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Annals of Mathematics, 120 (1984), 189-224

Equivariant stable homotopy and Segal’s
Burnside ring conjecture

By Gunnar CARLSsON*

Introduction
In 1960, M. F. Atiyah proved the following:

THueOREM [7]. Let BG denote the classifying space of a finite group G,
and let KU* denote representable complex periodic K theory (so KU%(X) =
[X, BU X Z)). Then we have

KU°(BG) = R[G]
and
KUY(BG) =0

where R[G] denotes the completion of the complex representation ring at its
augmentation ideal.

Analogous results were proved later for KO, in the generality of compact Lie
groups, by Atiyah and Segal (8], and for KF,, the algebraic K-theory spectrum
associated to the finite field F,, by Rector [29] using Quillen’s [26] computation
of 7 .(KF,).

In each case, the answer involves an appropriate completed representation
ring of G, and the cohomology theory in question is constructed from the
permutative category of finite dimensional vector spaces over a field (see [31]). If
one considers cohomology theories constructed from other permutative cate-
gories, one expects to find analogous computations in terms of a “completed
representation ring” of G in the given category, appropriately defined. In
particular, stable cohomotopy, 7, is constructed from the category of finite sets
[31], and for this category the analogue of the representation ring is a well-known
object, the Burnside ring A(G) [13]. A(G) is a commutative ring with augmenta-
tion, so one may speak of A(G), the completed Burnside ring. Moreover, there is
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a natural map A(G) - 7d(BG™) (n(X) is defined for infinite complexes by
taking inverse limits over skeletons of X; it is thus equipped with a topology).
G. B. Segal was led to make the following conjecture:

SEGAL’s CoNJECTURE (weak form) (see [1], [2]). The map A(G) — nd(BG™)
is an isomorphism.

As it stands, the conjecture is very difficult to approach. Since it only
involves 70, and not #', an induction on the order of the group seems
impossible. One is led to make a conjecture describing the entire structure of
7 (BG™).

To motivate the generalization, we recall that in [8], Atiyah and Segal
developed a much simpler proof of Atiyah’s original result in [7] by comparing
KU *(BG) with an appropriately defined equivariant K-theory group KUZX(pt),
which is canonically isomorphic to the representation ring R[G]. One would like
to construct an equivariant stable cohomotopy group 7(S°), which should be
computable and map to #f(BG™), and hope to prove that this map becomes an
isomorphism after completion. This construction was accomplished by Segal in
[30], where he states the result n; (S°) = @  7%(BW(K)™), where the sum is
over all conjugacy classes of subgroups of G and W(K) = N,(K)/K. In particu-
lar, 72(5°) = A(G), and #(X) is an A(G)-module. We are led to:

SEcAL’s CONJECTURE (strong form). The map #2(S°) —» a{(BG™) is an
isomorphism, where #%(S°) denotes m(S°) completed at the augmentation
ideal in A(G).

It is this form of the conjecture that we prove. We now outline the history of
the conjecture. Having this formulation, one might hope to perform an induction
on the order of the group using the Atiyah-Hirzebruch spectral sequence
associated to an exact sequence of groups. This was precisely the technique used
originally by Atiyah, but his proof relies heavily on the computability of the
groups KU*(pt), using Bott periodicity. Of course, no such computation is
available for #*(S%), and the spectral sequence is not well-behaved, having
non-zero groups in all positive and negative dimensions at the Eylevel. Therefore
. it was felt that one should attempt to calculate in some special cases, to
determine whether the conjecture was even plausible. The case G = { e} being
trivial, the next simplest case is G = Z/2Z, where one is interested in computing
a&(RP**). For reasons unrelated to Segal’s conjecture, J. F. Adams [3] and M.
E. Mahowald had suggested that if one was interested in R P, one should study
the Ext-groups Ext}/f,(L; Z/2Z), where L is the graded ring of Laurent series in
a one-dimensional generator x, equipped with an 2/(2)-action compatible with
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that on Z/2Z[x] = H*(RP*;Z/2Z). Here 2/(2) denotes the mod2 Steenrod
algebra. Although L is not the cohomology of a spectrum, it is a direct limit
associated with an inverse system of spectra. There is in fact a map
Ext%%(Z/2Z;Z/27) — Ext}i-**(L,Z/2Z), and W. H. Lin [18] observed
that in order to prove Segal’s conjecture for G = Z /2Z, it was sufficient to prove
that this map is an isomorphism. That this is the case was originally proved by
Lin by performing intricate calculations in the A-algebra. The proof was much
simplified by Lin, Davis, Mahowald, and Adams [19].

At this point, it seemed that one should attempt to determine how far Lin’s
methods could be extended. J. H. C. Gunawardena [14] was able to prove the
conjecture for Laurent series in that case. D. Ravenel [28] settled the case
G = Z/p'Z, by modifying the Adams filtration and producing a new spectral
sequence whose Eyterm was computable using the results -of Lin and
Gunawardena. From Ravenel’s work, however, it was becoming clear that it
would be very difficult to produce a proof of the full conjecture using these
methods, since the Adams spectral sequence was unworkable even for G =
Z /p"Z, and Ravenel’s modification of it depended heavily on the simple structure
of the Burnside ring of Z/p"Z.

Several other results concerning abelian groups were also proved. E. Laitinen
[15] proved that the map A(G) — #*(BG™) is injective for G elementary
abelian, i.e. G = (Z/pZ)*. Segal and Stretch [33], [34] extended this to the case
of all abelian groups. Laitinen calculated using ordinary characteristic classes of
permutation representations, Segal and Stretch using MU-classes. This author
[12] proved the weak form of the conjecture for G = (Z/2Z), using Brown-
Gitler spectra and the Adams spectral sequence. Although only the weak form
was proved here, the methods appear to be of independent interest. In particular,
H. Miller has used them in his proof of the Sullivan conjecture, an unstable
version of the Segal conjecture. Adams, Gunawardena, and Miller [6] were able
to prove the strong form of the conjecture for G = (Z/pZ)*, using some
ingenious calculations in the Adams spectral sequence, generalizing Lin’s meth-
ods.

In order to proceed much further from this point, one must dispense with
pure calculation and consider seriously the map ##(S°) — #*(BG™). That is,
one must actually use properties of 7, rather than simply computing #*( BG*)
and observing that the map is an isomorphism, since #(BG™) becomes increas-
ingly uncomputable as G increases in complexity. It is this idea we carry out in
this paper.

The method of proof is by reduction to a known case, namely G = (Z/pZ)*.
May and McClure [21] show that Segal’s conjecture (strong form) holds for all
finite groups if and only if it holds for all p-groups. We show in this paper that it
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holds for all p-groups, if and only if it holds for G = (Z/pZ)*. Since this has
been treated by Adams, Miller, and Gunawardena [6], the conjecture is con-
firmed.

In Section I we provide needed preliminaries from equivariant homotopy
theory, and outline the proof. In Section II, we reduce the conjecture to the
study of 7(S*), where V is a particular orthogonal representation of G,
§<V = lim S*, and S*V denotes the one point compactification of kV. Section III

proves orlie half of the main inductive step (Theorem B of § I), using the Adams
spectral sequence in a non-computational way. Sections IV, V, and VI prove the
other half, using a careful study of the singular locus
LX) - Y x#

H+e

HcG
of a G-space under the action of a non-elementary abelian p-group G. Here, the
work of Quillen [25] on the posets of subgroups of finite groups plays a crucial
role. We supply two appendices. Appendix A constructs Thom spectra of virtual
representations of finite groups, a construction which is required in Section III.
Appendix B shows precisely how the inductive step fails for G = (Z/pZ)*, and
how one can prove the conjecture for (Z/pZ)* in this context, using only one of
the calculations of [6]. An argument along these lines has also been developed by
May and Priddy [22].

The author wishes to express his thanks to L. Cusick; discussions with him
concerning equivariant S-duality originally motivated this project, although the
proof can now be carried out without dualization. Also, thanks are due to J. F.
Adams for much helpful correspondence, and for writing the paper [5]; to
J. H. C. Gunawardena and H. R. Miller for helpful conversations concerning
their result; to J. P. May and his collaborators for their work in clarifying the
ideas and exposition of the proof, and for allowing the author to see a preliminary
draft of [16].

I. Preliminaries

In this section, we will present the necessary preliminaries from equivariant
. stable homotopy theory. References are [5], [13], [16], [30].

Let G be a finite group. By a G-complex, we mean a based G-CW complex
in the sense of [10], with only finitely many cells in each dimension. For any
G-space X, let X™ denote X with a disjoint base point, fixed under the action of
G, added. Every G-complex is thus obtained by attaching cells of the form
G/H* A D", where H C G, G/H denotes the left G-set of left cosets of H, and
D" denotes the standard n-disc, with a fixed choice of basepoint in D™ = S" !,
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equipped with trivial action. Throughout, Sk will denote the k-sphere equipped
with trivial G-action. X is equipped with a preferred choice of basepoint fixed
under the G-action. If X and Y are G-complexes, [X, Y ]¢ will denote the based
G-homotopy classes of based G-maps from X to Y.

ProposiTioN 1.1 (see [10])). Let X = Y be an inclusion of G-complexes,
and let Z denote the quotient complex Y /X. Then we have a long exact sequence
of pointed sets

o s [P AX,W]E - [Z2,W]C - [Y,W]¢ - [X,W]€
for any G-complex W. That is, the Puppe sequence holds for equivariant
mapping sets.
For any G-complex X and subgroup H C G, let
X" = {x € X|hx = xVh € H}.
Bredon has related properties of equivariant mapping sets with properties of X H

For any CW complex X, let (X) = min{i|,(X) # 0}. Let dim(X) denote the
dimension of X.

