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PREFACE TO THE SECOND EDITION

VERY
considerable advances in the theory of groups of

finite order have been made since the appearance of the

first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason

given in the original preface for omitting any account of it no

longer holds good.
In fact it is now more true to say that for further advances

in the abstract theory one must look largely to the representa
tion of a group as a group of linear substitutions. There is

accordingly in the present edition a large amount of new matter.

Five Chapters, XIII to XVII, are devoted to the theory of
groups of linear substitutions, including their invariants. In
Chapter IV, which is also new, certain properties of abstract
groups, to which no reference was made in the first edition, are

dealt with ; while Chapter XII develops more completely the
investigation of the earlier sections of Chapter IX of the first
edition.

All the chapters dealing with the abstract theory, including
that of the group of isomorphisms, have been brought together
in the earlier part of the book ; while from Chapter X onwards
various special modes of representing a group are investigated.
The last Chapter of the first edition has none to correspond to

it in the present, but all results of importance which it con
tained are given in connections in which they naturally occur.

With this exception there are no considerable changes in the
matter of the first edition though there is some re-arrangement,
and in places additions have been made.
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A number of special questions, most of which could not have
been introduced in the text without somewhat marring the

scheme of the work, have been dealt with in the notes.

Some of the examples, especially in the earlier part of the

book, are suitable exercises for those to whom the subject is

new. The examples as a whole, however, have not been

inserted with this object, but rather (i
) to afford further

illustration of points dealt with in the text, (ii) where refer
ences are given, to call attention to points of importance not

mentioned in the text, and (iii) to suggest subjects of in

vestigation.

A separate index to the definitions of all technical terms has
been prepared which it is hoped may be of considerable service
to readers.

I owe my best thanks to the Rev. Alfred Young, M.A.,
Rector of Birdbrook, Essex, and formerly Fellow of Clare

College, Cambridge, who read the whole of the book as it passed
through the press. His careful criticism has saved me from
many errors and his suggestions have been of great help to me.

Mr Harold Hilton, M.A., Lecturer in Mathematics at Bedford
College, University of London, and formerly Fellow of Magdalen

College, Oxford, gave me great assistance by reading and criti

cising the chapters on groups of linear substitutions; and

Dr Henry Frederick Baker, F.R.S., Fellow of St John's College,
Cambridge, helped me with most valuable suggestions on the

chapter dealing with invariants. To both these gentlemen I

offer my sincere thanks. I must further not omit to thank
correspondents, both English and American, for pointing out to
me errors in the first edition. All these have, I hope, been
corrected.

Finally I would again express my gratitude to the officers
and staff of the University Press for their courtesy and for the

care with which the printing has been carried out.

W. BURNSIDE

March 1911



PREFACE TO THE FIRST EDITION

THE
theory of groups of finite order may be said to date

from the time of Cauchy. To him are due the first

attempts at classification with a view to forming a theory from
a number of isolated facts. Galois introduced into the theory
the exceedingly important idea of a self-conjugate sub-group,
and the corresponding division of groups into simple and com

posite. Moreover, by shewing that to every equation of finite

degree there corresponds a group of finite order on which
all the properties of the equation depend, Galois indicated
how far reaching the applications of the theory might be, and

thereby contributed greatly, if indirectly, to its subsequent
developement.

Many additions were made, mainly by French mathe

maticians, during the middle part of the century. The first

connected exposition of the theory was given in the third

edition of M. Serret's " Gours d'Algebre Supe'rieure," which was

published in 1866. This was followed in 1870 by M Jordan's
" Traitd des substitutions et des equations algebriques." The

greater part of M. Jordan's treatise is devoted to a develope
ment of the ideas of Galois and to their application to the

theory of equations.
No considerable progress in the theory, as apart from its

applications, was made till the appearance in 1872 of Herr

Sylow's memoir " Th6orim.es sur les groupes de substitutions
"

in the fifth volume of the Mathematische Annalen. Since the

date of this memoir, but more especially in recent years, the

theory has advanced continuously.
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In 1882 appeared Herr Netto's " Substitutionentheorie und
ihre Anwendungen auf die Algebra," in which, as in M. Serret's
and M. Jordan's works, the subject is treated entirely from the

point of view of groups of substitutions. Last but not least

among the works which give a detailed account of the subject
must be mentioned Herr Weber's " Lehrbuch der AlgeLra," of
which the first volume appeared in 1895 and the second in

1896. In the last section of the first volume some of the more
important properties of substitution groups are given. In the
first section of the second volume, however, the subject is

approached from a more general point of view, and a theory of

finite groups is developed which is quite independent of any

special mode of representing them.

The present treatise is intended to introduce to the reader

the main outlines of the theory of groups of finite order apart
from any applications. The subject is one which has hitherto

attracted but little attention in this country; it will afford
me much satisfaction if

,

b
y means of this book, I shall succeed

in arousing interest among English mathematicians in a branch

of pure mathematics which becomes the more fascinating the

more it is studied.

Cayley's dictum that "a group is defined by means of the
laws of combination of its symbols

"
would imply that, in dealing

purely with the theory of groups, no more concrete mode of

representation should be used than is absolutely necessary.
It may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to

substitution groups ; while other particular modes of repre
sentation, such as groups of linear transformations, are not

even referred to. My answer to this question is that while, in

the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

The plan of the book is as follows. The first Chapter has
been devoted to explaining the notation of substitutions. As
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this notation may not improbably be unfamiliar to many

English readers, some such introduction is necessary to make

the illustrations used in the following chapters intelligible.

Chapters II to VII deal with the more important properties of
groups which are independent of any special form of repre

sentation. The notation and methods of substitution groups

have been rigorously excluded in the proofs and investigations

contained in these chapters ; for the purposes of illustration,

however, the notation has been used whenever convenient.

Chapters VIII to X deal with those properties of groups which
depend on their representation as substitution groups. Chapter
XI treats of the isomorphism of a group with itself. Here,
though the properties involved are independent of the form of

representation of the group, the methods of substitution groups
are partially employed. Graphical modes of representing a

group are considered in Chapters XII and XIII. In Chapter
XIV the properties of a class of groups, of great importance in
analysis, are investigated as a general illustration of the

foregoing theory. The last Chapter contains a series of results

in connection with the classification of groups as simple,

composite, or soluble.

A few illustrative examples have been given throughout
the book. As far as possible I have selected such examples
as would serve to complete or continue the discussion in the

text where they occur.

In addition to the works by Serret, Jordan, Netto and
Weber already referred to, I have while writing this book
consulted many original memoirs. Of these I may specially
mention, as having been of great use to me, two by Herr Dyck
published in the twentieth and twenty-second volumes of the

Mathematische Annalen with the title " Gruppentheoretische
Studien

"
; three by Herr Frobenius in the Berliner Sitzungs-

berichte for 1895 with the titles, " Ueber endliche Oruppen,"
" Ueber aufldsbare Gruppen," and

"
Verallgemeinerung des

Sylow'schen Satzes
"
; and one by Herr Holder in the forty-

sixth volume of the Mathematische Annalen with the title
" Bildung zusammengesetzter Gruppen." Whenever a result

b. 6



X PREFACE TO THE FIRST EDITION

is taken from an original memoir I have given a full reference ;
any omission to do so that may possibly occur is due to an

oversight on my part.

To Mr A. R. Forsyth, Sc.D., F.R.S., Fellow of Trinity
College, Cambridge, and Sadlerian Professor of Mathematics,
and to Mr G. B. Mathews, M. A., F.R.S., late Fellow of St John's
College, Cambridge, and formerly Professor of Mathematics in
the University of North Wales, I am under a debt of gratitude
for the care and patience with which they have read the proof-
sheets. Without the assistance they have so generously
given me, the errors and obscurities, which I can hardly hope
to have entirely escaped, would have been far more numerous.
I wish to express my grateful thanks also to Prof. O. Holder
of Konigsberg who very kindly read and criticized parts of

the last chapter. Finally I must thank the Syndics of the
University Press of Cambridge for the assistance they have

rendered in the publication of the book, and the whole Staff

of the Press for the painstaking and careful way in which

the printing has been done.

W. BURN SIDE

July 1897
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CHAPTER I.

ON PERMUTATIONS.

1. Among the various notations used in the following pages,
there is one of such frequent recurrence that a certain readiness
in its use is very desirable in dealing with the subject of this
treatise. We therefore propose to devote a preliminary chapter
to explaining it in some detail.

2. Let d, Oi a,, be a set of n distinct letters. The
operation of replacing each letter of the set by another, which

may be the same letter or a different one, when carried out
under the condition that no two distinct letters are replaced by
one and the same letter, is called a permutation performed on

the n letters. Such a permutation will change any given
arrangement

of the n letters into a definite new arrangement

bi, 62,..., bn
of the same n letters.

3. One obvious form in which to write the permutation is

di ai, an\
bi, bt, bj'

thereby indicating that each letter in the upper line is to be

replaced by the letter standing under it in the lower. The
disadvantage of this form is its unnecessary complexity, each
of the n letters occurring twice in the expression for the

permutation; by the following process, the expression of the
permutation may be materially simplified.

b. 1
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Let p be any one of the n letters, and q the letter in the
lower line standing under p in the upper. Suppose now that r
is the letter in the lower line that stands under q in the upper,
and so on. Since the number of letters is finite, we must arrive
at last at a letter s in the upper line under which p stands.
If the set of n letters is not thus exhausted, take any letter p'
in the upper line, which has not yet occurred, and let q, r
follow it as q, r,... followed p, till we arrive at s' in the upper
line with p' standing under it. If the set of n letters is still
not exhausted, repeat the process, starting with a letter p"
which has not yet occurred. Since the number of letters is
finite, we must in this way at last exhaust them ; and the n
letters are thus distributed into a number of sets

P, q, r,..., s;

p, q, r1,..., s;
p",q",r",...,

such that the permutation replaces each letter of a set by the

one following it in that set, the last letter of each set being
replaced by the first of the same set.

If now we represent by the symbol
(pqr...s)

the operation of replacing p by q, q by r and s by p, the

permutation will be completely represented by the symbol

(pqr...s) (p'q'r' ...s') (p"q"r" ...s")

The advantage of this mode of expressing the permutation is
that each of the letters occurs only once in the symbol.

« 4. The separate components of the above symbol, such as

(pqr...s), are called the cycles of the permutation. In particular
cases, one or more of the cycles may contain a single letter;

when this happens, the letters so occurring singly are unaltered

by the permutation. The brackets enclosing single letters may
clearly be omitted without risk of ambiguity, as also may the
unaltered letters themselves. Thus the permutation

/a, b, c, d, e\
\c, b, d, a, e)
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may be written (acd) (b) (e), or (acd) be, or simply (acd). If for
any reason it were desirable to indicate that permutations of
the five letters a, b, c, d, e were under consideration, the second
of these three forms would be used.

5. The form thus obtained for a permutation is not unique.
The symbol (qr...sp) clearly represents the same permutation
as (pqr. . .s), if the letters that occur between r and s in the two
symbols are the same and occur in the same sequence ; so that,
as regards the letters inside the bracket, any one may be

chosen to stand first so long as the cyclical order is preserved

unchanged.

Moreover the order in which the brackets are arranged is

clearly immaterial, since the operation denoted by any one

bracket has no effect on the letters contained in the other
brackets. This latter property is characteristic of the par
ticular expression that has been obtained for a permutation ;
it depends upon the fact that the expression contains each of
the letters once only.

6. When we proceed to consider the effect of performing
two or more permutations successively, it is seen at once that
the order in which the permutations are carried out in general
affects the result. Thus to give a very simple instance, the

permutation (ah) followed by (ac) changes a into b, since b is

unaltered by the second permutation. Again, (ab) changes b
into a and (ac) changes a into c, so that the two permutations
performed successively change b into c. Lastly, (ah) does not

affect c and (ac) changes c into a. Hence the two permutations

performed successively change a into b, b into c, c into o, and

affect no other symbols. The result of the two permutations

performed successively is therefore equivalent to the permuta

tion (ahc); and it may be similarly shewn that (ac) followed
by (ah) gives (acb) as the resulting permutation. To avoid

ambiguity it is therefore necessary to assign, once for all, the

meaning to be attached to such a symbol as s,s2, where sx and sa

are the symbols of two given permutations. We shall always
understand by the symbol SjS, the result of carrying out first the

1—2
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permutation s, and then the permutation Thus the two simple

examples given above may be expressed in the form

(ab) (ac) = (abc),

(ac) (ab) = (acb),

the sign of equality being used to represent that the permuta
tions are equivalent to each other.

If now
Si«s = st and s3s, = sB,

the symbol «iSa«, may be regarded as the permutation 8, followed

by s„ or as followed by ss. But if »] changes any letter a
into b, while s2 changes b into c and ss changes c into d, then st

changes a into c and s, changes £> into d. Hence s4«, and s,^

both change a into d ; and therefore, a being any letter operated

upon by the permutations,

Hence the meaning of the symbol SiMs is definite ; it
depends only on the component permutations s„ and their

sequence, and it is independent of the way in which they are
associated when their sequence is assigned. And the same
clearly holds for the symbols representing the successive per

formance of any number of permutations. To avoid circum
locution, it is convenient to speak of the permutation »!«,...»„
as the product of the permutations a,,..., s„ in the sequence

given. The product of a number of permutations, thus defined,

always obeys the associative law but does not in general obey
the commutative law of algebraical multiplication.

7. The permutation which replaces every symbol by itself
is called the identical permutation. The inverse of a given
permutation is that permutation which, when performed after
the given permutation, gives as result the identical permutation.
Let S-i be the permutation inverse to s, so that, if

8tm
/'Oi.cts an\
V&j, &s,..., bj'

then
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Let s0 denote the identical permutation which can be repre
sented by

/a1,a2)...,an\

V*ii <««,.••. On/'

Then ss_, = s0 and s_1s = s0,

so that s is the permutation inverse to

Now if ts = t's,

then = t'ss^ ,

or ts0 = <'«„.

But is the same permutation as t, since s0 produces no

change ; and therefore
t = t' .

In exactly the same way, it may be shewn that the relation

st = st'

involves t = t'
.

8
. The result of performing r times in succession the same

permutation s is represented symbolically by sr. Since, as has
been seen, products of permutations obey the associative law of

multiplication, it follows that

Now since there are only a finite number of distinct

permutations that can be performed on a given finite set of

symbols, the series of permutations s, a1, «*,... cannot be all

distinct. Suppose that a"14* is the first of the series which

is the same as one that precedes it
,

and let that one be sn.
Then

and therefore sOTsn(s")_1 = *"(«")_, ,

or sffl = s0-

Hence n must be 1. Moreover there is no index fi smaller
than m for which this relation holds. For if

s* = »o,

then = ss„ = s
,

contrary to the supposition that sm+l is the first of the series
which is the same as s.
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Moreover the m — 1 permutations s, «2,..., s"2-1 must be all
distinct. For if

= s", v < fi < m,

then s"-V (s")-, = s" («")-! ,
or s*'-" = s0,

which has just been shewn to be impossible.

The number m is called the order of the permutation s.
In connection with the order of a permutation, two properties
are to be noted. First, if

Sn = So,

it may be shewn at once that n is a multiple of m the order of
s; and secondly, if

«n = «*,

then a — /8 = 0 (mod. m).

If now the equation

be assumed to hold, when either or both of the integers fi and
v is a negative integer, a definite meaning is obtained for the

symbol implying the negative power of a permutation ; and
a definite meaning is also obtained for sf. For

«"«-" = 8"-» = (S*)-i = «M (s»)-, ,

so that s-" = (s")-1.

Similarly it can be shewn that

s° = «„.

9. If the cycles of a permutation
8 = (pqr. . .«) (p'q. . .«') (p'V- . .*"). . .

contain m, m', 7»",... letters respectively, and if
«" = «<»

fi must be a common multiple of m, m, m" For s" changes
p into a letter fi places from it in the cyclical set p, q, r,..., s;
and therefore, if it changes p into itself, fi must be a multiple
of m. In the same way, it must be a multiple of m, m"
Hence the order of s is the least common multiple of m, m',
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In particular, when a permutation consists of a single cycle,
its order is equal to the number of letters which it interchanges.
Such a permutation is called a circular permutation.
A permutation, all of whose cycles contain the same

number of letters, is said to be regular in the letters which
it interchanges; the order of such a permutation is clearly
equal to the number of letters in one of its cycles.

10. Two permutations, which contain the same number of
cycles and the same number of letters in corresponding cycles,
are called similar. If s, s' are similar permutations, so also
clearly are sr, s'r ; and the orders of s and s' are the same.

Let now s = (apaq...a,)(a^a^...a^). .,

and
\blt b2,..., bj

be any two permutations. Then

1
a,..... J<vs«^<<v«r.»*)...(6,i bi bJ

= (bpbq... b,) (bP' btf...b,)...,

the latter form of the permutation being obtained by actually
carrying out the component permutations of the earlier form.
Hence s and tr^st are similar permutations.

Since = sr^s^Si,

it follows that SiS2 and are similar permutations and there
fore that they are of the same order. Similarly it may be
shewn that sn—iSn, s2ss...sn-iSns„..., sns1«2ss...sn-i are all

similar permutations.

It may happen in particular cases that s and (r lst are the
same permutation. When this is so, t and s are permutable,
that is

,

st and ts are equivalent to one another ; for if

s = f-'st,

then ts = st.

This will certainly be the case when none of the symbols
that are interchanged b

y
t are altered by s ; but it may happen

when s and £ operate on the same symbols. Thus if

s = (ab)(cd), t = (ac)(bd),

then st = (ad) (be) = ts.
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Ex. 1. Shew that every regular permutation is some power of
a circular permutation.

Ex. 2. Ji s, s' are permutable regular permutations of the same
mn letters of orders m and n, these numbers being relatively prime,
shew that ««' is a circular permutation in the mn letters.

Ex.3* If s =(123) (456) (789),

«, = (147) (258) (369),

»,= (456) (798),

shew that s is permutable with both «i and s„, and that it can be
formed by a combination of «l and «s.

Ex. 4. Shew that the only permutations of n given letters
which are permutable with a circular permutation of the n letters
are the powers of the circular permutation.

Ex. 5. Determine all the permutations of the ten symbols
involved in

« = (abode) (a/Jy8e)

which are permutable with s.

11. A circular permutation of order two is called a trans
position. It may be easily verified that

(pqr...s) = (pq) (pr)...(ps),

so that every circular permutation can be represented as a

product of transpositions ; and thence, since every permutation
is the product of a number of circular permutations, every
permutation can be represented as a product of transpositions.
It must be remembered, however, that, in general, when a
permutation is represented in this way, some of the letters will
occur more than once in the symbol, so that the sequence in which
the constituent transpositions occur is essential. There is thus
a fundamental difference from the case when the symbol of a

permutation is the product of circular permutations, no two of
which contain a common letter.

Since (p'q') = (pp') (pq') (pp')t

every transposition, and therefore every permutation of n letters,

can be expressed in terms of the n — 1 transpositions

(ai<h), (aia'),---, (OiOn)-

* It is often convenient to use digits rather than letters for the purpose of
illustration.
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The number of different ways in which a given permutation
may be represented as a product of transpositions is evidently
unlimited ; but it may be shewn that, however the representa
tion is effected, the number of transpositions is either always
even or always odd. To prove this, it is sufficient to consider
the effect of a transposition on the square root of the dis
criminant of the n letters, which may be written

r=n— 1 .' i=n ^
D= II n (ar-a,)\.

t=1 (s=r+l J

The transposition (aras) changes the sign of the factor

Or — at. When q is less than either r or s, the transposition
interchanges the factors aq — av and aq — a8\ and when q is

greater than either r or s, it interchanges the factors ar — aq
and a, — aq. When q lies between r and s, the pair of factors
Or — aq and aq — a, are interchanged and are both changed in

sign. Hence the effect of the single transposition on D is
to change its sign. Since any permutation can be expressed
as the product of a number of transpositions, the effect of any
permutation on D must be either to leave it unaltered or to
change its sign. If a permutation leaves D unaltered it must,
when expressed as a product of transpositions in any way,
contain an even number of transpositions ; and if it changes
the sign of D, every representation of it

,

as a product of

transpositions, must contain an odd number of transpositions.
Hence no permutation is capable of being expressed both b

y

an even and by an odd number of transpositions.

A permutation is spoken of as odd or even, according as the
transpositions which enter into its representation are odd or
even in number.

Further, an even permutation can always be represented as
a product of circular permutations of order three. For any
even permutation of n letters can be represented as the product
of an even number of the n — 1 transpositions

(diO2), (a,a,),..., (a,an),

in appropriate sequence and with the proper number of
occurrences ; and the product of any consecutive pair of these

(flidr) (did,) is the circular permutation (aiarat).



10 EVEN AND ODD PERMUTATIONS [11

Now (alata,)(a1a,ar)(alaia,)2
= (aiOsO,) (e^a,OT) (t^a.a,)

= (a!ara,),

so that every circular permutation of order three displacing
ai, and therefore every even permutation of n letters, can be

expressed in terms of the re— 2 permutations

(OiOiOs), (a^a,),..., (OiOian)
and their powers.

Ex. 1. Shew that every even permutation of n letters can be
expressed in terms of

(ala2"s). (ala4ai)l (a,an-ian),

when n is odd ; and in terms of

(aiasas). (Oi^tts), , (aiai-2an-i). (aia,ai).
when n is even.

Ex. 2. If 7i + 1 is odd and to is greater than 1, shew that every
even permutation of ran + 1 letters can be expressed in terms of

K"? an+i), (°lai+s aat+i), , (aia<m-i)n+i

and if n + 1 is even, that every permutation of tnn + 1 letters can be
expressed in terms of this set of to circular permutations.

The reader, who is Dot familiar with the notation explained in this chapter,
may be advised to study in detail some of the simplest cases that present
themselves. The permutations of four symbols are neither too simple nor too
complicated for such a purpose. Moreover the fact that to each permutation
of four symbols there corresponds a projective transformation of points in
a plane, completely denned by the permutation of four arbitrarily chosen
points, gives a geometrical interest to the discussion of this case.
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THE DEFINITION OF A GROUP.

12. In the present chapter we shall enter on our main
subject and we shall begin with definitions, explanations and

examples of what is meant by a group.

Definition. Let
A,B,C,...

represent a set of operations, which can be performed on the
same object or set of objects. Suppose this set of operations
has the following characteristics.

(a) The operations of the set are all distinct, so that no
two of them produce the same change in every possible appli
cation.

(/9) The result of performing successively any number of

operations of the set, say A, B,..., K, is another definite
operation of the set, which depends only on the component
operations and the sequence in which they are carried out, and
not on the way in which they may be regarded as associated.
Thus A followed by B and B followed by C are operations of
the set, say D and E\ and D followed by C is the same opera
tion as A followed by E.

(7) A being any operation of the set, there is always
another operation belonging to the set, such that A
followed by -4-, produces no change in any object. The

operation is called the inverse of A.

The set of operations is then said to form a Group.
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From the definition of the inverse of A given in (7), it
follows directly that A is the inverse of A^. For if A changes
any object SI into SI', A-i must change 12' into SI. Hence A-i
followed by A leaves SI', and therefore every object, unchanged.

The operation resulting from the successive performance of

the operations A, B K in the sequence given is denoted by
the symbol AB...K; and if SI is any object on which the
operations may be performed, the result of carrying out this

compound operation on SI is denoted by SI . AB...K.
If the component operations are all the same, say A, and r

in number, the abbreviation Ar will be used for the resultant
operation, and it will be called the rth power of A.

Definition. Two operations, A and B, are said to be
permutable when AB and BA are the same operation.

13. If AB and AC are the same operation, so also are
A-iAB and A-iAC. But the operation A^A produces no
change in any object and therefore A-,AB and B, producing
the same change in every object, are the same operation. Hence
B and C are the same operation.
This is expressed symbolically by saying that, if

AB = AC,
then B=C;
the sign of equality being used to imply that the symbols
represent the same operation.

In a similar way, if
BA = CA,

it follows that B = C.
From conditions (/3) and (7), AA-l must be a definite

operation of the group. This operation, by definition, pro
duces no change in any possible object, and it must, by
condition (a), be unique. It is called the identical operation.
It will always be represented by E, and if A be any other
operation, then

EA = AE=A,
and for every integer r,

Er = E.
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14. The number of distinct operations contained in a
group may be either finite or infinite. When the number is
infinite, the group may contain operations which produce an
infinitesimal change in every possible object or operand.

Thus the totality of distinct displacements of a rigid body
evidently forms a group, for they satisfy conditions (a), (/8) and

(7) of the definition. Moreover this group contains operations
of the kind in question, namely infinitesimal twists ; and
each operation of the group can be constructed by the con
tinual repetition of a suitably chosen infinitesimal twist.

Next, the set of translations, that arise by shifting a cube
parallel to its edges through distances which are any multiples
of an edge, forms a group containing an infinite number of

operations; but this group contains no operation which effects
an infinitesimal change in the position of the cube.

As a third example, consider the set of displacements by
which a complete right circular cone is brought to coincidence
with itself. It consists of rotations through any angle about
the axis of the cone, and rotations through two right angles
about any line through the vertex at right angles to the
axis. Once again this set of displacements satisfies the con
ditions (a), (/3) and (7) of the definition and forms a group.

This last group contains infinitesimal operations, namely
rotations round the axis through an infinitesimal angle ; and

every finite rotation round the axis can be formed by the
continued repetition of an infinitesimal rotation. There is
however in this case no infinitesimal displacement of the group
by whose continued repetition a rotation through two right
angles about a line through the vertex at right angles to the
axis can be constructed. Of these three groups with an infinite
number of operations, the first is said to be a continuous group,
the second a discontinuous group, and the third a mixed group.

Continuous groups and mixed groups lie entirely outside the

plan of the present treatise ; and though, later on, some of the

properties of discontinuous groups with an infinite number of

operations will be considered, such groups will be approached
from a point of view suggested by the treatment of groups
containing a finite number of operations. We pass on then at
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once to the case of groups which contain a finite number only
of distinct operations.

15. Definition. If the number of distinct operations con
tained in a group be finite, the number is called the order of
the group.

Let S be an operation of a group of finite order N. Then
the infinite series of operations

8, S\ S»,
must all be contained in the group, and therefore a finite
number of them only can be distinct. If Sm+n is the first of
the series which is the same as one that precedes it

,

say Sn,

and if iSn_i is the operation inverse to S", then

or Sm=E.

Exactly as in § 8
, it may be shewn that, if

S* = E,

fi must be a multiple of m, and that the operations 8
,

S1,

S"1'1 are all distinct.

Since the group contains only N distinct operations, m
must be equal to or less than N. It will be seen later that, if

m is less than N, it must be a factor of N.

The integer m is called the order of the operation S. The
order m of the operation Sx is the least integer for which

that is
,

for which xm! = 0 (mod. m).

Hence, if g is the greatest common factor of x and m,

gm = m.

In particular, if m is prime, all the powers of S
,

whose indices

are less than m, are of order m.

Since = Sm = E, (x<m),

and S*(S')-l = E,

it follows that (S*)^ = S"1'1.

If now a meaning be attached to S~x, by assuming that
the equation
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holds when either x or y is a negative integer, then

and (S*)-i = 8-,
so that S~~* denotes the inverse of the operation S*.

Ex. If Sa, Sb, , Se, Sd are operations of a group, shew that

the operation inverse to S^Sf S^S/ is S^'S'1 •V"'?.-"

16. If S, («-£), St, S,,..., 8V
are the N operations of a group of order N, the set of N
operations

SrSj, SrS2, SrS3..., SrSN

are (§ 13) all distinct ; and their number is equal to the order of
the group. Hence every operation of the group occurs once
and only once in this set.

Similarly every operation of the group occurs once and only
once in the set

S1Sr, S3Sr, StSr,..., SNST.

Every operation of the group can therefore be represented
as the product of two operations of the group, and either the
first factor or the second factor can be chosen at will.

A relation of the form
Sp = SgSr

between three operations of the group will not in general
involve any necessary relation between the order of Sp and the
orders of Sg and <Sr. If however the two latter are permutable
the relation requires that, for all values of x,

Sp* = Sq*Srx;

and in that case the order of Sp is equal to or is a factor of the
least common multiple of the orders of Sq and Sr.

Suppose now that S, an operation of the group, is of order
mn, where m and n are relatively prime. Then we may shew
that, of the various ways in which S may be represented as the
product of two operations of the group, there is just one in
which the operations are permutable and of orders m and n

respectively.
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Thus let Sn = M,

and Sm = iV,

so that M, N are operations of orders to and n. Since Sm and
S" are permutable, so also are M and .Ar, and powers of M and N.
If y0 are integers satisfying the equation

xn + ym = 1,

every other integral solution is given by

x = x0 + tm, y = y0- tn,

where t is an integer.

Now MxNy = Sxn+«m = S ;

and since x and to are relatively prime, as also are y and n,
Mx and Nv are permutable operations of orders to and n, so
that S is expressed in the desired form.

Moreover, it is the only expression of this form ; for let

where J/, and Nl are permutable and of orders to and n.
Then S" = A/,", since Nln=E.
Hence = M,

or M^1 = Mx,

or .fl/,1-*" = AT".

But Mlm = E, and therefore Mi-»m = E; hence
3/, = ^.

In the same way it is shewn that 2V, is the same as N". The
representation of $ in the desired form is therefore unique.

17. Two given operations of a group successively performed
give rise to a third operation of the group which, when the

operations are of known concrete form, may be determined by
actually carrying out the two given operations. Thus the set
of finite rotations, which bring a regular solid to coincidence
with itself, evidently form a group ; and it is a purely geo
metrical problem to determine that particular rotation of the

group which arises from the successive performance of two

given rotations of the group.
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When the operations are represented by symbols, the rela
tion in question is represented by an equation of the form

AB = C;
but the equation indicates nothing of the nature of the actual
operations. Now it may happen, when the operations of two
groups of equal order are represented by symbols,

(i
) E, A, B, C,

(ii) E', A', B', C,

that, to every relation of the form

AB = C

between operations of the first group, there corresponds the
relation

A'E = G'
between operations of the second group. In such a case,

although the nature of the actual operations in the first group
may be entirely different from the nature of those in the
second, the laws according to which the operations of each
group combine among themselves are identical. The following
series of groups of operations, of order six, will at once illustrate
the possibility just mentioned, and will serve as concrete
examples to familiarize the reader with the conception of a

group of operations.

I. Group o
f inversions. Let P, Q, R be three circles with

a common radical axis and let each pair of them intersect at an

angle |7r. Denote the operations of inversion with respect to
P, Q, R by U

,

V
,

W ; and denote successive inversions at P, R

and at P, Q by S and T. The object of operation may be any
point in the plane of the circles, except the two common points
in which they intersect. Then it is easy to verify, from the
geometrical properties of inversion, that the operations

E, S, T, U, V
,

W

are all distinct, and that they form a group. For instance, VW
represents successive inversions at Q and R. But successive
inversions at Q and R produce the same displacement of points
as successive inversions at P and Q

,

and therefore

VW=T.
B. 2
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II. Group of rotations. Let POP', QOQ', ROR' be three
concurrent lines in a plane such that each of the angles POQ
and QOR is ^ir, and let IOT be a perpendicular to their plane.
Denote by S a rotation round IT through \ir bringing PP to
Q'Q ; and by T a rotation round 77' through bringing PP1
to R'R. Denote also by U, V, W rotations through two right
angles round PP", QQ', RR'. The object of the rotations may
be any point or set of points in space. Then it may again be
verified, by simple geometrical considerations, that the opera
tions

E, S, T, U, V, W

are distinct and that they form a group.

III. Group of linear transformations of a single variable.
The operation of replacing a; by a given function f(x) of itself
is sometimes represented by the symbol (x, f(x)). With this
notation, if

W=(x, E = (x,x),

it may again be verified without difficulty that these six
operations form a group.

IV. Group of linear transformations of two variables.
With a similar notation, the six operations
S = (x, ax ; y, a*y), T = (x, tfx ; y, coy), U = (x, co'y; y, ax),
y=

V ; V, «). W=(x, ay ; y, a2x), E = (x,x; y, y)
form a group, if a is an imaginary cube root of unity.

V. Group, of linear transformations to a prime modulus.
The six operations defined by

S = (x,x+1), T=(x,x + 2), U = (x,2x + 2),
V= (x, 2x), W = (x, 2x + 1), E = (x, x),

where each transformation is taken to modulus 3, form a group.

VI. Group of permutations of 3 symbols. The six permuta
tions

E,S = {xyz), T=(xzy), U = x(yz), V=y(zx), W=z(xy)
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are the only permutations that can be formed with three
symbols ; they must therefore form a group.

VII. Group of permutations of 6 symbols. The permuta
tions
E,S = (xyz)(abc), T= (xzy) (acb), V'=-(«*) (ya)(*c),

V=(xa)(yc)(zb), W=(xc)(yb)(za)

may be verified to form a group.

VIII. Group of permutations of 6 symbols. The permuta
tions

E, S = (xaybzc), T= (xyz) (abc), U= (xb) (ycy{za),
V= (xzy) (acb), W = (xczbya)

form a group.

The operations in the first seven of these groups, as well as
the objects of operation, are quite different from one group to
another ; but it may be shewn that the laws according to' which
the operations, denoted by the same letters in the different

groups, combine together are identical for all seven. There is
no difficulty in verifying that in each instance

S' = E, T = S\ U* = E, V = SU=US\ W = S*U=US;
and from these relations the complete system, according to
which the six operations in each of the seven groups combine

together, may be at once constructed. This is given by the

following multiplication table, where the left-hand vertical
column gives the first factor and the top horizontal line the
second factor in each product; thus the table is to be read
SE = S, ST=E, SU= V, and so on.

E S T U V W

E
S

T
V
V

w

E S T V V W
S T E V W U
T E S W U V
U W V E T S
V U W S E T
W V U T S E

But, though the operations of the seventh and eighth

groups are of the same nature and though the operands are

2-2
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identical, the laws according to which the six operations com
bine together are quite distinct for the two groups. Thus, for

the last group, it may be shewn that

T=S\ U=S2, V=Sl, W=S°, St = E,
so that the operations of this group may, in fact, be represented
by

E, s, s\ s', s', s'.
18. If we pay no attention to the nature of the actual

operations and operands, and consider only the number of the
former and the laws according to which they combine, the first
seven groups of the preceding paragraph are identical with
each other. From this point of view a group, abstractly
considered, is completely defined by its multiplication table ;
and, conversely, the multiplication table must implicitly contain
all properties of the group which are independent of any special
mode of representation.

It is of course obvious that this table cannot be arbitrarily
constructed. Thus, if

AB = P and BC = Q,
the entry in the table for PC must be the same as that for AQ.
Except in the very simplest cases, the attempt to form a
consistent multiplication table, merely by trial, would be most
laborious.

The very existence of the table shews that the symbols
denoting the different operations of the group are not all

independent of each other ; and since the number of symbols is
finite, it follows that there must exist a set of symbols
Si, St,..., Sn no one of which can be expressed in terms of the
remainder, while every operation of the group is expressible in
terms of the set. Such a set is called a set of fundamental or

generating operations of the group. Moreover though no one
of the generating operations can be expressed in terms of the
remainder, there must be relations of the general form

Sm"Sn" S/ = E
among them, as otherwise the group would be of infinite order;
and the number of these relations, which are independent
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of one another, must be finite. Among them there necessarily
occur the relations

8f> = E, 8f* = E, , Sna« = E,

giving the orders of the fundamental operations.

We thus arrive at a virtually new conception of a group;
it can be regarded as arising from a finite number of funda
mental operations connected by a finite number of independent
relations. But it is to be noted that there is no reason for
supposing that such an origin for a group is unique ; indeed,
in general, it is not so. Thus there is no difficulty in verifying
that the group, whose multiplication table is given in § 17, is

completely specified either by the system of relations

S' = E, U* = E, (SUy = E,
or by the system

TJ* = E, V* = E, (UVy = E.

In other words, it may be generated by two operations of
orders 2 and 3, or by two operations of order 2. So also the

last group of § 17 is specified either by

8* = E,

or by T3 = E, U* = E, TU=UT.

19. Definition. Let G and G' be two groups of equal
order. If a correspondence can be established between the
operations of G and G', so that to every operation of G there

corresponds a single operation of G' and to every operation of
G' there corresponds a single operation of G, while to the

product AB of any two operations of G there corresponds the
product A'B' of the two corresponding operations of G', the
groups G and tr' are said to be simply isomorphic*. Two

simply isomorphic groups are, abstractly considered, identical.

In discussing the properties of groups, some definite
mode of representation is

,

in general, indispensable; and as

long as we are dealing with the properties of a group per se,
and not with properties which depend on the form of

representation, the group may, if convenient, be replaced b
y

* We Bhall sometimes use the phrase that two groups are of the same type
to denote that they are simply isomorphic.
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any group which is simply isomorphic with it. For the dis
cussion of such properties, it would be most natural to suppose
the group given either by its multiplication table or by its

fundamental operations and the relations connecting them.

Unfortunately, however, these purely abstract modes of repre
senting a group are by no means the easiest to deal with.
It thus becomes an important question to determine as far
as possible what different concrete forms of representation any
particular group may be capable of ; and we shall accordingly
end the present chapter with a demonstration of the following
general theorem bearing on this question.

20. Theorem. Every group of finite order N can be
represented as a group of regular permutations of N symbols*.
Let *,.», St,..., SN

be the N operations of the group. Then
S^Si, S2Si,..., S^,..., SNSi

are the N operations in some altered sequence, and

/Sl , St Si SN \
V<SiiSi, S2Si,..., St*,..., SySj

is a permutation s< performed on the symbols of the N opera
tions. If m is the order of Si, this permutation replaces

SP by SpSit SpSi by SpSt,..., and SpS^ by Sp,
whatever operation Sp may be. It is therefore a regular
permutation of the N symbols. Moreover it may clearly be
represented in the abbreviated form

iss)
.

Corresponding to the N operations of the group there thus
arises a set of N regular permutations on the N symbols, viz.

Si or (jgg}, (i
= 1, 2 N).

The N permutations are all distinct : for if
8i — Sj,

then (sD"W-
and Si = Sj.

* Jordan, TraiU de' Subititutiont (1870), pp. 60, 61.
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Moreover the product of any two of the permutations is another

permutation of the set ; for

SiSj= iss) {ss)
=
Us,) (ssf<4)

=
issis)

=
{ss)=Sr'

if SiSj = Sr.

Hence the N regular permutations constitute a group of
regular permutations simply isomorphic with the given group.
This group has been arrived at by what may be called post-
multiplication, i.e. in forming the permutation that corresponds

/ S \
to S{, viz.

^gg.J, Si
nas Deen taken as the second factor. If

pre-midtiplication be used, and the regular permutation

I St , St S{ Sy \
Si-'st,..., srSi,..., srsj
( 8 \

be denoted by «/; then, again, corresponding to the N operations
of the group there arises a set of N regular permutations, viz.

which are as before all distinct. Moreover the product of any
two permutations of this set is another of the set ; for

-
isr's) isj-'s)

-
{sr's) isfW's)

=
ist-'Sr's)

=
(flfr-w

= 8r''

if SiSj = Sr.
This second set of permutations therefore constitute a group
of regular permutations of the N symbols simply isomorphic
with the given group.

The two representations of a group of order N as a group of
regular permutations of N symbols are in general different
from each other. In fact, if

8{ = 8j
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then (sl)
=
(sr's)'

and SS( = Sf1S,

for each operation S of the group. Hence

and SSi = SiS,

or Si must be permutable with every operation of the group.
The two groups will therefore consist of the same permutations
only when every pair of operations of the group are permutable.
The two groups moreover have the remarkable property that
every permutation of the one is permutable with every per
mutation of the other. Thus

Further, since the N permutations of the second group change
Si respectively into each of the symbols Su SN, if there
were another permutation permutable with every permutation
of the first group and changing Si into Si, there would be a

permutation leaving Sx unchanged and permutable with every
permutation of the first group. But such a permutation must
obviously leave each of the symbols unchanged. Hence the
N permutations of the second group are the only ones which
are permutable with every permutation of the first.

21. It will be seen later that there are many other concrete
forms in which it is always possible to represent a group of
finite order. None, however, are so directly and simply related
to the multiplication table of the group as the representation
in the form of a regular permutation group.



CHAPTER III.

ON THE SIMPLER PROPERTIES OF A GROUP WHICH
ARE INDEPENDENT OF ITS MODE OF REPRESENTATION.

22. In this chapter we proceed to discuss some of the
simplest of the properties of groups of finite order which are

independent of their mode of representation.

If among the operations of a group G a certain set can be
chosen which do not exhaust all the operations of the group G,

yet which at the same time satisfy all the conditions of § 12 so
that they form another group H, this group H is called a sub
group of the group G. Thus if S be any operation, order m,
of G, the operations

E, S, S2 , <S™-1

evidently form a group ; and when the order of G is greater
than m, this group is a sub-group of G. A sub-group of this
nature, which consists of the different powers of a single
operation, is called a cyclical sub-group; and a group, which
consists of the different powers of a single operation, is called
a cyclical group.

Theorem I. IfH is a sub-group of G, the order n of H is
a factor of the order N of G.
Let T,{=E), T2 Tn

be the n operations of H; and let St be any operation of G
which is not contained in H.

Then the operations

TlSt, TA TnS„

are all distinct from each other and from the operations of H.

.
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For if T,S,= T9St,
then Tp=Tq,

contrary to supposition ; and if

Tp = Tq Os ,

then St~Tq-*Tp,

and <
S
,2

would be contained among the operations of H.

If the 2n operations thus obtained do not exhaust all the
operations of G

,
let S

2 be any operation of G not contained

among them.

Then it may be shewn, by repeating the previous reasoning,
that the n operations

TiSt, T^SS , TnSs

are all different from each other and from the previous 2n

operations. If the group G is still not exhausted, this process
may be repeated ; so that finally the N operations of G can be
exhibited in the form

TiSi , T^S2 , , TnSi ;

TiS2 , T^SS , TnS2 ;

Hence N = mn, and n is therefore a factor of N.

Corollary. If /S is an operation of G, the order n of S is a
factor of the order iV of G.

For the order of S is also the order of the cyclical sub-group
generated by S

.

When JV is a prime p, the group G can have no sub-group other
than one of order unity consisting of the identical operation alone.
Every operation S of the group, other than the identical operation,

is of order p, and the group consists of the operations

E, S, 5s, , S*-K

A group whose order is prime is therefore necessarily cyclical.
The set of operations

TiSi, TtS{ , , TnSit

where 2
\ , T
t

, Tn ,
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constitute a group H, may be conveniently represented by the
abbreviation In using this notation it must be remembered
that, H being a group, the operation Si is in no way distinguished
from the other operations of the set. In fact

TiTjSi, T2TjSi, TnTjSi

is the same set, so that

/ETS< = HTjSi.

With this notation, when H is a sub-group of G, the operations
of G may, in respect of H, be arranged in the sets

H, HSt, , HSm,

where mn is the order of G.

Moreover pre-multiplication instead of post-multiplication
might have been used in forming the sets. Thus if IT

< is an

operation of G which does not belong to H, the operations

UtTi, UiT„ , UiTm

are distinct from each other and from the operations of H. The
operations of G may thus also be arranged in the sets

H, U,H, UmH.

These latter sets are however, except the first, in general quite
different from those formed by post-multiplication. A similar
notation will be found convenient even when

2
*ii 2§i i Tn

do not constitute a group. If this set be denoted by the
abbreviation R, then the sets

STU ST2 , STn,

and T.S, T,S, , TnS,

will be denoted by the abbreviations SB, and RS respectively.
In this more general case, however, S will not usually belong to
either of the sets SR or RS ; while SR and STjR (or RS and
RTjS) are not usually the same set.

23. Theorem II. The operations common to two groups
Gi, £r2 themselves form a group g
, whose order is a factor o
f the

orders of G
i and G2.



28 CONJUGATE OPERATIONS [23

For if S, T are any two operations common to Cr, and Git
ST is also common to both groups ; and hence the common
operations satisfy conditions (a) and (8) of the definition in § 12.
But their orders are finite and they must therefore satisfy also
condition (7), and form a group g. Moreover g is a sub-group
of both Gi and Git and therefore by Theorem I its order is a
factor of the orders of both these groups.
If G1 and G2 are sub-groups of a third group G, then g is

also clearly a sub-group of G.

The set of operations, that arise by combining in every way
the operations of the groups and (?2, evidently satisfy the
conditions of § 12 and form a group ; but this will not necessarily
or generally be a group of finite order. If however £

?, and G
,

are sub-groups of a group G of finite order, the group g
' that

arises from their combination will necessarily be of finite order ;

it may either coincide with G or be a sub-group of G. In
either case, the order of g' will be a multiple of the orders of

(?
i

and (?2.

It is convenient here to explain a notation that enables
us to avoid an otherwise rather cumbrous phraseology. Let

Slt St, St, be a given set of operations, and (?,, G2, a

set of groups. Then the symbol

{Si, St, S, , Gu (?2, j

will be used to denote the group that arises by combining in

every possible way the given operations and the operations of
the given groups.

Thus, for instance, the group g above would be represented

by [Qi, (?,} ;

the cyclical group that arises from the powers of an operation

S by {S} ;

and, as a further example, the sixth group of § 17 may be

represented by
{(xy), (xz)}.

24. Definition. If <S and T are any two operations of a

group, the operations S and T-'ST are called conjugate opera
tions; while T-'ST is spoken of as the result of transforming
the operation S by T.
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The two operations S and T-lST are identical only when S
and T are permutable. For if

S = T-*ST,

then TS=ST.

Two conjugate operations are always of the same order.

For
(T-lST)n = T-lST. T-'ST T^ST

= T-WT.
Therefore, if S" = E,

(T-1ST)n = T-1T = E;
and conversely, if

(T-*ST)n = E,

then Sn = T. T-lSnT . T-l = T(T-1ST)n T-l = TT-1 = E.

The operations ST and TS are always conjugate and
therefore of the same order; for

ST = T-lT. ST= T-'.TS. T.
Ex. Shew that the operations iS^Si Sn-iSn and SrSr+l

SnS1 /Sr-i are conjugate within the group {Slt S2 , Sn}.

Definitions. An operation S of a group G, which is
identical with all its conjugate operations, is called a self-
conjugate operation. Such an operation must evidently be

permutable with each of the operations of G.

If every pair of operations of a group are permutable, every
operation is self-conjugate. Such a group is called an Abelian

group.

If all the operations of a group be transformed by a given
operation, the set of transformed operations form a group. For
if 2\ and T2 are any two operations of the group, so that T^i is
also an operation of the group, then

. S-'T.S - S-Wt T,S ;
hence the product of any two operations of the transformed
set is another operation belonging to the transformed set, and
the set therefore forms a group. Moreover the preceding

equation shews that the new group is simply isomorphic
to the original group. If G is the given group, the symbol
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S^GS will be used for the new group. When S belongs to the
group G, the groups G and S^GS are evidently the same.

Now unless S is a self-conjugate operation of G, the pairs
of operations Tand S-*TS will not all be identical when for T
the different operations of G are put in succession. Hence the

process of transforming all the operations of a group by one
of themselves is equivalent to establishing a correspondence
between the operations of the group, which exhibits it as
simply isomorphic with itself.

Definitions. When H is a sub-group of G and S is any
operation of G, the groups H and S^HS are called conjugate
sub-groups of G.

If H and S^HS are identical, S is said to be permutable
with the sub-group H. This does not necessarily involve that
S is permutable with each of the operations of H.

If H and S-lHS are identical, whatever operation S is of
G, H is said to be a self-conjugate sub-group of G.
A group is called composite or simple, according as it does

or does not possess at least one self-conjugate sub-group other

than that formed of the identical operation alone.

Every sub-group of an Abelian group is a self-conjugate
sub-group.

When if is a self-conjugate sub-group of G, the sets into
which the operations of G fall, in respect of H, by pre-multipli-
cation and by post-multiplication are the same.

For since Si-1HSi = H,

HSi = SiH,
whatever operation of G Si may be.

Conversely, if the sets into which the operations of G fall
in respect of H by pre- and post-multiplication are the same,
H must be a self-conjugate sub-group. In fact, if the sets

H, HS„ HSm,
and H, U2H , UmH,

are the same (except of course as regards sequence), then for

each i it must be possible to find j so that
UiH = HSj,

or H=Ui-ty.S)-1HSi.
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Since Sj^HSj is a group and if is a group, Uf"lSj must
belong to the group Sj^HSj, and therefore

H=8j-1SSj,
for every j; in other words, If is a self-conjugate sub-group
of G.

25. Theorem III. The operations of a group G, which
are permutable with a given operation T, form a sub-group H ;
and the order of G divided by the order of H is the number of
operations conjugate to T*.
If Rl and i22 are any two operations permutable with T, so

that R.T^TR, and R2T = TRl;
then R1R2T = R1TR2 = TR1R„
and therefore R1R2 is permutable with T. The operations
permutable with T therefore form a group H. Let m be its
order and

A(=-2?), R2y-i Rm
its operations. Then if S is any operation of G not contained
in H, the operations

RiS, R^S, , Rm-iS, RmS

all transform T into the same operation T'.

For (RiS)-*TRiS = S^Rr'TRiS = S^TS.
Also the m operations thus obtained are the only operations

which transform T into T' ; for if

S'-iT8' = T't
then SS'-WS-* = ST'S-1 = T ;
and therefore S'S-l belongs to H. The number of operations
which transform T into any operation conjugate to it is there
fore equal to the number that transform T into itself, that is

,

to the order of H. If then N is the order of G, the operations
of G may be divided into N/m sets of m each, such that the
operations of each set transform T into a distinct operation,
those of the first set, namely the operations of H, transforming

T into itself. The number of operations conjugate to T
,

in

cluding itself, is therefore N/m.
* Among these T is of course included.
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Since T=ST'S~\

therefore Rr1TRi = Rr1ST,S-lRi\

hence T - 8r*T8 = S-'Rr'TRiS - fif-»U,-»S . T .S^S,
so that every operation of the form S^RiS is permutable with
T' . Hence if H is the group of operations permutable with T,
and if

s-its=t,
then S^HS is the group of operations permutable with T'.

Theorem IV. The operations of a group G which are
permutable with a sub-group H form a sub-group I, which is
either identical with H or contains H as a self-conjugate sub
group. The order of G divided by the order of I is the number
of sub-groups conjugate to H*.
If Si , (S

2 are any two operations of 0 which are permutable
with H, then

SrlHSi = H, Si->HS* = H,

and therefore S^Sr1^ S
t = H,

so that Sx S3 is permutable with H. The operations of G which
are permutable with H therefore form a group /, which may be
identical with H and, if not identical with H, must contain it.
Also, if S is any operation of /,

and therefore H is a self-conjugate sub-group of /.

If now 2 is any operation of G not contained in /, it may
be shewn, exactly as in the proof of Theorem III, that the
operations 72 and no others transform H into a conjugate
sub-group H' which is not identical with H; and therefore
that the number of sub-groups in the conjugate set to which
H belongs is the order of G divided by the order of I.

The operations of G which are permutable with H' may
also be shewn to form the group £-1/£.

It is perhaps not superfluous to point out that two distinct
conjugate sub-groups may have some operations in common
with one another.

* Among these sub-groupa H is included.
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26. Let Si be any operation of G, and

Si, S3

the distinct operations obtained on transforming £, by every

operation of G. The number, h, of these operations is
,

by

Theorem III, a factor of N, the order of 0. Moreover if
,

instead of transforming Su we transform any other operation of

the set, S{, by every operation of G
,

the same set of h distinct

operations of G will result. Such a set of operations we call a
complete set of conjugate operations. If T is any operation of

G which does not belong to this complete set of conjugate

operations, no operation that is conjugate to T can belong to
the set Hence the operations of G may be distributed into a

number of distinct sets such that every operation belongs to
one set and no operation belongs to more than one set ; while

any set forms b
y itself a complete set of conjugate operations.

If r is the number of complete sets of conjugate operations and
/ij, Aa, h

r are the numbers of operations in the different
sets, then

N = h + h+ +K;
and, since the identical operation is self-conjugate, one at least

of the h'a must be unity.

Similarly, if Hx is any sub-group of G
,

and

-Hi. Ht , Hp

the distinct sub-groups obtained on transforming £T, by every
operation of G

,

we call the set a complete set of conjugate
sub-groups. If K is a sub-group of G not contained in the set,
no sub-group conjugate to K can belong to the set. If the
operation S

,

belongs to one or more of a complete set of con

jugate sub-groups, must also belong to one or more

sub-groups of the set, S being any operation of G. Hence
among the operations contained in the complete set of con

jugate sub-groups, the complete set of conjugate operations

Si, S3, , Sh
occurs.

No sub-group of G can contain operations belonging to
every one of the complete sets of conjugate operations of G.
For if such a sub-group H existed, the complete set of
a 3
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conjugate sub-groups, to which H belongs, would contain all
the operations of G. Let m be the order of H and n (^m)
the order of the sub-group / formed of those operations of G
which are permutable with H. Then H is one of N/n con
jugate sub-groups, each of which contains m operations. The

identical operation is common to all these sub-groups, and they
therefore cannot contain more than

n

distinct operations in all. This number is less than N, and
therefore the complete set of conjugate sub-groups cannot
contain all the operations of G.

27. If a group contains self-conjugate operations, it must
contain self-conjugate sub-groups. For the cyclical sub-group
generated by any self-conjugate operation must be self-con

jugate. The only exception to this statement is the case of
the cyclical groups of prime order. Every operation of such a

group is clearly self-conjugate ; but since the cyclical sub-group
generated by any operation coincides with the group itself,

there can be no self-conjugate sub-group*.

If every operation of a group is not self-conjugate, or, in
other words, if the operations of a group are not all permutable
with each other, the totality of the self-conjugate operations
forms a self-conjugate sub-group. For, if S, and S2 are per
mutable with every operation of the group, so also is SiSf
This sub-group has been called the central of the group.

Theorem V. The operations common to a complete set of
conjugate sub-groups form a self-conjugate sub-group.
It is an immediate consequence of Theorem II that the

operations common to a complete set of conjugate sub-groups
form a sub-group. The set of conjugate sub-groups, when
transformed by any operation of the group, is changed into
itself. Hence their common sub-group must be self-conjugate.

It may of course happen that the identical operation is the
only one which is common to every sub-group of the set.
* Strictly speaking, this statement should be qualified by the addition
"except that formed by the identical operation alone."' No real ambiguity
however will be introduced by always leaving this exception unexpressed.
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Corollary. The operations permutable with each of a
complete set of conjugate sub-groups form a self-conjugate
sub-group.

For, if the operations permutable with the sub-group H
form a sub-group /, the operations permutable with every
sub-group of the conjugate set to which H belongs are the
operations common to every sub-group of the conjugate set to
which / belongs.
Further, the operations which are permutable with every

operation of a complete set of conjugate sub-groups form a

self-conjugate sub-group.

Theorem VI. // Tu T, Th are a complete set of con
jugate operations of 0, the group [Tu T.,..., Th], if it does not
coincide with 0, is a self-conjugate sub-group of 0; and it
is the self-conjugate sub-group of smallest order that con
tains T,.

Since the operations Tlt Tt,..., are merely rearranged in
a new sequence when the set is transformed by any operation
of G, it follows that

Th}S={Tu Tt,..., Th),
whatever operation of G may be represented by S. Hence

{T,, Ta,..., Th\ is a self-conjugate sub-group. Also any self-

conjugate sub-group of G that contains Tx must contain

Tlt T„..., Th; and therefore any self-conjugate sub-group of G
which contains Tx must contain {Tlt Tit..., Th).

In exactly the same way it may be shewn that, if

Hi, Hi H»

form a complete set of conjugate sub-groups of G, the group

{#,, H,,..., H,}, if it does not coincide with G, is the smallest
self-conjugate sub-group of G which contains the sub-group .//,.

The theorem just proved suggests a process for determining
whether any given group is simple or composite. To this end,

the groups \Tlt T,,..., Th\ corresponding to each set of conjugate
operations in the group are formed. If any one of them
differs from the group itself, it is a self-conjugate sub-group
and the group is composite ; but if each group so formed

3—2
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coincides with the original group, the latter is simple. If
the order of Tl contains more than one prime factor and if
is of prime order, it is easy to see that the distinct

operations of the set Tf1, T"\..., Thm form a complete set of
conjugate operations, and that the group {Tlt T„..., Th] con
tains the group (TV", T2m,..., Thm\. Hence practically it is
sufficient to form the groups [Tlt Tt,..., T&} for all conjugate
sets of operations whose orders are prime.

With the notation of § 26 (p. 33), the order of any self-
conjugate sub-group of G must be of the form ha + hp + ;

for if the sub-group contains any given operation, it must contain
all the operations conjugate with it. Moreover one at least of
the numbers ha, hp, must be unity, since the sub-group must
contain the identical operation. It may happen that the numbers
ht are such that the only factors of N of the form ha+hp + ,

one of the h's being unity, are N itself and unity. When this is
the case, G is necessarily a simple group. It must not however
be inferred that, if iV has factors of this form, other than If itself
and unity, then G is necessarily composite.

If (?, and G2 are sub-groups of G
,
it has already been seen

(§ 23) that the operations common to (?
l

and G2 form a sub

group g of G ; and it is now obvious that, when (?, and G2 are
self-conjugate sub-groups, so also is g. Moreover the group

{(?!, G,} is a self-conjugate sub-group unless it coincides with
G. For

S-1 {Qlt Q2] S= {S-^S, flr-i0,S} = G,}.

Again, with the same notation, if T, is an operation of G
not contained in the self-conjugate sub-group (?„ and if

Tlt Tt,..., Th is a complete set of conjugate operations, the

group [Glt Tlt Tt,..., Th\ is a self-conjugate sub-group, unless

it coincides with G.

Definitions. If Glt a self-conjugate sub-group of G
,

is

such that the group

[Q» Tlt Tt,..., Tk]
coincides with G

,

when Tlt T2,..., is any complete set of

conjugate operations not contained in Glt then G
^ is said to

be a maximum self-conjugate sub-group of G. This does not

imply that G
i is the self-conjugate sub-group of G of abso

lutely greatest order; but that there is no self-conjugate sub
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group of 0, distinct from G itself, which contains Gi and is of
greater order than (?

j

.

If H is a sub-group of 0, and if, for every operation S of G

which does not belong to H, the group [H, S\ coincides with G
,

H is said to be a maximum sub-group of 0.

28. Definition. When a correspondence can be estab
lished between the operations of a group G and the operations
of a group G', whose order is smaller than the order of G

,

such

that to each operation S of G there corresponds a single
operation 8' of G', while to the operation SPSV there corresponds
the operation Sp'Sq', the group G is said to be multiply iso

morphic with the group G'.

Theorem VII. If a group G is multiply isomorphic with
a group G', then (i

) the operations o
f G
,

which correspond to the

identical operation o
f G',form a self-conjugate sub-group o
f G ;

(ii) to each operation o
f G' there correspond the same number o
f

operations o
f G ; (iii) the order o
f any operation o
f G is equal

to or is a multiple o
f the order o
f the corresponding operation o
f

G' ; and (iv) the order o
f G is a multiple o
f the order o
f G'.

Let Si, St,..., &n-i> $i
be the set of operations of G which correspond to the identical

operation E' of G'. These operations must form a group, since
to SpSq corresponds the operation E'E', i.e. the identical opera
tion of G' ; and therefore SpSq must belong to the set.

Again, to the operation T~lSpT of G corresponds the opera
tion T'^E'T', that is

,

the identical operation of G'. Hence,
whatever operation of G is taken for T

,

T~l {Sx, St,..., Sn] T={Sl, S3,..., Sn}.

The sub-group H of G formed of the operations
Si, S^,..., Sn—i, Sn

is therefore self-conjugate.

Again, if T and Ti are two operations of G which correspond
to the operation T' of (?', the operation T~lTi corresponds to
the identical operation of G', and therefore belongs to H.
Hence the operations that correspond to T' are all contained
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in the set TH. The operations of this set are all distinct
and equal in number to the order of H. Hence if n is the
order of H, to each operation of G' there correspond n opera
tions of G.

If p is the order of T', so that p is the least index for
which

T'p = E',

then p is the least index for which the distinct operations of
the set (THY belong to H.

Hence T'=Si,

where Si is some operation of H ; and therefore the order of T
is equal to or is a multiple of p.

Finally, since to each operation of G there corresponds only
one of 0', while to each operation of G' there correspond n of G,

the order of G is n times the order of G'.

To any sub-group of G' of order fi, there corresponds a

sub-group of G of order fin. For if Tp'Tq' forms one of the
set

Tt mi rp i rp iJg,..., J. ji,
at least one, and therefore all, of the set TpTqH must occur
among

H,..., TPH,..., TqH,..., T^H,

and hence these operations form a group. Moreover, if the
sub-group of G' is self-conjugate, so also is the corresponding

sub-group of G.

It should be noticed that no correspondence is thus es
tablished between a sub-group of G which does not contain H
and any sub-group of G'.

29. The group G' of the previous paragraph is completely
determinate, that is to say, its multiplication table may be
constructed, from a knowledge of the group G alone.

Let H, T2H, TmH

be the sets into which the operations of Q fall in respect of H,
mn being the order of G. Then

TiH . TjH = TtTj . Tf*HTjH= T^H . H,
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since H is a self-conjugate sub-group. Now the set H.H
gives each operation of H repeated n times, so that

TiH.T}H = nTiT}H;

and if TiT} belongs to the set TkH, then TiTjH is the same set
as TkH. Therefore

TiH.TjH=nTkH,

or -TiH.-TjH=-TkH.
n n J n

Thesymbols -TiH (» = 1, 2,...,m)

therefore combine by multiplication according to exactly the
same laws as the operations ZV (t = 1, 2,..., m) of the group 6'.

It follows that a group 0' with which a group G is multiply
isomorphic, in such a way that to the identical operation of G'
there corresponds a given self-conjugate sub-group H of G, is
completely defined (as an abstract group) when 0 and H are
given. This being so it is natural to use a symbol to denote
directly the group thus defined in terms of 6 and H. Herr
Holder* has introduced the symbol

GjH

to represent this group; he calls it the quotient of 6 by H,
and a factor-group of G. We shall in the sequel make
constant use both of the symbol and of the phrase thus
defined.

It may not be superfluous to notice that the symbol GjH
has no meaningf, unless if is a self-conjugate sub-group of G.
Moreover, it may happen that G has two simply isomorphic
self-conjugate sub-groups H and H'. When this is the case,
there is no necessary relation between the factor-groups GjH
and GjH' (except of course that their orders are equal); in

* "Zur Reduction der algebra ischen Gleichungen," Math. Ann. \xxiv (1889;,
p. 31.
+ Herr Frobenius has extended the use of the symbol to the case in which H
is any group, whether contained in G or not, with which every operation of G is
permutable : " Ueber endliche Gruppen," Berliner Sitzungsberichte, 1895, p. 169.
We shall always use the symbol in the sense defined in the text.
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other words, the type of the factor-group G/H depends on the
actual self-conjugate sub-group of G which is chosen for H and
not merely on the type of H.

Further, though in relation to its definition by means of G
and H we call G/H a factor-group of G, we may without
ambiguity, since the symbol represents a group of definite

type, omit the word factor and speak of the group G/H. It is
also to be observed that G has not necessarily a sub-group simply
isomorphic with G/H. This may or may not be the case.

30. If G is multiply isomorphic with G' so that the self-
conjugate sub-group H of G corresponds to the identical
operation of G', it was shewn, at the end of § 28, that to any
self-conjugate sub-group of G' there corresponds a self-conjugate
sub-group of G containing H. Hence, unless G/H is a simple
group, H cannot be a maximum self-conjugate sub-group of
G. If is any self-conjugate sub-group of G/H, and Gi the
corresponding (necessarily self-conjugate) sub-group of G, con

taining H, we may form the factor-group G/Glt and determine
again whether this group is simple or composite. By continuing
this process a maximum self-conjugate sub-group of G, con

taining H, must at last be reached.

31. Though G/H is completely defined by G and H, where
H is any given self-conjugate sub-group of G, the reader will
easily verify that G is not in general determined when H and
G/H are given.
We shall have in the sequel to consider the solution of

this problem in various particular cases. There is
,

however, in

every case one solution of it which is immediately obvious.
We may take any two groups (7

,

and ©„ simply isomorphic
with the given groups H and G/H, such that (?, and (?

,

have

no common operation except identity, while each operation
of one is permutable with each operation of the other. The
group (?,}, formed by combining these two, is clearly such
that {Glt G^/Gi is simply isomorphic with G/H ; it therefore
gives a solution of the problem.

Definition. If two groups Gi, G2 have no common opera
tion except identity, and if each operation of (?
1 is permutable
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with each operation of Glt the group \GU Gt} is called the
direct product of Gr and Gt.

Ex. If H, h are self-conjugate sub-groups of G, and if h is
contained in H, so that Hjh is a self-conjugate sub-group of G/h,
shew that the quotient of G/h by H/h is simply isomorphic with
GjH.

32. If H is a self-conjugate sub-group of G, of order n, and if
H' is a self- conjugate sub-group of G', of order ri, and if GjH and
G'jH' are simply isomorphic, a correspondence of the most general
kind may be established between the operations of G and G'. To
every operation of G (or G') there will correspond ri (or n) operations
of (?' (or G), in such a way that to the product of any two operations
of G (or G ) there corresponds a definite set of ri (or ri) operations
of G' (or G). Let

G = H , S1H, StH, , S^H,

and G' = H', SX'H', S2'H' , S'm_xH' ;

and in the simple isomorphism between GjH and G'/H', let Sr and
Sr' (r = 0

, 1,..., m — 1) be corresponding operations. Then i
f wo

take the set Sr'H' as the ri operations of G' that correspond to any
operation of the set S

rH of G
,

and the set S
r II as the n operations

of G that correspond to any operation of the set Sr'H' of G', the
correspondence is

, in fact, established.

For, if h,' and A,' are any two operations of H', the set of opera
tions Sr'h^'Sf'hj includes ri distinct operations only, namely those of
the set Sr'S,'H'. Hence to the product -of any given operation of
the set SrH by any given operation of the set S,H, there corresponds
the set of ri operations Sr'S,' II'; at the same time the product of
the two given operations belongs (in consequence of the isomorphism
between G/H and G'jH') to the set SrS,H. The same statements
clearly hold when we interchange accented and unaccented symbols.

We still speak of G and G' as isomorphic groups, and the corre
spondence between their operations is said to give an n'-to-n isomor
phism of the two groups. We shall return to this general form of
isomorphism in dealing with intransitive permutation groups.

33. Definition. Two groups 0 and G' are said to be
permutable with each other when the distinct operations of
the set SiS/, where for Si every operation of the group G is

put in turn and for 8
/ every operation of the group G\ coincide

with the distinct operations of the set Sj'Si except possibly
as regards arrangement.
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If the two groups G and G' are permutable, the group
{G, G'} must be of finite order. For, by the definition, every
operation

...SpSq SrSt'...

can be reduced to the form SiS/; and therefore the number
of distinct operations of the group [G, G'} cannot exceed the

product of the orders of G and G'. Let g be the group formed
of the common operations of G and G'. Divide the operations
of these groups into the sets

g, ^10. 22<7,..., Sm-isr

and g, glj, gl2' , gX'^.

Then every operation of the set SiSJ can clearly be ex
pressed in the form

where 7 is some operation of g. And no two operations of this
form can be identical, for if

2,712,' = 2r7,2t',

then 72-J 2P7, = 2/ ;

so that 2t'2,'-1 belongs to g. But this is only possible if

2i'=29'.

which leads to . 2r=2J,,

and 72
= 7i-

The order of {G, G'} is therefore the product of the orders of G
and G', divided by the order of g.

If every operation of G is permutable with G', then g must
be a self-conjugate sub-group of G. For G and G' are trans
formed, each into itself, by any operation of G ; and therefore
their common sub-group g must be transformed into itself by
any operation of G.

Moreover those operations of G, which are permutable with

every operation of G\ form a self-conjugate sub-group of G.
For if T is an operation of G, which is permutable with every
operation S' of G', so that
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and if S is any operation of G, then

S-'T-'S . S-*S'S . S-'TS = S-'S'S,

so that S~lTS is permutable with every operation of (?'. Hence
every operation of G, which is conjugate to T, is permutable
with every operation of (?'; and the operations of G, which are

permutable with every operation of G\ therefore form a self-
conjugate sub-group.

If G is a simple group, g must consist of the identical
operation only ; and either all the operations of G, or none of
them, must be permutable with every operation of G'.

A special case is that in which the two groups G' and G are
respectively a self-conjugate sub-group J and any sub-group H
of some third group; for then every operation of H is per
mutable with I. If H is a cyclical sub-group generated by an
operation S of order n, and if Sm is the lowest power of S
which occurs in /, then m must be a factor of n. For if m' is
the greatest common factor of m and n, integers x and y can be
found such that

xm + yn = m.

Now Sm' = <Sim+^ =

and therefore Sm' belongs to /. Hence m cannot be less than
m, and therefore m is a factor of n. Moreover, since \Sm) is
a sub-group of J, the order of I must be divisible by njm.
Hence :—

Theorem VIII. If an operation S, of order n, is permutable
with a group G, and if Sm is the lowest power of S which occurs
in G ; then m is a factor of n, and njm is a factor of the order
ofG.

The operations of \G, S} can clearly be distributed in the
sets

G, GS, GS',..., GS"-1;

and no two of the operations S, S* /Sm_1 are conjugate in

[G, S}.

34. A still more special case, but it is most important, is
that in which the two groups are both of them self-conjugate
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sub-groups of some third group. If in this case the two groups
are G and H, while S and T are any operations of the two
groups respectively, then

S-'HS = H,

and T-1GT=G;

so that every operation of G is permutable with H and every
operation of H is permutable with G.
Consider now the operation S-iT-iST. Regarded as the

product of S-1 and ^ST it belongs to G, and regarded as the
product of S^T-tS and T it belongs to H. Every operation of
this form therefore belongs to the common group of G and H.
If G and II have no common operation except identity, then

or ST = TS;

and S and T are permutable. Hence :—

Theorem* IX. If every operation of G transforms H into
itself and every operation of H transforms G into itself and
if G and H have no common operation except identity ; then
every operation of G is permutable with every operation of H.

