Shachar Carmeli

University of Copenhagen

January 18, 2024

Shachar Carmeli

University of Copenhagen

• \mathscr{C} a stable ∞ -category $\implies K(\mathscr{C})$ a spectrum.

Shachar Carmeli

University of Copenhager

- \mathscr{C} a stable ∞ -category $\implies K(\mathscr{C})$ a spectrum.
- $\pi_0 K(\mathscr{C}) = \{\text{isom. classes of objects of } \mathscr{C}\}/\{\text{relations}\}.$

- \mathscr{C} a stable ∞ -category $\implies K(\mathscr{C})$ a spectrum.
- $\pi_0 K(\mathscr{C}) = \{\text{isom. classes of objects of } \mathscr{C}\}/\{\text{relations}\}.$
- $X \to Y \to Z$ cofiber sequence \Longrightarrow

[X] + [Z] = [Y].

Shachar Carmeli

- \mathscr{C} a stable ∞ -category $\implies K(\mathscr{C})$ a spectrum.
- $\pi_0 K(\mathscr{C}) = \{\text{isom. classes of objects of } \mathscr{C}\}/\{\text{relations}\}.$
- $X \to Y \to Z$ cofiber sequence \Longrightarrow

[X] + [Z] = [Y].

• *R* a ring spectrum, $K(R) \coloneqq K(\operatorname{Mod}_{R}^{\omega})$.

Shachar Carmeli

Chromatic Homotopy Theory

Shachar Carmeli

University of Copenhagen

Chromatic Homotopy Theory

Balmer spectrum of the sphere spectrum:

Shachar Carmeli

University of Copenhager

Chromatic Homotopy Theory

Balmer spectrum of the sphere spectrum:

$$\pi_* K(n) = \mathbb{F}_p[v_n^{\pm 1}], \quad |v_n| = 2(p^n - 1).$$

Shachar Carmeli

University of Copenhager

$$\pi_*K(n) = \mathbb{F}_p[v_n^{\pm 1}], \quad |v_n| = 2(p^n - 1).$$

Complication: 2 natural candidates for completion!

Shachar Carmeli

University of Copenhager

$$\pi_* K(n) = \mathbb{F}_p[v_n^{\pm 1}], \quad |v_n| = 2(p^n - 1).$$

Complication: 2 natural candidates for completion!

• Completion "at the prime ideal": $\mathbb{S}_{T(n)}$.

Shachar Carmeli

$$\pi_* K(n) = \mathbb{F}_p[v_n^{\pm 1}], \quad |v_n| = 2(p^n - 1).$$

Complication: 2 natural candidates for completion!

- Completion "at the prime ideal": $\mathbb{S}_{T(n)}$.
- Completion "at the residue field": $\mathbb{S}_{K(n)}$.

$$\pi_* K(n) = \mathbb{F}_p[v_n^{\pm 1}], \quad |v_n| = 2(p^n - 1).$$

Complication: 2 natural candidates for completion!

- Completion "at the prime ideal": $\mathbb{S}_{T(n)}$.
- Completion "at the residue field": $\mathbb{S}_{K(n)}$.

Corresponding categories of "complete modules": $Sp_{T(n)}$ and $Sp_{K(n)}$.

Chromatic Redshift

• Ausoni-Rognes: If *R* is "of" chromatic height *n* then *K*(*R*) should be "of" height *n* + 1.

Chromatic Redshift

- Ausoni-Rognes: If *R* is "of" chromatic height *n* then *K*(*R*) should be "of" height *n* + 1.
- This principle is based on their computation of $V(2) \otimes K(\ell)$ for V(2) a smith-Toda complex and ℓ the (connective) Adams summand.

Chromatic Redshift

- Ausoni-Rognes: If *R* is "of" chromatic height *n* then *K*(*R*) should be "of" height *n* + 1.
- This principle is based on their computation of $V(2) \otimes K(\ell)$ for V(2) a smith-Toda complex and ℓ the (connective) Adams summand.