TueoreM 1.2 (Bredon, see [10]). Let X, Y, and Z be G-complexes. Suppose
£ Y > Z is a G-map so that for all H C G, m(f") is an isomorphism for all
i < dim(X®) + 1, where f¥ = f|Y". Then [ , f]% [X,Y]¢ > [X,Z]¢ is a
bijection.

CoroLLARY L.3. Suppose X and Z are G-complexes, with (Z") > dim(X™)
+1 forall HC G. Then [X,Z]% = *.

Proof. Apply Theorem 1.2 with Y = *, and f: Y — Z the inclusion of the
base point. m]

If V is a finite dimensional real G-module, we let SV denote its one point
compactification. SV becomes a G-complex, and we choose the point oo as base
point. One sees that SU®¥ = SV A SV. Let % denote a real G-module which is
a countable direct sum of finite dimensional real G-modules so that every
irreducible representation of G occurs infinitely often. We assume % equipped
with a G-invariant positive definite real valued inner product ¢, ). For U C %,
we let U+ = {v € %;|(v,u) = 0 Vu € U}. For finite G-complexes (i.e., with
finitely many cells) and arbitrary G-complexes Y, we define

(X,Y}¢= lLm [SYAX,8YAY]C
Uca,

Here, the direct limit is taken over the ordered set of all finite dimensional

G-subspaces of % under inclusion, and the maps in the directed system are
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given by

idys Ay, A [

[s% A X, 8% A Y] SU Nt A U A X,SU NG A SU A Y|©

= [$%X, 8% A Y],

for U, c G,. »

The second morphism is defined using the inner product, which identifies
SU" NG A §Y with S%, One checks that this definition is independent of %
and (,), using the fact that the direct limit is attained, by Hausschild’s
suspension theorem (see [5] or [13]).

We define 75(X) = {S", X}€, #&(X) = {X, S"}€, where X is required to
be finite in the definition of 7. The definition is extended to negative values of n
in the usual way, so that we obtain graded groups 7§ and 7. 7§ and 7% are
equivariant homology and cohomology theories, respectively; in particular,
they yield long exact sequences when applied to G-cofibration sequences.
(A G-cofibration sequence is a sequence X 5 Y — Z, where i is the inclusion of
a G-subcomplex of Y, and Z = Y/i(X). See [10] for a complete discussion.)
Suppose X is a G-complex with trivial G-action; then there are natural “inflation”
maps iy 7Ty(X) = 7$(X) and i*: 7X(X) - 7f(X); here 73 and 7 denote
reduced ordinary stable homotopy and cohomotopy. Now i, and i* are defined
by recognizing that the direct limit systems defining 75(X) and 7g(X) are
subsystems of those defining 7$(X) and #%(X), since the trivial representation
occurs infinitely often in %. We say that a G-complex X is free if no element of
G except the identity fixes any point of X except *. For free G-complexes, 7%
and 7§ may be evaluated non-equivariantly.

ProposriTioN 1.4 (see [5]). (a) Let X be a finite free G-complex. Then m(X)
is naturally isomorphic to n(X/G). Moreover, the isomorphism is given by the
composite n(X/G) 5 7X(X/G) = 73(X), where the second arrow is induced
by the projection X — X /G.

(b) Let X be an arbitrary G-complex. Then w$(X) is naturally isomorphic
to m5(X/ G). The isomorphism is given on finite complexes by the composite
- 7(X/G) ad 7$(X/G) - 7$(X), where the second arrow is induced by the
equivariant transfer associated to the projection X — X/G (see [5]). For arbi-
trary complexes, one passes to direct limits over skeletons.

We now wish to discuss “change of groups”™ results.

Definition 1.5. Let H C G, and suppose X is an H-complex. Then define
e5(X)=G*A X/=, where = is the equivalence relation generated by the
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equivalences gh A x = g A hx, g € G, h € H. G acts on e5(X) by the multi-
plication on the first coordinate.

ProposiTioN L6. (a) [e5(X),Y]¢ = [X,Y]".
(b) If X is a G-complex, then e5(X) = G/H* A X.

Proof. (a) is a standard result; see [5]. For (b), a G homeomorphism is given
by g A x = [g] A gx, where [g] denotes the coset gH. m]

ProprosiTiON 1.7 (see [5]). Let X and Y be G-complexes, X finite. Then there
are natural isomorphisms {X A G/H',Y}¢ = {X,Y}" and {X,Y A G/H"}¢
= (X, Y}~

Suppose H C G. Let N;(H) denote the normalizer of H in G. If X is any
G-complex, X¥ is invariant under the action of No(H) and H C N (H) acts
trivially on X*”. Thus, X¥ becomes an N_(H)/H-space. Define W(H), the
“Weyl group” of H, by W(H) = Ny(H)/H. In order to evaluate 7§ on
complexes which are not necessarily free, we have a theorem of tom Dieck.

THEOREM 1.8 (see [13]). For any G-complex X,
7$(X) = ? 7Y D(EW(H)" A X1).

Here H ranges over a set of representatives of the conjugacy classes of subgroups
of G, and EW(H) denotes a contractible space on which W(H) acts freely.

Proposition 1.4(b) and Theorem 1.8 together give

CoroLrARY 1.9. For any G-complex X,
G ~ s + H
7$(X) = ?w*(EW(H) i X ).

In particular, n$(S°) = @ ,75(BW(H)"), where B denotes the classifying
space functor. '

CoroLLARY 1.10. 7$(X) and 7(Y) are finitely generated for each value of
*, if X is an arbitrary G~complex, and Y is a finite G-complex.

Proof. Using the fact that 7§ and 7% are homology and cohomology
theories respectively, one reduces to the case where X = Y = G/H™". Proposi-
tion L7 reduces this to the case where X =Y = SO, for which the result is
standard, by Corollary 1.9. The proof for 7$(X) uses also the fact that 7¢(X) =
7E(X®), for some k-skeleton X of X, which is a finite G-complex. O

Composition of maps gives 7$(S°) = m; (S°) the structure of a graded-
commutative ring. The graded groups 75(X) and 7%(X) become modules over
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this ring. Tom Dieck [31] has described the ring structure of 7C(S°). We first
recall the definition of the Burnside ring of G, A(G). Let M(G) denote the
monoid whose elements are isomorphism classes of finite G-sets, and whose
addition is given by disjoint union, so that the empty G-set becomes an identity
element for M(G). A(G), as an additive group, is the group completion of this
abelian monoid. It becomes a free abelian group on basis elements [G/H], as H
ranges over a set of representatives of conjugacy classes of subgroups of G.
Direct product of G-sets gives A(G) a ring structure. A(G) is equipped with an
augmentation A(G) — Z, which takes [G/H] to the integer |G| /|H|. I(G), the
augmentation ideal of A(G), is defined to be the kernel of & For further
information on A(G), see [13].

TueoreM 1.11 (tom Dieck, [13]). 7(S°) = A(G) as rings.

We now formulate Segal’s Burnside ring conjecture equivariantly. Let EG
denote a free contractible G-CW complex, in the sense of [10]. (EG is not a
G-complex, in our terminology, since it does not have a basepoint. Freeness here
means EG? = & forall HC G, H # {e}). We have a natural map EG*— S°,
which takes EG to the non-base point. Let EG*) denote the k-skeleton of EG.

Conjecture 1.12 (Segal). The map n(S°) — limnZ(EG™™) becomes an
isomorphism after I(G)-adic completion. k

One may observe that lim 7( EG®*) = lim 7(BG®*), using Proposition

k k
14(a), and that the map 72(S°) — lim#(BG™®*) is a map of rings, when
k

7X(BG®™*) is given its usual ring structure. This shows that a corollary of the
above conjecture is

Conjecture 1.12’ (Segal; weak form). limn)(BGM*) = A(G), where A(G)
denotes A(G) completed at 1(G). ¢

The following result is an important preliminary reduction in the proof of
Conjecture 1.12.

ProposiTioN 1.13 (Lewis, May, McClure [17]). Conjecture 1.12 holds for
all finite groups if and only if it holds for all finite p-groups.

One may also show (May, McClure [21]) that for p-groups, I(G)-adic
completion is essentially p-adic completion. Thus, let #§ and #Z denote

p-adically completed equivariant stable homotopy and cohomotopy.
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ProposiTioN 1.14 (May, McClure, [21]). Conjecture 1.12 holds for a p-group
G if and only if the natural map

#(8°) - limag(EG")
k

is an isomorphism.

This is the formulation of the conjecture which we shall prove. Before
proceeding to outline the proof, we shall fix some conventions. Let X be any
G-complex, finite or otherwise. Then we define { X, Y }§* " to be lim { X®,Y)§

®,Z,, where X denotes the k-skeleton of X. This definition is clearly
independent of the choice of CW-structure on X; in fact, any increasing
sequence { X¥'} of finite G-complexes which exhausts X will do. #(X) is now
defined for all G-complexes X. Since finitely generated Zp-modules are compact
groups, and lim is exact for inverse systems of compact groups, Corollary I1.10
shows that { X; }$ " and { ;Y}§ " give long exact sequences when applied to
cofibrations involving arbitrary G-complexes.

We define EG to be the mapping cone of the G-map EG*— S° described
above. EG may be viewed as the unreduced suspension of EG, with trivial
G-action on the suspension coordinate.

~LEMMA L15. Conjecture 1.12 holds for all p-groups G if and only if
#X(EG) = 0.

Proof. By Proposition 1.14, we need only show that #%(S°) — #&(EG™) is
an isomorphism. Since we have a cofiber sequence EG*— S° — EG, this is
equivalent to the assertion that 7%(EG) = 0. O

For any G-complex X, let Iso(X) = { H € G| X" # *}.

ProposiTion 1.16. Let X and Y be G-complexes. Suppose #4(Y) = 0 for all
H € Iso(X). Then #X(X A Y) = 0.

