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COFREENESS IN REAL BORDISM THEORY AND THE SEGAL

CONJECTURE

CHRISTIAN CARRICK

Abstract. We prove that the genuine C2n -spectrum N
C2n

C2
MUR is cofree,

for all n. Our proof is a formal argument using chromatic hypercubes and the
Slice Theorem of Hill, Hopkins, and Ravenel. We show that this gives a new
proof of the Segal conjecture for C2, independent of Lin’s theorem.

1. Introduction

In this paper, we establish the following result:

Theorem 1.1. For all n > 0, the C2n -spectrum NC2n

C2
MUR is cofree, i.e. the map

NC2n

C2
MUR → F (EC2n+, N

C2n

C2
MUR)

is an equivalence.

The equivariant spectra NC2n

C2
MUR play a central role in the solution to the Ker-

vaire Invariant One problem by Hill, Hopkins, and Ravenel [7]. Their detecting spec-

trum Ω is the homotopy fixed point spectrum of a localization ΩO := D−1NC8

C2
MUR

of NC8

C2
MUR. An essential piece of their argument is the Homotopy Fixed Point

Theorem ([7], 1.10), which states that this homotopy fixed point spectrum coincides
with the genuine fixed point spectrum, i.e. that ΩO is cofree. Our result shows
that this holds even before localization away from D.

In the case n = 1, Hu and Kriz show that MUR is cofree via direct computation
[8]. They compute the C2-homotopy fixed point and Tate spectral sequences for
BPR, and deduce that (BPR)

tC2 = HF2, so that the result is an immediate con-
sequence of the Tate square for BPR. We give a new, more conceptual proof of
their result that generalizes readily to n > 1. The idea is that BPR[vi

−1] is cofree
for formal reasons, so one can take an approach via local cohomology and form
cartesian cubes

L̃2BPR BPR[v1
−1]

BPR[v2
−1] BPR[(v1v2)

−1]

1
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BPR[v3
−1] BPR[(v2v3)

−1]

L̃3BPR BPR[v2
−1]

BPR[(v1v3)
−1] BPR[(v1v2v3)

−1]

BPR[v1
−1] BPR[(v1v2)

−1]

and so on, and L̃nBPR is cofree for all n. Applying the slice tower to each vertex
BPR[(vi1 · · · vij )

−1], one forms a cartesian cube in filtered C2-spectra, and the limit

term gives a modified slice filtration of L̃nBPR. It is then a formal consequence of
the Hill-Hopkins-Ravenel (HHR) slice theorem [7] that, taking the limit in n, one
recovers the slice tower of BPR.

The n = 1 case may then be used as the base case for an induction argument
which allows us to reduce to showing that

(NC2n

C2
MUR)

C2n → (NC2n

C2
MUR)

hC2n

is an equivalence. This map may be analyzed by a separate induction argument
that originates in various inductive proofs of versions of the Segal Conjecture. In
[17], Ravenel showed that the Segal conjecture for Cpn follows from the case n = 1;
he provided both a computational approach via a modified Adams spectral sequence
as well as an approach using explicit geometric constructions. Bokstedt, Bruner,
Lunoe-Nielsen, and Rognes [2] generalized the geometric approach and proved the
following:

Theorem 1.2. ([2], Theorem 2.5) Let X be a Cpn-spectrum. Suppose for each

Y ∈ {X,ΦCp(X), . . . ,ΦC
pn−1 (X)} that π∗(Y ) is bounded below, H∗(Y ) is of finite

type, and Y Cp → Y hCp is a p-complete equivalence. Then XG → XhG is a p-
complete equivalence.

In [16], Nikolaus and Scholze strengthen this result by giving a description of
the subcategory of genuine Cpn -spectra whose geometric fixed points spectra are
bounded below in terms of iterated pullbacks and gluing maps. In the case of
MU ((C2n)), we identify these gluing maps with either the map in the n = 1 case,
or maps of the form

MO∧k → (NC2
e (MO∧k))tC2

Each of these in the latter case is an equivalence by the Segal conjecture:

Theorem 1.3. For any bounded below spectrum X, the Tate diagonal

X → (NC2
e (X))tC2

is a 2-complete equivalence.