For n = 0:

Theorem (Mitchell)

If R is a (discrete) ring then $L_{T(n)}K(R) = 0$ for n > 1.

Shachar Carmeli

More Chromatic Redshift

A version has recently been proven:

Shachar Carmeli

University of Copenhager

More Chromatic Redshift

A version has recently been proven:

Theorem (Purity, Clausen-Land-Mathew-Meier-Neumann-Noel-Tamme)

For a ring spectrum R:

$$L_{T(n+1)}K(R) \simeq L_{T(n+1)}K(L_{T(n)+T(n+1)}R).$$

Shachar Carmeli

University of Copenhagen

More Chromatic Redshift

A version has recently been proven:

Theorem (Purity, Clausen-Land-Mathew-Meier-Neumann-Noel-Tamme)

For a ring spectrum R:

$$L_{T(n+1)}K(R) \simeq L_{T(n+1)}K(L_{T(n)+T(n+1)}R).$$

Theorem (Burklund-Schlank-Yuan)

For a commutative ring spectrum R in $\operatorname{Sp}_{T(n)}$:

$$R \neq 0 \implies L_{T(n+1)}K(R) \neq 0.$$

Shachar Carmeli

K-Theory at the Boundary of Redshift

Heuristic Idea: $L_{T(n+1)}K(R)$ is an "étale-topological invariant" of Spec(R) for R a T(n)-local ring spectrum.

Shachar Carmeli

University of Copenhager

K-Theory at the Boundary of Redshift

Heuristic Idea: $L_{T(n+1)}K(R)$ is an "étale-topological invariant" of Spec(R) for R a T(n)-local ring spectrum.

Theorem (Thomason)

 $L_{K(1)}K$ satisfies étale descent on discrete commutive rings.

Shachar Carmeli

University of Copenhager

K-Theory at the Boundary of Redshift

Heuristic Idea: $L_{T(n+1)}K(R)$ is an "étale-topological invariant" of Spec(R) for R a T(n)-local ring spectrum.

Theorem (Thomason)

 $L_{K(1)}K$ satisfies étale descent on discrete commutive rings.

This has been partially generalized to higher heights:

Theorem (CMNN)

The functor

 $L_{T(n+1)}K: \{L_n^f \text{-local categories}\} \rightarrow \{T(n+1) \text{-local spectra}\}$

preserves fixed points for finite *p*-group actions.

Shachar Carmeli

University of Copenhagen

Shachar Carmeli

University of Copenhager

Definition

A space A is called π -finite if $\pi_0 A$ is finite and the (total) homotopy $\pi_*(A, a)$ is finite for every $a \in A$.

Shachar Carmeli

University of Copenhager

Definition

A space A is called π -finite if $\pi_0 A$ is finite and the (total) homotopy $\pi_*(A, a)$ is finite for every $a \in A$.

Theorem (Ben-Moshe-C.-Schlank-Yanovski)

Let A be a p-local π -finite space.

Shachar Carmeli

University of Copenhager

Definition

A space *A* is called π -*finite* if $\pi_0 A$ is finite and the (total) homotopy $\pi_*(A, a)$ is finite for every $a \in A$.

Theorem (Ben-Moshe-C.-Schlank-Yanovski)

Let A be a p-local π -finite space. For every functor

 $\mathscr{C}_{\bullet}: A \to \{L_n^f \text{-local categories}\},\$

Shachar Carmeli

University of Copenhager

Definition

A space *A* is called π -*finite* if $\pi_0 A$ is finite and the (total) homotopy $\pi_*(A, a)$ is finite for every $a \in A$.

