(c) KΛ
m
}GDΣBGgK(:

p
,m) ;

(d) ΣVKΛ
m

DKΛ
m

;

(e) KΛ
m+V

DKΛ
m

DΩVKΛ
m
.
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524 J. L. C

Since K(:
p
,m­V) is a space in a G-spectrum, there is a structure map

s
V
: ΣVK(:

p
,m)UK(:

p
,m­V)

whose adjoint is a G-homeomorphism. Using the unit map η : 1UΩVΣV of the

adjunction between ΩV and ΣV, it is easy to see that the map Ω above may be

interpreted as the composite

Hh m+q+V
G

(K(:
p
,m­V))U

s$V

Hh m+q+V
G

(ΣVK(:
p
,m))

U
σ
V

F

Hh m+q
G

(K(:
p
,m))U

u

F

Hh m+q(K(:
p
,m))

where σ
V

is the suspension isomorphism and u is the isomorphism of Example 1.

P 5. Let V be a fixed-point-free representation of dimenion n. The G-

homotopy fibre Fs
V

of s
V

is G-(2m­n)-equivalent to the product KΛ
m
¬I¬KΛ

m+n−"
.

Part (a) of Theorem 3 will follow upon examination of the exact sequence of the

associated fixed-point spaces of the G-(2m­n)-fibreing

KΛ
m
¬I¬KΛ

m+n−"
UΣVK(:

p
,m)UK(:

p
,m­V).

For this, we need the following two lemmas.

L 6. Let f : XUY be a G-q-equivalence, q" 0, and let V be a fixed-point-free

representation with dimV¯n. Then the induced homomorphism f*: Hh i+V
G

(Y ;:}p)U
Hh i+V

G
(X ;:}p) is an isomorphism for i% (q®n).

L 7. Let FU
i

EU
p

B be a G-fibreing. Any G-homotopy h from pa i to a constant

map induces a map i(h) from the G-mapping cone Ci of i to B. If B is G-(s®1)-connected

with s" 2 and F is G-(t®1)-connected, then i(h) is a G-(s­t®1)-equivalence.

Proof of Theorem 3(a). For sufficiently large m,

Hh m+q+V
G

(Fs
V
)FHh m+q+V

G
(KΛ

m
¬I¬KΛ

m+n−"
)

FHh m+q((KΛ
m
¬I¬KΛ

m+n−"
)}G)

F G
n−"

i=!

Hh m+q(K(:
p
,m­i)gΣBG),

by Proposition 5, Lemmas 6, 4(b) and 4(c) and Example 1. Thus there is a long exact

sequence

IUHh m+q+V
G

(Ci)Ui
«*

Hh m+q+V
G

(ΣVK(:
p
,m))

U G
n−"

i=!

Hh m+q(K(:
p
,m­i)gΣBG)UI, (1)

where i« is the induced map from ΣVK(:
p
,m) to the cofibre of i : Fs

V
UΣVK(:

p
,m).
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One checks that Fs
V

and ΣVK(:
p
,m) are G-(m®1)-connected, so perforce

K(:
p
,m­V) is as well. It follows by Lemma 7 that in the commutative diagram

Hm
G  

+ q + V (K(:p, m +V))

Hm + q +V(Ci)G
˜

i(h)*

Hm
G  

+ q  + V (RVK(:p, m))

˜

˜

Hm + q( K(:p,m)),˜

≅ rV

i′∗

Ω

i(h) is a G-(2m®1)-equivalence, hence i(h)* is an isomorphism for q!m®n. Thus in

(1) we may replace i«* by Ω and part (a) of the theorem follows by stabilizing with

respect to m and V. *

Remark 8. Actually more has been proven. Denote by !$:/p
the whole RO(G)-

graded algebra of cohomology operations on H:
p
. Let pt denote the one-point space

with trivial G-action and Eh G the unreduced double cone on EG with G acting

trivially on the cone points. Then there is an exact triangle

!*
:/p

Ω*
! ⊗ H*

G(pt)

γ*

! ⊗(⊕ RiH*
G(EG))˜ ˜

∞
i = 1

in which the objects are all RO(G)-graded and the unlabelled arrow has degree ­1.

Here, if X is a :-graded object and Y is an RO(G)-graded object, we denote by

XFCPiY the RO(G)-graded object whose (m­V)
th

constituent is given by

(XCY)
m+V

¯ G
i+j=m

(X
i
CY

j+V
).

In this context Ω* is a ring homomorphism and γ* is a morphism of H$
G
(pt)-modules.

Proof of Lemma 4. (a) First note that for any fixed-point-free representation V of

dimension n,

Hm+V
G

(G ;Λ:}p)FHm+n
G

(G ;Λ:}p)

(since SVgG
+
ESngG

+
) and the latter is identically zero by Example 2.

Thus

π
i
((KΛ

m+V
)e)F [Si, (KΛ

m+V
)e]

F [SigG
+
,KΛ

m+V
]
G

FHm−i+V
G

(G ;Λ:}p)

F 0, for all i.

(b) Similarly note that π
i
((KΛ

m
)G)FHm−i

G
(pt;Λ:}p) is :}p if m¯ i and 0

otherwise.

(c) Let EG be a contractible space on which G acts freely. The unique map

EGUpt induces a cofibre sequence

EG
+
US!UEh G.
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For G¯:}p one may construct an explicit model for Eh G by letting ξ be a nontrivial

fixed-point-free representation and letting

Snξ ¯SξgIg
VnU

Sξ. (2)

Then one sees that

Eh GD lim
MN

Snξ. (3)

Since, obviously, Eh G}GDΣBG, part (c) follows if we show that KΛ
m

DEh GgK(:
p
,m).