This theorem was shown for X with finitely generated homotopy groups by
Lunøe-Nielsen and Rognes ([11], 5.13) and for all X bounded below by Nikolaus
and Scholze ([16], III.1.7). These both rest on the the case X = S0, due to Lin:
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Theorem 1.4. [10] Let γ denote the canonical line bundle over RP
∞, and for each

integer n > 0, let RP
∞
−n denote the Thom spectrum of −nγ. Then there is an

equivalence of spectra

RP
∞
−∞ = holimnRP

∞
−n ≃ (S−1)ˆ2

We refer the reader to the introduction of [5] for a discussion of the different
forms of the Segal conjecture for C2 and their relation to Lin’s theorem. Lin’s
theorem follows from a difficult calculation of a continuous Ext group

ÊxtA(H
∗(RP∞

−∞;F2);F2)

where A is the Steenrod algebra. Nikolaus and Scholze showed, however, that 1.3
follows formally for all X bounded below from the case X = HF2. Hahn and
Wilson [5] used this to show that 1.3 can be established by analysis of the descent
spectral sequence for the map

NC2
e HF2 → HF2

which reduces to a continuous Ext group calculation over a much smaller polynomial
coalgebra F2[x]. We use Lin’s theorem to prove the following, from which 1.1
follows.

Theorem 1.5. Let Y be a bounded below C2-spectrum. If Y ∧2k is a cofree C2-

spectrum for all 0 ≤ k < n, then NC2n

C2
Y is cofree.

Our argument for 1.1 may be reversed: knowing that

(MU ((C2n)))C2n → (MU ((C2n)))hC2n

is an equivalence may be used to show that the corresponding gluing maps are
equivalences, and, using the reduction of Nikolaus and Scholze to the case of X =
HF2, we may deduce the Segal conjecture for C2. This gives a proof of the Segal
conjecture for C2 that involves no homological algebra - apart from the Tate orbit
lemma of Nikolaus and Scholze - and proceeds from a chromatic approach. In
particular, the main piece of our argument that is not formal is the use of the HHR
slice theorem.

Remark 1.6. Essential to our proof is the identification ΦC2(NC4

C2
BPR) ≃ NC2

e HF2.

In [15], Meier, Shi, and Zeng use this identification to deduce differentials in the
homotopy fixed point spectral sequence of NC2

e HF2 from differentials in the slice

spectral sequence of NC4

C2
BPR. Our results should shed light on these spectral

sequences.
In particular, the map from the Slice SS of NC4

C2
BPR to its HFPSS is an isomor-

phism below a line of slope 3 (see [18]). The Slice SS vanishes above this line, but
there are many classes above this line in the HFPSS. By Theorem 1.1, the map
between them must give an isomorphism on their E∞-pages, so there must be some
pattern of differentials killing all the classes above this line in the HFPSS.

Summary. In Section 2, we show that the cofreeness of MU ((G)) follows formally
from (and is equivalent to) the Hu-Kriz n = 1 case together with Lin’s theorem.
This is the most direct way to Theorem 1.1, using these known results. In Section 3,
we withhold knowledge of these theorems and give a different proof - via chromatic
hypercubes - that BP ((C4)) is cofree. In turn, this result implies the n = 1 case and
Lin’s Theorem, which then gives the result for n > 2 by the same induction used
in Section 2.
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Notation and Conventions. We use SpG to denote the category of orthogonalG-
spectra or the associated ∞-category given by taking the homotopy coherent nerve
of bifibrant objects in the stable model structure of Mandell and May [14]. We use
the notation MU ((G)) and BP ((G)) to denote NG

C2
MUR and NG

C2
BPR respectively,

as in HHR.

Acknowledgments. The n = 1 case of our chromatic hypercubes result - namely
that BPR = holimnL̃nBPR - is due to Mike Hill. It was his idea to use this approach
to establish the n > 1 cases. We thank him for introducing us to this problem and
for his guidance throughout the project.

2. Cofreeness and Gluing Maps

2.1. Cofreeness. We begin by reviewing the notion of cofreeness for a genuine
G-spectrum.

Proposition 2.1. For X ∈ SpG, the following are equivalent

(1) X → F (EG+, X) is an equivalence of G-spectra.

(2) XH → XhH is an equivalence of spectra for all H ⊂ G.

(3) X is G+-local.

Proof. For 1 ⇐⇒ 3, it suffices to show that LG+(X) = F (EG+, X). The map

X → F (EG+, X)

becomes an equivalence after smashing with G+ by the Frobenius relation, and the
target is G+-local because if Z ∧G+ ≃ ∗, then

[Z, F (EG+, X)]G = [Z ∧ EG+, X ]G = 0

as EG+ is in the localizing subcategory generated by G+. 1 ⇐⇒ 2 follows from
the fact that the fixed point functors (−)H are jointly conservative, and

iGH(F (EG+, X)) = F (EH+, i
G
HX)

as can be seen from the more general statement

iGH(LE(X)) = LiG
H
E(i

G
HX)

(see [3], 3.2). �

Definition 2.2. We say a G-spectrum X is cofree if any of the equivalent conditions
in 2.1 hold.

Corollary 2.3. The category of cofree G-spectra is closed under homotopy limits.