Corollary. If every operation of G transforms H into itself
and every operation of H transforms G into itself, and if either
G or H is a simple group; then G and H have no common
operation except identity, and every operation of G is permutable
with every operation of H.
For, by § 33, if G and H had a common sub-group, it would

be a self-conjugate sub-group of both of them ; and neither of
them could then be simple, contrary to hypothesis. Conse

quently, the only sub-group common to G and H is the
identical operation.

Ex. 1. Shew that, in the group whose defining relations are

A' = E, B' = E, {ABf = E,

the three operations A2, B-lA2B, BA2B-1 are permutable and that
they form a complete set of con/ugate operations. Hence shew that
{A', B\ is a self-conjugate sub-group, and that the order of the group
is 24.
,
Dyck, "Gruppentheoretisehe Studien," Math. Ann. Vol. xxn (1883), p. 97.
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Ex. 2. Shew that the cyclical group generated by the permuta
tion (1234567) is permutable with the group

{(243756)},

and that the order of the group resulting from combining them is 42.

Ex. 3. If gl and g2 are the orders of the groups (?i and G2, y
the order of their greatest common sub-group and g the order of

{Glt G,\, shew that
gy > gi(/t,

and that, if gy = glgit then (?, and G2 are permutable. (Frobenius.)

Ex. 4. If Gt and Gt are two sub-groups of G of orders gl and gt,
and S any operation of G, prove that the number of distinct opera
tions of G contained in the set SiSS^ when for and <

S
'2

are put in
turn every pair of operations of (?

,

and Gt respectively, is gigjy; y

being the order of the greatest sub-group common to S-1G1S and Gs.

If T is any other operation of G, shew also that the sets SiS82
and S^TSs are either identical or have no operation in common.

(Frobenius.)

Ex. 5. If a group G of order mn has a sub-group H of order n,
and if n has no prime factor which is less than m, shew that H must
be a self-conjugate sub-group. (Frobenius.)

Ex. 6. If G is the direct product of Gt and Gt, and if H is a
self-conjugate sub-group of G ; prove that either (i

) U is Abelian or
(ii) H has operations, other than E, in common with either G

l or (?2.
(Maclagan -Wedderburn. )



CHAPTER IV.

FURTHER PROPERTIES OF A GROUP WHICH ARE
INDEPENDENT OF ITS MODE OF REPRESENTATION.

36. We have seen in § 22 that the order of any sub-group
or operation of a group is a factor of the order of the group.
The complete converse of this theorem, viz. the statement that
if n is a factor of N, then a group of order N has a sub-group
of order n is not generally true. We are however now in a

position to prove a limited converse of great importance.

Theobem I. If p is a prime and if pm is less than, and
divides, the order of a group, then the group has at least one sub
group, distinct from itself, whose order is divisible by pm.

Suppose the theorem true for all groups of order less than
N. If 0, of order N, has no self-conjugate operation except E,
the relation (§ 26)

N=h1 + ht + ... + hr,

in which each term on the right, except h^, is greater than

unity, shews that at least one of the h's, say h{, is not divisible

by p. Hence Njh(, the order of a sub-group, is divisible
by pm.

If 0 has self-conjugate operations, let S be one of an order
as small as possible and therefore prime.

Suppose first that the order of S is p. Then G/{S]^ a group
whose order is less than N and is divisible bypm~l, has an actual
sub-group whose order is divisible by pm_1. Therefore G has
an actual sub-group whose order is divisible by pm.

Suppose next that the order of S is q, a prime different
from p. Then the order of G/{S} is divisible by pm; and if it
is not equal to pm the result follows as in the previous case.
Finally if G, of order pmq, has a self-conjugate operation S of
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order q every operation of \S\ is self-conjugate, so that G
contains at least q self-conjugate operations. Moreover in the

relation

pmq = hl + hi + ... + hr,

no h is divisible by q since every operation is permutable with

S. Hence more than q h's must be unity ; i.e. there is a self-

conjugate operation T not contained in \S}. The order of T
cannot be a power of q, since G has no sub-group of order q\
Hence in this case 0 has a self-conjugate operation P of order
p. Then Gf{P], of order pm~1q, has a sub-group of order pm~l,
and G has a sub-group of order pm.

Hence if the theorem is true for groups whose order is less
than N, it is true for groups of order N ; and therefore it is
true for all groups of finite order.

Corollary I. If pm divides the order of a group, the
group has at least one sub-group of order pm.

For the group has an actual sub-group whose order is
divisible by pm. This again has a sub-group whose order is
divisible by pm, and so on. Since the order of the group is
finite this process must terminate in a group of order pm.

Corollary II. If p, a prime, divides the order of a group,
the group has operations of order p*. For the group has a
sub-group of order pm (m ^ 1) ; any operation of this sub-group
has a power of p for its order, and a suitably chosen power of
this operation has p for its order.

36. As a simple illustration of this theorem we will consider
groups of order p* and pq where p and q are primes.
If a group of order p2 contains an operation of order p1 it is

cyclical. If not, its p1 - 1 operations, other than E, are all of order
p. A sub-group of order p contains p — 1 operations of order p
which enter in no other such sub-group. There must therefore be
p + 1 sub-groups of order p, and hence at least one of them is self-
conjugate. If this is \P\ and if P is an operation of order p which
is not a power of P,

P-1{P}F = {P}.
Hence P-lPP=P«, P-pPPp =

a? = 1 (mod. p),

a=l,
and PP = PP.
* This result is due to Cauchy, Exercices d'Analyse, m, p. 250 (1844).
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The group is therefore an Abelian group, generated by two
permutable operations of order p.

A group of order pq must contain a sub-group of order p and
a sub-group of order q. If the latter is not self-conjugate it must
be one of p conjugate sub-groups, which contain p(q-l) distinct
operations of order q. The remaining p operations must constitute
a sub-group of order p, which is therefore self-conjugate. A group
of order pq has therefore either a self-conjugate sub-group of order
p, or one of order q. Take p<q, and suppose first that there is a
self -conjugate sub-group {P} of order p. Let Q be an operation of
order q. Then

Q-*PQ = Pa

Q-*PQ* = P'q,

a9 = 1 (mod. p),

and therefore o = 1 (mod. p).

In this case P and Q are permutable and the group is cyclical.
Suppose secondly that there is no self-conjugate sub-group of order p.
There is then necessarily a self-conjugate sub-group [Q\ of order q ;
and if P is an operation of order p,

P-PQPP = QP*,

P? = 1 (mod. q
).

If q ^ 1 (mod. p), this would involve /? = 1, and {P\ would be
self-conjugate, contrary to supposition. Hence if the group is non-
cyclical,

q =1 (mod. p
)

and P-*QP = Qp,

where /J is a root, other than unity, of the congruence

fP=l (mod. p).
Between the groups defined by

Pp = E, Q> = E, P-1QP=Q^,

and P* = E, Q'* = E, P^Q'P^QP,
a simple isomorphism is established by taking P and P", Q' and Q

,

as corresponding operations. Hence when q = 1 (mod. p
)

there is

a single type of non-cyclical group of order pq.

37. If N is the order of a group G every operation of the
group satisfies the relation

SN = E,

and if n is any factor N, it follows from the preceding theorem
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and its corollaries that there are operations of the group
satisfying the relation

Sn = E.

Herr Frobenius* has shewn that the number of such
operations is always a multiple of n, and he has generalised f
this result in the form of the following:—

Theorem II. The number of operations of a group of order
N whose nth powers belong to a given conjugate set is zero or a
multiple of the highest common factor ofN and n.
If N is a small number the truth of this theorem is easily

verified by direct calculation. We shall therefore suppose the
theorem true for all groups whose order is less than N. Let
pa (p prime) be a factor of N, and let T be a given operation
of a group G of order N. We begin by considering those

operations S of G which satisfy the relation

Suppose first that the order of T is divisible by p. Then
(§ 16) we may put T = PQ, where P and Q are permutable, the
order of P is pb(b^l) and the order m of Q is prime to p.
Similarly we may put S = P'Q', where P' and Q' are permutable
while the order of P' is a power of p and the order of Q' is
prime to p. Then

P'paQpa = PQ.

Hence (§16) P'*a = P, Q'?a = Q.
If pam'=l, (mod. m)

Q'=Qr',

and S = P'Qm',

where P'Pa = P.

From this relation it follows that P' is of order pa+b (6^1), and
unless G contains operations of order pa+b permutable with T,
there are no operations satisfying

&>a=T.

* " Verallgemeinerung des Sjlow'schen Sfttzes," Berliner Sitzungsberichte
(1895), pp. 984, 985.
t "Ueber einen Fundamentalsatz der Gruppentheorie," Berliner SiUungt-

berichte (1903), pp. 987—991.

B. 4
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If P is an operation of G, permutable with T, and satisfying

then each of the operations P'1+tPbt (k—1, 2, pa) satisfy

these conditions, and they are the only operations belonging to

{P} which satisfy the conditions. Similarly every other cyclical
sub-group of G of order pa+b contains either 0 or pa operations
satisfying the conditions ; while no two distinct cyclical sub

groups of order p°+b can have common operations of order

pa+b Hence the number of operations of G satisfying

is zero or a multiple of pa. If T is any operation conjugate to
T, the operations of G satisfying

are distinct from and equal in number to those satisfying the

previous relation. Hence if the order of T is divisible by p, the
number of operations of G whose p°ih powers belong to the

conjugate set containing T is zero or a multiple of pahT, hT being
the number of operations in the conjugate set.

Suppose next that the order m of T is prime to p. Then
with the same notation

ppaQ'ifi=T,

and P^ = E, Q'^ = T.
Hence S = PTm',

where P+ = E,

while P is permutable with T.
Let pa.s, where s is prime to p, be the order of the sub

group GT constituted of the operations of G which are per
mutable with T. The order of GT/{T] is pa.s/m, which is less
than N. Therefore the number of operations of this group which
satisfy the relation

SPa = E
is a multiple of the highest common factor of pa and pa,s/m;
i.e. is a multiple of pa or pP^ according as a ^ alt or a > O1. The
same statement is true of the operations of GT whose |>°th
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powers belong to {T}. Now if S is an operation of Gt such
that

then (S7?)P" = Tt+#a = #

if i +jpa -- 0 (mod. wi).
Hence of the operations

S, ST, ST"-1

just one is such that its path power is E.

The number of operations P1 of GT which satisfy the
relation

F^ = E
is therefore the same as the number of operations of GT/[T}
which satisfy the same relation. Hence in this case the number
of operations S such that

is a multiple of p* or of p"' according asa^^oraxii. As in
the former case, if T is conjugate to T, the operations satisfying

are distinct from and equal in number to those satisfying the

previous relation. Hence the number of operations whose p*ih

power is conjugate to T is a multiple of pahT or paihT according
as o ^ ctj or a > av If N=paN1, where iV, is prime to p,

The number of operations whose p°th power is conjugate to T
is then finally a multiple of pa-°'+0JVa/s or of paNJs according
as a^o, or a>a,. In either case it is necessarily a multiple
of p".

Suppose next that n is any factor of N, and that n = pan1,
where is prime to p. If Sn is conjugate to T, and if

&* = S'

then S'n< is conjugate to T. The operations S' for which this
is true must form one or more complete conjugate sets. The

number of operations for which /S*0 is conjugate to S' is zero or a

multiple of pa. Hence the number of operations for which Sn

4—2
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is conjugate to T is zero or a multiple of p°. The same
reasoning may be applied to the other primes dividing n ; and

therefore the number of operations whose nth powers are

conjugate to T is zero or a multiple of n.
Lastly, let n = n1nt, where the prime factors of rii are, and

those of n2 are not prime factors of N, and suppose that

n2«2'
= 1 (mod. N).

If Sn = T,

then S"=*T-';

and conversely if S"1 = Tn'

then Sn = 8n*2 = T'*2' = T.

The number of operations whose «th powers belong to the

conjugate set containing T is therefore the same as the number
whose nith powers belong to the set containing T"1'. If the
highest power of p dividing rii, say pa, is not greater than pa,
the highest power of p dividing N, the number of operations
whose nith powers are conjugate to T"' has been shewn to be a
multiple of pa. If a > a, the relation

may be written

and it follows that the number of operations whose i^th power
is conjugate to T"2' is a multiple of pa. Hence the number of

operations whose 7iith powers are conjugate to a given operation
is a multiple of the greatest common factor of rii and N. This
is the same as the greatest common factor of n and N; and the
theorem is therefore true for a group of order N.

Corollary I. If n is a factor of N, the order of G, then
the number of operations of G satisfying the relation

Sn = E
is a multiple of ri.

For it has been seen in § 35 that there are always operations
of the group satisfying this relation, and the number cannot
therefore be zero.
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Corollary II. If n(=paqt...) is a factor of N(=paq*...),
and if the number of operations of G, of order N, which satisfy
the relation

Sn = E
is equal to n, then either a = at or G must contain operations of
order pa+l. If a < a, the number of operations which satisfy

Spn = E
is a multiple of pn, and is therefore greater than the number

which satisfy
Sn = E.

There must therefore be operations whose orders divide pn and

do not divide n ; and the orders of these operations are multiples

o{pa+\

Corollary III.* If a group of order win, where wi and n
are relatively prime, contains a self-conjugate sub-group of order
n, the group contains just n operations whose orders divide n.

For if G had an operation S, whose order divides n, which
is not contained in the self-conjugate sub-group H of order n,
[S, H) would be a sub-group whose order is greater than n and
relatively prime to wi. Such a sub-group cannot exist, since
its order does not divide the order of G.

Corollary IV.* If G has a self-conjugate sub-group H of
order mn, where m and n are relatively prime, and if H has
a self-conjugate sub-group K of order n, then K is a self-
conjugate sub-group of G.

For, by the preceding Corollary, H contains just n operations
whose orders divide n, namely those of K ; and every operation
of G, since it transforms H into itself, must therefore transform
K into itself.
Ex. If m and n are relatively prime factors of the order of a

group G, and if the number of operations of G whose orders divide
m and ra are m and ra respectively ; then every operation whose
order is a factor of m is permutable with every operation whose
order is a factor of n, and the number of operations of G whose
orders divide mn is equal to inn. (Frobenius.)

* Frobenius: "Ueber endliche Grnppen," Berliner Sittungsberichte (1895),
p. 170.
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38. If S and T are any two operations of a group, the opera
tion S-lT-lST is called a commutator. The identical operation
E is always a commutator; for a group necessarily contains
permutable operations, and if S and T are permutable

S-'T-'ST = E.
If every pair of operations of a group are permutable, then
E is the only commutator.
A commutator can always be expressed as such in a variety

of ways. In fact if U is any operation of the sub-group Gs,
which consists of all the operations permutable with S, then

since U-'SU^S,
R = S-*T-1ST = S-1T-*U-1SUT

= S-l(UT)-*S(UT).
Conversely, if S-*T-*ST = S-l V-*8V,
then (TV-1) 8 (TV-1)-1 = 8,

and therefore TV-i belongs to Gs.
Hence S-*T-*ST can be expressed in N/hs distinct ways as

a commutator with S-1 for its first factor; hs being the number
of operations in the set to which S belongs. The last factors in
these distinct forms of <S-1T-1,ST are the operations of the set

GST. If U is any one of them and hv the number of operations
in the conjugate set to which U belongs, then S-lT-1ST can be
expressed in a form in which U is the last factor in N/hv distinct
ways. Hence S^T^ST can be expressed as a commutator in
at least S N/hv distinct ways, where the summation is extended

to all operations of the set GST. This obviously does not

necessarily exhaust all the ways in which S-lT-*ST can be
expressed as a commutator, but it gives a lower limit to the
number of such ways.

If hm is the greatest number of operations in any conjugate set,
then 'S.N/h<i is certainly not less than (N/hm)\ Now the number of

distinct forms S-^ST is IP. Hence if

or hM < VJV,
these are certainly operations which cannot be expressed as
commutators.
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39. The product of two commutators, in which the last
factor of the first and the first factor of the second are inverse

operations is another commutator ; for

but without some further knowledge of the group concerned it
is obviously not possible in general to express the product of

any two commutators as a commutator. The totality of the
commutators of a group G do not therefore necessarily constitute
a group. They however necessarily generate a group, which

may or may not be identical with G.

Definition. The group generated by the commutators of
a group G is called the commutator sub-group or the derived

group of G.

Theorem III. The derived group of G is that self-conjugate
sub-group H of smallest order such that the factor-group G/H
is Abelian.

That the derived group is a self-conjugate sub-group follows

at once from the fact that if R is a commutator so also is S^RS,
where S is any operation of G; so that the derived group is

generated by a certain number of complete conjugate sets of

operations.

If it is distinct from G let S, T be operations of G which do
not belong to H. Then

S-lT-'ST = R,

or ST=TSR,
where R belongs to H. Hence

STH=T8H,
SHT = THS,

and SH.TH=TH.SH.
Now (§ 29) the operations of G/H combine according to the

same laws, as the sets

H, StH, S2H, SmH

into which the operations of G fall in respect of H. Hence
since these sets are permutable, every pair of operations of G/H
are permutable ; i.e. G/H is Abelian.
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Conversely, if W is any self-conjugate sub-group such that
G/H' is Abelian, and if S, T are any two operations of G ; then

SH' . TH' = TH' . SH',
so that fih'T-',Sr belongs to H', and H' therefore contains H.

40. The derived group H has itself a commutator sub
group or derived group, which may or may not coincide with
H. Suppose now that starting with a given group G, of finite
order, Gl is the derived group of G, and actually distinct from
it; G2 is the derived group of Gl and actually distinct from it:
and so on. Since the order of each of these groups is less than
the preceding, the series must terminate. This may happen in
one of two ways. We may either arrive at a group which is

identical with its derived group, or we may arrive at an Abelian

group, whose derived group is the identical operation. In
either case the series of groups

Glt G2, G„

is spoken of as the series of derived groups arising from G ; and
when G" is E, G is said to be soluble.

Each group of the series is necessarily a self-conjugate
sub-group of G, and the following theorem holds in respect of
the groups of the series.

Theorem IV. If K is a self-conjugate sub-group of G, and
if G/K is a soluble group with i terms in its derived series, then
K contains Gi, the ith derived group of G, and does not contain
Gi-l.
Let G/K be denoted by G', and let

G\, G\ G'i-i, E,

be its derived series. The corresponding series of sub-groups
of G may be denoted by

Hlt H2 Hi-i, K.
In the series of derived groups of G,

Gi, G2, , Gr ,

let G,+1 be the first which does not contain K. Then since Hi
is the smallest self-conjugate sub-group of G, containing K,
such that G/Hi is Abelian, Hl = (?1. In the same way it is
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shewn that Hi=G2 H,= G,. Further Hs+1 being the
smallest self-conjugate sub-group of G8, containing K, such that
Gt/Ht+1 is Abelian, H,+1= {Gs+1, K\. In the same way it is
shewn that = {G,+i, K], , = {fl^, K), K = {G{, K}.
Now by supposition Hi^ and K are distinct groups ; and there
fore K contains (?< and does not contain (?<-i.
In the particular case in which the derived group Gl is

Abelian, so that the derived series is G1, E, the group G is
said to be metabelian.

41. In the case of an Abelian group, whose operations are
all permutablo with each other, the conjugate sets each consist
of a single operation, and the product of any two conjugate sets

(or operations) is another conjugate set (or operation). We
now proceed to consider how, in the case of non-Abelian

groups, the conjugate sets combine among themselves by

multiplication.

Let Slt S2 , S^,

and Tlt T2 , Thj,

be two complete conjugate sets of operations in a group G.
By multiplication there arises a set of hjij operations of G, viz.

SxTy, (x=l,2, hi; y = l,2, hj).

Since
Sz^TiSx, Sx^TtSx, , Sx^T^Sx,

differ only from
Tit , Th

in the sequence in which they occur, the same is true of

TiSx, T^Sx, , Th.Sx,

and SxTlt SxT, SxThj.

Hence, except as regards the sequence in which they occur,
the set of operations

SxTy(x=l, 2, hr, y=l, 2 , h
f)

is the same as the set

Ty8x(x = l,2 h{; y=l,2, hj).

If the operation R occurs just t times in the set SxTy, and if 2

is any operation of G
,

then 2-1jR2 must occur just t times in
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the set S^&tS . which, since the S's and T's are
conjugate sets, is the same as the set SxTy. Hence in the set
of operations SxTy each operation of the conjugate set, to
which R belongs, occurs the same number of times.

This fact may be conveniently expressed in a symbolical
form as follows. Let

E,

Ai, At, , A^,

Si, B2 , Bh2,

Ki, Khr

be the complete conjugate sets of operations of G in any order,

except that the set consisting of the identical operation alone

(for which hz is unity) is put first. Denote the sum of the

operations in the ith set by Git their number being hi, so that

K1 + K,+...+ Kr=Cv.

Then C^-Sc^C*.
k

where each c,^ is either zero or a suitable positive integer,
expresses that in the set SxTy each operation of any conjugate
set occurs the same number of times. In fact, if the multipli
cations indicated are carried out and the multiplication table
of the group taken account of, the relation

CiCj = 2cyi(7i
k

becomes an identity.

42. The coefficients c,^ which enter in these relations

obviously depend on the particular group considered ; but they
are subject to certain conditions which are the same in all

cases.

Since C&j-Ofiu
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Again, since the multiplication of operations of a group is

associative
CiCj . Ct = Gi . CjCt .

Now Cfii . C7»« 2 Cij,C,Ck = 2 Cij,cM Ct ,

and C
,-
. CjCk = 2 CjkfiiC, = 2 Cp, C
t
.

Hence for each t, i,j, k

2 cii,cM = 2,Cjiu.cM.
* s

If S^R-^R,
StCj = fl-'S.fl . Cj = R-^CjR,

and the set of operations StCj contains the same number

belonging to any conjugate set that StCj does. Hence c.^i, if

not zero, is a multiple of both hi and hj, and therefore of their
least common multiple. Moreover, by counting the number of

operations on each side of the relation

we obtain fify = 2 Cij,ht.

f

43. If 8l, 8^

is a complete conjugate set, so also obviously is

sr\ sr1,..., V-
The number of operations in this second set is necessarily

the same as that in the first. If the second set is distinct from
the first, the two sets are called inverse sets. If they are the
same the set is said to be self-inverse. A convenient notation,
which will be adhered to here, is to take the ith and i'th sets
as inverse, which involves for a self-inverse set i = i'. In any
case h

i = hf.

If Sx is an operation of the ith conjugate set, the operations
of the set

are all distinct, and of these c^h/c/hi belong to the kth set.
Let these be

SiTi, 8iTt..., SiTp, n = Cijtht/hi,
or A]| Kit ifM.
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Then S, = K, Trl = K,Tr = -- = 2V"1,

and these are the only ways in which can be expressed as

the product of an operation of the Arth set with one of the j'th
set. Hence

P = cm,

and Cijkhk = c*/A-.

Further since, if ST = K,

then T-lS-* = K-\
it follows that c#t

= c,yf.

The immediately previous relation may therefore be written

Cjith = Cfidhi = Cjti'hi.

When one of the suffixes is 1, the value of c is obviously

given by the equations

Cjflt
=
Ctfrj
= 0, k^j,

clj} = 1,

Ciji =0, j^i',

Ctfi = hi.

Ex. 1. In the case of the group of § 17, shew that if

E=GU S+T=C1, U+ V+ W=C3,

then Ca2 = 2d + Ca, CaC, = 2C3, Cs3 = 3C, + 3C2.

Ex. 2. Prove that if A, and are relatively prime, every
operation of C( Cj belongs to the same conjugate set.

44. The system of relations
k=r

CiCj= S CijkCit,
k=l

may be called the multiplication table of the conjugate sets
of a group. Its great importance will appear later when we
consider the theory of groups of linear substitutions.

No direct information in regard to the ordinary sub-groups
of a group is given by the multiplication table of the conjugate
sets ; but all the self-conjugate sub-groups are determined by a
mere inspection of the table. The operations of a self-conjugate
sub-group fall into a certain number, less than the whole, of
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complete conjugate sets ; and since the operations combine

among themselves by multiplication, the conjugate sets into
which they fall must also do so.

Conversely if a number, less than the whole, of the conjugate
sets combine among themselves by multiplication, so also do

the operations forming these sets ; and therefore the sets in

question constitute a self-conjugate sub-group. The totality of
the self-conjugate sub-groups of a given group will therefore
be determined by finding from the table those various sets of

conjugate operations which combine among themselves by
multiplication.

45. The distinction between commutators and non-com
mutators is also given immediately by the table. A commutator
is by definition an operation which can be expressed in the
form S-iT^ST, i.e. as a product of operations S-i and T-*ST
belonging to inverse seta

Now the relation

s

expresses that any operation of the sth set can be expressed in

c,t, distinct ways as a product of an operation of the i'th set by
an operation of the uh set. Let

be one of these ways, where S is some operation of the ith set.
Without altering S or the operation which is being represented
as a commutator, T may be any one of N/hi operations. Hence
the operation in question can be represented in the form

Sf+TStT,

where 6
'< belonging to the ith set is Cu;N/hi distinct ways ; and

therefore any operation of the sth set can be represented as a

commutator in

i= l

ways. Since (§ 43),

i— r i=r

2 dc,Nlhi= 2 cutN/k,;
i=l <=1
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and each operation of the sth set can be represented as a
commutator in

N/h. x lcM
i

ways. In particular, an operation of the sth set is not a com
mutator if, and only if

,

c^i (or Ci,-t) is zero for each i.

46. The coefficients djk in the multiplication table of the

conjugate sets are, when not zero, in general greater than unity.
If for given i and j, each djk is either zero or unity, no operation
occurs twice in the product (7<Cj-. Let S be an operation of C{

and T one of Cy. If S and T were not permutable, the opera
tion ST would occur again in the product Cfij in the form

T-^ST.{STy-'T{ST),

hence every operation of G
i must be permutable with every

operation of Cj. When this is not the case some of the c's are

necessarily greater than unity. Denoting by Gs the sub-group
formed by all the operations which are permutable with S

,

the

only operations permutable with both S and T are those of the
sub-group GSi T of order ns. T common to Gs and GT. If ST
belongs to the &th conjugate set, it is permutable with every
operation of GST, of order N/hk. Hence when the operations S

and T are transformed by all the operations of GST, N/hknSt T
distinct pairs of operations arise, and therefore

dp-!; N/hknStT,

where S and T are operations of (7
< and C
j

whose product

belongs to Ck. If 0
< and C
j contain operations S' and T' such

that
S'T'=ST,

while there is no operation of the group that transforms S into
S' and T into T',

Cm, * N/hkns, T + Nlhkn8-t r ;

and continuing thus the actual value of c$t is arrived at.

47. A pair of operations S, T of a group (where the sequence in
which the pair is written is essential ; i.e. the pairs S

, T and T, S

are distinct unless S= T) when transformed by all the operations of
the group will give rise to a set of N/nSi T pairs, where ns< T is the
order of Gs T, the sub-group formed of all the operations permutable
both with S and with T. If

R-lSR = S
^ and R-*TR=T1,
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then the operations of the set GS TR, and no others, transform the
pair S, T into the pair Slt Tl ; and the pair Slt Tl remains unchanged
only by the operations of the sub-group -K-16?S, TR. Hence, when
the N/nSi T pairs of the set are transformed by the N operations of
the group, the number of unchanged pairs in the N permutations
that arise is N,

Suppose now that, when the iV2 pairs S, T are transformed by
the operations of the group, they fall into m con/ugate sets of pairs.
The total number of unchanged pairs in the N permutations that
arise will be mN. On the other hand, the number of unchanged
pairs when the N2 pairs are transformed by any operation of the
ith set is equal to the number of pairs of operations in a sub-group
of order N/h(. Hence

mN= 2A( (iV7/t,)s

or m = N%r.
i A4

This then is the number of distinct conjugate sets of pairs of
operations defined as above. Moreover, if by the product of the
pair S, T by the pair S\ T we understand the pair SS', TT ', the
conjugate sets of pairs of operations will combine among themselves
on multiplication, but the multiplication will not necessarily be
commutative.

Ex. If S, S', , S is a system of t operations, distinct or
not, in which the sequence of the individual operations is essential
to the system, prove that the number of distinct conjugate sets of
such systems is

.... - 1



CHAPTER V.

ON THE COMPOSITION-SERIES OF A GROUP.

48. Let (?
,

be a maximum self-conjugate sub-group (§ 27)
of a given group G

,

G
2 a maximum self-conjugate sub-group of

Gu and so on. Since G is a group of finite order, we must, after

a finite number of sub-groups, arrive in this way at a sub-group

Gn-i> whose only self-conjugate sub-group is that formed of the
identical operation alone, so that Gn-i is a simple group.

Definitions. The series of groups

obtained in the manner just described is called a composition-
series of G.

The set of groups

0/Gu GJG2,..., (r„_2/(r„_i, (?„_,,

is called a set of factor-groups of G
,

and the orders of these

groups are said to form a set of composition-factors of G.

Each of the set of factor-groups is necessarily (§ 30) a

simple group.

The set of groups forming a composition-series of G is not,

in general, unique. Thus G may have more than one maximum

self-conjugate sub-group, in which case the second term in the
series may be taken different from Gx. Moreover the groups
succeeding (?

,

are not all necessarily self-conjugate in G ; and
when some of them are not so, we obtain a new composition-
series on transforming the whole set by a suitably chosen

operation of G. That the new set thus obtained is again a
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composition-series is obvious; for if Gr+1 is a maximum self-
conjugate sub-group of Or, so also is S^G^S of (S_1G>/S>. We
proceed to prove that, if a group has two different composition-
series, the number of terms in them is the same and the

factor-groups derived from them are identical except as regards
the sequence in which they occur.

This result, which is of great importance in the subsequent
theory, is due to Herr Holder*; and the proof we here give does
not differ materially from his.

The less general result, that, however the composition-series
may be chosen, the composition-factors ate always the same

except as regards their sequence, had been proved by M. Jordan f
some years before the date of Herr Holder's memoir.

49. Theorem I. IfH is any self-conjugate sub-group of a
group G; and if K, K' are two self-conjugate sub-groups ofG con
tained in H, such that there is no self-conjugate sub-group of G
contained in H and containing either K or K' except H, K and
K' themselves; and if L is the greatest common sub-group of K
and K', so that L is necessarily self-conjugate in G ; then the
groups H/K and K'/L are simply isomorphic, as also are the
groups HjK' and K/L.
Since if and K' are self-conjugate sub-groups of G contained

in H, [K, K'\ must also be a self-conjugate sub-group of G
contained in H ; and since, by supposition, there is in H no self-
conjugate sub-group of G other than H itself, which contains
either K or K', \K, K'\ must coincide with H. Hence (§ 33)
the product of the orders of K and K' is equal to the product
of the orders of H and L.
If the order of K/L is m, the operations of K may be

divided into the m sets

L, SiL, 82L,..., Sf^L,

such that any operation of one set multiplied by any operation
of a second gives some operation of a definite third set, and the

group K/L is defined by the laws according to which the sets
combine.
* " Zuruckfiihrung einer beliebigen algebraischen Gleichnng anf eine Kette

von Gleichangen," MaOi. Ann. xxuv, (1889), p. 33.
+ "Traits des substitutions," (1870), p. 42.

B. 5
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Consider now the m sets of operations

K', SiK', S^K' Sm-xK .

No two operations of any one set can be identical. If
operations from two different sets are the same, say

where and kt' are operations of K', then

some operation of K'. But Sq~lSpis an operation of K; hence,
as it belongs both to K and K', it must belong to L, so that

Sp = Sgl,

where I is some operation of L. This however contradicts the

supposition that the operations SPL and S'qL are all distinct. It
follows that the operations of the above m sets are all distinct.

Now they all belong to the group H; and their number,
being the order of K' multiplied by the order of K/L, is equal
to the order of H. Hence in respect of the self-conjugate sub
group K', which H contains, the operations of the group H can
be divided into the sets

K', SiK', S2K', Sm^xK',

and the group H/K' is defined by the laws according to which
these sets combine. But if

SpL . Sq L = SrL,
then necessarily

SpK' . SqK' = SrK'.
Hence the groups H/K' and K/L are simply isomorphic. In
precisely the same way it is shewn that H/K and K'/L are
simply isomorphic.

Corollary. If H coincides with G, K and K' are maximum
self-conjugate sub-groups of G. Hence ifK and K' are maximum
self-conjugate sub-groups of G, and if L is the greatest group
common to K and K', then G/K and K'/L are simply isomor
phic ; as also are G/K' and K/L.
Now G/K and G/K' are simple groups ; and therefore, K/L

and K'/L being simple groups, L must be a maximum self-
conjugate sub-group of both K and K'.
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50. We may now at once proceed to prove by a process of
induction the properties of the composition-series of a group
stated at the end of § 48. Let us suppose that, for groups
whose orders do not exceed a given number n, it is already
known that any two composition-series contain the same
number of groups and that the factor-groups defined by them
are the same except as regards their sequence. If G, a group
whose order does not exceed 2n, has more than one composition-
series, let two such series be

G, (?,, G„ E;

and G, G2,...,E.

If H is the greatest common sub-group of Gl and (?/, and if
H, I, J, E

is a composition-series of H, then, by the Corollary in the
preceding paragraph,

G, Glt H, I, J,...,E,

and G, <?/, H, I, J,...,E
are two composition-series of G which contain the same number
of terms and give the same factor-groups. For it has there
been shewn that G/Gi and G(/H are simply isomorphic ; as
also are G/Gi and GJff. Now the order of Glt being a factor
of the order of G, cannot exceed n. Hence the two composition-
series

Gi, G2, E,

and (?,, H, I.....E,
by supposition contain the same number of groups and give the
same factor-groups ; and the same is true of the two composition-
series

Gi, G2', . . . , E,

and GV, H, I,...,E.
Hence finally, the two original series are seen, by comparing
them with the two new series that have been formed, to have
the same number of groups and to lead to the same factor-

groups. The property therefore, if true for groups whose order
does not exceed n, is true also for groups whose order does not

5-2
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exceed 2n. Now the simplest group, which has more than one

composition-series, is that defined by

A'=E, B' = E, AB = BA.
For this group there are three distinct composition-series, viz.

[A, B), [A], E;
[A, B}, [B], E;

and {A, B}, {AB}, E:
and for these the theorem is obviously true. It is therefore
true generally. Hence :—

Theorem II. Any two composition-series of a group consist
of the same number of sub-groups, and lead to two sets of factor-
groups which, except as regards the sequence in which they occur,

are identical with each other.

The definite set of simple groups, which we thus arrive at
from whatever composition-series we may start, are essential

constituents of the group : the group is said to be compounded
from them. The reader must not, however, conclude either
that the group is defined by its set of factor-groups, or that it
necessarily contains a sub-group simply isomorphic with any
given one of them.

51. It has been already pointed out that the groups in a
composition-series of G are not necessarily, all of them, self-

conjugate sub-groups of G.

Suppose now that a series of groups, each contained in the

preceding one,
G, Hlt H2 #m-i, E

are chosen so that each one is a self-conjugate sub-group of G,
while there is no self-conjugate sub-group of G contained in any
one group of the series and containing the next group.

Definition. The series of groups, obtained in the manner
just described, is called a chief-composition-series, or a chief-
series of G.

It should be noticed that such a series is not necessarily
obtained by dropping out from a composition-series those of its

groups which are not self-conjugate in the original group.
It will be seen later that the composition-series of a group
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whose order is the power of a prime can be chosen, either

(i) so that every group of the series is a self-conjugate sub

group, or (ii) so as to contain any given sub-group, self-
conjugate or not.

A chief composition-series of a group is not necessarily
unique ; and when a group has more than one, the following
theorem, exactly analogous to Theorem II, holds:
Theorem III. Any two chief-composition-series of a group

consist of the same number of terms and lead to two sets of
factor-groups, which, except as regards the sequence in which they
occur, are identical with each other.

The formal proof of this theorem would be a mere repetition
of the proof of § 50, Theorem I itself being used to start from
instead of its Corollary ; it is therefore omitted.

Although it is not always possible to pass from a composition-
series to a chief-series, the process of forming a composition-
series on the basis of a given chief-series can always be carried
out. Thus if

,

in a chief-series, Hr+1 is not a maximum self-

conjugate sub-group of Hr, the latter group must have a

maximum self-conjugate sub-group Gr.l which contains Hr+1.
If Hr+1 is not a maximum self-conjugate sub-group of Gr,i, then
such a group, Gr,t, may be found still containing Hr+1 ; and this

process may be continued till we arrive at a group G>,i—i, of
which Hr+1 is a maximum self-conjugate sub-group. A similar
process may be carried out for each pair of consecutive terms
in the chief-series; the resulting series so obtained is a com

position-series of the original group.

52. The factor-groups Hr/Hr+1 arising from a chief-series
are not necessarily simple groups. If between Hr and Hr+1 no
groups of a corresponding composition-series occur, the group

Hr/Hr+1 is simple ; but when there are such intermediate

groups, Hr/Hr+l cannot be simple. We proceed to discuss the
nature of this group in the latter case.

Let G be multiply isomorphic with G', so that the self-
conjugate sub-group -ffr+1 of G corresponds to the identical

operation of G'. Also let

Hi, Hi, Hp', H'p+1 Hr', E
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be the sub-group3 of G' which correspond to the sub-groups

"ii Hit Hp, Hp+1,..., Hr, Hr+1
of G. Since Hp contains Hp+lt Hp' must contain H'p+1; and
since Hp+1 is self-conjugate in G, H'p+1 is self-conjugate in G'.
Also if G' had a self-conjugate sub-group contained in Hp' and
containing H'p+lt G would have a self-conjugate sub-group
contained in Hp and containing Hp+1. This is not the case,
and therefore

G', H', Hi',..., Hr, E
is a chief-series of G'. Hence Hr/Hr+1 is simply isomorphic
with Hr', the last group but one in the chief-series of G'.

Definition. If T is a self-conjugate sub-group of G, and
if G has no self-conjugate sub-group, contained in T, whose
order is less than that of T, then T is called a minimum self-
conjugate sub-group of G.

Making use of the phrase thus defined, the discussion of the

factor-groups Hr/Hr+1 of a chief-series is the same as that of the
minimum self-conjugate sub-groups of a given group.

53. To simplify the notation as much as possible, let / be
a minimum self-conjugate sub-group of G; and, if I is not a
simple group, suppose that t, is a minimum self-conjugate sub

group of /. Then i, must be one of a set of m(> 1) conjugate
sub-groups in G, say

ti , ... , tm,

each of which is self-conjugate in /.

If i, and i2 had a common sub-group j, it would be a self-
conjugate sub-group of / contained in i1

} i.e. ii would not be a

minimum sub-group of /. Hence no two of the groups

ilt i2
,

iffl have a common sub-group other than E. Consider
now the direct product {ilt i2

j of and i2
. It is a self-conjugate

sub-group of /. If it contains all the m sub-groups of the set,

it contains a self-conjugate sub-group of G and must therefore
coincide with /. If it does not contain ii. it can have no sub
group in common with i2
,

or else i2 would not be a minimum

sub-group. In this latter case consider the direct product

[hi ht h] of h, h and is
. If it contains all the m sub-groups
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of the set it coincides with /. If it does not contain it, it can
have no sub-group in common with t4, and the direct product
{h, »„, H. i4

} is a self-conjugate sub-group of /. Continuing
thus, it must be possible to select a certain set of s sub-groups
from the conjugate set of m, such that / is the direct product
of ii, i2 i,

. If ii were not a simple group and if j were a
minimum self-conjugate sub-group of ii

,

then each of the

groups t,, i,
, ...,it would be the direct product of t (> 1) groups

isomorphic with j and / would be the direct product of st
groups simply isomorphic with j, so that i, would not be a

minimum self-conjugate sub-group of /. Hence i, must be a
simple group; and J is the direct product of s simply iso
morphic simple groups.

Hence :—

Theorem IV. If between two consecutive terms Hr and Hr+1
in the chief-composition- series o

f a group there occur the groups

Gr.ii G>,2, (?r,t-i o
f a composition- series ; then (i) the factor

groups

Hv/Gr. u Gr, i/Gr,2, (?r,s-i/ Hr+1

are all simply isomorphic, and (ii) Hr/Hr+l is the direct product

o
f s groups o
f the type Hr/Gr.l.

Corollary. If the order of Hr/Hr+l is a power, p', of a
prime, Hr/Hr+1 must be an Abelian group whose operations,
except E, are all of order p.

54. A chief-series of a group G can always be constructed
which shall contain among its terms any given self-conjugate
sub-group of G. For if T is a self-conjugate sub-group of G

,

and if G/T is simple, we may take T for the group which
follows G in the chief-series. If on the other hand G/T is not
simple, it must contain a minimum self-conjugate sub-group.
Then ri/ the corresponding self-conjugate sub-group of G

,

contains T; and if there were a self-conjugate sub-group of G

contained in T
i and containing T
,

the self-conjugate sub-group
of G/T, which corresponds to r„ would not be a minimum
self-conjugate sub-group. We may now repeat the same

process with r\, and so on; the sub-groups thus introduced
will, with G and T
,

clearly form the part of a chief-series
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extending from G to T. The series may be continued from T,

till we arrive at the identical operation, in the usual way.

55. It will perhaps assist the reader if we illustrate the fore
going theory by one or two simple examples. We take first a group
of order 1 2, defined by the relations

A' = E, B2=E, AB = BA,
Jf=E; R-lAR = B, R-'BR = AB*.

From the last two equations, it follows that

R-lABR = A,
and therefore R transforms the sub-group {A, B\ of order 4 into
itself; so that this sub-group is self-conjugate, and the order of the
group is 12 as stated. The self-con jugate sub-group {A, B\ thus
determined is clearly a maximum self-conjugate sub-group. Also it is
the only one. For if there were another its order would be 6, and
it would contain all the operations of order 3 in the group. Now
since \R\ is only permutable with its own operations, the group
contains 4 sub-groups of order 3, and therefore there can be no
self-conjugate sub-group of order 6. The three cyclical sub-groups
{A\, \B\ and \AB) of order 2 are transformed into each other by R,
and therefore no one of them is self-conjugate.

Hence the only chief-series is

{R,A,B\, {A,B\, E,

and there are three composition-series, viz.

{R, A,B\, {A,B\, {A\, E;
{R,A,B\, {A,B\, {B\, E;

and {R, A, B\, {A, B\, {AB}, E.

The orders of the factor-groups in the chief series are 3 and 22,
and the group of order 22 is

,

as it should be, an Abelian group whose
operations are all of order 2. The composition-factors are 3, 2, 2 in
the order written.

56. As a rather less simple instance, we will now take a group
generated by four permutable independent operations A

,

B, P
,

Q
,

of
orders 2, 2, 3, 3 respectively and an operation if of order 3, for
which

R-iAR = B, R-1BR = AB, R-lPR = P, R-1QR = QPf.
The sub-group {A, B, P

,

Q\, of order 36, is clearly a maximum
self-conjugate sub-group, and therefore the order of the group is 108.

* The reader will notice that D can be eliminated from these relations, and
that the group can be defined by A' = E, R2 = E, (AR)i=E. The structure of
the group however is given, at a glance, by the equations in the text.

t Here again the group can clearly be defined in terms of A, Q and R.
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Since A, B and AB are conjugate operations, every self-conjugate
sub-group that contains A must contain B ; and since Q and QP are
conjugate, every self-conjugate sub-group that contains Q must
contain P. Hence the only other possible maximum self-conjugate
sub-groups are those of the form {A, B, P, RQa\ ; and since

Q-'RQ'Q = RQ'P-\
these groups actually are self-conjugate. The same reasoning shews
that the only maximum self-conjugate sub-group of {A, B, P, Q} or
of [A, B, P, RQa\, which is self-con jugate in the original group, is
{A, B, P) ; and the only maximum self-conjugate sub-groups of the
latter, which are self-conjugate in the original group, are {A, B) and

{P\. Hence all the chief -series of the group are given by

{A, B, P, Q), {A, B\,

{R, A, B, P, Q\, or {A, B, P\, or E.

{A, B, P, RQa\, {/>}.

Since {A, B, P, Q) is an Abelian group, all of its sub-groups are
self-conjugate. Hence if G„ G2, and Gs are any maximum sub-groups
of [A, B, P, Q], Gl and (?2 respectively, then

{R, A, B, P, Q\, {A, B, P, Q\, Glt <?„ G„ E
is a composition-series.

Again, since A and B are conjugate in {A, B, P, RQa\, the only
maximum self-conjugate sub-groups of this group are those of the
form {A, B, Px(RQay}. If y is zero, this sub-group is Abelian; and
we may take for the next term in the composition-series any
maximum sub-group gt of this Abelian sub-group, and for the last
term but one any sub-group g2 of g2. But if y is not zero,
{A, B, P*(RQry\ can only be followed by {A, B\. Hence the
remaining composition-series are of the forms :—

{R, A, B, P, Q\, {A,B,P,RQa\, {A, B, P\, gt, g2, E,

and

{R, A, B, P, Q\, \A,B,P,RQT\, {A, B, Z*W},
{A, B\, {A} or {B} or {A B\, E.

It should be noticed that if, in the last of these series, we drop out
the terms which are not self-conjugate in the original group, here
the third and fifth terms, we do not arrive at a chief-series. This
illustrates a remark made in § 51.

57. Theorem V. If H is a sub-group of G, each com
position-factor o
f H must be equal to or be a factor of some

composition-factor o
f G.
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If 0 is simple, its only composition-factor is equal to its
order : the theorem in this case is obvious.

If G is not simple, let Gr+l be the first term in a com
position-series of G which does not contain H ; and let Gr be
the term preceding Gr+l. If jET, is the greatest common sub
group of G>+1 and H, then Ht is a self-conjugate sub-group
of H. For eveiy operation of H transforms both H and Gy+1
into themselves ; and therefore every operation of H transforms
Hi, the greatest common sub-group of H and Gr+i, into itself.
Now the order of {H, Gr+1] is equal to the product of the
orders of H and Gr+l divided by the order of H ; and {H, Gr+1}
is contained in G>. Hence the order of H/Hl is equal to or is
a factor of the order of Gr/Gr+1. If then a composition-series
of H be taken, containing the term Hl , the orders of the factor-
groups, formed by those terms of tlie series terminating with

Hlt are equal to or are factors of the order of GrjGT+1. The
same reasoning may now be used for if, that has been applied
to H; and the theorem is therefore true.

Corollary. If all the composition-factors of G are primes,
also are the composition-factors of every sub-group of G.

58. When a group G does not coincide with its derived

group Gi, a chief-series may be formed in which Gl occurs.
Since GjGx is Abelian, each factor-group of the corresponding
composition-series between G and (?

! has a prime for its order.
Hence if G is a soluble group (§ 40), i.e. if its series of
derived groups terminate with E, all of its composition-factors
are primes. The converse is obviously true, for if all the
composition-factors are primes, neither the group itself nor any
self-conjugate sub-group can coincide with its derived group.

A soluble group might therefore be equally well defined as one
all of whose composition-factors are primes.

A soluble group of order p°-q? where p, q,...,r are
distinct primes, has a + /3 + ... +y composition-factors; these

are capable of
*^^g^

*

*^~*
distinct arrangements.

For a specified group the composition-factors may, as we
have already seen, occur in two or more distinct arrangements ;

so
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but it is immediately obvious that two groups of the same

order cannot be of the same type, i.e. simply isomorphic, unless
the distinct arrangements, of which the composition-factors are

capable, are the same for both. A first step therefore towards
the enumeration of all distinct types of soluble groups of a

given order, will be to classify them according to the distinct
arrangements of which the composition-factors are capable ; for
no two groups belonging to different classes can be of the same

type.

The case, in which the composition-factors are capable of all

possible arrangements, is one which will always occur. Taking
in this case y3 q'

s

followed by a ps for the last a + /9 composition-
factors, the group contains a sub-group G' of order pa<f. In
the composition-series of this group, with the composition-
factors taken as proposed, there is a sub-group H of order pa
contained self-conjugately in a sub-group 27, of order paq. This

sub-group is contained self-conjugately in a group H2 of
order paq2. Hence (Theorem II, Cor. IV, § 37) H is con
tained self-conjugately in H2. Again, £T2 is contained self-

conjugately in a group H2 of order p"^, and therefore again H

is self-conjugate in Hs. Proceeding thus, we shew that H is

self-conjugate in G'. It follows that n, the number of
conjugate sub-groups of order pa contained in the group, is
not a multiple of q. Now q may be any one of the distinct

primes other than p that divide the order of the group. Hence
finally the group contains a self-conjugate sub-group of order

pa. In the same way we shew that it contains self-conjugate
sub-groups of orders q

* r*. The group must therefore be
the direct product of groups whose orders are pa, q* r*.

Hence :—

Theorem VI. A soluble group, the composition-factors

o
f which may be taken in any order, is the direct product o
f

groups whose orders are powers o
f primes.

59. In illustration of the preceding paragraph, and in part for
the value of the results themselves, we will now determine all
distinct types of group whose orders are of the form p-q, where p

and q are distinct primes. A discussion of the case where the order

is of the form pq has already been given in § 36. It will here be
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assumed, as is actually the case, that such groups are soluble. The
truth of this statement, which is not difficult to verify directly,
follows immediately from Sylow's theorem (Chap. ix).

If the composition-factors are susceptible of all possible arrange
ments, the group is the direct product of groups of orders p2 and q,
and therefore (§ 36) is Abelian.

If the two arrangements p, p, q and q, p, p are possible, there
are self-con jugate sub-groups of orders p2 and q ; the group again
is Abelian, and all three arrangements are possible.

There are now five other possibilities.

l. p, Pi ? and p, q, p, the only possible arrangements.

There must be here a sub-group of order pq, containing self-
conjugate sub-groups of orders p and q and therefore Abelian. Let
this be generated by operations P and Q, of orders p and q. Since the
group has sub-groups of order p'!, there must be operations of orders
p or p2, not contained in the sub-group of older pq, and permutable
with P. Let R be such an operation, so that 0? belongs to the
sub-group {P, Q\. R cannot be permutable with Q, as the group
would be then Abelian; hence

R-1QR = Qa,

so that R-*QRf=QL",

and aP = 1 (mod. q).

This case can therefore only occur if p is a factor of q — 1. There are
two distinct types, according as R is of the order p or of order p2; i.e.
according as the sub-groups of order p2 are non-cyclical or cyclical.
If a and P are any two distinct primitive roots of the congruence

op = 1 (mod. q),

the relations R-lQR = Qa,

and R-lQR = Q*,

do not lead to distinct types, since the latter is reduced to the former
on replacing R by R", where

/S
= ox (mod. q).

The two types are respectively defined by the relations

Q«=E, P* = E, Rf = E, P-'QP = Q,
R-WR = P, R-*QR = Q' ;

and Qi = E, R<" = E, R-1QR = Qa.

In each case, a is a primitive root of the congruence ap = 1 (mod. q).
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II. p, q, p and q, p, p, the only possible arrangements.
There must be a self-conjugate sub-group of order pq, in which

the sub-group of order q is not self-conjugate, and a self-conjugate
sub-group of order p\ The sub-group of order pq must be given by

i* = E, Q* = E, Q-*PQ = P",
a'1 = 1 (mod. p) ;

so that in this case q must be a factor of p — 1. If the sub-group of
order p2 is not cyclical, there must be an operation R of order p, not
contained in the sub-group \P, Q\. Any such operation must be
permutable with A'. Moreover since the sub-group of order pq is
self-conjugate and contains only p sub-groups of order q, the
sub-group {Q} must be permutable with some operation of order p.
Hence we may assume that R is permutable with {Q\, and, since
p> q, with Q.

We thus obtain a single type defined by

Pp = E, Q" = E, Q-1PQ = Pa,

Rf = E, QR=RQ, PR = RP.

It is the direct product of {R} and {P, Q\.
If the sub-group of order p2 is cyclical, all the operations, which

have powers of p for their orders and are not contained in the sub
group {P, Q\, must be of order p2. There can therefore be no
operation of order p, which is permutable with {Q\ ; and there is no
corresponding type.

III. p, p, q, the only possible arrangement.

There must be a self-conjugate sub-group of order pq, which has
no self-con jugate sub-group of order p ; it is therefore defined by

I»=E, Ql=E, P-1QP=Qa,

a? = 1 (mod. q) ;

so that here p must be a factor of q — 1.

If the sub-groups of order p2 are not cyclical, there must be an
operation R' of order p, not contained in this sub-group and per
mutable with P. Hence

and if /3
= ax (mod q),

then R'P-x is an operation of order p, which is not contained in the
sub-group of order pq and is permutable with Q. It is therefore a
self-conjugate operation of order p. Hence p, q, p is a possible
arrangement of the composition-factors, and there is in this case
no type.
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If the sub-groups of order p2 are cyclical, there must be an opera
tion R of order p2, such that

Rp = P.

Hence R-*QR^Q1',

where /} is a primitive root of the congruence

/3P2= 1 (mod. q).

This case then can only occur when p2 is a factor of q — 1 ; and we
again have a single type defined by

Rf = E, Q" = E, R-1QR = Q*.

IV. p, q, p, the only possible arrangement.

Here the self-conjugate sub-group of order pq must be given by

RP = E, Qi = E, Q-*PQ = P",

aq = 1 (mod. p),

and q must be a factor of p — 1. As in II, there must be an
operation R of order p, permutable with {Q) and therefore with Q ;
and since R transforms {P, Q) into itself, it must be permutable
with P. This however makes the sub-group {P, R] self-conjugate,
which requires q, p, p to be a possible arrangement of the composi
tion-factors. Hence there is no type corresponding to this case.

V. q, p, p, the only possible arrangement.

If the sub-group of order p2 is cyclical, and is generated by P,
while Q is an operation of order q, we must have

Q-*PQ = Pn,

where o« = 1 (mod. p2).

Here q must be a factor of p — 1 ; since the congruence has just
q — 1 primitive roots, there is a single type of group.

If the sub-group of order p2 is not cyclical, it can be generated
by two permutable operations Pl and P2 of order p, and it contains
p + 1 sub-groups of order p. If an operation Q of order q is permu
table with no sub-group of order p, p + 1 must be divisible by q. If
on the other hand, Q is permutable with one sub-group of order p,
it is necessarily permutable with one of the remaining sub-groups of
that order. .

Taking the latter case first, Pl and P2 may be so chosen that

Q-*PlQ = Pf, Q-1P2Q = Pf.
Now if either a or /?, say /3

,

were unity, then {Q, P,} would be a
self-conjugate sub-group and p, q, p would be a possible arrangement
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of the composition-factors. Hence neither a nor /? can be unity, and
we may take

Q-lr1Q = P1; Q-lPtQ = />,„.,

where o is a primitive root of

aq = 1 (mod. p),
and x is not zero.

It remains to determine how many distinct types these equations
contain. When q = 2, the only possible value of a; is unity ; and there
is a single type. When q is an odd prime, and we take

Qi = <?, Pl = iY, P2 = P', xy = 1 (mod. q)
,

the equations become

and therefore the values a; and y of the index of o, where

xy = 1 (mod. j),

give the same type. Now the only way, in which the two equations
can be altered into two equations of the same form, is by replacing

Q by some other operation of the group whose order is q and by
either interchanging i>

,

and P, or leaving each of them unchanged.
Moreover the other operations of the group whose orders are q are
those of the form QfP^P", where I is not zero, and this operation
transforms P1 and Pt in the same way as Q1. Hence finally, the
values x and y of the index will only give groups of the same type
when

xy = 1 (mod. q).

There are therefore \ (q + 1) distinct types, when q is an odd prime;
they are given by the above equations.

Suppose next, that Q is permutable with no sub-group of order p.
We may then, by suitably choosing the generating operations of the
group of order p2, assume that

Q-'P1Q = P,, Q-*P& = P?Pf.
If now Q-x-1P1Q'^ = P'*Pf",

then = aPx, @x+1
= ax + 0/S. (mod. p),

and therefore /3x+1
— fiPx — = 0 (mod. p).

Hence if <, and u, are the roots of the congruence

is - /Ji - a = 0 (mod. p),
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Now since Qq is the lowest power of Q that is permutable with
Plt Pq-l must be the first term of the series /32, ... which vanishes.
Hence q is the least value of * for'which

4 = 'ii
and therefore the congruence

t'-ySt-a^O
is irreducible. Moreover o9-, must be congruent to unity, and
therefore

1 = - ti4 S ti9-

From the quadratic congruence satisfied by t, it follows that
oh-ip+1=-1, P = P + i (mod. p) ;

and thence o,= , }ix =

Finally, we may shew that, when q is a factor of p + 1, the
equations

Pf = E, Pf = E, Q'' = E, PtP2=PJPlt
Q-'PlQ = Pt, Q-'PtQ = Pl-lP/+>,

where i is a primitive root of the congruence

i* = 1 (mod. p),

define a single type of group, whatever primitive root of the con
gruence is taken for (.

Thus from the given equations it follows that

Q-'Ptf = P^Pf-* = P„ say,
and Q-*P,Q* = (P^Pf-1)a*-1 (P^P/'f^1

If then we take Plt P2 and Q* as generating operations in the place
of Plt Ps and Q, the defining relations are reproduced with ix in the
place of t. The relations therefore define a single type of group*.

We have, for the sake of brevity, in each case omitted the
verification that the defining relations actually give a group of
order p'q. This presents no difficulty, even for the last type ; for
the previous types it is immediately obvious.
* On groups whose order is of the form p'-q the reader may consult ; Holder,
"Die Gruppen der Ordnungen p2, pq2, pqr, p4," Math. Ann. xlin (1893), in
particular pp. 335— 360 ; and Cole and Glover, " On groups whose orders are
products of three prime factors," Amer. Journal, xv (1893), pp. 202—214.
Groups of order p2q are classified by Western, " Groups of order p2q," Proc.
L. M. S. Vol. xxx. (1899), pp. 209—263.



CHAPTER VI.

ON THE ISOMORPHISM OF A GROUP WITH ITSELF.

60. It is shewn in § 24 that, if all the operations of a
group are transformed by one of themselves, which is not self-

conjugate, a correspondence is thereby established among the

operations of the group which exhibits the group as simply
isomorphic with itself.

In an Abelian group every operation is self- conjugate, and
the only correspondence established in the manner indicated is
that in which every operation corresponds to itself. If however
in an Abelian group we take, as the operation which corresponds
to any given operation S, its power Si1, where n is any number

relatively prime to the order of the group, then to ST will
correspond S^T" or (STy, and the correspondence exhibits
the group as simply isomorphic with itself. In these ways it
is possible for every group, except one whose operations are all
of order 2, to establish a correspondence between the operations
of the group, which shall exhibit the group as simply isomorphic
with itself. Moreover, we shall see that in general there are
such correspondences which cannot be established by either of
the processes above given. We devote the present Chapter to
a discussion of the isomorphism of a group with itself. It will
be seen that, for many problems of group-theory, and in par
ticular for the determination of the various types of group
which are possible when the factor-groups of the composition-
series are given, this discussion is most important.

61. Definition. A correspondence between the opera
tions of a group, such that to every operation S there
corresponds a single operation S', while to the product ST of
two operations there corresponds the product S'T' of the
b. 6
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corresponding operations, is said to define an isomorphism of
the group with itself. That isomorphism in which each opera
tion corresponds to itself is called the identical isomorphism.

In every isomorphism of a group with itself, the identical
operation corresponds to itself; and the orders of two corre

sponding operations are the same. For if E and S were corre
sponding operations, so also would be E and Sn ; and therefore
more than one operation would correspond to E. Again, ifS and
S', of orders n and ri, are corresponding operations, so also are
Sn and S'n; and therefore n must be a multiple of ri. Similarly
ri must be a multiple of n ; and therefore n and ri are equal.
If the operations of a group of order N are represented by

Si(=E), St, SN-lt SN,

and if
,

for a given isomorphism of the group with itself, Sr' is

the operation that corresponds to Sr(r=l, 2, the iso

morphism will be completely represented by the symbol

, S„', S y-i, S'N-

In this symbol, two operations in the same vertical line are
corresponding operations. When no risk of confusion is

thereby introduced, the simpler symbol

[I
]

is used.

62. An isomorphism of a group with itself, thus defined,

is not an operation. The symbol of an isomorphism however

defines an operation. It may, in fact, be regarded as a per
mutation performed upon the N letters which represent the
operations of the group. Corresponding to every isomorphism
there is thus a definite operation; and it is obvious that the
operations, which correspond to two distinct isomorphisms, are

themselves distinct. The totality of these operations form a

group. For let

[s
] and

[s
"-

be any two isomorphisms of the group with itself. Then if
,

as
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hitherto, we use curved brackets to denote a permutation, we
have

WW-W*
But since fg

'J
is an isomorphism, the relation

SpSq = Sr

requires that Sp'Sq' = Sr'.

And since \ ^ an isomorphism, the relation

Sp'Sq = Sr'

requires that Sp"St" = Sr".

Hence if SpSq = Sr,

then Sp"Sq" = Sr";

and therefore *s an isomorphism.

The product of the permutations which correspond to two

isomorphisms is therefore the permutation which corresponds
to some other isomorphism.

The set of permutations which correspond to all the isomor

phisms of a given group with itself, therefore form a group.

Definition. A group, which is simply isomorphic with
the group thus derived from a given group, is called the
group o

f

isomorphisms of the given group.

It is not, of course, necessary always to regard this group as

a group of permutations performed on the symbols of the

operations of the given group. But however the group of
isomorphisms may be represented, each one of its operations

corresponds to a definite isomorphism of the given group. To
avoid an unnecessarily cumbrous phrase, we may briefly apply
the term " isomorphism

"
to the operations of the group of

isomorphisms. So long as we are dealing with the properties
of a group of isomorphisms, no risk of confusion is thereby
introduced. Thus we shall use the phrase "the isomorphism

' S \ "
as equivalent to " the operation of the group of isomor-(!.)'

phisms which corresponds to the isomorphism j^
,J
."

6—2
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63. If 2 is some operation of a group G, while for 8 each
operation of the group is put in turn, the symbol

-
S
-

-2-'S2-
defines an isomorphism of the group. For if

SpSq = Sr,

then 2-'S,2 . 2^5,2 - 2-^,5,2 = 2-'Srl ;
and 2-l<Sr2 is an operation of the group. An isomorphism of a

group, which is thus formed on transforming the operations of the

group by one of themselves, is called an inner isomorphism.

All others are called outer* isomorphisms. If

^
,1 is an outer

isomorphism, the isomorphisms

-sir s -

when for 2 each operation of the group is taken successively,
are said to form a class of outer isomorphisms.

Theorem I. The totality o
f the inner isomorphisms o
f a

group G form a group isomorphic with G ; this group is a self-
conjugate sub-group o

f the group o
f isomorphisms o
f G\.

The product of the isomorphisms

{srSl)
and
(2'-'s2')

is given by

(2-'S2) (2'-1-S2')
=
(2-S2) (2'-12-'S22')
=
(2'-12-!,S'22')

where 22'= 2".
The product of two inner isomorphisms is therefore another

* Inner and outer isomorphisms are also sometimes called cogrcdient and
contragredient.

t Holder, "Bildung tusammengesetzter Gruppen," Math. Ann. Vol. xlvi
(1895), p. 326.
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inner isomorphism ; hence the inner isomorphisms form a group.
Moreover, if we take the isomorphism

as corresponding to the operation S of the group G, then to
every operation of G there will correspond a definite inner
isomorphism, so that to the product of any two operations
of G there corresponds the product of the two corresponding
isomorphisms. The group G and its group of inner isomorph
isms are therefore isomorphic. If G contains no self-
conjugate operation, identity excepted, no two isomorphisms
corresponding to different operations of G can be identical ;
and therefore, in this case, G is simply isomorphic with its

group of inner isomorphisms. If however G contains self-
conjugate operations, forming a self-conjugate sub-group H,
then to every operation of H there corresponds the identical
isomorphism; and the group of inner isomorphisms is simply
isomorphic with G/H.

Let now

i.
S
')

be any isomorphism. Then

[s
)

(s-'ss) is
) =

( s) (s-'ss) is
)

—( S' \ / 2-iSS \

-\lr*Si) U'-'S'SV

.

"(2'-'S'S')'
The isomorphism C

g
tj

therefore transforms every inner

isomorphism into another inner isomorphism. It follows that
the group of inner isomorphisms is self-conjugate within the

group of isomorphisms.

64. Let G be a group of order JST, whose operations are

Si(=E), S2 SN;

and let L be the group of isomorphisms of G. We have seen
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in § 20 that G may be represented as a group of regular per
mutations performed on the N symbols

Si, S2

and that, when it is so represented, the permutation which
corresponds to the operation Sm is

/ Slt S2, SN-.i, SN \
\SiSx, S^Sx, SN-iSx, SySxJ '

or more shortly

iss)
When G is thus represented, we will denote it by G'. We

have already seen that L can be represented as a permutation
group of the same N symbols ; a typical substitution of L, when
it is so represented, is

(Si, S2, ...,SN-i, Sy \
\Si, S^, S'N-i , S'NJ

'

or more shortly j .

When L is thus represented, we will denote it by L'. It is
clear that the two permutation groups G' and L' have no
permutation in common except identity. For every permutation
of L' leaves the symbol £, unchanged ; and no permutation of
G', except identity, leaves Si unchanged.

*- GH£ ($)-£)(&<)
= is'sj)

=
{ssx')-

Every operation of L' is therefore permutable with G'.
Hence if M is the order of L, the group \G' ', L'}, which we will
call K', is a permutation group of order NM on the N symbols,

fS\ i S \
containing G' self-conjugately. Further transforms j

into ^^/j; and these two permutations of G' correspond to
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the operations Sx and Sx of G. Hence the isomorphism,
established on transforming the permutations of G' by any

permutation of L', is the isomorphism denoted by the

symbol .

8
Since
^ ^ is a permutation of L', the permutation

? SS -1
)

(i
S
S
) '

°r

($ $
) ' De'on£s to ^ • Hence -K"' contains

the set of permutations

S

1,2 iV).

These form (§ 20) a group Q", simply isomorphic with G'
and such that every permutation of G" is permutable with
every permutation of G'. Moreover (I.e.), the permutations of
G" are the only permutations of the N symbols which are
permutable with each of the permutations of G'.

Suppose now that 2 is any permutation of the N symbols
which is permutable with G'. When the permutations of
G' are transformed by 2

,

the resulting isomorphism is iden-
f S \

tical with that given by some permutation, say (g/J> of L'.

g
,\ is a permutation of the N symbols which is

permutable with every permutation of G'. It therefore belongs
to G"; and hence X belongs to K'. It follows that K' contains
every permutation of the N symbols which is permutable
with G'.

The only permutations common to G' and G" are the self-
conjugate permutations of either. The factor-group K'j{G', G"}

is simply isomorphic with Ljg, where g is the group of inner
isomorphisms of G contained in L. The groups G' and G" are
identical only when G' is Abelian; in this case, g consists of
the identical operation alone.

Definition. A group K, simply isomorphic with the
permutation group K' which has just been constructed, we
shall call the holomorph of G.
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The permutation group K' contains both G' and G" self-
conjugately and consists of every permutation of the N symbols
which is permutable with both G' and G". Now

S
(/-)

is a permutation of the iV symbols which, when G' is not
Abelian, so that G' and G" are not identical, is not an iso

morphism of G and is therefore not contained in K '. Moreover

( s ) (ssj U-')
=
Ur«s) '

(S
\
transforms (?' into (?" and G"

into (?'. It therefore transforms the permutations that are
permutable with G' into those that are permutable with G";

i.e. it must transform K' into itself. The group K' is therefore,
when G' is not Abelian, contained self-conjugately in the group

j-
fi
T
,

($-i)J
of double its order, and in this group G' and G" are

conjugate sub-groups.

65. An isomorphism must change any set of operations,
which are conjugate to each other, into another set which are

conjugate. For if

be the isomorphism, and if

then St'-*S,'S;=St',
so that Sx' and Sy' are conjugate operations when Sx and S

y are

conjugate. An inner isomorphism changes every set of con
jugate operations into itself; and all the members of a class
of outer isomorphisms permute the conjugate sets in the
same way. If

(I
)

is an isomorphism which changes every conjugate set of opera
tions of G into itself, and if

.s-
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is any isomorphism of G, then the isomorphism

changes every conjugate set into itself. It follows that those
isomorphisms, which change every conjugate set of operations
into itself, form a self-conjugate suh-group of the complete

group of isomorphisms. This sub-group clearly contains the

group of inner isomorphisms and may be identical with it.

No case is known of an outer isomorphism which changes
each conjugate set of operations into itself. On the other
hand, it is still an open question whether or no such iso
morphisms exist.

If now is any isomorphism of G of order n, the

permutations

©MdG*i)'(*=i.2 ,N)'

generate a group of order Nn. When J is used to represent
the isomorphism, this group may be denoted by {J, G\ ; as shewn
above, it contains G self-conjugately. Suppose that n is prime
and is not a factor of N. The operation J is not permutable
with every operation of G ; and therefore (§ 2G) there must be

operations S of G which are permutable with no operation of
the conjugate set to which J belongs. The number of opera
tions which in {./, G} are conjugate to such an operation S
must be a multiple of n; and since n is not a factor of iV, this

conjugate set of operations must be made up of n distinct

conjugate sets of operations in G. The isomorphism J must
therefore interchange some of the conjugate sets of G.

The same result is clearly true if the order n of J has any
prime factor not contained in iV. Hence :—

Theorem II. An isomorphism of a group G, whose order
contains a prime factor which does not occur in the order of G,
must interchange some of the conjugate sets of G.
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66. If the isomorphism or J leaves no operation
except identity unchanged, it must in [J, G] be one of N
conjugate operations. For if

sx-'jsx=sy-vsy,

/would be permutable with SySx-\ which is not the case.

These N conjugate operations are
J, JSt, JS2 J^N,

and since the first transforms every operation of G, except
identity, into a different one, the same must be true of all the
set. If now J transformed any operation S into a conjugate
operation J"2-1 would transform S into itself; hence
/ must transform every conjugate set of G into a different
conjugate set.

The special cases in which the order of J is two or three may here
be considered. Representing the N operations conjugate to J by

J, Jlt Jt, , t/jv-i,

the i\T operations of G, when the order of J is 2, are
J2, JJi, JJ2, , JJx^.

Now J. JJx. J = JJ= (JJm)-\
so that J transforms every operation of G into its inverse. But if

S' = s-\
and T = T-\
then S' T' = S-lT-' = (TS)-\
Now as iS" T' is the operation into which the isomorphism

transforms ST, it must be (ST)-1, and therefore

ST=TS.

