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K-theory

● C a stable∞-category Ô⇒ K(C ) a spectrum.

● π0K(C ) = {isom. classes of objects of C }/{relations}.

● X → Y → Z cofiber sequence Ô⇒

[X] + [Z] = [Y ].

● R a ring spectrum, K(R) ∶=K(ModωR).
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Chromatic Homotopy Theory

Balmer spectrum of the sphere spectrum:
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Residue fields. Morava K-theories K(n):

π∗K(n) = Fp[v
±1
n ], ∣vn∣ = 2(p

n
− 1).

Complication: 2 natural candidates for completion!
● Completion ”at the prime ideal”: ST (n).
● Completion ”at the residue field”: SK(n).

Corresponding categories of ”complete modules”: SpT (n) and
SpK(n).
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Chromatic Redshift

● Ausoni-Rognes: If R is “of” chromatic height n then K(R)
should be “of” height n + 1.

● This principle is based on their computation of V (2) ⊗K(ℓ)
for V (2) a smith-Toda complex and ℓ the (connective)
Adams summand.

For n = 0:

Theorem (Mitchell)

If R is a (discrete) ring then LT (n)K(R) = 0 for n > 1.
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More Chromatic Redshift

A version has recently been proven:

Theorem (Purity,
Clausen-Land-Mathew-Meier-Neumann-Noel-Tamme)

For a ring spectrum R:

LT (n+1)K(R) ≃ LT (n+1)K(LT (n)+T (n+1)R).

Theorem (Burklund-Schlank-Yuan)

For a commutative ring spectrum R in SpT (n):

R ≠ 0 Ô⇒ LT (n+1)K(R) ≠ 0.
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K-Theory at the Boundary of Redshift

Heuristic Idea: LT (n+1)K(R) is an “étale-topological invariant”
of Spec(R) for R a T (n)-local ring spectrum.

Theorem (Thomason)

LK(1)K satisfies étale descent on discrete commuative rings.

This has been partially generalized to higher heights:

Theorem (CMNN)

The functor

LT (n+1)K ∶ {L
f
n-local categories} → {T (n + 1)-local spectra}

preserves fixed points for finite p-group actions.
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Higher Descent

Definition
A space A is called π-finite if π0A is finite and the (total)
homotopy π∗(A,a) is finite for every a ∈ A.

Theorem (Ben−Moshe-C.-Schlank-Yanovski)

Let A be a p-local π-finite space. For every functor

C●∶A→ {L
f
n-local categories},

LT (n+1)K(lim
←Ð

a∈ACa)
∼

Ð→ lim
←Ð

a∈ALT (n+1)K(Ca)

*Same for colimits instead of limits (Ambidexterity!).
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Rough Proof Sketch

● Induction on the truncatedness of A, starting from CMNN.

● Replace Lf
n-local categories by monochromatic categories

(using Purity).
● Reduce to constant colimits (using ambidexterity).
● Reduce to C =ModωR (using Schwede-Shipley). Remains

to prove:

LT (n+1)K(R[ΩA]) ≃ LT (n+1)K(R) ⊗A.

● (Mathew): Both sides preserve (suitable) geometric
realizations Ô⇒ use the Bar construction A ≃ lim

Ð→
∆opΩAk

and the inductive hypothesis.
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Chromatic Cyclotomics

● BnCpk : n-fold classifying space of the pk-th cyclic group.

● ST (n)[BnCpk] : the T (n)-local group algebra.

Theorem (C.-Schlank-Yanovski)

There is a decomposition

ST (n)[BnCpk] ≃ ST (n)[B
nCpk−1] × ST (n)[ω

(n)

pk
].

ST (n)[ω
(n)

pk
] is a (Z/pk)× Galois extension of ST (n).

Definition
ST (n)[ω

(n)

pk
] is the pk-th chromatic cyclotomic extension.
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Cyclotomic Redshift

Theorem (BCSY)

For a commutative T (n)-local ring spectrum R:

LT (n+1)K(R[ω
(n)

pk
]) ≃ LT (n+1)K(R)[ω

(n+1)

pk
]

The case n = 0 is a result of Bhatt-Clausen-Mathew:

Theorem (BCM)

For a commutative ring R:

LK(1)K(R[ζp∞]) ≃ LK(1)(K(R) ⊗KU).

Shachar Carmeli University of Copenhagen

Cyclotomic Redshift



Cyclotomic Redshift

Theorem (BCSY)

For a commutative T (n)-local ring spectrum R:

LT (n+1)K(R[ω
(n)

pk
]) ≃ LT (n+1)K(R)[ω

(n+1)

pk
]

The case n = 0 is a result of Bhatt-Clausen-Mathew:

Theorem (BCM)

For a commutative ring R:

LK(1)K(R[ζp∞]) ≃ LK(1)(K(R) ⊗KU).