) Proof. By the definition of Iso(X), X may be filtered by skeletons X so
that X*+D/X® = v, Sk+*1 A G/H}, with all H, € Iso(X). It is easily checked
that 45(X A Y) = lim#%(X® A Y). Using the long exact sequences
t k
- FEHXEDAY) 5 X XPAY) - #2(XED/XOAY) >

we see that to deduce the result it will suffice to prove that #(X**V /X% A Y)
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= 0 for all k. But,
ﬁé‘(x(k+l)/x(k) A Y) = @ (Sk+1 A G/H! A Y)

@ I,;(sk+1 A Y)~ @,”* —k— l(Y)

i

where each H, is in Iso(X). The second identification uses Proposition 1.7. But
now by hypotheSIS, #(Y) = 0 for H; € Iso(X); so the proposition is proved. O

We now summarize the proof. We say that a real G-module V is fixed-point
free if it contains no summands isomorphic with the trivial representation. Let
kV denote a direct sum of k copies of V, and let SV = EESkV> the limit taken

k
over the obvious inclusions kV — (k + 1)V. We first prove a preliminary reduc-
tion. '

TrEOREM A. (a) If Conjecture 1.12 holds for p-group G and all p-groups H,
with |H| < |G|, then #%(S*V) = 0 for all representations V of G, V # 0.

(b) Conjecture 1.12 holds for a p-group G if it holds for all p-groups H,
with |H| < |G|, and if #%(S*V) = 0 for some fixed-point free representation V
of G.

We then study the groups #*(S*V) by mapping S*V into the cofibre
sequence EG*— S° - EG. We obtain the long exact sequence

(&) o (SV,EGY)G A 2E(S™Y) — (S, EG)§ "
of the cofibration. The main theorem can now be stated as follows.

THEOREM B. Suppose the p-group G is not elementary abelian, and that
Conjecture 1.12 holds for all p-groups H, with |H| < |G|. Then there is a fixed
point free representation V of G so that

(a) (5*V,EG*)§ "= 0,

(b) {$*,EG}$"=0

From this, we derive
TueoreMm C. Conjecture 1.12 holds for all groups G.

Proof. We prove that #*(EG) = 0 for all p-groups G; according to Proposi-
tions I.13 and 1.14 together with Lemma I.15, this will give the result. We note
first that Adams, Miller, and Gunawardena [6] have proved Conjecture 1.12 in
the case G = (Z/pZ)*. In fact, they prove their theorem in a non-equivariant
context; that their formulation implies the equivariant formulation is proved by
Lewis, May, and McClure in [17]. We show in Appendix B how to prove the
theorem for G = (Z/pZ)* using only one computational result from [6]. If
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G = (Z/pZ)*, we suppose that Conjecture 1.12 holds for all p-groups H, with
|H| < |G|. Then Theorem B shows that there is a fixed point free representation
V so that #&(S*V) = 0, by use of the long exact sequence (A) above. Now,
Theorem A implies the validity of the conjecture. O

Theorem A is proved in Section II; its proof is an immediate application of
Proposition 1.16. Theorem B, part (a) is proved in Section III; its proof requires
the use of Thom spectra over BG of virtual representations of G. This construc-
tion is discussed in Appendix A. The proof also requires a non-computational use
of the Adams spectral sequence applied to inverse systems of such Thom spectra.
Theorem B, part (b) is proved in Sections IV, V, and VI. Its proof uses the notion
of Sfunctor, introduced in Section IV, and a result of Quillen’s (see [25])
concerning the classifying space of the partially ordered set of proper, non-trivial
subgroups of a group G.

To make notation less cumbersome we assume throughout the remainder of
the paper that G is a p-group, and that all groups {X,Y}§ are p-adically
completed. Thus, { X,Y }$ and 7§ will denote { X,Y}§ " and #$ throughout.

IL Proof of Theorem A
We prove Theorem A of Section 1. Recall its statement.

TueoreM A. (a) If Conjecture 1.12 holds for G and for all p-groups H,
with |H| < |G|, then 7%(S*Y) = 0 for all non-trivial G-representations V.

(b) Conjecture 1.12 holds for G if it holds for all p-groups H, with
|H| < |G|, and if n(S*) = 0 for some fixed-point free representation of G.

Proof. We prove part (a) first. We study ¥ applied to the cofibre sequence
EG*A 8V > §*V —» EG A §*V.

It will suffice to prove that mX(EG*A §*V) = a*(EG A S®V) = 0. We first
prove that 7(EG*A S*¥) = 0. In the notation of Proposition 1.16, Iso( EG™)
consists of the trivial subgroup. By Proposition 1.16, with X = EG* and Y = $*V,
it suffices to prove that m(S*Y) = 0. But this is clear, since S°V is non-
equivariantly contractible. Next, we show that 7X(EG A $*V) = 0. By the
hypothesis for part (a), 7*(EG) =0 for all H C G, since restricted to any
subgroup H of G, EG has the homotopy type of EH; hence 7(EG) = n(EH)
= 0. Applying 1.16 with X = $*Y, EG = Y, we obtain the result. To prove (b),
we consider the cofibre sequence

EG - EG A SV —» EG A(5<V/S°).
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It will suffice to prove that
72(EG A V) = a2(EG A (S%V/S°)) = 0.

To show 7X(EG A S*V) = 0, we note that Iso(EG) consists of the trivial
subgroup and G itself. We thus need to show that #*(S*Y) =0 and that
72%(5*°V) = 0. The first is true since SV is non-equivariantly contractible, the
second by hypothesis. To show #X(EG A (5°V/S°)) =0, we note that
Iso(S*Y /S°) is contained in the collection of all proper subgroups of G. This uses
the fact that S*V is fixed point free, which gives that (S®V)¢ = §°, so that
(8*V/S%)C = «. Thus, 1.16 asserts that we need only show that 7*(EG) = 0 for
all proper subgroups. Again, 7*(EG) = #*(EH) = 0, by the hypothesis that
Conjecture 1.12 holds for all p-groups H, with |H| < |G]|.

IIL. Proof of Theorem B, part (a)

In this section, we will prove that for any p-group G, with G not elementary
abelian, i.e. G # (Z/pZ)*, there is a fixed-point free complex G-representation V
so that {S*Y, EG*} = 0. This is Theorem B, part (a) of Section I.

Given G, let p; denote the reduced regular complex representation of G:
that is, the kernel of the map C[G] — C of G-modules, which sends each g € G
to 1. Now p; is a fixed-point free representation of G. Let n = dimgp; =
|G| - 1.

LemMa IIL.1. The n-th Chern class of pe,c,(pc), is nilpotent as an element
of H®(BG;Z/p).

Proof. We observe that if H ¢ G, p;|H contains a trivial summand. For,
C[G], regarded as an H-module, is isomorphic to a direct sum of |G|/|H| copies
of C[H], and hence contains |G|/|H| trivial summands. Now, the splitting
C[G] = p; © &, where ¢ is a one dimensional trivial summand, shows that as an
H-module, p. contains |G|/|H| — 1 trivial summands. Since H # G, pc|H
contains at least one trivial summand, so that c,(p;|H) € H*(BH;Z/p) = 0.
But now 0 = c,(pc|H) = i*c,(p;), where i: BH — BG is induced by the
inclusion, so that c,(p) restricts trivially on every proper subgroup. Since G is
not elementary abelian, c,(p;) restricts trivially to every elementary abelian
" subgroup of G. By the Quillen-Venkov theorem [27], ¢,(p) is nilpotent. a

Proof of Theorem B, part (a). In Appendix A, it is shown that

(5%, EG*)§ = lim (§%<, EG*)§ = limm}(BG4%).
k k

According to Proposition A.8, H*(BG **¢;Z /pZ) is a free H*(BG;Z/pZ)-mod-
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ule on a generator in dimension — 2kn. It is a standard result (see [4]) that the
Adams spectral sequence for computing the groups 7% (BG %) is convergent;
we have Ej* = Extj;,'(;)’(H*(BG"‘PG,Z/pZ);Z/pZ), where &/(p) denotes the
modp Steenrod algebra. Corresponding to the inverse system of homotopy
groups, there is an inverse system of spectral sequences; at the E,level, it is
induced by the directed system of cohomology groups

-+« H*(BG %%, Z/pZ) — H*(BG~**Vrs; 7 /pZ) —» - -

Since c,(pc) is nilpotent, say c,( pc)? = 0, Proposition A.9 shows that any

" d-fold composite in the directed system is zero. Applying Ext ., we find that
on E_-terms, any d-fold composite in the inverse system is zero. This means that

the maps BG~F+*rc — BG*ec strictly increase Adams filtration. Therefore, if

any element in 7%(BG %) is in the image of m%(BG**D%) for all I > 0, it

must have infinite Adams filtration, hence be zero. Therefore, li_rgvri(BG"“’G) =

0, which was to be shown. k O

IV. S-functors

In this section, we define the notion of S-functor, which will be crucial in our
analysis of {S*, EG}§. Let & denote the category of G-complexes.

Definition IV.1. An S-functor is a pair (T, 1), where T: S5 = % is a
functor, and 7 is a natural transformation 7(X,Y): T(X A Y) = X A T(Y),
such that the following three conditions hold:

(a) The diagrams
(X, YAZ)

T(XAYAZ) XAT(YAZ)
‘r(‘X/\Y,Z) idAT(Y,Z)
XAYAT(Z).

commute.

(b) T(Soa X)= idT(X)‘

(¢) 7(X,Y) is a homeomorphism when X is a G-complex with trivial
G-action.

