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SMASHING LOCALIZATIONS IN EQUIVARIANT STABLE

HOMOTOPY

CHRISTIAN CARRICK

Abstract. We study how smashing Bousfield localizations behave under var-
ious equivariant functors. We show that the analogs of the smash product and
chromatic convergence theorems for the Real Johnson-Wilson theories ER(n)
hold only after Borel completion. We establish analogous results for the C2n -
equivariant Johnson-Wilson theories constructed by Beaudry, Hill, Shi, and

Zeng. We show that induced localizations upgrade the available norms for an
N∞-algebra, and we determine which new norms appear. Finally, we explore
generalizations of our results on smashing localizations in the context of a
quasi-Galois extension of E∞-rings.

1. Introduction

Chromatic homotopy theory studies the robust connection between stable ho-
motopy theory and the theory of formal groups. This connection comes from a
theorem of Quillen [33], which gives a refinement of complex cobordism homology
MU∗(−) to a functor

F : Spectra→ QCoh(MFG)

where the latter is the category of quasi-coherent sheaves on MFG, the moduli
stack of 1-dimensional, commutative formal groups [31][11]. This functor retains a
surprising amount of information about the stable homotopy category. In partic-
ular, we may localize at a prime p, and (MFG)(p) carries a natural filtration by
height. The height filtration rigidifies (MFG)(p), and a series of conjectures made
by Ravenel in [36], proven in [8][19][35], establish that this rigidity is reflected quite
strongly in the stable homotopy category. We explore some of these conjectures in
an equivariant context.

In QCoh((MFG)(p)), there is a natural localization functor ι∗n given by restricting

sheaves to the open substackM≤n
FG of formal groups of height ≤ n, so that

ι∗n(−) = O
M≤n

F G

⊗OMF G
(−)

Bousfield localization of spectra provides a way to, in some sense, lift this localiza-
tion functor along F . The Johnson-Wilson theories, E(n), have the property that,
for a spectrum X , LE(n)(X) = 0 if and only if ι∗n(F(X)) = 0, and the smash prod-

uct theorem states that LE(n)(−) = LE(n)(S
0) ∧ (−). The chromatic convergence

theorem, says, moreover, that a p-local finite spectrum X is determined by these
localizations: the natural map

X → lim
←−

(

· · · → LE(n)(X)→ LE(n−1)(X)→ · · · → LE(0)(X)

)
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is an equivalence, reflecting the fact that finitely presented sheaves in QCoh((MFG)(p))
are determined by their restrictions to each open substack in the height filtration.
MU carries a natural action of C2, the cyclic group of order two, coming from

complex conjugation. The resulting C2-spectrum, MUR, also known as Real bor-
dism theory, was defined by Fujii [9] and Landweber [23] and studied extensively
by Hu and Kriz [21], who established a similar connection between genuine C2-
spectra and the theory of formal groups. In particular, they define C2-equivariant
lifts ER(n) of the E(n)’s. We establish that the analogous theorems do not hold in
genuine C2-spectra for the ER(n)’s:

Theorem 1.1. For n > 0, LER(n)(−) is not smashing. In fact, for X ∈ SpC2,

LER(n)(X) ≃ F (EC2+, LER(n)(S
0) ∧X) ≃ F (EC2+, i∗LE(n)(S

0) ∧X)

Theorem 1.2. If X is a 2-local finite C2-spectrum, we have a diagram

X F (EC2+, X)

lim
←−n

LER(n)(X)

≃

There is, however, another perspective on these theorems: the chromatic con-
vergence and smash product theorems for the ER(n)’s do not hold in genuine C2-
spectra, but they do hold in Borel C2-spectra. That we need to pass to Borel
C2-spectra is perhaps unsurprising because MUR itself is Borel complete: it is a
theorem of Hu and Kriz that the map

MUR → F (EC2+,MUR)

is an equivalence in SpC2, and similarly for ER(n). In the case of the nilpotence and
thick subcategory theorems, the analogs for Real bordism theory are easily seen to
fail in genuine C2-spectra. Passing to Borel C2-spectra, the nilpotence conjecture
still fails for MUR, but the analog of the thick subcategory theorem is more delicate,
and we remark on the difficulties in 4.3.

In their solution to the Kervaire Invariant One problem [17], Hill, Hopkins,

and Ravenel construct genuine C2n -spectra MU ((C2n )) := NC2n

C2
MUR that bring

Real bordism theory into the C2n -equivariant context. These play an essential role
in their proof: their detecting spectrum is a localization of MU ((C8)). Recently,
Beaudry, Hill, Shi, and Zeng have constructed versions of Johnson-Wilson theories
in this context [6], which they call D−1BP ((G))〈m〉. We give a description of the
Bousfield classes of these spectra (4.6) and deduce analogous results:

Theorem 1.3. Let EG(m) denote the C2n-spectrum D−1BP ((G))〈m〉 constructed
in [6], where h = 2n−1m.

• If m > 0, then EG(m) is not smashing. Moreover, for X ∈ SpC2n ,

LEG(m)(X) ≃ F (EC2n +, i∗LE(h)(S
0) ∧X)

• If X is a 2-local finite C2n-spectrum, we have a diagram

X F (EC2n +, X)

lim
←−m

LEG(m)(X)

≃
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Our analysis begins with the observation that the ER(n)’s and EG(m)’s are
Bousfield equivalent to certain induced G-spectra. We therefore study in general
how Bousfield classes in the equivariant context behave under various change of
group functors, most of which send smashing Bousfield classes to smashing Bousfield
classes (3.12). The exceptional case is that of the induction functor

G+ ∧H (−) : SpH → SpG

for a subgroup H ⊂ G. We give a necessary and sufficient condition (3.18, 3.19)
for a smashing Bousfield class to be preserved by induction, and we find that the
above formula for LER(n) is generic in this context (3.20).

Summary. In Section 2, we review Bousfield localization of G-spectra and the
relationship between smashing localizations and tensor idempotents. In Section
3, we study the interaction between Bousfield localization functors and change of
group functors in general, specializing to smashing localizations in 3.2.

From here, we move to applications of Section 3, beginning in Section 4 with
the proofs of 1.1, 1.2, and 1.3, and a remark on analogs of the nilpotence and thick
subcategory theorems. Nonequivariantly, the functors LE(n) have the additional
remarkable property that, the subcategories of finite p-local spectra

C≥n = {X ∈ Spω(p) : LE(n−1)(X) = 0}

form a complete list of the thick tensor ideals in the category of finite p-local spectra.
A description of the thick tensor ideals in finite G-spectra has been given for all G
abelian by [3][4], and for n > 0, none of the thick tensor ideals in finite C2-spectra
correspond to LER(n) in an analogous way. For G = Cpn , we construct a family of

new G-spectra E(J ) - indexed by the thick tensor ideals J in (SpG)ω(p) - such that

LE(J ) is smashing, J is the collection of finite acyclics of E(J ), and the geometric
fixed points of E(J ) at any subgroup is a nonequivariant E(n) (4.10).

In Section 5, we use formulae like the above for LER(n) to observe that induced
localizations upgrade the norms available in an N∞-algebra, and we determine
exactly which new norms appear. This generalizes a result of Blumberg and Hill
that if E ∈ SpG is a cofree E∞-ring, it is automatically genuine G-E∞ [7].

Finally, in Section 6, we return to the Borel perspective on the main theorems
mentioned above. It is a result of [1] (upgraded to the level of symmetric monoidal
∞-categories by [28]) that Sp, the category of nonequivariant spectra, is equivalent
to the category of modules in SpC2 over the E∞-ring A = F (C2+, S

0), so that
the coinduction functor becomes restriction of scalars, and the restriction functor
becomes extension of scalars. Moreover, extension of scalars induces an equivalence
between the category of Borel C2-spectra and (ModSpC2 (A))hC2 .

We show that, by analogy, if η : 1→ A is a quasi-Galois extension in a symmetric
monoidal stable ∞-category (6.4), it is often possible to use a norm construction
to take a smashing A-module M and produce a smashing object in the category of
A-locals. This is equivalent to producing, as in 1.1, a smashing-then-complete type
localization formula for η∗M . We give a necessary and sufficient condition for this
localization to be smashing in the category of A-modules (6.15).

Notation and Conventions. Unless explicitly stated otherwise, G is a finite
group. We will use the letters H and K to denote subgroups. X,Y , and E will be
used to denote a G-spectrum, and Z will be used when referring to an acyclic. SpG

will denote the category of orthogonal G-spectra, and (SpG)ω its subcategory of
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compact objects. We use the term ring spectrum to refer to a monoid in Ho(SpG)
and [−,−]G will denote morphisms in Ho(SpG). If H ⊂ G and g ∈ G, gH :=
gHg−1.

Acknowledgments. We thank Mike Hill for suggesting the project and for his
constant guidance and support. We would also like to thank Paul Balmer for many
helpful conversations.

2. Equivariant Bousfield Classes

In this section, we review what we need from equivariant Bousfield localization
following [15] and smashing localizations following [2].

2.1. Equivariant categories of acyclics. We begin with a review of the charac-
terization of acyclics in an equivariant context given in [15].

Definition 2.1. If E is a G-spectrum, we let ZE denote the category of E-acyclics:
the full subcategory of SpG consisting of all Z such that E ∧ Z is equivariantly
contractible. We let LE denote the category of E-locals: the full subcategory
of SpG consisting of all X such that SpG(Z,X) ≃ ∗ for all Z ∈ ZE . We say
E,F ∈ SpG are Bousfield equivalent (denoted 〈E〉 = 〈F 〉) if ZE = ZF .

Since the geometric fixed point functors ΦH are symmetric monoidal and jointly
conservative, this gives us a concrete way to describe ZE :

Proposition 2.2. ([15], Proposition 3.2) If Z ∈ SpG, then Z ∈ ZE if and only if
ΦH(Z) ∈ ZΦH (E) for all subgroups H ⊂ G:

ZE =
⋂

H⊂G

(ΦH)−1(ZΦH (E))

Corollary 2.3. [15] Suppose E ∈ SpG has the property that ΦH(E) ≃ ∗ for all
H ⊂ G nontrivial, then ZE = (Φ{e})−1(ZΦ{e}(E)). That is, Z ∈ SpG is E-acyclic

if and only if its underlying spectrum is Φ{e}(E)-acyclic.