The group G is therefore an Abelian group of odd order.

When the order of / is 3, let S', S", , S<*) or C be a set of A
conjugate operations in G. In \J, G\ the set forms part of a conju
gate set of 3A operations, consisting of C, J-lCJ, JCJ-l.
Now S'.J-lS'J.JS'J-^{S'J-^^E,

and S'.JS'J-\J-1S'J=(S'jy = E.
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Hence J-lS'J and JS'J-1 are permutable, and each is similarly
shewn to be permutable with S'. Also since, for J, any one of its
2V conjugates may be used, iS" is permutable with every operation of
each of the sets J-lCJ and JCJ-\ Moreover since S' is permutable
with J-1lS'^ and with JS"J-l, it is permutable with S". Hence G
must be such that every two of its operations which are conjugate
are permutable. It is easy to shew from this that G must be the
direct product of groups whose orders are powers of primes ; these
groups themselves being subject to definite limitations*.

67. Any sub-group H of G is transformed by an isomorph
ism into a simply isomorphic sub-group H': but H and H'
are not necessarily conjugate within G. If however the set of
conjugate sub-groups

H1, Hi Hm,

are the only sub-groups of G of a given type, every isomorph
ism must interchange them among themselves.

Suppose now that this is the case and that no operation of
G is permutable with each of the conjugate sub-groups

.flri, H2, , Hm.

Let J be any operation, of order fj,, that transforms G and each
of the set of to conjugate sub-groups, into itself. Then is

the lowest power of J that can occur in G, since no operation
of G transforms each of the m sub-groups into itself. Now in

{J, G], the greatest sub-group that contains Hr self-conjugately
is {J, Ir], Ir being the greatest sub-group of G that contains Hr
self-conjugately. Also, in {J, G) the set of sub-groups {J, Ir),
(r=l, 2, to), is a complete conjugate set. Now the set of

groups

In I2 i Im

have by supposition no common operation except identity ; and
therefore the greatest common sub-group of

[J, Q, [J, I,}, {/, Im)

is {J}. Hence [J] is a self-conjugate sub-group of {J, G); and
since G is also a self-conjugate sub-group of {J, G], while [J]
and G have no common operation except identity, J must be
* Burneide, " On groups in which every two conjugate operations are per

mutable," Proc. L. M. S. Vol. xxxv (1902), pp. 28—37.
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permutable with every operation of G. Every operation
therefore which is permutable with G, and with each of the

sub-groups
H\, Hit , Hm,

is permutable with every operation of G. Thus finally, no
outer isomorphism can transform each of the sub-groups
Hr(r=l, 2, m) into itself. Hence:—

Theorem III. If the conjugate set of m sub-groups
Hlt H, Hm

contains all the sub-groups of G of a given type, and if no
operation of G is permutable with each sub-group of the set, then
to each isomorphism of G there corresponds a distinct permuta
tion of the m sub-groups.

68. Definition. Any sub-group of a group G which is
transformed into itself by every isomorphism* of G, is called* a

characteristic sub-group of G.

A characteristic sub-group of a group G is necessarily a
self-conjugate sub-group of G; but a self-conjugate sub-group
is not necessarily characteristic. A simple group, having no
self-conjugate sub-groups, can have no characteristic sub

groups. Let G be any group, and let K be the holomorph
of G. A characteristic sub-group of G is then a self-conjugate
sub-group of K; and conversely, every self-conjugate sub-group
of K which is contained in G is a characteristic sub-group of G.
Suppose now a chief-series of K formed which contains

G. If G has no characteristic sub-group, it must be the
last term but one of this series, the last term being identity.
It follows by § 53 that G must be the direct product of a
number of simply isomorphic simple groups. Hence:—

Theorem IV. A group, which has no characteristic sub
group, must be either a simple group or the direct product of
simply isomorphic simple groups.

The converse of this theorem is clearly true.

* Frobeninp, " Ueber endliche Grnppen," Berliner Sitzungtberichte, 1895,
p. 183.
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69. Suppose now that 6 is a group which has character
istic sub-groups; and let

G, Ql, Gr, Gr+i, , E
be a series of such sub-groups, each containing the one that
follows it and chosen so that, for each consecutive pair Gr and
Gr+i, there is no characteristic sub-group of G contained in Gr
and containing Gr+U except Gr+1 itself. Such a series is called*
a characteristic series of G.

It may clearly be possible to choose such a series in more
than one way. If

G, Gi, Gr', G'r+1 , E
be a second characteristic series of G, and if K is the holomorph
of G, then

if. J, » H, G, Gi , Gr, Gr+i , E
and K, J, H, G, G,' (?/. G'r+l, , E
are two chief-series of K. In fact, if K had a self-conjugate
sub-group contained in G> and containing Gr+1, then G would
have a characteristic sub-group contained in Gr and containing

Gr+i- The two chief-series of K coincide in the terms from K
to G inclusive. Hence the two sets of factor-groups

G/Gj, GJGz, , Gr/Gr+1,

and QfOi, WW, , Gr'/G'r+1

must be equal in number and, except possibly as regards the

sequence in which they occur, identical in type. Moreover, each

factor-group must be either a simple group or the direct product
of simply isomorphic simple groups.

70. The isomorphisms of a given group with itself are

closely connected with the composition of every composite group
in which the given group enters as a self-conjugate sub-group.
Let G be any composite group and H a self-conjugate sub
group of G. Then since every operation of G transforms H
into itself, to every such operation will correspond an iso
morphism of H with itself. If S is an operation of G not
contained in H, and if the isomorphism of H arising on
* Frobenins, "Ueber auflosbare Gruppen n," Berliner Sitzungtberichte, 1895,

p. 1027.
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transforming its operations by S is an outer isomorphism, so
also is the isomorphism arising from each of the set of opera
tions SH. In this case, no one of this set of operations is
permutable with every operation of H. If however the
isomorphism arising from S is an inner isomorphism, there
must be some operation h of H which gives the same iso
morphism as S; and then Sfr1 is permutable with every
operation of H. In this case, the set of operations SH will
give all the inner isomorphisms of H.

Suppose now that JT, is that sub-group of G which is formed
of all the operations of G that are permutable with every
operation of H. Then to every operation of G, not contained
in [H, Hi}, must correspond an outer isomorphism of H; and
to every operation of the factor-group G/{H, 2?,} corresponds
a class of outer isomorphisms. If then L is the group of
isomorphisms of H, and if is that self-conjugate sub-group
of L which gives the inner isomorphisms of H, G/{H, Hi\ must
be simply isomorphic with a sub-group of L/L^

If now H contains no self-conjugate operation except
identity, H and fl, can contain no common operation except
identity. Hence, since every operation of H is permutable
with every operation of Hlt {H, Hi) is in this case the direct
product of H and J5T1.
If, further, L coincides with H, so that H admits of no

outer isomorphisms, G/{H, H] must reduce to identity. In
this case, G is the direct product of H and Hl.
Definition. A group, which contains no self-conjugate

operation except identity and admits of no outer isomorphism,
is called* a complete group.

One result of the present paragraph may be expressed in
the form:—

Theorem V. A group, which contains a complete group as
a self-conjugate sub-group, must be the direct product of the
complete group and some other groupf.

* Holder, "Bildung zusammengesetzter Gruppen," Math. Ann. Vol. xlvi
(1895), p. 325.

+ Ibid. p. 325.
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Ex. If (? is a complete group of order N, shew that the order
of K, the holomorph of G, is N2, and that the order of the holo-
morph of K is 2N4.

71. Theorem VI. If G is a group with no self-conjugate
operations except identity; and if the group of inner isomor
phisms of G is a characteristic sub group of L, the group of
isomorphisms of G; then L is a complete group*.

With the notation of § 64, the operations of L may be
represented by the permutations

©.
The group of inner isomorphisms, which we will call G', is given
by the permutations

it is simply isomorphic with G.

Now is
)

isx-'ss) W = {sx'-'S'Sx)
=
(tf.'-'SS/)

:

and therefore no operation of L is permutable with every
operation of (?'. Hence every isomorphism of G' arises on
transforming its operations by those of L. Suppose now that J

is an operation which transforms L into itself. Since G' is by
supposition a characteristic sub-group of L

,

the operation J

transforms G' into itself. If J does not belong to L, we may
assume that J is permutable with every operation of G'. For if

it is not, it must give the same isomorphism of G' as some
operation 2 of L; and then J2,-1 is permutable with every
operation of G', and is not contained in L. Now J being
permutable with every operation of G', we have

J-ls-lgsJ = s-lgs,
where s is any operation of L

,

and g any operation of G'.

* Holder (he. cit. p. 331) gives a theorem which is similar but not quite
equivalent to Theorem VI.
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Moreover JgJ-l = ff,
and therefore J-ls-*JgJ-*sJ= s-lgs.
Hence s and J-lsJ give the same isomorphism of G'. Now

no two distinct operations of L give the same isomorphism of
G', so that s and J-1sJ must be identical ; in other words, J is
permutable with every operation of L. Hence L admits of no
outer isomorphisms. Moreover, G' has no self- conjugate opera
tions, and no operation of L is permutable with every operation
of Or'; hence L has no self-conjugate operations. It is therefore
a complete group.

Corollary. If G is a simple group of composite order, or
if it is the direct product of a number of isomorphic simple
groups of composite order, the group of isomorphisms L of G is
a complete group.

For suppose, if possible, in this case that G is not a
characteristic sub-group of L ; and that, by an outer isomorph
ism of L, G is transformed into 0?1. Then 0

?i is a self-conjugate

sub-group of L
,

and each of the groups G and (?
! transforms

the other into itself. Hence (§ 34) either every operation of G

is permutable with every operation of Glt or G and (?
! must

have a common sub-group. The former supposition is impossible
since no operation of L is permutable with every operation of G.
On the other hand, if G and (?

,

have a common sub-group, it

is a self-conjugate sub-group of L and it therefore is a charac
teristic sub-group of G. Now (§ 68) G has no characteristic

sub-groups, and therefore the second supposition is also impos
sible. It follows that, in this case, G is a characteristic sub-group
of L

,

and that L is a complete group.

72. Theorem VII. // G is an Abelian group of odd order,
and ifK is the holomorph of G ; then when G is a characteristic
sub-group o

f K, the latter group is a complete group.

Since G is of odd order, there is an isomorphism of order two

changing each operation of G into its inverse, leaving E only
unchanged. Hence K has no self-conjugate operation except E.
If Q is an operation of K of order two giving this isomorphism,
then in K there are just N operations conjugate to Q
,

viz.
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QSi(i= 1, 2,..., N), where = 1, 2,..., iV) are the operations
of G.

Since G is a characteristic sub-group of K, every isomorphism
of K permutes these N operations among themselves ; and since
no operation of K is permutable with all of them, it follows by
§ 67 that no isomorphism of K can be permutable with all of
them. Let J be an operation which transforms K into itself.
As in § 71 we may without loss of generality assume that J is
permutable with every operation of G. If

J-*QJ=QSit
there is an operation of 0 such that

and JSf1 is permutable with Q, and therefore with each of the
N operations Q<S( (* = 1, 2,..., N). But the only isomorphism of
K for which this is true is the identical isomorphism. HenceJ gives an inner isomorphism oi K; or K admits no outer
isomorphisms. It has been seen that K has no self-conjugate
operation except E, and it is therefore a complete group.

73. We end the present chapter with the following theorem,
which, though not directly connected with those that precede it

,

is of some importance in dealing with groups of isomorphisms.

Theorem VIII. IfH is a self-conjugate sub-group of G, the
order o

f an isomorphism o
f G
,

which transforms every operation

o
f each o
f the groups G/H and H into itself is a factor of the

order o
f H.

If <
S is any operation of G not contained in H, the

isomorphism will change S into Sh, where h is some operation
of H. If then m is the order of h, the isomorphism transforms

S
,

Sh, Sh2 , Sh™-*

cyclically ; and therefore it transforms all the operations of the
set SH in cycles of m each. If S' is any operation of G not con
tained in SH, the isomorphism will interchange the operations
of the set S'H among themselves in cycles of m' each, where m'
again is the order of some operation of H. The isomorphism,

b. 7
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when expressed as a permutation performed on the operations

of G, will consist of a number of cycles of m, to', symbols ;

and its order is therefore the least common multiple of
to, to' Now if q is any prime that divides the order
of H, and qn the highest power of q that occurs as the order
of an operation of H, no power of q higher than qn can
occur in any of the numbers to, to', ; and qn is therefore

the highest power of q that can occur in their least common

multiple. This least common multiple, which is the order of

the isomorphism, must therefore divide the order of H.

Ex. 1. If a group G admits an isomorphism, in which more
than three quarters of its operations correspond to their inverses,
then G must be Abelian. (G. A. Miller.)

Ex. 2. If a group admits an isomorphism in which each
operation corresponds to its /xth power, where fi is relatively prime
to the order of the group, then the (/x— 1)th power of every opera
tion is self-conjugate. (J. W. Young.)

Ex. 3. If a group, of odd order jV, admits an isomorphism of
order 2, in which operations correspond to themselves and to
their inverses, prove that

N=it1(n2 + 1).

Hence shew that if n2 > the group must be Abelian.

Ex. 4. Prove that the group of isomorphisms of the group of
order 8, defined by

A2 = E, B2 = E, (ABf = E,

is simply isomorphic with the group itself.



CHAPTER VII.

ON ABELIAN GROUPS*.

74. We shall now apply the general results, that have
been obtained in the previous chapters, to the study of two
special classes of groups ; in the present chapter we shall deal
particularly with Abelian groups (§ 24) whose operations are all
permutable with each other.

It is to be expected (and it will be found) that the theory of
Abelian groups is much simpler than that of groups in general ;
for the process of multiplication of the operations of such groups
is commutative as well as associative.

Every sub-group of an Abelian group is itself an Abelian
group, since its operations are necessarily all permutable. For
the same reason, every operation and every sub-group of an
Abelian group is self-conjugate both in the group itself and in
any sub-group in which it is contained.

If G is an Abelian group and H any sub-group of G, then
since H is necessarily self-conjugate, there exists a factor-group
G/H, and this again must be an Abelian group. (The reader
must not however infer that, if H and G/H are both Abelian,
* On Abelian groups, the reader may consult Frobenius and Stickelberger,
"Ueber Gruppen vertausehbarer Elemente," Crelle's Journal, Vol. lxxxvi (1879),
p. 217 ; and a very complete discussion in the second volume of Herr Weber's
Lehrbuch der Algebra.

The name "Abelian group" has been applied by M. Jordan (Traitg des sub
stitutions etc. pp. 171 et seq.) to an entirely different class of groups, whoBe
operations are not permutable. Most writers, we believe, have used the phrase
iu the sense defined in the text.
The connection of Abel's name with groups of permutable operations is due

to his having been the first to investigate, with complete generality, the applica
tion of such groups to the theory of equations, " M^moire sur une classe
particuliere d'equations resolubles alg^briquement," Crelle's Journal, Vol. iv
(1829), p. 131; or Collected Works, 1881 edition, Vol. I, p. 478.

7—2
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then G is also Abelian. It is indeed clear that this is not
necessarily the case.)

75. If P and Q are permutable operations of order m and n,
the order of their product is equal to or a factor of mn ; for

(PQ)mn = (P™)" (Qn)m = E.

In particular if the orders of P and Q are powers of p, then
PQ is either identity or has a power of p for its order.

Let now G be any Abelian group of finite order N = p'q*...ry,
where p, q,..., r are distinct primes. By § 35 G must have
operations of orders p, q,..., r. Let

P. P', P",

q, v, or

R, R' , R"

be those operations of G whose orders are respectively powers of

p, q r. The product of any two of the operations

P, P, P',
is either E or another operation of the set. Hence

E, P, P', P",

constitute a sub-group of G, which may be denoted by Gp. Its
order is a power of p (§ 35), say pa'. Similarly

e, q, q; or,

constitute a sub-group of Gq of order q? ; and so on.
Now it has been seen (§ 16) that any operation of order

paqb...rc, where p, q r are distinct primes, can be represented
in just one way in the form PQ...R, where P, Q,..., R are
permutable operations of orders pa, g*,..., r°. Hence every
operation of G can be represented as the product of operations,
one being chosen from each of the sub-groups Gp, Gq,..., Gr.
No two of these sub-groups have a common operation except E,
and their operations are all permutable. Their direct product
(§ 31) is contained in G, and G is contained in their direct

product. Hence G is the direct product of Gp, (?,,..., Gr; and
a' = a, /3'=/3,...,7' = 7.
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Theorem I. An Abelian group G of order paqf ...r*, where
p, q,..., r are distinct primes, is the direct product of groups
Gp, Gq,..., Gr of orders pm, <?3, rf. The sub-group Gp is

formed of all the operations of G whose orders are powers of p
with the identical operation.

76. The first problem of pure group-theory that presents
itself in connection with Abelian groups is the determination
of all distinct Abelian groups of given order N. Let Gp
and Gp' be two distinct Abelian groups of order pa, i.e. two

groups which are not simply isomorphic. Then two Abelian

groups of order N, whose sub-groups of order p* are simply
isomorphic with Gp and Gp' respectively, are necessarily distinct.
Since then G is the direct product of Gp, Gg,..., Gr, the

general problem for any composite order N will be completely
solved when we have determined all distinct types of Abelian

groups of orders p*, qf r». We may therefore, for the purpose
of this problem, confine our attention to those Abelian groups
whose orders are powers of primes.

77. If Ps, P,,..., P, of orders pm\pm*,..., pm. are a set of
operations between which no other relations exist, except

PiP^PjPu (i,j=l,2,...,s),
they clearly generate an Abelian group of order pm, where
m = m, + to, + . . . + m,. For if there are less than pm distinct
operations in the set

PfiPf>...P,*>,

there must be relations of the form

P1"-P1a'...P,a> = E,

contrary to supposition. The s operations Pu Ps,..., P, are
spoken of as a set of independent generating operations of the

group. A fundamental question is whether an Abelian group of
finite order always has such a set of independent generating
operations. It is answered in the affirmative by the following
investigation *.
* This method of shewing that an Abelian group of finite order has a set of

independent generating operations is due to Mr Hilton, Finite Groups (1908),
pp. 126, 127.
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Let G be an Abelian group whose order is a power of p,
and let P, be an operation of G whose order pm. is not less than
that of any other operation. Then every operation of G satisfies
the relation

SPm, = E.

Consider the factor-group G7{P,}, which is Abelian. Let P' be
an operation of it

,

whose order pm' is not less than that of any
other operation, and P a corresponding operation of G. The
order of P is (§ 28) equal to or a multiple of p™2; and therefore
m, is equal to or less than Then if S is any operation of

G
,

Sp"12 is contained in {P,}. If
ppnH = px

then E=pp^ = pxp^-m,t

so that x is divisible by p™2. If x/pm' is y, then
{PP-yf, = E.

Put PPr^P2;
then P/"* = E,
and no power of P2, distinct from E, occurs in {Pi}.

Consider next the factor-group G/{Plt P2}, which i
s Abelian.

Let Q
7 be an operation of it
,

whose order p2™" is not less than the

order of any other, and Q a corresponding operation of G. Then,

if S is any operation of G
,

Sp™2 is contained in [Pi, P2}, so that
7/t, is equal to or less than m?. Moreover

Qp™. = PfiPfr
Qp"4 — p xJ}m*-m'p tsi>ml-mJ

E = Qpm' = P x1pmt-mip x,pmi-m2

Now Qpm2 is contained in (P,). Hence a;2 is a multiple of pm,,

say a;2/pm" = i/2. The last relation now becomes

E = pii.,""-mt,
so that a;i is a multiple of pm; say a^/p2"2 = y1. Put

then P,*"2 = E,

and no power of P2, distinct from occurs in (Pi, P2}.
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The operations Plt P2, P, thus determined are independent ;
and the process may clearly be continued (considering next the
factor-group G/{Plt P2, Pi}) till a set of independent operations
which generate G is arrived at. Hence :—

Theorem II. The operations of an Abelian group, whose
order is a power of p, can always be represented in the form

Pf'Pf2 P.';
M=0, 1,2 pmi-l\
\i= 1,2 s )'

where the operations P„ P,,..., P, are connected by the relations
pfmi = E, . .

PiPj = P}Pi, fc*-1. 2,...,*),

and by no others.

It is convenient to suppose the m's in descending order, so
that

mi^m^m,^ > m,.

78. It is clear, from the synthetic process by which it has
been proved that an Abelian group of order pm can be generated
by a set of independent operations, that a considerable latitude
exists in the choice of the actual generating operations ; and the

question arises as to the relations between the numbers and the

orders of distinct sets of independent generating operations.

The discussion of this question is facilitated by a considera
tion of certain special sub-groups of G. If A and B are two
operations of G, and if the order of A is not less than that of B,
the order of AB is equal to, or is a factor of, the order of A.
Hence the totality of those operations of G whose orders do not
exceed p1, or in other words of those operations which satisfy
the relation

&," = E,
form a sub-group Gy. The order of clearly depends on the
orders of the various operations of G and in no way on a special
choice of generating operations. Now if

P,n'P,- P/t
belongs to then

PprPfiT Pta.P"= E.
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Hence if nti+1 is the first of the series

nh, mi, , m„

which is less than fi, then Oi+1, , a, may have any values

whatever ; but at (t = 1, 2 , t) must be a multiple of pm<-'\

It follows from this that G> is generated by the s indepen
dent operations

P/*-", Pf™, , P?mt-\ Pi+1, P.-

If then the order of G^ is p", we have

v = fit + 2 m(.,+i

The order of (?
,
, the sub-group formed of all operations of G

whose order is p, is clearly p2.

79. Suppose now that by a fresh choice of independent
generating operations, it were found that G could be generated
by the s' independent operations

Pit Pit P'i
of orders p"11', p™t', , pm'*,

where m1' > m,' > > mt'.

If m',-+i is the first of this series which is less than ji, the
order of G^ will be p"', where

v =/u + 2 mt.
<'+i

The order of is independent of the choice of generating
operations ; so that for all values of fi

v = v .

Hence, by taking fi — 1
,

s = s,

or the number of independent generating operations is indepen
dent of their choice.

If now mt = m/ (f = t + 1
, i + 2 , s)
,

and wi< > m/,

and if we choose fi so that

fi> nii ;
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f
then v = fi

i

+ 2 mt,
<+i

«

and f' = fi (i — 1) +ml
<+i

The condition v = v

gives fi = m/,

in contradiction to the assumption just made.

Similarly we can prove that the assumption ml > wi< cannot
be maintained. Hence

mi = ml ;

and therefore, however the independent generating operations
of G are chosen, their number is always s, and their orders are

pm', pm', , pm>.

80. If G' is a second Abelian group of order pm, simply
isomorphic with G

,

and if

.P/i Pit -*V

of orders pm\ p™2', , pmV,

where m,' > m,' > >mV

are a set of independent generating operations of G', exactly the
same process as that of the last paragraph may be used to shew
that

8 = 8,

and mt = ml (t = 1
, 2 , s)
.

In fact, since corresponding operations of two simply iso
morphic groups have the same order, the order of G^ must be

equal to the order of C/; and this is the condition that has
been used to obtain the result of the last paragraph.

Two Abelian groups of order pm cannot therefore be simply
isomorphic unless the series of integers hi,, % , m, is the

same for each. On the other hand when this condition is satis
fied, it is clear that the two groups are simply isomorphic, since
by taking P< and PI (t= 1
,

2
,

s) as corresponding opera
tions, the isomorphism is actually established.



106 [80SUB-GROUPS

The number of distinct types of Abelian groups of order pm,
where p is a prime, i.e. the number of such groups no one of
which is simply isomorphic with any other, is therefore equal
to the number of partitions of m. When the prime p is given,
each type of group may be conveniently, and without ambiguity,
represented by the symbol of the corresponding partition.
Thus the typical group G that we have been dealing with
would be represented by the symbol (m,, to„, m,).

81. Having thus determined all distinct types of Abelian

groups of order pm, a second general problem in this connec
tion is the determination of all possible types of sub-group
when the group itself is given. This will be facilitated by the
consideration of a second special class of sub-groups in addition
to the sub-groups G^ already dealt with.

If S and S' are any two operations of G, then

and therefore the totality of the distinct operations obtained by

raising every operation of G to the power p" will form a

sub-group GM.

If mi>/4>mi+,,

then (Theorem II, § 77)
= pn,p" P°,," Pf«*

S being any operation of G. Hence GM is generated by the i
independent operations

± r i 1 t , 1 i i

i

and the order of (?<") is ^Tl-'i.
Let now H of type (n,, n2, , n() be any sub-group of G.

The order of the group Hlt formed of all the operations of H
which satisfy the equation

= E,

is p' (§ 79). This group must be identical with or be a sub

group of Gi, whose order is p2. Hence

t

i.e. the number of independent generating operations of any
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sub-group of G is equal to or is less than the number of

independent generating operations of G itself.

Again the sub-group (") of H is a sub-group of the sub
group 0M of G; and therefore, as has just been seen, the
number of generating operations of HM must be equal to or
less than the number of generating operations of 67w. Now
the number of generating operations of 17(m) is i'

, where

Ji,- > fi > nl +1,
and the number of generating operations of G^ is i, where

mi > fi > mt.+1.
Hence for each fi

i ^ i'.
If for each t,

rtii ^ rii

this condition is obviously satisfied. If however
'mi^rii 2

,

, a
)

and hin+, < na+,,

then taking fi = na+1,

i = a, i'^a + 1.

Hence a necessary condition that G should contain a sub

group of type H is that, for each i,

Tli § Hl< ;

while if this condition is satisfied a sub-group of the given type
can be actually constructed. These results may be summed up
as follows :

Theorem III. The number of distinct types of Abelian
groups o

f order pm, where p is a prime, is equal to the number o
f

partitions o
f m; and each type may be completely represented

b
y

the symbol (hi,, hi„ hi,) o
f the corresponding partition.

If the numbers in the partition are written in descending order,
a group o

f

type (hi,, m2, , m,) will have a sub-group o
f type

(«,, H2, , nt), when the conditions

t^s,

ni^mi 2
,

, t)

are satisfied; and the type o
f

every sub-group must satisfy these

conditions.
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82. Every sub-group of an Abelian group is self-conjugate,
and if the group is cyclical every sub-group is obviously a
characteristic sub-group. In general however an Abelian
group will contain sub-groups which are not characteristic.
Now it follows immediately from § 68 that the only Abelian

groups which have no characteristic sub-group are those of
order pm and type (1, 1, , to m units). We. proceed to
form a characteristic series for an Abelian group which is not
of this type *. Suppose that the group G is generated by a set
of independent operations, of which n, are of the order

p'%(s=l, 2 , r),

while m1>mi> > wir.

The sub-group (§ 78), formed of the operations of G

which satisfy the relation
= E,

is clearly a characteristic sub-group. As a first step towards

forming the characteristic series, we may take the set of

groups
Gm, (= G), ffmrl, (?m,-2, (?i, Glt E;

for this is a set of characteristic sub-groups such that each
contains the one that follows it.

Now the sub-group G^") (§ 81), formed of the distinct

operations that remain when every operation of G is raised
to the power p", is also a characteristic sub-group; and since
the operations common to two characteristic sub-groups also

form a characteristic sub-group, the sub-group v (common to

Gp and (?(")) is characteristic. It follows from this that (?
i will

be the last group but one of a characteristic series only when

r = l. If r > 1, (?, is not contained in G"bv-i-1', and the
common sub-group Klt mr_l-i of these two i

s characteristic.

If r > 2, this sub-group again is not contained in G(,nr-2-i] ;

and the common sub-group Kh mr.2-i of (?
i

and G!l"l,-^-i, is a

characteristic sub-group contained in Kh mT_l-v Continuing
thus, we form between G

t and E the series
Gl, Klt mr l—i, Kl mr-2—i, , o^—i, E.

* Frobenius, " Ueber auflosbare Gruppen n," Berliner Sittungsberichte, 1895,
pp. 1028, 1029.
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In a similar way, between Ga and (?a-i we introduce such of
the series

}(?n-!, mr _i— a
}
,

{Ga— 1, -^a, mr-2— a
}
,

, {Ga—1, Ka, «i,— a}

as are distinct, the symbol m, — a beiug replaced by zero where

it is negative.
From the original series we thus form a new oue, in which

again each group is characteristic and contains the following.
This series may be shewn to be a characteristic series.

Let -^mt, 1 1 -Pint, 2 1 , ^nii, ni

be the n, generating operations of G
,

whose orders are pmi.
Then if {(?n-,, Ka,m^} and {(?n-!, m,^-a) are distinct, the

generating operations of the latter differ only from those of the
former in containing the set

<7+\ (—1.1 .«.).

in the place of

<7. (—i.2. »->.

Now any permutation of the nt generating operations

Pmt, xi (f
i = 1, 2, , n%),

among themselves, the remaining generating operations being
unaltered, must clearly give an isomorphism of G with itself ;

and therefore no sub-group of G
,

contained in {(?„-!, Ka, mr^}
and containing {(?n-,, Ka,mt ,_}, can be a characteristic sub

group. This result being true for every pair of distinct groups
which succeed each other in the series that has been formed,

it follows that the series is a characteristic series. It may be
noticed that, if T and P are any two consecutive sub-groups in
a characteristic series of G

,

the order of r/V must be_p", where v

is one of the r numbers n„ and its type is (1, 1 to v units).

83. It is clear that the Abelian group of order pm and
type (1, 1

,

1
,

, with m units) is of special importance in

the general theory, and we shall here discuss one or two of its

simpler properties.

Since the generating operations of the group are all of order

p
, every operation except identity is of order p ; and therefore

the type of any sub-group of order p
' is (1, 1, 1 to s units).
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In choosing a set of independent generating operations, we
may take for the first, Pi, any one of the pm — 1 operations of
the group, other than identity. The sub-group {P,} is of order

p; and therefore G has pm—p operations which are not contained
in {Pi}. If we choose any one of these, P2, it is necessarily
independent of Pi, and may be taken as a second generating
operation. The sub-group {P„ P2} is of order p2 and type
(1, 1); and G has pm—p' operations which are not contained in
this sub-group. If P, be any one of these, no power of P,
other than identity is contained in (P,, P2}; and P,, P„ Ps are
therefore three independent operations which generate a sub

group of order p2. This process may clearly be continued till
all to generating operations have been chosen. If then the
position which each generating operation occupies in the set of

to, when they are written in order, be taken into account, there are

(pm - 1) (pm - p) (pm -p') (pm - p™-1)
distinct ways in which a set may be chosen. If on the other
hand the sets of generating operations which consist of the
same operations written in different orders be regarded as
identical, the number of distinct sets is

(pm — 1) (pm -p) (pm — pm-l)

to !

84. No operation P of the group can belong to two distinct
sub-groups of order p except the identical operation. Hence
since every sub-group of order p contains p — 1 operations
besides identity, G must contain (pm — l)/(p — l) sub-groups of
order p.

Let Nmi , be the number of sub-groups of G of order p', so
that

There are, in G,pm—pl operations not contained in any given
sub-group of order p2. If P occurs among these operations, so
also do P2, P2, , Pp-\ Hence there are (pm - p8)!(p - 1 )
sub-groups of order p in G which are not contained in a given
sub-group of order p'. Each of these may be combined with
the given sub-group to give a sub-group of order p'+\ When
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every sub-group of order p' is treated in this way, every sub

group of order pt+1 will be formed and each of them the same
number, ar, of times. Hence

xN x=# Pm~P'
P ~ 1

Now a sub-group of order pP+l contains N,+lt , sub-groups of

order p', and — p")/(p — 1) sub-groups of order p which are
not contained in any given sub-group of order p*. Hence

p-^-pp-l
2f pm~' — 1

and therefore Nm ,+1 =
'"' '

. — .p-l
We will now assume that

N =
(y-l) (p™-1 - 1) (pm~t+1-l)
(p- l)(p»-l) (p*-l) '

for all values of m and for values of t not exceeding s. This
has been proved for 8=1. Then it follows, from the above
relation, that

(p»--l)
m-'+1 ■

that is to say, if the result is true for values of t not exceeding
s, it is also true when t = s + 1. Hence the formula is true
generally.

It may be noticed that

85. If Pi, P2, , P,„ are independent generating opera
tions of an Abelian group G of order pm and type

(1, 1, , to m units),

an isomorphism of the group with itself is given by

(Pi > Pi > P»(P., P, ,
Pm)

where Pn P'j,..., P'm is any other set of generating operations.
The order of the group of isomorphisms of 6 is therefore, by
§ 83,

(pm-l) (pm -p) (pm - p™-1),
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and the order of the holomorph K of G is this number multi
plied by pm. If G were not a characteristic sub-group of K,
and if G' were conjugate to G in the group of isomorphisms of
K, then {G, G'\ would be a self-conjugate sub-group of K.
Since G has no characteristic sub-group, G and G' can have no
common sub-group; and therefore every operation of G' would be

permutable with every operation of G. But the only operations
of K which are permutable with every operation of G are the
operations of G itself. Hence G must be a characteristic sub

group of K, and therefore, § 72, if p is an odd prime, K is
complete.

86. If G is any Abelian group whose order is a power of
p and if

Gy i\, r2, , rn, E
is a characteristic series of G, every isomorphism of G must
transform each of these groups into itself; and therefore also
must transform each factor-group Tr/rr+1 into itself. Let / be
an isomorphism which transforms each operation of rr/Tr+1 and

Tr+1 into itself. Then, § 73, the order of / is a power of p.
Hence the only isomorphism which transforms each operation
of each of the groups

o/tu iyr„ , r_/r», r„
into itself and is of order prime to p is the identical isomor
phism. Now rr/rr+i is an Abelian group of type

(1, 1, to v units).

Hence if k be the greatest value of v for the above series of
factor-groups, the order of any isomorphism of G, if prime to p,
must divide the order of the group of isomorphisms of an
Abelian group of order p* and type (1, 1 to k units).
In other words it must be a factor of

(^-lXpt-i-i) (p-i).
With the notation of § 82, k is the greatest of the numbers

n,. Hence:

Theorem IV. If G is an Abelian group, generated by n,
operations of order pm\ n, operations of order p™*, , nr

operations of order p™*, and if k is the greatest of the numbers
nu «a, , nr, then any operation whose order is relatively
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prime to (jp* - l)(p*_1 - 1) (p-1) p which is permutable
with 0, is permutable with every operation of 0.

87. An Abelian group 0 of order pf^pf* 2>n"» is the
direct product of Abelian groups Gx, G,, , Gn of orders

iV\ Pi"1 Pn**- If 1 is any isomorphism of Gx, then G
obviously admits an isomorphism in which the operations of (?

,

undergo the isomorphism /, while the operations of Gt , Gn
undergo the identical isomorphism. This isomorphism is

clearly permutable with any isomorphism of G in which the
operations of G

x undergo the identical isomorphism. Hence
the group of isomorphisms of G is the direct product of the
groups of isomorphisms of (?,, Gt, Gn; and similarly the

holomorph of G is the direct product of the holomorphs of

Git Gt , Gn-

If m is the least common multiple of the orders of the

operations of an Abelian group, or in other words if the group
has operations of order m and no operations of order greater
than m, and if n is any number less than and prime to m, then

(£
)

gives an isomorphism of the group. In fact the operations
S11, when for S each operation of the group is written in turn,
are all distinct, and if

ST= U
,

then ST" =Z7M.
When for fi each of the <

f> (m) numbers, less thaa and prime
to m, is taken in turn, (m) distinct isomorphisms thus arise, and

they clearly form a sub-group of the group of isomorphisms.

Let (f
,)

be any isomorphism of the group. Then

{
s) W M = is") = W ;

(8
\
is self-conjugate

in the group of isomorphisms.
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88. We shall now discuss the groups of isomorphisms of certain
Abelian groups, taking first the case of a cyclical group G, of prime
order p, generated by an operation P. Every isomorphism of such
a group must interchange among themselves the p — 1 operations

P, P2.

and therefore any isomorphism of the group may be represented by

>P

Now the reth power of this isomorphism is

(pan)'

Hence if a is a primitive root of the congruence
ap-i -1 = 0, (mod. p),

the group of isomorphisms is a cyclical group generated by the
isomorphism

'P

Further, if S is an operation satisfying the relations

8P-1 = E, S-*PS=Pn,

where a is a primitive root of p, {S, P\ is the holomorph of G.

Since {P} is clearly a characteristic sub-group of {S, P\, the
latter is a complete group.

Consider next the case of any cyclical group ; and suppose, first,
that G is a cyclical group of order pn, where p is an odd prime; and
let it be generated by an operation <S'. The group contains pn-l (p — I)
operations of order p"; and if & is any one of these,

defines an isomorphism. The group of isomorphisms is therefore a
group of order p"-l (p — l). Moreover, since the congruence

ap-V-i) -1=0, (mod. p"),

has primitive roots, the group of isomorphisms is a cyclical group.
The holomorph of G is defined by

Sp" = E, J*"'<P-»=E, J-1SJ=S«,

where o is a primitive root of the congruence

oP-'lP-D -1 = 0, (mod. pn).
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If G is a cyclical group of order 2" it follows, in the same way,
that the group of isomorphisms is an Abelian group of order 2"-1.
In this case, however, the congruence

a2""1 -1=0, (mod. 2"), n > 2,

has no primitive root, and therefore the group of isomorphisms is not
cyclical.

Now 52"-2 = 1 (mod. 2"),

and 5'"-' = 1 + 2-1 (mod. 2").

The powers of the isomorphism

(!.)
then form a cyclical group of order 2" 2; and the only isomorphism
of order 2 contained in it is

Hence

the latter not being contained in the sub-group generated by the
former, are two permutable and independent isomorphisms of orders
2"-2 and 2. They generate an Abelian group of order 2"-1, which is
the group of isomorphisms of G. The corresponding holomorph is
given by

J1-1SJ1 = S", JtSJt=S-\
If G is a cyclical group of order 4, its group of isomorphisms is

clearly a group of order 2.

The nature of the group of isomorphisms and of the holomorph
of any cyclical group follow from these particular cases by the pre
ceding paragraph.

Ex. 1. Prove that the holomorph of any cyclical group of odd
order is a complete group.

Ex. 2. If G is a cyclical group of order 8 and if K is the
holomorph of G, prove that G is not a characteristic sub-group of K.
With the above notation, and n = 3, shew that {S, J1, ./„} admits the
outer isomorphism

/ S, Jlt J2 \
\JiS, Jlt JlJj

8—2
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89. We shall next consider the group of isomorphisms of an
Abelian group of order pn and type (1, 1, ... to n units). Such a
group is generated by n independent permutable operations of
order p, say

P P P

We may therefore begin by determining under what conditions
the symbol

(P^P^.L.P^) <r=1,2 '*).

defines an isomorphism. This symbol replaces the operation
P,*iiV"i Pn"> by Pfi Pi2 Pni., where

y, = O^xi + a12a^ + + ainx%,

y2 = a21Xi + anx^ + + amxn,
^motj ^

ynSff,,^ + an,xt + + annxn,

Unless the pn operations Pfi Pfi PJ>* thus formed are all
distinct, when for Pfi Pfi Pn"« is put successively each of the pn
operations of the group, the symbol does not represent an isomorphism.
On the other hand, when this condition is satisfied, the symbol
represents a permutation of the operations among themselves which
leaves the multiplication table of the group unchanged; it is there
fore an isomorphism.

If this condition is satisfied, a^, xt, , x% must be definite
numbers (mod. p), when y,, y2, , yn are given; and therefore
the above set of n simultaneous congruences must be capable
of definite solution with respect to the x's. The necessary and
sufficient condition for this is that the determinant

«hii ...

should not be congruent to zero (mod. p).

Every distinct set of congruences of the above form, for
which this condition is satisfied, represents a distinct isomorph
ism of the group, two sets being regarded as distinct if the
congruence

art = a'„ (mod. p)

does not hold for each corresponding pair of coefficients. Moreover,
to the product of two isomorphisms will correspond the set of con
gruences which results from carrying out successively the operations
indicated by the two sets that correspond to the two isomorphisms.
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The group of isomorphisms is therefore simply isomorphic with the
group of operations defined by all sets of congruences

y, = a„a;a + + + a,nxn,

= a2l °h + ^22^2 + + C'sn^n,

yn = ania;i + a«», + +

for which the relation

(mod. p)

«,,,

a21.
£ 0 (mod. p)

is satisfied. Its order has been determined in § 85.

90. The group thus defined is of great importance in many
branches of analysis. It is known as the linear homogeneous group.
In a subsequent Chapter we shall consider some of its more
important properties.

The holomorph of an Abelian group of order pn and type
(1, 1, ...to n units), can similarly be represented as a group of
linear transformations to the prime modulus p. Consider, in fact,
the set of transformations

y, = + al2xi + + alnxn + blt

V2 = a~nXi + «siaJi + + (hnXn + 6i,

yn = aia;„l + a^x, + + annxn + bn,

(mod. p);

where the coefficients take all integral values (mod. p) consistent
with

<h am

a2i, ...

...., a«.

The set of transformations clearly forms a group whose order is
(jl" — 1) (p" —p) (pn — pn-l) Pn- The sub-group formed by all the
transformations

y, = + blt y2 = a;, + bt, , yn = xn + bn, (mod. p),

is an Abelian group of order pn and type (1, 1, ... to n units), and it
is a self-conjugate sub-group. Moreover, the only operations of the
group, which are permutable with every operation of this self-con
jugate sub-group, are the operations of the sub-group itself ; and,
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since the order of the group is equal to the order of the holomorph
of the Abelian group, it follows that the group of transformations
must be simply isomorphic with the holomorph of the Abelian
group.

Ex. 1. Shew that a group whose operations except identity are
all of order 2 is necessarily an Abelian group.

Ex. 2. Prove that in a group of order 16, whose operations
except identity are all of order 2, the 15 operations of order 2 may
be divided into 5 sets of 3 each so that each set of 3 with identity
forms a sub-group of order i; and that this division into sets may
be carried out in 56 distinct ways.

Ex. 3. If G is an Abelian group and H a sub-group of G,
shew that G contains one or more sub-groups simply isomorphic
with G/H.

Ex. 4. If the symbols in the successive rows of a determinant
of n rows are derived from those of the first row by performing on
them the permutations of a regular Abelian group of order n, prove
that the determinant is the product of n linear factors.

(Messenger of Mathematics, Vol. xxm. p. 112.)

Ex. 5. Discuss the number of ways in which a set of inde
pendent generating operations of an Abelian group of order pm
and given type may be chosen. Shew that, for a group of type
(nii, mt), where m, > > > mt, the number of ways is
of the form pa(p — 1)*; and in particular that for a group of order
pWn+i) an(j type (n, n— 1, ,2, 1

), the number of ways is

p"(p — 1)", where v = $n(n + 1
) (In + 1
) — n.

Ex. 6. Shew that for any Abelian group a set of independent
generating operations

Slt St, Or-i, Sr, <S'n

can be chosen such that, for each value of r, the order of S
r is equal

to, or is a factor of, the order of iSr-1.

Ex. 7. Prove that an isomorphism, whose order is a power of p,
of an Abelian group of order pm and type (1, 1, ... to m units)
must transform into themselves a series of sub-groups of orders
|lm-l, Pm-\ . . . i P, ea«h of which contains the next. Shew that if

such an isomorphism leaves just p operations unchanged, it can, by
suitably choosing the generating operations, be expressed in the form

(P„
P2i Psi Pin-ii P<n\

PiPii P2Pii PiP4! ..., Pm-iP,n, Pti/
and that, if m £p, its order is p.



CHAPTER VIII.

ON GROUPS WHOSE ORDERS ARE THE POWERS OF
PRIMES.

91. Having in the last chapter dealt in some detail with
Abelian groups of order pm, where p is a prime, we shall now in
vestigate some of the more important properties of groups, which
have the power of a prime for their order but are not necessarily
Abelian. Besides illustrating and leading to many interesting
applications of the earlier results, the discussion of groups, whose
order is the power of a prime, will be found in many ways to
facilitate the subsequent discussion of other groups, whose order
is not thus limited.

92. If G is a group whose order is pm, where p is a prime,
the order of every sub-group of G must also be a power of p; and
therefore (§ 25) the number of operations of G which are con

jugate with any given operation must be a power of p. The
identical operation of G is self-conjugate. Hence the equation
of § 26 becomes in this case

Pm=l +pa'+p'i + +pT*.

This equation can only be true if p*— 1 of the indices
o^, ot2, are zero, s being some integer not less than unity.
Therefore G must contain p' (s>l) self-conjugate operations,
which form (§ 27) a self-conjugate sub-group*. Hence:—

Theorem I. Every group whose order is the power of a
prime contains self-conjugate operations, other than the identical

operation ; and no such group can be simple.

* Sylow, Math. Ann. (1872), p. 588.
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93. If H, of order p*, is the central, i.e. the sub-group
formed of the self-conjugate operations, of G, whose order is

pm, then G/H or G' of order pm~* must have a central K'. Let
K be the corresponding sub-group, necessarily self-conjugate,
of G. Then again GjK, being a group whose order is a power
of p, must have a central. This process may be continued till
we arrive at a factor-group which is its own central, that is to

say, which is Abelian.

Hence G must contain a series of self-conjugate sub-groups,

Hi, Ht,..., Hi,..., Hn, E,

such that, for each i, H^/Hi is the central of G/Hit H„ being
the group G itself and Hn+1 the identical operation E.

From its formation it is obvious that each of these sub-groups
is a characteristic sub-group of G. Each factor-group

(» = 1, 2,...,n+l)

is an Abelian group on whose type in general there is no

necessary limitation. The first factor-group (?///, however
cannot be cyclical*. In fact, if G\HX were a cyclical group
of order the operations of G/Ht could be arranged in the
sets

HJH,, PHJHt, FHJH, Pr-'HJH*.
where belongs to Hj/H?. But since the operations of Hi/Hs
are self-conjugate in G/Hlt this involves that G/ffa is the
Abelian group generated by P and Hj/Ht, which by supposition
is not the case.

94. Since G/H, is Abelian the derived group of G is
contained in Hx (§ 39), and is therefore necessarily distinct
from G. Hence :—

Theorem II. A group whose order is the power of a prime
is necessarily distinct from its derived group ; and its series of
derived groups terminates with the identical operation.

Let Q,GltGt,...,G„E
be the series of derived groups of G. Each of these again is

obviously, from its mode of formation, a characteristic sub-group
* Young, American Journal, vol. xv. (1893), p. 132.
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of G ; and each of the factor-groups (?<-,/(?< is an Abelian group.
Moreover, since (?

,

is contained in H , G/Gl cannot be a cyclical
group. Either of the series of groups

G
,

Hlt Ht,..., Hn, E,

or G
,

Gi, (?2,..., Gv, E,

may clearly be used to form a chief-series for G. If p' is the
order of Hi-JHi, then, since each of these factor-groups is

Abelian, a series of t — 1 groups may be interpolated between

Hi-i and Hit say
Hi-i, K1, K2,..., Kt, Hi,

each of which is self-conjugate in G and is contained in the

preceding, while Kj-l/Kj is of order p. The complete series
obtained in this way is clearly a chief-series for G ; and a similar
series may be obtained from the derived groups.

95. If in the two series of groups

G
,

Hlt H2,..., Hn, E,

G
,

Gi, G2,..., Gv, E,

H, contains Gs , then, since HJH,+1 is Abelian, every commutator
of G, must belong to Ht+1. Therefore, since the commutators
of Gs generate G,+1, Gt+1 must be contained in Ht+1. Hence,
as Hl contains Gi, H, contains G, for each s. In particular Hn,
an Abelian group, contains Gn. If v were greater than n, Gn
would not be an Abelian group, and therefore

It may be noticed that since no one of the groups Gi/Gi+1
can be cyclical, the order of a group whose derived series is

G
,

Gi, G2,..., G,, E
cannot be less than

96. Let G, be any sub-group of G of order p\ and let Hi
be the first of the series of sub-groups

H1, Ht,..., Hn, E,

which is contained in G,. Then GJHi is a sub-group of G/Hi
which does not contain all the operations of Hi-l/Hi. Every
operation of Hi-i/Hi is self-conjugate in G/Hi) and therefore
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0,/Hi is self-conjugate in {G,/Hi, H^/Hi], a group of order
greater than its own. Hence G, must be contained self-conju-

gately in some group G,+t of order jf"+l, where t is not less than

unity. Moreover since Gt+t/G, must contain operations of
order p, there must be one or more groups of order p'*1 which
contain G, self-conjugately. Hence :—

Theorem III. If G, of order p* is a sub-group of G, which
is of order pm, then G must contain a sub-group of order p***,
£«fcl, within which G, is self-conjugate. In particular, every
sub-group of order pm-1 of G is a self-conjugate sub-group*.

Suppose now that Gt+t, of order p2+t, is the greatest sub

group of G which contains a given sub-group Gs, of order jf",
self-conjugately ; so that Gs is one of pm-'-1 conjugate sub

groups. Suppose also that Gl+t+u, of order p'+t+u, (u^.1), is
the greatest sub-group of G that contains Gt+t self-conjugately.
Every operation of G,+t+u transforms Gt+t into itself ; and no

operation of G,+t+u that is not contained in Gs+t transforms G,
into itself. Hence, in G,+t+u, G, is one of pu conjugate sub

groups and each of these is self-conjugate in G,+t.

The pm-2-1 sub-groups conjugate to G, may therefore be
divided into sets of p" each, (u^l), such that any
operation of a sub-group belonging to one of the sets trans
forms each sub-group of that set into itself.

Similarly if (?t, of order p*, is the greatest sub-group of G
that contains a given operation P self-conjugately, and if (?,+(,
t { 1, is the greatest sub-group that contains G« self-conjugately,
then G, must contain self-conjugately pl operations of the

conjugate set to which P belongs, and therefore any two of
these pl operations are permutable. Hence the pm-' conjugate
operations of the set to which P belongs can be divided into
pn^-'-t sets of pl each, (<<(: 1), such that all the operations of
any one set are permutable with each other. In particular, if
P is one of a set of p conjugate operations, all the operations of
the set are permutable.

* Frobenius, " Ueber endliche Grappen," Berliner Sittungsberichte (1895),
p. 173 : Burnside, "Notes on the theory of groups of finite order," Proc. London

Mathematical Society, Vol. xxvi (1895), p. 209.
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97. Let P be an operation of G which belongs to /7t in the
series of groups (§ 93)

G, H1, Ht,..., Hn, E,

and does not belong to Hi+1. Then [P, Hi+l} is a sub-group of

Hi\ and therefore {P, Hi+1}/Hi+1 is a self-conjugate sub-group
of G/Hi+1. The set of operations PHi+1 is therefore transformed
into itself by every operation of G ; and hence every operation
conjugate to P is contained in the set PH{+1. Suppose now, if
possible, that every operation conjugate to P were contained in
the set PHi+i. Then every operation of G would transform this
set into itself; and therefore every operation of {P, Hi^/H^
would be self-conjugate in G/Hi+2. This is not the case, since P
does not belong to Hi+1. There are therefore operations con

jugate to P which belong to PHi+1 and do not belong to PHi+2.
Suppose now that S and S' are two operations of G which

transform P into operations of the set PHs, so that
S-iPS=PP„
s'-ips'=pp;,

where P, and P,' both belong to Hs. Then

S'-'S-^PSS' = P . Pt'. S'-'P„S'
= pp.",

where, since H, is a self-conjugate sub-group, P," belongs to H,.
The operations which transform P into an operation of the set
PH, therefore form a sub-group.

Next let T be an operation of G which transforms P into an
operation of the set PHt^, so that

r-ipr=pp<,-1.

Then T-*Sr\ P.ST= T-'PP.T,

or T-'S-1 T . PPM . T-'ST = PP^T-'P.T,

and r-'S-'T.P.^ST
= p . P^T-'P^p^r1- P-i . t-'<S-t. p,-,-1. r-lST.

Now P^T-iPiTP.-r1 belongs to H„ and
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i.e. the product of P„-, and the inverse of one of its conjugates
also belong to H,. Hence

T-'S-'T . P . 'T-iST = P . Pi",
where P,'" belongs to H%. The operations which transform P
into operations of the set PH, therefore constitute a self-conju
gate sub-group of those which transform P into operations of
the set PJ?»-,.

If Op denote the sub-group formed of all the operations
permutable with P, and GPm the sub-group formed of those
operations which transform P into operations of the set PH,,
then in the series of groups

GP, 0pw, GP»-v,..., Gp<+»,

each is a self-conjugate sub-group of the succeeding one, and the
last is the group G itself.

Moreover from

S-'PS = PPt , S'-'PS' = PP.',
it follows that
s'ss'^s-kp.ss's-w-'

= p. S'p;-*s'-1 . s'sp^s-'S'-ks'sp.'s-'S'-1

. S'SS'-iPtS'S-W-1 = p . P8+1,
where P,+1 belong to H8+t Hence SS'S-^'-1 belongs to
Gp^+'K and therefore GPW/GP^+1) is Abelian. The groups of
the series are not necessarily all distinct, for it may be the case
that there are no conjugates to P which belong to PH, and do
not belong to PH,+1. Since, when P,-, belongs to
P-iP-it^iPPt-l belongs to H„ it follows that GPW necessarily
contains

98. In illustration of the preceding paragraphs we will con
sider some of the properties of a group G of order pm containing
con/ugate sets with as large a number of operations as possible.
If P is an operation of 0 which is not self -conjugate and R a self-
conjugate operation, then every operation of {P, B) is permutable
with P. The order of {/', P] cannot be less than p2, and therefore
the number of operations in the conjugate set to which P belongs
cannot exceed pm-". Moreover it cannot be equal to pm-" unless the
order of the central of G is p. Let //n be the central of G, and
P be the operation of G/Hn which corresponds to P. If F were
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one of less than j»m-! con/ugates in G/Hn, P would be one of less
than pm-2 conjugates in G. But P cannot be one of pm-2 conjugates
in G/Hn unless the central of G/Hn is of order p. Hence Hn-lt
the sub-group of G which corresponds to the central of G/Hn is of
order p2. This reasoning may clearly be repeated, and the orders
of the series of groups (§ 93)

G, Hlt Ht, Hn, £,

are pm, pm->, pm-2, , p, 1;

so that n is m — 2.

Every operation conjugate to P is contained in the set PHlt and
this set has just pm-2 distinct operations. Hence every operation of
the set PH1 is conjugate to P, and every operation of is a com
mutator, so that //i is the derived group.
If Q is an operation of G which does not belong to

Hlt PH„ P'H,, , or

and if /^denotes an operation which belongs to if( and not to Hi+l,
the relations

Q-*PQ =PP„
P1-lPP1 =i>P2,

p -ipp — pp
p -1PP -Prm-2 1 1 m-2 — 1 i

follow from the fact that Pfl, is the set of operations conjugate to P.
The group then can be generated by the two operations P and Q.
Ex. With the above notation shew that if Q, P, Pl, Pm-2

are all of order p, and if Q, Plt P2, ...,Pm-2 are independent and
permu table, the operations of the group are all of order p when
m<p; and that when m>p, the group contains operations of
order p3.

99. In further illustration we will consider some of the properties
of a group G, of order pm, in which each operation is either self-con
jugate or one of p conjugate operations. If P, Q are two non-
permutable operations of such a group,

Q, P-*QP, P-^QP2, p-p+iQpp-i

form a complete conjugate set of operations.

For if P-' QP> = P-JQP),

P-}+iQPJ-i=Qi
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so that P>-i and therefore also P would be permutable with Q. It
follows that P-PQPl' must be one of the above set. If

P-PQPP = P-iQPt (t>0)
P would be permutable with Q. Hence

P-PQPP = Q,

and the pth power of every operation of G is a self-conjugate
operation.

Every operation which is permutable with Qmust transform among
themselves the p operations which are conjugate to Q, and must
therefore be permutable with each of them. Hence every operation
of the sub-group Gv, of order pm-l, which contains Q self-conjugately,
is permutable with Q-lP-lQP. But P is also permutable with this
operation. Hence every operation of {P, Gq\, i.e. of G, is permutable
with Q-1 P~1 QP ; and every commutator is a self-conjugate operation.
Hence if H is the central of G, G/ll is an Abelian group of type
(1,1,1, , !)

.

Ex. 1. Prove that if G is a non- Abelian group of orderj>m in
which no conjugate set contains more than p operations and if H is

the central of G
,

then G/U must have an even number of generators.
Shew also that the order of the derived group of G is p.

Ex. 2. If & is a group in which no conjugate set contains
more than p* operations, the ju'th power of every operation is self-
conjugate.

100. If P is an operation of G, of order pn, which is conju
gate to one of its own powers Pa, there must be some other

operation Q of G such that

From this equation it follows that

and Q-ePQ1* = P°".

If is the lowest power of Q which is permutable with P,
then in {P, Q

] P will be one of /S conjugate operations, and
therefore /8 must be a power of p, say p2, less than pn. Further,

if Qp* is permutable with P,

and therefore aP1 = 1 (mod. pn),

.while a*"-i ^ 1 (mod. pn).
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First, we will suppose that p is an odd prime. Then since

x?* = x (mod. p),

whatever integer x may be, we may assume that a = 1 + kpl,
where k is not a multiple of p ; and then

a"*= 1 + kp*+t +

aP-1 = 1 + +

Hence s + 1 = n,

and a = 1 (mod. pn~*).

Conversely if P and P'+*p"_' (& ^ 0 (mod. p)) are conjugate
operations, there must be an operation Q such that

Q-'PQ = pi+ip"-*.

From this it follows that the lowest power of Q which is

permutable with P is the p'th, so that in {Q, P] P is one of p*
conjugate operations. Now P'+tp"-*-1 (A

;

^ 0 (mod. p)) cannot be
one of these, for if

Q-^PQ' = P^"-*-',

Q-xp> PQxp" — p (l+tp"-*-1)!'*

so that Qp* would not be permutable with P. Hence the p'
operations conjugate to P are P'+*pn~* (& = 2 p*).

In particular, we see that no operation of order p can be
conjugate to one of its powers. Hence if P and P are two
conjugate operations of order p, }PJ and [P'J have no operation
in common except ideutity. Also, if {Pj be a self-conjugate
sub-group of order p, each of its operations is self-conjugate.

If p is 2, we must take
a=± l+&2f,

where k is odd, and we are led by the same process to the
result

a = + 1 (mod. 2"-').

101. It has been seen in § 96 that every sub-group 0' of
order p™-1 of a group 0 of order pm is self-conjugate. Suppose
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now that G contains two such sub-groups G' and G". Then
since G' and G" are permutable with each other, while the
order of \G', G") is pm, the order of the greatest group g'
common to them must (§ .33) be ^m-s ; and since g' is the

greatest common sub-group of two self-conjugate sub-groups of
G, it must itself be a self-conjugate sub-group of G. The factor-
group Gig' of order p" contains the two distinct-sub-groups G'/g'
and G"/g', which are of order p and permutable with each other.
Hence G/g' must be an Abelian group of type (1, 1) and it
therefore contains (§ 84) p + 1 sub-groups of order p. Hence,
besides G', G must contain p other sub-groups of order pm-i
which have in common with G' the sub-group g

'. If the p + 1

sub-groups thus obtained do not exhaust the sub-groups of G

of order pm-l, let G'" be a new one. Then, as before, G' and G'"
must have a common sub-group g", of order pm-2, which is

self-conjugate in G. If g" were the same as g, G'"/g would be
contained in G/g', which by supposition is not the case. It may
now be shewn as above that there are, in addition to G', p

sub-groups of order pm-l which have in common with G' the

group g". These are therefore necessarily distinct from those
before obtained. This process may clearly be repeated till all
the sub-groups of order pm-1 are exhausted. Hence finally, if

the number of sub-groups of G, of order pm-l be rm-lt we have

fm-i - 1 (mod. p).

102. The self-conjugate operations of a group G of order

pm, whose orders are p, form with identity a self-conjugate
sub-group whose order is some power of p ; and therefore their
number must be congruent to — 1

, mod. p. On the other hand,

if P is any operation of G of order p which is not self-conjugate,
the number of operations in the conjugate set to which P
belongs is a power of p. Hence the total number of operations
of G

,

of order p, is congruent to — 1
, mod. p. Now if ri is the

total number of sub-groups of G of order p, the number of

operations of order p is r,(p — 1), since no two of these sub
groups can have a common operation, except identity. It
follows that

7i(ll-1) = -l.(mod. P),
and therefore r, = 1, (mod. p).
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If now G, is any sub-group of G of order p', and if G,+t is the
greatest sub-group of G in which G, is contained self-conjugately,
then every sub-group of G which contains (?, self-conjugately is
contained in G,+t. But every sub-group of order p'+1, which
contains G,, contains G, self-conjugately; and therefore every
sub-group of order which contains G„ is itself contained in

G,+t. By the preceding result, the number of sub-groups of

G*+t/G, of order p is congruent to unity, mod. p. Hence the
number of sub-groups of G of order p*+1, which contain G,
of order p*, is congruent to unity, mod. p.

103. Let now r, represent the total number of sub-groups of
order p2 contained in a group G of order pm. If any one of
them is contained in ax sub-groups of order p,+1, and if any one
of the sub-groups of order />s+1 contains by sub-groups of order

p2 ; then
x = rt y= »Yn
2 ax= 2 by ;
i=l y=l

for the numbers on either side of this equation are equal
to the number of sub-groups of order when each of the
latter is reckoned once for every sub-group of order p2 that it
contains. It has however been shewn, in the two preceding
paragraphs, that for all values of x and y

ax = 1, by=l (mod. p).

Hence r, = r,+1 (mod. p).

Now it has just been proved that

r! = 1 and rm-! = 1 (mod. p) ;

and therefore finally, for all values of s,

r, = l (mod. p).
We may state the result thus obtained as follows :—

Theorem IV. The number of sub-groups of any given
order p* of a group of order pm is congruent to unity, mod. p *.

Corollary. The number of self-conjugate sub-groups of
order p2 of a group of order pm is congruent to unity, mod. p.
* Frobenius, " Verallgemeinerung des Sylow'schen Satzes," Berliner Sitt-

ungsberichte (1895), p. 989.

B. 9
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This is an immediate consequence of the theorem, since the
number of sub-groups in any conjugate set is a power of p.

104. Having shewn that the number of sub-groups of 0 of
order p* is of the form 1 + kp, we may now discuss under what

circumstances it is possible for k to be zero, so that 0 of order pm
contains only one sub-group G, of order p*.

If this is the case, and if P is any operation of G not con
tained in Gs, the order of P must not be less than p'+1 ; for if
it were less, G would have some sub-group of order jj" containing
P and this would necessarily be different from G,. If the order
of P is p*+t, then {Ppt} is a cyclical sub-group of order p8 ; and it
must coincide with G,. Hence, if Gt is the only sub-group of
order p*, it must be cyclical.

Suppose now that G contains operations of order pr (r > s)
,

but no operations of order p**1 ; and let P be an operation of G

of order pr. Then [P\ must be contained self-conjugately in a

non-cyclical sub-group of order pr+1.

We will take first the case in which p is an odd prime.
Then (§ 100) G must contain an operation P which does not
belong to [P], such that

F-iPF^P; Pp = P<s.
If a were unity, (P, P'\ would be an Abelian group of order
pr+1 containing no operation of order pr+1. Its type would
therefore be (r, 1), and it would necessarily contain an operation
of order p not occurring in {P}. It has been shewn that this is

impossible if G, is the only sub-group of order p', and therefore
a cannot be unity.

We may then without loss of generality (§ 100) assume that

a = 1 + pr~\

Moreover if ft were not divisible by p, the order of P' would
be pr+1, contrary to supposition. Hence we must have the
relations

jy-ipp - pi+J^-1, P'p = Pip.
By successive applications of the first of these equations, we

get
P'-VP*P'V — px(i+ypr_1)j
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for all values of x and y ; and from this it immediately follows
that

(P*Py = P'pP^fp+Jp (P+i) pr-i}

Hence the order of P^P', an operation not contained in {P},
is p. This is impossible if G, is the only sub-group of order p'.
If then r <m, G must contain operations of order greater than
pr ; and G is therefore a cyclical group. Hence :—

Theorem V. If G, of order pm, where p is an odd prime,
contains only one sub-group of order p\ G must be cyclical.

105. When p — 2, the result is not so simple.

Let \P, Q] be a non-cyclical sub-group of order 2r+1, which
contains the cyclical sub-group {P} self-conjugately: and suppose

Q chosen so that its order is as small as possible. It must not
be less than 2,+1, and not greater than 2r. Hence

Q^P2', l^t^r-s,
while (§ 100)

Q-1PQ = PM, a= ± l + 2r-1 or - 1.
If a = 1 + 2T\ (PiQ)« = P*
Hence if x is chosen so that x(l + 2r-2) + 2'-1 is a multiple

of 2r-1, P*Q is an operation of order 2 not contained in {P}.
This case therefore cannot occur.

If a = - 1 + 2r-\ (P*Qyi = par-1+ti,

while Q-1P2tQ = P^,

and Q-iP^Q = Pit.

Hence P^+1 = E, and either Q or PQ is an operation of
order 2. This case again cannot occur.

Ifa = -1, {P*Qy = P*,

and P2t+1 = E.

In this case, if t = r — 1, every operation of [P, Q) which is not
contained in {P} is of order 4, and {P, Q] contains a single

sub-group of order 2, viz. [P^-l], so that s must be unity.

9—2
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If the order of the group were greater than 2rfl, [P, Q]
would be contained self-conjugately in a group of order 2r+2.

Let Qf be an operation of this group which does not belong to

{P, Q}. Then since \P\ is the only cyclical group of order 2r
contained in {P, Q], Q' must transform (PJ into itself. If Q'2 is
contained in {P}, the above discussion shews that

q-*pq=p-\
and therefore

Q-'Q'-'PQ'Q=P.
In this case [P, Q'Q] is a non-cyclical Abelian group containing
three sub-groups of order 2. If, on the other hand, Q

4 is the

lowest power of Q, contained in [P], then

Q'-ipQ'=p0t ft = + i + 2'-2 or - 1,
and . Q'4 = P**.

Hence Q-*PQ 2= P or P^\
and \P, Q'1} contains more than one sub-group of order 2.
Finally, then, any group of order 2r+2 which contains {P, Q}
self-conjugately has more than one sub-group of order 2. The
result may therefore be summed up as follows:—

Theorem VI. If a group G, of order 2'", has a single
sub-group of order 2*, (s>l), it must be cyclical ; if it has a
single sub-group of order 2, it is either cyclical or of the type
defined by

P^'^E, Q2 = P'm-\ Q-'PQ = P-\ (m>2).
106. When m = 3, the group defined by these relations is known

as the quaternion-group. In this case the defining relations become
P4 = E, Q2 = P\ Q-iPQ = P-1.

The operations of the group are

E, P2, P, P\ Q, QP2, PQ, QP-
where P and P", Q and QP2, PQ and QP are pairs of inverse and
conjugate operations of order 4. The group has three cyclical
sub-groups of order 4, and admits an outer isomorphism which
permutes these three sub-groups, so that each of them bears the
same relation to the group. In fact, if

then

C2 = E, C-1PC=Q, C-1QP=PQ,

C-lPQC = P,
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and in {C, P, Q\, which contains {P, Q) self-conjugately, P, Q and
PQ form a conjugate set.

Further if three symbols t, j, k be defined by the relations

i{E-P2) = {E-Pi) i = P-Pi,
j(E-P>) = (E-P2)j = Q -<?/»,
k (E- P') = (E- P2) k = PQ - QP,

and the multiplication-table of the group be taken account of, it
will be found that *, j, k combine according to the laws,

= A2 = -1,
ij = -ji = k, jk = -kj = i, ki = -ik=j,

which are identical with the laws obeyed by Hamilton's celebrated
symbols denoted by the same letters.

An alternative form of statement is that, E, P2, P, Q, PQ com
bine by multiplication according to the same laws as 1, — 1, i, j, k.
When m > 3, the group contains 2m-, + 1 cyclical sub-groups of

order 4, of which one is self-conjugate while the remainder form
two conjugate sets of 2m-2 each. The sub-groups of order 4 no
longer all bear the same relation to the group, and there is no
isomorphism whose order is divisible by an odd prime.

Ex. Shew that the group of isomorphisms of the group
defined by

P*"-l = E, Q2 = P*"-2, Q-*PQ = P-\ (m>3),
has 2M-) for its order.

107. It has been seen (§ 81) that the distinct operations
which arise when every operation of an Abelian group is raised
to the power constitute a sub-group. This is not in general
true for a non-Abelian group of order pm ; but it may be shewn
that the ^th powers of the operations of such a group generate
a sub-group for whose order an upper limit can be obtained.

Let G be a group of order pm, and suppose the type of

G/Gl to be (wii, wi2, mt). The sub-group constituted by the
distinct pth powers of the operations of G/G1 is of order

pm,+m,+ ..+mt-i gj) . an(j tj,e corresponding sub-group of G
is of order The pth power of every operation of G must

belong to this sub-group. For to the pth power of any operation
of G which is not contained in G, there corresponds the pih
power of an operation of G/Gi\ while the pth power of every
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operation of Gi is contained in (?1. Hence the group generated
by the pth powers of the operations of G is contained in the
above determined sub-group of order pm-'. If this sub-group
is called G' and if (?/ is its derived group, then s' being the
number of independent generators of G'/G^, the sub-group
generated by the pih powers of the operations of G' will have
order not exceeding pm-*-*'. This group obviously contains
the group generated by the p'th powers of the operations of G.
The process may be continued and each succeeding s is equal
to or greater than 2 until a cyclical group is reached. It is
clear that the group generated by the p"th powers of the

operations of G is a characteristic sub-group.

108. We shall now proceed to discuss, in application of the

foregoing theorems and for the importance of the results them
selves, the various types of groups of order pm which contain

self-conjugate cyclical sub-groups of orders pm-l and pm-2
respectively*. It is clear from Theorem VI that the case p = 2
requires independent investigation ; we shall only deal in detail
with the case in which p is an odd prime, and shall state the
results for the case when p=2.
The types of Abelian groups of order pm which contain

operations of order pm-2 are those corresponding to the symbols
(m), (m — 1, 1), (w»

— 2, 2), and (m — 2, 1, 1). We will assume
that the groups which we consider in the following paragraphs
are not Abelian.

