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Abstract
If ¢ is a compact Lie group and M a Mackey functor, then Lewis, May and
McClure [4] define an ordinary cohomology theory HE(— ; M) on G-spaces, graded by
representations. In this article, we compute the Z/p-rank of the algebra of integer-
degree stable operations .24, in the case where (¢ = Z/p and M is constant at Z/p. We
also examine the relationship between .24, and the ordinary mod-p Steenrod algebra

.

P

The main result implies that while .4, is quite large, its image in .o, consists of only
the identity and the Bockstein. This is in sharp contrast to the case with M constant

at Z/p for q & p; there o4, = .o/

L. The exact triangle for <4,

In their article [4] and in their book [5] (with Steinberger) Lewis, May and
McClure promoted the point of view that equivariant cohomology theories and their
representing spectra ought to be graded not on integers, but on representations of the
ambient group. One may define an equivariant cohomology theory as a collection of
(-homotopy-invariant functors {£%"(X)} on pointed G-spaces, one for each integer
m and each fixed-point-free (virtual) representation V, together with a coboundary
homomorphism &: k" — k1Y satisfying long exact sequences; and suspension
isomorphisms oy, kBT (X) = ERTVEV(EVX), where ZVX = X ASY = X A (W U {c0}).
Thus for fixed V7, the groups k%+V(X) form a Z-graded equivariant cohomology
theory in the sense of Bredon [1] and these various theories are knitted together via
the suspension isomorphisms.

An ordinary equivariant cohomology theory is one satisfying Bredon’s dimension
axiom in integer degrees. That is, setting V' = 0, we require H7(G//H) = 0 for all
m % 0 and all subgroups H < (.

To each G-map f: G/H— (/K is associated a morphism f*: H)(G//K)— H%(G//H).
Unlike Bredon cohomology, however, there is a natural transfer map f,: H%(G/H)—
HY%(G/K) formed by embedding G¢/H in a large representation W and forming a
Pontryagin-Thom construction, then using the suspension isomorphism o,. The
various groups and maps {H%(T),f*,f}, with 7 ranging over orbits ¢//H, form an
example of a Mackey functor.

For finite (7, a Mackey functor can be defined as a pair of functors M*, M, from the
category 7 of finite G-sets and G-maps to abelian groups, which
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522 J. L. CArRUSO

(a) agree on objects,
(b) carry disjoint unions to dirct sums and
(¢) carry pullback squares

to commutative squares

Jq e

MZ — MW

Any Mackey functor M gives rise to an ordinary cohomology theory HE(— ;M)
(uniquely on (;-complexes and their equivalents) (see [4]).

Example 1. Let A be an abelian group and 4 the constant Mackey functor sending
any orbit G/H to A, with f* the identity and f, multiplication by the Euler
characteristic of the fibre of f. Then H%(X;4) = H™(X/(; A) in integer degrees m.
(HZ*V(X; A) is more complicated for V =% 0.)

Example 2. Let A4 be the Mackey functor sending /¢ to 4 and (//H to 0 for
H % @, with f* and f, both zero for all morphisms except the identity on //G. Then
HEV(X;AA) = H™(XY; A) for all m and V.

Let HZ , denote the representing spectrum of the ordinary theory associated to the
constant Mackey functor Z/p. Thus HZ (m+V) = K(Z,,m+V) is an ‘equivariant
Kilenberg—Mac Lane space’. Note that when V' = 0 this is the classical Eilenberg—
Mac Lane space K(Z/p,m) with trivial (/-action, so there is no real conflict of
notation.

Let ./, denote the graded group {ﬁ’é(HZp;Z_/p)}qEz. For an integer ¢, a G-
spectrum map X¢HZ,—HZ, restricts on integer indices to a map of ordinary
nonequivariant Hilenberg-Mac Lane spectra. Thus there is a homomorphism

Q: oty >,

where o7 is the (nonequivariant) mod-p Steenrod algebra.
Our main theorem is:

THEOREM 3. Let ( be the cyclic group of prime order p.

(@) There is an exact triangle

JZ{Z Ip

+\ /
A @H* S BZp:Z)p))

where BZ/p is the usual classifying space of Z/p.
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Operations in equivariant Z/p-cohomology 523

(b) The image of Q s the graded Z /p-vector subspace with basis consisting just of the
identity operation in degree 0 and the Bockstein operation in degree 1.

The structure of the proof is as follows. We give the fibre sequence leading to the
proof of part (a) in Section 2, as well as statements of results necessary to understand
the spaces involved and to generate the exact sequence. We give the proofs of these
statements in Section 3, together with some fundamental lemmas on the fixed-point
structure of K(Z,, m+V).

The proofs in Section 3 are elementary ; however, it is worth examining some of the
concepts from the stable point of view. In Section 4 we discuss the relation of the
proofs in Section 3 with the ideas of naive (-spectra and complete (J-spectra.

In Section 5 we construct another fibre sequence involving K(Z,,m+ V) and in
Section 6 we study the associated exact sequence. Part (b) of the main theorem then
follows from a dimensional comparison of exact sequences.

This is a subject in which even the cohomology of a point cannot be taken for
granted. The original computation for R coefficients (with R a ring) is due to Stong
[7] and Waner [8]. This is reproduced in the Appendix, together with the cohomology
of EG and KG.

The author is indebted to Peter May for his encouragement and for suggesting this
line of inquiry and to Steve Costenoble, John Greenlees, Gaunce Lewis and Stefan
Waner for enlightening conversations on the subject. The author also wishes to thank
the referee for his valuable suggestions in rewriting part of the paper.