From this, we deduce a useful characterization of the Bousfield classes of the
Real Johnson-Wilson theories introduced by Hu-Kriz [21] and studied extensively
by Kitchloo-Wilson [22].

Example 2.4. Let ER(n) denote the n-th Real Johnson-Wilson theory, E(k,G) the
Lubin Tate theory associated to a perfect field k of characteristic 2 and G a height
n formal group over k, regarded as a C2-spectrum as in [14], and E(n) the usual
nonequivariant Johnson-Wilson theory. Then

〈ER(n)〉 = 〈E(k,G)〉 = 〈C2+ ∧E(n)〉

Proof. These three C2-spectra all have contractible geometric fixed points, and the
Bousfield classes of their underlying spectra agree. �

2.2. Smashing spectra and idempotent triangles. We review the theory of
smashing localizations - for more details see [2],[25],[36], and [35]. We first recall
the following basic fact about Bousfield localization that we will use repeatedly.

Lemma 2.5. If E ∈ SpG is a ring spectrum, then any module M over E (e.g. E
itself) is E-local.
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Proof. Let Z ∈ ZE , then any map f : Z →M factors as follows

Z M

E ∧ Z E ∧M

f

1E∧f

µM

but then E ∧ Z ≃ ∗, hence f is null. �

Definition 2.6. For E ∈ SpG, let LE denote the corresponding Bousfield localiza-
tion functor. We say that LE is a smashing localization or that E is a smashing
G-spectrum if the natural map

LE(S0) ∧X → LE(S0) ∧ LE(X)→ LE(X)

is an equivalence for all X ∈ SpG.

Recall that Bousfield localization at E determines for each X ∈ SpG a cofiber
sequence

ZE(X)
ψX
−−→ X

φX
−−→ LE(X)

with ZE(X) ∈ ZE and LE(X) ∈ LE , which is unique up to homotopy with respect
to these properties.

Proposition 2.7. The following characterizations of smashing localizations are
equivalent:

(1) LE is smashing.
(2) LE is closed under homotopy colimits.
(3) LE is closed under arbitrary coproducts.
(4) LE is a smash ideal. That is X ∈ LE, Y ∈ SpG =⇒ X ∧ Y ∈ LE .
(5) If R ∈ LE is a ring spectrum, every R-module is in LE.
(6) 〈E〉 = 〈LE(S0)〉

Proof. For 1 ⇐⇒ 2 ⇐⇒ 3 see [25]. We show 1 =⇒ 4 =⇒ 5 =⇒ 6 =⇒ 1: If
LE is smashing, then if X ∈ LE and Y ∈ SpG,

X ∧ Y ≃ LE(X) ∧ Y ≃ LE(S0) ∧X ∧ Y ≃ LE(X ∧ Y ) ∈ LE

If LE is a smash ideal, R ∈ LE is a ring spectrum, and M is an R-module, then M
is a retract of R ∧M , which must be local, and LE is closed under retracts. Note
that LE is lax monoidal (on the level of the homotopy category), hence LE(S0) is
a ring spectrum in LE . ZLE(S0) ⊂ ZE is clear, and assuming (5), Z ∈ ZE implies

that Z ∧ LE(S0) ∈ ZE , and as a module over LE(S0), Z ∧ LE(S0) ∈ LE , hence
Z ∧LE(S0) ≃ ∗, i.e. Z ∈ ZLE(S0). Now, since for any X ∈ SpG, X → LE(S0)∧X
becomes an equivalence after smashing with E, to show LE is smashing, it suffices to
show LE(S0)∧X ∈ LE . But since LE(S0) is a ring spectrum, LE(S0)∧X ∈ LLE(S0)

by 2.5, but LLE(S0) = LE , assuming (6). �

We will prefer characterization (6), as it is the only one that is phrased as a con-
dition on the category of E-acyclics, rather than E-locals. Smashing localizations
were studied in a more general setting by Balmer and Favi in [2], and we recall here
some of their definitions and results.
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Definition 2.8. ([2], Definition 3.2) Let (T ,⊗,1) be a tensor-triangulated (tt-)
category (e.g. Ho(SpG)). We say that a distinguished triangle in T of the form

e
ψ
−→ 1

φ
−→ f → Σe

is an idempotent triangle if it satisfies any of the following equivalent conditions:

(1) e⊗ f = 0
(2) (1e ⊗ ψ) : e⊗ e→ e is an isomorphism. (Left Idempotent)
(3) (1f ⊗ φ) : f → f ⊗ f is an isomorphism. (Right Idempotent)

The relationship between idempotent triangles and smashing localizations is as
follows.

Definition 2.9. [2] Let T be a tt-category and J ⊂ T a thick tensor ideal. We
define

J⊥ = {t ∈ T : HomT (z, t) = 0 for all z ∈ J }

We say that J is a Bousfield ideal if for every t ∈ T , there exists a distinguished
triangle

et → t→ ft → Σft

such that et ∈ J and ft ∈ J
⊥. We say that J is a smashing ideal if J⊥ is a tensor

ideal.

Theorem 2.10. ([2], Theorem 3.5) If (T ,⊗,1) is a rigidly-compactly generated tt-
category, there is a 1-1 correspondence between isomorphism classes of idempotent
triangles and smashing ideals in T , wherein J as above corresponds to the triangle

e1 → 1→ f1 → Σe1

and an idempotent triangle

e→ 1→ f → Σe

corresponds to the smashing ideal ker(−⊗ f).

Corollary 2.11. If (T ,⊗,1) = (Ho(SpG),∧, S0), there is a 1-1 correspondence
between isomorphism classes of idempotent triangles in T and smashing Bousfield
classes 〈E〉, and hence also between smashing ideals in Ho(SpG) and smashing
Bousfield classes.

Proof. Each smashing 〈E〉 determines the idempotent triangle

ZE(S0)→ S0 → LE(S0)→ ΣZE(S0)

as LE(S0) ∧ ZE(S0) ≃ LE(ZE(S0)) ≃ ∗. Conversely, if e → S0 → f → Σe is an
idempotent triangle, then it follows that it is isomorphic to

Zf (S0)→ S0 → Lf(S0)→ ΣZf(S0)

and therefore corresponds to the smashing Bousfield class 〈f〉. Indeed, f is a ring
spectrum via the isomorphism f ⊗ f ∼= f , so f is f -local, and the map S0 → f is
therefore isomorphic as a right idempotent to the map S0 → Lf(S0). These give
mutually inverse maps of posets because if 〈E〉 is smashing, then 〈E〉 = 〈LE(S0)〉
by 2.7, and conversely we have just shown that f ∼= Lf (S0). �

Corollary 2.12. If E1, . . . , En ∈ Sp
G are all smashing, then so are E1 ∧ · · · ∧ En

and E1 ∨ · · · ∨ En. Moreover, ZE1∨···∨En
(S0) ≃ ZE1(S0) ∧ · · · ∧ ZEn

(S0) and
LE1∧···∧En

(S0) ≃ LE1(S0) ∧ · · · ∧ LEn
(S0).
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Proof. It is shown in [2] that the tensor product gives the product in the category
of left idempotents and the coproduct in the category of left idempotents. It follows
from 2.10 then that the poset of smashing ideals in SpG has meets and joins, and if
E,F are smashing G-spectra, these correspond to E∨F and E∧F respectively. �

3. Bousfield Localizations and Change of Group

In this section, we start with a G-spectrum E and explore the Bousfield local-
ization functors associated to the spectrum F (E) along various change of group
functors F . We explore whether F (E) is smashing, assuming that E is smashing.

3.1. The General Case. We first establish some elementary facts about the be-
havior of localization functors along change of group functors F in general.

Definition 3.1. Let i∗ : Sp → SpG denote the functor that sends a spectrum to
the corresponding G-spectrum with trivial action, and (−)G : SpG → Sp its right
adjoint, the genuine fixed points. For a subgroup H ⊂ G, let iGH : SpG → SpH and
G+∧H (−) : SpH → SpG denote the restriction and induction functors respectively.

Proposition 3.2. We have the following description of localization functors:

(1) Li∗E(i∗X) ≃ i∗LE(X) for any E,X ∈ Sp
(2) LiG

H
E(iGHX) ≃ iGHLE(X) for any E,X ∈ SpG

Proof. i∗ and iGH are symmetric monoidal, hence the map i∗X → i∗LE(X) be-
comes an equivalence after smashing with i∗E, and iGHX → iGHLEX becomes an
equivalence after smashing with iGHE. i∗LE(X) is i∗E-local because if Z ∈ Zi∗E ,
then

[Z, i∗LE(X)]G ∼= [ZG, LE(X)]

and ZG ∈ ZE because
ZG ∧ E ≃ (Z ∧ i∗E)G ≃ ∗

iGHLE(X) is iGHE-local because if Z ∈ ZiG
H
E , then

[Z, iGHLE(X)]H ∼= [G+ ∧H Z,LE(X)]G

and G+ ∧H Z ∈ ZE , as

(G+ ∧H Z) ∧ E ≃ G+ ∧H (Z ∧ iGHE) ≃ ∗

�

From 2.2, it is not difficult in general to characterize the F (E)-acyclics in terms of
the E-acyclics, where F is one of our change of group functors above. Characterizing
the F (E)-locals in terms of the E-locals is much more difficult. For restriction and
induction, however, we can give a simple necessary and sufficient condition.

Proposition 3.3. For any E ∈ SpG, Y ∈ SpH is iGHE-local if and only if G+∧H Y
is E-local.