Proof. This is true of any category of E-locals. �

Remark 2.4. Cofree G-spectra are often called Borel complete, or just Borel. The
source of this terminology is the fact that there is a forgetful functor

SpG → Fun(BG,Sp)

from genuine G-spectra to so-called Borel G-spectra. For formal reasons, this func-
tor admits a right adjoint, and it is not hard to show that this right adjoint is an
equivalence onto the full subcategory of cofree G-spectra.
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We will make use of the slice filtration on G-spectra, introduced for C2-spectra
by Dugger [4] and generalized to all finite groups G by HHR [7]. To fix notions,
we use the regular slice filtration, as in Ullman [18], although for the G-spectra we
consider, using the original slice filtration in HHR would not change anything. Let
X ≥ n denote that a G-spectrum is slice ≥ n, i.e. X is slice (n− 1)-connected. We
need the following useful lemma:

Lemma 2.5. Suppose {Xi}i∈N is a family of G-spectra such that, for all n ∈ Z,

all but finitely many Xi have the property that Xi ≥ n. Then the canonical map

∨

i

Xi →
∏

i

Xi

is an equivalence.

Proof. It suffices to show that, for all n ∈ Z, the map of Mackey functors

⊕

i

πn(Xi) ∼= πn

(∨

i

Xi

)
→ πn

(∏

i

Xi

)
∼=

∏

i

πn(Xi)

is an isomorphism. This follows immediately from the observation that for all but
finitely many i, πn(Xi) = 0. Indeed, by ([7], 4.40), if Y ≥ n, then πk(Y ) = 0 for
k < ⌈n/|G|⌉. �

Proposition 2.6. If MUR is cofree, then MU∧n
R

is cofree for all n ≥ 1, and

similarly for BP∧n
R

.

Proof. We proceed by induction on n. Since MU
∧(n−1)
R

is Real-oriented, we have

MU∧n
R = MU

∧(n−1)
R

[b1, b2, . . .] =
∨

m∈M

S
|m|
2 ρ ∧MU

∧(n−1)
R

where M is a monomial basis of Z[b1, b2, . . .]. By the lemma, the canonical map

∨

m∈M

S
|m|
2 ρ ∧MU

∧(n−1)
R

→
∏

m∈M

S
|m|
2 ρ ∧MU

∧(n−1)
R

is an equivalence, as MU
∧(n−1)
R

≥ 0 and Skρ ≥ 2k, so that Skρ ∧MU
∧(n−1)
R

≥ 2k
by ([7], 4.26). This completes the proof, as the category of cofree C2-spectra is
closed under limits and smashing with a dualizable C2-spectrum, hence the target
is cofree. �

2.2. Gluing maps and cofreeness. We set up an inductive argument to prove
Theorem 1.5. To fix notation, we use ΦC

2k to denote the functor SpC2n → Sp

and Φ̃C
2k to denote the functor SpC2n → SpC2n−k , so that i

C
2n−k

e ◦ Φ̃C
2k = ΦC

2k .
Nikolaus and Scholze use a result of Hesselholt and Madsen ([6], 2.1) along with
their Tate orbit lemma, to show:
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Proposition 2.7. ([16], Corollary II.4.7) If X ∈ SpG has the property that ΦC
2kX ∈

Sp is bounded below for all 0 ≤ k < n, there is a homotopy limit diagram

XC2n ΦC2nX

(Φ̃C2n−1X)hC2 (Φ̃C2n−1X)tC2

(Φ̃C4X)hC2n−2 · · ·

(
Φ̃C2X

)hC2n−1
(
(Φ̃C2X)tC2

)hC2n−2

XhC2n

(
XtC2

)hC2n−1

Theorem 2.8. Let Y be a bounded below C2-spectrum. If Y ∧2k is a cofree C2-

spectrum for all 0 ≤ k < n, then NC2n

C2
Y is cofree.

Proof. Set X := NC2n

C2
Y . We proceed by induction on n, with the base case n = 1

being tautological. For all 1 ≤ k < n,

iC2n

C
2n−k

X = N
C

2n−k

C2
(Y ∧2k)

is cofree by induction, so it suffices to show the map XC2n → XhC2n is an equiva-
lence. Since Y is bounded below, so is X , and this map is an equivalence if all of
the short vertical maps in 2.7 are equivalences. Each such map is of the form

(f)hC2n−k :

(
Φ̃C

2kX

)hC
2n−k

→

(
(Φ̃C

2k−1X)tC2

)hC
2n−k

for k > 0, which is induced by the map in SpC2n−k

f : Φ̃C
2kX → (Φ̃C

2k−1X)tC2

It therefore suffices to show that for all k > 0, f is an equivalence of Borel C2n−k -
spectra, which by definition is simply an underlying equivalence. The underlying
map is the natural map