109. We will first consider a group G, of order pm, which
contains an operation P of order pm-\ The cyclical sub-group
(P) is self-conjugate and contains a single sub-group [Ppm-2} of
order p. By Theorem V, since G is not cyclical, it must
contain an operation ty, of order p, which does not occur in [P\.
Since {P} is self-conjugate and the group is not Abelian, Q'
must transform P into one of its own powers. Hence

and since is permutable with P it follows, from § 100, that
a = 1 + hp"*-2.

* Groups of order pm which contain operations of order pm-' are discussed by
Miller, Tramactiolu of the American Mathematical Society (1902), pp. 383-387.
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Since the group is not Abelian, k cannot be zero ; but it
may have any value from 1 to p — 1. If now

kx = 1 (mod. p),

then Q/-*PQ'z = p>+pm-!l;

and therefore, writing Q for Q'x, the group is defined by

These relations are clearly self-consistent, and they define a

group of order pm.

There is therefore a single type of non-Abelian group of
order pm which contains operations of order pm_1, because, for

any such group, a pair of generating operations may be chosen
which satisfy the above relations.

From the relation Q-'PQ = P'+p™-2,
it follows by repetition and multiplication that

Q-yp*Qy = pain-HP"*-*^
and therefore that

(QvPxy = Qytpzzv+iv-vyp™-1! t

and (QyPx)p = P**,

Hence 0 contains p cyclical sub-groups of order p"1-1, of
which P and Q»P (y=l, 2 , p— 1) may be taken as the

generating operations. Since Q and J* are permutable, 0
also contains an Abelian non-cyclical sub-group {Q, P?} of
order pm~l. It is easy to verify that the 1 + p sub-groups thus
obtained exhaust the sub-groups of order p"1-1 ; and that, for any
other order p*, there are also exactly p + 1 sub-groups of which

p are cyclical and one is Abelian of type (« — 1, 1).
The reader will find it an instructive exercise to verify the

results of the corresponding case where p is 2 ; they may be stated
thus. There are four distinct types of non-Abelian group of order
2m, which contain operations of order 2m_1, when m>3. Of these,
one is the type given in Theorem VI, and the remaining three are
defined by

=£, Qi= E, QPQ = /»+»*-' j

P*m-X = E, Q2 = E, QPQ = P-'-+*m">;

P*""1 = E, Q> = E, QPQ = P-\
When m = 3, there are only two distinct types. In this case, the

second and the fourth of the above groups are identical, and the
third is Abelian.
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110. Suppose next that G, a group of order pm, has a self-

conjugate cyclical sub-group {P} of order pm_2, and that no

operation of G is of higher order than p"*-*. We may at once

distinguish three cases for separate discussion, according as P
is self- conjugate, one of p, or one of p1 conjugate operations.

Taking the first case, there can be no operation Q' in G such
that ty? is the lowest power of Q7 contained in \P), for if there
were, [Q, P) would be Abelian and, its order being pm, it would
necessarily coincide with G. Hence any operation Q\ not
contained in \P), generates with P an Abelian group of type
(m— 2, 1), and we may choose P and Q as independent
generators of this sub-group, the order of Q being p. If now
R' is any operation of G not contained in [Q, P\, then \R\ P\
is again an Abelian group of type (m — 2, 1). If P and R are
independent generators of this group, the latter cannot occur
in {Q, P}. Now since Q is not self-conjugate,

R-*QR = QPt;

and since RP, or E, is permutable with Q
P& = E,

so that y3 = 0 (mod. pm->).

Hence R-'QR = QP^"1-8,
where k is not a multiple of p. If finally, Pk be taken as a
generating operation in the place of P, the group is defined by
Ppm^ = E, Q" = E, Rp = E, R~>QR = QPPm~3,

PQ = QP, PR = RP.
There is therefore a single type of group of order pm, which
contains a self-conjugate operation of order p1*"*, and no opera
tion of order pm~l.

111. Next let P be one of p conjugate operations. These
(§ 100) must be P'+*Pm-' (k = 1, 2, p).

If G/{P} is cyclical, let Q' be an operation, the lowest power
of which in {P\ is Q'r \
If Q' were permutable with P, G would be Abelian. Hence

we may take

while = Pkp\
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These relations give

Hence if QP-k = Q, the group is defined by

iV~2 = E, Qp' = E, Q-'PQ = Pi+Pm-',

and there is a single type.

If G/[P] is non-cyclical, G must contain a sub-group of
order pm-1 in which P is self-conjugate and another in which
P is one of p conjugate operations. The former is an Abelian
group of type (m— 2, 1), of which P and 22 may be taken as
independent generating operations. The latter is a group of

the type considered in § 109 (with m— 1 for m) defined by

Pp^^E, Qe = E, Q-*PQ = P*+Pn-\

With this group R is permutable, and therefore

R-iQR = Qni^Pm-,,

since the only operations of order p in \P, Q} are of this
form (§ 109).

Now R-iQ-*PQR = pi+p2"-8,

or Q—PQ? = I*+Pm-\

and therefore a = 1.

Also P-'QP = QP-Pm-\
hence P-*R-*QRPi> = Q,

and RP* is a self-conjugate operation. If 0 is not a multiple
of p, RP* is an operation of order p"2-2, and by supposition the
group has no self-conjugate operation of order pm-2. Hence /S
must be a multiple of p, and R is a self-conjugate operation
Again then there is one type defined by

Pp"m=E, Qp=E, Rp=E, Q-'PQ - P14**-
Rr*PR = P, R-*QR = Q.

It is the direct product of [R\ and {P, Q\.
Lastly let P be one of p2 conjugate operations. These (§ 100)

must be P'+*pm-4 (& = 1, 2, p2); and this case can only
occur if m > 4. The order of an operation which transforms P
into pi+pm-4 must be equal to or a multiple of p2. If there
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were no operation of order p2 effecting the transformation,

every operation of the group not belonging to {P} would be
of order ps or greater, and the group would only have one

sub-group of order p. Hence there must be an operation of

order p2 transforming P into P^pm-4. Denoting this operation
by Q, there is again a single type * defined by

Pfm-2 = E, Qpi= E, Q-'PQ = P"*"*-4.
It is to be expected, from the result of the corresponding case at

the end of § 109, that the number of distinct types when p = 2 is
much greater than when p is an odd prime. There are, in fact,
when m>5, fourteen distinct types of non-Abelian groups of order
2m, which contain a self-conjugate cyclical sub-group of order 2m-2
and no operation of order 2m-1. They may be classified as follows.

Suppose first that the group has a self-conjugate operation A of
order 2m-2. There is then a single type defined by the relations

(i
) A*n-'l = E, B2=E, C2 = E, CBC=BA2m-\

Suppose next that the group G has no self-conjugate operation
of order 2m-2, and let \A \ be a self-conjugate cyclical sub-group of
order 2m-2. If G/{A] is cyclical, there are, when m>5, five distinct
types. The common defining relations of these are

A*"-2 = E, B4 = E, B-lAB = A";
* In each of the cases to which we have been led in the discussion

contained in §§ 109-111, and in previous discussions of special types
of group, we have arrived at a set of defining relations, containing no
indeterminate symbols, such that in eaoh case a set of generating operations
can be chosen to satisfy these relations. To justify the statement, in each
particular case, that such a set of relations gives a distinct type of group, it is

finally necessary to verify that the relations actually define a group of order p".
In the cases dealt with in the text, this verification is implicitly contained in the
process by which the relations have been arrived at. We have therefore omitted
the direct verification, which moreover is extremely simple. We shall similarly
omit the corresponding verifications in the discussion of groups of orders p* and
p*, as in none of these cases does it present any difficulty.
To illustrate the necessity of such a verification in general, we may consider

a simple case. The relations
P3=£, Q0=E, P-iQP = Qn,

where a is any given integer, certainly define a group whose order is equal to or

is a factor of 27, since they indicate that { P \ and { Q \ are permutable. They will
not however give a type of group of order 27, unless a is 1, 4 or 7. For instance,

if a=5, the relations involve

Q = P-2QP*=QS, or Qi=E.
Hence g = = £,

and the relations hold only for a group of order 3.

Again, if a = 3, the relations give

P-IQ2P=Qi = £, or Q2 =E, whence Q = E,
and as before they define a group of order 3.
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and the five distinct types are

(ii) a = - 1, (iii) a = 1 + 2m-i, (iv) a = - 1 + 2"->
(v) a = 1 + 2m-4, (vi) a = - 1 + 2"-4.

If m = 5, then (iv) and (v) are identical, and (vi) is Abelian ; so that
there are only three distinct types. If m = 4, there is a single type ;
it is given by (ii).
When G/{A) is not cyclical, the square of every operation of G is

contained in {A\. If all the self-conjugate operations of G are not
contained in {A\, there must be a self-conjugate operation B, of order
2, which does not occur in {.4}. If C is any operation of G, not
contained in {A, B\, then {A, C) is a self-conjugate sub-group of
order 2'"-1, which has no operation except identity in common with

{B}. Hence G is a direct product of a group of order 2 and a group
of order 2m-\ There are therefore, for this case, four types (vii),
(viii), (ix), (x), when m>4, corresponding to the four groups of
order 2m-1 of § 109. If m — 4, there are two types.
Next, let all the self-conjugate operations of G be contained in

[A] ; and suppose that A is one of two conjugate operations. Then
G must contain an Abelian sub-group of type (in — 2, 1

), in which A

occurs ; and it may be shewn that, when m > 4, there are two types
defined by the relations

A"m-2 = E
,

B2 = E, BAB = A, C2 = E,

(xi) and (xii)
CBC = BA'm-2, CAC^A-1 or A-^m-s.

When m - 4, there is
,

for this case, no type.

Lastly, suppose that is one of four conjugate operations. Then

G must contain sub-groups of order 2ra-1, of the second and the
third types of § 109, and a sub-group of order 2m-1 of either the
first or fourth type (I.e.). In this last case, there are two distinct
types defined by

A2m-2 = E, &=E, BAB = ^1+2"'-s,

(xiii) and (xiv)
(72 = E, CAC = A-1+im-\ CBC = Bor BA'm-s.

These two types exist only when m>4.

112. We shall now, as a final illustration, determine and
tabulate all types of groups of orders j?, p2 and p4. It has been
already seen that when p = 2 the discussion must, in part at least,
be distinct from that for an odd prime ; for the sake of brevity we
shall not deal in detail with this case, but shall state the results
only and leave their verification as an exercise to the reader.
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It has been shewn (§ 36) that all groups of order p2 are Abelian ;
and hence the only distinct types are those represented by (2) and

0. !)
.

For Abelian groups of order/>2, the distinct types are (3), (2, 1)

and (1, 1, 1)
.

If a non-Abelian group of order p
2 contains an operation of

order p2, the sub-group it generates is self-conjugate ; hence (§ 109)
in this case there is a single type of group defined by

P? = E, QP = E
,

Q-lPQ = Pw*.

If there is no operation of order p\ then since there must be a
self-conjugate operation of order p, the group comes under the head
discussed in § 110 ; there is again a single type of group defined by

Pp=E, QP=E, B?--;E, E-1QR = QP,

R-lPR = P, Q-1PQ = P.

These two types exhaust all the possibilities for non-Abelian
groups of order p2.

113. For Abelian groups of order p4, the possible distinct types
are (4), (3, 1), (2, 2), (2, 1

,

1
) and (1, 1
,

1
,

1
).

For non-Abelian groups of order p4 which contain operations of
order p2 there is a single type, namely that given in § 109 when m

is put equal to 4.

For non-Abelian groups which contain a self-conjugate cyclical
sub-group of order p2 and no operation of order pS, there are three
distinct types, obtained by writing 4 for m in the group of § 110 and
in the first and the last groups of § 111. The defining relations of
these need not be here repeated, as they will be given in the sum
marizing table (§ 117).
It remains now to determine all distinct types of groups of

order p4, which contain no operation of order p2 and no self-conjugate
cyclical sub-group of order p2. We shall first deal with groups
which contain operations of order p2.

Let 5 be an operation of order p2 in a group G of order p4. The
cyclical sub-group {S} must be self-conjugate in a non-cyclical sub
group \S, T

) of order ps, defined by

S^=E, T* = E, T-1ST = Sl+"P.

If R is any operation of G, not contained in {S, T\, then since
\S) i
s not self-conjugate, we must have (§ 97)

R-1SR = S,+'PT*,

and therefore B-1SpR=Sf.
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Now t-is>t = sp,

and therefore the pth power of every operation of order p* in G is a
self-conjugate operation.

First let us suppose that G contains other self-conjugate opera
tions besides those of {ty}. Every such operation must occur in the

group that contains {S) self-conjugately ; hence in this case T must
be self-conjugate.

"We now therefore have .

S>*=E, T' = E, T~1ST = S,

R-lSR = tf+'PT?, R-'TE = T,

Rp = S™T&.

These equations give

(S*R)' = RPS^ = Sl*+WPT'.

Hence, if S = 0, S~yR is an operation of order p. Denoting this
by R and SapT^ by T, the group is defined by

S^=E, T'p=E, R'r^E, R'-'SR1 = ST',

T'-^ST' = S, R'-^T'R' = T'.

On the other hand, if 8 is not zero, rR is an operation of
order p' such that R transforms it into a power of itself. This is
contrary to the supposition that the group contains no cyclical self-
conjugate sub-group of order p2. Hence S cannot be different from
zero : we therefore have only one type of group.

114. Next, let contain all the self-conjugate operations of G;
and as before, let {<!>',T) be the group that contains {S\ self-
conjugately. If G contains an operation S' of order p2 which
does not occur in \S, T\, there must also be a non-cyclical sub
group \S', T'\ of order p3 which contains {S'\ self-conjugately.
Now {S, T\ and \S', T'\ must have a common sub-group of order p2 ;
since this is self-conjugate in G, it cannot be cyclical. The only
non-cyclical sub-groups of orders p2 that {S, T) and \S', T'\ contain
are {Sp, T\ and {S'p, T'). Honce these must be identical, and
therefore T must occur in \S', T'\. If now {S, T\ and \S', T') were
both Abelian, T would be permutable both with S and with 8', and
would therefore, contrary to supposition, be a self-conjugate opera
tion. Hence either (i

) G must contain a non- Abelian group \S, T\
of order p3, in which S is an operation of order p2 ; or (ii) the
Abelian group {S, T\, in which S is an operation of order p2, must
contain all the operations of G of order p2.
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In the case (i), the group is defined by

Sf'-=E, T* = E, T-lST

R-lSR = Sl+aP1+, R-'TR
RP = S>p.

If R = RSrTfh-;
it is found that

R-tSR = ST*, R'-1TR = T ;
and if R" = R?, where fifi = 1 (mod. p), then

R'^SR" = ST, R'-*TR' = T.

Hence dropping accents, the group is defined by

where xx = 1 (mod. p).

It is then found that the defining relations are reproduced,
except that the last becomes

There are therefore not more than three types corresponding to
0, 1 and any non-residue as values of a. That the type correspond
ing to a = 0 is distinct from the other two is obvious on consideration
of the sub-group that contains T self-conjugately. That the other
two are distinct is left as an exercise for the reader.

In case (ii), the group is defined by

with the condition that all operations of G, not contained in {S, T\,
are of order p.

The formulae for R-xSR* and R-xTR* enable us to calculate
directly the power of any given operation of G. Thus they give

8*2=B, Tf = E, T-1ST=S'+P,

R-lSR = ST, R-*TR = T,

R* =

Write now

s^s*, t1 = ts-)h*-vp, R^r*,

R1p = S1n*"p.

Sp2 = E, Tp=E, T-*ST = S,

R-1SR = Sl+aPTP, R-lTR = SyPT,
Rp = E;

{SxRf = Sp* {i+i9*(p+Ui,<p-i)+inp(f+i)}.
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If p>3, this gives

so that, if x is not a multiple of p, the order of S*R is p2. Hence
the type of group under consideration can only occur when p = 3.

In this case (S'Rf = 5»<1+W.

Hence if p = 3 and /3y = — 1 (mod. 3), we obtain a new type. A
reduction similar to that in the previous case may now be effected ;
and taking unity for x, the group is defined by

Si = E, T' = E, R2 = E, T-lST=S,
R-,SS = ST, R-lTR = S-'T.

115. It only remains to determine the distinct types which
contain no operation of order p'.

Suppose first that the self-conjugate operations of G form a

group of order p2. This must be generated by two independent
operations P and Q of order p.
If now R is any other operation of the group, {P, Q, R\ must be

an Abelian group of type (1, 1, 1). If again S is any operation not
contained in {P, Q, R\, it cannot be permutable with R ; for if it
were, R would be self-con jugate. There must therefore be a relation
of the form (§ 97)

S-1RS=RPa&-

Since any operation of {P, Q\ may be taken for one of its
generating operations, we may take P° Q* or P1 for one. If then Q'
is an independent operation of {P, Q\, G will be defined by

F* = E, Q'*=E, Rp=E, Sp = E, S-1RS=RP,

in addition to the relations expressing that P' and Q' are self-
con/ugate. There is then in this case a single type. That all the
operations of G in this case are actually of order p follows from the
fact that the group is the direct product of {Q'\ and [S, R\, the
latter being of the second type of non-Abeliau group of order p2.

116. Suppose, secondly, that the self-conjugate operations of G
form a sub-group of order p, generated by P. There must then be
some operation Q which belongs to a set of p conjugate operations ;
for if every operation of G which is not self-conjugate were one of
a set of p2 conjugate operations, the total number of operations in
the group would be congruent to p (mod. p2). It follows that Q
must be self-conjugate in a group of order p2 ; and since P is also
self-conjugate in this group, it must be Abelian. Let P, Q, R lle
generators of this group and S any operation of G not contained in
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it. We may now assume that Q belongs to the sub-group
(§ 93), and therefore that

while S-lRS = RQ*l'y.
i l

If /J were zero, QaR 1 would be a self-conjugate operation not
contained in \P\ ; and therefore (i must be different from zero. We
may now put

QePr = Q', P+=F;
and the group is then defined by the relations

F" = E, Q'" = E, R* = E, SP = E, S-1RS=RQ', S-1Q'S=Q'F,

together with the relations expressing that P is self-conjugate,
and {F, Q\ R] Abelian. There is thus again in this case, at most,
a single type. It remains to determine whether the operations are
all actually of order p.

Dropping accents the defining relations give

S-1 P°x Ryt S = f**., QPz+1RrM,

where ox+1
= ax + /£?„ @x+1 = Px + yx, yx+i = yx\

and therefore S-xPaQ* Rr 8* = PnxQ*xRyx,

where ax = a + £cj8 + \x(x- l)y, /3x = fi + xy, yx = y.
Hence

? r r

(Pa Q* Ry S)* = P'
"
Q™* R?*

= Ppn+JpO'-i)/5+J(p+i)]o(p-i)y @p0+JpO,-Hy Rvy .

If p is a greater prime than 3, the indices of P, Q, R are all
multiples of p ; hence Pa QP Ry S is of order p, S being any opera
tion not contained in G. If however p = 3, then

(PaQ*RrS)'=Pr,

so that, if y is not a multiple of 3, PaQPRrS is an operation of
order 9. Hence this last type of group exists as a distinct type for
all primes greater than 3 ; but for p = 3, it is not distinct from one
of the previous types containing operations of order 9.

117. In tabulating, as follows, the types of group thus
obtained, we give with each group G a symbol of the form

(a,b, )(a', V )(a", b", ) ,

indicating the types of //n, Hn-JHn, Hn^/Hn^, ... where

G, Hlt Ht, Hn,
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is the series of self-conjugate sub-groups defined in § 93. This
symbol is to be read from the left so that (a, b ) is the
type of Hn.

Moreover in each group there is no operation of higher
order than that denoted by P.

Table of groups of order pn, p an odd prime*.
I. n = 2, two types,

(i) (2); (ii) (1,1).

II. n = 3, five types.

(i) (3); (ii) (2, 1); (iii) (1, 1, 1);

(iv) P? = E,Q, = E, Qr'PQ = P"*, (1) (11) ;
(v) Pp = E, QP = E, Rp = E, R-'QR = QP,

R-*PR = P, Q-*PQ = P, (1) (11).
III. n = 4, fifteen types.
(i) (4); (ii) (3, I); (iii) (2, 2); (iv) (2, 1, 1);

(v) (1, 1, 1,1);

(vi) P* = E, QP=E, ^-P^P^, (2) (11);
(vii) Pp2 = E,Qp = E, Rp = E, R-*QR = QPp, Q-lPQ = P,

P-'PP = P, (2) (11) ;

(viii) P*2 = E,Qp2 = E, Q-'PQ = P1**, (11) (11) ;

(ix) PP2 = E, Qp = E,RP = E, R-*PR = P*+p, P-'QP = Q,
R-lQR=Q, (11) (11),

this group (ix) being the direct product of {Q} and {P, R} ;

(x) P*2 = E, Qp = E, Rp = E, R-'PR = PQ, Q-*PQ = P,

P-'QP=Q, (11) (11);

(xi) , (xii), and (xiii),
Pp2 = E,Qp = E, Q-'PQ = P1+p, R-'PR = PQ,
R-'QR = Q, Rp = P'p,.(1)(1){11),

* On groups of orders p2 and p4, the reader may consult, in addition to
Young's memoir already referred to, Holder, "Die Gruppen der Ordnungen
f*i y?2. P1ri i,V Math. Ann. xun (1893), in particular, pp. 371—410.

b. 10
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where for (xi) et = 0, for (xii) a=l, for (xiii) a = any non-
residue, (mod. p) ;

(xw)Pp = E, Q? = E, Rp = E, S* = E, S-'RS = RP,

S-*QS = Q, S-'PS = P, R-'QR = Q, R-lPR = P,

Q-*PQ = P, (11) (11),
this group (xiv) being the direct product of \Q] and {P, R, S] ;

(xv) p > 3,
pp = E,QP = E,Rp = E,&, = E, S-*RS = RQ, S-lQS = QP,

S-W = P, R-*QR = Q, R-'PR = P,
Qr*PQ = P, (1) (1) (11);

(xv) p = 3,

Pi = ^, Qi = .E, i? = #, Q-iPQ = P, R-lPR = PQ,
R-'QR = P-'Q, (1) (1) (11).

118. To complete the list, we add, as was promised in § 112,

the types of non-Abelian groups of orders 2s and 24; the

possible types of Abelian groups being the same as for an

odd prime.

Non-Abelian groups of order 2s ; two types.

(i) identical with II (iv), writing 2 for p ;
(ii) P4 = E,Q' = E, Q-*PQ = Qi = Pi, (1) (11).
Non-Abelian groups of order 24; nine types.
(i), (ii), (iii), (iv) and (v) identical with III (vi), (vii).

(viii), (ix) and (x), writing 2 for p ;

(vi) P4 = E, Q? = E,R2 = E, Q-'PQ = P-\ Qi = P',
R-'QR = Q, R-'PR = P, (H) (ii),

this group (vi) being the direct product of {R} and [P, Q} ;

(vii) P° = E, Q' = E, Q-'PQ = P-\ (1) (1) (11);
(viii) P2 = E,Qi = E, Qr*PQ = P\ (1) (1) (11);
(ix) P2 = E, Q' = E, Q-iPQ = P-\ Q' = Pi, (1) (1) (11).
119. Ex. 1. If G, of order pm, is not Abelian, and if every sub

group of G is self-conjugate, shew that p must be 2. (Dedekind.)

Ex. 2. Shew that a non-Abelian group of order p4 contains
2p2 — 1 conjugate sets of operations, if the central is of order p ;
and p2 +p2—p con/ugate sets if the central is of order p2.
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Ex. 3. Prove that a group whose order is a power of a prime
cannot be generated by two operations which are conjugate
within it.

Ex. 4. Prove that a group of order pa necessarily contains an
Abelian group of order pA, where A (A + 1) > 2a.

(Miller, Messenger of Mathematics, Vol. 27, p. 119.)
Ex. 5. If G is of order pm, and is an Abelian group of

type (1, 1, with m — 2 units), and if wi>5, G is the direct
product of two groups. If m = 5, there is one type for which G is
not a direct product, viz.

Qf = E, Qf = E, P>=E, Q^Q.Q^Q.P,
Q^PQ^P, Qt-lPQ, = P.

Ex. 6. Discuss the groups of order pm+s which contain two
cyclical sub-groups of orders pm and p2 with no common operation
except E. Shew that if P and Q generate these sub-groups, so that

P*m=E, Q^ = E,
the further defining relations are of the following forms :

(i
) Q-'PQ = P^Pm-1; (ii) Q-WQ = JP'+«'m-2 ;

(iii) Q-1PQ=PQ* ;

(iv) Q-*PQf=Pl+>P1-1, Q-*PQ = pi+y" -'Q'P.
How many types come under the last head ?

Ex. 7. Prove that the relations

A? = E, (t = l, 2
,

.... in), W = E
,

AiAjAiAj = C
, (i*j)

define a group of order 24n+1, of which E and C are the only self-
conjugate operations. Shew also that the group contains

operations of order 4, and 2J„- (— 1)"+122n- 1 operations of order 2
.

Ex. 8
. Shew that, when n = 1, the group of the previous

example can be expressed in the form in which Alt At, At, At
are the substitutions,

=2^, SJi = 2q , a:2 = x*4 , xt = Xl j

' M ' ' m A* ' 1* ' m .

a?i = w?2, x2 = — ixil xt = — tXij = ;

ii=-1.
(This, in fact, gives the most general group of space-collineations
which are all of order 2. The reader should verify that it can be
expressed in a real form.)

10—2
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Ex. 9. If the order of every operation of a group, except
identity, is 3, prove that any two conjugate operations are per-
mutable. Shew also that if the group be generated by n
independent operations, its order is equal to or is a factor of 32"-1.

[Quarterly Journal of Pure and Applied Mathematics, 1902.)

Ex. 10. Discuss the group generated by A and B, where

A2 = B2, = E,

S being any operation of the group. In particular prove that the
order of the group is 22", the order of its central is 2", and the order
of A-1B^AB is 2n-1. Shew also that {A2, A^B^AB] is an Abelian
self -con/ugate sub-group of type (n— 1, n- 1)

,

and that every opera
tion of the group not contained in this sub-group is of order 2a.

Ex. 11. Prove that the relations

Pi*Pt-*Pf,= Q1, Pr'P^PtP^Qt, PrlP.-*PiPt-Q„
Pp = Pf = P,p = Qp = Qf = Qf = E,

while Qlt Q2, Q2 are self-conjugate operations, p being an odd
prime, define a group of order p*, all of whose operations are of
order p ; and shew that in this group every operation is either
self-conjugate or one of a set of p2 conjugate operations.

Ex. 12. Prove that a group, the order of whose central is p,
cannot be the derived group of any group whose order is a power
of p. Hence shew that all groups of order p2 are metabelian.



CHAPTER IX.

ON SYLOW'S THEOREM.

120. We have seen in § 35 that if pm divides the order
of a group, p being a prime, there is at least one sub-group
of orderpm. If pa is the highest power of p which divides the
order, the group can contain no sub-group of order p"+1, since
this number is not a factor of the order of the group. That
the group actually contains sub-groups of order pa that these

sub-groups form a single conjugate set and that their number
is congruent to unity, mod. p, was first established by Sylow*.

We shall devote the present chapter to the proof of Sylow's
theorem ; and a consideration of some of its more immediate

consequences. These constitute, as will be seen later on, a most

important set of results.

Theorem I. If p" is the highest power of a prime p which
divides the order of a group G, the sub-groups of O of order pa
form a single conjugate set, and their number is congruent to

unity, mod. p.

That G has at least one sub-group of order p1 has been

proved in § 35.

If H is a sub-group of G of order p" the only operations of
G, which are permutable with H and have powers of p for
their orders, are the operations of H itself. For if P is an
operation of order pr, permutable with H, and if p2 is the order
of the greatest group common to \P\ and H, the order of {H,P\
is pa+v-'. But G can have no such sub-group unless s = r, in
which case P belongs to H.
* Sylow, Theoremes sur les groupes de substitutions, Math. Ann. v (1872),

pp. 584 et seq. Compare also Frobenius, Neuer Beweis des Sylow'schen Sattes,
CrelU, c (1886), p. 179.
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Suppose now that H' is any sub-group conjugate to H;
and let pP be the order of the group h common to H and H',
when H' is transformed by all the operations of H, the opera
tions of h are the only ones which transform H' into itself.
Hence the operations of H can be divided into pa~* sets of pP
each, such that the operations of each set transform H' into a
distinct sub-group. In this way, pa~* sub-groups are obtained
distinct from each other and from H and conjugate to H. If
these sub-groups do not exhaust the set of sub-groups conjugate
to H, let H" be a new one. From H" another set of p'-?
sub-groups can be formed, distinct from each other and from H
and conjugate to H. Moreover no sub-group of this latter set
can coincide with one of the previous set. For if

where Pj and P2 are operations of H, then
H"=Pt-lH'Pu

where P, (= P^Pf') is an operation of H; and this is contrary to
the supposition that H" is different from each group of the
previous set. By continuing this process, it may be shewn that
the number of sub-groups in the conjugate set containing H is

l+p'-t+p*-*' + ,

where no one of the indices a — /S
,
a — /9' can be less than

unity. The number of sub-groups in the conjugate set con

taining H is therefore congruent to unity, mod. p.

If now 0 contains another sub-group of order pa, it must

belong to a different conjugate set. The number of sub

groups in the new set may be shewn, as above, to be congruent
to unity, mod. p. But on transforming b

y the operations of
H, a set of p*~y conjugate sub-groups is obtained where p"* is

the order of the sub-group common to H and Hi. A further
sub-group of the set, if it exists, gives rise to pa~y' additional
conjugate sub-groups, distinct from each other and from the

previous pp~y. Proceeding thus we shew that the number of

sub-groups in the conjugate set is a multiple of p; and as it

cannot be at once a multiple of p and congruent to unity, mod.
p, the set does not exist. The sub-groups of order therefore

form a single conjugate set and their number is congruent to

unity, mod. p.
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Corollary I. If pam is the order of the greatest group /,
within which the group H of order pa is contained self-
conjugately, the order of the group G must be of the form

pfn (1 + kp).

Corollary II. The number of groups of order pa contained
in G, i.e. the factor 1 + kp in the preceding expression for the

order of the group, can be expressed in the form

1 +k1p + k,pi+ ... + kap%

where krpr is the number of groups having, with a given group
H of the set, greatest common sub-groups of order pa-r.
This follows immediately from the arrangement of the set

of groups given in the proof of the theorem. Thus each of the

pa-p groups, obtained on transforming H' by the operations of
H, has in common with H a greatest common sub-group of
order p*. It may of course happen that any one or more of the
numbers k2, ka is zero. If no two sub-groups of the set
have a common sub-group whose order is greater than pr, then

Id, k2, Att-r-i all vanish; and the number of sub-groups in
the set is congruent to unity, mod. pa-r. Conversely, if p2 is the
highest power of p that divides kp, some two sub-groups of
the set must have a common sub-group whose order is not less
than p"-* ; for if there were no such common sub-groups, the
number of sub-groups in the set would be congruent to unity,
mod. p*+1.

Corollary III. Every sub-group of G whose order is p9,
(/S < a), must be contained in one or more sub-groups of order p".

For if the sub-group of order p* is contained in no sub-group
of order p*+\ the only operations whose orders are powers of p
that transform it into itself are its own. In this case, the

preceding method may be used to shew that the number of

sub-groups in the conjugate set to which the given sub-group
belongs must be congruent to unity, mod. p. But this is
impossible, as the number of such sub-groups must, on the

assumption made be a multiple of pa-9. The sub-group of

order p* is therefore contained in one of order p*+1, and hence

repeating the same reasoning in one of order p".
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121. We shall refer to Theorem I as Sylow's theorem. In
discussing in this and the following paragraphs some of the
results that follow from Sylow's theorem, we shall adhere to the
notation that has been used in establishing the theorem itself.
Thus pa will always denote the highest power of a prime p
which divides the order of G ; the sub-groups of G of order p"
will be denoted by H, Hlt and the greatest sub-groups of G
that contain these self-conjugately by /, /„ These latter
form a single conjugate set of sub-groups of G, whose orders are

p"m, the order of G itself being pam (1 + kp). Moreover the
number of groups in this conjugate set is 1+kp.

Suppose now that S is any operation of G whose order is a
power of p. When the 1+kp sub-groups

H, Hlt H„_, Hkp

are transformed by S, each one that contains S is transformed
into itself, while the remainder are interchanged in sets, the
number in any set being a power of p. Hence the number of
these groups which contain <

S
,

must be congruent to unity,
mod. p. In precisely the same way, it may be shewn that the
number of sub-groups of order pa, which contain a given sub

group of order p8, is congruent to unity, mod. p.
If ffi, git ..., ffx are the different sub-groups of order p8 con

tained in G
,

and if gt enters in 1 + Up sub-groups of order p",
i-x

then 2 (1 + £,p) is the number of sub-groups of order p
8 when

each is reckoned once for each sub-group of order p" in which

it enters. Now it has been seen in § 103 that a group of order
p" has 1 +lp sub-groups of order p8; and since the 1+kp sub
groups of order pain G are all conjugate, they each contain the
same number of sub-groups of order p8. Hence

i(l+i4p) = (l-rZp)(l+*p),

l

or x=l (mod. p).

Theorem II. If p* divides the order of a group, the
number o

f sub-groups o
f order p8 is congruent to unity, mod. p *.

When j8 < a this set of sub-groups will obviously, in general,
not form a conjugate set.

* Frobenius, Berliner Sittungtberichte (1895)., p. 998.



122] 153SYLOW'S THEOREM

122. Theorem III. Let pa be the highest power of a prime
p which divides the order of a group G, and let H be a sub-group
of G oforder pa. Let h be a sub-group common to H and some
other sub-group of order pa, such that no sub-group, which contains
h and is of greater order, is common to any two sub-groups of
order p". Then there must be some operation of G, of order
prime to p, which is permutable with h and not with H*.

Suppose that H and H' are two groups of order pa to
which h is common ; and let A, and A,' be sub-groups of H and
H', of greater order than h, in which h is self-conjugate. If A,
and hi generate a group whose order is a power of p, it must
occur in some group H" of order pa; and then H and H " have
a common group hlt which contains h and is of greater order.

This is contrary to supposition, and therefore the order of the

group generated by hl and A,' is not a power of p. Hence A is

permutable with some operation whose order is prime to p.

Let pr be the order of h, and pr+'n be the order of the

greatest sub-group i of G that contains h self-conjugately. If t
contained a self-conjugate sub-group of order pr+', A, and A/
would be sub-groups of it and they would generate a group
whose order is a power of p which is not the case. If two
sub-groups of i of order pr+' had a commou sub-group of order
p2"*"1, then two sub-groups of G of order pa would have a common

sub-group containing A and of greater order, .which again is
not the case. Hence i must contain 1 + k'p2 sub-groups of order
pr+', and n = rn'(l + k'p2) ; so that in i a sub-group of order pr+'
is self-conjugate in a sub-group of order pr+*m. No sub-group
of i of order pP** (t > 0) can occur in more than one sub-group
of order pa ; and the 1 + k'p* sub-groups of i of order p'4"* belong
therefore to 1 + k'p* distinct sub-groups of order p°. Moreover
A occurs in no sub-groups of order pa other than these 1 + k'p2.
For if A occurred in another sub-group Hlt it would in this
sub-group be self-conjugate in a group of order pr+*' (s

'

> 0
)
; and

this group would occur in i. This group would then be common
to two sub-groups of order pa, contrary to supposition.

* Frobenius, " Ueber endliche Gruppen," Berliner Sittungsberichte (1895),
p. 176: and Burnside, "Notes on the theory of groups of finite order," Proc.
London Mathematical Society, Vol. xxvi (1895), p. 209.
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An operation of », which transforms one of its sub-groups
of order pr+t into another, must transform the sub-group of order
pa containing the one into that containing the other. Hence i
must contain operations which are not permutable with H.
The greatest common sub-group of i and I is that sub-group
of i of order pr+'rri which contains the sub-group of order pr+"
belonging to H self-conjugately. For every operation, that
transforms this sub-group of order pr+s into itself, must trans
form H into itself ; and no operation of t can transform H into
itself which transforms this sub-group of order pr+' into another.

The sub-group h of order pr here considered may be called
a maximum common sub-group of two sub-groups of order pa.
It is not necessarily a sub-group of the greatest possible order
common to two sub-groups of order pa; but no sub-group
containing it and of greater order is common to two such
sub-groups.

When H is Abelian a corresponding theorem holds for the
common sub-group of any pair of sub-groups of order p\ Let
h be the common sub-group of H and H'. Then every opera
tion of A is a self-conjugate operation in {H, H'}. If then K is
the greatest sub-group of G in which every operation of h is

self-conjugate, K containing two must contain 1+k'p sub
groups of order pa ; and its order must be pam'(l +k'p), where

pam' is the order of the greatest sub-group of / in which every
operation of h -is self-conjugate. In this case every operation
common to two sub-groups of order pa is permutable with some

operation whose order is relatively prime to p.

123. Let P be an operation, or sub-group, which is self-
conjugate in H; and let Q be another operation, or sub-group,
of H, which is conjugate to P in G, but not conjugate to P in /.
Suppose first that, if possible, Q is self-conjugate in H. There
must be an operation S which transforms P into Q and H into
some other sub-group H', so that

S-*PS = Q,

Now in the sub-group which contains Q self-conjugately,

the sub-groups of order pa form a single conjugate set, and
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H must occur among them. Hence this sub-group must contain
an operation T such that

and T-lH'T= H.
It follows that

or that, contrary to supposition, P and Q are conjugate in /.
Hence :—

Theorem IV. Let G and H be defined as in the previous
theorem, and let I be the greatest sub-group of G which contains
H self-conjugately. Then if P and Q are two self-conjugate
operations or sub-groups of H, which are not conjugate in I,
they are not conjugate in G.

Corollary. If H is Abelian, no two operations of H which
are not conjugate in / can be conjugate in G. Hence the
number of distinct sets of conjugate operations in G, which
have powers of p for their orders, is the same as the number of
such sets in /.

124. Suppose next that Q is not self-conjugate in H.
Then every operation that transforms Q into P must transform
H into a sub-group of order pa in which P is not self-conjugate.
Of the sub-groups of order pa, to which P belongs and in which
P is not self-conjugate, choose H' so that, in H', P forms one
of as small a number of conjugate operations or sub-groups as

possible. Let g be the greatest sub-group of H' that contains
P self-conjugately. Among the sub-groups of order pa that
contain P self-conjugately, there must be one or more to which
g belongs. Let H be one of these ; and suppose that h and h'
are the greatest sub-groups of H and H' respectively that
contain g self-conjugately. The orders of both h and h' must

(Theorem III, § 96) be greater than the order of g; and in con
sequence of the assumption made with respect to H', every
sub-group, having a power of p for its order and containing h,
must contain P self-conjugately.
Now consider the sub-group {
h
,

h'}. Since it does not
contain P self-conjugately, its order cannot be a power of p.
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Also if p8 is the highest power of p that divides its order, it
must contain more than one sub-group of order pP. For any
sub-group of order pP, to which h belongs, contains P self-
conjugately ; and any sub-group of order pP, to which h' belongs,
does not. Suppose now that S is an operation of {h

,

h'}, having
its order prime to p and transforming a sub-group of [h

,

h
'} of

order pP, to which h belongs, into one to which h
'

belongs.
Then S cannot be permutable with P ; for if it were, P would
be self-conjugate in each of these sub-groups of order pP. When
P is an operation, we may reason in the same way with respect
to {P}. Since g is self-conjugate in both h and h', S must
transform g into itself. Now P is self-conjugate in g, and
therefore S^PS* is also self-conjugate in g for all values of r.
If then is the first power of S which is permutable with P,
the series of groups P, S-'PS, , S^+'PS1'1 are all distinct
and each is a self-conjugate sub-group of g. Every group in
this series is therefore permutable with every other. Hence :—

Theorem V. // G and H are defined as in the two preceding
theorems, and if P is a self-conjugate sub-group or operation of

H, then either (i) P must be self-conjugate in every sub-group

o
f 0
,

o
f order jo°, in which it enters, or (ii) there must be an

operation S
,

o
f order q prime to p, such that the set of sub

groups S~r {Pj/Sr(r = 0, 1, q — 1
) are all distinct and per

mutable with each other.

125. If if is a characteristic sub-group of H, a sub-group
of order p* of 0

,
it is necessarily a self-conjugate sub-group of /.

The greatest sub-group J in which K is self-conjugate must
contain 1 +k'p(k'^0) sub-groups of order pa, which in J form

a single conjugate set, and its order will be p*m(l +k'p). It
will be one of a set of 1 +k"p conjugate sub-groups, where

(l+fc»(H-rp)=l+&p.
Since this set of conjugate sub-groups contains all the sub

groups of order p", each of the latter will enter in one only of
the former.

If H contains a second sub-group K', of the conjugate set
to which K belongs, then K cannot be self-conjugate in H;
for if it were H would occur in two distinct sub-groups of the
set to which J belongs.
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Now h, the central of H, is a characteristic sub-group ; and
if h is the common sub-group of H and H', every operation
of h is permutable with every operation of {

h
,

h'\. With
respect to the latter group there are three possibilities.

First, h and h' may be identical with each other. In this
case h must be one of 1 + k"p(0 < k" ^k) conjugate sub-groups.

Secondly, h and h
'

being distinct, the order of [h
,

h
'\ may be

a power of p. When this is so there must be a sub-group H",
of order p', containing [h

,

h
'\
; and in H" either h or h'
,

say h
,

is not the central. Then h is not self-conjugate in H", and
therefore b

y Theorem V there must be an operation S
, of order

q prime to p, such that h
, S-lhS, S-^^hS^-1 are distinct

and permutable with each other.

Lastly, if the order of {
h
,

h
'\ is not a power of p, there must

be an operation, of order prime to p, permutable with every

operation of h
. Hence :—

Theorem VI. If pa is the highest power of p dividing the
order o

f G and if G contains more than one sub-group of order
p°, then either (i

) every operation belonging to two sub-groups o
f

order pa must be permutable with some operation whose order is

prime to p, or (ii) two or more sub-groups o
f order pa must have

the same central, or (iii) there must be q
, prime to p, sub

groups o
f order pa, whose centrals are distinct and permutable

with each other, and are permuted cyclically on transformation

b
y an operation o
f order q.

126. In illustration of Sylow's Theorem and its consequences
we will deal with the problem of determining all distinct types of
group of order 24.

A group of order 24 must contain either 1 or 3 sub-groups of
order 8, and either 1 or 4 sub-groups of order 3

. If it has one
sub-group of order 8 and one sub-group of order 3, the group must,
since each of these sub-groups is self-conjugate, be their direct
product. We have seen (§ 118) that there are five distinct types
of group of order 8 ; there are therefore five distinct types of group
of order 24, which are obtained by taking the direct product of any
group of order 8 and a group of order 3

.

If there are 3 groups of order 8
, some two of them must

(Theorem I, Cor. II, § 1 20) have a common sub-group of order 4 ;

and (Theorem III, § 122) this common sub-group must be a self
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conjugate sub-group of the group of order 24. Moreover if
, in

this case, a sub-group of order 8 is Abelian, each operation of the
self-conjugate subgroup of order 4 must (§ 122) be a self-conjugate
operation of the group of order 24.

With the aid of these general considerations, it now is easy to
determine for each type of group of order 8

,

the possible types of
group of order 24, in addition to the five types already obtained.

(i
) Suppose a group of order 8 to be cyclical, and let A be an

operation that generates it. If [A] is self-conjugate and B is an
operation of order 3

, then

B~lAB = A\
and therefore B-'AB3 = A «s

,

Hence o* = 1 (mod. 8),

and therefore a = l (mod. 8);
so that A and B are permutable. This is one of the types already
obtained. Hence for a new type, {A) cannot be self-conjugate, and
A* must be a self-conjugate operation ; B is therefore one of two
conjugate operations, while {B\ is self-conjugate. Hence the only
possible new type in this case is given by

A-'BA = B~\

(ii) Next, let a group of order 8 be an Abelian group defined by

A* = E
,

B> = E, AB = BA.

If this is self-conjugate, then, by considerations similar to those
of the preceding case, we infer that the group is the direct product
of groups of orders 8 and 3. Hence there is not in this case a new
type.

If the group of order 8 is not self-conjugate, the self-conjugate
group of order 4 may be either {A\ or {A\ B\. In either case, if C

is an operation of order 3, it must be one of two conjugate operations
while {C} i

s self-conjugate. Hence there are two new types respec
tively given by

C* = E, BCB = C-1, A-lCA = C;

and C3 = E, A~1CA = C-1, BCB = C.

(iii) Let a group of order 8 be an Abelian group defined by

A*=E, Bi = E, C3 = E, AB = BA, BC=CB, CA = AB.

If it is self-conjugate, and if the group of order 24 is not the
direct product of groups of orders 8 and 3, an operation D of order 3

must transform the 7 operations of order 2 among themselves ; and

it must therefore be permutable with one of them. Now the relations

D~lAD = A
, D-lBD=AB,
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are not self-consistent, because they give

£-2££* = B.

Hence, since the group of order 8 is generated by A, B and any
other operation of order 2 except A B, we may assume, without loss
of generality, that

D-*AD = A, D-lBD = C, D-lCD = AxBiC.

These relations give

B =D-SBD2 = D-lA*&C%D = A*l+*)B»Cy+* ,

and therefore y = z = 1.

Now if B-lCD = ABC,

and if AB = F, AC=C,
then D-,B'D = C, D-1C'D = FC;
so that the two alternatives x = 0 and x — 1 lead to simply iso
morphic groups.

Hence there is in this case a single type. It is the direct
product of {A\ and {D, B, C\, where

D-lBD = C, D-lCD = BC.

If the group of order 8 is not self-conjugate, the self- conjugate
group of order 4 may be taken to be {.4, B\ ; and D being an opera
tion of order 3, there is a single new type given by

I? = E, CDC =D-\ ADA = D, BDB=D.

(iv) Let a group of order 8 be a non-Abelian group defined by

Al = E, &=E, A2 = B2, B-iAB = A-1;

and let C be an operation of order 3. If the group of order 8 is
self-conjugate, and the group of order 24 is not a direct product of
groups of orders 8 and 3, C must transform the 3 sub-groups of
order 4, {A\, {B) and {AB\, among themselves. Hence we may take

C-1AO = B,

and C-1BC = AB or (ABf.
The supposition that C transforms B into (ABf leads to a contra
diction. Hence in this case there is only one new type, given by

C' = E, C-*AC = B, C-lBC = AB.

If the sub-group of order 8 is not self-conjugate, the self-conjugate
sub-group of order 4 is cyclical, and each of its operations must be
permutable with (7. Hence again we get a single new type, given by

C=^, A-'CA^C, B-*CB = C-\
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(v) Lastly, let a sub-group of order 8 be a non-Abelian group
denned by

A4 = E, B2 = E, BAB = A-\
This contains one cyclical and two non-cyclical sub-groups of

order 4. If it is self-conjugate, the group of order 24 must therefore
be the direct product of groups of orders 8 and 3 ; and there is no
new type.

If the sub-group of order 8 is not self-conjugate, and the self-
conjugate sub-group of order 4 is the cyclical group {A\, then A
must be permutable with an operation C of order 3, and there is a
single new type given by

C = E, A -lCA = C, BOB = C-\
If the self-conjugate sub-group of order 4 is not cyclical, it may

be taken to be {E, A2, B, AW). If C is permutable with each
operation of this sub-group, there is a single type given by

C2 = E, A-*CA = C-\ BCB = C.
If C is not permutable with every operation of the self-conjugate

sub-group, it must transform A2, B, AW among themselves and we
may take

C-1A2C = B, C-lBC = AW.

Now \C, A2, B\ is self-conjugate, and therefore A must transform
C into another operation of order 3 contained in this sub-group.
Hence

A-*CA = CxA2yB'.

The only values of x, y, z which are consistent with the previous
relation

A'CA2 = CAW,

are x=2, y = «= 1 j or a; =.2, y=l, z = 0.
Either set of values lead to the same type denned by

A4 = E, B'=E, BAB=zA-\
C2 = E, C-lA2C= B, C-WC^A'B,

A-lCA = CA2B.

When B is eliminated between these relations, it will be found
that the only independent relations remaining are

A4=E, C2=E, (ACf = E.
It is a good exercise to verify that these form a complete set of

denning relations for the group. (Compare Ex. 1, § 34.)

There are therefore, in all, fifteen distinct types of group of order
24. The last of these is the only type, which has neither a self-
conjugate sub-group of order 8, nor one of order 3. The reader
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should satisfy himself, as an exercise, that, in the ten cases where
the group is not a direct product of groups of orders 8 and 3, the
defining relations which we have given are self-consistent. This is
of course an essential part of the investigation, and we have
omitted it for the sake of brevity.

It is to be noticed that the last type obtained gives an example,
and indeed the simplest possible, of Theorem V, § 124. Thus in
{A, B) of order 8, A2 is a self-conjugate operation and B is not. In
the group of order 24, the operations A2 and B are conjugate ; and
C is an operation, of order prime to 2, such that A\ C-lA2C, C-"A2C2
generate three mutually permutable sub-groups.

A discussion similar to that of the present section (but simpler,
since in each case the number of types is smaller), will verify the
following table*: —

Order 6 10 12 14 15 18 20 21 22 24 26 28 30

Number... 2 2 5 2 1 5 5 2 2 15 2 4 4

This table, taken with the results of Chapter VIII, gives the
number of distinct types of groups for all orders less than 32.

127. As a second example, we will discuss the groups of order 60
which have no self-conjugate sub-group of order 5. (The reader
will find it a good exercise to verify that there are 12 distinct
types of group of order 60 with a self-conjugate sub-group of
order 5.)

A group G of order 60 must, by Sylow's theorem, contain either
1 or 6 cyclical sub-groups of order 5. If it contains 6, no operation
of order 3 can be permutable with an operation of order 5, and
therefore by Sylow's theorem there must be 10 conjugate sub
groups of order 3. Hence G contains 24 operations of order 5
and 20 operations of order 3. If any operation of order 5 were
permutable with an operation of order 2, all its powers would
be permutable with the same operation, and therefore, since the
sub-groups of order 5 form a single conjugate set, every operation of
order 5 would be permutable with an operation of order 2. The
group would then contain at least 24 operations of order 10. This
is clearly impossible, since the sum of the numbers of operations of
orders 3, 5 and 10 would be greater than the order of the group.
Hence the sub-group of order 10, which contains self-conjugately a
sub-group of order 5, must be of the type

A" = E, S°=E, ASA = S-K

Miller, Comptes Rendus, cixn (1896), p. 370.

B. 11
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In a similar way, we shew that a sub-group of order 6, which
contains self-conjugately a sub-group of order 3, is of the type

A2=E, B2 = E, ABA = B-\
Since no operation of order 3 or 5 is permutable with an operation

of order 2, it follows (Theorem III, § 122) that no two sub-groups of
order 4 can have a common operation other than identity. Hence
there must be 5 sub-groups of order 4 ; for if there were 3 or 15,
some of them would necessarily have common operations. Each
sub-group of order 4 is therefore contained self-conjugately in a
sub-group of order 12. Such a sub-group of order 12 can contain no
self-conjugate operation of order 2, since G contains no operation of
order 6. Hence the sub-groups of order 4 are non-cyclical, and the
3 operations of order 2 in any sub-group of order 4 are conjugate
operations in the sub-group of order 12 containing it. This sub
group must therefore be of the type

B2=E, B-1A1B = At, B-1A2B = AlA„
where At and A^ are permutable operations of order 2.

The 5 sub-groups of order 4 contain therefore 15 distinct opera
tions of order 2 ; and these form a conjugate set. We have already
seen that the 20 operations of order 3 form a conjugate set, and
that the 24 operations of order 5 form two conjugate sets of 12
each. Hence the 60 operations of the group are distributed in 5
conjugate sets, containing respectively 1, 12, 12, 15 and 20 opera
tions. It follows at once (§ 27) that the group, if it exists, is simple.
A sub-group of order 12, the existence of which has been proved,

must be one of 5 conjugate sub-groups ; and, since the group is
simple, no operation can transform each of these into itself. Hence
if the 5 conjugate sub-groups

Hlt Hit Hit Hit H,
are transformed by any operation of the group into

Hi, Hi, H2', Hi, Hi,
and if we regard

(Hlt H„ H2, Hit i/„\\Hi, Hi, Hi, Hi, Hi)
as a permutation performed on 5 symbols, the group is simply
isomorphic with a permutation-group of 5 symbols. In other words,
the group can be represented as a group of permutations of 5 symbols.
Now there are just 60 even permutations of 5 symbols; and it is
easy to verify that the group they form satisfy all the conditions
above determined. Moreover it will be formally proved in Chapter
X, and it is indeed almost obvious, that no group of permutations
can be simple if it contains odd permutations. Hence finally, there
is one and only one type of group of order 60 which contains 6 sub
groups of order 5.
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Ex. 1. Shew that there is a single type of group of order 84
which contains 28 sub-groups of order 3 ; and determine its defining
relations.

Ex. 2. Discuss the different types of group whose order is 34 . 13.

Ex. 3. If pa(a>1) is the highest power of p which divides the
order of G, and if 1 + kp be the number of sub-groups of G of order
p", shew that (i

) if 1 + kp <ps, or (ii) if a group of order pa is

cyclical and 1 + kp<pa, G is composite.

(Maillet, Comptes Rendus, cxvm (1894), p. 1188.)

128. We shall now consider the particular case in which
the Sylow sub-groups, i.e. the sub-groups whose orders are the

highest powers of primes dividing the order of the group, are all

cyclical.

Let the order N of G be pf'pf2 . . . pn°", where pl < ps < ...< pn
are primes. Since G contains operations whose orders divide
N and do not divide Nlplt the number of operations whose
orders divide N/pl must be \Nlp1, where \<p1. If Pi is any
operation of G of order pf', the cyclical sub-group {P,} con
tains pi'' — p''-1 operations of order pf \ each of which is per-
mutable with the same number of operations whose orders are

prime to p1. Hence, since no two distinct sub-groups of order

p,"1 contain a common operation of order p,^, while an operation
of the group whose order is divisible by pfi can be represented
in one way only in the form PS, where P and S are permutable
and of order p,ai and s (prime to pj, the number of operations
whose orders are divisible by p^i is a multiple of p1 — 1

. Now
this number is (p, — X

) N/pt ; and as pt is the smallest prime
factor of N, p, — 1 cannot divide N/pl. Therefore Pi — 1 divides
p, — X

,

or X = 1.

The number of operations of the group whose orders divide

N/pi is therefore equal to N/pi. This reasoning may be re
peated to shew that the number of operations which divide

N/pf (a=l, 2, ... a,) is equal to N/p^. Moreover the same
reasoning, since the group contains operations of order p,°2, may
be applied to shew that the number of operations whose orders

divide N/p^ip2b (b = 1
, 2
, ... a2) is equal to N/plaipib. Hence if

O^di^a<, the number of operations of the group whose orders

divide
p"<P<*J*1 ...p0" i

s equal to this number, for all values of

11—2
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i from 1 to n. In particular the number of operations of the
group satisfying

is pnan. The group therefore has a single sub-group of order

jVX which is necessarily self-conjugate. Let Gn be this sub
group, and ifn-i any sub-group of G of order p^-1. Then since

Gn is self-conjugate, Gn and #n-i are permutable ; while since
their orders are relatively prime, they have no common opera
tion except E. Hence the order of {H^, Gn), or (?n-„ is

pa'-1pan. Now G contains just p^'^P"" operations whose

orders divide this number. Hence Gn-l consisting of these

operations is the only sub-group of G of order pa"-lpa", and is

therefore self-conjugate. Similarly it may be shewn that, for
each i, G contains a single sub-group, necessarily self-conjugate,

of order pa'pa<+1 ... pa". Moreover if H is a sub-group of
of order pfii (0 < a( < a,), {H, (?<+,) is a sub-group of order

paipai+1 , , . p°n of G ; and therefore from what has been proved

above is the only sub-group of G of this order.

Since Gj is a self-conjugate sub-group of G, it must contain
all the sub-groups of order pfj. If there are 1 + kp} of these
sub-groups, 1 + kp} must be a factor of p^1 . . . paa

. and a sub

group of order pf} is contained self-conjugately in a sub-group
of order N/(l + kpj). If i<j, this number is divisible by pft,
and therefore G contains sub-groups of order pfipfi. This
process may clearly be used to shew that ifNi, a factor of N, and
N/Ni are relatively prime, G contains sub-groups of order N,.
Since G2 is a self-conjugate sub-group and G/G„ is Abelian, the
derived group of G is contained in (?2. Similarly the derived
group of (r2 is contained in G, and so on. The group G is
therefore a soluble group.

It is to be noticed that the only part of the preceding investiga
tion which depends on the group of order being cyclical is the
statement that the number of operations of G whose orders divide
pn\(an<an) is equal to pn"n. If this statement be omitted, the
remaining results hold good whatever the type of the group of order

may be.
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129. Let P1/ Pi, Pn be operations of G of orders

Pi\ pf2
gH-l-Oa-1

If Pn"i' is the lowest power of Pn-, which is per-
mutable with Pn, then (and therefore (?) contains a

single cyclical sub-group of order paa-'pan and no cyclical sub

group of order p""-1+'p°"- It is generated by

P^--1 Pn, or Q„.

If Pn""22 *s the lowest power of Pn-, which is permutable

with Qn-l , then Gn-z (and therefore G) contains a single cyclical

sub-group of order p^^p^^pan and no cyclical sub-group

whose order is a multiple of this. It is generated by

Continuing thus G contains a single cyclical sub-group of

order paip°2 ...p""-1P^ and no cyclical sub-group whose order

is a multiple of this. It is generated by

Pj1 ...P\X Pn or Q.

No operation of G which is not contained in {Q} can be

permutable with Q. For if S were such an operation {S, Q]
would be an Abelian group, necessarily cyclical, whose order
would be a multiple of p^pt<H . . . pnn* ; and no such group
exists. If S, T are any two operations of G which are not
contained in {Q}, and if

S-'QS = Qa, T-'QT=Q*,

then T^S-'QST =T-'QaT=Q*,

ST-*S-*QSTS-* = SQ*>S-' = Q",

and therefore STS-'T-i is contained in (Q). Hence G/{Q] is
Abelian, and therefore necessarily cyclical. Let R be an
operation of G which corresponds to a generating operation of

G/{Q}. Then if

Pi'hpt"' . . . pna" = and N = fip,

Qr = E, R" = Q?, R-'QR = Qa,
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where a belongs to index v, mod. fi are the generating relations

of O.

In the particular case* in which N contains no repeated
prime factor, G has a sub-group of order v, and the relation

is replaced by the simpler one

R" = E.
In the general case

Q-*RQ = RQ*-,

and therefore t is subject to the condition (a — 1) t = 0 (mod.

130. We shall conclude the present chapter by shewing
that any group which has a series of self-conjugate sub-groups
similar to those of § 93 is the direct product of its Sylow

sub-groups.

Theorem VII. If a group G, of order paq*...r*, where
p, q, r are distinct primes, has a series of self-conjugate
sub-groups

G, Hi , H„ .... Hn, E,

such that in G/Ht every operation of #t-,/i7t is self-conjugate,
then G is the direct product of groups of orders pa, qf, . . . , r*.

Suppose, if possible, that p divides the order of Hn-i aQd
does not divide the order of Hn. If P is an operation of order
p contained in Hn^, [P, Hn) is a self-conjugate sub-group of G ;
and every operation con/ugate to P is contained in the set
PHn. But the only operation of this set, whose order is p, is P.
Hence P must be a self-conjugate operation, contrary to the
supposition that has been made. Hence if the order of Hn is
not divisible by p, neither is the order of H^. Suppose, next,
that p* is the highest power of p that divides the orders of both

Hi and H,+1. Then the order of the sub-group HJH^ of
G/H,+i, formed of the self-conjugate operations of the latter, is
not divisible by p ; and therefore the order of is not

divisible by p. Hence p* is the highest power of p that divides
the order of jET,-1. This reasoning may be repeated to shew
that p* is the highest power of p that divides the order of each
* Holder, " Die Gruppen mit quadratfreien Ordnungszahl," G'dttingen Nach-

richten, 1895, pp. 211—229.
t Bumside, "On finite groups in which all the Sylow sub-groups are

cyclical," Metsenger of Mathematics, Vol. mxv (1905), pp. 46—50.
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of the groups H,-t, H,-s Hence x must be equal to a ;
and therefore the order of Hn must be divisible by each of the
primes p, q r.

Suppose now that, for each prime p which divides the order
of G, every operation of H,, whose order is a power of p, is
permutable with every operation of G whose order is relatively
prime to p, so that H, is the direct product of its Sylow sub
groups gp, gq, ...,gr- Let P be any operation, whose order is a
power of p, belonging to H,-i and not to H, ; and let Q be any
operation of G whose order is relatively prime to p. The sub

group gp is contained self-con/ugately in [P, gp), and therefore
every operation of this sub-group is a power of p. If Q is not
permutable with P, then

where h, is some operation of H,. The order of h, must be a
power of p. For let h, = h,'k,", where the order of h,' is a power
of p and the order of h," is relatively prime to p. Then, from the
supposition made with regard to the sub-group H„ the operation
Ph, is the product of the permutable operations Ph,' and h,".
But, since the orders of Ph, and Ph,' are powers of p, this is

impossible unless h," is identity. If the order of h, is p*, then
Q-ppPQpe=Phy = P;

and this equation implies that Q is permutable with P, since
p8 and the order of Q are relatively prime. Hence if the
supposition that has been made holds for H,, it also holds for
Hf-1. But it certainly holds for Hn, and therefore it is true for
G. Hence every operation of G whose order is a power of p is
permutable with every operation of G whose order is relatively

prime to p. The group therefore contains self-conjugate sub

groups of each of the orders pa, q* ; and it follows, from the
definition of §31, that G is the direct product of these groups.

We add here three examples in further illustration of the applica
tions of Sylow's theorem.

Ex. 1. If p is a prime, greater than 3, shew that the number of
distinct types of group of order 6/, is 6 or 4, according as p is con
gruent to 1 or 5, mod. 6.

Ex. 2. If p is a prime, greater than 5, shew that the number
of distinct types of group of order I2p is 18, 12, 15 or 10, according
as jo is congruent to 1, 5, 7 or 11, mod. 12.

Ex. 3. Shew that there are 7 distinct types of group of order 903.



CHAPTER X.

ON PERMUTATION-GROUPS : TRANSITIVE AND INTRANSI
TIVE GROUPS: PRIMITIVE AND IMPRIMITIVE GROUPS.

131. It has been proved, in the theorem in § 20, that every
group is capable of being represented as a group of permutations
performed on a number of symbols equal to the order of the

group. For applications to Algebra, and in particular to the

Theory of Equations, the presentation of a group as a group of
permutations is of special importance; and we shall now proceed
to consider the more important properties of this special mode
of representing groups*.

Definition. When a group is represented by means of
permutations performed on a finite set of n distinct symbols,
the integer n is called the degree of the group.

It is obvious, by a consideration of simple cases, that a
group can always be represented in different forms as a group
of permutations, the number of symbols which are permuted
in two forms not being necessarily the same ; examples have

already been given in Chapter II. The "degree of a group"
is therefore only an abbreviation of " the degree of a special
representation of the group as a permutation-group."

The n I permutations, including the identical permutation,
that can be performed upon n distinct symbols, clearly form a

group; for they satisfy the conditions of the definition (§12).
Moreover they form the greatest group of permutations that can
be performed on the n symbols, because every possible permuta
tion occurs among them. When a group then is spoken of as of

* When it is necessary to call attention directly to the fact that the group
we are dealing with is supposed to be presented as a group of permutations, the
group will be spoken of as a permutation-group.
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degree «, it is implicitly being regarded as a sub-group of this
most general group of order n ! which can be represented by

permutations of the n symbols ; and therefore (Theorem I,

§ 22) the order of a permutation -group of degree n must be
a factor of n !

132. It has been seen in §11 that any permutation per
formed on n symbols can be represented in various ways as
the product of transpositions ; but that the number of transpo
sitions entering in any such representation of the permutation
is either always even or always odd. In particular, the identical
permutation can only be represented by an even number of

transpositions. Hence if S and S' are any two even (§ 11)
permutations of n symbols, and T any permutation at all of n
symbols, then SS' and T-*ST are even permutations. The
even permutations therefore form a self-conjugate sub-group
H of the group G of all permutations.
If now T is any odd permutation, the set of permutations
TH are all odd and all distinct. Moreover they give all the
odd permutations ; for if T' is any odd permutation distinct
from T, then T-lT' is an even permutation and must be
contained in H. Hence the number of even permutations is
equal to the number of odd permutations : and the order of G
is twice that of H.

Definitions. The group of order n ! which consists of all
the permutations that can be performed on n symbols is called
the symmetric group of degree n.

The group of order \n ! which consists of all the even
permutations of n symbols is called the alternating* group of

degree n.

If the permutations of a group of degree n are not all even,
the preceding reasoning may be repeated to shew that its even

permutations form a self-conjugate sub-group whose order is
half the order of the group; and this sub-group is a sub-group
of the alternating group of the n symbols.
* The symmetric group has been bo called because the only functions of the

n symbols which are unaltered by all the permutations of the group are the
symmetric functions.
All the permutations of the alternating group leave the square root of the

discriminant unaltered (§ 11).
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133. Definition. A permutation-group is called transitive
when, by means of its permutations, a given symbol a, can be

changed into every other symbol a„ Oi, an operated on

by the group. When it has not this property, the group is
called intransitive.

A transitive group contains permutations changing any one
symbol into any other. For if S and T respectively change a,
into a, and alt then S-*T changes at into at.

Th EOREM I. The permutations of a transitive group G, which
leave a given symbol a^ unchanged, form a sub-group ; and the
number ofpermutations, which change a, into any other symbol ar,
is equal to the order of this sub-group.

The permutations which leave a, unchanged must form a

sub-group H of G ; for if S and S' both leave al unchanged, so
also does SS'.

Let the operations of G be divided into the sets

H, HSi, HS„ HSm-!.

No operation of the set HSP leaves a, unchanged ; and each
operation of the set HSP changes a! into ap, if Sp does so. If
the operations of any other set HSq also changed a, into ap, then

SpSf1 would leave a, unchanged and would belong to H, which
it does not. Hence each set changes a, into a distinct symbol.
The number of sets must therefore be equal to the number of

symbols, while from their formation each set contains the same
number of permutations. If N is the order and n the degree
of the transitive group G, then N/n is the order of the sub
group that leaves any symbol a, unchanged; and there are N/n
permutations changing a, into any other given symbol ap.

Corollary. The order of a transitive group must be
divisible by its degree.

Every group conjugate to H leaves one symbol unchanged.
For if S changes a} into ap, then S-lHS leaves ap unchanged.
The sub-groups which leave the different symbols unchanged
form therefore a conjugate set.

A transitive group of degree n and order mn has, as we
have just seen, m — 1 permutations other than identity which
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leave a given symbol a, unchanged. Hence there must be at

least mn— 1 — n(m— 1), i.e. n— 1, permutations in the group
that displace every symbol. If the m — 1 permutations, other
than identity, that leave a, unchanged are all distinct from the

m — 1 that leave ap unchanged, whatever other symbol ap may
be, n — 1 will be the actual number of permutations that
displace all the symbols ; and no operation other than identity
will displace less than n — 1 symbols. If however the sub
groups that leave a, and ap unchanged have other permutations
besides identity in common, these permutations must displace
less than n — 1 symbols ; and there will be more than n — 1

permutations which displace all the symbols.

Ex. 1. If the permutations of two transitive groups of degree n
which displace all the symbols are the same, the groups can only
differ in the permutations that keep just one symbol unchanged.

(Netto.)
Ex. 2. If the permutations, except identity, of a transitive

group displace all or all but two of the symbols, shew that the
number which displace all the symbols is greater than half and
less than three-quarters of the total number.

134. We have seen that every group can be represented as a
permutation-group whose degree is equal to its order. A reference
to the proof of this theorem (§ 20) will shew that such a permutation-
group is transitive, and that the identical permutation is the only
one which leaves any symbol unchanged.

We will now consider some of the properties of a transitive
group of degree n, whose operations, except identity, displace all or
all but one of the n symbols. It has just been seen that such a group
has exactly n — 1 operations which displace all the n symbols.
If these n — 1 operations, with identity, form a sub-group, the sub
group must clearly be self-conjugate.

Suppose now that nm is the order of the group. Then the order
of the sub-group, that leaves one symbol a, unchanged, is m.

Since no operation leaves two symbols unchanged, this sub-group
must permute the remaining n — 1 symbols in set of m, so that m is
a factor of n— 1, and is relatively prime to n. The orders of the
operations which leave one symbol unchanged are factors of m.
Hence the n — 1 operations which displace all the symbols and the
identical operation are the only ones satisfying

8" = E.

No operation which leaves one symbol unchanged can be permut-
able with any operation which displaces all the symbols, and
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therefore the number of these which belong to any conjugate set
is a multiple of m.

Let pa be the highest power of a prime p which divides n.
The number of operations whose orders divide n/p" is a multiple of
this number, say kpn/pa ; and the number of operations whose orders
are multiples of p is therefore n-kpn/p^. This number then is
a multiple of m, and therefore since n and m are relatively prime,
m must be a factor of p' - kp. If n = p'qB. . . rt and kq, kr, bear the
same relation to q, r that kp bears to p, m is a factor of each of
the numbers p'—kp, q^ — kq, rt — kr.
Certain particular cases may be specially noticed. First, a group

of degree n and order n (n - 1 ), whose operations other than identity
displace all or all but one of the symbols, can exist only when n is
the power of a prime*. Groups which satisfy these conditions will
be discussed in § 1 40.

Similarly, a group of degree n and order nm, where m is not less
than Jn, whose operations other than identity displace all or all but
one of the symbols, can only exist when n is the power of a prime.

If n is equal to twice an odd number, a transitive group of
degree n, none of whose operations except identity leave two symbols
unchanged, must be of order n.

Lastly we may shew that, if m is even, a group of degree n and
order nm, none of whose operations except identity leave two
symbols unchanged, must contain a self-conjugate Abelian sub-group
of order and degree n.