Proof. If Y is iGHE-local, then if Z ∈ ZE , we have

[Z,G+ ∧H Y ]G ∼= [iGHZ, Y ]H = 0

Conversely, if Z ∈ ZiG
H
E , G+ ∧H ZiG

H
E ⊂ ZE implies that

[Z, iGH(G+ ∧H Y )]H ∼= [G+ ∧H Z,G+ ∧H Y ]G = 0

and since Y is a summand of iGH(G+ ∧H Y ), [Z, Y ]H = 0 . �
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Definition 3.4. Let H ⊂ G, then we let FH be the family of subgroups of G
that are subconjugate to H - that is, FH is the smallest family of subgroups of G
containing H . We say a G-spectrum X is H-cofree if the canonical map

X → F (EFH+, X)

is an equivalence, where F (−,−) denotes the internal mapping spectrum in SpG,
and EFH is the universal G-space for the family FH . We simply say cofree, or
Borel complete, when H = {e}.

Lemma 3.5. If X ∈ SpG, then F (EFH+, X) ≃ LG/H+
(X).

Proof. Since iGH(EFH+) ≃ S0, it follows that

X → F (EFH+, X)

becomes an equivalence after smashing with G/H+. F (EFH+, X) is G/H+-local
because if Z ∈ ZG/H+

so that iGHZ ≃ ∗, then

[Z,F (EFH+, X)]G ∼= [Z ∧EFH+, X ]G

and Z ∧ EFH+ ≃ ∗. For this, let

T = {Y ∈ SpG : Z ∧ Y ≃ ∗}

then T is a localizing subcategory of SpG, and EFH+ is in the localizing subcate-
gory generated by {G/K+ : K ∈ FH}, so it suffices to observe that G/K+ ∈ T for
all K ∈ FH . �

Corollary 3.6. A map f : X → Y in SpG between H-cofree G-spectra is an
equivalence if and only if iGH(f) is an equivalence.

Proof. In general, a map between E-locals is an equivalence if and only if it becomes
an equivalence after smashing with E. Letting E = G/H+ gives the result. �

Proposition 3.7. For any E ∈ SpH, X ∈ SpG is G+ ∧H E-local if and only if X
is H-cofree and iGHX is iGH(G+ ∧H E)-local.

Proof. SupposeX isG+∧HE-local. Clearly, ZG/H+
⊂ ZG+∧HE and hence LG+∧HE ⊂

LG/H+
- that is, G+ ∧H E-locals are H-cofree. iGHX is iGH(G+ ∧H E)-local by 3.2.

Conversely, if X is H-cofree, then it suffices to show the map φX : X →
LG+∧HE(X) is an equivalence, and by 3.6, it suffices to show that iGH(φX) is an
equivalence, which follows again by assumption from 3.2. �

Remark 3.8. Since E is a retract of iGH(G+ ∧H E), we have ZiG
H

(G+∧HE) ⊂ ZE and

hence LE ⊂ LiG
H

(G+∧HE). For X to be G+ ∧H E-local, it is therefore sufficient for

X to be H-cofree and iGHX to be E-local.

The following are easy consequences of the double coset formula for iGH(G+∧HE).

Corollary 3.9. If H ⊂ G is normal, X ∈ SpG is G+ ∧H E-local if and only if X
is H-cofree and iGHX is

∨

[g]∈G/H

gE-local, where gE are the Weyl conjugates of E.

Corollary 3.10. If G is abelian, X ∈ SpG is G+ ∧H E-local if and only if X is
H-cofree and iGHX is E-local.
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3.2. The Smashing Case. We now discuss how smashing localizations behave
under change of group functors. We first recall the following variant of the norm
functor NG

H : SpH → SpG of [17]. Let NG/H : SpG → SpG denote the composition
NG
H ◦ i

G
H , and for

T = G/H1 ⊔ · · · ⊔G/Hn

a finite G-set, we let NT : SpG → SpG denote the functor NG/H1 ∧ · · · ∧ NG/Hn .
We will also need the following description of how geometric fixed points interact
with the norm.

Proposition 3.11. ([17], Proposition B.209) For any K,H ⊂ G, and for any
E ∈ SpH , the diagonal gives an equivalence of spectra

ΦKNG
HE

≃
−→

∧

[g]∈K\G/H

ΦK
g∩HE

Proposition 3.12. Let H ⊂ G be a subgroup. Smashing Bousfield classes are
preserved by the following change of group functors:

(1) If E ∈ Sp is smashing, then i∗E ∈ Sp
G is smashing.

(2) If E ∈ SpG is smashing, then iGHE ∈ Sp
H is smashing.

(3) If E ∈ SpG is smashing, then ΦH(E) ∈ Sp is smashing.

(4) Let f : G → G′ be a group homomorphism and f∗ : SpG
′

→ SpG the

induced functor. If E ∈ SpG
′

is smashing, then f∗E ∈ SpG is smashing.
(5) If E ∈ SpH is smashing, then NG

HE is smashing.
(6) If E ∈ SpG is smashing, and T is a finite G-set, then NTE is smashing.
(7) If E ∈ SpG is smashing, and for all H ⊂ G, ZEG ⊂ ZEH (e.g. if E is a

ring spectrum), then EG is smashing.

Moreover, for each functor F in items (1)-(6), we have LF (E)(F (X)) ≃ F (LE(X)).
In item (7), we have

ZEG(X) =
⊗

H⊂G

ΦH(ZR(X))

so that

LEG(X) = cofib

(

⊗

H⊂G

ΦH(ZR(X))→ S0

)

Proof. In all cases, we have a smashing spectrum E and therefore 〈E〉 = 〈LE(S0)〉.
If F is one of the functors listed in items (1)-(6), it is symmetric monoidal, and hence
F (LE(S0)) is a right idempotent, so it suffices to show 〈F (LE(S0))〉 = 〈F (E)〉. For
(1), the relation ΦH ◦ i∗ ≃ idSp for all H ⊂ G gives

〈ΦH(i∗LE(S0))〉 = 〈LE(S0)〉 = 〈E〉 = 〈ΦH(i∗E)〉 =⇒ 〈i∗LE(S0)〉 = 〈i∗E〉

For (2), note that

Z ∈ ZiG
H
LE(S0) ⇐⇒ (G+ ∧H Z) ∧ LE(S0) ≃ ∗ ⇐⇒ (G+ ∧H Z) ∧ E ≃ ∗

since E is smashing. iGHE is shown to have the same acyclics by an identical
argument. For (3), we have

Z ∧ΦG(E) ≃ ∗ ⇐⇒ ẼP ∧ i∗Z ∧ E ≃ ∗

⇐⇒ ẼP ∧ i∗Z ∧ LE(S0) ≃ ∗

⇐⇒ Z ∧ΦG(LE(S0)) ≃ ∗
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For (4), if H is any subgroup of G′, the relation ΦH ◦ f∗ = Φf(H) gives

〈ΦH(f∗LE(S0))〉 = 〈Φf(H)LE(S0)〉 = 〈LΦf(H)(E)(S
0)〉 = 〈Φf(H)(E)〉 = 〈ΦH(f∗E)〉

by applying case (3). For (5), 3.11 gives

〈ΦK(NG
H (LE(S0)))〉 = 〈

∧

[g]∈K\G/H

ΦK
g∩H(LE(S0))〉

=
∧

[g]∈K\G/H

〈ΦK
g∩H(LE(S0))〉

=
∧

[g]∈K\G/H

〈ΦK
g∩H(E)〉

= 〈ΦK(NG
H (E))〉

for any subgroup K ⊂ G, again by applying case (3). For (6), if T = G/H , the
result follows by combining cases (2) and (5), and the general case follows from
2.12. The final remark follows in these cases from the localizations being smashing,
as then the condition may be checked on the sphere spectrum.

For the genuine fixed points functor (7), we have ZEG ⊂ ZEH for all H ⊂ G, by
assumption, hence

Z ∈ ZEG ⇐⇒ i∗Z ∈ ZE

and this holds if and only if Z ∧ ΦH(E) ≃ ∗ for all H ⊂ G. We find:

〈EG〉 = 〈
∨

H⊂G

ΦH(E)〉

and the claim follows as in 2.12. The assumptions hold for E a ring spectrum
because one has restriction ring maps EG → EH given by applying (−)G to the
map of rings

E → F (G/H+, S
0) ∧ E

�

Remark 3.13. We needed to assumeE is smashing in 3.12 to establish that ΦG(LE(S0))
is ΦG(E)-local, whereas with iGH and i∗, we could exploit the existence of a left
adjoint to get around this assumption. In fact, it is not necessarily true that
ΦG(LE(S0)) is ΦG(E)-local without this assumption. For example, if G = C2,
E = C2+, X = S0, then the left hand side is a point, and the right hand is (S0)tC2 .
This example also shows us that the converse to case (3) of 3.12 is false, i.e. we
cannot detect whether E is smashing just by knowing that ΦHE is smashing for
all H ⊂ G.

Corollary 3.14. We have the following characterizations of local objects for smash-
ing localizations:

(1) If E ∈ SpG is smashing, X ∈ SpG is E-local if and only if ΦH(X) is
ΦH(E)-local for all H ⊂ G.

(2) If E ∈ Sp is smashing, X ∈ SpG is i∗E-local if and only if ΦH(X) is
E-local for all H ⊂ G.

(3) If f : G → G′ is a group homomorphism, and E ∈ SpG
′

is smashing,
X ∈ SpG is f∗E-local if and only if ΦH(X) is Φf(H)(E)-local for all H ⊂ G.

(4) If H ⊂ G, and E ∈ SpH is smashing, X ∈ SpG is NG
HE-local if and only if

for all K ⊂ G, and for all [g] ∈ K\G/H, ΦK(X) is ΦK
g∩H(E)-local.
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(5) If E ∈ SpG is smashing, and ZEG ⊂ ZEH for all H ⊂ G (e.g. if E is a
ring spectrum), then X ∈ SpG is EG-local if and only if i∗X is E-local.

Proof. For (1), X is E-local iff the map X → LE(X) is an equivalence, but this is
true iff

ΦH(X)→ ΦH(LE(X)) ≃ LΦH(E)(X)

is an equivalence for all H , i.e. ΦH(X) is ΦH(E)-local for all H . The rest are
immediate consequences of (1). �

The norm is unique among the above functors in that it does not in general
preserve cofiber sequences. However, we have the following interesting corollary of
3.12:

Corollary 3.15. If G is abelian, NG
H preserves idempotent cofiber sequences. That

is, if e → S0 → f → Σe is an idempotent triangle in SpH, then NG
H (e) → S0 →

NG
H(f) is a cofiber sequence in SpG such that

NG
H (e)→ S0 → NG

H (f)→ ΣNG
H (e)

is an idempotent triangle.