 Examples. (a) T(X) = X A A, where A is any G-complex. Here, 7(X,Y) is
the homeomorphism (X A Y) AA = X A (Y A A).
(b) T(X) = XH, where H C G is any normal subgroup. 7(X,Y) is the
natural inclusion (X A Y)? - X A YH.
() T(X)=32(X)= U X", the singular locus functor. 7(X,Y) is the
HcG

H+#{e}
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natural inclusion Z(X A Y) = X A 2(Y).
We will construct an Sfunctor which will be useful in the next section. Let
e be defined as in Section L

Definition IV.2. Let w = (H,K) be a pair of subgroups of G, with
H C N, (K). Define a functor T %, = %, by T (X) = e5(XX). (Note that
the action of H on X preserves XX, since H C N.(K).)

LemMma IV.3. T, admits the structure of an S-functor. That is, there is a
natural transformation T satisfying the requirements of Definition IV.1.

Proof. We must construct a G-map
T(X,Y): eg(XX A YX) - X A ef(YX);
by Proposition 1.6(a), this is equivalent to constructing an H-map #: XX A YX
- X A eff(YX). Let ix: XX — X be the inclusion, and let j,: YX - e$(YX) be
the H-map given by jx(y) = 1 A y. Then ix A jg is the required 7. It is routine

- to verify that 7, defined in this way, is a natural transformation, and that it
satisfies the requirements of Definition IV.1. a

In terms of coordinates, 7(X,Y) is definedby g A x Ay = gx A g A y, for
g € G*, x € XX, y € YX. When discussing Sfunctors we will often suppress
mention of 7, when no confusion will arise. In particular, T, will now refer to the
Sfunctor (T, ), where 7 is as constructed in Lemma IV.3.

Definition IV.4. Let T be an S-functor. We define groups n(X;T) for any
finite G-complex X as follows. For n >0, set n3(X;T)= lim[T(SY A X),

SY A S$"]€, where the direct limit is over the ﬁnite—dimensiongl G-subspaces
UC %, (% is defined in § 1), and the maps in the directed system are the
composites
cf—idAf 1 1 G
[T(SY A X),SU A $*]S220[SVNU4 AT(SY A X),SY "V ASY A 7]

VnU+ QU G
[+(S ,8YAX),] [T(SV”UL/\SU/\ X),Sanl /\SU/\ Sn]G

= [T(SY A X),8" A 87]€

" for V2 U. For the L1 notation, see Section I; the last identification is
determined by the inner product {,) of Section 1. This definition extends to
negative values of n, using condition (c) in Definition IV.1, by setting
7z N X; T) = n2(S* A X;T) and gives graded groups n2(X;T). By completing
at p and taking inverse limits as before, we obtain groups #X(X; T) for arbitrary
G-complexes X. From this point on, we will assume all groups
7w( ; T) to be p-adically completed. Thus, #( ;T) = n&(;T).
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We now prove a proposition connecting #&(X; T') with { X; EG)€ ,, where
T is the singular locus functor described above. The point of this is that #(X; T)
is much easier to filter in a useful way than is { X; EG}% ,.

ProposiTION IV.5. There is a natural isomorphism { X, EG)C , » 71X(X; 2)
for any G-complex X.

Proof. We claim first that for any G-complexes X and Y, with X finite, the
restriction map [X; EG A Y] — [2(X), EG A Y]C, f— f|Z(X), is a bijec-
tion. For, X is obtained from =(X) by attaching cells of the form G*A D" along
maps from G* A $"~!, The obstruction to extending a map over G*A D" is an
element in [G*A S" L, EG A Y] = [$""1, EG A Y], by Proposition 1.6. Now,
EG is the mapping cone of the map EG*— S° which is (non-equivariantly) a
homotopy equivalence. Hence EG is non-equivariantly contractible; therefore so
is EGAY, so that m,_(EG A Y)=0, and all G-maps =(X)—> EGA Y
extend to X. Homotopies extend similarly; so we have the above bijection. We
now define a natural transformation { X, EG}¢ — nd(X;Z) by constructing a
morphism « of directed systems as follows. For each set [SU A X, SV A EG]C,
define &(f) € [2(8Y A X),SY A EG]€ by &(f) = fI2(SY A X). Now note that
for every H C G, H # {e}, EG" = 8% so 2(SY A EG) = Z(SY). Thus,

[S(SU A X),8Y A BG] = [S(SY A X),2(SY A EG)]©
= [3(sY A X),2(8Y)]% = [2(sY A X), V] €.
Here, we use the fact that for any two G-complexes, [£(X),Y]¢ =
[2(X), 2(Y)]C, since any G-map takes Z(X) into Z(Y). We now define a to be
i o &, where i is the composite of the above chain of bijections. One easily checks

that « gives a map of directed systems, which is an isomorphism by the above
remarks. ]

We now wish to study the Sfunctors T, defined above. For a CW complex
X, let (X) = min{i|m(X) # 0}, as in Section L

LemMa IV.6. Let T be an S-functor, and suppose that, for all finite
G-complexes X and integers N, there is a representation V of G so that for all
Hc G, dim(T(SY A X)H) < dim((SY)¥) — N whenever W is a representa-
tion of G containing V as a direct summand. Then 72(X,T)=0 for all
G-complexes X.

Proof. We assume X is a finite complex; the general case follows by passing
to inverse limits. Consider the set [T(SY A X); SU A S¥]€. Note that #4(X;T)
= lim[T(SY A X),SY A S¥]€. We show that there is a representation V so that

U
[T(SY A X),SY A S¥]¢ = x whenever W contains V. Let N> 1 —k, and
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suppose V is chosen so that dim(T(SY A X)) < dim((SW)#) — N for all
H C G, and all W containing V as a summand, as in the hypotheses of the
lemma. Then,

((SY A ST =1 =((8")"y + k=1 > dim(T(S™ A X)")+N + k — 1
> dim(T(SW A X)H),
for all HC G, and all W containing V as a summand. By Corollary 1.3,
[T(SY A X),SW A S¥]¢ =0 for all W containing V as a summand. Conse-
quently, #(X;T) =0 for all positive values of k. To obtain the result for

negative values of k, note that wz*(X;T) = n2(S* A X;T), by Definition
IV.1, (o). , m|

ProrosiTioN IV.7. Let w = (H,K) be a pair, as in Definition IV.2.
Suppose K ¢ H. Then n2(X;T) = 0 for all Gcomplexes X.

Proof. We will show that T, satisfies the hypotheses of Lemma IV.6. We
must first examine the fixed point sets eg(X*)E, where L € G, and X is a finite
G-complex. We find that

eq(X)'= V ga(x¥)

geCG
g 'LgcH

Since (XX)& 'Le = XK-¢"'Le e find that
dim(eg(XK)L) < max dim(XK’g_ng).
geCG
g 'LgcH

Note that for all g such that g~'Lg C H, the inclusion g"'Lg C K - g 'Lg is
proper, since g 'Lg C H, and K ¢ H by hypothesis. We will now prove the
existence of a G-representation V so that dim((S" A X)X Hy < (W) — N for
all subgroups H of H, whenever W contains V as a summand. By the above
upper bound for dim(efj(X*)"), and Lemma IV.6, this will prave the proposi-
tion. Select a representation V so that dim(V*1) < dim(V*2) — N — dim X for
all proper inclusions H, C H, of subgroups of G. This is possible since it is easily
checked that dim(V*1) — dim(V*2) can be made arbitrarily large. Now,

dim((S¥ A X)*) = dim(($")*") + dim(XX"#)
< dim(($%)*"") + dim(X)
< dim(($")") = N — dim X + dim X
= dlm(( ) O
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ProposiTION IV.8. Let w = (H, K) as above, with K C H. Then nX(X;T,)
= m x(X*) for all G-complexes X.

Proof. As usual, we assume X finite and the general case follows by passing
to inverse limits. For k > 0,

mk(X: T,) = lim[T (S¥ A X); S A $4]€

=hm[g S¥) A XX);8% A 85]°

él

= 1im [(S")* A XX;8% A $K|"

=I5

= lim [(S™)* A XX;(S%)* A s¥]" .

2|5

= Tim[(S%)" A XX, (S%)* A s4| "
w

— lim [ A XK, 5 A 55|
W

= ﬂ,’}/K(XK).

To obtain the final isomorphism, one must observe that the representations
of H/K of the form WX for some representation W over G are cofinal among all
representations of G/H. Finally, one passes to negative values of k using the
usual isomorphism

ag"(X: T,) = 72(S" A X; T,). O

Finally, we will need to discuss filtrations of S-functors.

Definition IV.9. A natural transformation between S-functors (T, ;) and
(Ty, 7,) is a natural transformation N: T, — T, so that the diagrams

N(XAY)

T,(XAY) T,(X A Y)

n(X.Y) n(X.Y)
idAN(Y
XA T(Y)—2"0 % A T,(Y)

commute.

Definition IV.10. A natural transformation N between S-functors T, and T,
is said to be a cofibration if for each Gcomplex X the map N(X): T\ (X) — Ty(X)
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is a cofibration. Given a cofibration N: T, - T,, we define the quotient
S-functor, T,/T,, by T,/T|(X) = Ty(X)/T(X). The associated 7 is induced by
T, in the natural way.

Lemma IV.11. For any cofibration N: T, — T,, between S-functors, we
obtain a long exact sequence

-2 rH (G T/ T) = mE (X T) = a2 (XGT) — -

Proof. One first checks that natural transformations of S-functors induce
natural transformations on the groups 7Z( ; T'). The long exact sequence is now
an immediate consequence of Proposition I.1. We use condition (c) in Definition -
IV.1 to identify T(S* A X) with S* A T(X). m]

ProposiTion IV.12. Let {T,}!_, be a family of S-functors, T(X) = *, and
suppose we are given cofibrations T, — T, |. Suppose further that n(X; T,, ,/T,)
is a finitely generated 2,,—module for all finite G-complexes and all values
of n and i. If, for a given G-complex X, n(X;T,,,/T;) = 0 for all i, then
aX(X,T,) = 0.