ΦC2

(
i
C

2n−k+1

C2
Φ̃C

2k−1X

)
→

(
i
C

2n−k+1

C2
Φ̃C

2k−1X

)tC2

so it suffices to show i
C

2n−k+1

C2
Φ̃C

2k−1X is a cofree C2-spectrum. When k = 1, we
have

i
C

2n−k+1

C2
Φ̃C

2k−1X ≃ Y ∧2n−1

and for k > 1, one has

i
C

2n−k+1

C2
Φ̃C

2k−1X ≃ i
C

2n−k+1

C2
(N

C
2n−k+1

e (ΦC2Y )) ≃ NC2
e

(
ΦC2(Y ∧2n−k

)

)
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using the identification

Φ̃C
2kX ≃ N

C
2n−k

e (ΦC2Y )

(see [15], Theorem 2.2). NC2
e ΦC2(Y ∧2n−k

) is cofree by Lin’s theorem: since Y ∧2n−k

is bounded below and cofree,

ΦC2(Y ∧2n−k

) ≃ (Y ∧2n−k

)tC2

is bounded below and 2-complete. �

Remark 2.9. This result has various converses. For example, if Y is a bounded

below C2-spectrum, then N
C

2k

C2
Y is cofree for all 1 ≤ k ≤ n if and only if Y ∧2k

is a cofree C2-spectrum for all 0 ≤ k < n. The other direction follows because if

N
C

2k+1

C2
Y is cofree, then Y ∧2k = i

C
2k+1

C2
N

C
2k+1

C2
Y is also cofree.

If Y is also a ring spectrum, then the direct converse of 2.8 is true: NC2n

C2
Y is

cofree if and only if Y ∧2k is a cofree C2-spectrum for all 0 ≤ k < n. This follows

because Y ∧2k is a retract of Y ∧2n−1

= iC2n

C2
NC2n

C2
Y in this case.

Corollary 2.10. For all n ≥ 1, MU ((C2n)) is cofree, and similarly for BP ((C2n )).

Proof. MUR is bounded below, so this follows immediately from 2.6, the Hu-Kriz
n = 1 case, and the theorem. �

We have shown that the case n = 1, due to Hu and Kriz, along with Lin’s
theorem, implies that MU ((C2n)) is cofree for all n ≥ 1. The argument can be
reversed to point to another proof of Lin’s theorem, namely:

Proposition 2.11. For any n > 1, the cofreeness of MU ((C2n)) implies both Lin’s

theorem and the n = 1 case.

Proof. If for any n > 1, MU ((C2n)) is cofree, then a smash power of BP ((C4)) is
cofree, and it follows that BP ((C4)) is cofree, as a retract; similarly for BPR and
therefore for its smash powers by 2.6. In this case, the limit diagram in 2.7 is as
follows:

(BP ((C4)))C4 ΦC4(BP ((C4)))

(Φ̃C2BP ((C4)))hC2 (Φ̃C2BP ((C4)))tC2

(BP ((C4)))hC4 ((BP ((C4)))tC2)hC2

The lefthand vertical arrow is an equivalence by assumption, and the middle arrow
is an equivalence since BPR ∧ BPR is cofree. We find that the righthand vertical
map is an equivalence, and this is the Tate diagonal HF2 → (NC2

e HF2)
tC2 , which

is an equivalence if and only if Lin’s theorem holds, by ([16], III.1.7). �

3. Chromatic Hypercubes

3.1. Generalities on Hypercubes. We give some general results on hypercubes
that look like (summands of) our chromatic hypercubes. In this section, we use
the language of ∞-categories following [13]; in particular, we work in the model
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of quasicategories, and use stable ∞-categories following [12]. For a discussion of
cubical diagrams in the context of ∞-categories, see ([12], Section 6) or [1].

We fix C a stable ∞-category that has all finite limits. Let [n] denote the totally
ordered set {1, . . . , n}. For T a totally ordered set, let P(T ) denote its power set,
regarded as a poset under inclusion. Let P0(T ) denote the sub-poset P(T ) \ {∅}.

Definition 3.1. An n-cube X in C is a functor X : P([n]) → C, and a partial
n-cube is a functor P0([n]) → C. We say an n-cube X is cartesian if the map

X (∅) → holimT∈P0([n])X (T )

is an equivalence.

Construction 3.2. Suppose for each T ∈ P([n]), one has an object CT ∈ C. We

construct inductively an n-cube X in C as follows:

(1) When n = 1, X is the canonical inclusion C∅ → C∅ ⊕ C{1}.

(2) We may assume inductively that we have constructed (n− 1)-cubes Y0 and

Y1 with

Y0(T ) =
⊕

S≤T

CS and Y1(T ) =
⊕

S≤T

CS∪{n}

for T ∈ P0([n− 1]), where the maps in Y0 and Y1 are the canonical inclu-

sions. X is then given by the canonical inclusion of (n − 1)-cubes Y0 →
Y0⊕Y1, via the identification Fun(P([n]), C) = Fun(∆1,Fun(P([n−1]), C)).