From now on the ambient group ¢ will always be Z/p and all cohomology
(equivariant and non-) will be with Z/p (or Z/p) coefficients unless otherwise
indicated.

2. (-homotopy of representing spaces
To prove Theorem 3 we compute HV(?““V(K(ZI,, m+V)) in a stable range as m and

V grow large and show that a similar exact triangle holds in this range for these
groups. This will allow us to conclude that

()" = Nim [K(Z o m+ V). K(Z,m 4+ V)]
m+V

=~ lim A2 (K(Z,,m+V))

—

m+V

and that the triangle passes to the stable level.
The proof of this will follow from a series of lemmas, whose proof will be deferred
to the end of this section.

Lemma 4. Let KA,, be the representing G-space for the cohomology group
HY(— ~AZ/p) of Example 2. If V is a fixed-point-free representation then:

(@) (KA,,)" is contractible;
(b) (KA,,)" ~K(Z,,m);
(€) KAm/(Y Bd /\K(Z M)
(d) VKA, ~ KA,
)
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524 J. L. CArRUSO

Since K(Z,,m+ V) is a space in a (G-spectrum, there is a structure map
sy ZVYK(Z,,m)—~K(Z, m+V)

whose adjoint is a G-homeomorphism. Using the unit map 5:1—>Q"Y" of the
adjunction between Q" and XV, it is easy to see that the map Q above may be
interpreted as the composite

st

eV (K(Z,,,m+ V)~ Hy oV (SVK(Z,,m))

S AK(Z,. m))

" (K(Z,,,m))

o=

where o, is the suspension isomorphism and u is the isomorphism of Example 1.

ProrosirioN 5. Let V be a fixed-point-free representation of dimenion n. The G-
homotopy fibre Fs;, of sy, is (-(2m+n)-equivalent to the product KA, x --* x KA, ., ;.

Part (a) of Theorem 3 will follow upon examination of the exact sequence of the
associated fixed-point spaces of the (/-(2m+n)-fibreing

KA, x -+ xKA > ZVK(Z,,m) > K(Z,,m+V).

m+n—

For this, we need the following two lemmas.

LeMMA 6. Let f: X =Y be a G-q-equivalence, ¢ > 0, and let V be a fixed-point-free
representation with dimV = n. Then the induced homomorphism f*: HFV(Y;Z/p)—
HAFV(X;Z/p) is an isomorphism for i < (q—n).

i p
Lemma 7. Let F—E — B be a G-fibreing. Any (-homotopy h from poi to a constant
map induces a map v(h) from the G-mapping cone Ci of v to B. If B is G-(s—1)-connected
with s > 2 and F is G-(t—1)-connected, then i(h) is a G-(s+t—1)-equivalence.

Proof of Theorem 3(a). For sufficiently large m,

Hpr oV (Fsy) = HE etV (KA, x o X KA., )
= H™ (KA, X X KA 4)/@)
n—1
=~ @ H™(K(Z,,m+1) A LBG),

(3

0
by Proposition 5, Lemmas 6, 4(b) and 4(c) and Example 1. Thus there is a long exact
sequence

_)ﬁgwqﬂ/(ol') zﬁngquV(ZVK(Zp, m))

n—1
- @Herq(K(Zp’W]{—@)/\EBG)%’ (1)

=0

where " is the induced map from XVK(Z . m) to the cofibre of i: Fs, —~XVK(Z ,, m).
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Operations in equivariant Z/p-cohomology 525

One checks that Fs, and XVK(Z, m) are G-(m—1)-connected, so perforce
K(Z,,m+V)is as well. It follows by Lemma 7 that in the commutative diagram

iz

) — e iyt (SR (Z, m))

i(/z)*]\ ;TJI,

YTV (K(Zyom +V)) —2— " UK(Z,m))

i(h) is a G-(2m—1)-equivalence, hence ¢(h)* is an isomorphism for ¢ < m—mn. Thus in
(1) we may replace ¢"* by Q and part (a) of the theorem follows by stabilizing with
respect to m and V. [

Remark 8. Actually more has been proven. Denote by .o/%,, the whole RO(()-
graded algebra of cohomology operations on HZ,,. Let pt denote the one-point space
with trivial G(-action and EG the unreduced double cone on EG with G acting
trivially on the cone points. Then there is an exact triangle

Q*

A 4 ® H(pt)

‘.
0 ~ ~
o ®(LG-:)IZY'HZ§(EG))

in which the objects are all RO((G)-graded and the unlabelled arrow has degree + 1.
Here, if X is a Z-graded object and Y is an RO(()-graded object, we denote by
XFCPY the RO(()-graded object whose (m+ 1), constituent is given by

(X ® Y)m+V = @ (Xz ® Y}-%—V)'
i+j=m
In this context Q* is a ring homomorphism and y* is a morphism of H¥(pt)-modules.
Proof of Lemma 4. (a) First note that for any fixed-point-free representation V of

dimension #,
HE (G AL p) = HE (G AL p)

(since S AGL ~ S" AG,) and the latter is identically zero by Example 2.
Thus
(KA, 40)) =[S (KA, 0)°]

= [Si NG KA,y le
= HpY (G5 AZ )
~ (0, forallzi.
(b) Similarly note that m,(KA,,)%) = H% (pt; AZ/p) is Z/p if m =i and 0
otherwise.