Proof. By taking the long exact sequences associated to the cofibations

T, > T, > T, ,/T, we obtain an exact couple of inverse systems

7 (XD, T,) ——=n(X®; T, )

nd(X®; T, /T,)

where X% denotes the k-skeleton in some CW decomposition of X. The
hypothesis on T, /T, shows that all the inverse systems are inverse systems of
finitely generated ip-modules. (That #3(X™;T,) is finitely generated is proved
by induction from the fact that #2(X®; T,, , /T,) is.) Under these circumstances,
lim is exact, so we obtain a convergent spectral sequence whose E,-term is a
direct sum of groups 7(X*,T,,,/T;) and for which E is an associated graded
version of 7*(X,T,). The spectral sequence is convergent since E,,, = E_ and
72(X,T,) = 0. Since E; = 0 by hypothesis, the proposition is proved. O

V. “Blowing up” the singular locus

In this section, we will construct a G-homotopy equivalent model for the
singular locus
2(x)= U x*

HcG
H+{G}



EQUIVARIANT STABLE HOMOTOPY 207

of a G-complex X, which admits a manageable filtration. We will be relying
heavily on work of Quillen’s [24], [25]; in fact all the results of this section are
contained in [25] implicitly.

Let C be any category. Then recall from [24] the definition of the nerve of
C, NC,, as the simplicial set for which NC, = ob(C), and NC, consists of
n-tuples of morphisms [ f, f;, ..., f,], so that f,,, and f; are composable, whose
face and degeneracy operators are obtained by composing arrows and inserting
identity maps, respectively. Recall from [24] that a functor f: C, — C, induces a
map Nf: NC, —» NC,, and that a natural transformation T between functors
£, g C — D induces a homotopy from Nf, to Nf,. Any partially ordered set %
may be viewed as a category with a unique morphism p — g whenever p < g,
and Mor(p, q) = @ if p £ q. We write N2 for the nerve of this category. Note
that a G-action on a partially ordered set £ induces an action on N2, and that
(NP)G = N(PC), where PC denotes the partially ordered set of elements fixed
by G. The verification of this fact uses the observation that if a simplex
[x;, < x5, < -+ < x;] of NP, is invariant under the action of G, then each x,
is fixed by the G-action.

Let H C G. We say a subgroup K C G is H-invariant if hKKh™! = K for all
h € H. Define 0(G, H) (0*G, H)) to be the partially ordered set of nontrivial
(non-trivial and proper) H-invariant subgroups of G.

We will also need some preliminaries concerning p-groups.

ProrosiTiON V.1. Let G be a p-group, and suppose G is not elementary
abelian, i.e. G # (Z/pZ)* for any k. Then there is a non-trivial central element
x of order p so that x projects trivially in G, the quotient of G by the subgroup
generated by all commutators and p-th powers.

Proof. Consider the subgroup C of the center of G consisting of all central
elements of order p. This is non-trivial since the center of G is non-trivial, G
being a p-group. Let C denote its image in G. Selecting any section S: C — C of
the projection C = C, we find that G = G’ X C, via the map C_—s> C-G,
where all central elements of G’ project trivially to G’. G’ is nontrivial since G
is not elementary abelian; so select x to be any central element of order p in
G’ c G. This is possible since G is also a p-group. O

Lemma V.2. For H € G, G a pgroup, let H denote the image of H in G.
Then H is @ proper subgroup of G if and only if H is a proper subgroup of G.

Proof. Since G is a p-group, it is nilpotent. If H = G, we find that if T;(G)
denotes the i-th term in the mod p lower central series for G (see [35]),
I(H)/T,.(H) - T(G)/T,, (G) is surjective. Since I'y(G) = {e} for N suffi-
ciently large, we conclude that H — G is surjective. O
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CoroLLary V.3. Let H € G, and let T be a cyclic subgroup of order p in
the center of G, which projects trivially to G, as was constructed in Proposition
V.1. Then H is a proper subgroup of G if and only if H - T is.

Proof. H is proper < H is proper < HT = H is proper < HT is proper.
0O

We now study the simplicial sets NO(G, H) and NO*(G, H).

ProposiTioN V.4. (a) For any group G and subgroup H C G, NO(G, H) is
contractible.
(b) If a p-group G is not elementary abelian, NO*(G, H) is contractible.

Proof. (a) O(G, H) has a maximal element, namely G; hence, by [24],
NO(G, H) is contractible. '

(b) Let T be a central cyclic subgroup of G of order p, projecting trivially
to G, as was constructed in Proposition V.1. Define functors ®, ®": 0*(G, H) —
0*(G, H) (viewed as a category) by ®(K) = KT and ®/(K) =T, for any
K € 0*%(G, H). Note that ®(K) € 0*(G, H) by Corollary V.3, and by the fact
that T is central, hence H-invariant. The inequalities T < TK > K give natural
transformations Id g« y) = ® and ®” — @, which shows that Idyp«c u) =
N®’. But N®’ is a constant simplicial map. O

Let X and Y be sets, and suppose X is given a preferred choice of
basepoint. Then by X X Y we mean X X Y/* X Y. Given any based simplicial
set X, and any simplicial set Y ,, we may form the bisimplicial set (X X Y )y,
whose (m, n) simplices are the elements of the set X,, X Y,,, and whose face and
degeneracy operators are defined in the evident way. These definitions carry over
without change if X, and Y, are simplicial G-sets. (See [9] for a discussion of the
properties of bisimplicial sets.) Let X be a based G-simplicial set. Note that
NO(G, e) and NO*(G, e) are G-simplicial sets, with the G-action induced from
the conjugation actions of G on O(G, e) and O*(G, e¢). We will define bisimpli-
cial G-sets, B(X) € X X NO(G, e) and B*(X) C X X NO*(G, e), by setting

B(X)p, = {xX [KoCK € -+ €K, ]jx € XKn),
B*(X)p = {3 [K, €Ky € - CK,]lv € X5, K, € G).

We also define B(X) € X X {*} by B%(X),, , = {x X * |x € Z(X)}. There are
evident, bisimplicial maps p: B(X) — B%(X) and p*: B*(X) — B°(X), obtained
by projection on the first coordinate.

ProposiTiON V.5. (a) |p|: |B(X)| = |B%X)| is a G-homotopy equivalence
for all X.
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(b) Suppose a p-group G is not elementary abelian. Then |p*|: |B*(X)| —
|BY(X)| is a G-homotopy equivalence.

Proof. We prove (a). By Theorem 1.2, it will suffice to show that the map
Ip|#: |B(X)|¥ - |B%X)|" is a homotopy equivalence, for all H C G. Now,
|B(X)|" = |B(X)H| and |B%(X)|¥ = |B°(X)¥|, so that we must examine the
bisimplicial set B(X)¥. For a point of x, let G, denote its stabilizer. Then

B(X)p .= {xx[K,C - CK,|]|[HC G,,K, S G,,and
[Ko € --- CK,] € NO(G,H),}.

Now, by the results of [9], it will suffice to prove that the simplicial map |p,, «|:
|B(X)X .| = |BYX)X .| is a homotopy equivalence. B(X)X, is a discrete
simplicial set, so we need only check that the inverse image of any point is
contractible. Now, the simplicial set p,’,f:,l(x) is isomorphic to NO(G,, H), which
is contractible by Proposition V.4(a). To prove (b), one repeats the above
analysis, and finds that (p%)~' = NO(G,, H) if G, € G, and (p2) Y(x) =
NO*G,H) if G, = G. In either case, the simplicial sets are contractible by
Proposition V.4. O

ProposrTion V.6. |BY(X)| = Z(]|X]).

Proof. This is immediate from the definition of geometric realization. |
For any G-complex X, define G-subcomplexes

3(X) € X X NO(G, ¢) and
$*(X) € X X NO*(G, e) by
3(X)= U X% x NO(H,e)and
S¥X)= U X" x NO(H,e) N NOX(G,e).

HcG
H+#e

There are natural maps 7: 3(X) = =(X) and 7*: £*(X) - 3(X).

ProposiTiON V.7. (a) m: 3(|X|) = 2(X) is a G-homotopy equivalence for
all G-simplicial sets.

(b) If the p-group G is not elementary abelian, 7*: 2*(|X|) = Z(]X]) is a
G-homotopy equivalence for all G-simplicial sets.

Proof. 2(|X|) and £*(|X|) are the realizations of the diagonal simplicial sets

associated to B(X) and B*(X), and 7 and 7* are the realizations of p and p*,
respectively. Since the realization of the diagonal of a bisimplicial set is homeo-



210 GUNNAR CARLSSON

morphic to the realization of the bisimplicial set, (see [9]), the result follows from
Propositions V.5 and V.6. O

CoroLLARY V.8. The equivalences # and #* hold for arbitrary G-com-
plexes.

Proof. Any G-complex has the G-homotopy type of the realization of a
G-simplicial set. One need only check that 2 and 2* preserve G-homotopy
equivalences, which is immediate. O

VL Proof of Theorem B(b)

In this section, we prove that if G is not elementary abelian, if p. is the
reduced regular representation, and if Conjecture 1.12 holds for all p-groups of
H, with |H| < |G|, then {S*Y, EG}$ = 0. This will complete the proof of
Theorem B(b), and therefore the proof of C njecture 1.12. We will first note that
~ the functor £* of the previous section admits an S-functor structure, and that
m*: $* - 3 is a natural transformation of S-functors. We will then filter 3*(X),
and relate the groups 7X(X; £*) = #%(X; ) to groups 7} k(X Ky, for subgroups
K € H C N, (K) of G. We then use Proposition IV.5 to conclude the proof of
Theorem B.