Theorem (Ben-Moshe-C.-Schlank-Yanovski)

Let A be a p-local π -finite space. For every functor

 $\mathscr{C}_{\bullet}: A \to \{L_n^f \text{-local categories}\},\$

$$L_{T(n+1)}K(\varprojlim_{a\in A}\mathscr{C}_a) \xrightarrow{\sim} \varprojlim_{a\in A}L_{T(n+1)}K(\mathscr{C}_a)$$

Shachar Carmeli

Definition

A space *A* is called π -*finite* if $\pi_0 A$ is finite and the (total) homotopy $\pi_*(A, a)$ is finite for every $a \in A$.

Theorem (Ben-Moshe-C.-Schlank-Yanovski)

Let A be a p-local π -finite space. For every functor

 $\mathscr{C}_{\bullet}: A \to \{L_n^f \text{-local categories}\},\$

$$L_{T(n+1)}K(\varprojlim_{a\in A}\mathscr{C}_a) \xrightarrow{\sim} \varprojlim_{a\in A}L_{T(n+1)}K(\mathscr{C}_a)$$

*Same for colimits instead of limits (Ambidexterity!).

Shachar Carmeli

Iniversity of Copenhagen

• Induction on the truncatedness of A, starting from CMNN.

Shachar Carmeli

University of Copenhagen

- Induction on the truncatedness of A, starting from CMNN.
- Replace L_n^f -local categories by monochromatic categories (using Purity).

- Induction on the truncatedness of A, starting from CMNN.
- Replace L_n^f -local categories by monochromatic categories (using Purity).
- Reduce to constant colimits (using ambidexterity).

- Induction on the truncatedness of A, starting from CMNN.
- Replace L_n^f -local categories by monochromatic categories (using Purity).
- Reduce to constant colimits (using ambidexterity).
- Reduce to $\mathscr{C} = \operatorname{Mod}_R^{\omega}$ (using Schwede-Shipley). Remains to prove:

$$L_{T(n+1)}K(R[\Omega A]) \simeq L_{T(n+1)}K(R) \otimes A.$$

Shachar Carmeli

- Induction on the truncatedness of A, starting from CMNN.
- Replace L_n^f -local categories by monochromatic categories (using Purity).
- Reduce to constant colimits (using ambidexterity).
- Reduce to $\mathscr{C} = \operatorname{Mod}_R^{\omega}$ (using Schwede-Shipley). Remains to prove:

$$L_{T(n+1)}K(R[\Omega A]) \simeq L_{T(n+1)}K(R) \otimes A.$$

 (Mathew): Both sides preserve (suitable) geometric realizations ⇒ use the Bar construction A ≃ lim Δ^{op}ΩA^k and the inductive hypothesis.

Shachar Carmeli

Iniversity of Copenhagen

• $B^n C_{p^k}$: *n*-fold classifying space of the p^k -th cyclic group.

- $B^n C_{p^k}$: *n*-fold classifying space of the p^k -th cyclic group.
- $\mathbb{S}_{T(n)}[B^n C_{p^k}]$: the T(n)-local group algebra.

Shachar Carmeli

University of Copenhagen

- $B^n C_{p^k}$: *n*-fold classifying space of the p^k -th cyclic group.
- $\mathbb{S}_{T(n)}[B^n C_{p^k}]$: the T(n)-local group algebra.

Theorem (C.-Schlank-Yanovski)

There is a decomposition

$$\mathbb{S}_{T(n)}[B^n C_{p^k}] \simeq \mathbb{S}_{T(n)}[B^n C_{p^{k-1}}] \times \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}].$$

Shachar Carmeli

- $B^n C_{p^k}$: *n*-fold classifying space of the p^k -th cyclic group.
- $\mathbb{S}_{T(n)}[B^n C_{p^k}]$: the T(n)-local group algebra.

Theorem (C.-Schlank-Yanovski)

There is a decomposition

$$\mathbb{S}_{T(n)}[B^n C_{p^k}] \simeq \mathbb{S}_{T(n)}[B^n C_{p^{k-1}}] \times \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}].$$

 $\mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}]$ is a $(\mathbb{Z}/p^k)^{\times}$ Galois extension of $\mathbb{S}_{T(n)}$.