For any G-space X, let Φ be the composite isomorphism

[X,KΛ
m
]
G

FHh m
G
(X ;Λ:}p)FHh m(XG)F [XG,K(:

p
,m)], (4)

so that Φ( f )¯ fG. Thus there exists a G-map f : Eh GgK(:
p
,m)UKΛ

m
such that

fG¯Φ( f ) is the identity on K(:
p
,m)¯ (Eh GgK(:

p
,m))G.

Since (Eh GgK(:
p
,m))e is contractible, f is a homotopy equivalence on fixed-point

sets and thus is an equivalence by the G-Whitehead theorem.

(d) This follows at once from (3) since the inclusion Eh GgS!UEh GgSξ is a G-

equivalence.

(e) Consider the G-cofibre sequence

S(V)
+
U
X

D(V)
+
USV, (5)

where S(V) is the unit sphere in V, D(V) is the unit disc and SVED(V)}S(V) is the 1-

point compactification of V with G acting trivially on the point at infinity. This

dualizes to a G-fibre sequence

ΩVXU
ε
!

XUMap (S(V)
+
,X). (6)

Taking X¯KΛ
m+V

gives us

KΛ
m

UKΛ
m+V

UM¯Map (S(V)
+
,KΛ

m+V
) ;

and, since S(V) is a free G-space, one computes that

π
i
(MG)FHm−i+V

G
(S(V) ;Λ:}p)¯ 0

for all i. Of course it is also true that

Me¯Map ((S(V)
+
)e, (KΛ

m+V
)e)

is contractible, so M is G-contractible. Thus ε
!

is a G-equivalence. The rest of the

statement follows identically with X¯KΛ
m
.

3. Structure of K(:
p
,m­V)

L 9. Let V be as above with dimV¯n" 0.

(a)

Hm+V
G

(G ;:}p)¯
1

2
3

4

:}p if m¯®n,

0 if m1®n.
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(b)

Hm+V
G

(pt;:}p)¯
1

2
3

4

:}p if ®n%m% 0,

0 otherwise.

(c) The map GUpt induces an isomorphism in cohomology in dimensions

m¯®n! 0.

Note that (c) does not hold for ‘virtual ’ representations V with n! 0.

This lemma parallels an unpublished calculation of Stong [7] and is reproduced in

the Appendix. See also Lewis [3], Waner [8] and Costenoble [2].

C 10. (a) K(:
p
,m­V)eDK(:

p
,m­n)

(b) K(:
p
,m­V)GDK(:

p
,m)¬I¬K(:

p
,m­n)

(c) There is a commutative diagram

K (:p, m + V)G K (:p, m) × . . . × K (:p, m + n)

K (:p, m + n)K (:p, m + V)e

≅

≅

⊆ prn

where pr
n

is projection on the nth factor.

Proof. (a) This follows at once from Lemma 9 by examining π
i
(K(:

p
,m­V)e)F

Hm−i+V
G

(G).

(b) and (c) Consider the G-fibre sequence (6) with X¯K(:
p
,m­kξ ) and with V

replaced by ξ, where ξ is an irreducible representation and k is a positive integer.

Then

K(:
p
,m­(k®1) ξ)GMN

(ε!)
G

K(:
p
,m­kξ )G U

p
G

Map (S(ξ )
+
,K(:

p
,m­kξ ))G

is a non-equivariant fibre sequence.

If p¯ 2, then S(ξ )EG}e,n¯ k and the last term is just K(:
#
,m­nξ )e¯

K(:
#
,m­n). Inductively assume the conclusion for (n®1) ξ. By starting with m one

higher and looping everything, we see that K(:
#
,m­nξ )G is the homotopy fibre

of the connecting map

K(:
#
,m­n)UK(:

#
,m­1)¬I¬K(:

#
,m­n).

This can only be 0 or (0,…, 0, 1) ; but it cannot be the latter, for then we would get

the wrong answer (compared with Lemma 9(b)) for

π
i
(K(:

#
,m­V)G)¯Hm−i+V

G
(pt).

Thus the connecting map is zero and pG is a product fibreing.

If p" 2, there are two complications: first S(ξ ) is not G}e and secondly V is not

necessarily kξ for some integer k.

Let ξ be any nontrivial irreducible representation and suppose 2k¯n is the

dimension of V. In the appendix we shall see that there is a cohomology class

α
V−kξ `HV−kξ

G
(pt) such that multiplication by α

V−kξ is an isomorphism of H$
G
(pt)

and of H$
G
(G). This corresponds to a self-equivalence of the G-spectrum H:

p
which
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changes the dimension by V®kξ and this restricts to a G-equivalence of K(:
p
,m­V)

to K(:
p
,m­kξ ). Thus it does suffice to consider the case V¯ kξ.

Although S(ξ ) is not G}e, it is a free two-cell G-complex; that is, there is a G-cofibre

sequence

:}p
+
US(ξ )

+
UΣ(:}p

+
).

Dualizing and passing to G-fixed sets we obtain the fibreing

(ΩX)eUMap (S(ξ )
+
,X)GUXe

and arguments similar to the ones used for the case p¯ 2 show that for

X¯K(:
p
,m­kξ ), both this and (6) must be trivial fibreings.

Proof of Proposition 5. The homotopy-fibre construction is equivariant, so

(Fs
V
)GU (ΣVK(:

p
,m))GUK(:

p
,m­V)G

is a fibre sequence. Since V is fixed-point-free, the middle term is just K(:
p
,m) and

sG
V

corresponds to the map

εG
!
: K(:

p
,m)¯ (ΩVK(:

p
,m­V))GUK(:

p
,m­V)G

of (6) and, by the proof of Corollary 10, this is equivalent to the inclusion of the first

factor in K(:
p
,m)¬I¬K(:

p
,m­n). Thus the homotopy fibre is

(Fs
V
)GDK(:

p
,m)¬I¬K(:

p
,m­n®1).