Let #, denote INO*(G, e)|, where NO*(G, e) is defined in Section V. For
a G-complex X and a G-space Y (Y not necessarily based), we define X X Y =
XXY/* XY, as we did for sets in Section V. 2*(X) is defined as a sub-
complex of X X #. We note that 3*(X A Y) is contained as a subspace of
X A $%(Y), via the inclusion (x A y) X z—>xA(yXz),x€X, ycY, z€
%, and denote the inclusion by 6(X,Y).

Lemma VL1, (2%, 6) is an S-functor.
Proof. This is immediate from the definitions. a

Lemma VI.2. The map 7*: S*(X) > 2(X) is natural in X, and is a
natural transformation of S-functors.

Proof. Again, this is immediate from the definitions. O

ProposiTioN VI.3. If the p-group G is not elementary abelian, the natural
transformation S* — 3 induces an isomorphism of functors mi( ;2) -
mE(; S*). ‘

Proof. By Corollary V.8, $*(X) » 3(X) is a G-homotopy equivalence; so
the directed systems defining the groups are isomorphic. 0O
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We now wish to filter £*(X) in a useful way. Let 2% denote the union of
all the k-faces of .. Z is a G-subcomplex of #, and we define 2¥(X) to be
X X 2P N SXX).

ProposiTION V1.4, The S-functor structure on S*(X) restricts to an S-func-
tor structure on 2}(X). Moreover, each of the inclusions 2}(X) - 2f, (X) isa
natural transformation of S-functors.

Proof. Immediate. O

Note that if s = #(0*(G, e)), then S*(X) = £*(X), and conventionally we
set $* (X) = {*}. We define T;(X) to be the G-complex S¥(X)/2%_,(X). As
in Section IV, T, admits an S-functor structure induced from that on S¥. We
wish to decompose the S-functor I in terms of the Sfunctors T, defined in
Section IV. For each k, let Q, denote the set of k-simplices of #). These
correspond to increasing chains [K, € K, € --- € K,] of proper, non-trivial
subgroups of G. For a k-face o of # corresponding to [K, € K, € -+ € K;],
define s (o) = K. Also for o a k-face of #, let 6 = 0/do. We see that as a
space, I}(X) is homeomorphic to the wedge VUEQkX”’ ) A 5. We wish to
study the G-action on this space. Let {0,,...,0,} be a set of orbit representa-
tives for the G-set Q,. For each i, let H; denote the stabilizer of o,. If o;
corresponds to [K, € K, C --- C K;], then H; normalizes each K;. In particu-
lar, H; normalizes .9?’(0) The inclusion map X#0) A -V, QX”“’) A G is
thus an Hequivariant map. Applymg eH, we obtain from Proposition 1.6
a G-map from eff (X AG) > V _ kX” () A &, which is a G-homeomor-
phism to the wedge of all the summands corresponding to simplices in the orbit
of o;. Performing this construction for all i, we obtain a G-homeomorphism

Ve (X A 5,) = T (X).

Let w; denote the pair (H;, 5#(o0;)).

ProposiTioN VL5. The above construction is natural in X, and is a natural
transformation of S-functors. Thus, it produces an isomorphism of S-functors
T, (X A 5) - T|(X).

Proof. Everything here is clear, except possibly the fact that we have a
natural transformation of Sfunctors. We verify this. Points in T, (X A Y A 6,)
are of the form gAxAyAs, where ge G*, x € X)), y € Y¥(),
and s € 6, From the remarks following Lemma IV.3, the formula defin-
ing the S-functor structure on T, (X A Y A 0;) is given by gAx Ay As—
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gx A g A y A s. Also, the Sfunctor structure on T (X) =V,co X¥ (P AG is
givenbyx AyAs—->xA(yAs) forse€a, xeX¥ ye Y*O Now, for
g€ G’ xe X¥®, ye Y¥%, s €5, we find that the map T, (X A Y A 5,)
> T(XAY)isgivenbyg AxAyAs—gxAgyA gs, since it is the exten-
sion to eS‘(X A Yo,) of the Hymap which takes LA x Ay Asto x Ay As.
Now, we compute that the composite

T,(XAYAG) > T(XAY)—> XAT(Y),

isg AxAyAs—grA(gy A gs) On the other hand, the composite T, (X A
YANG)>XAT (YANG)>XAT(Y)isalsogivenbygAxAyAs—gx
A (gy A gs), which gives the result. |

CoroLLARY VI.6. If G is not elementary abelian, there is a sequence of
S-functors Ty, with T_(X) = {*}, and T, = $*, and cofibrations T, - Ty, ,,
with Ty, /T(X) = V, T (X A S¥), where each w, = (H;,K,), and K, is a
proper non-trivial subgroup of G.

Proof. This is just a restatement of the above discussion, since J#(o) is
proper and nontrivial for any simplex o of |(NO*(G,e)|. Also, we noted above
that H; acts trivially on &;, since H; normalizes all the subgroups in a chain
K, c K, € -+ C K, corresponding to o;; so 6, = S* as an H,-space. O

ProposiTioN VL.7. Suppose that Conjecture 1.12 holds for all p-groups G’,
with |G’| < |G|. Suppose V is any finite-dimensional G-representation, and
suppose VX # 0, where {e}# KC G. Let w=(H,K), where K< HC
N.(K). Then n%(S*%;T,) = 0.

Proof. We first use Proposition IV.8 to identify #(S*%;T,) with

7 /K(S°°‘VK)). Since K # {e}, H/K is a p-group of order strictly smaller than
|G|, and V* is a representation of H/K. Since V* # 0, the inductive hypothesis
and Theorem A, part (a) of Section I allow us to conclude that 7 (S*V")) = 0.
0O

ProprosiTION V1.8. Let p be the reduced regular representation, as defined
in Section II1. Then pf # 0 if H is any proper subgroup of G.

Proof. In the proof of Lemma III.1, it was shown that for any proper
subgroup H, p. contains a trivial summand. ]

TreoreM VI.9. Suppose Conjecture 1.12 holds for all p-groups G’, with
|G’| < |G|, and that G is not elementary abelian. Then w2(S**¢; 2) = 0.

Proof. By Proposition VL3, it suffices to prove that w2(S%c; $*)=0. To
do this, we use Proposition IV.12 and Corollary VL.6 to prove 7(S°%¢;T,) = 0,
where w = (H, K), and K is a non-trivial proper subgroup of G. (That the finite



EQUIVARIANT STABLE HOMOTOPY 213

generation hypothesis in Proposition IV.12 is satisfied follows from Proposition
IV.8 and Corollary 1.10.) Proposition VI.8 now shows that for V= p,, w =
(H, K), the hypotheses of Proposition VI.7 are satisfied, and hence we have the
result. ]

CoroLrLARY VI.10. Suppose that Conjecture 1.12 holds for all p-groups G’,
with |G’| < |G|, and that G is not elementary abelian. Then {$**¢; EG}$ = 0.

Proof. This is immediate from Theorem V1.9 with Proposition IV.5. m|
This completes the proof of Theorem B.

Appendix A. Thom spectra of virtual representation

In this appendix, we will construct spectra BG™", where V is any G-repre-
sentation, and prove that {SY, EG*}% = #5(BG~"). Here, the term G-space
will be used to mean a G-CW complex in the sense of [10], without a preferred
choice of base point. A G-space X is said to be free if X” = @ forall H + {e},
HcG.

We first need a result of M. Atiyah [7]. Recall from [7] the definition of
complex K-theory K* and its reduced version K*. Let G be a finite group.

ProposITION A.l. |G| annihilates im(K*(BG**Y) -» K*(BG®)), where
BG™ denotes the Lskeleton of the classifying space BG.

Proof. This is an easy consequence of Proposition 2.4 of [7], together with
the fact that |G| annihilates im( H*(BG"*Y; Z) > H*(BG®; Z)). O

Let V be any complex representation of G. We obtain an associated vector
bundle EG X V — BG, which we also call V. We denote by V|BG" the
restriction of the bundle V to the l-skeleton of BG. If k is an integer, kV will
denote a direct sum of k copies of V.

LemMa A.2. |G|™V|BGW is a trivial bundle, for allm > 1.

Proof. By Proposition A.1, |G|™V|BG" is stably trivial. Since the dimen-
sion of |G|™V is greater than [, it is actually trivial. a

Choose any trivialization a of |G|'"'V|BG!*D, By |G|'a we mean the
trivialization of |G|' - |G|'"*'V|BG!*D = |G|2+1V|BG'*D which is a |G|fold
direct sum of a.

LemMma A.3. |G|'a restricted to BG") is independent of the choice of a, as a
homotopy class of trivializations of |G|?*'V|BG®.

Proof. If a and a’ are distinct trivializations of |G|'*'V|BG"*Y, a — a
represents an element in KYBG!'*P). Now |G|'a — |G|'a’ = |G| (a — a’)
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restricts to zero in K} BG®), by Proposition A.1. Consequently, the class of
|G|'a as a stable trivialization is independent of the choice of a. But stable
trivializations are equivalent to actual trivializations for dimensional reasons. O

Let V(1) denote |G|**'V|BG", and let a, denote the trivialization of
|G|'a|BG® of V(I), for any trivialization a of |G|'"*V|BG**V. Let V1)
denote V(1), equipped with a trivial G-action. Thus, «, is a bundle isomorphism
Voy - V(1).

LeEmMMA A.4. The diagram of bundle isomorphisms

i°

|GI2VY(1) V%l + 1)|BG®

1G % a41|BGY
|G2V(1)—————V(1 + 1)|BG®

_is homotopy commutative as a diagram of bundle isomorphisms; that is, i ° |G|’,
and (a;,,|BG")i® are homotopic through bundle isomorphisms. (Here, i and i°
identify the jth copy of V(1) and V1) with the (jdimV + 1)-th through
(j + 1)dim V-th copies of Vand V° in V(I + 1) and V(1 + 1).)