(c) Let EG be a contractible space on which ¢ acts freely. The unique map
EG —pt induces a cofibre sequence

EG, 8"~ EqQ.
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526 J. L. CArRUSO

For G = Z/p one may construct an explicit model for EG by letting £ be a nontrivial
fixed-point-free representation and letting

<~n-—-

S = SEA - "’/\ SE. (2)
Then one sees that
EG ~ 1im 8™, (3)

Since, obviously, EG/G ~ B, part (¢) follows if we show that KA, ~ EG A K(Z,,m).
For any G-space X, let ® be the composite isomorphism

(X, KA, ] = H2(X;AZ/p) = H"(XY) =~ [X¢ K(Z,,m)], (4)

so that ®(f) = f¢ Thus there exists a (/-map f:E’(I/\K(Zp,m)»KAm such that
f¢ = ®(f) is the identity on K(Z,.m) = (EG AK(Z,,m))°.

Since (KGN K(Z,,m))® is contractible, f is a homotopy equivalence on fixed-point
sets and thus is an equivalence by the (-Whitehead theorem.

(d) This follows at once from (3) since the inclusion EGAS*—EG A SE is a G-
equivalence.

(e) Consider the (-cofibre sequence

c

S(V), = D(V), 8", (5)

where S(V) is the unit sphere in ¥V, D(V) is the unit disc and S ~ D(V)/S(V) is the 1-
point compactification of V with ¢/ acting trivially on the point at infinity. This
dualizes to a (-fibre sequence

€o

Q"X — X —Map (S(V),, X). (6)
Taking X = KA,,,, gives us
KA, —~ KA, .,—M = Map (S(V),,KA,,.,);
and, since S(V) is a free (-space, one computes that
m(M6) = Hp Y (S(V): AZ/p) = 0
for all 7. Of course it is also true that
M= Map ((S(V),)" (KA,.p)°)

is contractible, so M is Gi-contractible. Thus ¢, is a G--equivalence. The rest of the
statement follows identically with X = KA.

3. Structure of K(Z,.m+V)
LemmA 9. Let V be as above with dim V = n > 0.
(a)

HIV(G Z)p) = Z/p ifm=—mn,
e —L 0 ifm o+ —n.
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Operations in equivariant Z/p-cohomology 527

Z if —n<m<0,
ez =Y
- 0 otherwise.
(¢) The map G—pt induces an isomorphism in cohomology in dimensions
m=—n<0.

Note that (¢) does not hold for ‘virtual” representations I/ with n < 0.
This lemma parallels an unpublished calculation of Stong [7] and is reproduced in
the Appendix. See also Lewis [3], Waner [8] and Costenoble [2].

CororLrLarY 10. (a) K(Z, m+V)" ~K(Z,, m+n)
(b) K(Z,,m+ V)" ~K(Z,, m)x - xK(Z, m+n)
(c) There is a commutative diagram

K(Z,m+V)" -~ . K (Z,m)x - x K(Z,,m+n)

gl l P,

m + V)" — K (Z)m m+n)

K(z,

where pr,, is projection on the nth factor.

Proof. (a) This follows at once from Lemma 9 by examining 7,(K(Z,,m+V)*) =
HZL_HV(G).

(b) and (¢) Consider the G--fibre sequence (6) with X = K(Z,, m+k§) and with V
replaced by £, where £ is an irreducible representation and k is a positive integer.
Then

(60) G G

K(Z, m+(k—1)§)¢—K(Z,, m—Hcg)GiMap (S(8),. K(Z,. m+kE))“

is a non-equivariant fibre sequence.

If p=2, then S(¢)~G/e,n=1Fk and the last term is just K(Z, m+n&)® =
K(Z,,m+n). Inductively assume the conclusion for (n—1) £. By starting with m one
higher and looping everything, we see that K(Z,,m+n&)% is the homotopy fibre
of the connecting map

K(Zy,m+n)—>K(Zy,m+1)x - xK(Zy, m+n).

This can only be 0 or (0,...,0,1); but it cannot be the latter, for then we would get
the wrong answer (compared with Lemma 9(b)) for

(K (Zy. m+V)%) = HG ="V (pt).

Thus the connecting map is zero and p% is a product fibreing.

If p > 2, there are two complications: first S(§) is not G//e and secondly V is not
necessarily k& for some integer k.

Let £ be any nontrivial irreducible representation and suppose 2k = n is the
dimension of V. In the appendix we shall see that there is a cohomology class
ay g€ HE"(pt) such that multiplication by o, ., is an isomorphism of HF(pt)
and of HE((). This corresponds to a self-equivalence of the G-spectrum HZ, which
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528 J. L. CArRUSO

changes the dimension by V' — k£ and this restricts to a (G-equivalence of K(Z,,, m+ V)
to K(Z,,m+kE). Thus it does suffice to consider the case V' = k§.

Although S(§) isnot (I/e, it is a free two-cell G-complex; that is, there is a (-cofibre
sequence

Z/p.—SE)r—E(L/p.)-

Dualizing and passing to (-fixed sets we obtain the fibreing
(QX)*—Map (S(£)., X)¢ - X*

and arguments similar to the ones used for the case p =2 show that for
X =K(Z,, m+kE), both this and (6) must be trivial fibreings.

Proof of Proposition 5. The homotopy-fibre construction is equivariant, so
(Fsy)¢— (ZVK(Z,.m))—K(Z, m+ V)¢

is a fibre sequence. Since V' is fixed-point-free, the middle term is just K(Z,,m) and
s% corresponds to the map

e K(Z,,m)= (Q"K(Z,,m+V)¢~K(Z, m+V)¢

of (6) and, by the proof of Corollary 10, this is equivalent to the inclusion of the first
factor in K(Z,, m)x - x K(Z,,m+n). Thus the homotopy fibre is

(Fs,)" ~K(Z,,m)x - xK(Z, m+n—1).
It follows from the isomorphism (4) that there is a G-map

fi s, —~KA,, X xKA

m+n—1
such that f¢ is homotopic to the identity. But note that the underlying set of the
main G-fibre sequence is

s

(FSV)e g ZnK(Zpa m) 9I((Zpa m+n)a

where s¢ is the structure map for the non-equivariant Eilenberg—Mac Lane spectrum
K(Z/p). Classically (Fs;)¢ is a (2m+n)-connected space, so f¢ is a (2m+n)-
equivalence, and the result follows.