A sub-group that keeps one symbol fixed must, if m is even,
contain an operation of order 2. If it contained r such operations,
the group would contain nr ; and each of these could be expressed
as the product of £(n- 1) independent transpositions. Now from n
symbols $n(n — 1) transpositions can be formed. If then r were
greater than 1, among the operations of order 2 that keep one
symbol fixed there would be pairs of operations with a common
transposition ; and the product of two such operations would be an
operation, distinct from identity, which would keep two symbols at
least fixed. This is impossible ; therefore r must be unity. Now let

Alt At, An

be the n operations of order 2 belonging to the group. Since no
two of these operations contain a common transposition,

AiAr, AtAr, Ar^Ar, Ar^Ar, AnAr

are the n — 1 operations which displace all the symbols. These
operations may also be expressed in the form

ArAlt ArAt, ArAr-lt ArAr+l, ArAn;

* Jordan, "Recherches sur les substitutions," Liouvillc't Journal, 2m" s^r.
Vol. xvu (1872), p. 355.
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and since
ApAr . ArAq — ApAq,

the product of any two of these operations is either identity or
another operation which displaces all the symbols. Hence the n — 1
operations which displace all the symbols, with identity, form a self-
conjugate sub-group. Now

Ar . ApAr . Ar - ArAp,

so that Ar transforms every operation of this sub-group into its
in versa Hence

ArAp . AqAr = AqAp = AqAr . ArAq ;

i.e. every two operations of this sub-group are permutable, and the
sub-group is therefore Abelian.

Herr Frobenius has shewn* that the n— 1 permutations which
displace all the symbols, together with identity, always form a self-
conjugate sub-group.

135. If S = (aiOi at) (a,+Ia1+s aj)

and j,—(ai,ai an\
\blth, ,&n/'

are any two permutations of a group, then (§ 10)

T-'ST=(bA WnA* h)
Hence every permutation of the group, which is conjugate

to S, is also similar to S. It does not necessarily or generally
follow that two similar permutations of a group are conjugate.
That this is true however of the symmetric group is obvious,

for then the permutation T may be chosen so as to permute n
symbols in any way.

A self-conjugate permutation of a transitive group of degree
n must be a regular permutation (§ 9) changing all the n symbols.
For if it did not change all the n symbols, it would belong to
one of the sub-groups that keep a symbol unchanged. Hence,

since it is a self-conjugate permutation, it would belong to each
sub-group that keeps a symbol unchanged, which is impossible
unless it is the identical permutation. Again, if it were not
regular, one of its powers would keep two or more symbols
unchanged, and this cannot be the case since every power of
a self-conjugate permutation must be self-conjugate. On the

* "Ueber auflSebare Grappen IV," Berliner Sittungsberichte (1901), p. 1225.
See also Chapter xvi.
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other hand, a self-conjugate sub-group of a transitive group
need not contain any permutation which displaces all the

symbols. Thus if
S-(12)(34),

T= (135) (246),

then {
S
,

T
] is a transitive group of degree 6
. The only

permutations conjugate to S are

2l-'SZ'=(34)(56) and TOT*-1 = (12) (56);

and these, with S and identity, form a self-conjugate sub-group
of order 4, none of whose permutations displace more than 4

symbols. The form of a self-conjugate sub-group of a transitive

group will be considered in greater detail in § 149.

136. Since a self-conjugate permutation of a transitive

permutation-group G of degree n must be a regular permutation
which displaces all the symbols, the self-conjugate sub-group
B of G which consists of all its self-conjugate operations must
have n or some submultiple of n for its order. For if S and 8'
are two self-conjugate permutations of G

,
so also is ^'S'; and

therefore S and S' cannot both change a into b. The order of
H therefore cannot exceed n; and if the order is the

permutations of H must interchange the n symbols in sets of n,
so that n

'

is a factor of n. Let now S
,

some permutation

performed on the n symbols of the transitive permutation-group

0 of degree n, be permutable with every permutation of
G. Then S is a self-conjugate operation of the transitive
permutation-group {S, G

\ of degree n, and it is therefore a
regular permutation in all the n symbols. The totality of the

permutations S
,

which are permutable with every permutation
of G

,

form a group (not necessarily Abelian) ; and the order of
this group is ii or a factor of n.

The special case, in which G is a transitive group whose
order N is equal to its degree, has already been considered
in § 20. The results there obtained may be expressed in the
form of the following:

Theorem II, Those permutations of N symbols which are
permutable with every permutation o
f a permutation-group G o
f
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G

order N, transitive in the N symbols, form a transitive group
G' of order and degree N, simply isomorphic with G*.

If, with the notation there used, Sx is a self-conjugate
permutation of G, the permutations

f &i , , Sjy \ / Sl , SN \
\SiSx, , SXSx J V'SiSi , SxSif J

are the same. Hence G and G' have for their greatest common

sub-group, that which is constituted by the self-conjugate
permutations of either; and if N' is the order of this sub-group,
the order of {G, G'\ is N2/N'. In particular, if G is Abelian,
G and G' coincide ; and if G has no self-conjugate operation
except identity, [G, G'} is the direct product of G and G'.

The sub-group of [G, G'\ which leaves one symbol, say Slt
unchanged, is formed of the distinct permutations of the set

& . , • \ (x=i,2 m.
KSx^SiSxtSx 1S2Sx, ,sx 'SySxJ '

This sub-group will change S{ into Sj if
,

and only if
,

<
S
,<

and S
j are conjugate operations in G. Hence the number of

transitive sets in which it permutes the N symbols is equal
to the number of sets of conjugate operations in G.

When G has no self-conjugate operation except identity,
the order of this sub-group is N, and it is simply isomorphic
with G. In fact, in this case the order of [G, G'\, a transitive
group of degree N, is iV2, and therefore the order of a sub
group that keeps one symbol unchanged is N. Again

/ $i . S
i

, Sp \

Sx-lStSx, , S^SySj

I sl , S
i

, , SN \

KSy-^Sy, Sy-*StSy .Sy^SySyJ

—( ^ , S
t Sy \

\Sx-lSiSx, Sa-lStSs, , Sx-lSxSj

f Sx^SiSx , Sx-lS2Sx , Sx^SjfSx \

XSy^Sx^SiSxSy, Sy^Sx^S2SxSy , Sy^Sg^S ySxSy)

—( &
l

, S
2

, , Sy \

\Sy-*Sx-*SlSxSy, Sy^Sx^S^SxSy, Sy^S^'S^S^y)

'

* Jordan, Traitg den Subititutiom (1870), p. 60.
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thus giving a direct verification that the sub-group is isomorphic
with 0. When G contains self-conjugate operations, it will be
multiply isomorphic with the sub-group Kx of \G, 0'} which

keeps the symbol <
S
,

fixed ; and if g is the group constituted by
the self- conjugate operations of 0 (or 0'), then Kx is simply
isomorphic with Gjg.

If Kl is not a maximum sub-group of [G, G'}, let / be a
greater sub-group containing Kt. Then i" and G' (or (?) must
contain common permutations. For every permutation of
[G, G'} i

s of the form

/ $i i S
t

, , 8N \
\SVS^SX, SyS2Sx, SyStfSxJ

I S
j

, S
a

, , Sx \

SjjSjSaj-1, SxSjfSx-1)'

( , S
t , , Sjf \

is a permutation of G' which belongs to I. Moreover, since G'

is a self-conjugate sub-group of {G, G'), the permutations of G'
which belong to / form a self-conjugate sub-group of / : this
sub-group we will call H'.

Now every permutation of the group can be represented as
the product of a permutation of Kt by a permutation of G : and
therefore all the sub-groups conjugate to / will be obtained on
transforming / by the operations of G. Hence, because every
permutation of G transforms H' into itself, H' is common to
the complete set of conjugate sub-groups to which i" belongs ;

and H' is therefore a self-conjugate sub-group of [G, G'}.
Finally then, if, is a maximum sub-group of {G, G'}, if and only

if G is a simple group.

137. Definition. A permutation-group, that contains one
or more permutations changing k given symbols Oj, Oj, .... aK
into any other k symbols, is called k-ply transitive.

Such a group clearly contains permutations changing any

or
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set of k symbols into any other set of k ; and the order of the

sub-gron p keeping any j (}• k) symbols unchanged is independent
of the particular j symbols chosen.
Theorem III. The order of a k-ply transitive group of

degree n is n(n — 1) (n — k + l)m, where m is the order of
the sub-group that leaves any k symbols unchanged. This

sub-group is contained self-conjugately in a sub-group of order
k\m.

If N is the order of the group, the order of the sub-group
which keeps one symbol fixed is N/n, by Theorem I (§ 133).
Now this sub-group is a transitive group of degree n — 1 ; and

therefore the order of the sub-group that keeps two symbols

unchanged is N/n(n — 1
). If k > 2, this sub-group again is a

transitive group of degree n — 2 ; and so on. Proceeding thus,

the order of the sub-group which keeps k symbols unchanged

is seen to be
N

n(n-l) (n-jfc+1)'
which proves the first part of the theorem.

Let a,, a,, , at be the k symbols which are left un

changed by a sub-group H of order to. Since the group is

&-ply transitive, it must contain permutations of the form

(O
i
, a, , , ak , b , c \

W. Os'. a*', b'
,

c'
, /'

where a,', a,' a*' are the same k symbols as a^, a„ , at
arranged in any other sequence. Also every permutation of
this form is permutable with H, since it interchanges among
themselves the symbols left unchanged by H. Further, if S

,

and /S
2 are any two permutations of this form, Sx~lSt will belong

to H if
,

and only if
,

and S
2 give the same permutation of

the symbols Oj, a, , at. Hence finally, since kl distinct
permutations can be performed on the k symbols, the order of
the sub-group that contains H self-conjugately is k\m.
If m is utiity, the identical permutation is the only one that

keeps any k symbols fixed, and there is just one permutation
that changes k symbols into any other k
. In the same case, the

group contains permutations which displace n — k + 1 symbols

b. 12
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only, and there are none, except the identical permutation,
which displace fewer.

If to > 1, the group will contain to - 1 permutations besides
identity, which leave unchanged any k given symbols, and
therefore displace n — k symbols at most.

It follows from § 134 that a A;-ply transitive group of degree
n and order n (n — 1) (n — k + 1) can exist only if n — k + 2
is the power of a prime. For such a group must contain
sub-groups of order (n — k + 2) (n — k + 1), which keep k — 2

symbols unchanged and are doubly transitive in the remaining
n — k+2. When k is n, the group is the symmetric group; and
when k is n — 2, we shall see (in § 138) that the group is the

alternating group. If k is less than n — 2, M. Jordan * has
shewn that, with two exceptions for n = 11 and n=12, the
value of k cannot exceed 3. The actual existence of triply
transitive groups of degree pn + 1 and order (pn + l)pn(pn— 1

),

for all prime values of p, will be established in § 141.

138. Let

S= (a1a2 otj) ( Of-ity) iai+i )

be a permutation of a Ar-ply transitive group displacing s(>k)
symbols. If j<k—l, take

T_ (Oi, a* at \

\<*i, <h h /'

where is some other symbol occurring in & Since the
group is k-ply transitive, it must contain a permutation such as
T. Now

T-1ST=(a1at o<) ( a^aj) (aj+1 at_A ) ;

and this is certainly not identical with S
,

so that ^STS-1
cannot be the identical permutation. Moreover Oj, a, at_j
are not affected by T-'STS*1 ; and therefore this permutation
will displace at most 2s — 2k + 2 symbols.

If j = k— 1
, take

y_/a,, a,, , ak_1: ak \

tan «a i a*-n c*i /

ohes Bur les substitutions," LiouvilU's Journal, 2m* b6i. Vol. xvn
—363.
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where ck is a symbol that does not occur in S. Then

T-1ST=(a1a, ai) ( owi*-i) (ck ),

and this cannot coincide with 8. Now in this case, alt a, , a*_!
are not affected by T~1STS~l ; and therefore this operation will

again displace at most 2s — 2k + 2 symbols.

If then 2s - 2k + 2 < s,
or * < 2k — 2,

the group must contain a permutation affecting fewer symbols
than S. This process may be repeated till we arrive at a
permutation

2 = (a,!, a<) (a<+1 a
j)

(a,+1 at),

which affects exactly k symbols; and if this permutation be
transformed by

y_ (au a2» » a*-i. <**, \

\<*i. <*>. /'

then

T-*XT= faa, «,) «
j)

(a,+1

and T~l = {akBkaj+,).

Thus in the case under consideration the group contains
one, and therefore every, circular permutation of three symbols;
and hence (§ 11) it must contain every even permutation. It

is therefore either the alternating or the symmetric group. If
then a &-ply transitive group of degree n does not contain the

alternating group of n symbols, no one of its permutations,
except identity, must displace fewer than 2k — 2 symbols.
It has been shewn that such a group contains permutations
displacing not more than n — k + 1 symbols ; and therefore, for
a k-ply transitive group of degree n, other than the alternating
or the symmetric group, the inequality

n-k+l^2k-2,
or kif-^n+l,

must hold. Hence :—

Theorem IV. A group of degree n, which does not con
tain the alternating group o
f n symbols, cannot be more than

(£n + l)-ply transitive.

12—2
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The symmetric group is n-ply transitive; and, since of the

two permutations

/O!, a2. a*-*, dn-i, an\ ^ /OiiOii i an-i. a«A
\Jh, &n-,, &"-!, &n/ 6, , 6n-2, 6n, 6n-i/'

one is evidently even and the other odd, the alternating group
is (n — 2)-ply transitive. The discussion just given shews that
no other group of degree n can be more than (£n+1)-pry
transitive*.

139. The process used in the preceding paragraph may be

applied to shew that, unless n = 4, the alternating group of n

symbols is simple. It has just been shewn that the alternating
group is (r

a — 2)-ply transitive. Therefore, if S is a permutation
of the alternating group displacing fewer than n — 1 symbols, a

permutation T-*ST can certainly be found such that S-iT-iST

is a circular permutation of three symbols. In this case, the
self-conjugate group generated by S and its conjugate permu
tations contains all the circular permutations of three symbols,
and therefore it coincides with the alternating group itself. If

S displaces n — 1 symbols, then T-*ST can be taken so that
S-'T-'ST displaces not more than 2(n- 1)-2(n-2) + 2, or

4 symbols; and if S displaces n symbols, S^^ST can be found
to displace not more than 2n — 2 (n — 2

) + 2
, or 6 symbols.

It is therefore only necessary to consider the case n = 5, when

5 displaces n — 1 symbols ; and the cases n = 4
,

5
,

6
, when S dis

places n symbols; in all other cases, the group generated by

S and its conjugate permutations must contain circular permu
tations of 3 symbols.

When n = 5, and S is an even permutation displacing 4

symbols, we may take

S = (12)(34).
If r = (12)(35),
then r-I5T=(12)(45),
and <S-ir-1Sr=(345).

* For a further discussion of the limits of transitivity of a permntation-
gronp, oompare Jordan, Traitg dei Substitution2, pp. 76—87 ; and Bochert,
Math. Ann. xxrx (1886), pp. 27—49 ; nxm (1888), pp. 573—583.
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Hence, in this case again, we are led to the alternating group
itself.

When n = 6, and S is an even permutation displacing all
the symbols, we may take

S = (12) (3456),

or S' = (123)(456).
Know T = (12) (3645),

then (S-ir-1S7'=(356),

and S'-lT-*S'T = (14263);

and, in either case, we are led to the alternating group.

When n = 5, and S is an even permutation displacing all
the symbols, we may put

S = (12345).
If 2"= (345),

then S-*T~l ST = (134);
and again the alternating group is generated.

When n = 4, and S is an even permutation displacing all
the symbols, we may take

S = (12)(34).
Here the only two permutations conjugate to S are clearly
(13) (24) and (14) (23), which are permutable with each other
and with S. Hence the alternating group of 4 symbols, which
is of order 12, has a self-conjugate sub-group of order 4.

Finally when n = 3, the alternating group, being the group
((123)], is a simple cyclical group of order 3. Hence :—

Theorem V. The alternating group of n symbols is a simple
group except when n = 4.

140. It has been seen in § 137 that the order of a doubly transi
tive group of degree n is equal to or is a multiple of n (n - 1). If it
is equal to this number, every permutation of the group, except
identity, must displace either all or all but one of the symbols ; for
a sub-group of order n - 1 which keeps one symbol fixed is transi
tive in the remaining n — 1 symbols, and therefore all its permutations,
except identity, displace all the n — 1 symbols.

Now it has been shewn in § 1 34 that a transitive group of degree
n and order n (n — 1 ), whose operations displace all or all but one of
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the symbols, can exist only if n is the power of a prime p. The
n—l operations displacing all the symbols are the only operations
of the group whose orders are powers of p ; and therefore with
identity they form a self-conjugate sub-group of order n. Moreover
it also follows from § 1 34 that the n — 1 operations of this sub-group
other than identity form a single conjugate set. Hence this sub
group must be Abelian, and all its operations are of order p.

Suppose first that n is a prime p, and that P is any operation of
the group of order p. If a is a primitive root of p, the existence
of a group of order p (p — 1) defined by

Pp = E, SP-1 = E, S-1PS = P»,
has been proved in § 88.

It is an immediate result of a theorem, which will be proved in
chapter xn, that this group can be actually represented as a transi
tive permutation-group of degree p ; this may be also verified directly
as follows.

Let P = (ala2...ap),
so that Pa = (a, aa+1 aM+1 . . . aip-1)a+1),

where the suffixes are to be reduced (mod. p) ; and suppose that S
is a permutation that keeps «i unchanged. Then since

S must change a, into aa+1, O, into 0*'+1 , an<^ generally, ar into
°(r-i)a+i- Hence

S=(aiaa+1aa2+1...)...;

and since o is a primitive root of p, there is only a single cycle ; so
that

S = (Ossaa+1 aa'+i . . . aa"-2+1)-
The permutations P and S thus constructed actually generate a

doubly transitive permutation-group of degree p and order p(p— 1
).

That for every value of pm where p is a prime there is a doubly
transitive group* of degree pm and order pm (pm — 1

), in which a sub
group of order pm— 1 is cyclical, contained in a triply transitive group
of degree pm + l and order (pm+ l)pm{pm— 1

) may be shewn as

follows.

Let i be a primitive root of the congruence
i?m-* = 1 (mod. p),

so that the distinct roots of the congruence are

i, i2
,

t'
,

, i*"-1.
* On the subject of this and the following paragraph, the reader should

consult the memoirs by Mathieu, Liouville't Journal, 2"" Ser. t. v (1860),
pp. 9—42 ; ib. t. vi (1861), pp. 241 —323 ; where the groups here considered
were first shewn to exist.
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Every rational function of i with real integral coefficients satisfies
the same congruence ; and therefore every such function is con
gruent (mod. p) to some power of i not exceeding the (pm — l)th.
Consider now a set of transformations of the form

x' = ax + B (mod. p),

where a is a power of i, and B is either a power of i or zero. Two
such transformations, performed successively, give another trans
formation of the same form ; and since o cannot be zero, the inverse
of each transformation is another definite transformation ; so that
the totality of transformations of this form constitute a group.
Moreover

x' 5 ax + 8.
, , « (mod.p),and x' = a'x + V F"

are not the same transformation unless

a = a' and B = B' (mod. p).

Hence, since a can take pm — 1 distinct values and B can take pm
distinct values, the order of the group, formed of the totality of
these transformations, is pm(pm — 1

).

The transformations for which o is unity clearly form a sub
group. If S and T represent

x
' = ax + B and x
' = x + y

respectively, S^TS represents
x = x + ay.

Hence the transformations for which a is unity form a self-conjugate
sub-group whose order is pm. Every two transformations of this
sub-group are clearly permutable ; and the order of each of them

except identity is p.

Again, the transformations for which B is zero form a sub-group.
Since every one of them is a power of the transformation

x = ix,

this sub-group is a cyclical sub-group of order pm- 1
. If the trans

formation just written be denoted by /, then S^IS is

x
' = ix + B(l—i).

Hence the only operations permutable with {/} are its own operations,
and therefore {/} i

s one of pm conjugate sub-groups.

The set of transformations

x
'

= ax + B

therefore forms a group of order pm(pm— 1). This group contains a
self-conjugate Abelian sub-group of order p*2 and type (1, 1
,

1
),
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and pm conjugate cyclical sub-groups of order pm — 1, none of whose
operations are permutable with any of the operations of the self-
conjugate sub-group.

Now if the operation
x' = ax + fi

be performed on each term of the series

0, i, i2
,

, *"-\

it will, since every rational integral function of i with real integral
coefficients is congruent (mod. p

) to some power of i, change the
term into another of the same series ; and since the congruence

oi* + fi = ai* + fi (mod. p
)

gives x = y (mod. pm— 1),

no two terms of the series can thus be transformed into the same
term. Moreover the only operation that leaves every term of the
series unchanged is clearly the identical operation.

To each operation of the form

x
'

= ax + fi

therefore will correspond a single permutation performed on the pm
symbols just written, so that to the product of two operations will
correspond the product of the two homologous permutations. The
group is therefore simply isomorphic with a permutation-group of
degree pm. Moreover since the linear congruence

x = ax + fi (mod. p
)

has only a single solution when a is different from unity, and none
when a is unity, every permutation except identity must displace all
or all but one of the symbols. The permutation-group is therefore
doubly transitive*.

Ex. 1. Apply the method just explained to the actual construc
tion of a doubly transitive group of degree 8 and order 56.

Ex. 2. Shew that the equations

Al = E, = E, AS-lAS = S-"AS",

where n is such that a primitive root of the congruence,

i2™-1 -1=0 (mod. 2),
satisfies the congruence

t" + i + 1 = 0 (mod. 2),
* The author has shewn {Messenger of Mathematics, Vol. xxv (1896),

pp. 147— 153) that the type of group considered in the text is the only type
of doubly transitive group of degree pm and order pm(pm~l) when m = 3;
and that, when m = 2 and p>3, the same is true. When m = 2 and £=8, there

is one other type.
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suffice to define a group which can be expressed as a doubly transi
tive group of degree 2m and order 2m (2m — 1).

[Messenger of Mathematics, Vol. xxv, p. 189.)

141. In the place of the operations of the last paragraph, we
now consider those of the form

X = yxTJ^ P>'

where again a, /3
,

y, S are powers of i, limited now by the condition
that aS — Py is not congruent to zero (mod. p). When this relation

is satisfied, the set of operations again clearly form a group. More-
is

over if we represent — by oo for all values of x, any operation of this

group, when carried out on the set of quantities

will change each of them into another of the set ; while no operation
except identity will leave each symbol of the set unchanged. Hence
the group can be represented as a permutation-group of degree
pm + 1

.

x
' - i"' i' - 1"' x - i" i" - ib . , .

Now — nr. 7p— = .* .„
—
-„ (mod. p

)

is an operation of the above form, which changes the three symbols
ta, t* ic into iv, respectively ; and it is easy to modify this form
so that it holds when 0 or oo occurs in the place of i", etc. Hence
the permutation-group is triply transitive, since it contains an
operation transforming any three of the pm + 1 symbols into any
other three.

On the other hand, if the typical operation keeps the symbol x
unchanged, then

yx2 + (8-o)i-^e0 (mod. p),
and this congruence cannot have more than two roots among the
set of pm + 1 symbols. Hence no permutation of the group, except
identity, keeps more than two symbols fixed.

Finally then, since the group is triply transitive and since it

contains no operation, except identity, that keeps more than two
symbols fixed, its order must (§ 137) be (pm + l)pm(pm- 1

).

It obviously contains as a sub-group the group of the previous
paragraph.

142. An intransitive permutation-group, as defined in § 133,

is one which does not contain permutations changing Oi into
each of the other symbols Oi, a,, an operated on b
y the
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group. Let us suppose that the permutations of such a group
change al into ai, a, , a* only. Then all the permutations
of the group must interchange these k symbols among them
selves; for if the group contained a permutation changing a2
into fflj;+1, then the product of any permutation changing O, into

O2 by this latter permutation would change a, into ak+1. Hence
the n symbols operated on by the group can be divided into a
number of sets, such that the permutations of the group change
the symbols of any one set transitively among themselves, but
do not interchange the symbols of two distinct sets. It follows
immediately that the order of the group must be a common
multiple of the numbers of symbols in the different sets.

Suppose now that a,, a, ak is a set of symbols which
are interchanged transitively by all the permutations of a group
G of degree n. If for a time we neglect the effect of the
permutatioss of G on the remaining n — k symbols, the group
G will reduce to a transitive group H* of degree k. The group
G is isomorphic with the group H ; for if we take as the permu
tation of H, that corresponds to a given permutation of G,
that which produces the same permutation of the symbols

alt di , a*, then to the product of any two permutations
of G will correspond the product of the corresponding two per
mutations of H. The isomorphism thus shewn to exist may be
simple or multiple. In the former case, the order of H is the
same as that of G; in the latter case, the permutations of G which

correspond to the identical permutation of H, i.e. those permu
tations of G which change none of the symbols a,, a, , a*,

form a self-conjugate sub-group.

We will consider in particular an intransitive group G
which interchanges the symbols in two transitive sets; these

we will refer to as the a's and the /8's. Let (?. and Gp be the
two groups transitive in the a's and ,8's respectively, to which

G reduces when we alternately leave out of account the effect

of the permutations on the /9's and the a's. Also let ga and g*
be the self-conjugate sub-groups of G, which keep respectively
all the /S's and all the a's unchanged ; and denote the group

{g.l,g?\ °y g- This last group g, which is the direct product
of ga and gp, is self-conjugate in G, since it is generated by the

* H is called a transitive constitlient of G.
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two self-conjugate groups gm and gp. Now g„ is self-conjugate
not only in G but also in (?n ; for Ga permutes the a's in the
same way that G does, while any permutation of ga, not
affecting the /S's, is necessarily permutable with every per
mutation performed on the /S's. The group Ga is simply
isomorphic with the group G/gp, and Gp with G/ga; hence,
using nH to denote the order of a group H,

na = nsng$ = nganga.

Let the permutations of G be now divided into sets in respect
of the self-conjugate sub-group g, so that

G = g, Sg, Tg

If we neglect the effect of the permutations on the symbols
the group G reduces to Ga and g reduces to and hence

Ga = ga, Saga, Taga ,

where Sa, Ta, represent the permutations 8, T, so far

as they affect the a's. Moreover the permutations in the differ
ent sets into which Ga is thus divided must be all distinct since,

by the preceding relations between the orders of the groups,
their number is just equal to the order of Ga. Hence Ga/ga is
defined by the laws according to which these sets of permu
tations combine. But if

Sg.Tg=Ug,
then necessarily Sag. . Taga = Uaga ,

and therefore, finally, the three groups G/g, Ga./ga, and Gp/gp
are simply isomorphic.

143. The relation of simple isomorphism between Ga/ga
and Gp/gp thus arrived at establishes between the groups Ga
and Gp an isomorphism of the most general kind (§ 32).

To every operation of Ga correspond nfP operations of

G*, and to every operation of Gp correspond nga operations

of Ga ; so that to the product of any two operations of Ga (or Gp)
there corresponds a definite set of nvp operations of Gp (or ng„
operations of Ga).

Returning now to the intransitive group G, its genesis from

the two transitive groups (?n and Gp , with which it is isomorphic,
may be represented as follows. The n9a to ngp correspondence,
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such as has just been described, having been established
between the groups (?n and Gp, each permutation of (?n is

multiplied by the ng^ permutations that correspond to it in Gp.
The set of ngngp permutations so obtained form a group, for

SaSp . Sa'Sp = SaSa' . SpSp — Sa 'Sp",

where, if Sp, Sp' are permutations corresponding to Sa, SJ, then
Sp" is a permutation corresponding to Sa". Moreover, this

group may be equally well generated by multiplying every one

of the permutations of Gp by the nga corresponding permutations
of G„ ; and by a reference to the representations of G, £rn, and

Gp, as divided into sets of permutations given above, it is

immediately obvious that all these permutations occur in G.
Hence, as their number is equal to the order of G, the group
thus formed coincides with G.

144. The general result for any intransitive group, the

simplest case of which has been considered in the two last

paragraphs, may be stated in the following form:—

Theorem VI. If G is an intransitive group of degree n
which permutes the n symbols in s transitive sets, and if (i) Gr is
what G becomes when the permutations of G are performed on
the rth set of symbols only, (ii) Tr is what G becomes when the
permutations of G are performed on all the sets except the rth,

(iii) gr is that sub-group of G which changes the symbols of the
rth set only, (iv) yr is that sub-group of G which keeps all the
symbols of the rth set unchanged: then tfie groups Gr/gr and
rr/yr are simply isomorphic, and tv, vr being the orders of gr,
.yr, an nr to vr correspondence is thus established between the

permutations of the groups Gr and Tr. Moreover, the permuta
tions of G are given, each once and once only, by multiplying each
permutation of Gr by the vr permutations of Tr that correspond
to it*.

It is not necessary to give an independent proof of this
theorem, since if

, in the discussion of the two preceding para
graphs, (?n, Gp, ga, gb, g be replaced b

y Gr, Tr,gr, yr, [gv, yr\, it

* On intransitive groups, reference may be made to Bolza, " On the con
struction of intransitive groups," Amer. Journal, Vol. xi (1889), pp. 195 —214.
The general isomorphism which underlies the construction of these groups is

considered by Klein and Fricke, VorUsungen iiber die Theorie der elliptischen
Modulfunctionen, Vol. l (1890), pp. 402—406.
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will be found each step of the process there carried out may be

repeated without alteration.

If we regard (?. and Gp as two given transitive groups
in distinct sets of symbols, the determination of all the
intransitive groups in the combined symbols, which reduce
to Ga or Gp when the symbols of the second or first set
are neglected, involves a knowledge of the composition of
the two groups. To each distinct m to n isomorphism, that
can be established between the two groups, there will corre

spond a distinct intransitive group. If Ga is a simple group,
containing therefore only itself and identity self-conjugately,
then to each permutation of Gp there must correspond either
one or all of the permutations of Ga ; and the former can be
the case only when Gp contains a self-conjugate sub-group H,
such that Gp/H is simply isomorphic with Ga- Hence, if the
order of Gp is less than twice the order of Ga, the only possible
intransitive group is the direct product of Ga and Gp, unless Gp
is simply isomorphic with Ga-

Ex. Prove that {(123)(456), (1346)}, {(1234)(56), (123)}, and
{(1234)(56), (123)(567)} are respectively a transitive group of degree
6, an intransitive group of degree 6 and an intransitive group of
degree 7, all of which are simply isomorphic with the symmetric
group of 4 symbols.

145. Let vr(r= 0, 1, 2 , n) be the number of permu
tations of a group of degree n and order N which leave exactly
r symbols unchanged, so that

r—n

N= 1 vr.
r=0

Suppose first that the group is transitive ; and in a sub

group, which keeps one symbol unchanged, let vr'(r=l,
2, n) be the number of permutations that leave exactly
r symbols unchanged, so that

— = 2 vr.
n T=i

Each of the n sub-groups, which leave a single symbol
unchanged, have v

r' permutations which leave exactly r symbols
unchanged ; and each of these permutations belong to r sub
groups which leave one symbol unchanged. Hence

nvr' = rvr,
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and therefore N= 2 rvr;

or the number of unchanged symbols in all the permutations
of a transitive group is equal to the order of the group.

Suppose, next, that the group is intransitive; and consider a

set of « symbols among the n, which are permuted transitively

among themselves by the operations of the group. Let -Z\T, be
the order of the self-conjugate sub-group Hlt which leaves
unchanged each of this set of s symbols. Then if we consider
the effect of the permutations on this set of s symbols only, the

group reduces to a transitive group of order N/Nl with which
the original group is multiply isomorphic. If S' is any permu
tation of this group of order N/Nlt and if SHi denote the
corresponding operations of the original group, then every
permutation of the set SJET, produces the same effect on the
s symbols that S' produces. Now the number of unchanged
symbols in all the permutations of the transitive group of

degree s and order iV/iV, is N/Ni ; therefore, in all the permu
tations of the original group, the number of symbols of the
Bet of s that remain unchanged is iV. The same reasoning
applies to each separate set of the n symbols, which are per
muted transitively among themselves by the operations of the

group. Hence if there are t such transitive sets, the total
number of symbols which remain unchanged in all the per
mutations of the group is Nt ; or

Nt= 2 rvr.
r=l

Returning now to the case in which the group is transitive,
let (?

! be a sub-group of order N/n of G which leaves one
symbol unchanged, and let the n symbols be permuted by (?

,

in s transitive sets, containing
m1(=1), wi2, m,

symbols. The immediately preceding result shews that
n

trvr' = Ns/n,

i

and therefore, since

nvr' = rvr,

i
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Hence :—

Theorem VII. The sum of the numbers of symbols left
unchanged by each jof the permutations of a permutation-group
of order N is tN, where t is the number of transitive sets in which
the group permutes the symbols. The sum of the squares of the
numbers of symbols left unchanged by each of the permutations
of a transitive group of order N is sN, where s is the number of
transitive sets in which a sub-group leaving one symbol unchanged
permutes the symbols.

Ex. Prove that, for a triply transitive group of order N,

2r\ = 5N.
1

146. We have just seen that the symbols permuted by the
operations of an intransitive permutation-group may be divided
into sets, such that every permutation of the group permutes
the symbols of each set among themselves. For a transitive
group the symbols must, from this point of view, be regarded
as forming a single set. It may however in particular cases
be possible to divide the symbols permuted by a transitive

group into sets in such a way, that every permutation of the

group either interchanges the symbols of any set among them
selves or else changes them all into the symbols of some other
set. That this may be possible, it is clearly necessary that each
set shall contain the same number of symbols.

Definition. When the symbols operated on by a transitive
permutation-group can be divided into sets, each set containing
the same number of distinct symbols and no symbol occurring
in two different sets, and when the sets are such that all the

symbols of any set are either interchanged among themselves
or changed into the symbols of another set by every permuta
tion of the group, the group is called imprimitive. When no

such division into sets is possible, the group is called primitive.
The sets of symbols which are interchanged by an imprimitive

group are called imprimitive systems.

A simple example of an imprimitive group is given by
group VII of § 17. An examination of the permutations of this
group will shew that they all either transform the systems of
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symbols xyz and abc into themselves or else interchange them,

and that the same is true of' the systems tea, yb, zc ; so that, in
this case, the symbols may be divided into^two distinct sets of

imprimitive systems.

It follows at once, from the definition, that an imprimitive
group cannot be more than simply transitive. For if it were
doubly transitive, it would contain permutations changing any
two symbols into any other two, and of these the first pair
might be chosen from the same imprimitive system and the
second pair from distinct systems.

It is also obvious that those permutations of the group,
which interchange among themselves the symbols of each

imprimitive system, constitute a self-conjugate sub-group.

147. An actual test to determine whether any transitive
group is primitive or imprimitive may be applied as follows.
Consider the effect of the permutations of the group G on r of
the symbols which are permuted transitively by it. Those

permutations, which permute the r symbols, say

among themselves, form a sub-group H. Now suppose that
every permutation, which changes into one of the r symbols,
belongs to H. Then if S is a permutation, which does not
permute the r symbols among themselves, it must change
them into a new set

&i. K , br,

which has no symbol in common with the previous set ; and

every operation of the set US changes all the a's into b's.
Moreover, since G is transitive, H must permute the a's
transitively ; and therefore the set BS must contain permu
tations changing Oi into each one of the 6's.

Suppose now, if possible, that the group contains a permu
tation S', which changes some of the a's into 6's, and the
remainder into new symbols. We may assume that S' changes
a, into blt and a, into a new symbol c2. Among the set HS
there is at least one permutation, T, which changes a, into
Hence S'T-1 changes Oi into itself and a, into some new

symbol. This however contradicts the supposition that every
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permutation, which changes into one of the set of a's,

belongs to H. Hence no permutation such as S' can belong to
G; and every permutation, which changes one of the a's into
one of the 2l's, must change all the a's into b's.

If the permutations of the group are not thus exhausted,
there must be another set of r symbols

Cii c2, cr,

which are all distinct from the previous sets, such that some

permutation changes all the a's into c's. We may now repeat
the previous reasoning to shew that every permutation, which

changes an a into a c, must change all the a's into c's. By
continuing this process, we finally divide the symbols into a
number of distinct sets of r each, such that every permutation
of the group must change the a's either into themselves or into
some other set : and therefore also must change every set either
into itself or into some other set. The group must therefore be

imprimitive. Hence :—

Theorem VIII. //, among the symbols permuted by a transi
tive group, it is possible to choose a set such that every permuta
tion of the group, which changes a chosen symbol of the set
either into itself or into another of the set, permutes all the
symbols of the set among themselves; then the group is im
primitive, and the set of symbols forms an imprimitive system.
Corollary I. If a,, a^, , aT are a part of the symbols

permuted by a primitive group, there must be permutations of
the group, which replace some of this set of symbols by others
of the set, and the remainder by symbols not belonging to the
set

Corollary II. A sub-group of a primitive group, which
keeps one symbol unchanged, must contain permutations which

displace any other symbol.

If the sub-group H, that leaves Oi unchanged, leaves every
symbol of the set a,, a^, , aT unchanged, then H must be
transformed into itself by every permutation which changes any
one of these symbols into any other. Every permutation, which

changes one of the set into another, must therefore permute
the set among themselves ; and the group, contrary to supposi
tion, is imprimitive.

b. 13
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148. It may be possible to distribute the symbols, which
are permuted by an imprimitive group, into imprimitive systems
in more than one way. When this is possible, suppose that two
systems which contain a, are

ai. <h , ar, *r+1, , &m,

and a,, Oi , ar, a'r+1 ;

and that the symbols common to the two systems are

A permutation of the group, which changes a, into a'r+1,
must change a,, at ar into r symbols of that system of
the first set which contains a'r+1, while it changes the system of
the second set that contains Oi into itself. Hence the latter

system contains at least r symbols of that system of the first
set in which a'r+1 occurs. By considering the effect of the
inverse permutation, it is clear that the system

^1 , ^si , an a r+1 i an

cannot have more than r symbols in common with the system
of the first set that contains a'r+1. Hence the n symbols of this

system can be divided into sets of r, such that each set is
contained in some system of the first set. It follows that n,
and therefore also m, must be divisible by r.

Suppose now that bl is any symbol which is not contained
in either of the above systems. A permutation that changes
ai into b, must change the two systems into two others, which
have r symbols

hi, ht, , br

in common; and since no two systems of either set have a
common symbol, these r symbols must be distinct from

<h, a2. , Or-

Further, from the mode in which the set b,, bt, , br has

been obtained, any operation, which changes one of the symbols
O!, a, , ar into one of the symbols 6,, b2, , br, must

change all the symbols of the first set into those of the second.
Hence the symbols operated on by the group can be divided
into systems of r each, by taking together the sets of r
symbols which are common to the various pairs of the two
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given sets of imprimitive systems ; and the group is imprimitive
in regard to this new set of systems of r symbols each.
Hence :—

Theorem IX. If the symbols permuted by a transitive
group can be divided into imprimitive systems in two distinct

ways, m being the number of symbols in each systeni of one set
and n in each system of the other; and if some system of the
first set has r symbols in common with some system of the second
set; then (i) r is a factor of both m and n, and (ii) the symbols
can be divided into a set of systems of r each, in respect of which
the group is imprimitive.

It might be expected that, just as we can form a new set of
imprimitive systems by taking together the symbols which are
common to pairs of systems of two given sets, so we might form
another new set of systems by combining all the systems of one set
which have any symbols in common with a single system of the
other set. A very cursory consideration will shew however that
this is not in general the case. In fact, it is sufficient to point out
that, with the notation already used, the number of symbols in such
a new system would be mn/r ; and this number is not necessarily a
factor of the degree of the group. Also, even if this number is a
factor of the degree of the group, it will not in general be the case
that the symbols so grouped together form an imprimitive system.

149. We may now discuss, more fully than was possible in

§ 135, the form of a self-conjugate sub-group of a given transitive

group. Such a sub-group must clearly contain one or more

operations displacing any symbol operated on by the group.
For if every operation of the sub-group keeps the symbol a,
unchanged, then since it is self-conjugate, every operation will
keep a,, a,, unchanged : and the sub-group must reduce
to the identical operation only.

Suppose now, if possible, that H is an intransitive self-
conjugate sub-group of a transitive group G; and that H
permutes the n symbols of G in the separate transitive sets
a,, a,, , a„i ; 6,, 6, , bnj If <S is any operation
of G which changes into blt then, since

it must change all the a's into 6's; and since

SHS-* = H,

13—2
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/S-1 must change all the b's into a'e. Hence the number of

symbols in the two sets, and therefore the number of symbols
in each of the sets, must be the same.

Moreover every operation of G, since it transforms H into
itself, must either permute the symbols of any set among
themselves, or it must change them all into the symbols of
some other set. Hence G must be imprimitive, and H must
consist of those operations of G which permute the symbols of
each imprimitive system among themselves.

Conversely, when G is imprimitive, it is immediately obvious
that those operations of G, if any such exist, which permute the
symbols of each of a set of imprimitive systems among them

selves, form a self-conjugate sub-group. Hence :—

Theorem X. A self-conjugate sub-group of a primitive
group must be transitive ; and if an imprimitive group has an
intransitive self-conjugate sub-group, it must consist of the opera
tions which permute among themselves the symbols of each of
a set of imprimitive systems.

If G is an imprimitive group of degree mn, and if there are
n imprimitive systems of m symbols each, then by considering
the effect of G on the systems it is clear that G is isomorphic
with a group G' of degree n. In particular instances, it may
at once be evident, from the order of G, that this isomorphism
cannot be simple. For example, if the order of G has a factor
which does not divide n\, this is certainly the case: and more
generally, if it is known independently that G is not simply
isomorphic with any transitive group of degree n, then G must

certainly be multiply isomorphic with G'. In such instances
the self-conjugate sub-group of G, which corresponds to the
identical operation of G', is that intransitive self-conjugate
sub-group, which interchanges among themselves the symbols

of each imprimitive system.

If G is soluble, a minimum self- conjugate sub-group of G
must have for its order a power of a prime. Also, if G has an
intransitive self-conjugate sub-group, it must have an intransi
tive minimum self-conjugate sub-group. Hence if G is soluble
and has intransitive self-conjugate sub-groups, the symbols
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permuted by 0 must be capable of division into imprimitive
systems, such that the number in each system is the power of
a prime.

150. Let G be a A-ply transitive group of degree n(k > 2),
and let Gr be that sub-group of 6 which keeps r(<k) given
symbols unchanged, so that 0, is (k — r)-ply transitive in the
remaining n — r symbols. Also, let H be a self-conjugate
sub-group of G, and let HT be that sub-group of H which keeps
the same r symbols unchanged; so that Hr is the common
sub-group of H and Gr. Since every operation of Gr transforms
both H and Gr into themselves, every operation of Gr must be
permutable with Hr; i.e. Hr is a self-conjugate sub-group of Gr.
Now, if r = k — 2, G^ is doubly transitive in the n — k + 2
symbols on which it operates; it is therefore primitive. Hence,
unless consists of the identical operation only, it must be
transitive in the n — k + 2 symbols. If is the identical

operation, H contains no operation, except identity, which
displaces less than n — k + 3 symbols.

Suppose, first, that H contains operations, other than iden
tity, which leave one or more symbols unchanged. Then, since
H is a self-conjugate sub-group and G is A-ply transitive, it may
be shewn, exactly as in § 138, that H must contain operations
displacing not more than 2& — 2 symbols. Hence can

consist of the identical operation alone, only if
n-A+3^2/t-2,

or k<tfri + $.

When this inequality holds, we have seen (§ 138) that G
contains the alternating group. Hence in this case, if G does
not contain the alternating group, it follows that -fft-, is transi
tive in the n — k + 2 symbols on which it operates.

Since H is self-conjugate and G is i-ply transitive, H must
contain a sub-group conjugate to jfiTt_s which keeps any other
k — 2 symbols unchanged. Heuce Hk_3 must be doubly transi
tive in the n — k + 3 symbols on which it operates; and so on.
Finally, if G is not the symmetric group (the alternating group,
being simple, contains no self-conjugate sub-group) H must be
(k — l)-ply transitive.
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Suppose, next, that H contains no operation, except identity,
which leaves any symbol unchanged. Then if

, with the notation
of § 138,j = & — 1 for every operation of H, the argument there
used does not apply. For it is impossible to choose the operation

T so that Ci is a symbol which does not occur in S.
The self-conjugate sub-group H contains a single operation

changing a given symbol into any other symbol ar. Also G

contains operations which leave a, unchanged and change a,
into any other symbol a,. Hence the operations of H, other
than identity, form a single conjugate set in O; and therefore
H must be an Abelian group of order pm and type (1, 1, , to

m units); p being a prime. Further, since G is by supposition
at least triply transitive, it must contain operations which
transform any two operations of H, other than identity, into
any other two. If p were an odd prime, and P1 and P, were
two of the generating operations of H, it follows that 0 would
have an operation S such that

and this is impossible. Hence p must be 2. Further if G were
more than triply transitive,and if A, B

,
C were three independent

generating operations of H, then G would have an operation 2

such that
%-iAS, = A, £-'£2 = 5, 1-iCZ = AB.

This again is impossible, and therefore k must be 3
. Hence :—

Theorem XI. A self-conjugate sub-group of a k-ply transi
tive group o

f

degree n(2<k<ri), is in general at least (k — V)-ply
transitive* . The only exception is that a triply transitive group

o
f

degree 2m may have a self-conjugate sub-group o
f order 2m.

161. We will now consider, from a rather different point
of view, the possibility of an imprimitive self-conjugate sub

group in a doubly transitive group. Let G be a doubly transi
tive group of degree mn, and let H be an imprimitive self-
conjugate sub-group of G. Suppose that m is the smallest

number, other than unity, of symbols which occur in an

imprimitive system ; and let

^h, &a>

* Jordan, TraiU det Substitutions, p. 65.
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form an imprimitive system. Since G is doubly transitive,
it must contain a permutation S, which leaves a, unchanged
and changes a, into a^,, a symbol not contained in the given
set. If S changes the given set into

<h, am+l, (hm—i,

then, since
S-'HS = H,

this new set must form an imprimitive system for H. Also,
since m is the smallest number of symbols that can occur in an

imprimitive system, the two sets have no symbol in common

except a1.
Now am+, may be any symbol not contained in the original

system. Heuce it must be possible to distribute the mn
symbols into sets of imprimitive systems of m each, such that

every pair of symbols occurs in one system and no pair in more
than one system. This implies that mn — 1 is divisible by
m — 1, or that n — 1 is divisible by m — 1.

Consider now a permutation of H which leaves Ol unchanged.
It must permute among themselves the remaining m— 1 symbols
of each of the (mn — 1)/(m — 1) systems in which occurs. If
ar is any other symbol, a similar statement applies to it. Now
no two systems have more than one symbol in common. Hence

every permutation of H, which leaves both Oi and ar unchanged,
must leave all the symbols unchanged. The sub-group H is
therefore such that each of its permutations displaces all or
all but one of the symbols. Moreover the permutations, which
leave a, unchanged, permute among themselves the remaining
symbols of each system in which a, occurs ; therefore the order
of H must be mnfi, where fi is a factor of m — 1.
Now (§ 134, footnote) the mn— 1 operations of H, which

permute all the symbols, form with identity a characteristic

sub-group Hi of H, which is a regular permutation-group in
the mn symbols. This is necessarily a self-conjugate sub-group
of G ; and by the preceding paragraph all of its operations,
except identity, are conjugate in G and are therefore of prime
order. Hence if a doubly transitive group has an imprimitive
self-conjugate sub-group, its degree must be the power, pm, of a

prime ; and it must also contain a regular Abelian group of
order pm and type (1, 1, 1) as a self-conjugate sub-group.
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152. For the further discussion of the self-conjugate
sub-groups of a primitive group, it is necessary to consider in
what forms the direct product of two groups can be represented
as a transitive group.

Let 0 be the direct product of two groups Hl and Ht, and
suppose that G can be represented as a transitive group
of degree n. When G is thus represented, we will suppose
that Hx is transitive in the n symbols that G permutes. We

have seen in § 136 that every permutation of n symbols, which

is permutable with each of the permutations of a group
transitive in the n symbols, must displace all the n symbols.
It follows that every permutation of H2 must displace all the
n symbols on which G operates ; and that the order of Ht is
equal to or is a factor of n.

If the order of H, is equal to n, then Ht is transitive in the
n symbols, so that the order of IT, cannot be greater than n.
In this case, H1 and H% must (§ 136) be two simply isomorphic
groups of order n, which have no self-conjugate operations
except identity. Further, if Hx and Ha in this case are not
simple groups, let K be a self-conjugate sub-group of 27,.
Since every operation of 27, is permutable with every operation
of 27,, K is a self-conjugate sub-group of G. Now the order of
K is less than n, the degree of G ; therefore K is intransitive
and G is imprimitive. On the other hand, we have seen

(loc. cit.) that, if 27, and 27, are simple, the sub-group of G
that keeps one symbol fixed is a maximum sub-group : and
then G is primitive. Hence:—

Theorem XII. If the direct product V of 27, and 27, can
be represented as a transitive group of degree n, in such a way
that H1 and Ht are transitive sub-groups of T, then J7, and Ht
must be simply isomorphic groups of order n, which have no
self-conjugate operations except identity. When this condition

is satisfied, V will be primitive if
,

and only if
,

Hx and Ht are
simple.

153. Suppose now that a primitive group G
,

of degree n,

distinct minimum self-conjugate sub-groups Ht and

ti every operation of Ht (or Ht) is permutable with
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Ht (or Hi), and Hlt Ht have no common operation except
identity. Hence (§ 34) the group {Hlt H2], which we will call
r, is the direct product of Hl and Hs. Now T is a self-
conjugate sub-group of G: it is therefore transitive in the
n symbols which G permutes. Also ZT, and H2, being self-con

jugate sub-groups of G, are transitive. Hence, by Theorem XII
(§ 152), Hl and H2 are simply isomorphic, and n is equal to the
order of Hl. Moreover, since JT, is a minimum self-conjugate
sub-group of G which contains no self-conjugate operations
except identity, it must (Theorem IV, § 53) be either a simple
group of composite order, or the direct product of several

simply isomorphic simple groups of composite order. It follows
that G cannot have two distinct minimum self-conjugate sub

groups unless the degree of G is equal to or is a power of the
order of some simple group of composite order.

154. Let now T be a minimum self-conjugate sub-group
of a doubly transitive group G, and suppose that T is the direct
product of the a simply isomorphic simple groups HitHt, ,

Ha. Since G is primitive, T is transitive. If Hl is a cyclical
group of prime order p, the order of T is pa; therefore the
degree of T, or what is the same thing, the degree of G, is pa.

If Hi is a simple group of composite order, and if a > 2,
then (§ 152) Hl cannot be transitive. The transitive systems
of Hi, since they form a set of imprimitive systems for T, must
each contain the same number m of symbols. If m is less than
the order of Hlt a sub-group of £T, which leaves unchanged
one symbol of one transitive system will leave unchanged one

symbol of each transitive system. Now we have seen, in § 151,
that the operations of an imprimitive self-conjugate sub-group
of a doubly transitive group must displace all or all but one of
the symbols. Hence m cannot be less than the order of Hl.
We may similarly shew that, if m is equal to the order of Hlt
and if the degree of G is less than ma, some of the operations
of T must keep more than one symbol fixed; and therefore the
group assumed cannot exist. If the degree of G is equal to ma,
G must be a sub-group of the holomorph of T, and cannot
obviously be doubly transitive. If a = 2, £fi may be transitive.
In this case G would be a sub-group of the group (§ 64) whose
order is twice that of the holomorph of Hl ; and such a group
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cannot be doubly transitive. Hence finally no doubly transitive
group can contain a minimum self-conjugate sub-group of the

type assumed.

No general law can be stated regarding self-conjugate
sub-groups of simply transitive primitive groups; but for

groups which are at least doubly transitive the preceding
results may be summed up as follows:—

Theorem XIII. A group G which is at least doubly transi
tive either must be simple or must contain a simple group H as
a self-conjugate sub-group. In the latter case no operation of G,
except identity, is permutable with every operation of H. The
only exceptions to this statement are that a triply transitive group

of degree 2m may have a self-con jugate sub-group of order 2m ;
and that a doubly transitive group of degree pm, where p is a
prime, may have a self-conjugate sub-group of order pm.

Corollary. If a primitive group is soluble, its degree
must be the power of a prime*.

In fact, if a group is soluble, so also is its minimum
self-conjugate sub-group. The latter must be therefore an

Abelian group of order p* : and since this group must be
transitive, its order is equal to the degree of the primitive

group.

155. As illustrating the occurrence of an impriniitive self-
conjugate sub-group in a primitive group, we will construct a
primitive group of degree 36 which has an imprimitive self-conju
gate sub-group. For this purpose, lett

S = (l, 2, 3) (4, 5, 6) (7, 8, 9) (10, 11, 12) (13, 14, 15)
(16, 17, 18) (19, 20, 21) (22, 23, 24) (25, 26, 27)

(28, 29, 30) (31, 32, 33) (34, 35, 36),

and A = (3, 4) (5, 6) (9, 10) (11, 12) (15, 16) (17, 18)

(21, 22) (23, 24) (27, 28) (29, 30) (33, 34) (35, 36);

so that {S, A] is an intransitive group of degree 36, the symbols
* This result, stated in a somewhat different form, is given, among many

others, in the letter written by Galois to his friend Chevalier on the evening
of May 29th, 1832, the day before the dnel in which he was killed. The letter
was first printed in the Revue Encyclope'dique (1832), p. 568 ; it was reprinted
in the collection of Galois's mathematical writings in Liouville'i Journal, t. xi
(1846), pp. 381—444.
+ The commas in the symbols for the permutations are here used to prevent
confusion among the one-digit and two-digit numbers.
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being interchanged in 6 transitive systems containing 6 symbols
each. This group is simply isomorphic with

{(123) (456), (34) (56)};

and it may be easily verified that this group is simply isomorphic
with the alternating group of 5 symbols, the order of which is 60.

Also let

J=(2, 7) (3, 13) (4, 19) (5, 25) (6, 31) (9, 14) (10, 20) (11, 26)
(12, 32) (16, 21) (17, 27) (18, 33) (23, 28) (24, 34) (30, 35).

Then

JSJ=(l, 7, 13) (19, 25, 31)(2, 8, 14)(20, 26, 32)
(3, 9, 15) (21, 27, 33)(4, 10, 16)(22, 28, 34)

(5, 11, 17) (23, 29, 35) (6, 12, 18) (24, 30, 36),

and .74./= (13, 19)(25, 31) (14, 20)(26, 32)(15, 21)(27, 33)

(16, 22) (28, 34) (17, 23) (29, 35) (18, 24) (30, 36);

and {JSJ, JAJ] is similar to and simply isomorphic with {S, A \.
Now it may be directly verified that S and A are, each of them,

permutable with JSJ and JAJ ; and therefore every operation of
the group {S, A] is permutable with every operation of the group
{JSJ, JAJ\. Also these two groups can have no common operation,
since the symbols into which {S, A) changes any given symbol are
all distinct from those into which {JSJ, JAJ) change it. Hence
{S, A, JSJ, JAJ) is the direct product of {S, A} and {JSJ, JAJ} ;
it is therefore a group of order 3600. It is also, from its mode of
formation, a transitive group of degree 36 ; and it interchanges the
symbols in two and only two distinct sets of imprimitive systems, of
which

1, 2, 3, 4, 5, 6 and 1, 7, 13, 19, 25, 31

may be taken as representatives.

Now J does not interchange the 36 symbols in either of these
systems, and therefore it cannot occur in {S, A, JSJ, JAJ\.
Further

J{S, A, JSJ, JAJ}J= {S, A, JSJ, JAJ};
and therefore {J, S, A] is a transitive group of degree 36 and order
7200. Also, since J does not interchange the symbols in either of
the two sets of imprimitive systems of {S, A, JSJ, JAJ\, it follows
that {J, S, A) is primitive.

156. Ex. 1. Shew that a group of order Ar, which has a set of
n conjugate sub-groups, is composite if n \/N is not an integer.
Ex. 2. An imprimitive group of order N permutes its symbols

in r imprimitive systems of n (> 1 ) symbols each. Prove that, if r
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is 2, the group has a self-con jugate sub-group of order iiV; and that
for the values 3 and 4 of r there is a self-conjugate sub-group whose
order is either \N or \N.
Ex. 3. Prove that, if n is the smallest number such that a

transitive permutation-group of degree n is simply isomorphic with
a group <

?, then n" is the smallest number such that a transitive
permutation-group of degree nm is simply isomorphic with the direct
product of a groups each of which is simply isomorphic with G.

Ex. 4. Shew that, if every sub-group of G contains a self-
conjugate sub-group of G

,

no transitive permutation-group whose
degree is less than the order of G can be simply isomorphic with G.
In particular shew that no transitive group whose degree is less
than 63 can be simply isomorphic with the group defined by

A»=E, E^E, A^BA=Bl.
Ex. 5. Shew that a transitive permutation-group whose order

is the power of a prime is necessarily imprimitive.

Ex. 6. Shew that an Abelian group of order 2" and type
(1, 1, ... to re units) can be expressed as an intransitive permutation-
group of degree 2(2" — 1), each of whose permutations except
identity leaves 2(2*_I— 1

) symbols unchanged.

Ex. 7. Prove that the holomorph of an Abelian group of order
2n and type (1, 1, ... to re units), when expressed as a permutation
of degree 2", as on p. 87, is triply transitive ; while the holomorph
of an Abelian group of order p* and type (1, 1, ... to n units),

p being an odd prime, is only doubly transitive.

Ex. 8. If G is a simply transitive primitive group and H the
sub-group of G which leaves one symbol unchanged and permutes
the remaining symbols in two or more transitive sets, prove that
a prime which divides the order of one transitive constituent of H
must divide the orders of all of them. (Jordan.)
Ex. 9. If G is a transitive group of odd order and of degree

2n + 1 , and H the sub-group of G which leaves one symbol un
changed and is necessarily intransitive in the remaining 2re, prove
that the degrees of the transitive constituents of H are equal
in pairs.

Ex. 10. Prove that a doubly transitive group cannot contain
an intransitive sub-group whose order is greater than that of a
sub-group which leaves one symbol unchanged.

Ex. 11. Shew that the alternating group of 6 symbols can be
expressed as a doubly transitive group of degree 10 ; and that in
this form all the operations of order 3 are represented by similar
permutations.



CHAPTER XL

ON PER MUTATION-GROUPS : TRANSITIVITY AND
PRIMITIVITY: (CONCLUDING PROPERTIES).

157. From the point of view of one of the problems of pure

group-theory, namely, the determination of all distinct types
of group of a given order, the analysis of the symmetric group
of n symbols is not a succinct process, as it continually involves
the redetermination of groups which have been already ob
tained. Thus a simple group of degree win, in which the

symbols are permuted in m imprimitive systems of n each,

would in this analysis have been already obtained as a group
of degree m. With reference then to the more restricted
problem of determining all types of simple groups, it would
certainly be sufficient to find all primitive sub-groups of the

symmetric group.

158. We shall proceed to determine a superior limit to
the order of a primitive group of degree n, other than the

alternating or the symmetric group.

Let G be a primitive group of degree n, and suppose that G
contains a sub-group H which leaves n — to symbols unchanged
and is trausitive in the remaining to. Since G is primitive, H
and the sub-groups conjugate to it must generate a transitive
self-conjugate sub-group of G; and therefore there must be
some sub-group H', conjugate to H, such that the to symbols
operated on by H and the m operated on by H' are not all
distinct. Suppose H' is chosen so that these two sets of to
symbols have as great a number in common as possible, say s;
and represent by

«i, a2. ar, 7i, 72, , 7»,

and /8„ ft, , /3r, ylt y„ , y„



206 [158PRIMITIVE

where r + s = in, the symbols operated on by H and H ' respec
tively. Then [H, H') is a transitive group in the 2r + s symbols
a, ft and y, which leaves unaltered all the remaining symbols
of 0.

If S is an operation of H which changes cu, into a,, S^H'S
does not affect a,. Hence, unless S interchanges the o's among
themselves, the m symbols operated on by H' and the m
operated on by S~*H'S will have more than s in common.
Every operation of H which changes one a into another must
therefore interchange all the as among themselves ; hence H
must be rmprimitive.

If then H is primitive, s must be equal to m — 1. In any
case, if s = m— 1, [H,H'\ is a doubly transitive and therefore
primitive group of degree ni + 1, which leaves the remaining
n —m—l symbols of 0 unchanged. We may reason about this
sub-group as we have done about H. Among the sub-groups
conjugate to [H, H'}, there must be one at least which operates
on m of the symbols displaced by {H, H'}. This, with {H, H'},
generates a triply transitive group of degree m + 2, which
leaves n — m — 2 symbols unchanged. Proceeding thus, we find

finally that 0 itself must be (n — m+ l)-ply transitive.

159. If s is less than m — 1, we may again deal with the
sub-group [H, H'), or Hlt exactly as we have dealt with U. It
is a transitive group of degree (>m), which leaves n — ml
symbols unchanged. If, among the sub-groups conjugate to
Hi, none operates on more than s, of the symbols affected by
Hi, and if JET,' is a suitably chosen conjugate sub-group, then
{^j, Hi) is a transitive group of degree 2wi, — su which leaves
n — 2/Wi + «i symbols unchanged. Continuing this process, we
must, before arriving at a group of degree n, reach a stage at
which the number sr is equal to m, - 1.
For suppose, if possible, that among the groups conjugate

to K, of degree p + a, none displaces more than a of the
symbols acted on by K, while at the same time 2p + a = n. If

«i. °i. «(>, 7i» 7a> >y«>

and ft, ft, ft, 7„ 7„ ,<ya

are the symbols affected by K and K' respectively, then since
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G is primitive, it must contain an operation 8 which changes al
into aa without at the same time changing all the a's into ot's.
If then we transform K' by S, the two groups K' and S^K'S
must operate on more than a common symbols, contrary to

supposition.

Hence G must in this case certainly contain a transitive

sub-group of degree n — 1, and therefore is itself at least
doubly transitive*.

160. Returning to the case in which H is primitive and
G therefore (n — to + 1)-ply transitive, we at once obtain an
inferior limit for to. We have seen, in fact, in Theorem IV,
§ 138, that a group of degree n, other than the alternating or
the symmetric group, cannot be more than (Jn+1)-ply tran
sitive. Hence

n - to + 1 if- \n + 1
,

or m | v.
We may sum up these results as follows: —

Theorem I. A primitive group G of degree n, which has a
sub-group H that keeps n — to symbols unchanged and is transi
tive in the remaining to symbols, is at least doubly transitive. If

H is primitive and G does not contain the alternating group, to
cannot be less than §n, and G is (n — to + l)-ply transitive.

Corollary. The order of a primitive group of degree n
cannot exceed n !/

2 .3 p, where 2
,

3
, p are the distinct

primes which are less than §n.

If is the highest power of a prime q that divides n\, the
sub-groups of order q

a of the symmetric group form a single
conjugate set, and each of them must contain circular substitu
tions of order q

. Hence if q < §n, it follows by the theorem
that no primitive group of degree n, other than the alternating
* The results contained in §§ 158, 159 are due to Jordan (LiouvilU't Journal,

Vol. xvi, 1871) and Netto (CreUe's Journal, Vol. cm, 1889). They have been
extended by Marggraff: "tJeber primitiven Gruppen mit transitiven Unter-
gruppen geringeren Grades" (Inaugural Diisertation, Giessen, 1892). With the
notation ased in the text, Marggraff shews that, unless the symbols affected by
H can be divided into imprimitive systems of r symbols each, in at least r+1
distinct ways, O will be (n-m+l)-ply transitive. In particular, if H is a
cyclical group of degree m, Q is (n - m + l)-ply transitive. He also shews that
in any case m^^n.
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or the symmetric group, can contain a sub-group of order qa ;
and therefore <f-l is the highest power of q that can divide
the order of the group.

161. The ratio of 2.3 .p to n increases rapidly as n
increases, and it is at once obvious that, when n > 7, this ratio is
greater than unity ; hence for values of n greater than 7, the

symmetric group can have no primitive sub-group of order

(n-1)l.
The order of the greatest imprimitive sub-group of the

symmetric group is a ! (n/a !)a, where a is the smallest factor

of n. When n > 4, this is less than (n — 1) !.

The order of the greatest intransitive sub-group of the

symmetric group, other than the sub-groups that keep one

symbol fixed, is 2!(n — 2)!. This is always less than (n — 1)!.

Hence when n > 7, the only sub-groups of order (n — 1)! of
the symmetric group are the sub-groups which each keep one

symbol fixed; and these form a conjugate set of n sub-groups.

When n = 7, a sub-group of order (n — 1)! must be intransi
tive, and therefore the same result holds in this case ; this also
is true when n is 3, 4, or 5.

Lastly, when re = 6, there may, by the foregoing theorem,
be primitive sub-groups of order 5 !. That such sub-groups
actually exist may be verified at once by considering the

symmetric group of 5 symbols. This group contains 6 cyclical

sub-groups of order 5, and each of them is self-conjugate in a

sub-group of order 20. When these 6 conjugate sub-groups
of order 20 are transformed by the operations of the symmetric

group, they are transitively permuted among themselves. More
over no operation of the symmetric group transforms each of

these sub-groups into itself. Hence there is a transitive group of

degree 6 which is simply isomorphic with the symmetric group
of 5 symbols ; and, since the alternating group of degree 6 is

simple, this transitive group of degree 6 must be one of

6 conjugate sub-groups in the symmetric group of degree 6.
The symmetric group of degree 6 therefore contains a set of 6

conjugate doubly transitive sub-groups of order 5!, which are

simply isomorphic with the intransitive sub-groups that each
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keep one symbol fixed. Finally, if the 12 sub-groups of order
5!, which are thus accounted for, do not exhaust all the sub

groups of this order, any other would have in common with
each of the 12 a sub-group of order 20; and therefore the

operations of order 3 contained in it would be distinct from
those in the previous 12. But these clearly contain all the
operations of order 3 of the symmetric group, and therefore
there can be no other sub-groups of order 5!. Hence:—

Theorem II. The symmetric group of degree n (n + 6)
contains n and only n sub-groups of order (n — 1)1, which form a
single conjugate set. The symmetric group of degree 6 contains
12 sub-groups of order 5!, which are simply isomorphic with one
another and form two conjugate sets of 6 each.

162. It is an immediate result of the preceding theorem that,
except when n = 6, the symmetric group of degree n is a complete
group. In fact with this exception the symmetric group of degree
n contains just n sub-groups of order n — 1 ! forming a conjugate set,
and no operation of the group is permutable with each sub-group of
the set Hence (Theorem III, Chapter VI) to every isomorphism
of the group there corresponds a permutation of n symbols. There
are therefore no outer isomorphisms, and since the group has no
self-conjugate operations it is complete*.
When n = 6, every isomorphism of the group must either change

each of the two conjugate sets of sub-groups of order 5 ! into itself,
or must permute the two sets. By the previous reasoning an
isomorphism, which transforms each of the two conjugate sets into
itself, can be represented as a permutation of 6 symbols and is
therefore an inner isomorphism. There can therefore be, at most,
a single class of outer isomorphisms which must permute the two
conjugate sets.

That such a class of outer isomorphisms actually exists may be
verified as follows. Let the symmetric group of degree 6 be set up
on the symbols

a,, a2, «i, a4, a6, a„,

so that the sub-group which leaves % unchanged is one of the first
set of conjugate sub-groups of order 5 ! ; and again on the symbols

6i, h, bi, °4, 6„, 6,,
so that the sub-group which leaves 6, unchanged is one of the second
set of sub-groups of order 5 !. The 36 products a(bi then obviously
undergo a transitive permutation-group under the operations of the
symmetric group.

* Holder, Math. Ann. Vol. xlvi (1895), p. 345.

B. 14
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To the sub-group of the a'a which leaves n, unchanged there
corresponds a sub-group on the products which permutes

aAi Oi*2, Oi^i, aA, O,6„ a,6,
transitively and the remaining 30 products also transitively. To
the sub-group of the b'a which leaves 6, unchanged there corresponds
a sub-group on the products which permutes

aA, aA, as6i. °A, aAi OA
transitively and the remaining 30 products transitively. Now it
will be found that the permutation

is permutable with the transitive group on the 36 products.
Moreover it permutes

O,6,, O,6„ a,6J/ a,64, a,66, a,6,

with a,6, , ai6i, «46,, a66lt a,61.

Hence it must permute a sub-group of order 5 ! of the first set with
one of the second. The group of isomorphisms of the symmetric
group of degree 6 is therefore a group of order 1440*.

163. We shall now discuss certain further limitations on

the order of a primitive group of given degree. Though it will
be seen that these do not lead to general results, similar to that

given by Theorem I, § 160, yet in many special cases they are
of considerable assistance in determining the possible existence
of groups of given orders and degrees.

We consider first a group G of order iV and of prime degree p.
If G is not cyclical, it must contain permutations which keep
only one symbol unchanged. For let P be a permutation of O
of order p. The only permutations permutable with P are its
own powers (§ 136); and the only permutations permutable with

[P] are permutations which keep one symbol unchanged and are
regular in the remaining p — 1 symbols (§ 140)f. Now if the
only permutations permutable with [P] are its own, then {P} is
one of N/p conjugate sub-groups; and these contain N(p — l)/p
* Holder, loc. cit. p. 343. Compare also § 183 below.
+ It is shewn in § 140 that {P} is permutable with a circular permutation of

p - 1 symbols, which leaves one symbol a, unchanged. If there are other per
mutations which leave a, unchanged and are permutable with ; P \ . some such
permutation will leave two symbols unchanged. This is clearly impossible.
Hence the group of order p (p - 1) is the greatest group of the p symbols in
which {P} is self-conjugate.
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permutations of order p. In this case, Q would contain exactly
N/p permutations whose orders are not divisible by p. But this
is clearly impossible, since N/p is the order of a sub-group which
keeps one symbol unchanged, and there are p such sub-groups.
Hence there must be permutations in G, other than those of

{P}, which are permutable with {P} ; and each of these permu
tations keeps one symbol unchanged.

It follows from § 154 that G, if soluble, must contain a
self-conjugate sub-group of order p: therefore no group of
prime degree p, which contains more than one sub-group of
order p, can be soluble.