Proof. We show that both i°|G|%; and (a,,,|BG")i°® are of the form
|G|'a|BG), where a is a trivialization of |G|?|G|'*'V|BG"*Y. Then Lemma
A.3 shows that the diagram is homotopy commutative as stated. Recall that «; is
constructed as |G|'a| BG", where a is some trivialization of |G|'*!V|BG(*D, If
we take & = |G|, a trivialization of |G|%|G|"*'V|BG(*D, we see that |G|%,
= (|G|'- &@)|BGY. On the other hand, a,,, is constructed by setting a,,, =
(|G| 1a’)|BGU*D, where a’ is a trivialization of |G|'*2V|BG"*?. Now,
a;,,|BG? = (|G|'- @)BGY, where @ = (|G|a’)|BG"*D. This proves the
lemma. a

CoroLLARY A.5. The diagram

(1GI2 - 1)VX1) ® V1) VYl + 1)|BG®
id ® o
(1G> - )VXl) ® V(1) a1 |BG®

(G -1 eid

|G|2V(1) V(1 + 1)|BGY
is homotopy commutative as a diagram of bundle isomorphisms.
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We recall from the work of G. B. Segal [32] that for a free G-space, vector
bundles over X/G and their trivializations correspond bijectively to G-equi-
variant vector bundles over X and their trivializations. Under this correspon-
dence, an equivariant vector bundle E over X corresponds to the orbit space
bundle E/G — X/G. In particular, for X = EGY, and a G-representation W,
the equivariant bundle W —» EGY X W - EG® corresponds to the ordinary
vector bundle W - EG® X, W —» BG®.

Given this, the bundle isomorphisms a,;; V%) — V(I) constructed above
yield isomorphisms of G-vector bundles, which we also call a;,

a: |GI2*VO X EGY - |G¥+V X EGO,

where V° denotes V with trivial G-action. This produces a G-homeomorphism of
Thom complexes

T(a;): T(|G|?**'V° X EG?) - T(|G|**'V X EGVY),

or equivalently based G-homeomorphisms

B . SIG‘2I+1V0 /\ EG(l)+ S|G|2I+IV /\ EG(I)+

Let B, SI¢ A EG®' - g6y A EG®" be the induced map on orbit
spaces. We now construct the spectrum BG~V, where W is any finite dimen-
sional orthogonal representation of G. To define a spectrum, it suffices to define a
prespectrum (see [20]), ie. a family of spaces {X;},,,, and maps S’ A X, —
X;.1- To define a prespectrum, it actually suffices to define the spaces X, for [,
some strictly increasing sequence of integers, and maps S'+17% A X, > X L1
For then, if [, < j <1, ,, we define X; = §i~ ’X, Let R denote the regular
complex representation of G, and let W be embedded as a G-subspace in
@2 Re;. We define a positive definite, G invariant inner product on @ Re,
in the usual way. Let s be such that W is contained in @ ,Re,, We set
I, = 2|G|**2, and define

)(l = *if |(;l2i4-1 <s,

|2l+ lv()

X, = §IGI"R-W A EG®* otherwise.

Here, |G|?>*'R — W = |G|**'R N W *. We define the map
o;: Shvimh A X, - X,
to be the composite
S~k A X, = SUCIP-DIGIIR? ,\(s|c|2‘“ﬂ—w A GE(;(:')*)
4 gicieR-w A EGO'

ldA]SIG|2|+3R w /\ EG(1+1)+ X

i+1’
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where ¢ is the orbit space map associated to the equivariant map

SUGIP=DIGIR? A QIGI" R=-W A FGH 5 GIGI¥PR-W A pG()*
induced by the bundle isomorphism
(IGI* - 1)a; ®id: (|G|* - 1)IG]**'R° & (|G|**'R — W)
N (|G|2 _ 1)|G|2i+lR $(|G|2"+1R _ W) = |G|%*3R - W,
and j: EG®"— EG¢*D" is the inclusion.
We now state some well known facts related to the Thom 1somorphlsm We

first recall that for any free based G-complex X, free off the basepoint, H*(X/G)
is equipped with an H*(BG)-module structure, which is respected by G-maps.

ProprosiTiON A.6. Let X be a free G-space, V a finite dimensional complex
representation of G. Then H**?3™Y(SV A X*)= H¥X*/G); the isomor-
phism is an isomorphism of H*(BG)-modules.

Proof. This is just the Thom isomorphism associated to the bundle V é\ X
— X /G; the Thom isomorphism exists since V is orientable, being complex. O

ProposiTiON A.7. Let Vand W be complex G representations, v = 2dimV,
w = 2dim:W, and let X be a free G-space. Then the diagram of H*(BG)-
modules

I‘_'I*+o+w(SVeWAX+) I‘_'I*+o+w(SV /\X+)
G G

~Ca(W)

H*(X*/G) H***(X*/G)

commutes, where the upper horizontal arrow is induced by the inclusion
V> V& W, the two vertical arrows are the Thom isomorphisms mentioned
above, and -Cy (W) denotes multiplication by the d-th Chern class C,(W) of
the representation W; c, (W) € H*(BG), d = dim W

ProPOSITION A.8. Let W be a complex G-representation. Then H*(BG™ V)
is equipped with an H*( BG )-module structure. As a module over H*(BG), it is
- free on one generator in dimension — 2 dimoW.

Proof. This is an easy consequence of the preceding propositions and the
definition of BG™ Y, 0

Let V and W be two complex representations; embed V& W in @2 Re,,
so that V and W are perpendicular. Then we have the inclusions ®;_,R —
(Ve W)— &’_ R —V, for sufficiently large s. This induces a map
BG~VeW) — BG™V.
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ProposiTION A.9. The homomorphism f: H*(BG~V) - H*(BG~ (V™))
induced by the map BG~V®W) - BG™V is a map of H*(BG)-modules; after
applying Thom isomorphisms, f is multiplication by the (dimW )-th Chern class
of W.

Proof. This is an immediate consequence of Proposition A.7. O
It remains to produce the isomorphism
0: {SY,EG*}¢, = 7°,(BG™Y).

We suppose, as before, that we have V.C @ Re; € © Re,.
First, we define a directed system of groups whose i-th group is

Ti: {S®H A SV, 8RO A EGOT)E,  fori > s.
The maps v;: T — I'¢* D are defined to be the composites
. . A+ G
{SRO(,) A SV, SR A EG®D }*
f—idAf RO _ROy; 0/; 0/; 7 . o+
{S (i+1)—R(i) A SR (i) A SV, SR (i+1)—R"(i) A SR(:) A EG(:) }!Ck;
{SRO(:'+1) A SV, SR°(i+l)—R°<:’) A SEGY A EG(:’)*}S‘;
@ {SR°<i+l) A SV, SEGHD=RG) A GRG) A EG(‘)+}$
_____{SR°<i+l) A SV, SRG+1) A EG(i)+}g
{SRO(i+ l)SV, SR(i+ l)EG(i+l)+},CkJ'
All maps are self explanatory except (a), which is induced by the bundle
isomorphism
(G2 — 1)a; ® id: R%(i + 1) — R%(i) ® R(i) — R(i + 1) — R(i) + R(i).
Define ¢,: {SV, EG®}§ — T’ to be the composite

{SV, EG(i)*}?M{sR"(i) A SV, SR°(£) A EG(")+}§

®)

{SRO“> A SV, SR A EG(")+}$
where the arrow (b) is given by f — B; o f, where as above, B; is T(«;).
LemMa A.10. The diagrams

o+ b; ,
{SV,EGM")§ |
‘Y«
{SV, EG(”W}‘ELFTI

commute.
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Proof. This is an immediate consequence of Corollary A.5. O

Since each ¢, is an isomorphism, being the composite of a suspension map
and a map induced by a G-homeomorphism, the ¢;’s combine to give an
isomorphism

®: {SY,EG"}¢ > lim (S, EGM"}§ - lmT%.

We now construct another directed system T, defining

Ty = {SR°<‘>, SRV A EG(‘)+}§, whenever i > s.

Maps ¥;: T4 — Ti! are defined in precisely the same way as v;, using the
bundle isomorphism (|G|® — 1)a; ® id, as above. We define ¢;: T, — T, to be
the inverse to the suspension isomorphism

(R, sV o pa0" )¢ (970 4 gV, RV A BGO" A §V )¢

——{ 8" A 8V, 88 A EGOTS.

LemMA A.11. The diagrams

; ®; =,

iy I
Yi Y
. ®iv1 =

1 1
ry Ty
commute.
Proof. This is immediate from the definitions. ]

Let 7 denote the directed system

e = wi+2|c,z.-+z(sﬂ<">-v A EGU)*)
with the maps p;: 7% — 7! induced from the maps o, used in the definition of
the spectrum BG~V. Then Proposition 1.4(b) gives isomorphisms I}, — 7.

LEmmA A.12. The diagrams

. T T
l Yi i
Ti+l i+l
I ST

commute.
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Proof. The maps o; are the induced maps on orbit spaces of the G-maps
used to define ¥;. The result then follows from the naturality of the isomorphism
of Proposition 1.4(b). m]

CoroLLARY A.13. limT% = lim,.

ProposiTION A.14. lim7i = 7%(BG™Y).
i

Proof. 75%(BG™Y) is defined as

hmvr*+2,¢|z‘+z(SR<i>‘V A EG(i)+);
- G
i

lim 7, = h_m.”fk+2|c|2'+2(sﬂ<i>_v /\EG("V).

i i G

So we have a map 7%(BG~V) — lim#, obtained from the stabilization map
i

;¢ 7’*+2|C|2i+z(sﬂ<i>—v/\EG(i)+) - W§:+2|c|2‘+2(sﬂ<i>_vAEG(i)+).
G G

Note that SR~V AEG®" is 2|G|%*2 — V connected, so that for large
enough i, s; is an isomor?)hism. a
CoroLLARY A.15. {SY,EG*}§ = 7%(BG™Y).
ProposiTioN A.16. The diagrams
(SVeW, EG*)§

75 (BG~(VeW))

|

(5", EG")§ m4(BGY)

commute.