Shachar Carmeli

University of Copenhagen

- $B^n C_{p^k}$: *n*-fold classifying space of the p^k -th cyclic group.
- $\mathbb{S}_{T(n)}[B^n C_{p^k}]$: the T(n)-local group algebra.

Theorem (C.-Schlank-Yanovski)

There is a decomposition

$$\mathbb{S}_{T(n)}[B^n C_{p^k}] \simeq \mathbb{S}_{T(n)}[B^n C_{p^{k-1}}] \times \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}].$$

 $\mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}]$ is a $(\mathbb{Z}/p^k)^{\times}$ Galois extension of $\mathbb{S}_{T(n)}$.

Definition

 $\mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}]$ is the p^k -th chromatic cyclotomic extension.

Shachar Carmeli

University of Copenhager

Shachar Carmeli

University of Copenhagen

Theorem (BCSY)

For a commutative T(n)-local ring spectrum R:

$$L_{T(n+1)}K(R[\omega_{p^k}^{(n)}]) \simeq L_{T(n+1)}K(R)[\omega_{p^k}^{(n+1)}]$$

Shachar Carmeli

University of Copenhagen

Theorem (BCSY)

For a commutative T(n)-local ring spectrum R:

$$L_{T(n+1)}K(R[\omega_{p^k}^{(n)}]) \simeq L_{T(n+1)}K(R)[\omega_{p^k}^{(n+1)}]$$

The case n = 0 is a result of Bhatt-Clausen-Mathew:

Theorem (BCM)

For a commutative ring R:

$$L_{K(1)}K(R[\zeta_{p^{\infty}}]) \simeq L_{K(1)}(K(R) \otimes \mathrm{KU}).$$

Shachar Carmeli

M: a complex of Z/p^k-modules, concentrated in degrees [0, n].

- M: a complex of Z/p^k-modules, concentrated in degrees [0, n].
- $M^* \coloneqq \hom(M, \mathbb{Z}/p^k).$

- M: a complex of Z/p^k-modules, concentrated in degrees [0, n].
- $M^* \coloneqq \hom(M, \mathbb{Z}/p^k).$
- R a commutative ring in $Sp_{T(n)}$.

- M: a complex of Z/p^k-modules, concentrated in degrees [0, n].
- $M^* \coloneqq \hom(M, \mathbb{Z}/p^k).$
- R a commutative ring in $Sp_{T(n)}$.
- $\omega: \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to R$, a "primitive root of unity" in R.

Shachar Carmeli

- M: a complex of Z/p^k-modules, concentrated in degrees [0, n].
- $M^* \coloneqq \hom(M, \mathbb{Z}/p^k).$
- R a commutative ring in $\operatorname{Sp}_{T(n)}$.
- $\omega: \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to R$, a "primitive root of unity" in R.

Theorem (Barthel-C.-Schlank-Yanovski)

There is a natural Fourier isomorphism

$$\mathfrak{F}_{\omega}: R[M] \xrightarrow{\sim} R^{\Omega^{\infty} \Sigma^n M^*}$$

Shachar Carmeli

Fourier Redshift

By Cyclotomic Redshift: A map $\omega: \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to R$ gives a map

$$\tilde{\omega}: \mathbb{S}_{T(n+1)}[\omega_{p^k}^{(n+1)}] \to L_{T(n+1)}K(R)$$

Shachar Carmeli

University of Copenhager

Fourier Redshift

By Cyclotomic Redshift: A map $\omega: \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to R$ gives a map

$$\tilde{\omega}: \mathbb{S}_{T(n+1)}[\omega_{p^k}^{(n+1)}] \to L_{T(n+1)}K(R)$$

Theorem (B*CSY)

There is a natural commutative square

Shachar Carmeli

niversity of Copenhager

Fourier Redshift

By Cyclotomic Redshift: A map $\omega: \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to R$ gives a map

$$\tilde{\omega}: \mathbb{S}_{T(n+1)}[\omega_{p^k}^{(n+1)}] \to L_{T(n+1)}K(R)$$

Theorem (B*CSY)

There is a natural commutative square

Shachar Carmeli

niversity of Copenhager

Higher Kummer Theory

Again, fixing a primitive p^k -th root of unity ω in R, let M a finite \mathbb{Z}/p^k -module.