It follows from the isomorphism (4) that there is a G-map

f : Fs
V

UKΛ
m
¬I¬KΛ

m+n−"

such that fG is homotopic to the identity. But note that the underlying set of the

main G-fibre sequence is

(Fs
V
)eUΣnK(:

p
,m)U

s
e
V

K(:
p
,m­n),

where se
V

is the structure map for the non-equivariant Eilenberg–Mac Lane spectrum

K(:}p). Classically (Fs
V
)e is a (2m­n)-connected space, so f e is a (2m­n)-

equivalence, and the result follows.

Proof of Lemma 6. This follows at once by applying the Bredon spectral sequence

to the integer-graded theory H$+V
G

(® ;:}p). It says that there is a natural spectral

sequence with

Es,t
#

FHs
G
(X ;M(t+V))3Hs+t+V

G
(X ;:}p),

where M(t+V) is the Mackey functor sending G}H to Ht+V
G

(G}H ;:}p). Since f is a

G-q-equivalence, Hs
G
( f ) is an isomorphism for s% q, by Bredon (see [1]). Since

Ht+V
G

(G}H)¯ 0 for t!®n, the result follows by comparison of that part of the

spectral sequences.

Proof of Lemma 7. This is true for general groups G. Let H be a subgroup of G.

Then

FHUEHUBH
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Operations in equivariant :}p-cohomology 529

is a fibre sequence. By hypothesis FH is (t®1)-connected and BH is (s®1)-connected,

so by the classical Serre exact sequence i(hH) :C(iH)UBH is an (s­t®1)-equiv-

alence. Since the cofibre construction is equivariant, this is the same as the map

i(h)H : (Ci)HUBH and the result follows.

4. Complete G-spectra and naive G-spectra

The results of the previous section are perhaps more naturally seen in the context

of equivariant spectra. A G-spectrum as defined in [5] is a set of G-spaces, one for

each subspace of a given G-inner-product space 5 of countable dimension. If 5 is 2¢

with trivial G-action, then we have what is known as a naive G-spectrum. If 5

contains countably many copies of each irreducible G-representation, then it is called

a complete G-universe and the corresponding spectra are called complete G-spectra.

Restriction to the trivial part of 5 gives us a functor from complete G-spectra to

naive G-spectra l : G35UG35 G. From now on fix 5 as a complete G-universe.

Denote the functor l by E*E[0] and define E[V] to be (ΣVE) [0]. (This is not to be

confused with E(V), the V-th space of the spectrum.)

Let E be a complete G-spectrum. Then the algebra of stable operations in

equivariant E-cohomology is the set ²E,E´$
G

of G-homotopy classes of self-maps of E

and, for any given integer q, ²E,E´q
G

U limef m+V
[E(m­V), E(m­q­V)]

G
is an isomor-

phism. But this is equivalent to limef V
limef m

[E[V]
m
, E[V]

m+q
]
G

F limef V
²E[V], E[V]´q

G
.

Thus Theorem 3(a) follows by showing that there are compatible exact triangles

{E[V], E[V]}*
G {E[0], E[0]}*

G
ΩV

(+1)

{E[0], E[0]}*
G ⊗ (⊕ H*(Ri B:/p; :/p))˜

(7)

∞

i = 1

for all V, and taking inverse limits over V.

In this context the lemma corresponding to Lemma 6 is simply a matter of noting

that as SV is an n-dimensional CW-complex, its dual S−V is perforce (®n®1)-

connected and Lemma 7 is a complete triviality, since in the category of naive G-

spectra a G-cofibreing is the same as a G-fibreing. Also, Proposition 5 could be stated

as

P 11. Let V be a fixed-point-free representation of dimension n and let

s
V
: H:

p
[0]gSVUH:

p
[V] be the naive G-spectrum map induced by the structure map

of the complete G-spectrum H:
p
. Then the G-homotopy fibre s

V
is G-equivalent to

jn−"
i=!

ΣiHΛ[0].

This is proved in the same way as Proposition 5 and (7) follows directly.

5. A fibre sequence for K(:
p
,m­V)

P 12. There is a G-fibre sequence

K(:
p
,m­n)fg

Jn

K(:
p
,m­V)fg

π
n

KΛ
m
¬I¬KΛ

m+n−"
.
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Proof. Again we apply (4). Let p be a map

K(:
p
,m­V)UKΛ

m
¬I¬KΛ

m+n−"

with pG equivalent to projection on the first n factors. Then (Fp)GDK(:
p
,m­n).

From Corollary 10(c) and since (Fp)eDK(:
p
,m­V)eDK(:

p
,m­n), we see that

the inclusion K(:
p
,m­n)¯ (Fp)G9Fp is a G-equivalence. *

The proof of Theorem 3(b) will proceed from a calculation of the cohomology of

K(:
p
,m­V). This is done by studying the Serre exact sequence of the fibreing in

Proposition 12. To be useful, this approach depends on being able to evaluate the

connecting homomorphism

δ*: Hh $+V
G

(K(:
p
,m­n))UHh $+"+V

G
(KΛ

m
¬I¬KΛ

m+n−"
).