Proof. By 2.11, every idempotent triangle in SpH is of the form

ZE(S0)→ S0 → LE(S0)→ ΣZE(S0)

We will show that the sequence

NG
H (ZE(S0))→ S0 → NG

H(LE(S0))

is equivalent to the idempotent cofiber sequence

ZNG
H
E(S0)→ S0 → LNG

H
E(S0)

Note that since NG
H (∗) = ∗, NG

H (−) sends the zero map to the zero map. There-
fore the composite NG

H (ZE(S0)) → S0 → NG
H(LE(S0)) is null, and so we have a

commutative diagram

NG
H (ZE(S0)) S0 NG

H(LE(S0))

ZNG
H
E(S0) S0 LNG

H
E(S0)

f = ≃

To show that f is an equivalence, it suffices to show that ΦK(f) is an equivalence
for all K ⊂ G, hence it suffices to show ΦK(−) of the top row is a cofiber sequence.
This gives

∧

[g]∈K\G/H

ΦK∩H(ZE(S0))→ S0 →
∧

[g]∈K\G/H

ΦK∩H(LE(S0))

by 3.11, where we have used that G is abelian so that Kg = K. By 3.12, this may
be further identified with

∧

[g]∈K\G/H

ZΦK∩H (E)(S
0)→ S0 →

∧

[g]∈K\G/H

LΦK∩H(E)(S
0)

By 2.12, this is the idempotent cofiber sequence associated to ZΦK∩H (E), as

〈ΦK∩H(E)〉 = 〈
∨

[g]∈K\G/H

ΦK∩H(E)〉 = 〈
∧

[g]∈K\G/H

ΦK∩H(E)〉
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since ΦK∩H(E) is smashing. �

Remark 3.16. It doesn’t make sense to ask whether NG
H preserves idempotent tri-

angles in the sense of [2] because NG
H (S1) ≃ SIndG

H(1), and so applying NG
H to the

idempotent triangle

e→ S0 → f → Σe

yields the sequence of maps

NG
H (e)→ S0 → NG

H (f)→ SIndG
H (1) ∧NG

H (e)

which is not a distinguished triangle in SpG unless H = G or e ≃ ∗. We have only
shown that, when G is abelian,

NG
H (e)→ S0 → NG

H (f)

is a cofiber sequence, and in particular the first two morphisms in an idempotent
triangle.

We now give a counterexample to the above claim in the general case when G is
not necessarily abelian.

Proposition 3.17. Fix an inclusion C2 →֒ Σ3. The corresponding functor NΣ3

C2
:

SpC2 → SpΣ3 does not preserve all idempotent cofiber sequences.

Proof. Consider the idempotent cofiber sequence

EC2+ → S0 → ẼC2

in SpC2 . Applying NΣ3

C2
yields the sequence

EFC3+ → S0 → ẼP

which is not a cofiber sequence. �

3.3. Induction and Smashing. By far the most interesting change of group func-
tor with respect to smashing localizations is induction, because it is not monoidal,
and hence we treat it separately. We find that induced G-spectra G+ ∧H E are
rarely smashing, though we give a necessary and sufficient condition for G+ ∧H E
to be smashing.

Proposition 3.18. Suppose H ⊂ G, and E ∈ SpH. Then G+ ∧H E is smashing if
and only if ΦK(LG+∧HE(S0)) ≃ ∗ for all K /∈ FH and iGH(G+ ∧H E) is smashing.

Proof. Suppose G+ ∧H E is smashing, then any restriction of it is also smashing.
If K /∈ FH , let F be the smallest family containing H and every proper subgroup
of K. It follows that ẼF ∈ ZG/H+

⊂ ZG+∧HE , as iGHẼF ≃ ∗. Since G+ ∧H E is
smashing, ZG+∧HE = ZLG+∧H E(S0), so that

ẼF ∧ LG+∧HE(S0) ≃ ∗ =⇒ iGKẼF ∧ i
G
KLG+∧HE(S0) ≃ ∗

Since F contains every proper subgroup of K, but not K itself (as K /∈ FH), we
have iGKẼF ≃ ẼP , where the latter is the universal K-space for the family of proper
subgroups of K. This by definition implies ΦK(LG+∧HE(S0)) ≃ ∗.

Conversely, suppose ΦK(LG+∧HE(S0)) ≃ ∗ for all K /∈ FH and iGH(G+ ∧H E)
is smashing. To show LG+∧HE is smashing, it suffices to show that LG+∧HE is
closed under arbitrary coproducts. We note first that if Y ∈ LG+∧HE , Y is a
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module over LG+∧HE(S0), hence ΦK(Y ) ≃ ∗ for all K /∈ FH . Let {Yi} be a set of
G+ ∧H E-locals. Consider the map

φ :
∨

i

Yi → LG+∧HE

(

∨

i

Yi

)

It suffices to show this map is an equivalence, and it becomes an equivalence after
applying ΦK for allK /∈ FH since it is the identity map of a point, up to equivalence.
If K ∈ FH , then gKg−1 = H ′ for some g ∈ G and some H ′ ⊂ H . Since ΦK(−) ≃

ΦH
′

(−), it suffices to assume K ⊂ H , in which case ΦK factors through the functor
iGH , and iGH(φ) is the map

∨

i

iGHYi → LiG
H
G+∧HE

(

∨

i

iGHYi

)

This is an equivalence as iGH(G+∧H E) is assumed smashing and iGHYi is iGH(G+∧H
E)-local. �

Corollary 3.19. If H ⊂ G is normal, and E ∈ SpH is smashing, then G+ ∧H E
is smashing if and only if ΦK(LG+∧HE(S0)) ≃ ∗ for all K ⊂ H.

Proof. This follows immediately from the previous proposition along with the ob-
servation that

〈iGH(G+ ∧H E)〉 = 〈
∨

[g]∈G/H

gE〉 =
∨

[g]∈G/H

〈gE〉

is a smashing Bousfield class by 2.12 since gE is smashing for all g. �

When H ⊂ G is normal, we arrive at a somewhat explicit formula for an induced
localization, which we can interpret as follows: induced smashing localizations are
smashing after H-cofree completion. When H = {e}, this can be further related
to the corresponding trivial localization.

Proposition 3.20. If H ⊂ G is normal, E ∈ SpH is smashing, and X ∈ SpG,
then

LG+∧HE(X) ≃ LG/H+
(LG+∧HE(S0) ∧X) ≃ F (EFH+, LG+∧HE(S0) ∧X)

Proof. The map

X → F (EFH+, LG+∧HE(S0) ∧X)

is a G+ ∧H E equivalence since iGH(G+ ∧H E) is smashing, and the target is easily
seen to be G+ ∧H E-local from 3.7. �

Proposition 3.21. Let E ∈ Sp be any spectrum, and X ∈ SpG, then

LG+∧E(X) ≃ F (EG+, Li∗EX) ≃ F (EG+, i∗LE(S0) ∧X)

Proof. The map X → F (EG+, Li∗EX) becomes an equivalence after smashing with
G+ ∧ E, and the target is G+ ∧ E-local by 3.7. �

Corollary 3.22. Let E ∈ Sp be a smashing spectrum, then G+ ∧E is smashing if
and only if (LE(S0))tH ≃ ∗ for all nontrivial subgroups H ⊂ G.
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Proof. G+ ∧ E is smashing if ΦH(LG+∧E(S0)) ≃ ∗ for all nontrivial subgroups H ,
but

ΦH(LG+∧E(S0)) ≃ ΦH(F (EG+, i∗LE(S0)))

≃ ΦH(F (EH+, i∗LE(S0)))

which is a module over the ring (LE(S0))tH . Conversely, if G+ ∧ E is smashing,
then ZG+∧E = ZF (EG+,i∗LE(S0)), but ẼG ∧G+ ∧ E ≃ ∗, and

(LE(S0))tH ≃ (ẼG ∧ F (EG+, i∗LE(S0)))H

�

Corollary 3.23. Let E = E(n) at the prime p, then for all G such that p divides
|G|, G+ ∧ E is smashing if and only if n = 0.

Proof. When n = 0, E(0) = HQ = L0(S0), and HQtH ≃ ∗ for all H nontrivial.
If n > 0, then G has an element of order p and hence if G+ ∧ E were smashing,
we would necessarily have (Ln(S0))tCp ≃ ∗. However, we know from [20] that this
Tate spectrum is not contractible. �

We end this section with an example illustrating the necessity of the normality
conditions in 3.19 and 3.20. It shows that if E ∈ SpH , then E and iGH(G+∧HE) are
not always Bousfield equivalent, and E being smashing does not always guarantee
that iGH(G+ ∧H E) is smashing.

Proposition 3.24. Let G = Σ4 and H = D8 = 〈(1234), (13)〉 ⊂ Σ4. Then

ẼF〈(1234)〉 is a smashing D8-spectrum, but iΣ4

D8
(Σ4+∧D8 ẼF〈(1234)〉) is not smashing.