Proof of Lemma 6. This follows at once by applying the Bredon spectral sequence
to the integer-graded theory HE™(—:Z/p). It says that there is a natural spectral
sequence with

E;,t ~ HéG(X, M(t+V)) :>Hz+t+V(X;Zi/]0),

where MY is the Mackey functor sending /H to H{"(G//H:;Z/p). Since f is a
(-q-equivalence, HL(f) is an isomorphism for s < ¢, by Bredon (see [1]). Since
HSV(G/H) =0 for t < —mn, the result follows by comparison of that part of the
spectral sequences.

Proof of Lemma 7. This is true for general groups (. Let H be a subgroup of (.
Then
F? -~ EH - BH
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Operations in equivariant Z/p-cohomology 529

is a fibre sequence. By hypothesis F7 is (t— 1)-connected and B is (s— 1)-connected,
s0 by the classical Serre exact sequence i(h"):C(i)—~B" is an (s+t—1)-equiv-
alence. Since the cofibre construction is equivariant, this is the same as the map
i(R)H: (C))H — B and the result follows.

4. Complete G-spectra and naive G-spectra

The results of the previous section are perhaps more naturally seen in the context
of equivariant spectra. A (F-spectrum as defined in [5] is a set of (--spaces, one for
each subspace of a given G-inner-product space % of countable dimension. If % is R*
with trivial G-action, then we have what is known as a naive G-spectrum. If %
contains countably many copies of each irreducible G--representation, then it is called
a complete (/-universe and the corresponding spectra are called complete (-spectra.
Restriction to the trivial part of % gives us a functor from complete (-spectra to
naive G-spectra l: GLU -GS ¢. From now on fix % as a complete G-universe.
Denote the functor I by K+ E[0] and define E[V] to be (XVE)[0]. (This is not to be
confused with E(V), the V-th space of the spectrum.)

Let E be a complete (/-spectrum. Then the algebra of stable operations in
equivariant K-cohomology is the set {£, E}% of G-homotopy classes of self-maps of £
and, for any given integer ¢, {£, K}{, —lim,, . ,[E(m+V), E(m+q+V)]; is an isomor-
phism. But this is equivalent to limy lim, [E[V],, E[V],,lc = lim{E[V], E[V]}E.
Thus Theorem 3(a) follows by showing that there are compatible exact triangles

EVLEDVE 2 (0], B0

N\ /// (7)

(0] Eon®(@ (2 BZIp:Z)p))

for all V, and taking inverse limits over V.

In this context the lemma corresponding to Lemma 6 is simply a matter of noting
that as SV is an n-dimensional CW-complex, its dual S7V is perforce (—n—1)-
connected and Lemma 7 is a complete triviality, since in the category of naive G-
spectra a (-cofibreing is the same as a G-fibreing. Also, Proposition 5 could be stated
as

ProrosrrioN 11. Let V be a fixed-point-free representation of dimension n and let
sy HZ JOINSY —HZ [ V] be the naive G-spectrum map induced by the structure map
of the complete G-spectrum HZ,. Then the G-homotopy fibre s, is G-equivalent to
\/B L STHATO

This is proved in the same way as Proposition 5 and (7) follows directly.

5. A fibre sequence for K(Z,,m+7V)
ProrositioN 12. There is a G-fibre sequence

In y
K(ZP,W)’L*—W/)%K(Z]Q,W/L_’_ V)HKAM X oo XKA

m+n—1*
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530 J. L. Caruso
Proof. Again we apply (4). Let p be a map
K(Z,,m+V)—=>KA, x xKA

m+n—1

with p“ equivalent to projection on the first n factors. Then (Fp)¥ ~K(Z,, m+mn).
From Corollary 10(c) and since (Fp)*~ K(Z,.m+V)* ~K(Z,,m+n), we see that
the inclusion K(Z,,m+n) = (Fp)® o Fp is a G-equivalence. []J

The proof of Theorem 3(b) will proceed from a calculation of the cohomology of
K(Z,,m+7V). This is done by studying the Serre exact sequence of the fibreing in
Proposition 12. To be useful, this approach depends on being able to evaluate the
connecting homomorphism

8% HEYV(K(Z yom+n))— HE (KA, X X KA, ).
This homomorphism is the composite of the inverse of the cohomology suspension
QUHEY(K(Z,), m+n+1)) > HEV(K(Z,, m+n))
and of the homomorphism induced by the homotopy fibre of

S K(Z,,m+n+1)—>K(Z, m+1+V),
which is a map
T, KA, X x KA —K(Z,, m+n+1).

m+n—1

We will characterize the homotopy class 7, in terms of certain cohomology classes
in HP" " WKA,, x -+ x KA, , ;). First we make note of the following standard fact,
in which the graded tensor product follows the convention of Remark 8.

LemmaA 13. Let X be a G-CW-complex and Y a CW-complex with trivial G-action. If
R is a field, then H5(X A Y R) =~ HE(X:R) @ H*(Y: R) as H%(X ; R)-modules.

Proof. In integer degrees, this is true by Example 1 and the Kiinneth theorem. In
non-integer degrees it follows by examining the Bredon spectral sequence of the
integer-graded equivariant cohomology theory HE(— A Y R).