This homomorphism is the composite of the inverse of the cohomology suspension

Ω" :Hh k+"+V
G

(K(:
p
,m­n­1))UHh k+V

G
(K(:

p
,m­n))

and of the homomorphism induced by the homotopy fibre of

J
n
:K(:

p
,m­n­1)UK(:

p
,m­1­V),

which is a map

τ
n
:KΛ

m
¬I¬KΛ

m+n−"
UK(:

p
,m­n­1).

We will characterize the homotopy class τ
n

in terms of certain cohomology classes

in Hh m+n+"
G

(KΛ
m
¬I¬KΛ

m+n−"
). First we make note of the following standard fact,

in which the graded tensor product follows the convention of Remark 8.

L 13. Let X be a G-CW-complex and Y a CW-complex with trivial G-action. If

R is a field, then Hh $
G
(XgY ;R)FHh $

G
(X ;R)CHh *(Y ;R) as Hh $

G
(X ;R)-modules.

Proof. In integer degrees, this is true by Example 1 and the Ku$ nneth theorem. In

non-integer degrees it follows by examining the Bredon spectral sequence of the

integer-graded equivariant cohomology theory Hh $
G
(®gY ;R).

C 14. (a) Hh $
G
(KΛ

m
)FHh $

G
(Eh G)CHh *(K(:

p
,m)) as H$

G
(pt)-modules.

(b) Hh $
G
(K(:

p
,m­n­1))FHh $

G
(pt)CHh *(K(:

p
,m­n­1)) as H$

G
(pt)-modules.

Note that the map J
n

of Proposition 12 induces multiplication by the generator in

HV−n
G

(pt). For J
n

is nonzero and Hh m+V
G

(K(:
p
,m­n)) is

HV−n
G

(pt)CHh m+n(K(:
p
,m­n)).

Thus J
n

corresponds to a generator in HV−n
G

(pt)F:}p, tensored with the identity

class.

For what follows, let α `H"(B:}p) and β `H#(B:}p) denote the usual generators

(so that α#¯β in the p¯ 2 case and α#¯ 0 in the p" 2 case) and also their

suspensions in Hh *(ΣB:}p). We will abbreviate K(:
p
,m­V) by K

m+V
and let

ι¯ ι
m

`Hh m(K
m
) denote the identity class.

L 15. As usual, let V be an n-dimensional fixed-point-free representation. Let

i
q
:KΛ

m+q
UKΛ

m
¬I¬KΛ

m+n−"
be the inclusion as the qth factor. If (n®q)¯ 2r­ε

(with ε¯ 0 or 1), then the homotopy class ²τ
n
a i

q
´ corresponds to the cohomology class

αεβr¬ι, where ¬ denotes the cohomology cross product in Hh *(ΣBGgK(:
p
,m­q)).

Proof. Suppose τ
n
a i

q
D 0. Then pr

q
aπ

n
is a product fibreing and KΛ

m+q
splits off
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K(:
p
,m­V) as a factor. This would imply that ΩVKΛ

m+q
¯KΛ

m+q
splits off of

ΩVK
m+V

¯K
m

as a factor, which is impossible. Thus ²τ
n
a i

q
´1 0.

Restrict to the case p¯ 2. Let η : Σ(n−q)ξK
m+q

UKΛ
m+q

be induced by the inclusion

S(n−q)ξ 9S¢ξ DEh G (by (3)). Then τ
n
i
q
ηD 0 if and only if we can fill in the diagram

R(n – q)nKm + q

g pn

Km + nn

KKm + q KKm × . . . × KKm + n – 1

or, equivalently, the adjoint diagram

Km + q Km + qn

Ω(n – q)npng′

Ω(n – q)nKKm + q Ω(n – q)n(KKm × . . . × KKm + n – 1)

≅ ω′

KKm × . . . × KKm + n – 1.KKm + q

≅ω′

iq

Here η« is nonzero so ω«η« must be G-homotopic to the inclusion K(:}2,m­q)¯
(KΛ

m+q
)G9KΛ

m+q
. Thus the G-fixed-point diagram is

Km + q Km × . . . × Km + q

≈ ⊆

Km + q Km × . . . × Km + n – 1.

It is clear that (η«)G lifts for q!n, so η« does also; thus τ
n
i
q
ηD 0.

We have shown that ²τ
n
a i

q
´ is a nonzero element in the kernel of the map

η*: Hh m+n+"
G

(KΛ
m+q

)UHh m+n+"
G

(Σ(n−q)ξK
m+q

).

One sees that η* sends αj¬σ to 0 if and only if j&n®q. Thus the only nonzero

element of degree (m­n) in the kernel of this map is αn−q¬ι
m+q

, which corresponds

to the statement in the lemma for p¯ 2.

If p" 2, it suffices as in Corollary 10 to consider the case V¯ kξ, for some

irreducible representation ξ.

If ε¯ 0, then one must consider the map

η : ΣrξK(:
p
,m­q)UKΛ

m+q

and the proof is formally the same as the case for p¯ 2.

If ε¯ 1, then let T be the G-mapping cone of the map :}pUpt, considered as the

one-skeleton of Sξ. T consists of two fixed points connected by p line segments which

are permuted cyclically by :}p. The map in question is

η : TgΣrξK(:
p
,m­q)UKΛ

m+q
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and, if n¯ 2k, the fixed-point diagram is

K(:p, m + q) Map (T, K(:p, m + (k – r)n))G

≈g′

K(:p, m + q) K(:p, m) × . . . × K(:p, m + n – 1)

since Map (T,KΛ
m+i

)DKΛ
m+i

by essentially the same argument as in Lemma 4(d).

Similarly one sees that

Map (T,K(:
p
,m­(k®r) ξ ))GDK(:

p
,m)¬I¬K(:

p
,m­n®2r®1)

and the vertical arrow is the inclusion of the first n®2r factors. Thus it is clear that

η« lifts here also.