Proof. This results from an easy diagram choice using the definitions. ]

Appendix B. The elementary abelian case

In this appendix we will sketch a proof of Conjecture 1.12 for the case
G = (Z/pZ)*, using a homological calculation which appears in [6], [23]. We use
the notation of Section V, and let V denote the reduced regular complex
representation of G. Recall the exact sequence (A) of Section I:

- SV, EG*)§ - n&(SV) > (S, EG}§ > -

The groups { SV, EG*}$ and {S*", EG}§ are no longer zero, as is the case
when G is not elementary abelian. Thus, the object will be to determine the



220 GUNNAR CARLSSON

structure of the groups, and verify that the boundary map is an isomorphism. We
first study the group {S*Y, EG}$. We must first analyze the discrepancy
between S*(X) and =(X). The following is a consequence of Quillen’s analysis
of NOX(G,e) for G = (Z/pZ)* (see [25]).

ProposiTioN B.1. Let X be a Gcomplex. Then the cofibre of the map
$¥%(X) = 2(X) has the G-homotopy type of X A SB, where B denotes the Tits
building (see [25]) for G, and S denotes unreduced suspension. (Conventionally,
S(@) = S°. B s in fact NO*(G,e).)

k
We recall from [25] that B has the homotopy type of a wedge of p(2)
(k — 2)-spheres if k > 2, and is @ if k = 1.

CoroLLARY B.2. Suppose that Conjecture 1.12 holds for all (Z/pZ), | < k.
Then

k
(559, BG) = n*(5B) = p\®) - m 2(55°1).

Proof. Let # denote the S-functor #(X) = X¢ A SB. Proposition B.1 shows
that there is an exact sequence

o a(X; B) - (X Z) o> mX(X; 5% S

and one readily checks that 72(X; #) = #*(X¢ A SB). An analysis identical to
that in Section VI shows that 7*(S®V; £*) =0, by the inductive hypothesis.
Thus, since (5°V)% = S°, we get that 72(S°"; 2) = n*(SB). Now, Proposition
IV.5 gives the corollary. ]

We now turn to {S*, EG*}§.

ProposrTioN B.3. {S*Y, EG*}§ = m, *(S®B).

Proof. In Appendix A, it is shown that {$<V, EG*}{ = lim#4(BG™*").
Adams, Miller, and Gunawardena ([16]) prove that *

k k
lim 73 (BG™Y) = p(z)w*+k(3°) = p(z)ﬂ; *(8%) = =7 *(S?B). o
k

Both {$*V, EG)}$ and {S*Y, EG*}§ are 7%(S°)-modules in an obvious
k
way. {$°V, EG)$ is a free w*(SO)-Elodlﬂe on p‘2/(k — 1)-dimensional genera-

tors, and { $°V, EG*}§ is free on p'2/ k-dimensional generators. To verify that 9
is an isomorphism, then, it will suffice to prove that

9: (8, EG} 4y~ {S°V, EG*) S,
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is an isomorphism. Let 9 denote 3 reduction mod p. Since we have completed at
p, it will suffice to show that 9 is an isomorphism.

From this point on, we let A = {$*¥, EG}€ ,_, and B = {$*, EG*}%,.
We will need to study generators for A. If we view A as 75~ 4(S*; Z), we see
that generators for A are given by the various projections from =(S*V) to
Sk=1 A (§*V)¢ = S§*~! given by Proposition B.1. To compute d on a generator
a: 2(5*Y) = S¥~1 one first extends (uniquely up to G-homotopy by the proof
of Proposition IV.5) the composite Z(S*V) - $¥°! - S¥“! A EG to
$<V 5 Sk-1EG, and then projects to S*~! A EG/S* ! = Sk A EG™.

LemMa B.4. For any Gcomplex X, { X, EG*}$ = a5 *(X; T), where T is
the quotient S-functor X — X /2(X).

Proof. This is an easy exercise, using the fact that [X, Y]¢ =
[X/=(X), Y ]¢ when is free. 0

We will now define a G-cohomology theory 5#* on finite G-complexes. We
note that if SV is any complex representation of G, C.(S¥ A X;Z/pZ) is
Z,[G]*-chain equivalent to C,(X;Z/pZ) with a dimension shift of 2dimW.
This is true since Co(S¥ A X;Z/pZ) = Co(S¥, 00,Z/pZ) ® ; ,,,Cu(X; Z/pZ),
and the inclusion Z /pZ — C (5", 00;Z/pZ) which takes 1 to a cycle represent-
ing the top class in H,(SY;Z/pZ) induces a chain equivalence
Co—oamw(X;Z/PpZ) > Co(SY A X;Z/pZ). We denote the induced isomor-
phism H*(X/G;Z/pZ) » H**24™W(SW A .X;Z/pZ) by t,. We now define
HXX;Z/pZ) = im HX(T(SY A X)/G;Z/pZ). The maps in the directed sys-

tem are the compogi’tes
H*+2dmW(T(SY A X)/G;Z/pZ)
t H*+2dimw+2dimu(sué T(S¥ A X);Z/pZ)
— H*+2mWH(T(SY A SW A X)/G;Z/pZ)

where the second map is induced by the S-functor map T(SY A S¥ A X) - SY
A T(SW A X). H#* is extended to infinite complexes by passing to in-
verse limits over skeletons. Given any element f in {X, EG*}$, we may
associate to it an element h(f) € 5#~ *(X;Z/pZ) where h is a homomorphism
{X; EG*}§ ®,Z/pZ — #~*(X;Z/pZ). Now, consider a basis aj,...,a, for
{8, Eg }(f( x—1- As above, they may be represented by projections
3(8*Y) - $*~!, which are projections on wedge summands; hence the elements

a¥(ix_,) form a basis for H k=1(3(8*Y, Z/pZ)). Since SV is contractible, the
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boundary map
8: H*(S(5™V); Z/pZ) > HX(S*/2(5*Y); Z/pZ)

is an isomorphism. Thus, { 8(a}(i;_,))} form a basis for H*(S*V/Z(S*V); Z/pZ).
But 8(af(if_;)) = &¥(8%_,), where §: H*(S*"YLZ/pZ) - H*(S* A
EG™; Z/pZ) is the boundary map associated to the cofibre sequence S¥~! —
Sk=1 A EG — S* A EG*, and & is the element obtained as above by extendmg
the composite =(5<V) = §¥~! - S~ A EG to S*V and projecting to S* A
EG"*. Thus, the elements &}(8'i;_,) form a basis for H*(S*V /3(5*V); Z/pZ),
and from the earlier dlscussmn, the &,’s generate im(d: A — B). If we can show
that the set { h(&;)}]-, is linearly 1ndependent in #5(S*V;Z/pZ), we will have
proved that 9 is injective, hence an isomorphism, which will give the result. This
fact is now established by the following lemma.

LemMma B.5. The homomorphism
fo: HNT(SY)/G;Z/pZ) - H’<+2d‘mU(sU/\ T(sV);Z/pz)
G

- Hk+2dimU(T(SU A SV)/G,Z/pZ)
is an injection for all k and U.

Proof. We dualize, and will show that each map
£ Hyoamu(T(8Y A 8Y)/G3Z/pZ) > H(T(SY)/G; Z/pZ)

is surjective. Recall that each of the graded groups H(T(SY A $V)/G;Z/pZ)
and H(T(SY)/G;Z/pZ) are modules over the ring H*(G;Z/pZ), with ring
elements lowering degree. Consider first the case G = Z/pZ, and let U be a
one-dimensional complex representation of G. Then T(SY)/G is the suspension
of (S!')*; we note that the one-dimensional element in H*(G;Z/pZ) acts
non-trivially from Hy(T(SY)/G;Z/pZ) to H(T(SY)/G;Z/pZ). Now, let & =
{b,,...,b;} be any basis for G = (Z/pZ)*; the dual basis #* specifies a
k-dimensional complex representation W of G. It is not hard to verify that
T(S%*) /G = SK(SY)* A s N (S1)* where S* denotes k-fold suspension,

and that if x,,...,x, € HYG;Z/pZ) are the cohomology classes corresponding
- to the dual basis #*, x, --- x;ig = Ajgz, Where iz is a generator for
H,,(T(S%%)/G;Z/pZ), jg is a generator for H(T(S"%)/G;Z/pZ), and A # 0.
This follows, in fact, from the one-dimensional result given above. For any basis
%, Wy appears uniquely as a summand in the reduced regular representation V,
and we obtain a map

gt T(5%)/G > T(5%)/G.
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Using standard Mayer-Vietoris techniques, one finds that the map
\7
V1(s%)/G S1(s%) /G
B

induces a surjection on H,( ; Z/pZ), where # ranges over all bases of G. Let
i € Hyy,v(T(SY)/G;Z/pZ). A standard fact about Chern classes shows that
g4(ig) = C(V — Wy) - i, where C(V — Wj) denotes the top Chern class of
V- W. Let x; denote the product x, --- x;, where x,,...,x, are the
cohomology classes corresponding to the dual basis #*. Then we have

g4(Nja) = ga(xaiz) = x384(ia) = x42C(V — Wp)i,
where A # 0. Since as was remarked above the elements gg(jz) span
H(T(SY)/G;Z/pZ), we have shown that H(T(SY)/G;Z/pZ) is contained
entirely in the H*(G;Z/pZ)-module generated by i. Since thé maps f;* are
H*(G;Z/pZ)ymodules and i is in the image of f¥, the result is proved.
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