Definition 3.3. Suppose for each T ∈ P([n]), one has an object CT ∈ C and
C∅ = ∗. Let X be the associated n-cube as in 3.2, and define a partial n-cube

Y : P0([n]) →֒ P([n])
X
−→ C

We say a partial n-cube in C is built from disjoint split inclusions if it is equivalent
to Y for some choice of objects {CT }T∈P0([n]). If X is a cartesian n-cube such that
the corresponding partial n-cube is built from disjoint split inclusions, we say X is
a cartesian n-cube built from disjoint split inclusions.

To make this definition clearer, note that any partial 2-cube built from disjoint
split inclusions is equivalent to one of the form

C2

C1 C1 ⊕ C2 ⊕ C12

and any partial 3-cube built from disjoint split inclusions is equivalent to one of the
form

C3 C2 ⊕ C3 ⊕ C23

C2

C1 ⊕ C3 ⊕ C13 C1 ⊕ C2 ⊕ C3 ⊕ C12 ⊕ C13 ⊕ C23 ⊕ C123

C1 C1 ⊕ C2 ⊕ C12
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where the inclusions are the canonical ones. We want to identify the limit of a
diagram of this form, and we use a result of Antolín-Camarena and Barthel on
computing limits of cubical diagrams inductively:

Proposition 3.4. ([1], 2.4) Let X : P0([n]) → C be a partial n-cube in C. One has

a pullback square

holimS∈P0([n])X (S) holimS∈P0([n−1])X (S)

X ({n}) holimS∈P0([n−1])X (S ∪ {n})

Proposition 3.5. Let X be a partial n-cube in C built from disjoint split inclusions

so that it is equivalent to Y for some choice of objects {CT }T∈P0([n]) as in 3.3. Then

X satisfies

(1) holimS∈P0([n])X (S) ≃ Ωn−1C{1,...,n}

(2) The map

holimS∈P0([n])X (S) → holimS∈P0([n−1])X (S)

is nullhomotopic.

Proof. We proceed by induction on n. For n = 1, a cartesian 1-cube is an equiva-
lence

holimS∈P0([1])X (S)
≃
−→ X ({1})

and the map in (2) is the map to the terminal object. It is straightforward to show
that the partial (n− 1)-cube

P0([n− 1]) → P0([n])
X
−→ C

is built from disjoint split inclusions, and

P0([n− 1])
−∪{n}
−−−−→ P0([n])

X
−→ C

is of the form C{n} ⊕ Z where Z is a partial (n− 1)-cube built from disjoint split
inclusions using the objects {CT ⊕CT∪{n}}T∈P0([n−1]), as in 3.3. By induction, 3.4
gives a pullback square

holimS∈P0([n])X (S) Ωn−2C{1,...,n−1}

C{n} C{n} ⊕ Ωn−2C{1,...,n−1} ⊕ Ωn−2C{1,...,n}

which is a cartesian 2-cube built from disjoint split inclusions. It therefore suffices
to prove the proposition in the case n = 2, which is the claim that for objects
C1, C2, C12 ∈ C, there is a pullback square of the form

ΩC12 C2

C1 C1 ⊕ C2 ⊕ C12

0

0
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One may form a morphism of partial 2-cubes

∗

∗ C12

=⇒

C2

C1 C1 ⊕ C2 ⊕ C12

via 3.2 which, taking limits, constructs such a square. Taking fibers along the
vertical maps, one has the identity map of ΩC1 ⊕ ΩC12; the square is therefore
cartesian by ([1], 2.2). �

3.2. Chromatic Hypercubes and Slice Towers. We introduce the chromatic
n-cubes we need to prove Theorem 1.1 and show they split as a summand that is
constant in n and a cartesian n-cube built from disjoint split inclusions.

Definition 3.6. Consider the following hypercubes:

(1) Let Hn be the cartesian n-cube so that for {i1, . . . , ij} ∈ P0([n])

Hn({i1, . . . , ij}) = BP ((C4))[(N(ti1) · · ·N(tij ))
−1]

One may form this cube inductively in a manner similar to 3.2 by working in

the category of MU
((C4))
(2) -modules and applying the functors (−)[N(ti)

−1].

See ([1], 3.1) for a similar construction.
(2) Let Sn,d be the cartesian n-cube defined on P0([n]) by

Sn,d : P0([n])
Hn−−→ SpC4

P 2d
2d−−→ SpC4

where P 2d
2d is the 2d-slice functor.