6. The connecting map τ$
n

We are now in a position to evaluate τ$
n

and thus δ*. Recall from Corollary 14(b)

that in the stable range Hh $
G
(K(:

p
,m­n­1)) is generated by classes aθ(ι), where

a `H$
G
(pt) and θ `!. Considering such a class as a mapK(:

p
,m­n­1)UK(:

p
, q­V)

and thus as a cohomology operation Hm+n+"
G

(®)UHq+V
G

(®) we have the following

lemma.

L 16.

i$
n−#r−

ε τ$n
(aθ(ι))¯ a[θ(αεβr¬ι),

where θ operates on Hh m+n+"
G

(KΛ
m+n−#r−

ε) via the usual Steenrod algebra action on

Hh *(ΣBGgK(:
p
,m­n®2r®ε)).

Proof. Any map ζ : KΛ
r
UK(:

p
, s) factors through the orbit space of KΛ

r
. Thus

ζ*(θ(ι)) is the composite

KΛ
r
UKΛ

r
}GU

ζ «

K(:
p
, s)U

θ

K(:
p
, t)

which corresponds to the cohomology class θ(²ζ «´). The statement follows from

Lemma 15.

P 17. Let V be an n-dimensional fixed-point-free representation. Then

there is an exact triangle

⊕ lim
m

[Km + V, Km + q + V]G H*+V
G (pt) ⊗ Rn!

(+1) d*

H*+V
G (EG) ⊗ (R–1!  ⊕ !⊕ . . . ⊕ Rn–2!)˜ ˜

(8)
q = 0

∞

in which the (n®2r®ε)th factor δ
n−#r−

ε of δ* sends an element aθ to a[θ(αεβr¬ι), where

the Steenrod algebra action on the tensor product satisfies the usual Cartan formula.

Proof. Apply Lemmas 6 and 7 to the fibre sequence of Proposition 12 and take

limits over m. The result is still exact and the right and bottom corners come from

the isomorphisms in Corollary 14. The homomorphism δ* is associated with the map
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τ
n
, so that the qth factor corresponds to i$

q
τ$
n

and the formula is immediate from

Lemma 16.

C 18. Let V be a fixed-point-free two-dimensional representation. Then in

the exact triangle (8) for V, the kernel of δ* is generated by k[1 and k[δ, where k is the

generator in HV−#
G

(pt) and δ is the Bockstein operation.

Proof. For p¯ 2, k is the class κ# in the appendix, while for p" 2, k is the class h
V
.

We shall give the proof for the case p" 2; the proof for p¯ 2 is similar.

Since V is a two-dimensional representation, Hh $+V
G

(pt) is generated by τ
V
, κ

V
and

h
V
, in dimensions V, V®1 and V®2 respectively. The map δ* is given by

δ
"
(aθ)¯ a[θ(α¬ι)

and

δ
!
(aθ)¯ a[θ(β¬ι)

for a `H$+V
G

(pt).

By our knowledge of the operation of ! on H*(ΣB:}p), θ(α¬ι) must be a sum of

terms of the form

α¬θ­β¬θ«­βp¬θ§­βp
#¬θ¨­I

and similarly θ(β¬ι) has the form

β¬θ­βp¬θ
"
­βp

#¬θ
#
­I.

Here we have written elements in Hh $
G
(Eh G)C! as cohomology cross products, since

that is their origin, and the Cartan formula respects this interpretation.

From the appendix, H$+V
G

(pt) acts on Hh $
G
(Eh G)F:}p[t, t−"]CHh *(ΣBG) as follows:

τ
V
[αεβr¯ tCαεβr,

κ
V
[αεβr¯

1

2
3

4

tCαβr−" if ε¯ 0,

0 if ε¯ 1,

h
V
[αεβr¯

1

2
3

4

tCαεβr−" if r" 1,

0 otherwise.

Let ζ¯ τ
V

θ­κ
V

ψ­h
V

φ be an element of H$+V
G

(pt)CΣn!. Then, combining the

formulae above,

δ
!
(ζ )¯ (tCα)¬ψ­(terms involving β),

so for ζ to be in Ker (δ*), ψ must be zero. Thus

δ
"
(ζ )¯ δ

"
(τ

V
θ­h

V
φ)¯ (tCα)¬θ­(terms involving β),

so θ must be zero. Thus ζ¯ h
V

φ and

δ
!
(h

V
φ)¯ (tCβp−")¬φ

"
­(tCβp

#
−")¬φ

#
­I

and

δ
"
(h

V
φ)¯ (tCβp−")¬φ§­(tCβp

#
−")¬φ¨­I .

Setting these to zero forces φ(k)¯ 0 for k& 2 and φ
k
¯ 0 for k& 1. Therefore the cross

product formulae for φ are

φ(α¬ι)¯α¬φ­β¬φ«
and

φ(β¬ι)¯β¬φ.
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A simple calculation in the Milnor basis [6] reveals that the only operations φ

satisfying these identities are multiples of the identity and the Bockstein operation.

7. Comparison of exact triangles

L 19. Let V be a fixed-point-free two-dimensional representation. There is an

exact triangle of :}p-vector spaces

⊕  limm
[Km + V , Km + q +V]G

ΩV
!

H*(RBG) ⊗ (!⊕R!)˜

(9)
q = 0

∞

Proof. This is the exact sequence of (1) stabilized by inverse limits over m, with

limef m
Hh m+q+V

G
(KΛ

m
¬KΛ

m+"
) replaced by the isomorphic Hh *(ΣBG)C (!GΣ! ).