Proof. We have

D8 = {e, (13)(24), (12)(34), (14)(23), (1234), (1432), (13), (24)} ⊂ Σ4

D8\Σ4/D8 = {D8, D8(12)D8}
(12)D8 = {e, (13)(24), (12)(34), (14)(23), (1342), (1243), (14), (23)}

D8 ∩
(12)D8 = {e, (13)(24), (12)(34), (14)(23)} = V4

Therefore we have

iΣ4

D8
Σ4+ ∧D8 ẼF〈(1234)〉 = ẼF〈(1234)〉 ∨

(

D8+ ∧V4 i
(12)D8

V4

(

(12)ẼF〈(1234)〉

))

(12)ẼF〈(1234)〉 is the universal (12)D8 space ẼF〈(1342)〉, and hence i
(12)D8

V4

(

(12)ẼF〈(1234)〉

)

is the universal V4-space ẼF〈(14)(23)〉. Therefore we may write

iΣ4

D8
Σ4+ ∧D8 ẼF〈(1234)〉 = ẼF〈(1234)〉 ∨

(

D8+ ∧V4 ẼF〈(14)(23)〉

)

We now assume for the sake of contradiction that this D8-spectrum is smashing,
hence we restrict to 〈(1234)〉 ∼= C4 to get a smashing C4-spectrum

iD8

〈(1234)〉

(

ẼF〈(1234)〉 ∨

(

D8+ ∧V4 ẼF〈(14)(23)〉

))

≃ iD8

〈(1234)〉

(

D8+ ∧V4 ẼF〈(14)(23)〉

)

One checks that
〈(1234)〉\D8/V4 = {〈(1234)〉eV4}

〈(1234)〉 ∩ V4 = 〈(13)(24)〉
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so that

iD8

〈(1234)〉

(

D8+ ∧V4 ẼF〈(14)(23)〉

)

≃ 〈(1234)〉+ ∧V4∩〈(1234)〉 i
V4

V4∩〈(1234)〉ẼF〈(14)(23)〉

≃ 〈(1234)〉+ ∧〈(13)(24)〉 ẼF〈(14)(23)〉∩〈(13)(24)〉

≃ C4+ ∧C2 ẼC2

Now ẼC2 is a smashing C2-spectrum, and so by 3.19, C4+ ∧C2 ẼC2 is a smashing
C4-spectrum if and only if

ΦC4(LC4+∧C2 ẼC2
(S0)) ≃ ∗

and the proof of 3.20 shows that LC4+∧C2 ẼC2
(S0) = F (EP+, ẼC4), but

ΦC4(F (EP+, ẼC4)) ≃ (S0)tC2 6≃ ∗

�

4. Consequences for Chromatic Localizations

4.1. Proofs of Main Theorems. In this section, we prove Theorems 1.1 and
1.2, namely that the analogs of the smash product theorem and the chromatic
convergence theorem for the ER(n)’s hold only after Borel completion. We remark
on analogs of the nilpotence and thick subcategory theorems. We also discuss
recent C2n -equivariant analogs of the ER(n)’s constructed in [6], and we identify
their Bousfield classes and deduce Theorem 1.3.

Theorem 4.1. If n > 0, then ER(n) is not smashing. Moreover, for X ∈ SpC2 ,

LER(n)(X) ≃ F (EC2+, i∗LE(n)(S
0) ∧X)

Proof. By 2.4, we have

〈ER(n)〉 = 〈C2+ ∧ E(n)〉

and now the result follows from 3.21 and 3.23. For the claim about ΦC2(ER(n)),
ER(n) is a module over MUR[vn

−1], and ΦC2(MUR[vn
−1]) ≃ ∗ as ΦC2(vn) = 0

([17], 5.50). �

Theorem 4.2. If X is a 2-local finite C2-spectrum, we have a diagram

X F (EC2+, X)

lim
←−n

LER(n)(X)

≃

Proof. The category of cofree C2-spectra is closed under homotopy limits, hence
there exists a unique up to homotopy vertical map making the above diagram
commute. As a map between cofree C2-spectra, it is an equivalence if and only if
it induces an underlying equivalence. The underlying map is an equivalence by the
nonequivariant chromatic convergence theorem (see [35]). �

Remark 4.3. The analogs of the nilpotence and thick subcategory theorems also fail
in genuine C2-spectra, and this is much easier to see. For the nilpotence theorem,
the class 2 − [C2] ∈ πC2

0 (S0) ∼= A(C2) goes to 0 in πC2
0 (MUR) = Z, but it is

not nilpotent in A(C2). Passing to Borel C2-spectra does not correct this: the
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endomorphism ring of the unit in Borel C2-spectra is A(C2)ˆI , by Lin’s theorem
[24], and 2− [C2] is still not nilpotent.

In the case of the thick subcategory theorem, the Balmer spectrum of (SpC2)ω

was determined in [3], and as remarked in the introduction, for n > 0, none of
the thick tensor ideals is the collection of finite acyclics of ER(n), so no reasonable
analog of the thick subcategory theorem for the ER(n)’s (or the KR(n)’s) can hold
in SpC2 . Passing to Borel, we run into the following issue: the unit is not compact
in Borel C2-spectra, and in particular the compact objects and dualizable objects
do not coincide. This makes an analysis of the spectrum more difficult, but is a
subject we plan to revisit in future work.

In [6], Beaudry, Hill, Shi, and Zeng construct genuine C2n -spectra that serve as
analogs to the ER(n)’s. We recall their construction, which hinges on the observa-
tion that one may construct the C2n -spectrum

BP ((G))〈m〉 := NC2n

C2
BPR/(C2n · tm+1, C2n · tm+2, . . .)

and for a carefully chosen class D ∈ πG∗ρG
BP ((G)), D−1BP ((G))〈m〉 should have

height h = 2n−1m. More precisely, they show:

Theorem 4.4. ([6], Theorems 1.5 and 1.8) For h = 2n−1m, there is a class D ∈
πG∗ρG

BP ((G)) and a height h formal group law Γh over F2 such that for any perfect
field k of characteristic 2, if we regard the corresponding Lubin-Tate theory E(k,Γh)
as a cofree C2n -spectrum, there is a diagram in SpC2n

BP ((G)) E(k,Γh)

D−1BP ((G))

It follows that the above map factors further through

EG(m) := D−1BP ((G))〈m〉

which can be thought of as a C2n -equivariant height h Johnson-Wilson theory.
The corresponding localization functors on SpC2n behave formally very similarly
to those of the ER(n)’s, as we can identify their Bousfield classes in a similar way.
We need the following results about the class D:

Theorem 4.5. ([6], Theorem 1.2) The element

iGe D ∈ π
e
∗BP

((G))〈m〉 ∼= Z(2)[G · t1, . . . , G · tm]

satisfies the following properties:

• vh divides D,
• (2, v1, . . . , vh) is a regular sequence in D−1πe∗BP

((G))〈m〉,
• vr ∈ Ir for r > h,

• D−1πe∗(BP ((G))〈m〉)/Ih ∼= F2[(tGm)±] with vh = t
(2h−1)/(2m−1)
m , and

• the formal group law carried by πe∗BP
((G))〈m〉 has height exactly h over

D−1πe∗(BP ((G))〈m〉)/Ih.

Corollary 4.6. The underlying spectrum of EG(m) is Bousfield equivalent to E(h),
and the geometric fixed points of EG(m) at any nontrivial subgroup is contractible.
In particular,

〈EG(m)〉 = 〈C2n + ∧ E(h)〉
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Proof. For the claim about geometric fixed points, [6] (proof of Theorem 1.8) show
that the class D is divisible by norms of certain classes from πC2

∗ρC2
BP ((G)), all of

which become null upon applying ΦC2 , and the result follows as in ([17], Section
10).

For the underlying spectrum, the conditions in 4.5 are enough to guarantee that
the map

Spec(D−1πe∗BP
((G))〈m〉)→MFG

factors through a faithfully flat cover of the open substack M≤h
FG, and any such

Landweber theory is Bousfield equivalent to E(h). In more detail, items (1) and
(2) in 4.5 guarantee that the spectrum iC2n

e (D−1BP ((G))〈m〉) is Landweber exact,
and by functoriality it maps to the landweber exact spectrum E with coefficient
ring

E∗ := (D−1πe∗BP
((G))〈m〉)[u]/(u2m−1 − tm)

with |u| = 2, which is 2-periodic. (D−1πe∗BP
((G))〈m〉)[u]/(u2m−1 − tm) is a free

module over D−1πe∗BP
((G))〈m〉, so the inclusion is faithfully flat, and the two

Landweber theories are Bousfield equivalent. In E∗, we may use u to conjugate the
formal group into degree 0, and now a spectrum X is E-acyclic if and only if the
corresponding quasicoherent sheaves on MFG determined by E0(X) and E1(X)
are zero. It now suffices to show that the map

Spec(E0)→M≤h
FG

is a flat cover.
This map is flat by the Landweber exact functor theorem, so it suffices to show

that it is essentially surjective, and by 4.4, there is a factorization

Spec(E(k,Γh)0) Spec(E0)

M≤h
FG

p

and p is a faithfully flat cover, as Spec(E(k,Γh)0) is a Lubin-Tate universal space
of height h. �

The Bousfield classes of the EG(m)’s are therefore nested: we see that

ZEG(m) ⊂ ZEG(m−1)

and hence for any X ∈ SpC2 , we may form a chromatic tower

X → · · · → LEG(m)(X)→ LEG(m−1)(X)→ · · · → LEG(0)(X)

Our results for C2 now follow in essentially the same way for the EG(m)’s:

Theorem 4.7. Let EG(m) denote the C2n-spectrum D−1BP ((G))〈m〉 constructed
in [6], where h = 2n−1m.

• If m > 0, then EG(m) is not smashing. Moreover, for X ∈ SpC2n ,

LEG(m)(X) ≃ F (EC2n +, i∗LE(h)(S
0) ∧X)
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• If X is a 2-local finite C2n-spectrum, we have a diagram

X F (EC2n +, X)

lim
←−m

LEG(m)(X)

≃

4.2. Smashing Cpn -Spectra. In light of 4.1, a natural question from here is then
if the ER(n) are not smashing, can we construct equivariant spectra analogous to
the E(n) that are smashing? More specifically, every thick tensor ideal in Spω(p)

is the collection of finite acyclics of one of the E(n)’s, so we may ask if a similar
statement is true for (SpG)ω(p), and we can give a construction when G = Cpn . The

following theorem was proven in the case n = 1 by Balmer and Sanders [3], and for
n > 1 by Barthel, Hausmann, Naumann, Nikolaus, Noel, and Stapleton [4].

Theorem 4.8. [3][4] The thick tensor ideals in (Sp
Cpn

(p) )c are precisely the subcat-

egories of the form

{X ∈ (Sp
Cpn

(p) )c : ΦCpi (X) ∈ ZE(mi)}

where mi ≤ mi+j + 1 for all 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− i.