To understand the n-cubes Sn,d, we need to determine the slices of

BP
((C4))
i1,...,ij

:= BP ((C4))[(N(ti1) · · ·N(tij ))
−1]

and this follows as expected from the HHR slice theorem for BP ((C4)). We follow
the discussion in ([7], Section 6) and use their notation: in πu

∗ (BP ((C4))) = π∗(BP ∧
BP ), there are classes {ti}i≥1 with the property that

πu
∗ (BP ((C4))) = Z(2)[ti, γ(ti) : i ≥ 1]

as a C4-algebra, where γ is the generator of C4 and γ2(ti) = −ti. Inverting the
classes above, we see that

πu
∗ (BP

((C4))
i1,...,ij

) = Z(2)[ti, γ(ti) : i ≥ 1][(ti1 · · · tijγ(ti1) · · · γ(tij ))
−1]

and the restriction map

πC2
∗ρ2

(BP
((C4))
i1,...,ij

) → πu
2∗(BP

((C4))
i1,...,ij

)

is a split surjection (in fact an isomorphism, but we don’t need this). Lifting the
classes ti along this map, we have an associative algebra map

A := S0[ti : i ≥ 1][(ti1 · · · tij )
−1] → iC4

C2
BP

((C4))
i1,...,ij

Using the method of twisted monoid rings (and the C4-commutative ring structure

on MU
((C4))
(2) ), this gives a map

S0[C4 · ti : i ≥ 1][C4 · (ti1 · · · tij )
−1] → BP

((C4))
i1,...,ij
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Proposition 3.7. The above map

S0[C4 · ti : i ≥ 1][C4 · (ti1 · · · tij )
−1] → BP

((C4))
i1,...,ij

gives a refinement of homotopy. Let Md be the monomial ideal in A consisting of

the slice sphere summands of underlying dimension ≥ d, and set

Kd = BP
((C4))
i1,...,ij

∧A Md

Then the cofiber sequences

P2d+1(BP
((C4))
i1,...,ij

) → BP
((C4))
i1,...,ij

→ P 2d(BP
((C4))
i1,...,ij

)

are equivalent to

K2d+2 → BP
((C4))
i1,...,ij

→ BP
((C4))
i1,...,ij

/K2d+2,

P 2d+1BP
((C4))
i1,...,ij

≃ P 2dBP
((C4))
i1,...,ij

, and

K2d/K2d+2 ≃ HZ(2) ∧M2d/M2d+2

Proof. The proof is identical to that of ([7], Section 6), where the last identification
follows from the key computation: the reduction theorem. �

Remark 3.8. The previous proposition should be interpreted as follows: the slice

tower for BP
((C4))
i1,...,ij

forgets to the ordinary Postnikov tower of iC4
e BP

((C4))
i1,...,ij

, which

has P 2d−1
2d−1 ≃ ∗ and

P 2d
2d ≃ HZ(2) ∧W2d

where W2d is a wedge of S2d’s over the set of monomials of degree 2d in

πu
∗ (BP

((C4))
i1,...,ij

) = Z(2)[ti, γ(ti) : i ≥ 1][(ti1 · · · tijγ(ti1) · · · γ(tij ))
−1]

The slice tower is an equivariant refinement of this wherein the odd slices vanish,
HZ(2) is replaced with HZ(2), the spheres in W2d corresponding to a summand of
the above C4-module with stabilizer C2 are grouped with their conjugates in a

C4+ ∧C2 S
dρ2 ,

the spheres corresponding to a C4-fixed summand are replaced with S
d
2 ρ4 , and

there are no free summands. For BP
((C4))
i1,...,ij

, we let Ŵ
i1,...,ij
2d denote the quotient

M2d/M2d+2 as above, and Ŵ2d the corresponding quotient for BP ((C4)).

Note that for any i1, . . . , ij , Ŵ
i1,...,ij
2d has Ŵ2d as a split summand, corresponding

to the split inclusion

πu
2d(BP ((C4))) →֒ πu

2d(BP
((C4))
i1,...,ij

)

This splitting is natural in {i1, . . . , ij}, so we see that there is a splitting

Sn,d ≃ (HZ(2) ∧ Ŵ2d)⊕Xn,d

where Xn,d is a cartesian n-cube satisfying

Xn,d({i1, . . . , ij}) = HZ(2) ∧ (Ŵ
i1,...,ij
2d /Ŵ2d)

We have the following connection to the generalities in 3.1:

Proposition 3.9. Xn,d is a cartesian n-cube built from disjoint split inclusions.
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Proof. Xn,d is cartesian by definition. The result - and the terminology - follows
from the fact that for any {i1, . . . , ij}, the maps

πu
∗ (BP

((C4))
ik

) →֒ πu
∗ (BP

((C4))
i1,...,ij

)

are split inclusions, and after factoring out πu
∗ (BP ((C4))), the maps

ιk :
πu
∗ (BP

((C4))
ik

)

πu
∗ (BP ((C4)))

→֒
πu
∗ (BP

((C4))
i1,...,ij

)