C 20. In (9), the image of ΩV is generated by 1 and δ.

Proof. Compare Corollary 18 and Lemma 19 and count generators. Specifically, let

B¯Hh *(ΣBG)C (!GΣ! )¯ (Σ#!GΣ$!GI)G (Σ$!GΣ%!GI)

C¯G
¢

q=!

lim
ef
m

[K(:
p
,m­V),K(:

p
,m­q­V)]

G
.

Then Σ−"BFBG (Σ!GΣ#! )¯BGD.

Thus the two exact triangles may be rewritten:

C

B ⊕ D

! ⊕ D C

and

B

!
j

p d* c∂∗

ΩV

A simple induction now shows that the rank of Ker (γ
q
) equals the rank of Ker (δ$

q
)

for all q. Thus

rank (Im (ΩV
q
))¯ rank (Im ( j

q
))¯

1

2
3

4

1, if q¯ 0, 1;

0, if q1 0, 1.

Proof of 3(b). Let V be a fixed-point-free two-dimensional representation, as in

Lemma 19. Of course, the triangle

lim
m, W

[Km + W, Km + q + W]G lim
m

[Km, Km + q ]

lim
m

[Km + V, Km + q + V]G

Ω

Ω′ ΩV

commutes and so Im (Ω)X Im (ΩV)¯©1, δª. But in !:/p
¯ [H:

p
,H:

p
]$
G

we certainly

have elements 1 corresponding to the identity map of the spectrum H:
p

and δ
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corresponding to the connecting map in the G-fibreing H:
p
UH:}p#UH:

p
and

these clearly map to the nonequivariant identity and Bockstein operations. Thus

Im (Ω)Y©1, δª.

Appendix. Cohomology of points

Here we will compute the cohomology of G-orbits as graded rings and of the spaces

EG and Eh G as modules over the cohomology of a point. The ring structure of

H$
G
(pt;:}p) is not only necessary to the computation of the cohomology of a point,

but the module action is what allows us to determine the kernel of the map in

Corollary 18.

Define H(+)
G

(X) to be the part of H$
G
(X ;:}p) in dimensions Hm+V

G
(X), where V is an

honest representation and m is any integer.

L 21. H(+)
G

(G) is a commutative polynomial algebra on generators tξ `Hξ−dimξ

G
(G),

where ξ ranges over nontrivial irreducible representations.

L 22. If p¯ 2, H(+)
G

(pt) is a commutative polynomial algebra on generators

τ `Hξ

G
(pt) and κ `Hξ−"

G
(pt), where ξ is the canonical irreducible one-dimensional

representation.

In each of these the commutativity relation holds without the introduction of

any signs. In general, the commutativity relation in H$
G
(X) is given by the action of

a unit in the Burnside ring of G, as follows. Let χ
H

:A(G)U: denote the H-fixed

point characteristic homomorphism, defined on generators by letting χ
H
(G}K)

be the Euler character of (G}K)H. It is standard that (G
H

χ
H
) : A(G)UG

H%G
:

is a ring monomorphism. Then if a `Hα

G
(X) and b `Hβ

G
(X), we have that

(aeb)¯u(a, b)\(bea), where u(a, b) is the unit characterized by χ
H
(u(a, b))¯

(®1)dim(α
H
)dim(β

H
) for all H%G.

L 23. If p" 2, H(+)
G

(pt) is a signed-commutative algebra on generators

τξ `Hξ

G
(pt) κξ `Hξ−"

G
(pt), and hξ `Hξ−#

G
(pt), where ξ ranges over all nontrivial irreducible

representations, subject only to the following relations :

(a) κ#ξ ¯ 0;

(b) τξ κσ ¯ τσ κξ ;

(c) hξ κσ ¯ hσ κξ ;

(d) τξ hσ ¯ τσ hξ.

In fact, in H$
G
(pt), there is a class αξ−σ `Hξ−σ

G
(pt) such that αξ−σ ασ−ξ ¯ 1 and

τξ ¯αξ−σ τσ, hξ ¯αξ−σ hσ and κξ ¯αξ−σ κσ.

The whole of H$
G
(pt) cannot be described so neatly. Even for p¯ 2 there is

an element u
−#

`H#−#
ξ

:/#
(pt) which is infinitely divisible by both τ and κ and for which

τu
−#

¯ κu
−#

¯u#
−#

¯ 0. Our results in the body of this article require calculating

Hm+V
G

(pt) for honest representations V and so we avoid the messier part of the

calculations.

C 24. Let V be an n-dimensional irreducible representation. Then

Hm+V
G

(pt)¯
1

2
3

4

:}p if ®n%m% 0;

0 otherwise.
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Proof. Suppose p" 2. (The case p¯ 2 is basically the same, but simpler.) Choose

any nontrivial irreducible representation ξ. Then multiplication by α
V−kξ (where k¯

n}2) induces an isomorphism of H$+kξ

G
(pt) onto H$+V

G
(pt). Thus one might as

well assume that V¯ kξ. But H$+kξ

G
(pt) has generators hq

ξ τk−q
ξ for each 0% q% k

and hq
ξ κξ τk−q−"ξ for 0% q% k®1. There is one such generator in each dimension

®n%m% 0.

Proof of Lemma 21. We make note of the following trick. If X is any G-space then

there is a G-homeomorphism G
+
gXEG

+
gXe. Applying this with X¯SV, we have

for any representation degree α,

Hα

G
(G)MN

susp.

F

Hh α+V
G

(ΣV(G
+
))U

F

Hh α+V
G

(Σn(G
+
))KL

susp.