Therefore for G = Cpn , the above question becomes: for a sequence of natural
numbers m0, . . . ,mn with mi ≤ mi+j+1 for all 0 ≤ i ≤ n−1 and 1 ≤ j ≤ n−i, can

we build a smashing G-spectrum E(m0, . . . ,mn) so that ΦCpi (E(m0, . . . ,mn)) ≃
E(mi)? It is easy to build E(m0, . . . ,mn) with the stated geometric fixed points

since we may assume by induction that E(m1, . . . ,mn) ∈ SpCpn−1 exists, and then
set

E(m0, . . . ,mn) := (ECpn
+ ∧ i∗E(m0)) ∨ (ẼCpn ∧ q∗E(m1, . . . ,mn))

where q : Cpn → Cpn−1 is the quotient map. It is not obvious that this spectrum is
smashing, but using the results of Section 3, we can build a different representative
of the same Bousfield class that is manifestly smashing.

We do not know if there is a way to construct such spectra that are not split
as above. However, what follows would show that any such construction produces
a smashing G-spectrum, since it would be Bousfield equivalent to the ones we
construct. We begin with the case n = 1.

Proposition 4.9. For every pair of natural numbers m0,m1 satisfying m0 ≤ m1 +
1, there is a smashing Cp-spectrum E(m0,m1) with the property that

〈ΦCpi (E(m0,m1))〉 = 〈E(mi)〉

for i = 0, 1.

Proof. Setting E(m0,m1) = (Cp+ ∧ E(m0)) ∨ (ẼCp ∧ i∗E(m1)), one checks easily

the claim about Bousfield classes. It suffices to show that for any family {Yi} of
E(m0,m1)-locals, the map

φ :
∨

i

Yi → Lm0,m1

(

∨

i

Yi

)

is an equivalence. It induces an underlying equivalence as i
Cp
e ◦Lm0,m1 ≃ Lm0 ◦ i

Cp
e ,

so it suffices to show ΦCp(φ) is an equivalence. If we knew that ΦCp(Lm0,m1 (S0))
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were E(m1)-local, then ΦCp(Lm0,m1 (Y )) would be E(m1)-local for any Y , as a
module over an E(m1)-local ring spectrum. But then ΦCp(φ) would be an E(m1)-
equivalence between E(m1)-locals.

From Section 3, we have

LCp+∧E(m0)(X) ≃ F (ECp+, i∗Lm0(S0) ∧X)

LẼCp∧i∗E(m1)(X) ≃ ẼCp ∧ i∗Lm1(S0) ∧X

It follows that LCp+
∧E(m0) ◦ LẼCp∧i∗E(m1) ≃ ∗, and hence by a general argument

(see [5]), there is a natural homotopy pullback square

Lm0,m1 (X) F (ECp+, i∗Lm0(S0) ∧X)

ẼCp ∧ i∗Lm1(S0) ∧X ẼCp ∧ i∗Lm1(S0) ∧ F (ECp+, i∗Lm0(S0) ∧X)

Setting X = S0, and applying ΦCp(−), we have a homotopy pullback square

ΦCp(Lm0,m1(S0)) Lm0(S0)tCp

Lm1(S0) Lm1(Lm0(S0)tCp)

and by the main result of [20], the right hand map is an equivalence if m0 ≤
m1 + 1. �

Theorem 4.10. For every sequence of natural numbers m0, . . . ,mn satisfying mi ≤
mi+j + 1 for all 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− i, there is a smashing Cpn-spectrum
E(m0, . . . ,mn) with the property that

ΦCpi (E(m0, . . . ,mn)) ≃ E(mi)

for all 0 ≤ i ≤ n.

Proof. We proceed by induction on n, and we may assume n > 1 by the previous
proposition. As stated above, it suffices to show there is a spectrum E(m0, . . . ,mn)
with the property that

〈ΦCpi (E(m0, . . . ,mn))〉 = 〈E(mi)〉

for all i. There are 3 cases to check:
(i) m0 = m1: By induction, we may assume there is a smashing Cpn−1 -spectrum

E(m1, . . . ,mn) with the stated properties. Let q : Cpn → Cpn−1 be the usual quo-
tient map. Then E(m0, . . . ,mn) := q∗E(m1, . . . ,mn) is a smashing Cpn -spectrum
and

ΦCpi (q∗E(m1, . . . ,mn)) =

{

ΦCpi−1 (E(m1, . . . ,mn)) i > 0

Φ{e}(E(m1, . . . ,mn)) i = 0

(ii) m0 < m1. Here we set

E(m0, . . . ,mn) := i∗E(m0) ∨ (ẼCpn ∧ q∗E(m1, . . . ,mn))

This is a smashing Cpn -spectrum as in 2.12, and we have

ΦCpi (E(m0, . . . ,mn)) =

{

E(m0) ∨ ΦCpi−1 (E(m1, . . . ,mn)) i > 0

E(m0) i = 0
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Note however that m0 ≤ mi for all i > 0 as mi ≥ m1 − 1 for all i > 1, hence
〈E(m0) ∨ E(mi)〉 = 〈E(mi)〉.

(iii) m0 = m1 + 1. Since we have assumed n > 1, we can form the smashing
Cpn -spectrum

E(m0, . . . ,mn) := N
Cpn+1

Cp
E(m0,m1) ∨ (ẼCpn ∧ q∗E(m1, . . . ,mn))

and we have

ΦCpi (E(m0, . . . ,mn)) =

{

ΦCp(E(m0,m1))∧k(i) ∨ΦCpi−1 (E(m1, . . . ,mn)) i > 0

E(m0)∧pn−1

i = 0

where k(i) is some positive integer that won’t affect the Bousfield class. Note that
since m0 = m1 + 1, mi ≥ m1 for all i > 0, hence we have

〈ΦCpi (E(m0, . . . ,mn))〉 = 〈E(m1)〉 ∨ 〈E(mi)〉 = 〈E(mi)〉

for i > 0, and

〈Φ{e}(E(m0, . . . ,mn))〉 = 〈E(m0)∧pn−1

〉 = 〈E(m0)〉

�

5. Consequences for Localizations of N∞-algebras

We begin this section by recalling a surprising theorem of Blumberg and Hill.
In this section, MapG(−,−) will denote the G-space of maps in the category of
G-spaces.

Theorem 5.1. ([7], Theorem 1.4) If O is an N∞-operad, and R is an O-algebra
such that R is cofree, then R is equivalent (as an O-algebra) to a genuine G-E∞

ring.

Proof. R ≃ F (EG+, R), and since R is an O-algebra, F (EG+, R) is canonically a
MapG(EG,O)-algebra. Each MapG(EG,On) is a universal space for some family
F of graph subgroups of G× Σn, and if F ′ is any other such family, a map

EF ′ → MapG(EG,On)

is the same thing as a map

EF ′ × EG→ On

But EF ′ × EG ≃ EG, hence there is always such a map, as EG is initial in the
category of such universal spaces. Therefore MapG(EG,On) is terminal, so it is an
EGΣn, and MapG(EG,O) is equivalent to the terminal N∞-operad. �

This is an extremely useful theorem: many genuine equivariant homotopy types
come naturally as cofree spectra equipped with naive E∞-structures. The Lubin-
Tate theories E(k,G) with their actions by (subgroups of) the Morava stabilizer
group, furnished by the Goerss-Hopkins-Miller theorem [37], come to us this way,
and similarly for various equivariant forms of TMF . For example, the C2-spectrum
Tmf1(3) studied by Hill and Meier [18]. These cofree theories E therefore come
equipped with canonical maps of genuine commutative ring spectra

NTE → E

for finite G-sets T . These maps play an essential role in computations involving
the above spectra, see for example Section 6 of [14] in the E(k,G)-case.
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We give a series of generalizations of this result that concern H-cofree G-spectra
and induced localizations. This is a natural direction of generalization as F (EG+,−)
is simply the induced Bousfield localization functor LG+(−). Let E ∈ SpG and let
ZE denote the nonunital symmetric monoidal coefficient system (as in [16]) of E-
acyclics. That is, ZE is the contravariant (pseudo-)functor from the orbit category
OG to nonunital symmetric monoidal categories with values

ZE(G/H) = ZiG
H
E

We now recall the following theorem of Hill-Hopkins and Gutierrez-White:

Theorem 5.2. [16][13] Let O be an N∞-operad for the group G, and E ∈ SpG.
Then LE(−) preserves O-algebras if and only if for all K ⊂ H ⊂ G such that H/K
is an admissible H-set of O,

NH/K(ZE(G/H)) ⊂ ZE(G/H)

Proposition 5.3. Let O be an N∞ operad for the group G. If H ⊂ G and E ∈ SpH

is such that LE(−) preserves iGHO-algebras, then LG+∧HE(−) preserves O-algebras.

Proof. Let K ′ ⊂ K ⊂ G be such that K/K ′ is an admissible K-set for O, then we
must show that

NK/K′

ZG+∧HE(G/K) ⊂ ZG+∧HE(G/K)

The double coset formula states

iGKG+ ∧H E =
∨

[g]∈K\G/H

K+ ∧K∩gH i
gH
K∩gH(gE)

hence Z ∈ ZG+∧HE(G/K) ⇐⇒ iKK∩gHZ ∈ Zig H
K∩g H

(gE) for all g ∈ G. We therefore

assume that iKK∩gHZ ∈ Zig H
K∩g H

(gE), and we must show that iKK∩gHN
K/K′

(Z) ∈

Zig H
K∩g H

(gE), but we have

iKK∩gHN
K/K′

(Z) =
∧

[h]∈(K∩gH)\K/K′

NK∩gH
(K∩gH)∩h(K′)i

h(K′)

(K∩gH)∩h(K′)
(h(iKK′Z))

This smash product is in Zig H
K∩g H

(gE) if any of its factors is, hence we may take

h = e so that it suffices to show that

NK∩gH
(K∩gH)∩K′iK

′

(K∩gH)∩K′(iKK′Z) = N (K∩gH)/((K∩gH)∩K′)(iKK∩gHZ) ∈ Zig H
K∩g H

(gE)

Since O admits K/K ′, O admits (K∩gH)/((K∩gH)∩K ′) since the admissible sets
for O are closed under restriction in this way. If we knew then that LgE preserves
iGgHO-algebras, 5.2 would guarantee that Zig H

K∩g H
(gE) is closed under this norm.