πu
∗ (BP ((C4)))

are split inclusions with the property that im(ιk) ∩ im(ιk′ ) = {0} for k 6= k′. In
particular, for T ≤ T ′ in P0(n), the map

Xn,d(T ) → Xn,d(T
′)

is the split inclusion of the free HZ(2)-module on wedges of slice spheres corre-
sponding to the split inclusion

πu
2d(BP

((C4))
T )

πu
2d(BP ((C4)))

→֒
πu
2d(BP

((C4))
T ′ )

πu
2d(BP ((C4)))

so the claim follows from the fact that

πu
∗ (BP

((C4))
i1,...,ij

)

πu
∗ (BP ((C4)))

=

( ⊕

T<{i1,...,ij}
T∈P0(n)

πu
∗ (BP

((C4))
T )

πu
∗ (BP ((C4)))

)
⊕
(ti1 · · · tijγ(ti1) · · · γ(tij ))

−1πu
∗ (BP ((C4)))

πu
∗ (BP ((C4)))

where the latter summand denotes the subgroup of
πu
∗ (BP

((C4))

i1,...,ij
)

πu
∗ (BP ((C4)))

generated by mono-

mials containing (ti1 · · · tijγ(ti1) · · · γ(tij ))
−1. �

The following is an immediate consequence of 3.5 and 3.9:

Corollary 3.10. The map Sn,d(∅) → Sn−1,d(∅) can be identified with

(HZ(2) ∧ Ŵ2d)⊕Xn,d(∅)





1 0
0 0





−−−−−−→ (HZ(2) ∧ Ŵ2d)⊕Xn−1,d(∅)

3.3. Proof of Main Theorem. The canonical map BP ((C4)) → BP
((C4))
i1,...,ij

, by

universal property, determines compatible maps BP ((C4)) → Hn(∅) so that there is
a map

BP ((C4)) → holimnHn(∅)

We will show this map is an equivalence, and this will complete the proof that
BP ((C4)) is cofree by the following:

Proposition 3.11. holimnHn(∅) is cofree.

Proof. The category of cofree C4-spectra is closed under limits, hence it suffices to
show that each Hn(∅) is cofree. There is by definition an equivalence

Hn(∅)
≃
−→ holimT∈P0([n])Hn(T ) = holim{i1,...,ij}∈P0([n])BP

((C4))
i1,...,ij

so it suffices to show each BP
((C4))
i1,...,ij

is cofree. This is as in ([7], Section 10): we

have that ΦC4(BP
((C4))
i1,...,ij

) ≃ ΦC2(BP
((C4))
i1,...,ij

) ≃ ∗, as

ΦC4(NC4

C2
(ti1)) = ΦC2(ti1) = 0
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and similarly

ΦC2(NC4

C2
(ti1 )) = ΦC2(iC4

C2
NC4

C2
(ti1 )) = ΦC2(ti1 · γ(ti1)) = 0

�

To show that the map

BP ((C4)) → holimnHn(∅)

is an equivalence, we use the slice filtration to work in the ∞-category Fun(Zop, SpG)
of filtered G-spectra (see [12], 1.2.2). We refer to [19] for a treatment of the slice
filtration in an ∞-categorical context. Let

T : SpG → Fun(Zop, SpG)

be the functor which associates to a G-spectrum its slice tower, which may be
obtained as in ([12], 1.2.1.17). Functoriality gives a map of filtered C4-spectra

f : T (BP ((C4))) → holimn

(
holim{i1,...,ij}∈P0([n])T (BP

((C4))
i1,...,ij

)

)

Theorem 3.12. BP ((C4)) is cofree, independent of Lin’s theorem.

Proof. Let holim : Fun(Zop, SpC4) → SpC4 be the functor sending a tower to its
homotopy limit. Limits are computed pointwise in functor categories, so we find
that

holim

(
holim{i1,...,ij}∈P0([n])T (BP

((C4))
i1,...,ij

)

)
≃ Hn(∅)

It therefore suffices to show that f is an equivalence. Note that the filtration
induced on Hn(∅) is not its slice filtration, hence we use the notation

P̃ k : Fun(Zop, SpC4)
evk−−→ SpC4

and
P̃ k
k = fib(P̃ k → P̃ k−1)

Note that

P̃ k
k

(
holim{i1,...,ij}∈P0([n])T (BP

((C4))
i1,...,ij

)

)
≃ holim{i1,...,ij}∈P0([n])P̃

k
k

(
T (BP

((C4))
i1,...,ij

)

)

≃

{
∗ k = 2d− 1

Sn,d(∅) k = 2d

The map P̃ 2d
2d (f) is then identified with the map

HZ(2)∧Ŵ2d → holimn((HZ(2)∧Ŵ2d)⊕Xn,d) ≃ holimn(HZ(2)∧Ŵ2d)⊕holimnXn,d(∅)

By 3.10, the lefthand summand is constant in n, and the righthand summand is
pro-zero, hence the map is an equivalence.