COROLLARY 14. (a) H¥%(KA,,) =~ H%(EG) ® ﬁ*(K(Zp, m)) as HE(pt)-modules.

(b) HEK(Z ;. m+n+1)) = Hi(pt) ® H¥(K(Z,,m+n+1)) as HE(pt)-modules.

Note that the map J, of Proposition 12 induces multiplication by the generator in
H?~"(pt). For J, is nonzero and [:73+V(K(Zp,'m+n)) is

HY 7" (pt) @ H™ "(K(Z,,. m+n)).

Thus J,, corresponds to a generator in HY, "(pt) = Z/p, tensored with the identity
class.

For what follows, let ae H'(BZ/p) and fe H*(BZ/p) denote the usual generators
(so that o® = in the p =2 case and o> =0 in the p > 2 case) and also their
suspensions in H*(SBZ/p). We will abbreviate K(Z,,m+V) by K,., and let
t =1, H"™(K,) denote the identity class.

Lemma 15. As usual, let V be an n-dimensional fixed-point-free representation. Let
1y KA, > KA, X X KA,y be the inclusion as the qth factor. If (n—q) = 2r+e
(with € =0 or 1), then the homotopy class {7, 01} corresponds to the cohomology class
" X1, where x denotes the cohomology cross product in H*(XBG N K(Z,,, m+q)).

Proof. Suppose 7,014, ~ 0. Then pr,om, is a product fibreing and KA, , splits off

m+q
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K(Z,, m+V) as a factor. This would imply that Q"KA,, . = KA, splits off of
Q"K,,,, = K, as a factor, which is impossible. Thus {r, 01, #* 0.

Restrict to the case p = 2. Let : X" 94K, — KA, . beinduced by the inclusion

St=0fc, §%€ ~ K (by (3)). Then 7,,4,9 ~ 0 if and only if we can fill in the diagram

- q)éKm +q 77 K + né

nl ln’n

KAm+q KAy > x KAyip

or, equivalently, the adjoint diagram

Km+(] - Km, +qé

/| |t 55,

Q(H*(I)CKA;?MQ - 9(77'79)5(}{/\771 XX KAm+n—l)

.- |-

KAm‘*'Q f) KAy % x KAy vy -
1

Here " is nonzero so o'y’ must be -homotopic to the inclusion K(Z/2, m+q) =
(KA,,1)¢ & KA, . Thus the G-fixed-point diagram is

m+q

,
Km+(] - Km X x K

| E

K771,+q I(m XX Km-*—n,f]-

m+q

It is clear that ()¢ lifts for ¢ < n, so 9’ does also; thus 7,49 ~ 0.
We have shown that {7, 01, is a nonzero element in the kernel of the map
AL ﬁg’l+n+l(KA

i) > HETHETOK, ).

One sees that #* sends o/ x o to 0 if and only if j = n—g¢. Thus the only nonzero
element of degree (m+n) in the kernel of this map is a" "¢ x¢ which corresponds
to the statement in the lemma for p = 2.

If p > 2, it suffices as in Corollary 10 to consider the case V = k&, for some
irreducible representation §.

m+q>

If € = 0, then one must consider the map

n: XEK(Z,,m+q) = KA

m+q

and the proof is formally the same as the case for p = 2.

If e = 1, then let 7' be the G-mapping cone of the map Z/p — pt, considered as the
one-skeleton of S, T' consists of two fixed points connected by p line segments which
are permuted cyclically by Z/p. The map in question is

n: TAXEK(Z ), m+q) KA

p’ m+q
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532 J. L. CAruUso
and, if n = 2k, the fixed-point diagram is

K(Z,m+q) - Map (T K(Z,,, m + (k 9

a5 ]
K(Z,m+q) ——— K(Zj,m)x- - xK(Zpm+n-1)

P
since Map (7, KA, ;) ~ KA

Similarly one sees that

mei DY essentially the same argument as in Lemma 4(d).

Map (7. K(Z,,m+ (k—7r)§)¥ ~ K(Z,,m)x -+ x K(Z,, m4+n—2r—1)

and the vertical arrow is the inclusion of the first n — 2r factors. Thus it is clear that
y’ lifts here also.

6. The connecting map ¥

We are now in a position to evaluate 7% and thus 6*. Recall from Corollary 14(b)
that in the stable range ﬁg([((zp,m+n+ 1)) is generated by classes a0(t), where
ae H¥(pt) and O e.o/. Considering such a class asamap K(Z,, m+n+1) > K(Z,,q+V)
and thus as a cohomology operation H%*"*1(—)— H%"V(—) we have the following
lemma.

LEMMA 16.
B, TEa0() = a- 0o x 0,

where 0 operates on HZ " NKA,,,,_,,_.) via the usual Steenrod algebra action on
H*(ZBG/\K(Zp,m—l-n—Qr—e)).

Proof. Any map {: KA, —K(Z,,s) factors through the orbit space of KA,. Thus
£*(0(1)) is the composite
¢ 0
KA, —KA,/G—~K(Z,,s)~>K(Z,,t)

which corresponds to the cohomology class 6({{’}). The statement follows from
Lemma 15.

Prorosirion 17. Let V be an n-dimensional fixed-point-free representation. Then

there is an exact triangle

@ lim [Ku/Jr\ Km+q+[ (Pt)®2ﬂ~?/

+\ / (8)
iV EC® (E'd® 4D ©L" 2)

in which the (n—2r —e)th factor §,_,,_, of 0% sends an element a0 to a-0(af" X ), where
the Steenrod algebra action on the tensor product satisfies the usual Cartan formula.