The fact that

LE(−) preserves iGHO-algebras =⇒ LgE(−) preserves iGgHO-algebras

follows from the fact that the admissible sets for O are closed under conjugacy,
along with the observations

NK/K′

Z ∧ iHKE ≃ ∗ ⇐⇒ N
gK/g(K′)(gZ) ∧ i

gH
gK(gE) ≃ ∗

Z ∧ iHKE ≃ ∗ ⇐⇒
gZ ∩ i

gH
gK(gE) ≃ ∗

which follow from the fact that g(−) : SpH → Sp
gH is a symmetric monoidal

equivalence of categories. �
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Corollary 5.4. If H ⊂ G, and E ∈ SpH is such that LE(−) preserves H-
commutative rings, then LG+∧HE(−) preserves G-commutative rings.

As in 5.1, we will see that the situation is actually better than this: induced
localizations automatically upgrade the available norms for an N∞-algebra, and
we make this precise using the results of Section 3. We may give EFH the trivial
Σn-action, and as such it becomes the universal G× Σn-space for the family

FH×Σn
:= {Λ ⊂ G× Σn : pr1(Λ) ∈ FH}

where pr1 : G × Σn → G is the projection onto the first factor. It is easy to
check that if X is any G × Σn-space, then if we give the G-space MapG(EFH , X)
a G× Σn-action by postcomposing with the action of Σn on X , this is isomorphic
as a G × Σn-space to MapG×Σn

(EFH , X), where EFH has a trivial Σn action as
above. If O is any N∞-operad for the group G, it follows that MapG(EFH ,O) is
as well. Moreover, if R is an algebra over O, then F (EFH+, R) is an algebra over
MapG(EFH ,O). 3.7 and 5.3 together give:

Corollary 5.5. If R ∈ SpG, E ∈ SpH, and O is an N∞ operad for the group G
such that R is an O-algebra and LE preserves iGHO-algebras, then LG+∧HE(R) is a
MapG(EFH ,O)-algebra.

In the situation of the corollary, we find that R acquires more norms after local-
izing at G+∧HE since the collection of admissible sets for MapG(EFH ,O) contains
that of O. We determine now exactly which new norms it acquires. If O is any
N∞-operad for the group H , then the coinduced operad FH(G,O) is an N∞-operad
for the group G ([7], 6.14), and we have the following:

Proposition 5.6. MapG(EFH ,O) ≃ FH(G, iGHO) as N∞-operads.

Proof. We have a zig zag of maps of operads

MapG(EFH ,O) MapG(EFH ,O)× FH(G, iGHO) FH(G, iGHO)

given by the projection maps. It follows that if, for all n ≥ 0, MapG(EFH ,O)n and
FH(G, iGHO)n are universal G × Σn-spaces for the same family of subgroups, then
both projections are equivalences.

Let Un be the category of universal (G×Σn)-spaces EF for F a family of graph
subgroups of G×Σn. It is an immediate consequence of Elmendorf’s theorem that
Ho(Un) is equivalent to the poset of families of graph subgroups of G × Σn, via
inclusion. Therefore, if E ∈ Un, then E = EF is a universal G× Σn-space for the
family of subgroups

F =
⋃

F ′ :
∃EF ′→E

F ′

given by the union of families F ′ having the property that there is a G × Σn-
equivariant map EF ′ → E. For MapG(EFH ,On), by adjunction, there is such a
map if and only if there is a map

EF × EFH → On

Since EF × EFH ≃ E(F ∩ FH×Σn
), this happens if and only if

F ∩ FH×Σn
⊂ FOn
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One may show that FH(G, iG×Σn

H×Σn
On) ∼= FH×Σn

(G × Σn, i
G×Σn

H×Σn
On) so that there

is a G× Σn-map

EF → FH(G, iG×Σn

H×Σn
On)

if and only if there is a map

iG×Σn

H×Σn
EF → iG×Σn

H×Σn
On

by adjunction. One checks easily that these are the following universal H × Σn-
spaces

iG×Σn

H×Σn
EF = E(Γ ⊂ H × Σn : Γ ∈ F)

iG×Σn

H×Σn
On = E(Γ ⊂ H × Σn : Γ ∈ On)

Hence the map above exists if and only if

{Γ ⊂ H × Σn : Γ ∈ F} ⊂ FOn

Since FOn
is a family and in particular closed under subconjugates, this happens

if and only if

F ∩ {Γ ⊂ G× Σn : Γ is subconjugate to H × Σn} ⊂ FOn

It therefore suffices to observe that

FH×Σn
= {Γ ⊂ G× Σn : Γ is subconjugate to H × Σn}

�

Corollary 5.7. For any K ⊂ G, a K-set T is admissible for MapG(EFH ,O) if

and only if for all g ∈ G, igKg
−1

H∩gKg−1
gT is admissible for O. In particular, if iGHO is

genuine H-E∞, then MapG(EFH ,O) is genuine G-E∞.

Proof. It is clear that if K ⊂ H , and T is a K-set, then iGHO admits T iff O admits
T . Now we apply the previous proposition and ([7], 6.16). �

The following is the most direct generalization of 5.1 above, in the case where
iGHO is genuine H-E∞.

Corollary 5.8. Let R ∈ SpG be an algebra over an N∞-operad O such that iGHO
is a genuine H-E∞-operad, and let E ∈ SpH. If LE(−) preserves H-commutative
rings, then LG+∧HE(R) is a G-commutative ring. In particular, if R is an O-

algebra such that iGHO is genuine H-E∞, then F (EFH+, R) is a G-commutative
ring.

Proof. Note that F (EFH+, R) ≃ LG/H+
(R) ≃ LG+∧HS0 (R), so that the second

assertion follows from the first. For the first assertion, we simply combine 5.5 and
5.7. �

Example 5.9. LEG(m) sends O-algebras to G-commutative rings for all n and m.
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6. Restriction of Idempotents along a Quasi-Galois Extension

We digress from categories of G-spectra to highlight the extent to which the
results of Section 3.3 may be generalized to other settings in which Bousfield
localization is possible. This is motivated by the following theorem of Balmer,
Dell’Ambroglio, and Sanders:

Theorem 6.1. ([1], Theorem 1.1) For H ⊂ G a subgroup, there is an equivalence
of tt-categories

Ho(SpH) ≃ModHo(SpG)(F (G/H+, S
0))

where the latter is the category of modules in Ho(SpG) over the ring spectrum
F (G/H+, S

0). Under this equivalence, the functor iGH(−) corresponds to extension
of scalars along the unit map S0 → F (G/H+, S

0), and G+ ∧H (−) ≃ FH(G+,−)
corresponds to restriction of scalars.

Mathew, Noel, and Naumann upgraded this to an equivalence of symmetric
monoidal ∞-categories [28]

SpH ≃ ModSpG(F (G/H+, S
0))

and studied the extent to which a commutative algebra A in a presentable, symmet-
ric monoidal stable ∞-category (C,⊗,1) exhibited categorical properties similar to
those seen in equivariant homotopy theory with A = F (G/H+, S

0). In our context,
the analogy suggests that perhaps a smashing A-module M will pull back to an
object in C whose Bousfield localization functor becomes smashing after completion
at A. That is, if η : 1 → A is the unit map of A, if M ∈ ModC(A) determines a
smashing localization in ModC(A), following 3.20, we expect a formula

Lη∗M (−) = LA(Lη∗M (1)⊗ −)

in C. However, 3.24 tells us that, even in the motivating example S0 → F (G/H+, S
0),

we need H to be normal for such a formula to hold. Hence we are led to ask that
η be a quasi-Galois extension.

6.1. Background on stable ∞-categories and quasi-Galois extensions. We
review what is needed to establish the desired localization formulae for a quasi-
Galois extension. We use the language of ∞-categories following [27] and closely
follow the discussion in Section 1 of [28], where more detail can be found. In
all that follows, we will let (C,⊗,1) be a presentable, symmetric monoidal stable
∞-category in which −⊗− commutes with colimits in colimits in each variable.

Definition 6.2. Let M ∈ C. We let ZM be the full subcategory of C consisting
of those Z ∈ C such that Z ⊗M ≃ ∗. We let LM denote the full subcategory of
C consisting of those Y ∈ C such that the space MapC(Z, Y ) is contractible for all
Z ∈ ZM .

It follows formally from ([27], Section 5.5) that LM is a presentable stable ∞-
category, and the inclusion LM →֒ C admits a left adjoint, LM (−). Moreover, by
([26], 2.2.1.9), LM inherits the structure of a symmetric monoidal ∞-category so
that LM : C → LM is symmetric monoidal. The tensor product in LM is then
necessarily given by the formula

LM (X)⊗̂LM (Y ) := LM (X ⊗ Y )
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With this in place, the discussion in Section 2 may be repeated in this setting
mutatis mutandis. In particular, we may use smashing localizations and tensor
idempotents interchangeably (see [26], Section 6.3 or [10], Section 3 for more de-
tails).

Suppose now we have an object A ∈ CAlg(C) - this induces an Ind-Res adjunction

C = ModC(1)

ModC(A)

η∗ η∗

ModC(A) is a presentable, symmetric monoidal stable∞-category, η∗ is a symmetric
monoidal functor, and the adjunction η∗ ⊣ η

∗ satisfies the projection formula

N ⊗ η∗(M) ≃ η∗(η∗N ⊗AM)

(see [28], Section 5.2). Under the assumption that A is dualizable in C, [28] deduce
the following description of LA.

Theorem 6.3. If A is dualizable in C, the functor η∗ descends to an equivalence
of symmetric monoidal ∞-categories

LA ≃ Tot(ModC(A) ModC(A⊗A) · · · )

In our motivating example of A = F (G/H+, S
0) ∈ CAlg(Sp) for H ⊳ G, the

double coset formula allows us to identify the simplicial object on the right hand
side as the cobar complex computing (SpH)h(G/H). This generalizes to the following
situation:

Definition 6.4. LetG be a finite group,R ∈ CAlg(C), and A ∈ Fun(BG,CAlg(C)R/).
Consider the diagram in CAlg(C).