If 1 + kp is the number of sub-groups of order p contained
in G, then

N =pP^(l+kp),

where d is a factor of p — 1 ; and a sub-group of order p is
transformed into itself by every permutation of a cyclical sub

group of order (p — l)/d. When d is odd, a permutation which
generates this cyclical sub-group is an odd permutation; and

G then contains a self-conjugate sub-group of order

If both p and \ (p — 1) are primes, the order of a group of
degree p, which contains more than one sub-group of order p,
must be divisible by ^ (p — 1). For if the order is not divisible
by h{v- 1)i 'he order of the sub-group, within which a sub
group of order p is self-conjugate, must be 2p. Now the
permutations of order 2 in this sub-group consist of £(p — 1)
transpositions, so that they are odd permutations. The group
must therefore contain a self-conjugate sub-group in which
these operations of order 2 do not occur. In such a sub-group,
the only operations permutable with those of a sub-group of
order p are its own; and we have seen that no such group can
exist. The order of the group must therefore, as stated above,
be divisible by £ (p — 1

).

164. Let G be a primitive group of degree n and order N;
and let p be a prime, which is a factor of N but not of either n
or n — 1
. Moreover, suppose that n is congruent to v, mod. p ;

v being less than p. If n< p2, and ifpa is the highest power of
14—2
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p which divides N, the sub-groups of order p* must be Abelian

groups of type (1, 1, ... to a units). In fact, such a sub-group
must be intransitive, and, since n <ps, the number of symbols
in each transitive system of the sub-group must be p. In
any case the number of symbols left unchanged by a sub-group
of order pa is of the form kp + p.

Suppose now that, in a sub-group of order Njn which leaves
one symbol unchanged, a sub-group H of order p* is one of
N/pam7i conjugate sub-groups. Then each of the n sub-groups
that keep one symbol unchanged contains Njp'-mn sub-groups
of order pa ; and each sub-group of order pa belongs to kp + v

sub-groups that keep one symbol unchanged. Hence 0 con
tains N/p'm (kp + v) sub-groups of order pa ; and any one of
them, say H, is contained self-coujugately in a sub-group / of
order pam (kp + v

). This sub-group / must interchange transit
ively among themselves the kp + v symbols left unchanged by
H. For let a and b be any two of these symbols ; and let S be
an operation which changes a into b and transforms H into H'.
There must be an operation T which keeps 6 unchanged and
transforms H' into H, since in the sub-group that keeps b

unchanged there is only one conjugate set of sub-groups of

order p". Then ST changes a into b and transforms H into
itself; and therefore / contains permutations which change a
into b. Now it may happen that the existence of a sub-group
such as /, transitive in the kp + v symbols unchanged by
H, requires that 0 is either the alternating or the symmetric
group.

165. As a simple example, we will shew that the order of
a group of degree 19 cannot be divisible by 7, unless it contains
the alternating group. It follows from Theorem 1

, Corollary,

§ 160, that the order of a group of degree 19, which does not
contain the alternating group, cannot be divisible by a power of 7

higher than the first, and that if the group contains a permutation
of order 7, the permutation must consist of two cycles of 7 symbols
each. The sub-group of order 7 must therefore leave 5 symbols
unchanged ; hence, by § 164, it must be contained self-conjugately in
a sub-group whose order is divisible by 5

. Now (§ 36) a group of
order 35 is necessarily Abelian ; so that the group of degree 19 must
contain a permutation of order 5 which is permutable with a per
mutation of order 7. Such a permutation of order 5 must clearly
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consist of a single cycle, and its presence in a group of degree 19
requires that the latter should contain the alternating group. It
follows that, if a group of degree 19 does not contain the alternating
group, its order is not divisible by 7.

As a second example, we will determine the possible forms for
the order of a group of degree 13, with more than one sub-group
of order 13, which does not contain the alternating group. By
Theorem I, Corollary, § 160, the order of such a group must be of
the form 2a.30.5v. 11*. 13; where a, /?

,

y, 8 do not exceed 9
, 4
,

1
,

1 respectively.

Suppose, first, that y is unity, if possible. A permutation of
order 5 must consist of two cycles of 5 symbols each ; and a sub
group of order 5 must therefore be self-conjugate in a sub-group of
order 15. There is then a permutation of order 3 which is per-
mutable with a permutation of order 5. Such a permutation must,
as in the last example, consist of a single cycle ; and its existence
would imply that the group contains the alternating group. It
follows that, for the group as specified, y must be zero.

Suppose, next, that 8 is unity, if possible. The group is then
(Theorem I, § 160) triply transitive ; and the order of the sub-group,
that keeps two symbols fixed and is transitive in the remaining 11,

is 2a_a . 30-1 .11; and this sub-group must contain more than one
sub-group of order 11. We have seen in § 163 that no such group
can exist. Therefore 8 must be zero.

The two smallest numbers of the form 2m3B which are congruent
to unity, mod. 13, are 33 and 243a; and every number of this form,
which is congruent to unity, mod. 13, can be written (243a)x33".
Hence the order of every group of degree 13, which contains no odd
permutation, must be of the form (2J3a)x. 3s". z. 13, where z is 2

, 3
or 6. Since 34 is the highest power of 3 that can divide the order
of the group, the only admissible values of x and y are (i

) x = 0,

y = 1 : (ii) x = 2
, y = 0 : (iii) x = l, y = 0
.

Suppose, first, that x = 0
, y—\. The order of the group is

2 . 3'. 13, 34 . 13, or 2 . 3'. 13. There must be 13 sub-groups of order
3* (or 3*), and since 13 is not congruent to unity, mod. 9

, there must
be sub-groups of order 3' (or 3a) common to some two sub-groups of
order 3* (or 3s). Such a sub-group must be self-conjugate (TheoremIII, § 123). This case therefore cannot occur.
Next, suppose that x = 2, y = 0. Then z must be 2

, and the
order of the group is 2" . 34 . 1 3. Now it is easy to verify that
a sub-group of order 2'. 34 and degree 12 can be neither intransitive
or imprimitive. The order of a sub-group of the group of degree

1 2 which keeps one symbol fixed is 27 . 3s. This sub-group can have
no permutation consisting of a single cycle of 3 symbols, since no
such permutation can occur in the original group. Hence it must
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permute the 11 symbols in two transitive sets of 9 and 2 symbols
respectively. It must therefore contain a self-conjugate sub-group
of order 2* . 33 which keeps 3 of the 12 symbols unchanged ; and this
sub-group must occur self-conjugately in 3 of the 12 sub-groups which
keep one symbol unchanged. This however makes the group of
degree 12 imprimitive, contrary to supposition. Hence this case
cannot occur.

Finally, then, the only possible values of x and y are x = 1, y = 0.
The order of a group of degree 13, which has more than one sub-group
of order 13 and no odd permutations, is 25.32.13, 24.33.13, or
25. 33. 13. The order of a group of order 13 with odd permutations
will be twice one of the preceding three numbers.

A further and much more detailed examination would be
necessary to determine whether groups of degree 13 correspond
to any or all of these orders. We shall see in Chapter XX that
there is a group of degree 13 and order 2*.33. 13.

Ex. If n (> 3) and In + 1 are primes, shew that there is no
triply transitive group of degree 2n + 3 which does not contain
the alternating group.

166. As a further illustration, and for the actual value of

the results themselves, we proceed to determine all types of

primitive groups for degrees not exceeding 8.

(i
) n = 3.

The symmetric group of 3 symbols has a single sub-group,
viz. the alternating group. Both these groups are necessarily
primitive.

(ii) n = 4
.

Groups of degree 4 and order 2
,
4 or 8 are obviously either

intransitive or imprimitive. Hence the only primitive groups
of degree 4 are the symmetric and the alternating groups.

(hi) n = 5
.

Since 5 is a prime, every transitive group of degree 5 is a
primitive group. The symmetric group of degree 5 contains

6 cyclical sub-groups of order 5 ; and, by Sylow's theorem, every
group of degree 5 must contain either 1 or 6 sub-groups of
order 5

. Since the alternating group is simple, every sub
group that contains 6 sub-groups of order 5 must contain the
alternating group. Hence, besides the alternating and the

symmetric groups, we have only sub-groups which contain a



166] 215OF DEGREES FIVE AND SIX

sub-group of order 5 self-conjugately. In such a group, an
operation of order 5 can be permutable with its own powers
only. Hence (§ 140) the only sub-groups of the type in question,
other than cyclical sub-groups, are groups of orders 20 and 10.
These are defined by

{(12345), (2354)),

and {(12345), (25) (34)).

(iv) n = 6.

If the order of a primitive group of degree 6 is not divisible
by 5, the order must (§ 160) be equal to or be a factor of 2s . 3.

The order of a sub-group that keeps one symbol fixed is equal
to or is a factor of 22. Hence the sub-group must keep two

symbols fixed, and therefore (§ 147) the group cannot be primitive.
Hence the order of every primitive group of degree 6 is divisible

by 5, and every such group is at least doubly transitive. The

symmetric group contains 36 sub-groups of order 5; and hence,
since no transitive group of degree 6 can contain a self-

conjugate sub-group of order 5, every primitive group of degree
6, which does not contain the alternating group, must have
6 sub-groups of order 5.

If G is such a group, the sub-group of G that keeps one
symbol fixed is a transitive group of degree 5 which has a

self-conjugate sub-group of order 5. If this transitive group
of degree 5 were cyclical, every operation of the doubly transi

tive group G of order 30 would displace all or all but one of the

symbols. Since 6 is not the power of a prime, this is impossible

(§ 134). Hence the sub-group of G which keeps one symbol
fixed must be of one of the two types given above ; and the
order of G must be 120 or 60. Now we have seen, in §161,
that the symmetric group of degree 6 has a single conjugate set
of primitive sub-groups of order 120 and a single set of order

60. Hence there is a single type of primitive group of degree 6,

corresponding to each of the orders 120 and 60. These are
defined by

{(126) (354), (12345), (2354)),

and {(126) (354), (12345), (25) (34)}:

where the last two permutations in each case generate a sub

group that keeps one symbol unchanged.
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(v) n = 7.

Every transitive group of degree 7 is primitive ; and if it
does not contain the alternating group, its order must (§ 160) be

equal to or be a factor of 7 . 6 . 5 . 4. A cyclical sub-group of
order 7 must (footnote, p. 210), in a group of degree 7 that con
tains more than one such sub-group, be self-conjugate in a group
of order 21 or 42. Now neither 20 nor 40 is congruent to unity,
mod. 7 ; and therefore 5 cannot be a factor of the order of such
a group. Hence the order of a transitive group of degree 7,
that does not contain the alternating group, is equal to or is a

factor of 7 . 6 . 4. But 8 is the only factor of 7.6.4 which is
congruent to unity, mod. 7; and therefore, if the group contains
more than one sub-group of order 7, its order must be equal to
7.6.4 and it must contain 8 sub-groups of order 7.

Such a group must be doubly transitive ; for if a sub-group
of order 24, that leaves one symbol unchanged, interchanges the

symbols in two intransitive systems, it is easily shewn that the
group would contain permutations displacing three symbols
only, and therefore that it would contain the alternating group.
A sub-group of degree 24, transitive in 6 symbols, can contain
no circular permutation of order 6, for it would be an odd per
mutation; it must therefore contain four sub-groups of order 3.
Hence the sub-groups of order 24 must be simply isomorphic
with the symmetric group of 4 symbols.

The actual construction of the group is now reduced to
a limited number of trials. A group of degree 6, simply
isomorphic with the symmetric group of 4 symbols, and con

taining no odd permutations, may always be represented in
the form

{(234) (567), (2763) (45)};

and we have to find a circular permutation of the seven symbols
1, 2, 3, 4, 5, 6, 7 such that the group generated by it shall be

permutable with this group. Moreover since, in the required
group, every operation of order 3 transforms some operation of
order 7 into its square, we may assume without loss of generality
that the circular permutation of order 7 contains the sequence
..12.. and is transformed into its own square by (234) (567).
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There are only three circular permutations satisfying these
conditions, viz.

(1235476),

(1236457),

and (1237465).

It appears on trial that the group generated by the first of
these is not permutable with the sub-group of order 24, while
the groups generated by the other two are. There are therefore

just two groups of order 7.6.4 which contain the given group
of order 24. Now in the symmetric group of 7 symbols, a

sub-group of order 7.6.4 must, from the foregoing discussion,
be one of a set of 30 conjugate sub-groups. These all enter in
the alternating group; and therefore, in that group, they must
form two sets of 15 conjugate sub-groups each. Each of these
contains 7 sub-groups of the type

{(234) (567), (2763) (45)};

and the alternating group contains a conjugate set of 105 such

sub-groups. Hence each sub-group of this set will enter in
two, and only in two, sub-groups of the alternating group of
order 7.6.4; and in the symmetric group these two sub-groups
are conjugate. Finally then, the sub-groups of order 7.6.4
form a single conjugate set in the symmetric group. They are
defined by

{(1236457), (234) (567), (2763) (45) j,
the two latter permutations giving a sub-group that keeps
one symbol fixed.

These groups are simple ; for since they are expressed as
transitive groups of degree 7, there can be no self-conjugate
sub-group whose order divides 24, while it is evident that a
self-conjugate sub-group that contains an operation of order 7
must coincide with the group itself. Also since there are 8

sub-groups of order 7, these groups can be expressed as doubly
transitive groups of eight symbols.

A group of degree 7, which has only one sub-group of order
7, must either be cyclical or be contained in the group of order

7 . 6 given by § 140. Such groups are defined by

{(1234567), (243756)},

or {(1234567), (235) (476)},

or {(1234567), (27) (45) (36)}.
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The simple group of order 168, which here occurs as a
transitive group of degree 7, is the only simple group of that
order. For, if possible, let there be a simple group G of order
168 and of a distinct type from the above. It certainly cannot
be expressed as a group of degree 7 ; and therefore it must
have 21 sub-groups of order 8. If two of these sub-groups
have a common sub-group of order 4, it must be contained
self-conjugately (§ 123) in a sub-group of order 24 or 56; and
this is inconsistent with the suppositions made. If on the
other hand, 2 is the order of the greatest sub-group common
to two sub-groups of order 8, such a common sub-group of order
2 must, on the suppositions made, be self-conjugate in a sub

group of order 12. But a group of order 12, which has a

self-conjugate operation of order 2, must have a self-conjugate

sub-group of order 3 ; and therefore G would only contain 7

sub-groups of order 3, and could be expressed as a group of

degree 7 ; contrary to supposition. No other supposition is

possible with regard to the sub-groups of order 8, since 21 is

not congruent to unity, mod. 8. Hence, finally, there is no

simple group of order 168 distinct from the group of degree 7.

(vi) n = 8.

The order of a primitive group of degree 8, which does not

contain the alternating group, cannot (§ 160) be divisible by 5.

Suppose, if possible, that the order of such a group is 2a+2.3
(a = 0, 1, 2, 3). A permutation of order 3 must consist of two
cycles ; and therefore the sub-group of order 2a. 3, which keeps
one symbol fixed, must interchange the others in two intransi

tive systems of 3 and 4 respectively. In this sub-group, a
sub-group of order 3 must be one of four conjugate sub-groups,
and therefore a is either 2 or 3. Now a group of order 2'. 3
or 2" . 3 is soluble, as is seen at once by considering the sub

groups of order 25 or 2s. Hence a primitive group of order 2' . 3

or 2". 3 must contain a transitive self-conjugate sub-group of

order 8, whose operations are all of order 2.

If 7 is a factor of the order of the group, the group must be
doubly transitive ; and from the case of n = 7, it follows that
the possible orders are 8.7, 8.7.2, 8.7.3, 8.7.6, and
8.7.6.4. Moreover, for the orders 8.7.2 and 8.7.6, the
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group contains odd permutations and therefore it contains self-

conjugate sub-groups of order 8 . 7 and 8.7.3 respectively.

A simple group of order 8.7.3 is necessarily identical in
type with the group of this order determined above ; and
a group of order 8.7.3, which is not simple, is certainly
soluble. Hence a composite group of order 8.7.3, and a
group of order 8.7.6 which does not contain a simple sub
group of order 8.7.3, must both, if expressible as primitive
groups of degree 8, contain transitive self-conjugate sub-groups
of order 8 whose operations are all of order 2. With the
possible exception then of groups of order 8.7.6.4, the only
primitive groups of degree 8, which do not contain a self-

conjugate sub-group of order 8, are the simple group of order

8.7.3 and any group of 8.7.6 which contains this self-
conjugately. We have seen that the simple group of order

8.7.3 contains a single set of 8 conjugate sub-groups of order
21, and therefore it can be expressed in one form only as a

group of degree 8. A group of degree 8 and order 8.7.6,
which contains this self-conjugately,can occur only in one form,

if at all ; for, if it exists, it must be triply transitive, and it
must be given by combining the simple group with an opera
tion of order 2 which transforms one of its operations of order
7 into its own inverse. That such a group does exist has been
shewn in § 141. These two groups are actually given by

{(15642378), (1234567), (243756)},

and {(1627) (5438), (1234567), (235) (476));

where in each case the last two permutations give a sub-group
that keeps one symbol fixed.

A primitive group of degree 8 which contains a transitive
self-conjugate sub-group of order 8 whose operations are all of

order 2 must be the holomorph (§ 64) of the Abelian group of

order 8, or a sub-group of the holomorph. The sub-group that

leaves one symbol unchanged must be a group of isomorphisms
of the Abelian group. The group of isomorphisms of a group
of order 8, whose operations are all of order 2, will be shewn in

Chapter XX to be identical with the simple group of order
168. This group has a single set of conjugate sub-groups of
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each of the orders 7 and 21, but no sub-group of order 14 or
42. When expressed as a group of degree 7, it has a single set
of conjugate sub-groups of order 12 (or 24) which leave no

symbols unchanged. There are therefore primitive groups of

degree 8 containing transitive self-conjugate sub-groups of order
8 corresponding to each of the orders 8 . 7, 8 . 7 . 3, 2" . 3, 2« . 3,
and 8.7.6.4; and in each case there is a single type of such
group.

It remains to determine whether there can be any type
of group, of degree 8 and order 8.7.6.4, other than that just
obtained. Such a group must be one of 15 conjugate sub

groups in the alternating group of degree 8, and is therefore

simply isomorphic with a group of degree 14. Since it certainly
is not simply isomorphic with a group of degree 7, the group
of degree 14 must be transitive. The order of the sub-group,
in this form, that keeps one symbol fixed is 25 . 3. If this
keeps only one symbol unchanged, it must interchange the
remaining symbols in four intransitive systems of 3, 3, 3 and 4

respectively, since a permutation of order 3 must clearly consist
of 4 cycles. A group of order 28 . 3 cannot however be so
expressed ; and therefore the sub-group that keeps one symbol
fixed must keep two fixed. The group of degree 14 is therefore

imprimitive, and the group must contain a sub-group of order
2* . 3. Moreover, since the group is not simply isomorphic with
a transitive group of degree 7, this sub-group of order 2*. 3
must contain a sub-group which is self-conjugate in the group
itself. The order of this sub-group must be a power of 2;
since the group is primitive, it cannot be less than 2*. On the
other hand, the order cannot be greater than 2' since the group
contains a simple sub-group of order 7.6.4. Hence finally,
there is no type of primitive group of degree 8 and order
8.7.6.4 other than that already obtained.
There is no difficulty now in actually constructing the

primitive groups of degree 8 which have a self-conjugate sub

group of order 8. They are all contained in the group of order
8.7.6.4; and it will be found that this group is given by
{(81) (26) (37) (45), (1236457), (234) (567), (2763) (45));

while the groups of orders 8.7.3 and 8 . 7 are given by omitting
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respectively the last and the two last of the four generating
operations.

The construction of the two remaining groups, of order 28.3
and 2a . 3, is left as an exercise for the reader.

It may be noticed that it has been shewn incidentally, in
discussing above the possibility of a second type of group of

degree 8 and order 8.7.6.4, that the alternating group
of degree 8 can be expressed as a doubly transitive group of

degree 15.

It may similarly be shewn that the alternating group of
degree 7 can be expressed as a doubly transitive group of

degree 15, and the alternating group of degree 6 as a simply
transitive and primitive group of degree 15.

167. We have seen in § 134 that a doubly transitive group,
of degree n and order n (n — 1), can exist only when n is the

power of a prime. For such a group, the identical operation is
the only one which keeps more than one symbol unchanged.
We shall now go on to consider the sub-groups of a doubly
transitive group, of degree n and order n(n— l)m, which keep
two symbols fixed. The order of any such sub-group is m;
since the group contains operations changing any two symbols
into any other two, the sub-groups which keep two symbols
fixed must form a single conjugate set.

Suppose first that the sub-group, which keeps two symbols
unchanged, displaces all the other symbols. The sub-group that

keeps a and b unchanged cannot then be identical with that
which keeps c and d unchanged, unless the symbols c and d are
the same pair as a and b. Since there are (n — 1) pairs

of n symbols, the conjugate set contains (a
—
1) sub-groups ;

and each sub-group of order m keeping two symbols fixed must

be self-conjugate in a sub-group of order 2m, which consists
of the operations of the sub-group of order wi and of those

operations interchanging the two symbols that the sub-group
of order m keeps fixed.

Suppose next that all the operations of a sub-group H,
which keeps two symbols fixed, keep x symbols fixed, while

none of the remaining n — x symbols are unchanged by all the
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operations of H. From x symbols ^x(x — 1) pairs can be
formed, and therefore the sub-group that keeps one pair un

changed must keep ^x(x — 1) pairs unchanged. In this case,
the conjugate set contains n(n— l)/x(x— 1) distinct sub-groups
of order m, and H is therefore self-conjugate in a group K of
order x{x — 1)m. The operations of this sub-group which do
not belong to H interchange among themselves the x symbols
that are left unchanged by H. Now since the group itself is
doubly transitive, there must be operations which change any
two of these x symbols into any other two; and any such
operation being permutable with H must belong to K. Hence
if we consider the effect of K on the x symbols only which are
left unchanged by H, K reduces to a doubly transitive group of
degree x and order x(x—l). It follows that x must be a prime
or the power of a prime.

168. The preceding paragraph suggests the combinatorial
problem of forming from n distinct symbols n(n — l)/x(x— 1)
sets of x symbols, such that every pair of symbols occurs in one set
of x and no pair occurs in more than one.

There is one class of cases in which a solution of this problem is
given immediately by the theory of Abelian groups. Let G be an
Abelian group of order pm, where p is a prime, and type (1, 1,
to to units). We have seen, in § 84, that G has (pm — l )l(p — 1) sub
groups of order/>, and (pm — 1)(pm-1 — l)/(p— 1) (p2— 1) sub-groups
of order p2. Now any pair of sub-groups of order p generates a sub
group of order p2, and therefore every pair of sub-groups of order p
occurs in one and only one sub-group of order p2. Moreover, every
sub-group of order p2 contains p + 1 sub-groups of order p. When
p is a prime and m any integer, it is therefore always possible to
form from (pm-l)/(p-l) symbols (pm - 1) (pm-1 - l)/(p - 1)(pi- 1)
sets of p + 1 symbols each, such that every pair of the symbols occurs
in one set of p + 1 and no pair occurs in more than one set.

Supposing that, for given values of n and x, such a distribution
is possible, it is still of course an open question as to whether there
is a doubly transitive permutation-group of the n symbols, such that
every permutation which keeps any two symbols unchanged keeps
also unchanged the whole set of x in which they occur. When x is
greater than 3, the question as to the existence of such groups is
one which still remains to be investigated. There is however an
important class of groups, to be considered later (Chapter XX),
that possess a closely analogous property. These groups are doubly
transitive ; and from the n symbols upon which they operate, we can
form n(n- l)/x(x— 1) sets of x, that are interchanged transitively
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by the permutations of the group : the sets being such that every
pair occurs in one set and no pair in more than one set.

If n (n — 1 ) m is the order of such a group, and if H is a
sub-group of order m which keeps a given pair fixed, then H must
interchange among themselves the remaining x—2 symbols of that
set of x which contains the pair kept unchanged by If. H contains,
as a self-conjugate sub-group, the group h which leaves every symbol
of the set of x unchanged ; and if m" is the order of this sub-group,
while m = trim", then m! is the order of the group to which H
reduces when we consider its effect only on the x—2 symbols. Now
h is self-conjugate in the group K that interchanges all the symbols
of the set of x among themselves. But since the original group is
doubly transitive, it must contain permutations which change any
two of the set of x into any other two, and every such permutation
must belong to K. Hence K must be doubly transitive in the x
symbols, and therefore finally the order of the group, to which K
reduces when we consider its effect on the x symbols only, is
a; (a

; — 1)m'. Since the order of A
, which keeps unchanged each of

the x symbols, is m", the order of K is x(x—l)m.
169. When x = 3, n must be of the form 6A; + 1 or 6k + 3, since

otherwise n(n - 1)/x(x — 1) would not be an integer. The permuta
tions of a doubly transitive group of degree n, which possesses a
complete set of Jn(n — 1 ) triplets, must be such that every permutation
which leaves two given symbols unchanged also leaves a third definite
symbol unchanged.

The smallest possible value of n is 7 ; and the group of order 168,
in § 166, satisfies all the conditions.

The complete set of triplets in this case is

126, 137, 145, 234, 257, 356, 467.

The next smallest value of n is 9, and in this case again, a group
with the required properties exists.

Ex. Shew that the group

{(26973854), (456) (798)}

is an imprimitive group of order 48, each imprimitive system
containing two symbols ; and that the sub-group, which keeps the
symbols of one imprimitive system unchanged, is isomorphic with
the symmetric group of three symbols. Prove that this group is

permutable with

{(123) (456) (789), (147) (258) (369)},

and thence that

{(123) (456) (789), (26973854), (456) (798)}
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is a doubly transitive group of degree 9, which possesses a complete
set of 12 triplets*, viz.

123, 147, 159, 168, 249, 258, 267, 348, 357, 369, 456, 789.

The reader is not to infer from the examples given that, when
n is of the form 6k + 1 or &k + 3, there is always a doubly transitive
group of degree n which possesses a complete set of triplets. It is
a good exercise to verify that there is no such group when re is 13.

The case n = 1 3, x = 4 is the simplest case that can occur of the
division of n symbols into sets of x in the manner of § 168 when x
is greater than 3. We shall see in Chapter XX that there is a
doubly transitive group of degree 13 such that from the 13 symbols
permuted by the group a complete set of 13 quartets can be
formed, which are themselves permuted by the operations of the
group. Of the operations forming a sub-group that keeps two given
symbols fixed, half will keep fixed the two other symbols, which form
a quartet with the two given symbols, and half will permute them.

On the question of the independent formation of a complete set
of triplets of n symbols, and in certain cases of the group of
degree n which interchanges the triplets among themselves, refer
ence may be made to the memoirs mentioned in the subjoined
footnote f.

170. We shall conclude the present Chapter with some

applications of permutation-groups, which enable us to com

plete and extend certain earlier results.

We have seen in § 136 that the permutations of n symbols,
which are permutable with each of the permutations of a

regular permutation -group G of order n of the same n symbols,
form another regular permutation-group of order n ; and that,
if G is Abelian, the latter group coincides with G. Hence the
only permutations of n symbols, which are permutable with a
circular permutation of the n symbols, are the powers of the
circular permutation.

Let now S be a regular permutation of order ra, in raw
symbols. It must permute the symbols in n cycles of ra
symbols each ; and so we may take

S = (an rt12 alm) (eta aa a^) (anl am a„m).
* It may be pointed out that the tactical relation between the 9 symbols

and the 12 triplets is the same as that of the inflections of a cubic and the
12 lines on which they lie 3 by 3.
t Netto : " Substitutionentheorie," pp. 220—235 ; " Zur Theorie der Tripel-

systeme," Math. Ann. Vol. xl.ii (1892), pp. 143— 152. Moore: "Concerning
triple systems," Math. Ann. Vol. xliii (1893), pp. 271—285. Heffter: "Ueber
Tripelsy steme," Math. Ann. Vol. xlix (1897), pp. 101—112.
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If T is permutable with S, and if it chaDges into arq, it
clearly must permute the m symbols

On , O'ri , ®rm

among themselves ; and therefore, so far as regards its effect on
these m symbols, T must be a power of

Again, if T changes a^, into atq, it must change the set
"ti, &rti "mi

into the set

as otherwise it would not be permutable with S.

Now the totality of the permutations of the mn symbols,
which are permutable with S, form a group Os. This group
must, from the properties of T just stated, be imprimitive,
interchanging the symbols in n imprimitive systems of m

symbols each ; and the symbols in any cycle of S will form an
imprimitive system. Moreover, the self-conjugate sub-group

H8 of this group, which permutes the symbols of each system
among themselves, is the group of order mn generated by

(O,, aii <hm), (Oii Oij, a™) , (an, Onm).

In fact, every permutation of this group is clearly per
mutable with S ; and conversely, every permutation of the mn
symbols, which does not permute the systems, must belong to
this group.

Now Gs/Ha \s simply isomorphic with a group of degree
n, for none of its operations changes every one of the n systems
into itself. Hence n! is the greatest possible order of GB/HS.
On the other hand, every operation of the group, generated by

(an Osi Oni) (Oi2Oa, an2) (aimOiin anm)

and (chiOa) {ana^) {almam),

is clearly permutable with S; and this group, being simply
isomorphic with the group

\(ai<h an), (a,a2)},

i.e. with the symmetric group of n symbols, is of order n\.

b. 15
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Hence, finally, the order of Gs is mn .n\; and Gs is gene
rated by

(OiiOii Oni) (OuOa Oni) (flmam. anm),

(OiiCtii) (a,,Oa) (a,mOnn),

and (O,,ai2 Oim)-

171. Let AT be a regular permutation-group of order m in
the m symbols

and let SH be one of its permutations. Then if for r we write
in turn 1, 2, , n, and if for each value of t from 1 to m we
form the permutation

Sit S2t Snt,

the set of m permutations so formed constitute an intransitive

group H in the mn symbols, simply isomorphic with hr.
The method of § 170 can be applied directly to determine

the group GH of degree mn, each of whose permutations are

permutable with every permutation of H. The order of this
group is m".n!; and it can be generated by

) (<hm<hm anm),

(flu (hi) (OiiOib) (flima2m),

and A/ ;
where A/ is the regular group in the symbols

Oil i , ^lmi

each of whose permutations is permutable with every permuta
tion of A1.

This group will contain H if, and only if, H is an Abelian
group. Moreover, the only self-conjugate permutations of GH
are the permutations of H contained in it. For if GH
contained other self-conjugate permutations Slt S2, every

operation of GH would be permutable with every operation of
the group {H, Slt St, ...}. Now GH is transitive, so that

Slt St, ... must displace all the symbols; and therefore

[H, Si, St, ...} has all its permutations regular in the mn
Bymbols. If its order is mnlt where » = the order of the

group formed of all the permutations of mn symbols, which are

permutable with each of its operations, is (wini)",. n2! ; and this
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number is less than mn .nl. Thus the supposition, that GH has
self-conjugate operations other than the operations of U which
it contains, leads to an impossibility.

By means of this and the preceding section, the reader will
have no difficulty in forming the permutation-group of n

symbols, which is permutable with every operation of any
given permutation-group in the n symbols.

172. If a group, whose order is a power of a prime p, be
expressed as a transitive permutation-group, the degree of the
latter must also be a power of p. Moreover such a group,
since it has self-conjugate operations, must necessarily be ini-
primitive.

The greatest value of m, for which a group of order pm is

simply isomorphic with a transitive group of degree pn, where
n is regarded as given, is determined at once by considering
the symmetric group of degree pn. The highest power of p
that divides pn\ is p", where

v =p""1 +pn~' + +p + l.

Hence the symmetric group of degree pn contains a set of
conjugate sub-groups of order p" and it contains no groups
whose order is a higher power of p. Also, these groups are
transitive in the pn symbols ; for any one of them must contain
a circular permutation of order pH. There are therefore groups
of order p" which are simply isomorphic with transitive groups
of degree pn ; but no groups of order p"' (i/ > v

).

This group may be constructed synthetically as follows. The
group necessarily has a self-conjugate sub-group of order p. This
must consist of the powers of a regular permutation of order p,
permuting the pn symbols in pn~l sets of p each ; and these sets
are imprimitive systems for the group. The group then is

multiply isomorphic with a transitive group of degree p"-1.
This latter group has a self-conjugate sub-group of order p,
which permutes the pn_1 symbols in p"-2 sets of p symbols each ;

and the corresponding self-conjugate sub-group of the original
group permutes the pn symbols in p"-2 sets of p2 each. These

again are imprimitive systems for the group, each being consti
tuted by combining the pn_1 systems of p symbols each in sets
of p. If n > 2 the process may be repeated to shew that the

15—2
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j>"-8 systems of p2 symbols each may be combined in sets of p
to form p"-2 systems of p' symbols each, and so on. If then
with each of the p*-! sets of p we form a circular permutation,
the pn-1 permutable and independent circular permutations will

generate an intransitive group of order p*'"-1. It will be the
self-conjugate sub-group of the group of order p", which per
mutes the symbols of each system of p among themselves.

Next, with each set of p2 symbols we can form a circular

permutation, whose pth power is the product of the p circular
permutations of order p, which have been previously formed
from the p2 symbols. The symbols of any set of p2 will then be

interchanged by a transitive group of order p**"1; and since there
are p"-2 such sets, we obtain in this way an intransitive group

of pp"-'4*"-". The group thus formed is that self-conjugate
sub-group of the original group, which interchanges among
themselves the symbols of each system of p'. This process may
be continued, taking greater and greater systems, till at the
last step we combine the p systems of pn-1 symbols each into
a single system by means of a circular permutation of order p".
The order of the resulting group is clearly p", as it should be.

The self-conjugate operations of this group form a sub-group
of order p.

For suppose, if possible, they form a sub-group of order pr.
Every operation of this sub-group displaces all the symbols;
and therefore, when expressed as a permutation group in the

pn symbols, it must interchange them transitively in p„-T sets
of pr each.

Now (§ 171) those permutations of the pn symbols, which
are permutable with every operation of this sub-group, form a

group of order pr*n-r .pn-r! ; this number is only divisible by
p", as it must be, when r = 1.

Ex. 1. Prove that the above group is generated by the n
circular permutations

(1, 2, 3, ,P"-1, P")
(1, 1+p, l + 2p ,l+(pn-i-l)p)
(1, 1+p2, l + 2pi, ,l + (p"-'-l)p2)

(1, 1 +pi-\ 1 + 2p-i, , 1 + (p - l)pi-*)
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and discuss the possibility of reducing the number of generating
operations.

Ex. 2. Shew that, for the group of degree p2 and order pp+1,
the factor-groups Hr/Ur+1 (of § 93) are all of type (1) except the
first, which is of type (1, 1).

The fact that v is a function of p when n is given, explains
why, in classifying all groups of order pn, some of the lower

primes may behave in an exceptional manner. Thus we saw,
in § 117, that for certain groups of order p4 it was necessary to
consider separately the case p = 3. The present article makes
it clear that, while there may be more than one type of group
of order p4(p >3), which is simply isomorphic with a transitive

group of degree p2, there is only a single type of group of
order 34 which is simply isomorphic with a transitive group
of degree 9.

173. In the memoirs referi-ed to in the footnote on p. 182,
M. Mathieu has demonstrated the existence of a remarkable group,
of degree 12 and order 12 . 1 1 . 10 . 9 . 8, which is quintuply trans
itive. The verification of some of the more important properties
of this group, as stated in the succeeding example, forms a good
exercise on the results of this and the preceding Chapter.

Ex. 1 . Shew that the permutations

(1254) (3867), (1758) (2643),

(12) (48) (57) (69), (a2) (58) (46) (79),

(ab) (57) (68) (49), (be) (47) (58) (69),

generate a quintuply transitive group of degree 12 and order

12.11.10.9.8.

Prove that this group is simple ; that a sub-group of degree 1 1
and order 11.10.9.8, which leaves one symbol unchanged, is a
simple group ; and that a sub-group of degree 10 and order 10.9.8,
which leaves two symbols unchanged, contains a self-conjugate sub
group simply isomorphic with the alternating group of degree 6.

Shew also that the group of degree 12 contains (i
) 1728 sub

groups of order 11 each of which is self- conjugate in a group of
order 55 : (ii) 2376 sub-groups of order 5

,

each of which is self-
conjugate in a group of order 40 : (iii) 880 sub-groups of order 27,
each of which is self-conjugate in a group of order 108: (iv) 1485
sub-groups of order 64.

Prove further that the group is a maximum sub-group of the
alternating group of degree 12.
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Ex. 2. Shew that the alternating group of degree 8 contains
30 regular Abelian sub-groups of order 8 and type (1, 1, 1), forming
two conjugate sets of 15 sub-groups each.

If Hlt H2 are any two sub-groups belonging to the same con
jugate set of 15, prove that {Hlt H2] is a sub-group of order 2°. 3s,
permuting the symbols in 2 imprimitive systems of 4 each ; and that

{Hlt H2) contains just one other sub-group H2 belonging to the same
set. Hence shew that from the 15 conjugate sub-groups a complete
set of 35 triplets may be formed, which is invariant when the sub
groups are transformed by any operation of the alternating group.
Prove also that when the sub-groups of the second set of 15 are
transformed by the operations of Hlt 7 are transformed into them
selves and the other 8 are permuted regularly.

Ex. 3. Prove that the permutations of

a, b, c, d, a, b'
,

c, d'
,

for which the expression

abed + a'b'c'd' + abe'd' + a'b'cd + acb'd' + a'c'bd + adb'c + ot'dbc

remains invariant, form a transitive group of order 2". 3, which
contains a self-conjugate operation of order 2.

Ex. 4. From the bilinear form

(1 = a1bi + a262 + a2b2 + a4bt 4 a,65 + a666 + «767 + a^bs

seven others £( (i = 2
,

3
,

. . ., 8
) are constructed by carrying out on the

b'B the permutations of the Abelian group generated by

A or (6,6,) (6,64) (6,6,) (6,6,),

B or (6,6.) (6,60(6,6,) (6,6,),

C or (bibs)(bA)(ttA)(itA);
and simultaneously on the a's the corresponding substitutions of
the Abelian group generated by

A or

B or

C or

where d'=Bi = y,= 1
.

Prove that

8 8 8

1 1 1

and discuss this identity from the point of view of the permutations
of the symbols involved in it.

= a1, <h' = a*h, a4' =
— aO4,

= 0ai, a,' =-aPa7, a,' = a/Ja,,;

a
l' = <hi d„' = — act2, °s' = -a2, di = ctfit ,

O
i' = yai! <h' = aYat, ay' = -ya7,

al' = ai. <h' =
- Pa2: <h' = -y<h, a4' = -/3ya4,

a
6
'

= -ai. < = a,'^ya„ <h' = Pyh;



CHAPTER XII.

ON THE REPRESENTATION OF A GROUP OF FINITE ORDER
AS A PERMUTATION-GROUP*.

174. Definitions. If 8i, S2, SN are the operations
of a group G of finite order N, and s2, ... the permutations of
a permutation-group g of degree n, and if to each operation Si
of G there corresponds a single permutation Si of g, so that when

SiSj = Sk,

then SiSj
—

the permutation-group g is said to give a representation of G.

It follows from this definition that G may be either simply
or multiply isomorphic with g. In the latter case there is a
self-conjugate sub-group of G to each of the operations of which

there corresponds the identical permutation in g.

Let g and h be two permutation-groups of degree n which

represent G, and let

- / - / m - )
or s<

and (*/*,

be the permutations of and A which correspond to the opera
tion Si of G ; then if a permutation of the symbols

,°) or <
\yi . y' , yn /

exists, such that, for each »,

i<7,<-1 = Si,

* On the subject of this chapter the reader may consult Dyck, " Gruppen-
theoretische Studien, II," Math. Ann. Vol. xxn (1883), pp. 86—95.
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the representations g and h are said to be equivalent. If no such
permutation as t exists, or if the degrees of g and h are not
equal, then the representations g and h are called distinct.

175. It has already been seen in § 20 that every group of
order N admits a representation as a regular permutation-group
in N symbols, and that such a representation can be set up in
two ways. The permutations that correspond to the operation
Si in the two forms are

{ss)
and
U-tf)'

Now the symbol

is a permutation of order two of the N symbols ; and for each i

( s )WW = iss) U-'-s-1) = U-'S-1) = isrs) .
Hence, in the sense of the above definition, the two repre

sentations of G as a regular permutation-group of N symbols
that arise by pre- and post-multiplication are equivalent.

176. We shall now consider the various sets of imprimitive

systems that present themselves in the representation of G as a

regular permutation -group. Let

Slt St, , Sn

be that one of a set of imprimitive systems which contains Slt
the symbol of the identical operation. By the permutation

(£) (t'=1.2 'n)

St is changed into Si (t = l, 2, n); and these are the only
permutations of the group which change Si into another of the
set. Hence this set of permutations combine among them
selves by multiplication, and therefore

Si, <
S
i

, Sn

constitute a sub-group H of G. In respect of this sub-group, let
the operations of G fall into the sets

H, HTt, HTt, HTm,
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where mn = N. On post-multiplication by any operation StTj
of the group, the operations of the set HTt are changed into the
operations of the set HTkSiTj. Now TtSiTj must belong to one
of the m sets into which the operations fall in respect of H.
If it belongs to the set HTi, there is an operation S' of H
such that

and the set HTkSiTj is then the same as the set

HS'T, or HTl
Hence by any permutation

the symbols of anyone of the sets

H, HT2, HTt, HTm

are either permuted among themselves or are changed into the

symbols of another one of the sets. The m sets therefore
constitute a set of inprimitive systems for the regular per
mutation-group in the N symbols ; and there is such a set of
imprimitive systems corresponding to each sub-group of G.
Moreover, no two of these modes of division into imprimitive

systems can be identical with each other ; since of the m sets of

operations

H, HTt, ET, , HTm,

the first, and the first only, constitute a sub-group.

177. If each of the m sets
H, HTit HT2 , HTm

is regarded as a single symbol, these m symbols are, as seen in

the preceding paragraph, permuted among themselves on post-

multiplication by any operation of G. A permutation-group of
degree m thus arises which, in accordance with the definition,

is a representation of G. Since the symbol H may thus be
changed into any one of the other symbols, the permutation-
group is transitive. This representation will be denoted by Og.
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Now if HS=H,

S must belong to H ; and if

HTiS = HTi,

TiSTf1 must belong to H. Hence the permutation of the m
symbols that arises on post-multiplication by S will be the
identical permutation, if

,

and only if
,

<
S and all its conjugates

belong to H. Conversely, if / is the greatest self-conjugate
sub-group of G contained in H, and if S is any operation of /,

post-multiplication of the m symbols by S gives the identical
permutation. Hence the representation of G under considera
tion is simply isomorphic with G/1. In this representation the
permutations which leave the symbol H unchanged are those
that correspond to the operations of H, and those which leave
HTi. unchanged are the permutations that correspond to the
operations of Tf'HTi.

If the permutation-group on the symbols
H, HT„ HT, HTm

is imprimitive, there must be (§ 147) a set of m1(m=m1m.i) of

them,

H, HTt, HT2, 3Tmi,

such that every permutation, which changes H into another
symbol of this set, permutes the m, symbols among themselves.
But if this is the case, the totality of the operations in the wii
sets constitute a sub-group of G ; for the product of any two of
them belongs again to one of the m-i sets. The converse is ob

viously true. Hence the representation of G as a permutation-
group that arises in respect of H is primitive if, and only if, H

is a maximum sub-group of G.

If the conjugate sub-group Tf^HTi were used for forming the
representation, in the place of H, the set of m symbols would be

TrHTi, TrHT.Ti TrHTmTit

and the permutation corresponding to S would be

(TrHTi , TrHT2Tt , TrHTmTi \

{Tr'HTiS, Tr'HT.TiS, , Tr'HTmTiS)

'
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Now

/ HT(, HT,Ti, , HTmTt\
KTc'HTi, Tt-*HTtTt TfHTM
(Tc'HTi ,Tt-+HTJ!t , Tr'HTJTt \
\TrHTiS, TrHTJiS, , TrlHTmTiS)

(Tc'HTi, , TrlHTmT,\
V HT{ , HTmTj

— (HTt , HTJi , HTmT{ \-
{HTiS, HTM HTnTiS)

—(H ,HT, HTn \
-\HS,HT,S HTmSj-

Hence the representation of degree to that arises from the

sub-group H is equivalent to that which arises from any con
jugate sub-group TclHTi.

178. When pre-multiplication is used the operations of
G fall, in respect of H, into to sets which may be written

H, T^H, TrH Tm-*H.

These are transitively permuted among themselves on pre-
multiplication by the operations of G; and the permutation,
which in this representation corresponds to the operation S
of G, is

I H, T^H, Tf*H, Tm-*H\
\S-*H, S-'TrS, S-'Tr'H, S-*Tm-'HI

'

It may be formally proved, just as in the preceding para
graph, that the representation thus arising is equivalent to the

representation arising from H by post-multiplication.

179. Suppose now that g is any representation of G as a
transitive permutation-group on m symbols

Oi, a2 •

Let H be that sub-group of G, whose operations correspond
to the permutations which leave O, unchanged, and let

Ti(i = 2, ,m)
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be an operation of G that corresponds to a permutation changing
a, into a< (i = 2 , m). Then HT{ is the set of operations
of G which correspond to the permutations that change a, into

a,{ ; and therefore the set of symbols

H, HTt, HTm

undergo, on post-multiplication by S, a permutation identical

with the permutation of

G&1, t*s, &m,

that corresponds to S.

Hence the representation g of G, as a transitive permutation-

group, may be set up by the method of § 177. It follows that
the number of distinct representations of G as a transitive

permutation-group cannot exceed the number of distinct sets of

conjugate sub-groups in G.

180. Definition. Let g be any representation of G as a
permutation-group (not necessarily transitive) of degree n; and
in this representation let h be the permutation-group that cor

responds to a given sub-group H of G. Denote by m the number
of the n symbols which are left unchanged by every permutation
of h. Then rn is called the mark of H in the representation g.
The marks of any two conjugate sub-groups of G in g are

clearly the same; for if H leaves a,, Oi, am only unchanged,
and if 8 changes these symbols in hi

,
&
2

hm , then the latter
are the only symbols unchanged by S-lHS. Also from the
definition of equivalent representations the mark of H in g is

equal to the mark of H in any representation equivalent to g.

No two representations of G can therefore be equivalent unless
the mark of each sub-group in one is the same as its mark in
the other.

Denote now b
y
s the number of distinct sets of conjugate

sub-groups in G
,

and choose

#1. Gi G„

as representative sub-groups, one from each set. Let the
orders of these sub-groups be

Ni, N„
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and suppose them chosen so that

Nt^N^ < Nt.

This involves that (r
,
is E, the identical operation ; G, is G

itself; while iV, is 1 and N, is N, the order of G. Let

gt(i=l, 2, , s)

be the representation of G
,

as a transitive permutation-group,
that arises by the method of § 177 wheu 0

{ is taken for H.

It has been seen that if G{, a sub-group conjugate to Gi,

is used instead of G
i

an equivalent representation will arise.
Hence glt g2, ,g, include all distinct representations of G

as a transitive permutation-group. Of these gl is the repre
sentation as a regular permutation-group in N symbols, and g,

is the representation in which every operation of G corresponds
to the identical permutation on a single symbol.

Denote by the mark of Gi in gj. Each such symbol is

either zero or a positive integer. Since G
i
is that sub-group of

G which corresponds to the sub-group of gi that leaves one

symbol unchanged, m? is necessarily equal to or greater than 1
,

and the only sub-groups of G whose marks in g( are different
from zero are those which are contained in (?,• and its conjugates.
Hence

mi = 0, when i >j,
and the table of marks is as follows :

9i

9*

9i

9-

Gl G.j

N 0

mi* m2'

0
0

o
.

0
0

It is to be noticed that is not necessarily different from
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zero if i <j. The symbol is the degree of git or with the

previous notation, N/Ni.
An inspection of this table shews that in no two of the

representations <ft(» = l, 2, , s) can each sub-group of G
have the same mark, and therefore these s representations are

all distinct.

181. If g is a representation of G as an intransitive per
mutation-group, the symbols operated on by g will fall into a
number of transitive sets, and each of these sets must undergo
a transitive permutation-group equivalent to one of the groups
gi (i = 1 , 2, , s)

. If a< transitive permutation-groups equiva
lent to g{ thus occur, the representation g may be completely

represented by the symbol
s

i

denoting that the representation g is made up of al representa
tions equivalent to glt a2 equivalent to gt, and so on.

Moreover, if the marks of G1, G„ G, in g are known,

and if fij is the mark of G
j in g, then for each j

Since the determinant of the marks

I ™j |

is necessarily different from zero, these equations determine the
as uniquely, and so give the complete reduction of g into its
transitive constituents.

We may sum up the preceding results in the following
form :

Theorem I. A group of finite order which contains s

distinct sets o
f conjugate sub-groups admits s distinct repre

sentations as a transitive permutation-group. If these be denoted

b
y gt (i = 1, 2, s), then every representation o
f the group as

a permutation-group is given b
y the symbol SOi^ in which the

a's are zeroes or positive integers, and no two such representations,
with different a's, are equivalent.
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182. It is to be noticed that two distinct representations of a
group G may, when no attention is paid to the correspondence
between the operations of G and the permutations of either per
mutation-group, be identical with each other; i.e. they may consist
of exactly the same sets of permutations. Thus, to take a very
simple instance, let G be the group of order 9, generated by two
permutable operations f,, P2 of order 3. The cyclical permutation- -
group generated by (aia^us) gives four distinct representations of G.
In one of the four the operations of {j0,} correspond to the identical
permutation ; and in the other three the operations of {/y, {PiP,\
and {PiP2\ correspond to the identical permutation.

A less obvious case is offered by the representation of the
symmetric-group of degree 6 as a transitive permutation-group in
6 symbols. It has been seen that the symmetric-group of 6 symbols,
order 720, has two distinct con/ugate sets of sub-groups of order 120,
simply isomorphic with the symmetric-group of 5 symbols. It has
therefore two distinct representations as a permutation-group of
degree 6 : and these regarded merely as permutation-groups are
necessarily identical with each other, since each consists of all the
permutations of the 6 symbols.

183. Let H and H' be sub-groups of G which are not
conjugate, and g and g the corresponding representations of G
as a transitive permutation-group. If / and /' are the greatest
self-conjugate sub-groups of G contained in H and H', then
g, g' are simply isomorphic with G/I, G/I' respectively.
Suppose now that, considered merely as permutation-groups, g
and g' are identical with each other. Then G/I and G/I' are
simply isomorphic, and in the isomorphism so established H/I
&ndH' /I' are corresponding sub-groups, since theyeach correspond
to the sub-groups of g and g' which leaves one symbol unchanged.
If / and /' are each E, the identical operation, then the
permutation-group g is simply isomorphic with G, and the

isomorphism of G, in which H and H' are corresponding sub
groups, is necessarily an outer isomorphism. Hence :—

Theorem II. If a transitive permutation-group g, simply
isomorphic with. G, gives two distinct representations of G, then
G must admit an outer isomorphism which changes the conjugate
set of sub-groups of Q that correspond to the sub-groups of g
which leave one symbol unchanged in the first representation into
the conjugate set which correspond to the sub-groups of g that
leave one symbol unchanged in the second representation.
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184. Let gi and g$ be constructed on the sets of symbols

3-1, ^nti',

and Vi.yi .yv
and let

(<T)^=1, 2' mi<),

be the permutations which correspond to an operation S of (r.

Then the mfrnj products xtyu undergo, corresponding to the
operations of G, permutations such that

is the permutation corresponding to S. This permutation-
group of degree mjmj is necessarily a representation of O ; and
by Theorem I it may be denoted by a symbol

t

1

It is spoken of as the result of compounding the repre
sentations gt and gj, and from this point of view may be

represented by the symbol gig, (or gjgi). In g{gj the mark of Gt
is obviously m?mj ; and the coefficients a,^ are therefore de
termined by the system of equations

a

mfnit3 = 2uytwit* (t = 1, 2, , s)
.

i

The only operations of G for which one of the x's remain

unchanged are those of a sub-group conjugate to Gi. Hence
the only operations of G for which xtyu remains unchanged are

those of the sub-group common to T-lGiF and U-lGjlJ, T and

V being suitably chosen operations of G. The coefficients Oyt
are therefore necessarily zero unless k is not greater than the

lesser of i and j. For the particular cases in which <
/, or g, is

compounded with another representation, the result is easily
seen to be

gwmjglt g,gi = gi.

185. The number of distinct ways in which a giveu group
can be represented as a permutation-group of given degree is



186] 241PERMUTATION-GROUPS

determined at once by the table of marks. Any such repre-

sentation is equivalent to Zcngi, and the degree of this
1

s

representation is "Zaimj. Hence the sole relation between the
i

as in order that the degree of the group may be n is
s

SajWii' = n.
i

To each distinct solution of this equation iD positive
integers there corresponds a distinct representation of degree n.

The alternating group of degree 4, whose order is 12, has five
different conjugate sets of sub-groups, viz. those of order 1, 2, 3, 4, 12.
The student will find it a simple exercise to verify in this case the
following results :

Ex. Shew that for the alternating group of degree 4 the table
of marks is

<
?, G, G, G4 G>

9i 12 0 0 0 0

9% 6 2 0 0 0

4 0 1 0 0

9* 3 3 0 3 0

9> 1 1 1 1 1

Prove that the composition of the representations is given by the
relations

gf=2g1+2gi, g3i = 9i + 9»> 9*i = 39t>

&03= 2?i, 9i9* = fy3, 9t94=9i,

and that the group admits 6 distinct representations of degree 7
.

186. The permutation-groups we are here discussing are

quite special cases of the more general groups of linear substitu
tions to be considered in the following chapters. When a set
of permutations are transformed by a linear substitution they
become, in general, a set of linear substitutions; but it is

always possible to choose the linear substitution so that the set
of permutations is transformed into another set of permutations.
When such more general transformations are admitted, the
question of equivalence, as between permutation- groups, may
and does take a new form. In fact two permutation-groups
b. 16
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which are distinct in regard to transformation by permutations
are not necessarily distinct in regard to transformation by linear
substitutions. Though it is natural in dealing with permuta
tion-groups, as such, to use the more narrow definition of equiva
lence here given, we shall later on (§217) resume the question
and determine the equivalences that always exist, except in the
case of a cyclical group, among the s representations of a group
as a transitive permutation-group, when transformations by
linear substitutions are admitted.

187. A second process apparently, but not really, different
from that made use of in § 177 for presenting a group of finite
order as a permutation-group, may be shortly referred to here,

because of its convenience in many particular cases.

Let PltP„ , Pm

be a set of conjugate operations or sub-groups of a group G.
If S is any operation of G,

(■
» i i » > Pm \

s-^s, s-*p,s, S^PmSJ

is a permutation of the m P's. To each operation of 0 will
correspond a definite permutation of the m symbols, and the set
of permutations so arising obviously constitute a transitive

permutation-group with which 0 is isomorphic. In fact a
representation of 0 thus arises. The sub-group of this per
mutation-group which leaves Pj unchanged corresponds to
those operations of G which are permutable with Pv If then
Gpt is the greatest sub-group of G which contains the operation
or sub-group P1 self-conjugately, the representation thus

arising is equivalent to that formed by the method of § 177 in

respect of the sub-group Gp,.

It may be noticed that however the P's are chosen, the
permutation in this form that corresponds to any self-conjugate
operation of G is the identical permutation, so that if G has
self-conjugate operations no representation of the form con

sidered can be simply isomorphic with G. Moreover the

regular representation will never occur in this form; and in

general there are other representations which do not occur.
The process therefore, though often convenient, is not exhaustive
as that of § 177 is.



CHAPTER XIII.

ON GROUPS OF LINEAR SUBSTITUTIONS ; REDUCIBLE AND
IRREDUCIBLE GROUPS*.

188. A system of n linear equations

y, = 0,,^ + d,,*, + . . . + (hnXn,

y, = a,,^ + Ojb^j + . . . + OmXn,

y„=an,a;i+an2a;9+ ... + annxn,

in which the coefficients a$ are regarded as given quantities,
determine uniquely the n y's in terms of the n x's. Such a

system of equations is called a linear substitution performed on
the x's. It may be expressed in the abbreviated form

y-n
y< = 2 ayXi, (i = 1, 2, , n) (l).j-i

The determinant

Ctii ttja . . . din

ttji ttM . . . Ogn

* On the question of the reducibility of groups of linear substitutions the
reader may consult the following memoirs : H. Maschke, " Beweis des Satzes
dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige
durchgehends verschwindende Coefficienten auftreten, intransitiv sind," Math.
Ann. Vol. lii (1899), pp. 363—368; A. Loewy, " Zur Theorie der Gruppen
linearer Substitutionen," Ibid. Vol. uu (1900), pp. 225—242; " Ueber die Be-
ducibilitat der Gruppen linearer homogener Substitutionen," Tram. Amer.
Math. Soc. Vol. m (1902), pp. 44-64; "Ueber die Beducibilitat der reellen
Gruppen linearer homogener Substitutionen," Ibid. Vol. iv (1903), pp. 171 —
177 ; W. Burnside, " On the reduction of a group of homogeneous linear sub
stitutions of finite order," Acta Mathematica, Vol. xzvm (1904), pp. 369—387 ;

16—2
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for which the abbreviation

\°a\

is used, is called the determinant of the substitution. If this
determinant is different from zero, the linear substitution (i)
also gives the a;'s uniquely in terms of the y'a : but not otherwise.

We shall be concerned here mainly with linear substitutions
whose determinants are different from zero, and in what follows

it is to be understood that this is the case.

The determinant | a# | being different from zero, the system
of equations (i) may be solved with respect to the x'a in the
form

Xj = 2 Ajiyi, (j = 1, 2, , n) (i)',
,=i

where | . |O^|
= l.

Further, if

zi = 2 bayk, (1=1,2, , n) (ii)

be another linear substitution on n symbols, the y'a may be
eliminated between (i) and (ii), giving the system of equations

s—n

z,= l ct,x„ (<
= 1, 2 n) (iii),

where ct, = 2 bna^.
*=i

Moreover, from the rule for the multiplication of de
terminants

\cu\ = | bu\ .

so that the determinant of (iii) is different from zero.

189. A linear substitution, as defined above, is an operation
performed on a set of n symbols and leading to a new set of
n symbols. It is completely specified by its coefficients, what
ever letters may be used to represent the old and the new sets
of n symbols. It is customary to use unaccented and accented
letters to denote the old and the new sets of symbols. The

operations A, A', B and C, given by the systems (i), (i)', (ii)
" On the condition of reducibility of any group of linear substitutions," Proc.
L. M. S. Series 2, Vol. in (1905), pp. 430—434. The question is also dealt
with, less explicitly, in the memoirs by O. Frobenius referred to in the following
chapter.
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and (iii), thus expressed are
n

i
n

Xy X AyXj,

n (i = l, 2, , n),

xi = 2 byXj,

n

2 CijXj,

and the relations between them are

A'A=AA' = E, AB=C,

where, as usual, E denotes the identical substitution
Xi' = Xi, (i = l, 2, , n).

Linear substitutions on a given number of symbols are there
fore such that any number of them carried out in succession
lead to another linear substitution on the same symbols, while
to each substitution A there corresponds a unique inverse A'.
The existence of groups of linear substitutions follows im

mediately from these properties.

The permutations of n symbols that have been already con
sidered are a very special case of linear substitutions. The number
of these however is necessarily finite, so that the permutation-groups
of n symbols are necessarily groups of finite order. This is obviously
not in general the case with groups of linear substitutions.

190. Each of the two linear substitutions

is spoken of as the transposed of the other. If
ii.il,; B,Bt ; C, Ct

are pairs of transposed substitutions, and if

AB = C,
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But if B,A t = D, then

dy = 2 bj,a,ri = Cji,
«=i

and therefore D = Ct.
Hence, if AB = C,

then Ac'Br^Cr\
It follows that if the linear substitutions

E, A, B, C,

form a group G, then

E, Alt Bt, Clt
form a simply isomorphic group Gt, the substitutions At-*,

Bt-\ Oi-1, of corresponding to the substitutions A, B,
C, of G.

Each of the groups G and Gt is called the transposed of

the other.

Denoting by the conjugate imaginary of Oy, and by A the
linear substitution

n

^'=2%^, (i = l,2, n),
l

the relation
n

n -
involves = 2 6<tac- ,

and therefore if the linear substitutions
A, B, G,

form a group G, then

E, A , B, C,
form a simply isomorphic group G in which A, B, ... correspond
to A, B, ....

Each of the groups G and & is called the conjugate of

the other.

If G and (?' are two simply isomorphic groups of linear
substitutions, there are always a variety of one-to-one corre

spondences that can be established between the individual
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substitutions of the two groups. Thus, S and Sr1 being cor
responding substitutions of a group and its transposed group, so
also, for another isomorphism, are and Sf1, % being any
substitution of the original group. In regard to this latter
isomorphism the groups are not to be regarded as transposed
groups, though the totality of the substitutions of the second
is constituted by the totality of the transposed substitutions of
the first. The phrases " transposed groups

"
and " conjugate

groups
"
imply the isomorphisms in which S, <S(-1 and S, S are

respectively pairs of corresponding substitutions.

Rather more generally if the coefficients a8 are rational numbers
in an algebraic field determined by an algebraic number £, and
if when £ is replaced by one of its conjugate values ay becomes

a'y and A becomes A', then

E, A, B, C,

and E, A', B', C,

are simply isomorphic groups of linear substitutions, in which A
and A' are corresponding substitutions. In fact the relation

n

involves necessarily
n

c'
« = 5 b'ua'j.

191. Let G be a group of linear substitutions on n symbola
of which A, or

n

Xi = 2 aijXj, (t = 1
,

2
,

n),

i

is any one ; and G' a simply isomorphic group on m symbols,
in which A', or

m

yu' = S a'uvyv, (u = 1
,

2
,

m),

i

is the substitution corresponding to A. By multiplying together
these systems of equations we have

, , iV,%m , /»=»1, 2, , n\
Wu-^^WwW. U=1,2, i7J.

a linear substitution on the mn products of the x's and y's.
Denote this linear substitution by a : and the similar ones that
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arise from B and B' and from C and C by /S and 7. Then
a/3 is

s~ n t=m j=n »=«•
«»'yu'= 2 2 6t,6'ut 2 2 a^a'tvXjyv.

i«=i (-1 y=i «=i

Now if 45 = O, then
*=»
2 6a«^ = cy;
»=i

while in consequence of the isomorphism of G and (?',

A'B'=C,
t—m

and 2 b uta'tv = c'uv.

Hence a/9 is

2/u
= 2 2 CijC uvXjyv,

i.e. o/3 = 7.

The set of linear substitutions on the win products of the
x's and y's thus formed, by multiplying together the equations
defining corresponding substitutions of G and G', therefore
constitute a group T simply isomorphic with G or G'.

If between G and G' there exists an isomorphism of the
most general kind (§ 32), such that to every substitution of G
there correspond p substitutions of G' and to every substitution
of G' there correspond q substitutions of G, a similar con
struction may be effected. Let 2» (»=1, 2 ) be the

operations of an abstract group simply isomorphic with G, and

2/ (J = 1, 2, ) those of an abstract group simply isomorphic
with G' ; and suppose that every operation of one of these

groups is permutable with every operation of the other.
Further, let

2'- 1',

be the p operations of the second group which, in respect
of the isomorphism between G and G', correspond to the
operation 2

,- of the first. Then the set of operations

SiS'ft, 2,2'*, ,2,2V- (i=i,2 ),

constitute an abstract group g of order N which is multiply
isomorphic with both G and G'. To every operation of g there
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corresponds a single substitution of G (or (?'), and to every
substitution of G (or G') there correspond p (or q) operations
of g.

Let Sk(k=\, 2 , N) be the operations of g ; and let
n

xt = 'ZoijuXj, ({=1,2, , 11),

m

and y„' = 2 a'uvkyv, (it = 1
,
2
, m),

i
be the substitutions of (? and G' which correspond to /ST*. With
this notation, of the N substitutions whose coefficients are Oyt
(k=l, 2, N) only N/p are distinct, each one occurring

p times ; and a similar statement may be made with respect to

the substitutions whose coefficients are a'i;t. It may however
be verified, exactly as above, that the set of N substitutions on
the ran products of the x's and y's,

*» =

y
?, ^a U = 1, 2 m)'

(A=1,2 , JV),

constitute a group simply isomorphic with g, the substitution
written being that which corresponds to the operation St.

This process of forming from two isomorphic groups of
linear substitutions a third group which is simply or multiply
isomorphic with each of them, on a number of symbols equal to
the product of the numbers affected b

y the two given groups, is

spoken of as a composition of the two groups. It should be
noticed that, although for brevity we speak of compounding
two groups, the process involves not only a given pair of groups
of linear substitutions but also a given isomorphism between
them.

192. Suppose that is a linear function of the #'s

i

which is changed into a multiple of itself by A, so that

2 kiOijXj = \2 kiXi.

a *

Then %kiaii = \k}, 0= 1,2 , n),

i



250 [192CHARACTERISTIC EQUATION

CE22
—" X ,

0„ ,

Oni • 0ra ,

This equation is called the characteristic equation of A.
Corresponding to any root \ of this equation there is clearly at
least one linear function of the x's which is changed into X. times
itself by A.

If S-iAS=B, and the notation of § 189 is used for the
substitutions A, B, S and (or S'), then

bij= 2 Siuauv Stj.

Now IsnSq^O, t+j,
k

-Ii i=j-
Therefore if X^

= 0, t+J'
= X, i =j,

then 6y — \j = S s<u (an, — XuV) Syj.
MO

Hence the determinants of the substitutions, whose coefficients
are — X,j and by — are equal ; in other words the substitu
tions A and B have the same characteristic equation. The
characteristic equation of a linear substitution is therefore the
same as that of any one of the substitutions into which it may
be transformed. In particular, in a group of linear substitutions
the characteristic equations of any two conjugate substitutions
are the same.

The sum of the roots of the characteristic equation of a
substitution, in other words the sum of the coefficients in the

leading diagonal of the substitution, i.e.

Oi, + aa + ... +ann,

is called the characteristic of the substitution. In a group of
linear substitutions each one of a set of conjugate substitutions
has the same characteristic.

193. The foregoing results in regard to linear substitutions
and groups of linear substitutions involve no limitations with
respect to the order either of the substitutions or of the groups.
The general theory of groups of linear substitutions whose order
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is not finite lies, however, outside the range of this treatise, and
in what follows we shall consider almost exclusively groups of
linear substitutions of finite order. In such groups each sub
stitution is also necessarily of finite order. For such a substitu
tion the roots of the characteristic equation must obviously be
roots of unity, for a substitution which replaces a linear function
of the variables by X times itself is clearly not of finite order

unless some power of \ is unity. The condition that the roots
of the characteristic equation should be roots of unity is how
ever clearly not sufficient to ensure that the substitution
should be of finite order. Thus this condition is satisfied for
the substitution

af = x, y' = x + y,

which is not of finite order, since its nth power is

x' = x, y' =nx + y.

It is essential then to determine the general form of a linear
substitution of finite order. To this we now proceed.

Suppose that J. is a linear substitution of order N per
formed on x,t Xi, xn. Let y, be any linear function of the
x's, and suppose that A changes y, into y2, y2 into y2, and so on.
Since A is of order N, yN+l is the same as y, ; and if y^+1 is the
first y which is the same as ylt then must be a factor of N.
Let to be a primitive nlth. root of unity, and put

yi+y. +ya +...+yi, =vt ,

yl + »-1yi + <»"*yt + ... + to^'+'yn, = *7. ,

yi + to-2yi + a-4y2+ ... + o-mi+2yni = % ,

yi + toy. +tosy2 +... + ton,-1yrh =Vn,-i-

If all the rj's were zero, yl would be zero contrary to suppo
sition. Hence a certain number, say m,, of the n's are different
from zero ; and A replaces each one of them by a distinct
multiple of itself. In fact, if n* is not zero, it is the only one
of the rfs which A replaces by <u* times itself. The m, non-
vanishing rfs are therefore linearly independent.

If m1 is less than n, there must be a linear function of the
x's, which is not a linear function of the tj's. Treat this in the
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same way as y,. If z^^ is the first of the series of z's which is
identical with , n, is a factor of N. Let be a primitive n,th

root of unity and form as before the n.2 functions

S
o
.

?i
i

> ?n,— !•

These cannot be all identically zero, or zx would be zero. They
also cannot all be either zero or linear functions of the 17's or z

,

would be such, contrary to supposition. Hence if n\ is less
than n, at least one more linear function of the x's can be
formed which A replaces by a multiple of itself. This process
can therefore be continued until n independent linear functions of
the a;'s have been formed, each of which is replaced by a

multiple of itself under the operation of A. Moreover each of
the multipliers is necessarily an Nth root of unity. Hence :

Theorem I. If
n

Xi = 1 OijXj, (t'=l, 2
,

7
1
)

1

is a linear substitution A of finite order N, it is always possible
to find a substitution S

,

such that S~*AS is o
f the form

where w2 con are Nth roots o
f unity.

The n roots of unity a>j, wit , tun are called the

multipliers of A. Their sum is the characteristic (§ 192) of A ;
and their product is the determinant of A.

Ex. Prove that every linear substitution of order two on three
symbols is of one of the forms

(i
) x
' = -x, y'=-y, z' = -z,

(«) x
' = x+ a (ax + b
y

+ cz),

y =y + P{ax + by + cz),

z = z + y (ax + by + cz),

(iii) x
1 = — x — a (ax + b
y

+ cz),

y
' = -y-P(ax + by + cz),

z' = - z - y (ax +by + cz),
where aa + bfi + cy = -2.
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194. In the preceding paragraph we have determined a
canonical form to which any linear substitution of finite order

may be brought. It is obviously not unique unless the
multipliers of the substitution are all distinct. It is not
therefore to be expected that a unique canonical form should
exist for a group of linear substitutions of finite order. There

is
,

however, a certain standard form to which any group of
linear substitutions of finite order may be brought, the
coefficients of each substitution of the group satisfying certain
relations, the same for all. This form is directly connected
with the existence of a bilinear invariant for any group and
its conjugate, which we proceed to consider.

A bilinear form in n variables and their conjugates
xl, Hi, xm Kit 2-2, , VIZ.

t he coefficients of which satisfy the relations

Ci}
= cji, (i,j=l, 2, , n),

is called an Hermitian form.