Proof. Apply Lemmas 6 and 7 to the fibre sequence of Proposition 12 and take
limits over m. The result is still exact and the right and bottom corners come from
the isomorphisms in Corollary 14. The homomorphism 6* is associated with the map
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7,, 50 that the gth factor corresponds to i} 7} and the formula is immediate from
Lemma 16.

CoRrROLLARY 18. Let V be a fixed-point-free two-dimensional representation. Then in
the exact triangle (8) for V, the kernel of 6* is generated by k-1 and k-8, where k is the
generator in HY %(pt) and & is the Bockstein operation.

Proof. For p = 2, k is the class «? in the appendix, while for p > 2, k is the class /.
We shall give the proof for the case p > 2; the proof for p = 2 is similar.
Since 7 is a two-dimensional representation, H%*(pt) is generated by 7,., k,, and
hy,, in dimensions V, V—1 and V—2 respectively. The map ¢* is given by
0,(al) = a-0(ax 1)
and
Op(al) = a-0(f x1)
for ae HEYV (pt).
By our knowledge of the operation of .o/ on H*(XBZ/p), O(o x t) must be a sum of

terms of the form
axXO+FXO L2 <0+ 7 X 0"+

and similarly 6(f x () has the form
BXO+ PP X0+ B X 0,+ .
Here we have written elements in H%(EG) ® o/ as cohomology cross products, since
that is their origin, and the Cartan formula respects this interpretation.
From the appendix, HEY (pt) acts on HE(EG) =~ Z/p[t, 1] ® H*(ZB@R) as follows:
Tv.aeﬁr — t® (xeﬂr’
t®af1 ife=0,
KV .aeﬂr — { ﬂ

0 ife=1,
oo fr = t@aspt ifr>1,
v 0 otherwise.

Let {=7,0+k, ¥ +h, ¢ be an element of HE (pt) ® =".o/. Then, combining the
formulae above,
3y(8) = (t ® a) X ¥ + (terms involving f),

so for £ to be in Ker (0%), ¥ must be zero. Thus
0,(8) =0,(t, 0+ 1y, @) = (t ® a) X O+ (terms involving f),
so 0 must be zero. Thus { = %, ¢ and

Sy @) = (E@ B X+ (1@ pr 1) X Byt
and .

Dihy @) = (L@ F7) X ¢ +(t@ ) x ¢+ .
Setting these to zero forces ¢ = 0 for k = 2 and ¢, = 0 for k > 1. Therefore the cross
product formulae for ¢ are

Blax)=axd+fxg
B(Bx0)=pxg.

and
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534 J. L. CArRUSO

A simple calculation in the Milnor basis [6] reveals that the only operations ¢
satisfying these identities are multiples of the identity and the Bockstein operation.

7. Comparison of exact triangles
LemMA 19. Let V be a fixed-point-free two-dimensional representation. There is an
exact triangle of Z /p-vector spaces

[oe] v
@Oh—mm (K v K+ 47 -2 o
.=
\ / )
H'(ZBG) ® (A DLA)

Proof. This is the exact sequence of (1) stabilized by inverse limits over m, with
lim,, HE+ Y (KA, x KA, ,,) replaced by the isomorphic H*(XBG) ® (o @ X.o ).

CoROLLARY 20. In (9), the image of QV is generated by 1 and 0.
Proof. Compare Corollary 18 and Lemma 19 and count generators. Specifically, let
B=H*CBO @ (A DZA )= A DA D) D (A PIA D)
C'= @ lim [K(Z,,m+V),K(Z,, m+q+V)]g.
a=0 ",

m

Then S'B~B@® (S @Y/ )=B®D.

Thus the two exact triangles may be rewritten:

o 4, A ®D o —o', g
N 4 and N A
B®D B

A simple induction now shows that the rank of Ker (y,) equals the rank of Ker (6%)
for all ¢. Thus
k(I (@) = rank (I () = | 1+ 00
rank (Im =rank (Im (j,)) =
¢ Ja 0, ifg+0.1.
Proof of 3(b). Let V be a fixed-point-free two-dimensional representation, as in
Lemma 19. Of course, the triangle

. ~ Q .
<1an, W [Km + W K, + q+ W]G linm (K Ky + (/J

N

liinm[Km +17 Km +q+ [f"'](l

commutes and so Im (Q) = Im (Q") = <1,6). Butin.«/,,, = [HZ, HZ,
have elements 1 corresponding to the identity map of the spectrum HZ, and §

& we certainly
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Operations in equivariant Z/p-cohomology 535

corresponding to the connecting map in the G-fibreing HZ ,—~HZ/p*—~HZ, and
these clearly map to the nonequivariant identity and Bockstein operations. Thus
Im (Q) =2 <1, 5>.

Appendix. Cohomology of points

Here we will compute the cohomology of G-orbits as graded rings and of the spaces
EG and EG as modules over the cohomology of a point. The ring structure of
HE(pt: Z/p) is not only necessary to the computation of the cohomology of a point,
but the module action is what allows us to determine the kernel of the map in
Corollary 18.

Define H{”(X) to be the part of H§(X;Z/p) in dimensions Hg*V(X), where V is an
honest representation and m is any integer.

Lemma 21. H{P(G) is a commutative polynomial algebra on generators t.€ Hg, ™((),
where & ranges over nontrivial vrreducible representations.

Lemya 22, If p =2, HP(pt) is a commutative polynomial algebra on generators
TeHE(pt) and ke HE Y (pt), where & is the canonical irreducible one-dimensional
representation.