Shachar Carmeli

University of Copenhager

Higher Kummer Theory

Again, fixing a primitive p^k -th root of unity ω in R, let M a finite \mathbb{Z}/p^k -module.

Theorem (B*CSY)

There is a "Higher Kummer equivalence":

 $\operatorname{Map}_{\operatorname{Sp}}(\Sigma^n M^*, \operatorname{Pic}(R)) \simeq \{M \text{-} Galois \text{ extensions of } R\},\$

 $f \mapsto R_f.$

Shachar Carmeli

University of Copenhager

Higher Kummer Theory

Again, fixing a primitive p^k -th root of unity ω in R, let M a finite \mathbb{Z}/p^k -module.

Theorem (B*CSY)

There is a "Higher Kummer equivalence":

 $\operatorname{Map}_{\operatorname{Sp}}(\Sigma^n M^*, \operatorname{Pic}(R)) \simeq \{M \text{-} Galois \text{ extensions of } R\},\$

 $f \mapsto R_f.$

*Barthel.

Shachar Carmeli

University of Copenhager

Kummer Redshift

A map $f: \Sigma^n M^* \to \operatorname{Pic}(R)$ "categorifies" to a map $\tilde{f}: \Sigma^{n+1} M^* \to \operatorname{Pic}(L_{T(n+1)} K(R)).$

Shachar Carmeli

University of Copenhagen

Kummer Redshift

A map $f: \Sigma^n M^* \to \operatorname{Pic}(R)$ "categorifies" to a map

$$\tilde{f}: \Sigma^{n+1} M^* \to \operatorname{Pic}(L_{T(n+1)} K(R)).$$

Theorem (B*CSY)

 $L_{T(n+1)}K$ is compatible with Kummer theory:

$$L_{T(n+1)}K(R_f) \simeq L_{T(n+1)}K(R)_{\tilde{f}}.$$

Shachar Carmeli

University of Copenhager

Kummer Redshift

A map $f: \Sigma^n M^* \to \operatorname{Pic}(R)$ "categorifies" to a map

$$\tilde{f}: \Sigma^{n+1} M^* \to \operatorname{Pic}(L_{T(n+1)} K(R)).$$

Theorem (B*CSY)

 $L_{T(n+1)}K$ is compatible with Kummer theory:

$$L_{T(n+1)}K(R_f) \simeq L_{T(n+1)}K(R)_{\tilde{f}}.$$

*Ben-Moshe.

Shachar Carmeli

University of Copenhager

• The cyclotomic tower:

$$\mathbb{S}_{T(n)} \to \mathbb{S}_{T(n)}[\omega_p^{(n)}] \to \dots \to \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to \dots$$

Shachar Carmeli

University of Copenhager

• The cyclotomic tower:

$$\mathbb{S}_{T(n)} \to \mathbb{S}_{T(n)}[\omega_p^{(n)}] \to \dots \to \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to \dots$$

• $\mathbb{S}_{T(n)}[\omega_{p^{\infty}}^{(n)}]$ a \mathbb{Z}_{p}^{\times} "pro-Galois" extension.