F

Hα+V−n
G

(G) (10)

is an isomorphism of H$
G
(G)-modules. Thus it is given by multiplication by an

invertible element t
V

in HV−n
G

(G).

By the Bredon dimension axiom, H!
G
(G)¯:}p and Hm

G
(G)¯ 0 when m is a nonzero

integer. It follows by the above that

Hα

G
(G)¯

1

2
3

4

:}p if dim (α)¯ 0,

0 if dim (α)1 0.

If p¯ 2, we are done already, for tnξ is a nonzero element of Hn(ξ−")
G

(G) and by the

preceding statement it must generate that group.

With regard to the claim about commutativity, the generators t
V

are concentrated

in degrees of even dimension and thus for nontrivial irreducible representations V

and W, χ
H
(u(t

V
, t

W
))¯ 1 for all H, whence u(t

V
, t

W
) is 1 and so H$

G
(G) is strictly

commutative.

Proof of Lemma 22. Consider the cofibre sequence

S(ξ )UptUSξ

from (5). This gives rise to an exact triangle

H*
:/2(Sn)˜ H*

:/2(pt)

H*
:/2(:/2)

H*
:/2(pt) H*

:/2(pt)

H*
:/2(:/2)

or equivalently

s.

w φ

where φ is a ring homomorphism, ψ is a homomorphism of H$:/#
(pt)-modules (via φ)

of degree (­1®ξ ), τ is an element of Hξ
:/#

(pt) and τ± is translation by τ. (We have

not yet proved that τ1 0, but we will.)
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A picture will help. The generators of the cohomology of G look like this :

m

kn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . . . . . .t –4

t –3

t –2

t –1

1

t

t2

t3

t4

Thus τ± is an isomorphism except when the source is Hn(ξ−"):/#
(pt) or Hn(ξ−")−":/#

(pt). By

the Bredon dimension axiom, Hm
:/#

(pt)¯ 0 for nonzero integers m, and this forces

whole areas of Hm$:/#
(pt) to be zero:

?

? ?

? ?

? ?

? ? ? ?

? ?

?

? ? ? ?

? ? ? ?

? ? ?

? ?

?

1

. . . . . . . .

. . . . . . .

. . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

.

.

.

.

. .

m

kn

where the ?s are the only possible places for nonzero groups. The exact triangle yields

the exact sequence

0UHξ−":/#
(pt)U

φ

Hξ−":/#
(:}2)U

ψ

H!:/#
(pt)U

τ±

Hξ
:/#

(pt)U 0.
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A simple geometric argument allows us to identify ψ with f! : :}2U:}2, the transfer

associated to the unique map f : G}eUG}G, via the isomorphism t± in H$:/#
(:}2). This

is zero by the definition of :}2 in Example 1 and thus φ and τ± are isomorphisms in

this sequence.

Therefore Hξ
:/#

(pt)F:}2, generated by τ1 0, and Hξ−":/#
(pt)F:}2, generated by a

class κ such that φ(κ)¯ t `Hξ−":/#
(:}2).

Since φ is a ring homomorphism, the following diagram commutes:

. . .

. . .

0 Hnn – n
:/2 (pt) Hnn – n

:/2 (:/2)

H0
:/2 (:/2)H0

:/2(pt)

κn.

φ

φ

≅

≅ tn.

Hence Hnξ−n
:/#

(pt)F:}2, generated by κn. Following the exact sequence at the top

further on, one sees ψ¯ 0 and so τ± is an isomorphism on H(n−")(
ξ−"):/#

(pt).

The final picture is :

. . . . .

. . . . .

. . . . .

. . . . .

.

.

.

. . . .

. .

.

kn

m

1 s s2 s3 s4

j js js2 js3

j2 j2s j2s2

j3sj3

j4

The result follows. *
The proof of Lemma 23 depends on understanding the cohomology of S(ξ ) for an

irreducible ξ. In the present case, (p" 2), S(ξ ) is not :}p, so we need the following

lemma.

L 25. Let p be an odd prime and let ξ be any nontrivial irreducible representation

of :}p. Then the part of H$:/p
(S(ξ )) in dimensions m­rξ with r& 0 and m `: is a

signed-commutative algebra on generators k `Hξ−":/p
(S(ξ )) and t `Hξ−#:/p

(S(ξ )) subject only

to the relation k#¯ 0.

Proof. There is an equivariant inclusion :}p9S(ξ ) as the pth roots of unity. The

cofibre is a bouquet of p circles, permuted cyclically by :}p, and thus is equivalent
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Operations in equivariant :}p-cohomology 539

to Σ((:}p)
+
). One sees directly that the connecting map δ is nullhomotopic on

passage to orbit spaces and so, by Example 1, δ*¯ 0 in integer degrees. But since

S(ξ ) is G-free, δ* is a morphism of H$:/p
(:}p)-modules and it follows that δ*¯ 0

in all degrees. So H$:/p
(S(ξ ))FH$:/p

(:}p)GHh $:/p(Σ((:}p)
+
)), with the generator

t `Hξ−#:/p
(S(ξ )) mapping to tξ `Hξ−#:/p

(:}p), and so tk generatesHk(ξ−#):/p
(S(ξ )). The generator

k `Hξ−":/p
(S(ξ )) comes from σ(tξ) `Hh ξ−":/p

(Σ((:}p)
+
)), and so is translated isomorphically

by ±tk. Naturally k#¯ 0 since H#
ξ−#:/p

(S(ξ ))¯ 0.