In each of these the commutativity relation holds without the introduction of
any signs. In general, the commutativity relation in H%(X) is given by the action of
a unit in the Burnside ring of ¢/, as follows. Let y,:A4(G)—Z denote the H-fixed
point characteristic homomorphism, defined on generators by letting y,(G/K)
be the Euler character of (G/K)". It is standard that (@, x,): A(G)> Dy Z
is a ring monomorphism. Then if aeH%(X) and beH%(X), we have that
(@Ub) =u(a,b).(bUa), where u(a,b) is the unit characterized by yy(u(a,b)) =
(— nydim@Hdm D for a1l H < (.

Lemma 23. If p>2, HP(pt) is a signed-commutative algebra on generators
TgeHgG(pt) ngHgG_l(pt), and hgeH%_z(pt), where § ranges over all nontrivial irreducible
representations, subject only to the following relations:

(a) kE=0;

() TeK, = Ty Kgs

(¢) k§/<,, = h{fkg;

(d) Tgk(r =7, kg.

In fact, in H¥E(pt), there is a class ocg_,,eH%_”(pt) such that Oy Oy =1 and
Te= 0 T, by =0 Do, and Kk, = o, K

e

The whole of H¥(pt) cannot be described so neatly. KEven for p =2 there is
an element u_,e 3 2(pt) which is infinitely divisible by both 7 and « and for which
Tu_, = Ki_y, = u?, = 0. Our results in the body of this article require calculating
HEV(pt) for honest representations V and so we avoid the messier part of the
calculations.

CorOLLARY 24. Let V be an n-dimensional irreducible representation. Then
Zlp if —m<m<0;

HWL+V t) =
¢ pt) 0 otherwise.
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536 J. L. CArRUSO

Proof. Suppose p > 2. (The case p = 2 is basically the same, but simpler.) Choose
any nontrivial irreducible representation §. Then multiplication by e, ;. (where k =
n/2) induces an isomorphism of HX™é(pt) onto H%™V(pt). Thus one might as
well assume that V= k& But HE™(pt) has generators h¢7f~¢ for each 0 < ¢ <k
and Ak, 7E7%" for 0 < ¢q < k—1. There is one such generator in each dimension
—n<m<0.

Proof of Lemma 21. We make note of the following trick. If X is any (-space then
there is a G-homeomorphism (¢, AX ~ (¢, A X¢. Applying this with X = 8", we have
for any representation degree «,

susp. susp.

Hi(() —— H " (27(G)) > HigV (S0(0)) e Hi () (10)

is an isomorphism of HE(G)-modules. Thus it is given by multiplication by an
invertible element ¢, in H}, "(().
By the Bredon dimension axiom, H%((/) = Z/p and H%(G) = 0 when m is a nonzero

integer. It follows by the above that
Z/p if dim (o) =0,
H(G) = .
0 if dim () % 0.

If p =2, we are done already, for # is a nonzero element of Hg V() and by the
preceding statement it must generate that group.

With regard to the claim about commutativity, the generators ¢, are concentrated
in degrees of even dimension and thus for nontrivial irreducible representations V
and W, yg(u(ty, ty)) =1 for all H, whence u(ty,ty) is 1 and so HE(G) is strictly
commutative.

Proof of Lemma 22. Consider the cofibre sequence
S(&)—-pt—S*

from (5). This gives rise to an exact triangle

H72(S9) — Hyps(pt)
H35(2)2)
or equivalently
HJjs(pt) —— HJjs(pt)

BN /4
H}5(Z)2)

where ¢ is a ring homomorphism, ¥ is a homomorphism of H%,(pt)-modules (via ¢)
of degree (+1 —£), 7 is an element of 5 ,(pt) and 7 is translation by 7. (We have
not yet proved that 7 # 0, but we will.)
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Operations in equivariant Z/p-cohomology 537
A picture will help. The generators of the cohomology of (7 look like this:

T m

—4
13
12

11

3
t4

Thus 7+ is an isomorphism except when the source is H7{5 "V (pt) or H}5 V7 (pt). By
the Bredon dimension axiom, H7),(pt) = 0 for nonzero integers m, and this forces

whole areas of H73(pt) to be zero:

Tm

[
v 0
71 1
k¢
N
71 1 1
71 1
7

where the ?s are the only possible places for nonzero groups. The exact triangle yields
the exact sequence

/

[ v ™
0 H5 3 (pt) ~ H53(2/2) = HY 5(pt) — H5(pt) 0.
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538 J. L. CArRUSO

A simple geometric argument allows us to identify i with f,: Z/2— 7 /2, the transfer
associated to the unique map f: (/e — G/ /G, via the isomorphism ¢ in H%,(Z/2). This
is zero by the definition of Z/2 in Example 1 and thus ¢ and 7+ are isomorphisms in
this sequence.

Therefore H ,(pt) = Z/2, generated by 7 & 0, and H5}(pt) = Z/2, generated by a
class k such that ¢(k) =teH5}(Z/2).

Since ¢ is a ring homomorphism, the following diagram commutes:

0 HE, () —"— HE,(2)2)

K“W ;Tt"-

¢

B0t —S— HY Lz

-

I3

Hence H5,"(pt) = Z/2, generated by «". Following the exact sequence at the top
further on, one sees 1 = 0 and so 7+ is an isomorphism on Hy; V€D (pt).
The final picture is:

T m

The result follows. [

The proof of Lemma 23 depends on understanding the cohomology of S(£) for an
irreducible §. In the present case, (p > 2), S(§) is not Z/p, so we need the following
lemma.