The coefficients being regarded as given numerical (complex)
quantities, such a form takes a real numerical value whatever
(complex) numerical values be assigned to the variables. If
the form is such that it cannot take a negative value, whatever
values are assigned to the variables, it is said to be definite.
For instance

aj,#i + #2a, + + xnXn

is a definite form.

If, in a definite form, cn is not zero, it must obviously be
positive, for otherwise the values x, = a;,= ...= xn = 0 would
make the form negative.

If, in a definite form, c„ is zero, then cli (i = 2
,

3
,

n
)

must also be zero. In fact for the values xt = ce4= ... = xn = 0

the form becomes
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If Cm is not zero, this may be written

and is negative, wlien Cba;2 + Cu#i = 0, unless = 0.

If cB is zero, the form may be writteu
(x, + (x, + Cn^i) -X&i- CuC^X,,

and again is negative, when x, + c,^ = 0, unless c. = 0.

A definite Hermitian form may be brought in an infinite
number of ways to a standard expression. Put

i = CuXi + CnX2 + ...+ Cmxn,

The form then becomes

^if i + %dijXiXj,

C* Ci *

where = c,j— , so that d\
j

= dp.

If da = 0, then d* = 0 (i = 3, 4 , n). If d^ is not zero, it

is positive and we may take

V^fi = daXt + dnx, + . . . + dnixn,

For a definite form this process may be continued, and it leads
to the expression

for the form, where the number of terms, s, is equal to or less
than n, while £

„ f„ g
> are independent linear functions of

the original variables.

The form will take the value zero if, and only if
,

When 8 = n, this involves

SCl — 302.==. . i == = 0
i

so that the form is zero only for simultaneous zero values of the
variables. In this case we shall call the form a non-zero definite
form*.

* This is not a recognised phraseology.
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When s < n, the form will vanish for other values of the

original variables besides simultaneous zero values, and when it
is necessary to emphasize this point the form may be called a
zero definite form. It may be shewn that the determinant
| Cy | of the form is zero in the second case and not zero in
the first.

195. Let G and G be two conjugate groups of linear sub
stitutions (§ 190), for which corresponding pairs of substitutions
are

(t'-l,2 ,n).

If the y's are the conjugate imaginaries of the x'b, then
for each corresponding pair of substitutions the y"s are the

conjugate imaginaries of the x"s : and the equations defining
corresponding pairs of operations may be written

n

m( = 2 dijXj,

l- (»
. = !, 2, ,«).

soi=l,aijX},

When the x's and x's undergo any pair of corresponding
substitutions of G and G

,

i

becomes „ —
Z aitditXiXt.i.:t

Hence, if G is of finite order and if S denotes a summation
a

with respect to corresponding pairs of substitutions of Q and G
,

1= X ai,aitx,xt
a, i, i, t

is a bilinear invariant for G and G
.

Now the coefficient of xtxt in / is 2 a^a<,, which is a real
a,i

positive non-zero quantity. Also the coefficients of x,x\ and x,xt
are 2 a^a« and 2 a^tii,, and these are conjugate imaginaries.
a, i ati
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If the abbreviation Xiia) be used for 2 a%jXj,

a

Each term in this sum is a real positive quantity unless

Xi = xt= ... = xn= 0.

It follows that J is a non-zero definite Hermitian form.
Hence*: —

Theorem II. For any two conjugate groups of linear sub
stitutions of finite order G and Q there exists a non-zero definite
Hermitian form which is invariant when the two sets of variables
in the form undergo corresponding substitutions of G and G.

It should be noticed that the form 2 x{Xi on which the
i

substitutions have been effected may be replaced by any non
zero definite Hermitian form in the x's and their conjugates.
There may therefore very well be more than one such invariant

form. The essence of the theorem is that when G is of finite

order there is always at least one such invariant form. If G is
not of finite order this is not, in general, the case.

196. Suppose now that J is an invariant non-zero definite
Hermitian form for G and C

r, and that by the process of § 194
or otherwise it has been brought to the expression

n

where £ = 2 tqXj,

l-- (i=l,2, n).

g
i = 2 tijXj,

i

Denoting these two substitutions b
y T and f, the groups G

and G become when the f's and f's are used as variables
T-*GT and T^GT. These are clearly still conjugate groups
and for them

i

is invariant.

* A. Loewy, Comptet Rendu2, Vol. cxxm (1896), pp. 168—171 ; E. H. Moore,
Math. Ann. Vol. l (1898), pp. 213—219.
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If "

*

_ (» = 1,2 ,n)

h' = 2 aifcj,

be typical corresponding substitutions of T~lOT and f'tfiT,
then

Hence 2 a^fi^ = 1,

2auau = 0, +
i

If -4^ is the minor of 0$ in the determinant | ay |, and if D is
the value of the determinant, these relations are equivalent to

a" = ^-

The substitution A therefore is
n _4

x{ = *Z-jjx„ (i=l, 2, , n).

Now the inverse of this is
M

x-=ta,&t, (i= 1, 2, , n)
i

which is the transposed substitution of A, so that

A = At-\

These results may be summed up as follows :

Theorem III. Any group of linear substitutions of finite
order may be transformed so that the coefficients of its substitu
tions satisfy the relations

2ai,ai. = l, laitau = 0, (t^s).
i i

In this form the bilinear expression 2£<? < is invariant for the
i

group and its conjugate, while the conjugate group and the

transposed group are identical with each other ; i.e. A =At~1, if
A is any substitution of the group.
b. 17
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197. Definition. A group of linear substitutions in n
symbols

&i i &2 , ASn i

is called reducible, when it is possible to find s (< n) linear
functions

Hit Hi, t Hi

of the n symbols which are transformed among themselves by
every substitution of the group. When this is not possible the
group is called irreducible.

A permutation-group is always reducibla In fact the sum
of the symbols operated on by the group is unchanged by every
permutation. Again the group that results from the composition
of any group of linear substitutions of finite order with its conjugate
is always reducible ; for the Hermitian bilinear form which is
invariant for the group and its conjugate is a linear function of the
symbols xfa operated on by the compounded group.

Definition. When it is possible to form t (> 1) sets of
independent linear functions of the x'a,

£n, £m , fi*i,

Hat £s

(i, Htn Htitt

where 81 + 8,+ ... +8t=n,

such that the functions of each set are transformed among
themselves by every substitution of the group, while the group

of linear substitutions in each set is by itself irreducible, the

group is called completely reducible.

A group of linear substitutions of finite order is either
irreducible or completely reducible. This theorem which is
fundamental in connection with groups of finite order we now

go on to prove.

198. The step-by-step process by which any non-zero

definite Hermitian form, in n variables and their conjugates,
is brought to the form

must break off at some step before the last, when applied to a

zero form.
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Suppose that for a group 0 and its conjugate 5, the
zero definite Hermitian form

is invariant. By the above process this form may be expressed
as

where s is less than n.

Take fi, fa £»> £«+i> £n»

a set of n linearly independent functions of the x's, and their

conjugates, as the new variables for 0 and 5. The transformed
groups will still be conjugate, and for them

i
is invariant.

If =

I _ (»
' = 1,2 n
)

1

are typical corresponding substitutions for the transformed

groups,

* i=g m -n C- n

2f>fi= 2 2 2 aiuaiv^v.

I « = 1 « = 1 r=l

Hence if « > s,

i=s
0=2 aiuSiu
»=i

or diu = 0
.

The s variables £lf f2, , f, are therefore transformed
among themselves b

y (?. Hence :

Theorem IV. If a zero definite Hermitian form is invariant
for a group o

f linear substitutions G and its conjugate G
,

then 0

is reducible.

199. Suppose now that the bilinear form

is invariant when the m x's and the n y's undergo corresponding

17—2
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substitutions of two isomorphic groups. By a suitable choice
of new variables, the bilinear form can be written

*

2 fa1,
i

where fli f2
,

, £ , and 17,, ti2, 17t are linearly independent
functions of the a;'s and y's respectively. Replace the x's by

(?i, f2, , , £tn,

m linearly independent functions of themselves, and the y's by

Vl, Vi, , Vi, Vt+n , Vn-

With these as variables let
m

f,
'

= S^ (t-1,2, ,m)

1

n

and rj
/

= !^} (i = 1 , 2, n
)

1

be corresponding substitutions of the two groups. Then

/ i= s V.. m v =n

1 i= l n = 1 t;=l

Hence

1
2 = 1 , u^s,

1

2aiu,9iu=0, u>s.

1

Every determinant of s rows and columns formed from the
scheme

an, Hu, ai2, , aii, , aim,

<"2i, a22, flffli 1 , a2mi

ati, a«, ats, , att, 1 fl«n,

cannot be zero, for then the determinant of the linear sub
stitution

m

&
' = 2ay& (i=l,2 m)

1
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would be zero. Suppose

. . . aia,

is different from zero. Then from the relations
i
2aiu/3,r = 0, v+m
1

(u = O,, a, a„)

it follows that /8,B(i=l, 2 «) is zero, except when v

has one of the values Oi, cu,, , a*

Now the relations

1

shew that if u is not greater than s, each one of
= 2, ,*)

cannot be zero. Hence Oi, a2 at must be 1, 2, s;

and )8(U is zero if u is greater than s. Similarly a,u is zero if
u > s. Hence if

1

is an invariant bilinear form, both the first s s and the first s 17's
must be transformed among themselves by every substitution
of their respective groups.

Moreover, when corresponding substitutions on the first s

f 's and the first s rj's are taken to be

(»
= 1, 2 , «

),

1

the coefficients must satisfy the relations

i= a
2 0^^ = 0
,

j=|=&,
<=i

S
* =1.

i=l
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If Aij is the miDor of in the determinant D of the substitution
on the s f 's, then

Hence the corresponding substitution on the s rj's is

1

and its inverse is

i

Vi = ^"jiVj-

l

*

When 2 £4174 is invariant, it therefore follows that the s f's

1

and the s rj'a must undergo corresponding substitutions of a

group and its transposed group.

The most important application of this result is to the case
in which the group G of linear substitutions on the m x's is

irreducible. When this is the case, s is necessarily equal to m,
and the f 's may be taken to be any m linearly independent
linear functions of the x's. Suppose them so chosen that, when
taken as variables, G has the standard form of Theorem III.
The rj's are then m linearly independent functions of the ys ;

and when the £'s undergo any substitution of G
,

the v's

undergo the corresponding substitution of the transposed group,
or what is the same thing (since G is in standard form) of the

conjugate group. Hence :—

Theorem V. IfO is an irreducible group of linear sub
stitutions on the variables the standard form

o
f Theorem III, then the only bilinear form in the x's and

another set o
f variables which is invariant when the x's and the

other set o
f variables undergo corresponding substitutions o
f G

and o
f an isomorphic group H is where tfie y's undergo

the substitutions o
f G.

200. Let G be a reducible group of linear substitutions of

finite order in the s + t symbols

^li ^2i , ®t, Ki+1 , ^t+ti

which transforms the symbols

xt 1 &i
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among themselves. Suppose that

/=2 dijXiXj
is a non-zero definite Hermitian form, invariant for G and 5.
Use the step-by-step process of § 194 to bring I to standard
form, taking the symbols in the order

so that I becomes
t+1 + .+2 + . . . + Zi+th+t + fifi + . . . +

where , ft
are functions of

Xl , 3-2 ,

only. When the £'s and their conjugates are taken as variables,
G and G are reducible conjugate groups for which

is invariant, while the first s f 's and the first s f 's are trans
formed among themselves by G and Q respectively.

*+< - — —
Since 2 is invariant for (? and G, it follows that G is
i

identical with Gt- Now if (r does not transform the symbols
ft+ , ft+i among themselves, Gt (or (?

)

would not

transform the symbols £„ £„ , f , among themselves as it
actually does. Hence (? must transform each of the sets

?i , f2 , ,

and f,+2 f,+f

among themselves. If the group in either of these sets is

reducible, the same reasoning may be applied again. Hence:—

Theorem VI. A group of linear substitutions o
f

finite
order is either irreducible or is completely reducible.

The condition that the group should be of finite order has

only been used in establishing the existence of an invariant
non-zero definite Hermitian form for the group and its con

jugate. It follows that any group of linear substitutions which,
with its conjugate possesses such an invariant form, is either
irreducible or is completely reducible.
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Ex. 1. Prove that the group of order 16 in four variables,
generated by

x' = ix, y' = — iy, u =- iu, v' = iv;
^ = !/, V1

= -x, «' = »i v' = -u;
x' = u, y' = v, u' = -x, v' = -y;

where is = — 1,

is reducible, transforming the variables in two sets of two each.

Ex. 2. Prove that the group of order 32 in four variables,
generated by

x = cue, y = a-1y, u - a'u, v' = a-!v ;

x1 = y, y' = -x, u' = v, v' = -u;
x' = u, y' = v, u' = -x, v' = -y;

where a4 = — 1,

is irreducible.

201. The coefficients in a non-zero definite Hermitian form,
formed as in § 195,

I=%aijxix],
which is invariant for a group of linear substitutions and its
conjugate, are rational functions of the coefficients in the two
groups. The reduction of the form to the expression

+ &&+... +£.£n,

as explained in § 194, involves the introduction of the quantities
s/a^, etc. ; and the coefficients in the transformed groups are not
therefore, in general, rational functions of the coefficients in the
original groups. The process may, however, be modified so that
no new irrational quantities are introduced. To effect this, put

"» o. J.

Then I="nViVi + 2 Pt^Xi, (i
, j = 2, 3, ,

Hence / can be expressed in the form

where the rfa are linear functions of the x's with coefficients which
are rational in the coefficients of the substitutions of the groups, as
also are the a's. When the ij's and i7's are taken as new variables,
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the transformed groups are still conjugate, and the coefficients in
their substitutions are rational functions of the original coefficients.
With this modification the coefficients of the transformed groups are
subject to the relations

5a(a<*<E(t = 0, t=¥s,
i

i

If the first m of the 17's are transformed among themselves, then
a^ = 0, when i $ in, s > m.

Hence, if t > m, the equation

i
becomes

0 = «m+ia,n +i,tam+l, t+ ... + dnan,sK,f

If 8 ^ to, this equation holds for <= m + 1 , m + 2 , n. Now
the determinant

am+2, m-fl am+2, m+2 ... am+2, n

an, m+1 "n, m+s . . . °n, n

cannot be zero, since it is a factor of the determinant of one of the
substitutions of the group. Hence

am+l, 0 1 am+s, t = . . . = an, a- ^1
for all values of s from 1 to n*. The variables rjm+1, r]m+t, , rjn

are therefore transformed among themselves ; while the coefficients
in the groups of substitutions on the two sets of rj's are rational
functions of the coefficients in the original form of the groups.

This is equivalent to the statement that, even when the coefficients
in the groups dealt with are limited to a given field of rationality,
a group of linear substitutions is either irreducible or completely
reducible, relatively to the field*. This generalized idea of re-
ducibility relatively to a given field may be defined as follows. A
group of linear substitutions on n symbols is irreducible, relatively
to a given field (which necessarily contains the coefficients of its
substitutions), when it is impossible to choose m (< n) linear func
tions of the variables with coefficients in the given field which are
transformed among themselves by every substitution of the group.

202. Let T be a linear substitution on n symbols which is
permutable with every substitution of a group G of linear

* Loewy, Trans. Amtr. Math. Soc. Vol. in (1902), pp. 62—64.
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substitutions on the same variables. Then S^TS is permutable
with every substitution of S^GS. If \ is a root of the
characteristic equation of T, S may be chosen so that S-*TS
replaces a certain number of the variables by Xi times them
selves. Every substitution which is permutable with S-lTS
must obviously transform these variables among themselves ;

and therefore this must be true of every substitution of S^GS.
Hence, unless ^TS, and therefore also T, replaces each
variable by \ times itself, S-1GS, and therefore also G, must be
reducible.

Theobem VII. The only substitutions which are permutable
with every substitution of an irreducible group of linear sub
stitutions are those which replace each variable by the same

multiple of itself.

It may be pointed out that the above reasoning holds even
when the determinant of T is zero. In this case, S^TS re
places a certain number of the variables by zero, when S is
suitably chosen, and these must be transformed among them
selves by every substitution of S-*GS. Hence :—

Corollary. The only substitution of zero determinant,
which is permutable with every substitution of an irreducible

group of linear substitutions, is the substitution which replaces
each variable by zero.

203. The result of the last article may also be expressed as
follows. If the variables operated on by an

irreducible group of linear substitutions, then the only linear
functions of the x's which undergo for every operation of the

group the same linear substitution as the x's are

where k is any constant.

Suppose now that the mn variables

({=1,2, .., to),
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are transformed among themselves by a reducible group of

linear substitutions G, such that each set of n variables with

the same first suffix undergo among themselves the substitutions

of an irreducible group, while the substitution that any set

undergo corresponding to a given operation of G is inde

pendent of the first suffix, or in other words is the same for

each of the m sets. Then it follows at once from the previous
statement that the most general set of n linear functions of the

mn variables, which undergo for every operation of G the same

linear substitution as

, &12 , ^lm
t—m

is 2 atxtj, (j = 1, 2, , n),

where the a's are arbitrary constants.

Suppose now that the linear substitution T, or

a:'ij = yij, (i- Ii 2, , m ; j= 1, 2, n),

where for each double suffix y# is a linear function of the x's,

is permutable with every operation of G. The necessary and

sufficient condition for this is that for each i,

y&, Hit i y<n.

and X{it Xfo , Xint

shall undergo, corresponding to each operation of G, the same
linear substitution. The most general form of T is therefore

x'ij = l auxtj, (i = 1, 2, , m ; j = 1, 2, n),
<=i

where the m? symbols denote arbitrary constants. The totality
of linear substitutions of this form, subject to the condition that
the determinant |aii| is different from zero, constitutes the
most general group of linear substitutions on the mn variables,
each of whose operations is permutable with every operation
of G.

With this result the reader will be able to form the most
general group of linear substitutions each of whose operations is

permutable with every operation of any group G of linear sub
stitutions of finite order on a given set of variables.
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Ex. 1. The sub-group of a transitive permutation-group of degree
n, which leaves st\ unchanged, permutes the remaining n — 1 symbols
in m-1 transitive sets ; and £t represents the sum of the symbols in
the sth set. A permutation of the group which changes x1 into xt
changes the set of symbols whose sum is (t into a set whose sum
is £t<''. Prove that every permutation of the group which changes
x1 into Xi also changes £t into ; and that the most general linear
substitution which is peruiutable with every permutation of G is

m

i
(i=1, 2 ,«),

where the a's are arbitrary constants.

Ex. 2. If the coefficients of all the substitutions of a group of
linear substitutions of finite order are real, prove that there is a
quadratic function of the variables which (i

) is invariant for all the
substitutions of the group, and (ii) vanishes only, when the
variables are real, for simultaneous zero values of the variables.

Shew also that when new variables are chosen such that the
invariant quadratic function is the sum of their squares, the co
efficients of every substitution of the transformed group satisfy the
relations

^,a(,a(t = 0, (s=M), 2ata2=l.

< i

Note to §§ 188, 189.

If DA, DB, D0 are the determinants of three linear substitutions A, B,

C
, and if AB=C, we have seen that DADB= Da; while also

DB-iAB=DB-iDADB=DA.
Hence if the determinants of some of the substitutions of a group differ
from unity, those substitutions whose determinants are unity constitute a
self-conjugate sub-group. Moreover the corresponding factor-group is

cyclical, if the group is one of finite order.



CHAPTER XIV.

ON THE REPRESENTATION OF A GROUP OF FINITE ORDER
AS A GROUP OF LINEAR SUBSTITUTIONS*.

204. Definitions. Let Si (i = 1, 2, , N) be the opera
tions of an abstract group G of finite order N ; and let

8k (k = l, 2, )
j =n

or x(= Z aijkXj (t'= 1, 2, , n)

be the substitutions of a group of linear substitutions T.

If to each operation Si of G there corresponds a single
operation Si of T, such that when

SiSj= Sk,

then SiSj = Sk,

r is said to give a representation of G as a group of linear
substitutions.

* The theory of the representation of a group of finite order as a group of
linear substitutions was largely, and the allied theory of group-characteristics was
entirely, originated by Prof. Frobenius. His original memoirs on the subject all
appeared in the Berliner Sittungsberichte, and the most important of them are :
"Ueber Gruppencharaktere " (1890), pp.985 —1021; " Ueber die Primfactoren
der Gruppendeterminante " (1896), pp. 1343—1382 ; " Ueber Relationen twischen
den Charakteren einer Gruppe und denen ihrer Untergruppen " (1898), pp. 501—
515, " Ueber die Darstellung der endlichen Gruppen durch linearer Substitu-
tionen " (1897), pp. 994—1015 ; " Do. do. h " (1899), pp. 482—500 ; " Ueber die
Composition der Charaktere einer Gruppe " (1899), pp. 330—339. In this series
of memoirs Prof. Frobenius's methods are, to a considerable extent, indirect ;
and the same is true of two memoirs " On the continuous group that is denned
by any given group of finite order," I and II, Proc. L. M. S. Vol. xxrx (1898) in
which the author obtained independently the chief results of Prof. Frobenius's
earlier memoirs. More recently in the memoir " On the reduction of a group of
homogeneous linear substitutions of finite order," Acta Mathematica, Vol. xxvm
(1904), pp. 369—387, and " On the representation of a group of finite order as
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It is to be noticed that this definition of the representation
of an abstract group as a group of linear substitutions, does not
involve or assume that 0 and T are simply isomorphic. If G
is not a simple group it may be multiply isomorphic with T. If

»* (* = 1,2 )

i=n
or x{ = 2 OijkXj (i = 1, 2, , n)

i=i
be another representation I" of G in the same number of
symbols as a group of linear substitutions, and if a linear
substitution T on the n symbols exists, such that

for each k, the representations T and T' are said to be equivalent.
If no such linear substitution as T exists, the representations
are called distinct.

The two groups of linear substitutions Y and T' may consist of
the same set of substitutions and yet may give distinct representa
tions of G.

For instance in the case of the non-cyclical group, defined by

we may take s1 and 8, to be

x' — u^x and x = <o^c,

<i,! and <oi being any two pth roots of unity. Unless both <u, and w2
are unity, the set of linear substitutions that thus arises, giving
a representation of the group, is

*' = fti'a;, (t = 0, 1, 2 , p- 1),

where u> is a primitive pth root of unity.

Hence in this case the same set of linear substitutions gives

p
2 — 1 distinct representations of the group.

A less simple case, and one in which G and T are simply
isomorphic, is given by the abstract group G defined by

an irreducible group of linear substitutions and the direct establishment of the
relations between the group-characteristics," Proc. L. M. S. Series 2

, Vol. i

(1903), pp. 117 —123, the author lias established the chief results of the theory
by direct and comparatively simple methods. The exposition in the text mainly
follows the lines of the two last mentioned memoirs.
Some account of the theory of group-characteristics is also given in Prof.

Weber's Lehrbuch der Algebra, 2nd Edition, Vol. n, pp. 193—218.
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Here we may take at and «s to be

x = o>x, y' = oi2y, z = io*z, . ,

and x = z, y =x, z = y ;

and the group of linear substitutions on x, y, z is a representation of
(?. If we take Sj and sa to be

x' = gAe, y' = <u*y, z' = o)sz,

and x = z, y' = x, z' — y,

we obtain another representation of © by means of the same group
of linear substitutions. It is however certainly distinct, for the two
substitutions

x' = tax, y = o)2y, z' = u>\
and x' = io3x, y' = m°y, z' = ofz,

having different characteristics, cannot be transformed the one into
the other.

205. Since any group of linear substitutions of finite order
is either irreducible or completely reducible, the most important
representations of an abstract group are clearly the irreducible
representations. From these any representation whatever can be
built up. Among the irreducible representations there neces
sarily occurs what is known as the identical representation, viz.
that in which every operation of the group corresponds to the
identical substitution

x' = x

in a single symbol. This identical representation will always
be denoted by Tx and the other irreducible representations by

Fj,

Any representation whatever of the abstract group as a group
of linear substitutions may then be denoted by the symbol

where each c is either zero or a positive integer. In fact, when
the group of linear substitutions is completely reduced, each

separate irreducible group of linear substitutions that arises
must be equivalent to one of the T's, and the symbol SofTf
denotes that of these separate irreducible groups just d arise
which are equivalent to T<.

The separate irreducible groups that thus arise on the com

plete reduction of a group of linear substitutions are called its
irreducible components.
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The sets of variables which are transformed among them
selves by the irreducible components are called the reduced
variables.

206. Suppose that when a group of linear substitutions has

been completely reduced the two sets of variables xu x2, ,x,
and yu y2 yt are transformed, each among themselves,

irreducibly.

We have seen in § 199 that, unless the x's and the y's
undergo equivalent representations of the group, there can be
no invariant bilinear form in the x's and y's. Hence for
the group and its conjugate, when expressed in terms of the
reduced variables, there can be no invariant Hermitian form
containing a product xy, unless the same condition is satisfied.

Suppose that, in the completely reduced form of the group
considered, there are just t sets of variables

,<).

the irreducible components corresponding to which are equiva
lent to a given irreducible representation of the group.

The variables of each set may be chosen so that (i) corre
sponding to any operation of the group, those of each set
undergo the same substitution, and (ii) the invariant Hermitian
forms for each separate set are

*^il^'ti 4" 4* Xit&ig.

Let f^2aipJqxipxjq

be an invariant Hermitian form ; and

x ip = i amkxiq (p = 1, 2, , s)
9=1

a typical substitution for any one of the sets. Then

and therefore

P. 9
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These relations express that

is invariant for the group of linear substitutions
a

and its conjugate.

But the only invariant form for this group is
*

1

Hence aiPtjg = 0, p ={
=

q
,

If then aip,jp — ^ij'

the most general invariant Hermitian form in the st variables
and their conjugates is

2 bijXipXjp.
hi.p

This form contains just f arbitrary constants

h
} (M-1,2 ,t).

Hence combining this result and the immediately previous
one, we may state the following :

Theorem I. The representation o
f an abstract group, as a

group o
f linear substitutions, denoted by SciTi and its conjugate

has exactly Sc<2 linearly independent invariant Hermitian forms.

207. Let GH be the representation of a group of finite
order G as a transitive permutation-group in respect of a sub

group H of order Nt (§ 177) ; and suppose that in this represen
tation H permutes the symbols in m transitive sets,

Xl #2i xt, , Xi ; Xi+1, Xi+2, Xj ;

The Hermitian invariant for GH and Gg that arises from

is the same as that which arises from a^ + a^a;,, and is distinct
from that which arises from x1x^ + x1xi+1. Hence for GH and
Gg there are just m linearly independent Hermitian invariants.
On the other hand, if

Qb= 2ct rt

b. 18
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gives the complete reduction of GH, the number of these

independent Hermitiau invariants is 2ct2. Therefore

to = 2c,s.

Suppose that there are just m, independent linear functions
of the symbols operated on by Tt which are invariant for H.
From any one of them N/Nt linear functions arise, under the
operations of T,, which formally undergo the permutations of

GH; and when this permutation-group is completely reduced it
must obviously contain rt as an irreducible component. Hence,
if m, ^ 1, r, must occur among the irreducible components of
Oa. Now in Xc2rs the number of independent linear in
variants for H is 2c, rn,. On the other hand the number of
independent linear invariants for H in Gjj is obviously m.
Hence

to = 2c,to„
and therefore

2c,2 = 2 ctm,.

Omitting the suffix s in c, and Tt, let

f il , ?t2, fin
(•-1.2 c)

be the c sets of symbols (linear functions of the x's) which

undergo the linear substitutions of the irreducible representa
tion r when Gg is completely reduced ; and suppose the symbols
chosen so that those of each set undergo the same linear

substitution for each operation of G. The original variables

<Bl, a:t , xy/y,

of GH are linear functions of the reduced variables ; and in the

expression for a linear function of each separate reduced set

of variables must occur ; since x, assumes N/N1 linearly inde

pendent values under the substitutions of the group.

Suppose that

a:i = + 2,i + 2M + + E„ + ,

where an = 2aj(<'£g is a linear function of the symbols of the
i

ith set.

If the c functions 2a/" (i = 1, 2, c) are not linearlyi
independent, put

2a/-" Vj = A, 2«/» Vi + A2 2a/2' y} + +A^l^ y;,
}

j j i
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Then

S3n + Ha + + EM = E'u + 5 '22 + + B'e-i,e-li

where H'ii = 2a/) + Afa].

3

Now each of the c — 1 sets

+ fa+^ifei, , hn + AiZcn, (i = l, 2, c- 1)

undergo the substitutions of T ; and therefore, on the supposi
tion made, when the substitutions of the group are carried out
on x1, fewer than N/Ni independent linear functions would
arise. It follows that the c linear functions la^yj are linearly

i

independent. Now for the operations of H, a;, is invariant and
therefore also S,,. , H«. Hence, if H,t is the same
linear function of the symbols of the first set that H« is of those
of the £th set, H„, Bu, Bu are invariant for the sub
stitutions of r which correspond to the operations of H ; and
they have just been shewn to be linearly independent.

There are therefore at least c linear functions of the symbols
operated on by T

,

which are invariant for H. Hence with the
notation of the earlier part of the paragraph

m, ?z c,.

Combining this with

2ct2 = 1m, c„

it follows that
c, = m,.

Theorem II. If GH is the representation of a group G of

finite order as a transitive permutation- group in respect o
f a sub

group H, the complete reduction o
f

GH is given b
y

the formula
GH=1m,r„

where T
,
is any irreducible representation o
f G and m, is the

number o
f independent linear invariants for H in T,. More

over, if m is the number of transitive sets in which the sub-group

o
f GH, which leaves one symbol unchanged, permutes the symbols,

then

m = Sot,'.

f

208. When a group G
,

of finite order N, is represented as

a regular permutation-group in N symbols, the sub-group that
18—2
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leaves one symbol unchanged consists of the identical operation

E. Now in any group of linear substitutions the number of
independent linear invariants for E is equal to the number of
variables.

Hence, when the theorem of the previous paragraph is

applied to the reduction of GE, it takes the form

GB= 2 n,r„
«=i

where n, is the number of symbols operated on by the irreducible

representation r„, fi being the number of distinct representa
tions.

Suppose the reduction of GE carried out, and let

(•-1. 2, ,n)
be the n sets of symbols, each of which are transformed among
themselves by the substitutions of the irreducilile representation
r. Suppose, moreover, the symbols chosen so that for each
operation of 0 those of each set undergo the same substitution.

Any linear substitution on the original variables which is
permutable with every substitution of GE, must, when expressed
in terms of the reduced variables, transform among themselves
the n* symbols x$ (

i, j = 1, 2, , n). This is an obvious

consequence of the fact that the different irreducible repre
sentations are distinct, so that one cannot be transformed into
another.

Hence (§ 203) a substitution which i
s permutable with every

operation of GFj must so far as it affects the n2 variables be
of the form

k =n

*=1

(*',j=l, 2 ,n).

Such a linear substitution therefore effects the same trans
formation of the symbols in each column of the scheme

^ID ^IIj > x\nt
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while eacli substitution of T effects the same transformation of
the symbols in each row.

Now (§136) there is a group G', of order N, of regular
permutations on the N original symbols, which is simply iso
morphic with G, while every operation of G' is permutable with

every operation of G.

Hence, when G is completely reduced as above, G' is simul

taneously completely reduced ; and, as regards the above scheme

of n' symbols,

(i
) Every operation of G gives the same substitution of the

set of symbols in each line ;
(ii) Every operation of G' gives the same substitution of

the set of symbols in each column ;
(iii) The group of substitutions of the symbols in each

line, corresponding to the operations of G
,

and the group of
substitutions of the symbols in each column, corresponding to
the operations of G', are each irreducible.

Hence, for the group [G, G'\, the set of raa symbols in the
scheme undergo an irreducible group of linear substitutions.
In fact a linear substitution on the n' symbols, which is permut
able with every operation of G

,

must be of the form

*=n

x'ij = 2 ancXtj = 1
,
2 , m),

while if it is also permutable with every operation of G' it must
be of the form

k = 71

x'ij= 2 fikjxik (t',j= 1, 2 , n).
*=i

It is therefore
x'ij = axi} (i,j=l,2 , »).

The group of permutations {G, G'\ therefore, when com

pletely reduced, transforms the N variables in ji reduced sets of
w,*, n,', nMs variables respectively. Moreover, since T

,

and rt are distinct representations of G
,

the fi representations
of [G, G'\ that thus arise are also distinct. It follows, by § 206,
that there are just fi independent Hermitian invariants for
the permutation-group {G, G'} and its conjugate. On the other
hand it has been seen in § 207 that the number of independent
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Hermitian invariants for any transitive permutation-group and
its conjugate is equal to the number of transitive sets into
which the symbols fall for the sub-group that leaves one

symbol unchanged. Now for the permutation-group {G, G'} it
has been seen (§ 136) that this number is equal to r, the number
of conjugate sets of operations in G. Thus

fi = r.

Theorem III. A group of finite order, with r sets of
conjugate operations, has just r distinct irreducible representa
tions. When the representation of the group as a regular
permutation-group is completely reduced, every irreducible

representation occurs; and the number of times that any one
occurs is equal to the number of symbols on ivhich it operates.
209. Let H, of order M, be a self-conjugate sub-group of

G, of order N; and consider the representation GH of G, as a
transitive permutation-group, in respect of H. We have seen
in § 177 that G is multiply isomorphic with GH, every
operation ofH corresponding to the identical permutation in GH.
Considered merely as a group of permutations, GH is a

regular permutation-group of degree N/M, simply isomorphic
with the abstract group G/H of order N/M. If r is the
uumber of conjugate sets in this abstract group, just r distinct
irreducible representations of G/H arise when GH is completely
reduced. Each of these is an irreducible representation of G ;
and being distinct representations of G/H, they are necessarily
distinct representations of G. Hence:—

Thkorem IV. // H is a, self-conjugate sub-group of G, and
if G/H has r sets of conjugate operations, there are at least r
distinct irreducible representations of G, in each of which the
identical substitution corresponds to every operation of H.

The converse of this theorem will be considered in the
following chapter (§ 228), and it will be seen that r' is the
actual number of representations of G which have the property
in question.

210. If G is an Abelian group, every operation of it is self-
conjugate and r = N. Hence for an Abelian group the number
of irreducible representations is equal to the order of the group,
and each of them is in a single symbol.
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Now a group of linear substitutions in a single symbol is

necessarily cyclical. Hence if a group G admits such a repre
sentation other than the identical one, G must contain a self-

conjugate sub-group H such that O/H is a cyclical group ; i.e.
G must be distinct from its derived group (?1. On the other
hand, when G is distinct from G

1
,

every distinct irreducible

representation of G/G, gives a distinct representation of G
,

and G/Gl is Abelian. Hence :—

Theorem V. If a group G of finite order N has a derived
group G

l

o
f order Ni, there are just N/Nl distinct representations

o
f G in a single symbol.



CHAPTER XV.

ON GROUP-CHARACTERISTICS.

211. In the present chapter we shall investigate a number
of remarkable and important relations between the various

representations of a group of finite order as an irreducible group
of linear substitutions. A uniform notation is essential for this
purpose, and, at the risk of a certain amount of repetition, this
notation will first be explained in some detail.

The abstract group considered is called G. Its order is N,
and the number of distinct sets of conjugate operations which
it contains is r. The first set is that consisting of the identical
operation E alone, and the numbers of operations in the r sets
are

^i(= 1). h2 K\
so that N = A, + A2 + + hr.

The r distinct irreducible representations of G will be
called ri/ r2 , Tr; the first of these is the identical
representation (§ 205) in which every operation of the group
corresponds to x' = x.

The number of symbols operated on by I\ is represented by
Xi{i); but usually for convenience of printing the brackets round
the » will be omitted. From Theorem III of the preceding
chapter it follows that

^=(x.1), + (tt,), + + (fcr)2.

An irreducible representation of the group in a single symbol
is susceptible of one form only; but those in more than one
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symbol may be transformed (i.e. the variables may be chosen)
in an infinite number of ways. In particular Ti may always be
thrown into such a form that for Tj and its conjugate T{ the

Hermitian invariant is of canonical form. I\
- is obviously an

irreducible representation if T,
-

is. The two may or may not

be distinct. The suffixes are understood to be chosen so that

r,
-

is equivalent to rV; and i' and i are the same or different
according as T

( and Ti are equivalent or distinct.

If Ti and Tj are two irreducible representations of 0
,

to

each operation of 0 there corresponds a single substitution of

r,
-

and a single substitution of Tj. A definite isomorphism is

thus established between F( and iy Hence when they are
compounded as in § 191, there results another representation
of 0 as a group of linear substitutions which may or may not
be irreducible. This representation will be denoted by

2 ffijfTg,

» = 1

where each g^, is either zero or a positive integer ; and the

formula expresses that when the compounded group is com

pletely reduced the irreducible representation T
,
occurs just

gij, times. The compounded group, i.e. the group of linear

substitutions on the products of the symbols operated on by r4

and Tj, may be denoted by the symbol TiTj or I^r,-, and the
formula

r<ri-rir<-£ft,r.

i

gives the complete reduction of the compounded group.

The occurrence of r, on the right-hand side of this formula,
i.e. the case when giix is not zero, indicates the existence of one
or more bilinear invariants for I\ and Tj. It therefore follows,
from § 199, that gi}1 is different from zero only when r

; is equi
valent to r,

-

(or, which is the same thing, when Tt is equivalent
to Tj), i.e. when_; is i' or i isf; and that then

9ivi = 1
.

212. The characteristics (§ 192) of any two conjugate
operations in a group of linear substitutions are the same ; and

it is therefore legitimate to speak of the characteristic of a
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conjugate set of operations, meaning thereby the characteristic
of any one of the operations of the conjugate set.

The characteristics of the r conjugate sets in the represen
tation T< will be denoted by

where again the brackets round the is will generally be
omitted. If S is an operation of the jth set, and if the order
of S is m, then being the sum of the multipliers of S

(§ 193), is the sum of as many with roots of unity as there
are symbols operated on by T<. In particular Xi, the character
istic of E, is, as already denned, the number of symbols operated
on by ri.
The set of quantities (each of them a cyclotomic integer)

is called a set of group-characteristics.

There are r such sets corresponding to the r irreducible
representations of G.

For the identical representation Tlt each one of the set of
group-characteristics is 1. Hence in this representation

S i

where the first summation is extended to all the operations and
the second to all the conjugate sets of G.

From the definition of T<, it follows that the set of group-
characteristics for it are

xV. x/ Xr-
Hence r< and are certainly distinct unless each group-
characteristic for ri is real ; and when T

< and Te are distinct,
their sets of group-characteristics are sets of conjugate
imaginary quantities. It will be seen presently that when
each group-characteristic for T

< is real, T
( and T
{ (or rf) are

equivalent.

213. We have had occasion in Chapters III and IV, when
considering the properties of groups apart from any special
mode of representation, to deal with expressions such as

A+B+...+D,
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where A, B, ... , D are operations belonging to a given group.
We now - consider what will correspond to such a sum of

operations when we have to do with groups of linear substitu

tions. The essential property of such sums is that they obey

(subject to the multiplication table of the group) the associative
law of multiplication. In fact if

AC=S, AD = T, BC=U, BD=V,

then (A + B)(G + D) = S+ T+ U+ V.
With the notation used at the beginning of Chapter XIII, let
the linear substitutions that correspond to A, B, V be

n

Xi - ' 2 i
i
n

x( = IbijWj, (i = 1, 2, n)

n

x/ = %VijXj.
1

Consider now the linear substitutions
n

n (i=1, 2, ...,n)
x{ = 2 (cij + dij)xj.
i

Their determinants are not necessarily different from zero ;
but they may be carried out successively, and the resulting
linear substitution is

k=n j=n

x/ = 2 2 (c* + da) (akj + bkj) xjt (i = 1, 2, . . ., n).

Now, since AC=S,
k-n
2 caakj = Sij,

and so for the other products. Hence the resulting sub

stitution is , —

X( = 2 (sij + Uj + mj + Vij) xj, (i = 1, 2 n).

It follows that, when the operations of the abstract group
are represented by the linear substitutions as indicated, we may



284 [213RELATIONS BETWEEN

take as corresponding to the sum A + B + ... + D the linear
substitution

i=»
x(= 2 (dij+bij + ...+dij)xj, (i= 1, 2, , n);

and that then any relation which holds among such sums of

operations of the abstract group will also hold among the

corresponding linear substitutions.

With this notation if
T-'AT^B, and T^BT^A,

then A+B is clearly permutable with T; and if .A,, At , A,
are a number of linear substitutions which are permuted among
themselves on transformation by T, then A, + A2 + + A, is
permutable with T.

Moreover it follows, from the definition of the characteristic
of a substitution, that the characteristic of Ax + At + + A,
is the sum of the characteristics of Au Ait , Ag.

Suppose now that

*h> S3, ,

are the operations of the ith conjugate set of a group G; and, as
in § 41, put

C{ = 81 + 8t + + SV
In any irreducible representation of 0, the substitution

corresponding to (7,-, whether of non-zero determinant or not,

is permutable with every substitution of 0. Hence (§ 202)
Gi must replace every symbol operated on by the same multiple,
a, of itself. The number of symbols being ^„ the characteristic
of Gi is a^i- On the other hand the characteristic of

St + 8, + + Sh. is fifti.
Hence

and the substitution C
,- is

Now the relations (§ 42) between the conjugate sets of G
,

viz.

i r

GiCj= 2 Cij,C„
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being identities, in virtue of the multiplication table of 0, must
hold for this concrete representation. The linear substitutions
denoted by the two sides of the equations are therefore the
same, and hence

Xi X> »=i X>

These equations hold for each irreducible representation. They
may be rather more conveniently expressed in the form

r
hthjXtxf = X>* 2 CijX%,k>i
k = 1,2, r)

.

214. In the representation of G as a regular permutation-
group of iV symbols,

the substitution denoted with the previous notation by

G
\ + C
2 + + Cr,

i.e. the sum of all the substitutions of the group, is
flfi = o", a;/ = o-, , ajjy' = o",

where o- denotes the sum of the N symbols. With

as new symbols, this substitution is

<r' = Na, (a;, - ajj)' = 0, (x3 - xj = 0, (a;^ - = 0.

Now in the completely reduced form of 0E the identical

representation occurs just once (Theorem III, Chapter XIV),
and the corresponding reduced variable is <r. Hence the

reduced variables for any other irreducible component must be
linear functions of the differences x2 — xu xt — xx , xy — xx.

Hence in each irreducible component of 0
,

except the

identical one, C
,
+ C2 + + C
r

replaces each symbol by zero.

By the preceding paragraph, Cl+Ci+ + Cr, in any irre

ducible representation, replaces each symbol in % times

» Xi
itself. Hence

2Xsi = 2AiXi* = 0
, * +

s «



2SG [214RELATIONS BETWEEN

where the first summation is extended to the operations and

the second to the conjugate sets of O.

215. In the group on the x*xf products of the variables
that arises by compounding the representations Tj and Yj, the
characteristic of any substitution is the product of the corre

sponding characteristics in T\- and Yj. In fact if

and yu'=2&u„2/„

are corresponding substitutions of I\ and Yj, the resulting
substitution of the compounded group is

(*p3/u)'= 2 ClpqbuvXqy,,

and the sum of the coefficients in the leading diagonal of this

is tdppbqq or Sopp.26OT. Now in two equivalent groups the
characteristics of any substitution are the same. It follows
that the relation

r

i

expressing the complete reduction of the group compounded
from I\ and Yj, involves, for each p, the equation

r

i

the two sides of this equation being different forms of the
characteristic of the pth conjugate set in the compounded
group.

If the last equation be multiplied by hp, and a summation
be carried out with respect to p, i.e. with respect to the con

jugate sets, there results
p=r «=r p-r

Now we have seen, in §§ 21 2, 214, that

p=l

PirhpXp'=o, 5+1.

p = r

Hence 2 h^Xp3 = 9^.
p=i
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Also it has been seen, in § 211, that is unity or zero, according
as j is or is not i'; so that

p=i

and 2 hPxPiXp} = 0, ; +

p=i

216. From these equations it immediately follows that no
two distinct irreducible representations have the same set of

group-characteristics.

For if Xpi = Xpjt for each P'
then Xp1 — x/, for eac^ P,

and i fhXrW = 2WXp' = N-i i

in contradiction of the equation

1

In particular, if the characteristics of I\ are all real, I\ is

equivalent to I\, or i'=i. Moreover the sets of group-charac
teristics are linearly independent, in the sense that their
determinant \xp\ not zero. For suppose that a relation

k=l

holds for each p. Then

pYhpXp*kXAkXp*=o,

and in virtue of the above relations

AkN= 0
,

so that each Ak is zero.

Suppose now that in any representation of G as a group
of linear substitutions the characteristics of the r conjugate
sets are fa (« = 1

,

2
,

r). When completely reduced let
the representation be equivalent to Sc.T<. Then for each s

f, = tcixi-
Since the determinant | | is not zero, these equations deter
mine the c's uniquely. Hence:—
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Theorem I. The necessary and sufficient condition that two

representations of a group of finite order, as a group of linear
substitutions, should be equivalent is that the characteristic of
each conjugate set shall be the same in the two.

Further, the actual solution of the last equations is

2 h,^*

217. With the aid of this theorem, we can now complete the
discussion of the equivalence of two representations of a group as a
permutation-group when transformations by linear substitutions are
admitted, ie. when two representations are regarded as equivalent
if a linear substitution can be found which will transform one into
the other.

If g is any representation of & as a permutation-group, the
characteristic of any operation >

S
'

of G in g is the mark (§ 180) of the
cyclical sub-group {S\ in g

. In fact if (a^ an) i
s any cycle of the

permutation of g which corresponds to <
S
',

the characteristic, so far
as these n symbols are concerned, is zero.

Unless G is a cyclical group, the s distinct sets of conjugate sub
groups in G are not all cyclical. Denote the number of distinct
conjugate sets of cyclical sub-groups by p ; and (departing slightly
from the notation of § 180) let

Gii G3, , Gp

be representative sub-groups, one from each set. Then the necessary
and sufficient conditions, when transformation by linear substitu
tions is admitted, that the two representations

8 8

2,a(g( and 26(0,

l l

should be equivalent is that

Sa<ntt* = Ibitnt* (t= 1
,

2
,

, p
).

For if these equations are satisfied every operation of G will have
the same characteristic in the two representations.

Writing ai — bi = ci,

the system of equations

a «,«,«= o (i=i, 2, ,P)
i=l

must have s — p linearly independent systems of solutions in integers,
since the determinant |jn('| (i
,

t— 1
, 2
,

, p
) is certainly different
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from zero. Moreover for such a system of equations there is a set
of a— p solutions*,

Ciw, c2<n), , c.W (n = l, 2, s-p),
in terms of which the general solution can be expressed in the form

c4= 2*.c4W.
n

where the k's are arbitrary positive or negative integers.

Every possible equivalence will therefore arise from the s — p
fundamental equivalences

ictWg( = 0 (n=l, 2, ,s-p).

Of the c's some are positive and some are negative ; and the
equation expresses the fact that the representation given by the
terms with positive coefficients is equivalent to (i.e. can be trans
formed into) the representation given by the terms with negative
coefficients.

It is clear that though such an equivalence as
gt = gi

may occur, there will not necessarily be equivalences of this form.

Ex. 1. For the alternating group of four symbols (§ 185), prove
that the fundamental equivalences are

gs + gt = g-2 + gi, 0i + 204 = 3y„

and verify them directly by transformation.

Ex. 2. The simple group of order 168 contains two distinct
conjugate sets of sub-groups of order 24, in respect of each of which
it may be represented as a transitive permutation-group of degree 7.
Shew that in the representation (§ 166) in which the group is
generated by

(xtXiXJXlXfBjBi'), (x^B2X4) (pCjCjB)), (x^fCiXift^ (xtXs),

the two permutations

(awv). (xfrxfc^) (avc2)
generate a sub-group of order 24 which does not leave one symbol
unchanged ; and that the given representation is transformed into
the representation in respect of this sub-group by the linear sub
stitution

Xi = X2 + Xs + X4 , X2 = X2 + X6 + X6 , X2 — X4 + Xt + Xii

X^Xi+Xi+X?, xl = Xl + XS + X,, Xt' = + Xt + X2,

Xy^^ + X^+X,.

* Elliott, Algebra of Quantic2, p. 192.

B. 19
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218. In the representation of G as a regular permutation-
group, the characteristic of every operation except E is zero.
The completely reduced form of this group is (Theorem III,
Chap. XIV)

t=i

Hence for each p except 1,

t=i

while, as has already been seen,

If now the equation of § 213,

= Xk 2 CpgAX'"'
*=i

be summed with respect to k, i.e. with respect to the distinct

representations,

k=r *=r k=r

hPhq 2 XvXk = 2 Cp^h, 2 XxkX*k
k=l s=l k=l

= CpqiN

from the above equations.

Now Cpqi is hp or zero according as q is or is not p'.

Hence S^/ = 0,

The latter equation may obviously also be written

yXvkXPk' = Nlhp.
k = l

For convenience of reference the various relations among
the group-characteristics obtained in the preceding paragraphs
are collected here. They are clearly not all independent" of
each other, but they form a complete system of relations all
of which will be required in the sequel,
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KKXiX* = X* 2 Cpq.h.X.k. (p,q,k = l,2,..., r),
1=1

XvXJ = 2 gvXv'' (P, ». i = 1, 2, .... r),

**\x*Xp/=h,
p=i

*=l

219. The coefficients </gt that occur in the expressions for
the composition of the irreducible representations, satisfy
.certain relations analogous to those connecting the coeffi
cients djk.

From their definition it follows that

g0k = gjit-

As has already been seen, by equating the characteristics of

TiTj to those of It, we have

XpXi? = 1 gijkXpk, (p = 1, 2, . . . , r)
.

Since the determinant | xPk | i
s not zero, these equations deter

mine the g's in terms of the characteristics, giving

p

Similarly N gikj = 2 hpXpiXpkXv} '.

p

»nd Ngtf* = 2 KXp'xJ'Xp"-
p

Now the sums on the right-hand sides of the two latter

equations are the conjugate imaginaries of the sum on the

right-hand side of the first ; and the sums, all being real, are

therefore all equal. Hence

gijk = gskj = gjki = gifu = gaif = gfl/t-

19—2
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Further, since the multiplication involved in the composi
tion of r< and Tj is associative,

T< . rt = s gijk rk r, = s g^gut r< ,
*. k,t

and Ti . Tj T, = 2 gjsk Tt Tk = 2 gMta T, .
* k,t

Hence Xg^gku is unaltered by any permutation of the symbols
k

i j, s.
That the numbers are comparatively small follows from

their definition. Moreover a simple expression holds for the
sum of their squares. Thus

Ngijk = 2 hfxfxJxf
v

Q

so that N2g\jk = 2 hPhqXpix/XpiX/Xp*X9k-
p, q

Now 2 XpW = °, P + ?.
J"

— iV/Ai,, p = g.
N'

Hence tf' 2 ^ = 2 j
i, j, k P ""P

or S^^ifSp
4,j, k P "V

220. The representations of a group in a single symbol clearly
combine among themselves by composition. Denote them by
I\(i=l, 2, , t) where t is the ratio of the order of the group
G to the order of its derived group H. Then the system of
relations

r,r,=rt
between these t representations is easily seen to be in effect the
multiplication table of an Abelian group simply isomorphic with

G/H.
If r is any other representation of G then r,r(i= 1, 2, , *)

are clearly irreducible representations of G. Moreover if K is the
self-conjugate sub-group of G, whose operations correspond to the
identical substitution in r4, I\r and T are distinct representations
unless the characteristic in T of each operation of G not contained
in K is zero. In fact it is obviously only when this condition is
satisfied that every operation of G has the same characteristic in
r and r,r.



221] IRREDUCIBLE REPRESENTATIONS 293

When this condition is satisfied, then

r(r = r,
and therefore, since

r, occurs just once in the reduced form of IT', where r' is the
inverse representation of r. Now if

r,r = r,
then r,T = T.
Hence each of the representations in a single symbol

IY(«=1,2, )

occurs once in the reduced form of IT'. If the order of G/K is m,
the number of these representations which are distinct is m.

On the other hand if rt and T, are two representations of G in
more than one symbol, and if 1 4= k'

,
then in the reduced form of

rtr, there is no representation in a single symbol. For if T( (i $ t)

occurred, then Tt and I\IY would be equivalent representations, and
as has been seen above this can only be the case if l = k'.

221. If S is an operation of order ra, the characteristic of

S in any irreducible representation is the sum of a number of

powers of to, a primitive with root of unity, say

Xs=°>"' + w"1 + +

The characteristic of <S* in the same representation is

= eo*"1' + «u'ia« + + to***.

If S and S** are conjugate operations, these characteristics must
be the same, so that in each irreducible representation %s i

s

unchanged on writing (o* for a>.

Conversely, if this last condition is satisfied, S and S* must
be conjugate operations. For suppose if possible that S and
belong to the ith and jth conjugate sets respectively, where

j =(= i and therefore j' =(= i'. For two such sets

k

But on the supposition made %f and Xfk are conjugate
imaginaries, and therefore the supposition that j =J= i leads to a

contradiction. In particular if S is not conjugate to any of
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its powers there must be representations in which xs changed
when any other primitive mth root of unity is written for to.

222. The case of a group of odd order presents peculiarities
that should be noticed. In such a group no operation can be
con/ugate to its inverse. For if R^SR = flf-1, then R-2SR' = S.
But, R being an operation of odd order, R must be permutable
with S if i2' is ; so that the assumption made is not true.
Hence some of the characteristics of every conjugate set must

be imaginary. For the same reason r, the number of conjugate
sets, is necessarily odd, for E is the only set which is not distinct
from its inverse. Moreover, of such a group there can be no
irreducible representation in which the characteristics are all
real. In fact, if the characteristic xs of S is real, then %Xs»
extended to the fi powers of S which are of the same order as
S, which is a real integer (positive or negative) in any case, is
an even integer because

Xs = Xtr1-

Hence if the characteristic of every operation were real, the
equation

2xs = 0
s

would be xe + an even number = 0, which is impossible, since

Xb is necessarily odd (§ 225 below). Hence :—

Theorem II. No irreducible representation of a group of
odd order, other than the identical representation, is equivalent to
its conjugate.

Corollary. No group of linear substitutions of odd order
with real coefficients is irreducible.

This theorem involves a remarkable relation between the

(odd) order N of a group and the number r of its conjugate sets.
It has been seen (§ 218) that

i=i

For a group of odd order r is odd, say 2p + 1, and each irre
ducible representation, except the identical one, is distinct from
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its conjugate, while the number of symbols in any irreducible

representation is odd. Hence the above equation takes the

form

and therefore

r+ V8al(a,+ 1),

N=r (mod. 16).

223. The actual determination of the group-characteristics
involves only algebraical processes when the numbers c^t are
known. Moreover these numbers can always be calculated from
the multiplication table of the group.

Multiplying each side of the equation (§ 213)

h*X*k

X> X* »=i Xi

by an arbitrary coefficient -4,-, and summing with respect to i,
we have

^h-vf {'Vr . h,x,k

Xi i.«=i Xi

where 2 ' ■
«=i Xi

Eliminating the r quantities ^~ from the r equations

that arise by putting j= 1,2 r, there results

2,AiCin — f, 24,-Ci12 ^iA{Ciir
i i i

(J = | j t t

2i4iCin , Z^iCfrg i 2-AjCin.— £
i i i

or f(^,AltA ,Ar) = 0,

where the left-hand side is an integral homogeneous function
of the rth degree of Au A„ , A r with rational integral
coefficients, the coefficient of f being unity. The r roots of
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this equation are the r values of

i x"
for k=l,2, ,r; and the homogeneous function / must
therefore fall into r homogeneous linear factors. The coeffi
cients in these linear factors are rational functions of roots
of unity, since is the sum of ^, m4th roots of unity, where

nii is the order of an operation of the ith set. Hence if m
is the least common multiple of the orders of the operations of
the group, the linear factors of f are rationally determinable in
terms of the with roots of unity.

If now f — 2,a.iAi
is one of the linear factors, then the equations

^ = <*i (t-2, ,r)
Xi

determine the ratios of the corresponding set of group-cha
racteristics. Using these values in the equation

ZhiXKi = ir,

we have xJi2,?r^ = N,

determining X,, which is necessarilya positive integev,and thereby
completing the determination of the set of characteristics.

224. In illustration of this process a simple example will be
given, viz. the non-cyclical group of order 10. This is defined by

S>=E, T2=E, TST=S-l.
The conjugate sets are

E; S, S-1; /S2, S-0; T, TS, TS2, TS2, TS4.
Representing these in the order written by

(7ii (7t, (7St Ct,

the multiplication table of the conjugate sets is at once found to be

C7 = 2(7, + C2

C-fii = (7s + Ct ,

C,, (74 - 2 C 4!

Ct = 2(7, + C2 ,

CtCt= 2<74,

042 =5(71 + 5(72+ 5(7,
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The equation for ( is therefore
A,-( A. A, At 1= 0.

2A, A, + A,-i Ai + A, 2At
2A, A2 + As A1 + As-( 2A4

5A4 Mt 5At A1 + 2A2+2A2-(

By adding the first three rows and then adding or subtracting
the last, two of the factors are obviously

(-Ai-2A2-2A,±5At.

By combining the first three rows the other two factors are
found to be

t-Al + l(A2 + At)±^(A,-At).2

The first two factors give

!X,= 2, ?*=2, ^ = ±5
Xi Xi Xi

leading to Xi=1, Xs=1, Xi = 1, X4=15
and Xi = li X2=1. Xs = 1, X4 = -l-
The other two factors give

2Xt—-l±J5 2X2
- 1 + J5 5x,

Xi
-

2
'
Xl
-

2
'
Xl
-U

leading to
-l + N/5 -1-J5 .

Xi = 2, Xt = 2"' Xs= 2-' Xl = 0;

and Xi = 2, X2 = X2
=
2V . X4

= 0-

225. If in the equation for f (§ 223) arbitrary rational
integral values are given to the A's, £ will satisfy an equation
with rational integral coefficients in which the coefficient of the

leading term is unity. In other words f is an algebraic integer.
In particular this is the case if all the A's except one are zero
and that one unity. Hence, for each i and k, Kx^lx^ ^s an

algebraic integer.

The relation (§ 218)
r

1

gives, when p' is written for q, and the relation (§ 43)

Cpqshs — Cprfq' Jl
q
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is taken account of,
r

1

Summing this equation with respect to p,

p, 9— r

p p.*^l

P, i-r
or ^V = Xi* S <VpX«*>

p,*=i

and therefore i\f is divisible by xf- Hence :—

Theorem III. The number of variables in terms of which
a group offinite order can be represented as an irreducible group
of linear substitutions is a factor of the order of the group.

226. Let Sail1* or T be any representation of 0 in which
the characteristics are typ(p = l,2 ,r). If the result of
compounding V with itself n times and completely reducing
the compounded group be denoted by the formula

r» = 27n<rf,

then {+py = S7niX/, (p = 1, 2, , r),
i

from which we obtain

p

and Nlafyni = 2 hpX/ (^P)n,
n n,p

where x is arbitrary. If | x | is small enough, the r series on the
right are certainly convergent when extended to infinity, and
their sum is

v hpX/ .pl- xyjrp '
so that, if yni = 0, for each n, then

Suppose now that 0 is simply isomorphic with T. Then
the characteristic i/r, of 2? is different from the characteristic
of every other operation of 0, and therefore the preceding
identity cannot hold. In this case, for each i, it is possible
to find n so that y„i^0. Hence:—
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Theorem IV. If T is a representation of G as a group of
linear substitutions, and if G is simply isomorphic with T, then,
when the process of compounding T with itself is carried far
enough, every irreducible representation of G will arise.

Corollary. If s (< r) of the irreducible representations of
G, viz. r,,r„ , r„ combine among themselves by com
position, then G has a self-conjugate sub-group H, each of
whose operations is represented by the identical substitution in
these s representations of G and in no others.

<

If the representation StiiT* were such that G was simply
isomorphic with it

,

every irreducible representation would arise

by compounding this representation with itself and therefore

by compounding T,, T„ T
,

among themselves. Hence
there are operations of G other than E which correspond to

the identical substitution in Sc^Ti, whatever positive integers

i

Oi may be. Let H be the self-conjugate sub-group of G con
stituted of these operations. Then to the operations of H
there correspond the identical substitution in each of the

representations Tlt T„ F,. Suppose now, if possible, that

T
|
(t > s) is another representation of G to the identical substi

tution of which the operations of H correspond. Since T
{ does

8

not occur when SOiT< is compounded continually with itself,

i

SAXP? 0
,

where i/rp is the characteristic of the pth conjugate set in

iailV

i

Now for each conjugate set in H, and for these only,
tp = i,-lt

and for each conjugate set in H,

Xp' = Xf-
Hence the left-hand side of the last identity contains the term
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where ng is the order of H, while all the other terms have
denominators different from this one. The identity therefore
cannot hold; in other words the supposed existence of the

representation T, leads to a contradiction. The proof of the

corollary is thus completed. Its converse is obviously true.

The expression

N p 1 - xyjrp
is a generating function for determining the number of times

that the irreducible representation T; occurs when the repre
sentation in which yfrp(p= 1, 2, , r) are the characteristics
is compounded continually with itself.

227. If a set of variables

undergo a group of linear substitutions which is a representa
tion of G, their homogeneous products of n dimensions also

undergo a group of linear substitutions which is a repre
sentation of G, and the question arises as to what the reduced

form of this group is. Herr Molien* has obtained a series of

generating functions for determining this reduction. If

are the multipliers of an operation of the pth conjugate set in
the given group of linear substitutions, then the sum of the

homogeneous products of the <u's of n dimensions, i.e. the co
efficient of xn in the expansion of

1

(1 - xto^ ) (1 - xu,® ) (1 - arwm*» ) '
is the characteristic of the pth conjugate set in the group of
linear substitutions on the homogeneous products of the x's
of n dimensions.

Consider now the expression

N (1 -*»,«») (1

* "Ueber die Invarianten der linearen Substitutionegruppen," Berliner
Sitiungsberichte (1898), pp. 1152—1156.
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The coefficient of xn in this is

where yfrp is the characteristic of the pth conjugate set in the

group on the homogeneous products of the x's of n dimensions.
Hence, § 216, this coefficient is the number of times 1^ occurs in
the reduced form of the group on the homogeneous products of
the x's of n dimensions. The expression given is therefore
the required generating function. In particular, the coefficient
of x" in

1- y hp

N * (1 -*»,«) (1

is the number of linearly independent functions of the x's of
the nth degree which are invariant for all the substitutions of
the group.

As a simple illustration of the last result we take the group of
order 10 generated by S and T, viz. •

x' = wx, y = to-ly ; <o8= 1

*'= y, y' =

already considered in § 224. Here

I 2 K
N%(l-x*l») (1-W)
JL_/ 1_ 2 2 5 \-
10 \(1 -xf

+

(1
-
xw) (1 -xo,-1)

+

(1 -axo'Xl-a*>-2)
+
1 -a?)

= 1 + x2 + xi + x2 + x' + x7 + xs + x9 + 2a^° +

The reader will have no difficulty in verifying directly the results
indicated by this series. (Compare § 266.)

228. If r,, r IV (V < r) are r' irreducible represen
tations of G, which combine among themselves by composition,
and if if is the self-conjugate sub-group of G, each of whose
operations correspond to the identical substitution in each of
the / representations, then I\, T2, , TV are obviously irre
ducible representations of G/H.

Let H, S2H, 8mH be the sets into which the opera
tions of G fall in respect of H, and

the corresponding operations of G/H.
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In I\ (i < r') there corresponds the same substitution to each
of the operations of the set SPH of G, and this substitution
corresponds to the operation sp of G/H. Now, because I\ and

T
j

are distinct representations of G
,

s

the summation extending to all the operations of G.

But if T is any operation of H,

Xia=XiST, and yfs=ylBT
= X'i = XJ"i-

Hence, summing first for the operations of the set SPH, and
then for the sets,

*

where nH is the order of H. The representations and r,,
considered as Representations of G/H, are therefore distinct.
Now every irreducible representation of G/H must obviously
occur among the irreducible representations of G; and

Tn T2. , rv
are the only representations of G in which each operation of H
corresponds to the identical substitution. Hence

r\, i\, i tv
are the distinct irreducible representations of G/H; and the
number of conjugate sets in this group is r'.

229. We shall now proceed to consider further the actual
reduction of the representation of G as a regular permutation-

group. It has been seen how the r sets of group-characteristics

ttp. X? .Xrp,

(p=l,2, ,r)

may be determined ; and for the present purpose they will be
regarded as known.

Denoting as before the sum of the operations in the t'th

conjugate set by C{, form the r expressions

Kp Ji'tfCi = 2 xVifif, (j) = 1, 2, r)

1=1 s
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where the first sum is extended to the r conjugate sets, and the
second to the N operations of 0. Then

»'=1 i,a = l

Now 2cl>x/ = 2c,v,3V (§43)
i i "»

=ihih<*i<f (§218)

_w ,p

Hence = 2 X/C, =

4
g
£

In particular

i

= 0, unless q = p.

It follows that the N expressions
KpSu KpS% ,KpSjf

are certainly not linearly independent.

Suppose that just m of these expressions are linearly inde
pendent, and let them be

KPSx, 2
, ,ro).

If Su is any operation of G
,

each of the m expressions

KPSXSU (x = 1
, 2 ,m)

can be represented as linear functions of

jrpSx, («-l,2 ,m).
j-m

If KpSiSu = S a^tf^

and KpSiSv = S aijvKpSj

(i = 1,2 m),
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3 =m

then KpSiSuSe= 2 a^KpSjS^
i=i
j=m k-m
= 2 2 CtijuOjinKpSic.
j=\ 4=1

Hence, on post-multiplication of the m expressions

KPSx 2, ,m)

by the operations of G, a group of linear substitutions on m

symbols arises which gives a representation of G. The same
is obviously true if pre-multiplication is used instead of post-
multiplicatiou. Moreover, since in simplifying the expression
SvKpSiSu, the same expression necessarily results whether we
first form KpSiSu and then Sv.KpSiSu, or first SvKpSi and
then SvKpSi.Sn, every linear substitution that arises from a
post-multiplication is permutable with every linear substitution
that arises from a pre-multiplication.

Further, since
j=m

KpSiSu - 2 (XijuKpSj
j=i

is
,

when the multiplication-table of the group is taken account

of, an identical relation, the coefficients in the linear substitu

tions are rational functions of the group-characteristics of the

particular set dealt with.

230. We next consider how this representation of G as a

group of linear substitutions on m symbols may be expressed in

terms of the irreducible representations. For this purpose it is

necessary to know its set of characteristics.

In any representation the characteristic of Ct is hi times
the characteristic of any operation of the ith set.

Now it has been seen that
luvJf

TT ri — "'A,' XT

p -xf *'
and therefore for each x

KpStCi = --~ KPSx.

Hence the characteristic of any operation of the ith set is

mxflx?' From this it follows (§ 216) that the group of linear
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substitutions in question is equivalent to (m/xf) rp, and there
fore that m is necessarily a multiple of j^p. So also the group
of linear substitutions that arises by pre-multiplication on the
same set of the symbols, is equivalent to {m/xip) T'p. Since

every substitution of the one group is permutable with every
substitution of the other, m/xip cannot be less than j(ip- In
fact if we suppose the first group completely reduced, and the
symbols of each irreducible component

#11, #21 #tl ,

(«=*).

(s = m/Xi),

#ltl #2t, , #(i,

chosen so that each set undergoes the same linear substitution

corresponding to each operation of the group, then the second

group must transform among themselves the symbols in each
column of the table. Hence the number of symbols in each
column is equal to or a multiple of Xip- The number m is
therefore equal to or a multiple of (x^)2. From each of the
r expressions Kp (p = 1, 2, r) a corresponding set of symbols
arises. Those arising from the different ICs are necessarily
independent, since the representations they give correspond to
distinct irreducible components.

Now X(Xlpy = N,
v

and the number of linearly independent symbols in all the sets

cannot exceed iV, the original number of symbols. Hence

finally nt = (xfY-
Theorem V. If Xi,X» ...,X' are ine g' 0WP characteristics
for the irreducible representation T of a group G, then

i S

takes just (xa)' linearly independent values on post-multiplication
by the operations of G. The (xi)2 linearly independent functions
of the S's that so arise are transformed among themselves by
post-multiplication, and give the component denoted by ^, T in
the reduction of the regular permutation-group which is simply
isomorphic with G. The coefficients in the group of linear sub

b. 20
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stitutions thus formed are rational functions of the characteristics

of the set chosen. Every substitution of this group of linear
substitutions is permutable with every substitution of the conju
gate group on the same (xif functions that arises by using
pre-multiplication in the place of post-multiplication.

231. Let tk\, <e„..., xm (m = x12) be the j^' symbols which
are transformed among themselves by the two groups, arising
by pre- and post-multiplication, of the preceding theorem ; and

denote these groups by (?
,

and G2. Each of them is equivalent
to the representation of G. Suppose that

t'=m

£ 1 = m AiXi,

i = l

where the A's are arbitrary coefficients, is changed into
f 2 , f s , . . . i £n

b
y the linear substitutions of G2 that correspond to a sub-group

H of order n contained in G. Then 2 is the most general

linear invariant for H in the representation Gt of G. If in T

there are just a linear invariants for H, Zgj must coutain just o%
independent linear functions of the x's. In other words 2£;-
contains just a^, arbitrary coefficients ; and the linear
functions of the x's which multiply these arbitrary coefficients
are the a%i independent linear invariants ofH in (?s. Moreover
the coefficients of the sc's in these linear functions are rational
functions of the characteristics. Since every substitution of G

i

is permutable with every substitution of G2, these axi linear
functions are transformed among themselves by every sub

stitution of (?,, and the coefficients in the linear substitutions
that so arise are rational in the characteristics. Hence aT can
be expressed in a form in which the coefficients are rational in
the characteristics.

The group is therefore in general further reducible
without introducing any irrational quantity beyond the
characteristics themselves. The only exception* is when the

* The author has shewn that this exceptional case can only occur when the
Sylow sub-groups of G of odd order are cyclical, while the Sylow sub-group of
even order is either cyclical or of the type given on p. 132. Cf. Messenger o
f

Mathematics, Vol. xxxv. (1905), pp. 51—55.
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number denoted by a is zero for every sub-group of G except
E. In particular, whenever G contains a sub-group. i/ which
has only one linear invariant in T, this process completes the
reduction of X, T ; and T itself can be expressed in a form
in which the coefficients are rational in the characteristics.