• The cyclotomic tower:

$$\mathbb{S}_{T(n)} \to \mathbb{S}_{T(n)}[\omega_p^{(n)}] \to \dots \to \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to \dots$$

- $\mathbb{S}_{T(n)}[\omega_{p^{\infty}}^{(n)}]$ a \mathbb{Z}_{p}^{\times} "pro-Galois" extension.
- Devinatz-Hopkins: $\mathbb{S}_{K(n)}[\omega_{p^{\infty}}^{(n)}]$ is a Galois extension: $\mathbb{S}_{K(n)}[\omega_{p^{\infty}}^{(n)}]^{h\mathbb{Z}} \simeq \mathbb{S}_{K(n)}.$

• The cyclotomic tower:

$$\mathbb{S}_{T(n)} \to \mathbb{S}_{T(n)}[\omega_p^{(n)}] \to \dots \to \mathbb{S}_{T(n)}[\omega_{p^k}^{(n)}] \to \dots$$

- $\mathbb{S}_{T(n)}[\omega_{p^{\infty}}^{(n)}]$ a \mathbb{Z}_{p}^{\times} "pro-Galois" extension.
- Devinatz-Hopkins: $\mathbb{S}_{K(n)}[\omega_{p^{\infty}}^{(n)}]$ is a Galois extension: $\mathbb{S}_{K(n)}[\omega_{p^{\infty}}^{(n)}]^{h\mathbb{Z}} \simeq \mathbb{S}_{K(n)}.$

Theorem (Cyclotomic Hyperdescent, BCSY)

For a T(n)-local ring spectrum R:

$$L_{K(n+1)}K(R[\omega_{p^{\infty}}^{(n)}])^{h\mathbb{Z}} \simeq L_{K(n+1)}K(R).$$

Shachar Carmeli

iniversity of Copenhage

The Telescope Conjecture

• BP $\langle n \rangle$: The *n*-truncated Brown-Peterson spectrum.

Shachar Carmeli

University of Copenhager

The Telescope Conjecture

- BP $\langle n \rangle$: The *n*-truncated Brown-Peterson spectrum.
- Fact (Burklund-Hahn-Levy-Schlank): There exists a Z-action on BP ⟨n⟩ such that the map

$$L_{T(n)} \operatorname{BP} \langle n \rangle^{h\mathbb{Z}} \to L_{T(n)} \operatorname{BP} \langle n \rangle$$

is (almost) split by the cyclotomic tower.

Shachar Carmeli

University of Copenhager

The Telescope Conjecture

- BP $\langle n \rangle$: The *n*-truncated Brown-Peterson spectrum.
- Fact (Burklund-Hahn-Levy-Schlank): There exists a Z-action on BP ⟨n⟩ such that the map

$$L_{T(n)} \operatorname{BP} \langle n \rangle^{h\mathbb{Z}} \to L_{T(n)} \operatorname{BP} \langle n \rangle$$

is (almost) split by the cyclotomic tower.

• By Cyclotomic Hyperdescent:

$$L_{K(n+1)}K(\operatorname{BP}\langle n\rangle^{h\mathbb{Z}}) \simeq L_{K(n+1)}K(\operatorname{BP}\langle n\rangle)^{h\mathbb{Z}}$$

Shachar Carmeli

The Telescope Conjecture II

Theorem (Burklund-Hahn-Levy-Schlank)

The map

$$L_{T(n+1)}K(\operatorname{BP}\langle n\rangle^{h\mathbb{Z}}) \to L_{T(n+1)}K(\operatorname{BP}\langle n\rangle)^{h\mathbb{Z}}$$

is not an isomorphism.

Shachar Carmeli

University of Copenhager

The Telescope Conjecture II

Theorem (Burklund-Hahn-Levy-Schlank)

The map

$$L_{T(n+1)}K(\mathrm{BP}\langle n\rangle^{h\mathbb{Z}}) \to L_{T(n+1)}K(\mathrm{BP}\langle n\rangle)^{h\mathbb{Z}}$$

is not an isomorphism.

Corollary

 $\operatorname{Sp}_{K(n)} \neq \operatorname{Sp}_{T(n)}$ for $n \ge 2$.

Shachar Carmeli

University of Copenhager

Thank You!

Shachar Carmeli

University of Copenhager