Proof of Lemma 23. Let V and W be nontrivial representations of :}p. Each of

these may be thought of as the complex plane #, with :}p acting via multiplication

by a pth root of unity ε
V

or ε
W

. Thus there is a nontrivial equivariant map of the form

f :z* zj sending #²V´ to #²W´. This induces a map SVUSW and so a map

H$:/p
(pt)FHh $:/p(S

W)UHh $:/p(S
V)FH$:/p

(pt)

changing dimension by V®W. Similarly there is a map back the other way f « : z* zj«

where jj«3 1 (modp). Since (SV)G¯ (SW)G¯S!, ( f a f «)G is the identity and ( f a f «)e
is a map of degree jj«. It follows that these induce isomorphisms in all ordinary

mod-p cohomology theories and by a comparison of Bredon spectral sequences f a f «
induces an isomorphism of H$:/p

(pt). Thus f* is an H$:/p
(pt)-module isomorphism and

so comes from multiplication by an invertible class α
V−W

`HV−W
:/p

(pt). *
The presence of these classes simplifies matters. It now suffices to prove the

following lemma.

L 26. Let p" 2 and let ξ be a nontrivial irreducible representation. Then the

part of H$:/p
(pt) in dimensions m­kξ with k& 0 and m `: is a signed-commutative

algebra on generators τ `Hξ
:/p

(pt), κ `Hξ−":/p
(pt) and h `Hξ−#:/p

(pt), subject only to the

relation κ#¯ 0.

Proof. Again we consider the cofibreing S(ξ )UptUSξ and obtain an exact triangle

H*
: /p(pt) H*

: /p(pt)

H*
: /p(S(n))

s.

w φ

where the composite

H!:/p
(:}p)F

t±

Hξ−#:/p
(:}p) F

susp.

Hh ξ−":/p
(Σ(:}p

+
))FHξ−":/p

(S(ξ ))U
ψ

H!:/p
(pt)

is the morphism f!, where f : :}pUpt.
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Lemma 25 implies that the generator diagram for H$:/p
(S(ξ )) is

. .

. .

. .

.

.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

kn

m

t–2

kt–2

t–1

kt–1

1

k

t

kt

t2

Thus τ± : Hm+kξ
:/p

(pt)UHm+(k+")
ξ

:/p
(pt) is an isomorphism away from ®2k®2%m

%®2k®1. Near there we chase the exact sequences just as in Lemma 22 to show

τ1 0, and to obtain generators κ `Hξ−":/p
(pt) and h `Hξ−#:/p

(pt) such that φ(κ)¯ k and

φ(h)¯ t. The rest follows. *
We will need to know something about the cohomology of Eh G as a H$

G
(pt)-module.

This is most easily computed by first studying the cohomology of EG.

L 27. (i) Let p¯ 2. Then H$
G
(EG)F:}2[k, k−"]CH*(B:}2), where

k `Hξ−"
G

(EG). The action of H$
G
(pt) is given by

τ[(kiαj)¯ ki+"αj+" and

κ[(kiαj)¯ ki+"αj.

(ii) Let p" 2. Then H$
G
(EG)FCξ irreducible

:}p[kξ, k−"ξ ]CH*(B:}p), where

kξ `Hξ−#
G

(EG). The action of H$
G
(pt) is given by

τξ[(ki
ξ α

εβj)¯ ki+"ξ αεβj+"

κξ[(ki
ξ α

εβj)¯
1

2
3

4

ki+"ξ αβj, if ε¯ 0,

0, if ε¯ 1; and

hξ[(ki
ξ α

εβj)¯ ki+"ξ αεβj.

Proof. By Example 1 we already know Hm
G
(EG)¯Hm(BG). By the fibre sequence

in Proposition 12 and the note after Corollary 14, there is an exact sequence

IUH$+#
G

(EG)U
κ±

H$+ξ

G
(EG)UHm

G
(EG ;Λ:}p)GHm+"

G
(EG ;Λ:}p)UI

where κ is the generator in Hξ−#
G

(pt), and κ± is multiplication by κ. Since EG is G-free,

Hm+i
G

(EG ;Λ:}p)F 0 for i¯ 0, 1, and so κ± is an isomorphism. This establishes the
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Operations in equivariant :}p-cohomology 541

identity of the groups H$
G
(EG) and the action of κ. The action of the other generators

is established by studying the cofibreing

EG
+
gS(ξ )

+
UEG

+
UΣξ(EG

+
)

and recalling that G
+
gEG

+
is G-equivalent to G

+
.

L 28. Hh $
G
(Eh G)F (Cξ irreducible

:}p[tξ, t−"ξ ])CHh *(ΣBG), where tξ `Hξ

G
(pt) and

ξ ranges over nontrivial irreducible representations.

If p¯ 2, the action of H$
G
(pt) is given by

τ[(tiαj)¯ ti+"αj, and

κ[(tiαj)¯
1

2
3

4

ti+"αj−" if j" 1,

0 if j¯ 1;

where we have written αj for the suspended element in Hj+"(ΣBG).

If p" 2 then the action is given by

τξ[(tiξ α
εβj)¯ ti+"ξ αεβj ;

κξ[(tiξ α
εβj)¯

1

2
3

4

ti+"ξ αβj−" if ε¯ 0,

0 otherwise ; and

hξ[(tiξ α
εβj)¯

1

2
3

4

ti+"ξ αεβj−" if j" 1,

0 otherwise.

Proof. We already know that Hh m
G
(Eh G)FHh m(ΣBG) from Example 1. By the proof

of Lemma 4(d) the inclusion Eh GUΣξEh G is a G-equivalence. Thus the induced

homomorphism, which is multiplication by τξ, is an isomorphism and this determines

the groups Hh $
G
(Eh G). The action of the other generators follows by studying the exact

sequence of the cofibreing EG
+
Upt

+
UEh G.
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