R A

A A⊗R A

∏

g∈G

A

∆tw

∆

φ

where πg ◦∆tw = g : A→ A. We say that R→ A is a quasi-Galois extension if
φ is an equivalence.

Remark 6.5. If we required additionally that the morphism R→ AhG be an equiv-
alence, this would be the usual definition of a Galois extension, due to Rognes
[34]. This terminology is used in [32] where quasi-Galois extensions are studied in
a tt-geometry context.

As before, we will take R = 1, and we record the following immediate conse-
quence of 6.3:

Corollary 6.6. If A is dualizable in C, and η : 1→ A is a quasi-Galois extension,
the functor η∗ descends to an equivalence of symmetric monoidal ∞-categories

LA ≃ (ModC(A))hG
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Remark 6.7. If η were a Galois extension, the dualizability condition on A would
be automatic ([34], 6.2.1).

When η is a quasi-Galois extension, the projection formula gives the following
decomposition, of which the double-coset formula for iGH(G+∧H−) is a special case.

Lemma 6.8. For M ∈ModC(A),

η∗η
∗M =

⊕

g∈G

gM

6.2. Smashing A-modules. Our desired localization formulae are of the form

L(−) = LA(L(1)⊗−)

By definition of the symmetric monoidal structure in LA, producing a localization
functor L(−) on C given by such a formula is equivalent to producing a smashing
localization in LA. Corollary 6.6 tells us that smashing localizations in LA are the
same thing as smashing localizations in (ModC(A))hG. This allows us to produce
smashing localizations in LA from smashing localizations in ModC(A) via norm
functors.

Construction 6.9. Let (D,⊗,1) be a presentable, symmetric monoidal∞-category
with G-action (e.g. ModC(A) as above). There is a symmetric monoidal functor

N : D → DhG

such that the composite

D
N
−→ DhG →֒ D

is given by the functor

M 7→
⊗

g∈G

gM

Remark 6.10. There is a right adjoint

Fun(BG, SymMon∞-Cat)→ G-SymMon∞-Cat

to the forgetful functor which sends (D,⊗,1), a presentable, symmetric monoidal
∞-category with G-action, to the G-symmetric monoidal ∞-category D(G/H) =
DhH , with norm map D(G/e) → D(G/G) as in 6.9. This is a higher algebra
analog of the functor that sends a commutative ring with G-action to its fixed-
point Tambara functor. An account of this construction is to appear in [30].

This construction appears in the context of the symmetric monoidal G-categories
of Guillou, May, Merling, and Osorno (see 3.7 of [12]), the normed symmetric
monoidal categories of Rubin (see 3.7 of [38]), and the symmetric monoidal mackey
functors of Hill-Hopkins (see 2.6 [16]).

By use of N , we may therefore send an idempotent e in ModC(A) to an idempo-
tent N(e) in LA. This determines some smashing localization in LA, and using 6.8,
we may identify its corresponding Bousfield class in terms of that of e. We have
the following:

Theorem 6.11. Suppose (C,⊗,1) and A are as above. In particular, assume
η : 1 → A is a quasi-Galois extension and A is dualizable in C. If M ∈ ModC(A)
is smashing, then we have the formula in C:

Lη∗M (−) = LA(Lη∗M (1)⊗ −)
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Proof. For X ∈ C, the composite

X → Lη∗M (1)⊗X → LA(Lη∗M (1)⊗X)

becomes an equivalence after applying − ⊗ η∗M . This is clear for the first map,
and for the second map, for any Y ∈ C, we have a commutative diagram

Y ⊗ η∗M LA(Y )⊗ η∗M

η∗(η∗Y ⊗AM) η∗(η∗(LA(Y ))⊗AM)

≃ ≃

by the projection formula. The bottom arrow is an equivalence because η∗Y →
η∗(LA(Y )) is an equivalence by definition. It suffices now to show that LA(Lη∗M (1)⊗
X) is η∗M -local in C.

Suppose we knew that LA(η∗M) determined a smashing Bousfield class in LA.
Then if Z ∈ Zη∗M , we have LA(Z)⊗̂LA(η∗M) ≃ ∗, and

MapC(Z,LA(Lη∗M (1)⊗X)) ≃MapLA
(LA(Z), LA(Lη∗M (1))⊗̂LA(X))

Since LA(η∗M)-locals form a ⊗̂-ideal in LA by assumption, it would therefore
suffice to show that LA(Lη∗M (1)) is LA(η∗M)-local in LA. If LA(Z ′) ∈ LA is an
LA(η∗M)-⊗̂-acyclic, then

MapLA
(LA(Z ′), LA(Lη∗M (1))) ≃ MapC(Z ′, Lη∗M (1)) ≃ ∗

The first equivalence is by adjunction and the fact that Lη∗M ⊂ LA, as ZA ⊂ Zη∗M

by the projection formula. For the second, Z ′ ⊗ η∗M is A-local, as an A-module,
hence

Z ′ ⊗ η∗M ≃ LA(Z ′ ⊗ η∗M) ≃ LA(Z ′)⊗̂LA(η∗M) ≃ ∗

We now show that LA(η∗M) determines a smashing Bousfield class in LA. Let
eM , fM ∈ ModC(A) denote the left and right idempotents corresponding to M ,
respectively. If N(−) is the functor in 6.9, we have that

ker(−⊗̂cofib(N(eM )→ 1))

is a smashing ideal in LA. It suffices to show that it coincides with ker(−⊗̂LA(η∗M)).
Since η∗ is conservative on LA, we have

Z⊗̂cofib(N(eM )→ 1) ≃ ∗ ⇐⇒ η∗(Z⊗̂cofib(N(eM )→ 1)) ≃ ∗

⇐⇒ η∗(Z)⊗A cofib(η∗N(eM )→ 1) ≃ ∗

⇐⇒ η∗(Z)⊗A cofib(
⊗

g∈G

geM → 1) ≃ ∗

⇐⇒ η∗(Z)⊗A cofib(e⊕

g∈G

gM → 1) ≃ ∗

⇐⇒ η∗(Z)⊗A f⊕

g∈G

gM ≃ ∗

⇐⇒ η∗(Z)⊗A
⊕

g∈G

gM ≃ ∗

⇐⇒ η∗(Z)⊗A η∗η
∗M ≃ ∗

⇐⇒ η∗(Z ⊗ η∗M) ≃ ∗

⇐⇒ Z⊗̂η∗M ≃ ∗
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The third equivalence is by definition of N(−), the fourth and sixth follow as in
2.12, and the seventh is 6.8. �

Remark 6.12. When C = SpG and A = F (G/H+, S
0) for H⊳G, this recovers 3.20.

Moreover, the description of LA(−) in this case may be generalized: it follows from
([28], Proposition 2.21) that in the situation of 6.11, we have the formula

LA(Y ) ≃ (Y ⊗A)hG ≃ F (D(A), Y )hG ≃ F (D(A)hG, Y )

and so the formula in 6.11 may be made more explicit:

Lη∗M (X) ≃ F (D(A)hG, Lη∗M (1)⊗X)

Remark 6.13. We may derive an analogous formula for a general quasi-Galois ex-
tension η : R→ A in C such that A is dualizable in ModC(R): a smashing R-linear
A-module M ∈ModModC(R)(A) determines a smashing localization in the category
of A-locals in ModC(R) corresponding to the Bousfield class of η∗M . The same
proofs work since R is the unit in ModC(R).

We have also in this setting a necessary and sufficient condition for η∗M to be
smashing in C, i.e. a generalization of 3.19. In [28], the role of the geometric fixed
points functor is generalized to this setting as follows: consider the cofiber sequence

D(A)
D(η)
−−−→ 1

aA−−→ C(A)

Define
UA := colim(1

aA−−→ C(A)
aA−−→ C(A)⊗2 aA−−→ · · · )

Then UA is a right idempotent in C, and for any X ∈ C, there is a homotopy
pullback square

X X ⊗ UA

LA(X) LA(X)⊗ UA

Proposition 6.14. In the situation of 6.11, η∗M is smashing in C if and only if
Lη∗M (1)⊗ UA ≃ ∗.

Proof. If η∗M is smashing, then Lη∗M (1)⊗UA ≃ Lη∗M (UA), but ZA ⊂ Zη∗M , and
in the cofiber sequence

D(A)⊗A→ A→ C(A)⊗A

the first map splits via the map A→ D(A) ⊗ A adjoint to the multiplication map
A⊗A→ A. Therefore the map A→ C(A) ⊗A is null, and so

UA ⊗A ≃ colim(A→ C(A) ⊗A→ C(A)⊗2 ⊗A→ · · · ) ≃ ∗

Conversely, suppose Lη∗M (1) ⊗ UA ≃ ∗, we will show that Lη∗M (1) ⊗X ∈ Lη∗M

for all X ∈ C. As above, we have a pullback square

Lη∗M (1)⊗X Lη∗M (1)⊗X ⊗ UA

LA(Lη∗M (1)⊗X) LA(Lη∗M (1)⊗X)⊗ UA

By 6.11, we may identify the bottom row with the map Lη∗M (X)→ Lη∗M (X)⊗UA.
By assumption, Lη∗M (1)⊗ UA ≃ ∗, so Lη∗M (X)⊗ UA is contractible as a module
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over Lη∗M (1)⊗UA. Therefore the left hand arrow is an equivalence and the target
is η∗M -local. �

Corollary 6.15. In the situation of 6.11 η∗M is smashing in C if and only if
Lη∗M (1) is in the thick subcategory of C generated by A.

Proof. This follows immediately from [28], Theorem 4.19. �

Example 6.16. Let H⊳G be a closed normal subgroup of finite index in a compact
Lie group G. If E ∈ SpH is smashing, then

LG+∧HE(X) = F (EFH+, LE(S0) ∧X)

for all X ∈ SpG.

Proof. In [28], pg. 29, it is noted that the the analog of 4.1 (and its ∞-categorical
refinement) hold in this setting, and the formula now follows from 6.12. �

Example 6.17. In fact, our above arguments may be used to show the analogous
version of 3.20 for induced localizations holds for any of the equivariant tt-categories
studied in [1].
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