To establish that f is an equivalence, it therefore suffices to show that

colimkP̃
k

(
holimn

(
holim{i1,...,ij}∈P0([n])T (BP

((C4))
i1,...,ij

)

))
≃ ∗

i.e. that the filtration on holimnHn(∅) strongly converges. Note that by ([7], 4.40),
if X ∈ SpC4 , then πl(P

kX) = 0 for l ≥ ⌈(k + 1)/4⌉. Taking limits, it follows that

πl

(
P̃ k

(
holim{i1,...,ij}∈P0([n])T (BP

((C4))
i1,...,ij

)

))
= 0
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for l ≥ ⌈(k + 1)/4⌉, and so

πl

(
P̃ k

(
holimn

(
holim{i1,...,ij}∈P0([n])T (BP

((C4))
i1,...,ij

)

)))
= 0

for l ≥ ⌈(k + 1)/4⌉ by the Milnor sequence. It follows that, for any l, taking the
colimit as k → −∞ of πl gives zero. �

Remark 3.13. This result recovers the Hu-Kriz result that BPR is cofree: since
BP ((C4)) is cofree, iC4

C2
BP ((C4)) = BPR∧BPR is cofree, hence so is the retract BPR.

Alternatively, as discussed in the introduction, one may argue similarly to 3.12 to
show that BPR is cofree, and the result in this case is due to Mike Hill.

References

[1] O. Antolín-Camarena and Tobias Barthel. Chromatic fracture cubes. arXiv e-prints, page
arXiv:1410.7271, October 2014.

[2] M. Bökstedt, R. R. Bruner, S. Lunøe-Nielsen, and J. Rognes. On cyclic fixed points of spectra.
Math. Z. 276, no. 1-2, 81-91, 2014.

[3] C. Carrick. Smashing Localizations in Equivariant Stable Homotopy. arXiv preprint
arXiv:1909.08771v2, 2020.

[4] D. Dugger. An Atiyah-Hirzebruch spectral sequence for KR-theory. K-theory, 35(3):213-256,
2005.

[5] J. Hahn and D. Wilson. Real topological Hochschild homology and the Segal conjecture. arXiv
preprint arXiv:1911.05687, 2019.

[6] L. Hesselholt and I. Madsen. On the K-theory of finite algebras over Witt vectors of perfect

fields, Topology 36, no. 1, 29-101, 1997.
[7] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire

invariant one. Ann. of Math. (2), 184(1):1-262, 2016.
[8] P. Hu and I. Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov

spectral sequence. Topology, 40(2):317-399, 2001.
[9] N. J. Kuhn. Goodwillie towers and chromatic homotopy: An overview, from: "Proceedings

of the Nishida Fest", (M Ando, N Minami, J Morava, W S Wilson, editors), Geom. Topol.
Monogr. 10, 245-279, 2007.

[10] W. H. Lin, D. M. Davis, M. E. Mahowald, and J. F. Adams. Calculation of Lin’s Ext groups.
Math. Proc. Cambridge Philos. Soc. 87, no. 3: 459-469, 1980.

[11] S. Lunøe-Nielsen and J. Rognes, The topological Singer construction, Doc. Math. 17, 861-909,
2012.

[12] J. Lurie. Higher Algebra. http://people.math.harvard.edu/~lurie/papers/HA.pdf, 2017.
[13] J. Lurie. Higher Topos Theory. http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf,

2009.
[14] M. A. Mandell and J. P. May. Equivariant orthogonal spectra and S-modules, Mem. Amer.

Math. Soc. 159, no. 755, x+108, 2002.
[15] L. Meier, X. D. Shi, and M. Zeng. Norms of Eilenberg-MacLane spectra and Real Bordism.

arXiv:2008.04963, 2020.
[16] T. Nikolaus and P. Scholze, On topological cyclic homology, Acta Math. 221: no. 2, 203-409,

2018.
[17] D. C. Ravenel, The Segal conjecture for cyclic groups, Bull. London Math. Soc. 13, no. 1,

42-44, 1981.
[18] J. Ullman. On the regular slice spectral sequence. Ph.D. Thesis, Massachusetts Institute of

Technology, 2013.
[19] D. Wilson. On categories of slices. arXiv:1711.03472, 2017.

University of California, Los Angeles, Los Angeles, CA 90095

Email address: carrick@math.ucla.edu


	1. Introduction
	Summary
	Notation and Conventions
	Acknowledgments

	2. Cofreeness and Gluing Maps
	2.1. Cofreeness
	2.2. Gluing maps and cofreeness

	3. Chromatic Hypercubes
	3.1. Generalities on Hypercubes
	3.2. Chromatic Hypercubes and Slice Towers
	3.3. Proof of Main Theorem

	References