Shachar Carmeli University of Copenhagen

Cyclotomic Redshift



Cyclotomic Redshift

Theorem (BCSY)

For a commutative T (n)-local ring spectrum R:

LT (n+1)K(R[ω
(n)

pk
]) ≃ LT (n+1)K(R)[ω

(n+1)

pk
]

The case n = 0 is a result of Bhatt-Clausen-Mathew:

Theorem (BCM)

For a commutative ring R:

LK(1)K(R[ζp∞]) ≃ LK(1)(K(R) ⊗KU).

Shachar Carmeli University of Copenhagen

Cyclotomic Redshift



Fourier Transform

● M : a complex of Z/pk-modules, concentrated in degrees
[0, n].

● M∗
∶= hom(M,Z/pk).

● R a commutative ring in SpT (n).

● ω∶ST (n)[ω
(n)

pk
] → R, a “primitive root of unity” in R.

Theorem (Barthel-C.-Schlank-Yanovski)

There is a natural Fourier isomorphism

Fω ∶R[M]
∼

Ð→ RΩ∞ΣnM∗
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Fourier Redshift

By Cyclotomic Redshift: A map ω∶ST (n)[ω
(n)

pk
] → R gives a map

ω̃∶ST (n+1)[ω
(n+1)

pk
] → LT (n+1)K(R)

Theorem (B*CSY)

There is a natural commutative square

LT (n+1)K(R[M])
Fω //

≀

��

LT (n+1)K(R
Ω∞ΣnM∗

)

≀

��

LT (n+1)K(R)[ΣM]
Fω̃ // LT (n+1)K(R)

Ω∞Σn+1
(ΣM)∗

*Ben-Moshe.
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Higher Kummer Theory

Again, fixing a primitive pk-th root of unity ω in R, let M a finite
Z/pk-module.

Theorem (B*CSY)

There is a “Higher Kummer equivalence”:

MapSp(Σ
nM∗,Pic(R)) ≃ {M -Galois extensions of R},

f ↦ Rf .

*Barthel.

Shachar Carmeli University of Copenhagen

Cyclotomic Redshift



Higher Kummer Theory

Again, fixing a primitive pk-th root of unity ω in R, let M a finite
Z/pk-module.

Theorem (B*CSY)

There is a “Higher Kummer equivalence”:

MapSp(Σ
nM∗,Pic(R)) ≃ {M -Galois extensions of R},

f ↦ Rf .

*Barthel.

Shachar Carmeli University of Copenhagen

Cyclotomic Redshift



Higher Kummer Theory

Again, fixing a primitive pk-th root of unity ω in R, let M a finite
Z/pk-module.

Theorem (B*CSY)

There is a “Higher Kummer equivalence”:

MapSp(Σ
nM∗,Pic(R)) ≃ {M -Galois extensions of R},

f ↦ Rf .

*Barthel.

Shachar Carmeli University of Copenhagen

Cyclotomic Redshift



Kummer Redshift

A map f ∶ΣnM∗
→ Pic(R) ”categorifies” to a map

f̃ ∶Σn+1M∗
→ Pic(LT (n+1)K(R)).

Theorem (B*CSY)

LT (n+1)K is compatible with Kummer theory:

LT (n+1)K(Rf) ≃ LT (n+1)K(R)f̃ .

*Ben-Moshe.
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Cyclotomic Hyperdescent
● The cyclotomic tower:

ST (n) → ST (n)[ω(n)p ] → ⋅ ⋅ ⋅ → ST (n)[ω
(n)

pk
] → . . .

● ST (n)[ω
(n)
p∞ ] a Z×p “pro-Galois” extension.

● Devinatz-Hopkins: SK(n)[ω
(n)
p∞ ] is a Galois extension:

SK(n)[ω
(n)
p∞ ]

hZ
≃ SK(n).

Theorem (Cyclotomic Hyperdescent, BCSY)

For a T (n)-local ring spectrum R:

LK(n+1)K(R[ω
(n)
p∞ ])

hZ
≃ LK(n+1)K(R).
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The Telescope Conjecture

● BP ⟨n⟩: The n-truncated Brown-Peterson spectrum.

● Fact (Burklund-Hahn-Levy-Schlank): There exists a
Z-action on BP ⟨n⟩ such that the map

LT (n)BP ⟨n⟩
hZ
→ LT (n)BP ⟨n⟩

is (almost) split by the cyclotomic tower.
● By Cyclotomic Hyperdescent:

LK(n+1)K(BP ⟨n⟩
hZ
) ≃ LK(n+1)K(BP ⟨n⟩)

hZ.
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The Telescope Conjecture II

Theorem (Burklund-Hahn-Levy-Schlank)

The map

LT (n+1)K(BP ⟨n⟩
hZ
) → LT (n+1)K(BP ⟨n⟩)

hZ

is not an isomorphism.

Corollary

SpK(n) ≠ SpT (n) for n ≥ 2.
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Thank You!

Shachar Carmeli University of Copenhagen
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