LemMA 25. Let p be an odd prime and let & be any nontrivial irreducible representation
of Z/p. Then the part of H3,,(S(§)) in dimensions m~+r§ with r =0 and meZ is a
signed-commutative algebra on generators ke H51(S(£)) and te H52(S(8)) subject only
to the relation k* = 0.

Proof. There is an equivariant inclusion Z/p < S(§) as the pth roots of unity. The
cofibre is a bouquet of p circles, permuted cyclically by Z/p, and thus is equivalent
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to X((Z/p),). One sees directly that the connecting map ¢ is nullhomotopic on
passage to orbit spaces and so, by Example 1, 0* = 0 in integer degrees. But since
S(&) is G-free, 0* is a morphism of H%, (Z/p)-modules and it follows that 6* =0
in all degrees. So HY,,(S(§)) = HF,,(Z/p) ® Hz/p (2((Z/p),)), with the generator
te H52(S(£)) mapping to t.e H5 2 ( Z/p),and sot* generates H%‘i D(8(£)). The generator
ke Hg,,(S(£)) comes from o(t,) GH%/;) ((Z/p),)), and so is translated isomorphically
by t*. Naturally k? = 0 since H% 2(S(§)) = 0.

Z]p

Proof of Lemma 23. Let V and W be nontrivial representations of Z/p. Each of
these may be thought of as the complex plane C, with Z/p acting via multiplication
by a pth root of unity ¢;, or €j;,. Thus there is a nontrivial equivariant map of the form
[z 2 sending C{V} to C{W}. This induces a map S —-S8" and so a map

H3,,(pt) = %, (™)~ 11%,(S7) = H¥,,(pt)

changing dimension by V— 1. Similarly there is a map back the other way f: z+— 2"
where jj° = 1 (mod p). Since (SV)% = (S7)% = 8°, (fof’)¢ is the identity and (fo[f")¢
is a map of degree jj’. It follows that these induce isomorphisms in all ordinary
mod-p cohomology theories and by a comparison of Bredon spectral sequences fo f”
induces an isomorphism of H%,,(pt). Thus f* is an H%,,(pt)-module isomorphism and
so comes from multiplication by an invertible class a, e Hy WV (pt). [

The presence of these classes simplifies matters. It now suffices to prove the
following lemma.

LeMMmA 26. Let p > 2 and let & be a nontrivial irreducible representation. Then the
part of H%, (pt) in dimensions m~+ k& with k> 0 and meZ is a signed-commutative
algebra on generators TeH5, (pt), ke HS L(pt) and heH5 2(pt), subject only to the
relation k* = 0.

Proof. Again we consider the cofibreing S(£) - pt —S¢ and obtain an exact triangle

T

Hz,,(pt) — H7,,(pt)

2N S
Hy 4(S(S))

where the composite

W

Z/p (Z/p) H%/jzu (Z/p) ; H (Z(Z/p,)) H%/;(S(g))ﬁH%/p(Pt)

is the morphism f,, where f: Z/p—pt.
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Lemma 25 implies that the generator diagram for H%, (S(£)) is

T m

12
kt 2
1571

kt—1

k&

k

kt
12

Thus 7: H} ¥(pt) — H7 % DE(pt) is an isomorphism away from —2k—2<m
< —2k—1. Near there we chase the exact sequences just as in Lemma 22 to show
7% 0, and to obtain generators ke H5,}(pt) and he H52(pt) such that ¢(x) = k and
¢(h) = t. The rest follows. [

We will need to know something about the cohomology of B as a H(pt)-module.
This is most easily computed by first studying the cohomology of EG.

Lemma 27, (i) Let p=2. Then HEHKQ)=Z/2[k k1@ H*(BZ/2), where
ke HS Y EG). The action of HE(pt) is given by
7 (kid) = K od*t and
k- (klod) = kol
(ii) Let p>2. Then HEEC) = Q;irreaucivie Z/Plks ki | ® H*(BZ/p). where
kee HE*(EG). The action of HE(pt) is given by
Tg. (kéofﬂ]) — ké*laeﬂjﬂ
kif'afl, ife=0,
0, ife=1; and
hee (kg ) = ki ol

ke (kpapl) =

Proof. By Example 1 we already know H¥(EG) = H™(B(G). By the fibre sequence
in Proposition 12 and the note after Corollary 14, there is an exact sequence

> HER(BG) ~ HEEBEG) —~ HE(BEGAZ [ p) @ HEPW(EG AZp)— -+

where « is the generator in HE 2(pt), and «* is multiplication by «. Since B is G-free,
HYEG;AZ/p) =0 for i = 0,1, and so - is an isomorphism. This establishes the
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identity of the groups HE(E() and the action of k. The action of the other generators
is established by studying the cofibreing

EG AS(E), —~EG, —~XHEG)
and recalling that G, A EG, is G-equivalent to G,.
Lemua 28. HEEG) = (Q ireaucivie Z/Plle, t71]) @ H*(SBG), where t,e H(pt) and

& ranges over nontrivial irreducible representations.
If p =2, the action of HE(pt) is given by

7 (o) = 1, and
(I if > 1,
0 ifj=1;

where we have written of for the suspended element in HY(ZBG).
If p > 2 then the action is given by

7o (lpoc ) = 17l

£\ -

K () = {

0 otherwise; and
) ) ti+1ae j—1 7/ - > 1,
ety = L0
0 otherwise.

Proof. We already know that H”(EG)) =~ H™(SB@) from Example 1. By the proof
of Lemma 4(d) the inclusion EG—3¢EG is a G-equivalence. Thus the induced
homomorphism, which is multiplication by 7., is an isomorphism and this determines
the groups HE(HG). The action of the other generators follows by studying the exact
sequence of the cofibreing BG, —pt, > EG.
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