232. When for a given group G, i.e. a group whose multiplication
table is known, the characteristics have been calculated, the process
that has just been described for constructing the representation
Xi? and partly or wholly reducing it is undoubtedly a lengthy one.
An alternative process is to start from some other representation GH
of the group as a transitive permutatiou-group in the place of GE.
If in the irreducible representation T, the sub-group H has just

a linear invariants, then (Theorem II, Chapter XIV) V occurs just a
times in the completely reduced form of GH. In particular, if a is
unity, there must be Xi linear functions of the symbols operated on
by GH, which are transformed among themselves by the permutations
of GH, the numerical coefficients which occur being rational functions
of the characteristics of V.

In illustration of this process we will now actually set up one
of the irreducible representations of the alternating group of degree
5 ; assuming for that purpose a knowledge of the characteristics of
the group. These, as we have seen, may be calculated from the
multiplication table. They are given in Ex. 3, p. 319.

The alternating group G of degree 5 admits an irreducible repre
sentation in three symbols for which the characteristics of identity,
operations of orders 2, 3 and two sets of operations of order 5 are

respectively 3, — 1, 0 and i (1 + n/5). If u is a primitive fifth root
of unity, the multipliers of an operation of order 5 are therefore 1, w,
<i>-1; and a cyclical sub-group of order 5 has a single linear invariant.
Hence when the representation of G as a transitive permutation-
group of degree 12 is completely reduced, the representation in
question will occur just once. If St(i = 1, 2, , 12) are a set of
12 conjugate operations of order 5 and U any operation of the group,
the permutations of the transitive group of degree 1 2 are given by

Hence there must be three linear functions

6 9 (i = l, 2, 3)
of the S's such that

u-%u, u-w, u-%u
are expressible linearly in terms of (lt £2 for every operation U

20—2



308 EXAMPLES [232

of the group. Moreover it must be possible to choose these functions
so that when U is an assigned operation of order 5,

u-%u=tlt u-%u=*t» U-%U=m-%.
The operations of the group are most readily specified by the

permutations of five symbols. Write

S=(abcde), T=(ab)(cd),

TlST = , S-^ S = St, S-^S = S„

Then since an operation of order 5 and its inverse are conjugate
operations, S, Slt St, St, S4, S6 and their inverses form the set of
conjugate operations. Now S permutes S2, S2, St, St cyclically.
Hence the only linear function of the S's which is changed into
itself on transformation by ,S

'

is

f = S + oS-1 + P (S, + S2 + S2 + St + Ss)
+ p (sr1 + 52-l +v + + -st1)-

Similarly the only linear functions which are changed respectively
in <oand w-1 times themselves on transformation b

y
<
b
'

are

& = S
l
+ aT'S, + to-26'2 + <o-'S4 + ftr4,?,

+ y (Sf1 + <o-1^,-1 + <o-V,-1 + »-2St-1 + »-43f1),

and £
2 = S
i

+ u>S2 + u?S2 + u,sSi + io4Ss

+ s (Sr1 + aSt-1 + oAs,-1 + jsr1 + -v?,-1).
Now by using the permutations it is immediately verified that

TST=Slt r-SiZ^S, TStT = S6,

TS,T = Sfi, TSJ' --- Sf1, TSST = St ;

and it is certainly possible to determine a, P
,

P', y, 8 so that

where the coeflBcients are numerical constants. Moreover, since '

S and T generate the group, when a, P, P', y, 8 are so determined,
U-1(iU, U-^U, U-1^U will be linearly expressible in terms of
£i, f2, fs for every operation U of the group. The actual calculation
presents no difficulty. Thus the comparison of the coefficients of

S
, Sl, <Si, Ss on either side of
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gives V = 1,
0 = fi + fl' + v,

to-1 = P + fi'ta + via'1,

id = /J + /i'w-1 + via.

These, on solution, give

p= _ ._! = ±t
(1) + CO-1 — to* — tt)"J «

/ 5

H'j5 = m' + or2,

V'Jb = (I) + to"1.

The complete solution, by using all three relations, gives in
addition to the above

-=r=8=-i, /r~-jg,

X" = 1, = to + v"s/5 = 0>2+ CD-2.

The substitution corresponding to 7
* may be slightly simplified

2 2

by writing fa and £
, in the place of —r=£a and —p a change which

leaves the substitution corresponding to S unaltered. When this

is done the alternating group of degree 5 is represented as an
irreducible group of linear substitution in three variables, which is

generated by

(i = £i i £ a' = . £
s' = o>-1£» ;

and n/5£,'= £
i + £
2 + £»,

V5£a' = 2£, + («.' + a,"3) ft + (» + «>-1) £„

«/5£/ = 26 + (« + to"1) f
,
+ (o.a + £,;

these being the substitutions that correspond to {abode) and (ab) (cd)
respectively.

In the form of the group thus obtained the coefficients are not
rational functions of the characteristics ; but it is certainly possible
to transform the group so that this condition shall be satisfied. If

£
1 + (3 + £
» = vi 1 £
1 + w£n + »-I£» = v*> £
1 + ""£» + «*~*£» = %>

it will be found that, in the transformed group with the 17's as
variables, the coefficients of the substitutions are rational functions

of v/5.

As a further illustration of methods that may be used for
setting up an irreducible representation (whose characteristics are
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known) of a given group, we will consider the simple group of
order 168 denned as a permutation-group of degree 7 in § 166. This
group has an irreducible representation in which the characteristics
of identity, operations of orders 2, 3, 4 and two sets of operations
of order 7 are respectively 3, - 1, 0, 1 and £ (- 1 + -J— 7

). If a is

a seventh root of unity the multipliers of an operation of order 7

are a, a2, a4; and the substitution corresponding to the operation
may be taken to be

= f,
'

= «'&.

The multipliers of an operation of order 2 are 1,-1,-1. Now
(Example, p

.

252) any such substitution may be written in the
form

£
i' = - & + a (% + + n(2),

= + 6 (Jfi + rn& + n(i),

tt = - 6 + « (% + +

+ 6w + c« = 2.
Moreover, by taking rra£2, n£s as new variables, the former

substitution is unaltered and the latter takes the simpler form

&
' = -& + <i(& + &+*.,),

£
/ = -& + 6(& + & + a + 6 + c = 2
.

&
'= -fi + e (f, + & + £,).

Hence it must be possible to choose a, b, c so that these two
substitutions correspond to any operation of order 7 and any
operation of order 2 of the group.

Now with the group denned as in § 166, (1673524) and (26) (37)
are a pair of permutations which generate the group, and they are
such that

(1673524) (26) (37) = (124) (356).

Hence if the two substitutions correspond to (1673524) and
(26) (37) respectively, they generate the group, and their product

is a substitution of order 3 with zero characteristic. In order that
the latter condition may be satisfied, it is at once found that

aa + ba? + ca4 = a + a2 + a4,

and a (a8 + a2) + b (os + at) + c (a" + a") = a
'

+ a5 + oi

while a + b + c = 2.

These equations determine a, b, c uniquely, giving

, a" -a2 . , as-a4 , ot-a
a - 1 = -t=, 6 - 1 = ~p=- , c - 1 = -== ,7-7 V -7 V-7
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where a + as + a4 - a8 - a' — a> = ,J - 7.
If we put

a;, = & (at - a"), a;,= £, (a4 -a"), a;2= £, (a - a8),
this substitution takes a more symmetric expression while the
previous one is unaltered. Hence an irreducible representation of
the simple group of order 168 in 3 variables is generated by

= ax, , aV = a2a;2, a^' = a4ar2;

and n/ -7a;1'=(a5-a2)x1 + (a"-a)a;i+ (o2-a4)x,,

s/ - 7a;2' = (a<'-a) + (a2-a4)a^+(a'-o2)a^,

V- 7 = (a' - a4) a\ + (a6 - a") Xi + (a" - a) ai, ;
these two substitutions corresponding to the permutations (1673524)
and (26) (37). It will be found that if

x1 + xt+iBi = y1, axi + o2a;2 + a4a^ = y2, a'x, + a4xt + <ur-,= y2,

the coefficients in the substitutions of the transformed group with

Vi, Vn Vi as variables are rational functions of J— 7.

233. The general question as to the nature of the irrational

quantities in terms of which the coefficients of any group of
linear substitutions may be expressed has not yet received a

complete answer. In every case that has been actually
examined the coefficients may be expressed rationally in

terms of the mth roots of unity, where m is the least
common multiple of the orders of the operations of the

group. Herr Schur* has shewn, among other results, that
this is certainly the case for soluble groups; and the author t
has shewn that, unless there is a number a, greater than

unity, such that each multiplier of each operation of the group
occurs a or a multiple of a times, it is the case.

234. We have seen in § 223 that

u=i V i=i Xi

is a rational homogeneous function of f, Alt At, Ar with
rational integral coefficients. Let m be the least common
* I. Schur, " Arithmetische Untersuchnngen iiber endliohe Gruppen linear
SubstitatioDen," Berliner SiUungsberichte, 1906, p. 181.
t W. Burnside, " On the arithmetical nature of the coefficients in a group

of linear substitutions of finite order," Proc. L. M. 8., Series 2, Vol. iv.
(1905), p. 8.
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multiple of the orders of the operations of the group, and let
eo be an assigned primitive with root of unity. Then ^ is

,

for each value of k and i, the sum of powers of qj ; and each

factor in the above product is a linear homogeneous function
of f, Au Ait ...,Ar with coefficients which are rational functions
of a). Now the primitive mth roots of unity satisfy an irre
ducible equation with rational coefficients. Hence if in each
of the factors of the product a is replaced by a>", where /i is

relatively prime to m, the factors will be permuted among
themselves. From this it follows that if

X, = + ta"2* + • • • + o>a™, (8 = 1
,

2
,

r)

are the characteristics of the r conjugate sets in an irreducible
representation of a group, so also are

X.w = ^1' + ^!, + - + ^"M. (*=1.2, ...,r),
where p is any number relatively prime to m.

Moreover if T and Tw denote the irreducible representations
to which these two sets of group-characteristics belong, the
result of writing oV* for co in each characteristic is to give a

permutation of the r sets of characteristics (or of the r irre
ducible representations) which is denoted by the symbol

(Ti,Tt rr \

rWi> .... rr(M)/
If Su 8t, Sh

are the distinct operations of any conjugate set C
,

and if fi still
denote a number which is relatively prime to the least common

multiple of the orders of the operations, then

8f, Sf 8*
are distinct and constitute a conjugate set, which may be de
noted by C^K If then every operation of the group be replaced
by its ^tth power, a permutation of the conjugate sets arises
which is denoted by the symbol

/Ci, C2, C
r \

\Clt ftw tW"
Consider now the r symbols

Kv = Zxf'Ci = SxV.S, (p = 1, 2 r)i 8
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that have already been used in § 229. For any permutation of
the r sets of group-characteristics they are merely permuted
among themselves. In particular a definite permutation of the
K's will arise from the permutation of the sets of characteristics
denoted by

fTi,Tt, ...,rr \
riM, ..., *r(rt/

which is given on replacing <u by a" in each characteristic. On

the other hand Kp remains unchanged, for each p, when is

written for to in each characteristic and at the same time S" is
written in the place of S for each operation. In other words
each K remains unaltered when the sets of characteristics
undergo the permutation denoted by

/r„ r„ ...,rr \
VTii rw), ..., rVw/

and the conjugate sets undergo simultaneously the permutation
denoted by

lC1, Gt, Gr \
\O1, <V» Or")'

The K's are therefore permuted among themselves when the
sets of characteristics are unpermitted, while the conjugate sets

undergo the permutation denoted by the last symbol ; and this

permutation is the inverse of that which arises when the con

jugate sets are unpermuted, and the sets of characteristics

undergo the permutation

/r^r„ ...,rr \

The group of permutations of the (7's which arises when for

}i. is taken each of the <
f> (m) numbers less than and prime to m

is an Abelian group, since

\G^J \G^ J \Cw) \CM ) VO-7
It is also intransitive since Ci is necessarily unpermuted. If

G
i

and C
j

belong to the same transitive set in this permutation-

group, the cyclical sub-group generated by any operation be

longing to C
i must be conjugate to the cyclical sub-group

generated by any operation belonging to Cj; and conversely,
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unless this condition is satisfied (7
i

and C
j

do not belong to the
same transitive set. Hence the number of transitive sets in

which the C's are permuted is equal to p, the number of distinct

conjugate sets of cyclical sub-groups in the group.

Now the K's are linearly independent functions of the C's,
equal to them in number, which are permuted among them
selves when the C's undergo the permutation-group considered.
The group in the K's and the group in the C's must therefore
have the same number of linear invariants; and the number of

transitive sets of the group in the K's is therefore p
.

But this group also arises from the permutations of the

r sets of characteristics given on replacing to b
y »" in each

characteristic, the conjugate sets being unpermuted.

Hence finally the permutation-group of the r sets of charac
teristics (or of the corresponding r irreducible representations)
consisting of the permutations

/r1,r„ ...,rr \

(p
.

and m relatively prime)

permutes the sets (or the irreducible representations) in p

transitive sets.

The irreducible representations that belong to the same

transitive set may be called a family of representations.

235. If Xi(i=l, 2, r) are the characteristics for one
member of a family, the expression

i

when for p. is taken in turn each number less than and prime
to m, takes just wil distinct values if m1 is the number of
members in the family.

If Sj&Cl-Sx^w,

i i

then 2xi4M = ^XtC^-

i i

Also if fifi = 1 (mod. m),
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Hence m, must be a factor of tf> (m), and if

(fi(m) = m1m2,

there are just ni2 values of such that

XiW = X<, (t'=l, 2
,

.... r)
.

Now the ^'s are rational functions of to, a primitive mth
root of unity. Since they are unaltered when to is replaced by
any one of a set of m, primitive with roots of unity, they must

be rational functions of an algebraic number f, which itself

is a rational function of to taking just m^ values when to is

replaced by any other primitive with root. The irreducible

equation with rational coefficients which f satisfies is therefore
of degree m,, and the field of rationality which it determines is

the same as that determined by the set of characteristics.

If the members of the family are
r. r- rxv .... 1tm_,

every operation necessarily has a rational characteristic in the

representation denoted by r,
-

+ + . . . + 1
\ . Conversely it

follows, from the formula of § 216 for the complete reduction of

any representation, that a representation in which the charac

teristics are rational must, when completely reduced, contain

each of the representations T^, T^, the same number

of times.

Theorem VI. If r is the number of sets of conjugate
operations o

f a group, and p the number o
f sets o
f

conjugate

cyclical sub-groups, the r irreducible representations o
f the

group fall into p distinct families. The characteristics o
f the

distinct members o
f a family are derived from the charac

teristics o
f any one o
f them, expressed as rational functions

o
f to, on replacing to by to". Here p
. is any number relatively

prime to m the least common multiple o
f the orders o
f the

operations o
f the group, and to is a primitive mth root o
f unity.

Any representation o
f the group in which all the characteristics

are rational, when completely reduced contains each member o
f

a family the same number o
f times.
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236. The results of the last two paragraphs may be used
to prove a remarkable property of the multiplication table of

the conjugate sets (§44) from which they have been obtained.

It has been shewn in § 229 that, if

Kp=lx/Cit (p = l,2, ...,r)
i

then KpKq = 0;

and in a similar way it may be proved that

K2-N K

Since the determinant of the characteristics is different
from zero, the C's can be expressed in terms of the K's, and
the expression is

It has also been seen in § 234 that if

i

then the r symbols Kp^ (p=l, 2, r) are the symbols
Rp (p=l, 2, r) in some altered sequence. The last re
lations give, on solution with respect to C^,

Hence (7,» (7>) =^ 2 X?XiqKpM w
p,q

hihi .. „ „ N Tr
1V v Xi

Now the relations (§

s

give on solution with respect to c#,

p
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Hence C^C^ = $cijsC,M.
s

Theorem VII. The multiplication table of the conjugate
sets of a group is invariant for the Abelian group of per
mutations of the conjugate sets that arises on replacing every
operation of the group by its nth power, where fi is any number
relatively prime to the least common multiple of the orders of the
operations.

237. It may be shewn in a precisely similar manner that
the multiplication table

lilj = ^5,i>I»>
which gives the composition of the irreducible representations,
is invariant for the permutations of the representations denoted

by

/T„r2 rr \
VFi. i^wi rrM/

'

where riM is that representation whose characteristics are
obtained from those of Yi on replacing a> by to".

In fact it will be found that the r symbols

JT< = 2Xi*r* (»= 1,2, ...,»■)
k

are merely permuted among themselves when, in them, the
T's undergo any one of the above permutations; while the
H's are such that

N

HtH^Q, (t+j).

Now Yk = ^hiX^Hi.

Hence rtwr,w = ^ 2 h^x^H^H^
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Now (§ 219) Ngm = SA^**,
i

and therefore riw r<w = 2#K,r,(/1).

238. Ex. 1. Prove that the numbers (xj')2, (t = 1 , 2 r)
are the roots of the equation

pq x pq pq

2Cjp,C,.9p 2 Cjp,^ — 2 C^C^
j*/ pq x pq

= 0

* ^ ^ W
2>crpqCl'W 2>crpqciqp 2lCrpucr'qp 77
pq m pq J-

(Frobenius).

Ex. 2. Shew that the representation of G as a permutation-
group, that arises on transforming the N operations of G by each of
themselves in turn, when completely reduced contains the irre
ducible representation Tk just 2xi* times.

i

Ex. 3. If Clt C2, C3, C4, Cs are the conjugate sets consisting of
identity, the operations of order 2, those of order 3, and the two
sets of order 5 respectively, in the alternating group of 5 symbols,
prove that

CV = 15C,1 + 2C2 + 3CS + 5C4+5C5,

C2C3= 4Ca + 6C,+ 5C4 + 5C6,

CtG4= 4C, + 3C7, +5Ct,

C2Ct= 4CS+3C3 + 5C4,

C? =20C1+86'!, + 7C,, + 5C4+5C1>,

C3Ct= 4C'a + 3C, + 5C4 + 5C6,

C,CS = 4(72+3(7s+5C4+5(78,

d =12C, + 3C, + 5C4 + C5,

C4C6 = 4C2+3C3+C4 +C5,

Ce2 =12(7, +3C3 + C4 +5(7,.

Thence or otherwise shew that the sets of group-characteristics
are given by the table
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1 3 3 4 5

c2 1 -1 -1 0 1

c3 1 0 0 1 -1

c< 1
l + s/5
2

l-v/5 -1 0

cs 1 l-s'5
2

l + v/5
2
-1 0

Ex. 4. Form the sets of group-characteristics for the two types
of non-Abelian groups of order pa, and shew that they are
identical.

Ex. 5. Prove that in every representation of a group of finite
order as an irreducible group of linear substitutions in w(>l)
variables there are operations with zero characteristics.

(Proc. L. M. S. New Series, Vol. I. p. 115.)
Ex. 6. Shew that if, in a representation of a group of order N

as an irreducible group of linear substitutions, the characteristic of
every operation is either zero or a multiple of a rational integer n,
then not more than Njri? operations can have non-zero charac
teristics.

Ex. 7. Shew that

2-* = 0

kXi

is the necessary and sufficient condition that an operation of the ith
conjugate set' should not be a commutator ; and determine, in a
similar form, the conditions that it should not be the product of two
or more commutators.

Ex. 8. Prove that the group defined by

A»=E, BI = E, A-'BA = B1
has 15 conjugate sets; and admits 9 representations in a single
symbol and 6 representations in 3 symbols. Shew that in the latter
B and A may be represented by

x = tax, y = <i>sy, *' = m*z ;

x' = V, V
' = z, z' = ax\

where to is any primitive seventh root of unity and a is any cube
root of unity. Shew also that, when a is a primitive cube root of
unity, it is not possible to represent the group in a form in which
the coefficients are rational functions of the characteristics.
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Ex. 9. Prove that the group of order 2" defined by

A*-l = E, B2 = A"r*, B-1AB = A-\
which has only one operation of order 2, admits 2"-2 + 3 irreducible
representations of which four are in a single symbol, while 2"-s — 1
are in two symbols. Shew also that, in any irreducible representa
tion which is simply isomorphic with the group itself, A and B
may be taken to be

x=ax, y=a-ly; and x'=y, y' = -x;
where o is a primitive 2"-'th root of unity.

Ex. 10. Shew that the numbers satisfy the relations

i i
for all values of the suffixes p and q.

Ex. 11. Prove that if each prime that divides the order of
a group is congruent to unity (mod. 4), then the order of the group
and the number of conjugate sets are congruent (mod. 32).



CHAPTER XVI.

SOME APPLICATIONS OF THE THEORY OF GROUPS OF
LINEAR SUBSTITUTIONS AND OF GROUP-CHARACTERISTICS.

239. We shall now apply some of the methods and results
of the preceding three chapters to obtain a series of special
theorems some of which give properties of a group independent
of its mode of representation, while others are directly con
cerned with permutation-groups.

The theorem, due to Prof. Frobenius, that a transitive

permutation-group whose operations except E permute all or
all but one of the symbols, contains a self-conjugate sub

group whose order is equal to its degree, and the theorem that

every group whose order contains only two distinct primes is
soluble, are good examples of the power of this method. Before
the development of the theory of group-characteristics these
theorems, though special cases of them had been established,

presented difficulties which had not been overcome. It cannot
be doubted that further important results await the investigator
in this line.

240. It has been seen in § 225 that hi^i/xi is an algebraic
integer. If m is the order of the operations of the tth set, v4 is
the sum of j£ mth roots of unity ; and unless these are all the
same, mod. X'/X' 13 zero or a rea^ positive quantity less than

unity. This is immediately obvious when the roots of unity
are represented graphically.

If S is any operation of the tth set, and if /x is a number less
than and prime to m, then (S* belongs to a conjugate set of hi
operations, whose characteristic is obtained from ^ on replacing
b. 21
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each root of unity in it by its fitb power. Denote this as
before by x<w Tnen M, = (^i/xO*""1 nXiw, where in the

product fi takes each of the #(wi) values which are less than
and prime to wi, is (i

) an algebraic integer, and (ii) a rational
number. The latter statement follows from the fact that the

product is a symmetric function of the <fi(m) primitive with

roots of unity. Hence M, being both an algebraic integer and
a rational number, is a rational integer. Also

nX,» = n mod-Xt W.

and therefore (^i/xi)*1"" II mod. is a rational integer. Hence

if hi and j£ are relatively prime, n mod. must be divisible

by x^m or e'se must De zero. Now i
t has been seen that

unless the with roots whose sum is ^ are all the same,
mod.^iw/^,, if not zero, is a real number less than unity.
Finally then we may state the following :—

Theorem I. If in a representation of a group of finite
order as an irreducible group o

f linear substitutions the number

o
f variables and the number of operations in some conjugate set

are relatively prime, then either (i
) the characteristic o
f the set is

zero, or (ii) all the multipliers o
f any operation o
f the set are the

same.

Corollary I. An irreducible group of linear substitutions
in p (prime) variables, whose order is divisible by p2, must
contain self-conjugate substitutions.

For if pa is the highest power of p which divides the order
of the group, and if a sub-group of orders" is not Abelian, it is

necessarily irreducible ; and therefore contains self-conjugate
operations, which must be self-conjugate operations of the

group.

If the sub-group of order pa is Abelian, the conditions of
the theorem are satisfied for each of its operations, and it is

immediately obvious that, when a > 1
, their characteristics

cannot all be zero.

Corollary II. If the number of operations in some con
jugate set of a group of finite order is a power of a prime, the

group cannot be simple.



241] ARE SOLUBLE 323

Let hi=pn, so that N, the order of the group, is divisible by
pn. Since

i

there must be representations, other than the identical one, in
which is not divisible by p. In such a representation, either

%i is zero or j$ = foto, where to is a root of unity. In the latter
case, if Xi>l, the group has a self-conjugate sub-group containing
the tth conjugate set, and, if xl = 1, *ne group is distinct from
its derived group. Now Xj cannot be zero in each representation,
except the identical one, in which j£ is not divisible by p. For

k = l

and, on the supposition made, this relation would involve the
contradiction

1=0 (mod. p).
The group is therefore in any case composite.

Corollary III. A group whose order contains only two
distinct primes is soluble.

If N=paqp, an operation which is self-conjugate in a sub
group of order pa is one of qb (b ^ j8) conjugate operations. The

group G therefore, by the previous corollary, contains a self-

conjugate sub-group H ; and the same reasoning applies both
to G/H and to H. Hence G is soluble.

241. The author has shewn* that, subject to exceptions when
p is 2 and q of the form 1 + 22" or when p is of the form 2n — 1 and
q is 2, a group of order paqP (p" > qP) has a characteristic sub-group
of orderj>", where a satisfies the inequality pa>paq- P. This result
may be used as a basis for the discussion of such groups. The
following comparatively simple results are proposed as an exercise
for the reader.

Ex. 1. Shew that if a group of order paqP has more than one
sub-group of order pa, and if no two sub-groups of order pa have a
common operation except E, then these sub-groups must be cyclical.
Ex. 2. Shew that if pa is the order of the smallest self-conjugate

sub-group of a group of order ]taqP, and if the group contains no
operation of order pq, then qP is a factor of (pa— 1

), and the sub
groups of order qP are cyclical.

* "On groups of order p'qP," Proc. L. M. S., Series 2
, Vol. u. (1904),

pp. 432—437.

21—2
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242. If IT is a sub-group of G, and if
H, HT2, HTt, , HTn

are the sets into which the operations of G fall in respect of H,
it has been seen in § 177 that these sets are permuted among
themselves on post-multiplication by any operation of G, and
that a transitive permutation-group thus arises, which is a

representation of G.

Let H' be a self-conjugate sub-group of if such that H/H'
is a cyclical group of order m. Unless H is identical with its
derived group, there must be such a sub-group for some value
of m greater than unity. In respect of H' the operations of H
fall into the sets

H', H'S, H'S2, , tf'S"-1,

where S is an operation of H, whose with power is the first that
occurs in H'.

If to is an with root of unity
H ' + a-'H'S + to-2H'S2 + + «-»+i H'S™-1

is unaltered on multiplication by any operation of H' and is
changed into to times itself on multiplication by 8. Denote
this expression by K, and consider the n expressions

K, KTt, KT2 , KTn.

If, on post-multiplication by U, any operation of G, HTi
becomes HTj, there must be an operation S of H, such that

TiU=zTit
and then KT{U = KZTj = a'KTj,
if 2 belongs to the set H'Sa.

Hence, when the n above expressions are post-multiplied by
any operation of G, each is changed into one of the set multiplied
by some power of to. Neglecting the factors so introduced, the

permutation of
K, KT^ KTn

is the same as that of

H, HTt, HTn.
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A representation of G is thus set up as a group of linear
substitutions of a specially simple kind. They are not mere

permutations, but permutations affected by factors, all of which
are mth roots of unity.

Whatever the factors may be such substitutions are called

monomial substitutions.

This representation of G as a group of monomial sub

stitutions cannot be equivalent to the representation as a

permutation-group in respect of H. In fact, when the latter
representation is reduced, it necessarily contains the identical
representation, while the former one clearly does not.

The product of the symbols operated on by the monomial

group of substitutions is changed into a multiple of itself by

every operation of the group ; the factor in each case being a

power of to. It may happen that this factor is unity for every
operation. If this is not so, a representation of G in a single
symbol, other than the identical representation, arises; and
therefore G must be isomorphic with a cyclical group whose

order is equal to or is a factor of m.

243. We proceed to apply the representation of a group
as a group of monomial substitutions to obtain results con

nected with the solubility of the group.

Let pa be the highest power of p which divides the order of
G, H be a sub-group of G of order p", and J the greatest sub
group of G which contains jEfself-conjugately. Suppose further

that every operation of J is permutable with every operation of
H, so that H is Abelian.

If S, of order p9, is one of a set of independent generating
operations of H, there is a sub-group H' of H of order in

respect of which the operations of H fall into the sets

H', H'S, H'S2. , H'S^-\

Take H' and S for the group and operation denoted by the
same symbols in the previous paragraph and form the repre
sentation of (?as a group of monomial substitutions in respect of

them, using a primitive p*th root of unity for to.
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If KTi is changed into a multiple of itself on multiplication
by S

where S' is some operation of H ; or
TtSTt-*-a:

But the operations S and S' of H cannot be conjugate
in O unless they are conjugate in / (§ 123). Hence if KT(
is changed into a multiple of itself on multiplication by S,

Ti is permutable with S, and KT$ = u>KTi. Moreover the
number of sets KTit each of which is changed into to times
itself on multiplication by S, which is l/p"of the number of
operations of G permutable with S, is not a multiple of p.
The product of the factors for these symbols is therefore a

primitive p^th root of unity. Consider now a set of the

symbols KTj which are permuted cyclically by S. Denote
them by xlt xt x^ib^fi). The corresponding part of
the monomial substitution which represents S is

x'pb = <OybXi ,

where to,, to, , uipb are p*th roots of unity.

The p*th power of this substitution is identity, and therefore

(WlOl2 iopb¥P-b= 1.

Hence topb is not a primitive p*th root of unity.

Combining the two results it follows that the product of all
the symbols is changed by the substitution that corresponds to
S into a/ times itself, where to' is a primitive p*th root of unity.
Hence G must contain a self-conjugate sub-group in respect of
which it is isomorphic with a cyclical group of order p*, and
neither S nor any power of S occurs in this sub-group.

This self-conjugate sub-group satisfies the same condition
as G, as regards the prime p, and may be treated in the same

way. Hence :—
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Theorem II. If pa is the highest power of p which divides
the order N of G, while H is a sub-group of G of order pa and I
the greatest sub-group of G which contains H self-conjugately ;
and if every operation of I is permutable with every operation of
H, then G has a self-conjugate sub-group of order N/pa.

244. A number of particular cases of this theorem are of
sufficient importance to be stated explicitly.

Corollary I. If p'm, where m is not divisible by p, is the
order of G, and if every operation of G whose order is a power
of p is permutable with every operation whose order is prime to

p, then G is the direct product of two groups of orders p'
and m.

Under the given conditions G contains a self-conjugate sub

group H of order pa. If H is Abelian, the conditions of the
theorem apply, and G contains a self-conjugate sub-group M of
order m. Then since M and H can contain no common opera
tion except E, G is the direct product of M and H.

If H is not Abelian, let H, of order pa, be the derived group
of H. Since Hl is a characteristic sub-group of H, it is a self-
conjugate sub-group of G. The conditions of the theorem

apply then to G/Hi, which therefore has a self-conjugate sub
group of order m, containing all its operations whose orders are

relatively prime to^>. Hence G has a self-conjugate sub-group
of order pa.m, with the same property. Similar reasoning may
be applied to this sub-group. Hence, finally, Q again contains
a self-conjugate sub-group M of order m; and G is therefore
the direct product of M and H.

Corollary II. If, in G, the Sylow sub-group H, of order
p°, is Abelian ; and if k is the greatest number of a set of in
dependent generators of H which have the same order ; then
when N, the order of G, and (pk— 1) 1) (p — 1),
are relatively prime, G has a self-conjugate sub-group of order

N/p°: In fact, when these conditions are satisfied, it has been
seen in § 86 that every operation of G which is permutable
with H is permutable with every operation of H, and therefore
the conditions of the theorem are satisfied.
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Corollary III*. The order N of G is pf'Pt2 Pn*n™,

where pltp2 ,pn&re primes in ascending order and m is

relatively prime to each of them. For each i from 1 to n, the
sub-groups of order pfi are Abelian, and fa is the greatest
number of a set of independent generating operations which
have the same order. Then if, for each i, N/p^p.^ Pi-"i-i
and (pfr — 1) (pfr-l — 1) (pi — 1) are relatively prime, G has
a series of self-conjugate sub-groups of orders

typi+pp K« (*=1. 2 - n)-

The existence of the self-conjugate sub-group of order

N/pfi follows from the preceding Corollary. Applying the
same reasoning to this, it has a self-conjugate sub-group of
order N/pppf2. This clearly consists of all operations of G

whose orders are relatively prime to pipt, and is therefore a self-

conjugate sub-group of G ; and this reasoning may be repeated.

Corollary IVf. If the Sylow sub-groups of G
,

for all

primes dividing the order of G except the highest, are Abelian

groups with either one or two generating operations and if 12

is not a factor of the order, then G is soluble. In fact

can only be divisible b
y a prime greater than p if p = 2 ; and

then 3 is the divisor. With this exception the conditions of the

previous Corollary are certainly satisfied. In particular, a group
whose order is not divisible by the cube of a prime or by 12 is
certainly soluble^.

245. If the order of a group is 2an, where n is odd, there
are other cases besides those covered by the preceding Theorem

in which it may be shewn that there is a self-conjugate sub
group of order n.

Suppose first that the sub-groups of order 2" are of one of

the types

* Frobenius, " Ueber auflosbare Gruppen, n. " Berliner Sittungsberichte
(1895), p. 1035.

t Frobenius, loc. cit. p. 1041.

J By a method similar to that used in Theorem II, the author has shewn
that if p2 is the highest power of p which divides N, and the sub-groups of order

p
s are non-Abelian, there is a self-conjugate sub-group of order N/p', if N and
(j,i- 1) (p - 1) are relatively prime. (Proc. L. M. S., Vol. xxxin. p. 265 (1900).)
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A*-l = E, & = E, BAB = A-\
A*-* = E, & = E, BAB = A1+*-\
At'-'^E, & = E, BAB^A-1^.

In each case (jI2"-2, B) is a group of order 4 and type (1, 1),
and there is no Abeiian sub-group of order 8 and type (1, 1, 1).
If A*l-* and B are conjugate operations in the group, there
must (§ 124) be an operation S of odd order such that

A*-\ S-'A*-2S{=B), &-2A+"*&,

are permutable operations. Since there is no Abeiian sub-group
of order 8 and type (1, 1, 1), this is only possible if S' is permut
able with A*'-2. Hence if n is not divisible by 3, A2"-2 and B
are not conjugate operations, and therefore B is not contained
in any sub-group conjugate to {.4}. Now A is one of 2^.
conjugate operations, where /* is odd. No one of these can

be permutable with B; for if BA'=A'B, then {A',B} would
be an Abeiian group of order 2", and the sub-groups of

order 2" are not Abeiian. Hence the permutation that arises

when the 2/i operations con/ugate to A are transformed by B
is an odd permutation ; and therefore the group has a self-

conjugate sub-group of index 2 in which B does not occur.
In this sub-group the sub-groups of order 2°-1 are cyclical ; and
therefore the group has a self-conjugate sub-group of order n.
If the sub-groups of order 2a are of the type

A*-l = E, Bi =A*-\ B-*AB = A-\
it may be shewn, as in the former case, that when n is not
divisible by 3, B and -A2'-2 are not conjugate operations. Here
A**-2 is one of 2fi conjugate operations, where fi is odd, and
since the group contains no two permutable operations of
order 4, which are not inverses of each other, just 2 of the 2fi
operations remain unchanged on transforming by -A2a-3. For
the same reason none of the 2/x operations remain unchanged
on transforming by B. Hence, since A*L-2 = Bl, one of the two

permutations corresponding to A*'-2 or B must be an odd
permutation, and the group has a self-conjugate sub-group of
index 2. In this the sub-groups of order 2a-1 are either
cyclical or of the type under consideration ; and in the latter
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case the same reasoning may be repeated. Hence again there
is a self-conjugate sub-group of order n. The types considered
cover all non-Abelian groups of order 2" with operations of
order 2"-1. Hence :—

Theorem III. A group of order 2an, where n is odd and
not divisible by 3, which contains operations of order 2a-1 has a
self-conjugate sub-group of order n.

Corollary. The order, if even, of a simple group must be
divisible by 12, 16 or 56. For groups whose orders are not
divisible by 16, the two preceding theorems cover all cases

except that where the order is divisible by 22 and the groups
of order 2s are of type (1, 1, 1). In this case, if the order is
relatively prime to (2s— 1)(22— 1) there is a self-conjugate

sub-group of order n; i.e. unless 12 or 56 divides the order the
group must be composite*.

246. Let G be a group of order N and G' a sub-group of
G of order N'. For G we use the ordinary notation for the
irreducible representations and the characteristics, viz. Tu is

any irreducible representation of G, Xs is tne characteristic of
S in rn, and hs is the number of operations in the conjugate
set to which <S belongs. For G' let 7,, denote any irreducible
representation, yjrvp the characteristic in 7,, of any operation P
of (?', and h'P the number of operations in the conjugate set of
G' to which P belongs. As usual the representation of both G
and G' with suffix 1 is the identical representation. In the
representation Tu of G, the set of linear substitutions corre

sponding to the operations of G' will, in general, form a
reducible group. For each u, the completely reduced form of
this group will be denoted by

v

Now the characteristic of P, an operation of G', in Tn is XJ.
Its characteristic in Zfcuvyv is l.lcmyjr'j,. Hence

V V

* An examination of the orders of known non-cyelieal simple groups brings
out the remarkable fact that all of them are divisible by 12.
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for each u. Multiply this equation by ^-i, and sum for the
operations of 0'. Then

P V,P

Now (§ 218) J^*^-, = 0, w + v,

p

Hence N'ku„ = 2Xp^ = JXp-i^p-
and if S is any operation of G,

But (§218) *XusXp-> = r or 0.
according as $ is or is not conjugate to P.

Hence 2*u,x« =^|^,
where the summation with respect to P is extended to all the
operations of 0' which, in 0, are conjugate to S.

The result thus obtained* connects, without exception, the
characteristics of 0 with those of any sub-group of G.

247. We now make the particular supposition that G
contains N/N' sub-groups conjugate to G', no two of which
have a common operation other than E, so that G can be
represented as a permutation-group of degree N/N', whose
operations, except E, displace all or all but one of the symbols.

If P is an operation of G', all the operations permutable
with P must belong to G', for if

Qr'PQ = P,

Q-*G'Q = G",

then P would belong to both G' and G". Hence the number
of operations in G conjugate to P is Nh'p/N', i.e.

Nh'P=N'hP.
* Frobenius, " Ueber Relationen zwischen den Chorakteren einer Gruppe

und denen ihr*r Untergruppen," Berliner Sitzungtberichte (1898), p. 602.
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If now, in this case, the equation

N_

be applied to P, there are h'p terms in the sum on the right,
and they are all equal. Hence

u

This holds for all operations of G' except E. When we
write E for 8, the relation is

u

Combining the last two results with

xP=zk~rp.
V

which holds for all operations of G' without exception, we
have

u,v

Now l*1*1 = N',
V

2^*=0, P*E.
V

Hence for all operations of G' without exception

From this it follows, since the sets of group-characteristics
are linearly independent (§ 216), that

N — N'
Zkuvkuw= - *VE*E, v±w,

N— N'

If now from these equations we calculate the values of
- (£nt, - *vEkuiY, we obtain
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Also kn = 1, and if v > 1, klv = 0, so that

(*,.-*;*,,)•=(*;>*.

Hence, if v > 1,

T(fc»-*;*wi)i-i-

Now each of the r— 1 terms on the left is either zero or a
positive integer. Hence r — 2 of them must be zero, and the
remaining one unity.

In just the same way it may be shewn that if v > 1, xo > 1,
v 4=w, then

Y(A;U, - kul) (kuw - &«) = 0.
Hence the values of w for which kuv

—
ifrE kul and

kUV) — y}rEkul are + 1 cannot be the same. The notation may

therefore be chosen so that

&oa-^ki=±l, (a = 2, 3, , r'),

K?-^Ekal = 0, + a>l.

Moreover, as pointed out above, the values

&n = 1, kla = 0

follow from the meaning of the symbols.

Now ZkuvXB
=
^vENIN'

«

and ZkwXE
= NIN',

U

give Hkuv-rEkm)xl = <
>
'

«

The term on the left, arising from w=l (when v>l), is

—
yfrE. The coefficients of all the other terms, except u = v

,

are zero, and the coefficient of this is + 1. Hence

The positive sign must therefore be taken in each of the

r' — l cases.
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Further, if S is an operation of G which is not conjugate to
any operation of G',

.It

u

so that 2 (kuv - yfrl km) X£ = 0.
u

The only terms on the left which are different from zero are

those for which u = 1 and u = v : and the equation becomes

so that in this representation

Xs
- Xs,

and every operation of G which does not belong to G' and its

conjugates corresponds to the identical substitution. The N/N'
operations of G which do not belong to G' and its conjugates
therefore generate a self-conjugate sub-group, which necessarily
consists of themselves with identity. Hence*: —

Theorem IV. If G is a transitive permutation-group of
degree n, whose operations except E permute all or all but one
of the symbols, then the n — 1 operations which permute all the
symbols constitute with E a self-conjugate sub-group.
248. If in the preceding theorem the self-conjugate sub

group consisting of E and the permutations that change all the
symbols be denoted by H, then to every operation of G' there
corresponds an isomorphism of H in which E is the only
operation that is not altered. If h is a Sylow sub-group of H,
of order p", and is therefore one of the same number of con

jugate sub-groups in G and in H, then h and every characteristic
sub-group of h admits a group of isomorphisms simply iso

morphic with G' , no one of which leaves any operation unaltered

except E. Now h necessarily has a characteristic Abelian sub
group h' whose operations, except E, are all of order p.

Suppose, if possible, that G' contains a non-cyclical sub
group of order q2, where q is prime. The corresponding group of

* Frobenius, " Ueber auflosbare Gruppen, iv." Berliner Sitiungsberichte
<1901), pp. 1223— 1225. Prof. Frobenius's proof has been closely followed in
the text.
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isomorphisms must permute the operations of h' transitively in
sets of q"; and, as affecting one set, its generators Ql and Qt
may be taken to be

(PllPu . . . Pij) (P<1.*»2.. . Plq) (PqlPqi-.-P gq),

and (P,,Pn . . .P„) (P„P„ . . . Pqj) {P,qPn... Pqq).

Then in the cycle containing P„ is

(P,,Pi+i,2Pl+2t,2 . . . Pi— t',?).

Since no one of these isomorphisms changes any operation
of A' except i? into itself, the product of the operations in
any cycle must be E.

Hence PUPM ...Plq = E,

PuPsi ... Pgi =

PuP.+^.-.P^<, s = (i = l, 2 9-1),

and therefore Pu« n P0 = £, (t
, j = 1, 2, ... , 9),

or P„« = E.

This is not the case, and therefore G' contains no non-
cyclical sub-group of order q

i. Hence (§§ 104, 105) the Sylow
sub-groups of G' of odd order are cyclical and those of even
order are either cyclical or of the non-cyclical type that contains
a single sub-group of order 2

.

Let Q
, R of orders qa, t* (q> r) be operations of G'

generating Sylow sub-groups of order qa, t*. Then (§ 129)
G' contains a sub-group of order qar* denned b

y

Qqa = E, R* = E, R-iQR=Qy,

where 7
^ = 1 (mod. q°), ff ^ /S.

Such a sub-group permutes the operations of h
'

transitively
in sets of qarP ; and, as affecting one set, Q and R may be
taken to be

n (Pi.oP.M- ..Pit ?n-l), (t=l, 2
, r*),

i

n(pli(p2i(v.../vi(,^-,), (<=o,i, ...,r-n
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Then in QriRQi the cycle containing PJi0 is

(■Pi.o-Pii, d-y) jPt, li-yhj ■■•*f*, ti-y-hj),

and PlttPtt^j...Ptf<^-i)j = E, ( j = 0, 1, q'~ 1).
If 7 is not unity, this leads to

a contradiction. Hence y must be unity, and the group of
order q*r? is cyclical. If r is 2 and the corresponding Sylow
sub-group non-cyclical, it may be shewn in a similar way that
the sub-group of order q*2s is the direct product of sub-groups
of orders <jra and 2s. Hence finally if the order of G' is odd, 0'
is cyclical ; and if even, it is either cyclical or the direct product
of a cyclical group of odd order and a non-cyclical group
containing a single operation of order 2.

Theorem V. If a group admits a group of isomorphisms
I, each of which leaves unchanged no operation of the group
except E, then I is either a cyclical group, or the direct product
of a cyclical group of odd order and a non-cyclical group of
order 2" containing a single operation of order 2.

249. Returning to the relations between the characteristics
of a group and one of its sub-groups obtained in § 246, we now

suppose with the notation there used that 0' is a self-conjugate
sub-group of G while NjN' is prime. We also assume that
every two operations of G' which are conjugate in G are also
conjugate in G', so that if P is an operation of G', then h'P = hP ;
while if the operations of G' fall into r' conjugate sets in G',
they also fall into r' conjugate sets in G. If S is an operation
of G, not contained in G', the operations of the set SG' are
transformed among themselves by every operation of G. Any
operation P of G' is permutable with N'/h'P operations of G'
and with Njh'P operations of G. It is therefore permutable
with N'jh'p operations of the set SG'. Further if S is permut
able with m operations of G', it is permutable with m operations
of the set SO'.

Hence when the two sets G' and SO' are transformed by
any operation of 0, the number of operations left unchanged in
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each set is the same. It follows from Theorem VII, Chapter X,
that the permutation-groups which arise on transforming the
operations G' and the operations SG' by every operation of G
have the same number of transitive sets. Hence the operations
of the set SG' form r' conjugate sets in G, and therefore

T =

Now the relation

r-yr.

of § 240, applied to any operation of G', gives

I
Combining this with

w

we have
N

u, to -iv

which is true for every operation of G'. Hence

«

The first equation shews that, for each u, of the r1 numbers

kuv (y = 1» 2, »
•
') one and only one can be different from

zero. From the second equation it follows that

N

2 ku^ = -jjj} r = r.
u,« -t'

Hence each kuv which is not zero is unity. Every irreducible

representation of G is therefore irreducible as regards G', and
there are N/N' irreducible representations of G which contain
any given irreducible representation of G'. Slightly altering
the notation this result gives the following :—

Theorem VI. If a group G of order N with r conjugate sets

is contained self-conjugately in the group H oforder Np (p-prime),
b. 22
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a)\d if the isomorphism of G given by any operation of H leaves
each conjugate set in G unchanged, then (i) the number of con
jugate sets in H is pr ; (ii) in each of the pr irreducible representa
tions of H,Gis irreducible ; and (iii) each irreducible representa
tion of G occurs in just p distinct irreducible representations
ofH.
If r,, T„ Tp are the p representations of if in a single

symbol, in which the operations of G correspond to the identical

substitution, and if T is any representation of H, then I^T,
r2r TpT are all distinct and each of them give the same
irreducible representation of G.

Ex. A group G of order N with r conjugate sets is contained
self-conjugately in a group H of order Np (;>prime). Prove that
if the isomorphism of G corresponding to an operation of H not
contained in G leaves r, conjugate sets of G unchanged and permutes
the r-i., remaining ones in sets of p, then the number of conjugate
sets in H is {r + (p2- 1) rt)/p.

250. If in is the number of transitive sets in which the
sub-group of a transitive permutation-group which leaves one

symbol unchanged permutes the symbols, and if Scsr, gives the
complete reduction of the permutation-group, we have seen,
in § 207, that

m = 2 cs2.

The identical representation necessarily occurs just once iu
the reduced form, so that c, is 1. If the group is doubly transi
tive, m is 2, and the reduced form is Ti + T, just one repre
sentation besides the identical one occurring. If the group is
simply transitive m is not less than 3. The relation

m = 1cr,

if m is of the form 1 + fit, might be satisfied by just two
c's, viz.

cl = l, c2 = fi,

but r, +fiT2 is not a possible form for the reduced group. Iu
fact if x were the characteristic in r2 of an operation which, as
a permutation, displaces all the symbols, then

0 = 1 + fix-
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The permutation-group necessarily contains such operations,
but — 1//* is not an admissible value for ^, which is an

algebraical integer.

Hence if a permutation-group is simply transitive, at least
three distinct representations must occur in its completely
reduced form.

It may be noticed in passing that when m is less than 6 for
a group of even order, or less than 1 1 for a group of odd order, the
irreducible components are necessarily all distinct and therefore
equal in number to m.

If in the completely reduced form of a permutation-group
an irreducible component T occurs c times, each irreducible
representation which belongs to the same family as T will also
occur c times.

251. Consider now a simply transitive permutation-group
G of prime degree p. A permutation P of order p contained in
the group may be taken to be

{XqXi Xp—i).

Since G is simply transitive, so that at least three distinct
irreducible representations occur in its reduced form, the
characteristic of P in each of the irreducible components,
except r\, must be irrational. Suppose that for one irreducible
representation ^, is s. Then in this representation

Xp = »°l + to"' + + <0ast

where to is a primitive pth. root of unity, and a„ Os, , at
are s distinct residues (mod. p). If to' be written for oo in v ,
the resulting expression is the characteristic of P in the same
or another irreducible component. If when each primitive pth
root of unity is written in turn for to, just t distinct X's arise,

st=p — l,

since each primitive root must occur in one and only one ^.
Hence if g is a primitive root of

g' = 1 (mod. p),

then = to + + »"2 + + to""-1.

22—2
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Now x„ + a>-1 x1 + vr*xt + + to-P^Xp-i

is the only linear function of the x's which is changed into 0i
times itself by P.

Hence if

f, = x0 + ai-tx1 + ur*x, + + o>'-**1"^,,

the symbols £„ %g, fj^, are transformed among them
selves by the irreducible component in which is the charac

teristic of P.

This and the other irreducible components, except r„ are
therefore groups of linear substitutions in s symbols, in which
the coefficients of the substitutions are rational functions of to.
If Q is any operation of G whose order is relatively prime to p,
its characteristic in the representation considered is a rational
function of ol and is therefore zero or a rational number. It
follows that the characteristic of Q in each of the t represen
tations, other than Tlt is the same. Suppose now if possible
that G contains a permutation Q, of order prime to p, which

displaces all the symbols. Its characteristic in G is zero. In
r, it is unity, and in each of the t conjugate representations it is
the same rational number v . Therefore

o = i +%-
This is an inadmissible value for , and therefore the only

operations of G which displace all the symbols are the opera
tions of order p. If a permutation Q, whose order is prime to
p, leaves just n symbols unchanged, then n=l+txQ, and
therefore v is either zero or a positive integer; while they

number of symbols unchanged by any permutation whose order

is prime to p is of the form 1 + xt. Let vx be the number of

permutations of G which leave 1 + xt symbols unchanged ; and

let v be the number of operations of G whose characteristic in

the chosen representation is v . Then the equation

2A<X<*=<>

for this representation is
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and the equation

is ^pXlp + vl+'2?vi + +s% = 0;

the summations extending to the t conjugate values of %
kp and

Now -XP
= - l,

Hence

s (v, + 2i,2 + + Sf„) = i/i + 22f2 + + S2!/t,

so that i/i = i/2 = = i/^i = 0
.

The permutation-group is therefore such that every per
mutation except the identical one displaces all or all but one of
the symbols. The order of the group is therefore pq, where q

is a factor of p — 1, and it contains a self-conjugate sub-group
of order p. Hence :—

Theorem VIT. A simply transitive permutation-group of
prime degree p is o

f order pq, where q is a factor o
f p — 1 , and

it therefore contains a self-conjugate sub-group o
f order p.

252. A similar result may be proved for any simply
transitive permutation-group G of degree pm, which contains a
permutation of order pm. Let

be a permutation P of order pm contained in G.

If £,= 1 urvxj,

o

then f < is the only linear function of the x's which P replaces
by a>' times itself, to being an assigned primitive pmt\i root of

unity.

The multipliers of P are all distinct, and therefore when G

is completely reduced no irreducible component can occur more
than once. Moreover, it follows from Theorem II, Chapter XIV,
that in each irreducible component the sub-group of G which
leaves xQ unchanged has just one linear invariant.
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Suppose now that T is an irreducible component of 0, and
that in V the multipliers of P are to, to"' to": Then
r must transform among themselves f,, f„ Unless

pth roots of unity occur among to, to"*, toa», there must be

irreducible components in which no multiplier of P is a primi
tive pmih. root of unity. In such an irreducible component
ppm_1 would correspond to the identical substitution, so that G

would contain a self-conjugate sub-group generated by P?m~l

and its conjugates ; in other words G would be imprimitive.

Suppose now that in the sub-group of G which leaves a;

unchanged,

are permuted transitively. Then

is an invariant for this sub-group.

p™-i
Now = 2 £,!pm,

0

so that in T
+u

is an invariant, and therefore the only invariant for the sub

group of G which leaves <r„ unchanged.

Further pm (xbl + xbt + + ar6<)

t=pm-i
= 2 2 «»>£.-.

Hence

(w6' + o>6>+ + to6') f ,

+ (to"A + waA + + aM)^
+

+ (oM + ft>"'6« + + ftM) f0
<

is an invariant for the sub-group of G which leaves x„ fixed ; and
therefore this quantity must be zero or a multiple of



253] 343GROUPS

It follows that
d>i + toh+ + J>t

= (8"A + 6>nA+ + to°A

= ol% + toaA + + oj^A.

If one of the multipliers of P in T is a pth root of unity, we
may assume that a. is a multiple of pm-l, so that eo0i is a^Jth
root of unity. Then

to6* + tob2 + + »6t = a^i + aM + + ;

and this equation can obviously be true only if t = pm— 1;
while, G being simply transitive, this is not the case. Hence

among the multipliers of P in T no pth root of unity can occur.
It follows that Pp'"-' and its conjugates generate a self-

conjugate sub-group of G, so that G is imprimitive. Hence :—'

Theorem VIII. A simply transitive permutation-group of
degree pm, which contains a permutation P of order pm, is
necessarily imprimitive and contains an intransitive self-con
jugate sub-group generated by pvm-l and its conjugates.

That a corresponding result is true for any simply transitive

permutation-group containing a transitive Abelian sub-group
whose order is equal to the degree of the group is highly

probable ; but the proof on the above lines presents difficulties
which do not occur in the cases considered.

253. We now add some further applications of the methods
considered which, though they lead to less general results, are
of importance as indicating the lines on which investigation
may be pursued.

The coefficients in the relations

<

are directly determined by actually carrying out the reduction

of the group represented by r.T,. In general it is not possible
to say, a priori, whether the group represented by TiTj is re
ducible or not ; but it will now be shewn that the group denoted
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by IV is always reducible, and a consideration of the process
of compounding an irreducible representation of a group with
itself is of some importance.

If x- = taijkXj (i = l,2 n)
i

is a substitution of T, the corresponding substitution of V- is

x{'yu' = % aijkauvkXjyv.

This substitution may be written in the form

and therefore the symmetric bilinear functions of the x's and y's
are transformed among themselves as also are the alternating.
There are ^n(re + 1) independent symmetric and £n(n— 1)
independent alternating bilinear functions of the x's and y's.
The ri2 symbols operated on by T2 may therefore be separated
into two sets, each of which are transformed among themselves,
so that rs is certainly reducible.

If oli, to„ ton are the multipliers of an operation in T,
and if yfr^, i/ra are the sums of the multipliers of the same opera
tions in the group on the symmetric and the group on the

alternating functions, then

yfr, = 2 toiaj -1,2, , n),

yfra = 2 oli (oj (i =t=j ; i, j = 1, 2 , n).i.j

In fact these relations are given at once by the preceding
expression for a substitution of P. Now

^i = + »i2 +W + + »n2-

For a group of even order the series of quantities

to,s + to22 + + filn2

for the r conjugate sets is not a set of group-characteristics in
general*; but for a group of odd order the set in question is

always a set of group-characteristics, and the irreducible repre-

* They will be so for the direct product of a group of odd order and a group
of order two.
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sentation in n variables to which they belong has been denoted

(§ 234) by r(21. Hence in this case, when the group on the

symmetric functions is completely reduced, it contains the
same irreducible components as the group on the alternating
functions and the component rw in addition. This is expressed
by the relation

p = rm + 22a,ri.
On the other hand, for a group of even order there is no

necessary relation between the irreducible components of the two

groups on the symmetric and the alternating functions. When
each y is put equal to the corresponding x, the alternating
functions all vanish identically, and the symmetric functions
become quadratic functions of the x's. Hence for a group of
odd order each irreducible component of T" can be represented
as a group of linear substitutions on quadratic functions of the

variables. For groups of even order this result is not in

general true.

In particular can be represented as a group of linear
substitutions on n linearly independent quadratic functions of
the x's. Let these functions be X,, X, Xn. Being
linearly independent it is easy to see that they must also be
algebraically independent, and therefore that the Jacobian

d(Xlt X,, , Xn)
3(^,, *i , xn)

does not vanish identically. Since the X's are linearly trans
formed among themselves when the x's undergo any substitu
tion of r, the Jacobian must be changed into ol times itself by
any substitution of the group, ca being a root of unity. This
Jacobian is a function of the nth degree of the variables.
Hence :—

Theorem IX. For any irreducible group of odd order on n
variables there is always (i) a set of n linearly independent
homogeneous quadratic functions of the variables which are

transformed among themselves by every operation of the group,
and (ii) a homogeneous function of the nth degree of the variables
which is changed into a multiple of itself by every operation of
the group.
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254. If is the order of the operations of the tth conju

gate set, j£ is the sum of Xi r»<th roots of unity. For any
representation in which j£i is not rational there must be some
smallest number 2) such that xi can De expressed as a
rational function of a primitive /*<th root of unity, and cannot
be expressed as a rational function of a fi/th root of unity

0*.' </*,).

Suppose now that in an irreducible representation T of G,
pf and p2b, where p, and pt are distinct primes, are the numbers
referred to for the ith and jth sets. Also let m, =pa. p^ p"2. . . ,
be the least common multiple of the orders of the operations of

G. Of the <
f* (m) numbers, fi, less than and prime to to, there

are just <fi(m)/pla-, pf-l (j>i — 1)(p„— 1), say to1/ which satisfy
the congruences

fi = 1 (mod. pf),

fi=l (mod.pf).
We have seen that if fi is any number less than and prime

to m, the relation

i

involves the relation

i

Sum these equations for the m, values of fi which satisfy

fi= 1 (mod.^V), fi = 1 (mod. p^).

Since X<w=X*. XiW=X>.
the left-hand side is mJnhj\iXj- Let to be one of the ^, roots
of unity whose sum is and write to = »,a>2»2 where ol,, O;2,

to,, ... are roots of unity whose indices are powers of plt p2,
p-i, .... If the index of to1 is greater than pf, or if that of a,

is greater than pf, or if that of to2 is greater than p2, then

n

If the indices of ol, and to„ are equal to or less than pta and pb
respectively, while the indices of to2, , to( are p2,pit , pt

respectively and the remaining indices are zero, then

2 <u" = (- — —
r. to, to,.
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Hence, after the summation, the right-hand side of the equation
is a rational function of ^,nth and pHh roots of unity. More
over unless, for some value of s, the order of the operations of

the .sth set is equal to or a multiple of pfpf, no one of the
pfpfth roots of unity which occur on the right-hand side of
the equation will be a primitive root. Suppose now that, on
each side of the equation expressed rationally in terms of f a
primitive pfth and of 77 a primitive p,6th root of unity, the
equations

gPia-
1
(ft - 1) + £Pi"

- 1
(ft - 2) + + ^ft"-1 +1 = 0

and vP"-1 (ft
- !) + nPih-1{H- 2>+ +

- 1
+ 1 = 0

are used to replace all powersof £ and rj higher than

and rj p2 1(P2-1)-1 by lower powers. In this form the relation
must be an identity. But on the assumption made it cannot
be so, since the left-hand side contains terms !jxTjJ in which
neither x is divisible by p1 nor y by p3; while the right-hand
side contains no such terms. The group therefore must con
tain operations whose orders are divisible by piap2b.

If %k is a rational function of a p/th root of unity and is
not a rational function of a p/-1fch root of unity, the equation

8

s,t

may be used in a similar way to shew that the group must
contain operations of order pf p,,b p," ; and so on. Hence :—

Theorem X. If, plt p2, p2,... being primes, a group has
operations whose characteristics in some irreducible representa
tions are rational functions ofpf'th, p„"4h, ptaHh,... roots of unity
respectively, and are not rational functions of pfl-Hh, p22-lth,
pt"'-Hh, ... roots of unity, then the group has operations of order
p1a'p^p2a'... .

255. Let G, of order paq* r* m, (where m is not divisible

by the primes p, q, r) be an irreducible group of linear
substitutions in n variables. Suppose further that p, q r
are greater than « + 1 and that the prime factors of m are equal
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to or less than n + 1. If G has a self-conjugate operation P
whose order is a power of p, its determinant is necessarily
different from unity. The same is true if G has self-conjugate
operations whose orders are powers of q, r. Hence (note,

p. 268) G must have a self-conjugate sub-group &„ of order

paqb r"m (a^a, H/S, ),

and Gi contains no self-conjugate operation whose order is a

power of p, q , r.

A sub-group of Gl3 of order pa, is necessarily Abelian, since
when completely reduced it must consist of n components each
in a single variable. Moreover, since n + 1 is less than either

p, q, or r, every operation of (?
,

whose order is a power of

p, q , or r necessarily has an irrational characteristic.
Hence, by Theorem X, (?

,

must contain operations whose

orders are divisible by pq.

Let Pi and Q
,

be permutable operations of (?
,

of orders p

and q; and let Hl be an Abelian sub-group of G1, of order pa,
which contains Pl. Then P

,
is contained self-conjugately iu

the sub-group {Hlt ; and since P, is not a self-conjugate
operation of G„ this sub-group must be reducible.

Each irreducible component of this sub-group may be dealt

with as G has been treated. In it P, is a self-conjugate opera
tion whose determinant is different from unity ; and its self-

conjugate sub-group which does not contain P, may be treated
like (?1. It is thus shewn that G

,

has an Abeliau sub-group

\Hlt Q), where Q is an operation whose order is a power of q
.

Let Kl be a sub-group of Glt of order <
/'
,

containing Q
. Then Q

is self-conjugate in [JET,, K,}, which is therefore reducible; in

other words (?
,

has a reducible sub-group whose order is divisible

by paqb. This sub-group may be dealt with in the same way,
and therefore G

,

has an Abelian sub-group whose order is

divisible b
y

pa^. Repeating this reasoning with each of the

primes p, q, , r, it is shewn similarly that (?
,

has an

Abelian sub-group of order f", and that G therefore

has an Abelian sub-group of order pmq* ry. Hence*: —

* H. F. Blickfeldt, "On the order of linear homogeneous groups" (Second
Paper), Tram. Amer. Math. Soc. (1904), p. 319.
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Theorem XI. An irreducible group of linear substitutions
in n variables, of order m^n2, ivhere the prime factors of ml are
greater than and those of m2 are equal to or less than n + 1, has
an Abelian sub-group of order mlt

256. If Si, S2, Sx are the operations of a group G, and

Xs
the characteristic of /S

'

in some irreducible representation, it

is obvious that the only operation S
,

such that

is the identical operation.

Let R be a field of rationality which contains that deter
mined by the coefficients of the substitutions in the repre
sentation considered, so that each characteristic is an integer
in R. Then it is possible that, in certain cases, the system
of congruences

Xs = Xs. s (mod- «), (t
' = 1, 2
,

.... N),

where a is a suitably chosen integer or ideal in the field R,

may hold for operations other than E. When this is the case
the operations S for which this system of congruences holds
constitute a self-conjugate sub-group of G. In fact, if

Xs=XSfi (m0d
a),

then xS.
=
Xs.-'SfS.

=
Xsf%SjS

=
Xs.SjSsf» (°»od.

a).

A simple illustration is given by the group

S7 = E, TJ=E, T-*ST^S-,

as represented in the form

S x = tixr, y
' = m'y, z' — <i,4« ; to7= 1
,

T x' = y, y
' = z, z' = x.

If 5 is any operation of the group it is found that
X, = x^g (mod. 1 - u>) for each 2,

while X2^X2r(mod' l—t0) ^or eacn 2;

and this agrees with the fact that {S\ is a self-conjugate sub-group.

It may of course happen in particular cases that

XS,.-Xs,.S(m0d- M
)
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for every operation 8. This for iustauce is the case, with
a = p, for an irreducible group in p symbols of order pz. Since
however, for every irreducible group in more than one symbol,
there are necessarily operations with zero characteristic, the

congruence

Xs
=
XT (lllod- «)

for all pairs of operations can only hold if each non-zero
characteristic is a multiple of a. Thus if v is not divisible
by a, the existence of operations S for which

Xs = Xs s (mod- °0 (»
' = 1, 2, . . . , JV)

ensures the existence of an actual self-conjugate sub-group,
distinct from the group itself.

257. In illustration of the preceding paragraph, consider a

group of linear substitutions

x? = 5SyXJ) (t= 1
,

2
, ...,«),

3

in which all the coefficients are algebraic integers, and suppose that
the group contains a substitution P of canonical form

where the multipliers are powers of u>,a primitive mth root of unity,
in being the power of a prime. Then

Xs
= *» + + • • • + smmi

and xSp = "Vn + w-j>Vj + •■• + <"«*»h-

Hence, each of the s's being an algebraic integer,

Xs = Xsp (mod- 1

-
<")>

for every substitution of the group. If then 1 — u is not a factor of
n, the number of variables, the group has an actual self-conjugate
sub-group containing P. This condition is certainly satisfied for
a group, whose coefficients are algebraic integers, which contains a
substitution, of prime order greater than the number of variables,
in canonical form.

As a second example we take the case of an irreducible group
on n variables which contains an operation P of prime-power order
pa(pa>n), whose multipliers are all distinct. Transform the group
so that P occurs in canonical form

x( = xt' = oija-;, , xn' = <oaxH,
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where <■>,,io2, , (u„ are n distinct path roots of unity. If in this
form any operation S of the group is

x- = 2 a0xj (i
, j = 1, 2, , n),

J

then
u

Sa,j(i),* = xsj.», (* = 0
,

1
,

, p»- 1).

l
The number of these equations is greater than n. The determinant
of the first n of them, viz.

1 1 1

<»i ->■• <■>,>

is equal to II (u>(— and its norm is known to be a power of

say p". Hence when the first n are solved for aH (i = 1
, 2
,

, n),
the result is

where fit is an algebraic integer.

Suppose now that the group has an operation Q of prime order

q ( 4=p), and permutable with P. The corresponding substitution
must be

x1 =a1x1, x., — a«x.,, , x„ =a„a'„,

where oi, a,, , a„ are ^th roots of unity. Then

2A(i-a,)
xs
-
Xse =
— •

If a is a primitive qth root of unity, the numerator is divisible
by 1 — o, while the denominator certainly is not. Hence for each
operation of the group

Xs - Xsq (mod. 1 - o).

Unless then every characteristic is divisible by 1 — a, the group
will have an actual self-conjugate sub-group containing Q

. For
instance, if q does not divide n, there will be such a sub-group.

258. We shall conclude this chapter by considering the

representation of groups of prime-power order as irreducible

groups of linear substitutions.

Let G be such a group, of order pa, and suppose that T,- is

one of ite irreducible representations. The number of variables
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for Ti is necessarily a power of p, say pa. Consider now the

reduction of I\rV. It is given by the formula

9

Since gai is unity, while \is is either unity or a power of p,
there must be at least p — 1 other representations, besides F, ,

in a single symbol in the complete reduction of r,TV.

There must therefore be a bilinear function of the variables

operated on by I\ and rV which is changed into e times itself by
any operation of G, e being a pth root of unity. This function
is unchanged by the operations of a sub-group (?„ whose order

is 1/pth of the order of G. Hence in T< the self-conjugate

sub-group (?
,

has more than one bilinear invariant.

Now if (?! were irreducible in the representation T<, it

would only have a single bilinear invariant in I\rV. Hence

G
i must be reducible, and it therefore transforms the variables

in p sets of pa-1 each.

Suppose now that every irreducible group of linear sub

stitutions in pa-1 variables, whose order is a power of p, can be
so transformed that the product of the variables is changed
into a multiple of itself by every substitution of the group.
Then it follows that the same is true for every group in pa
variables, whose order is a power of p. But for a group in p

variables the above process shews that the supposition is true.
Hence* :—

Theorem XII. Every representation of a group of prime-
power order us an irreducible group o

f linear substitutions can
be so transformed that the product o

f

the variables is changed
into a multiple o

f

itself b
y

every substitution o
f

the group; in
other words, it can be represented as a group o

fmonomial sub
stitutions.

259. It may be noticed that this mode of representing a prime-
power group is not necessarily unique. The first two of the fol
lowing examples illustrate the possibility of representing such a
group as a group of monomial substitutions in more than one way.

* A proof of this theorem, which in not quite complete, is given by
H. F. Blickfeldt, I.e., p. 314.
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Ex. 1. An irreducible group of order p2 in p symbols is generated
by the two substitutions

xt' = a'a;<,
(i=0, 1 p-1),

where o is a primitive pth root of unity. Prove that if

i-0

the p symbols £,n„, f— £„,,,-i are permuted among themselves
with factors by every substitution of the group ; so that there are
p + 1 distinct sets of variables in which the group can be represented
as a set of monomial substitutions*.

Ex. 2. Prove that if p is prime, the four substitutions

x (J = xm j , xij — xt,j+1 t
x'ij = a'xtj ; x'tj = a'xtj ;

{i,j = 0, 1, ...,p-l)
where a is a primitive pth root of unity, generate an irreducible
group of order p° in the p2 symbols ; and that the variables can be
chosen in + ps + p + 1 distinct ways so that the group is a group
of monomial substitutions.

Ex. 3. A group of order p" has pn, (n, < n) self-conjugate
operations and all the rest belong to conjugate sets containing
p operations in each. Prove that (i

) n - n, is even, (ii) the derived
group is of order p, and (iii) the irreducible representations consist
of pn-1 each in a single symbol and pnl-l(p — 1) each in pMn-"i)
symbols. (Compare Ex. 1, p. 126.)

Ex. 4. Prove that the most general monomial group of sub
stitutions on p"-1 symbols, whose order is a power of p and in which
the multipliers are pth roots of unity, is irreducible ; and that it is

simply isomorphic with the sub-group of order p" of the symmetric
group of degree p", where

v = p"-1 +p"-2 + ... +p+ 1
.

Ex. 5. Prove that the alternating group of degree 5 can be
represented as an irreducible group of monomial substitutions on

5 symbols, the multipliers being cube roots of unity.

* Burnside, "On soluble irreducible groups in a prime number of variables,"
Acta MaUiematica, Vol. xxvm. p. 222 (1903).

23



354 [259EXAMPLES

Ex. 6. Prove that the simple group of order 168 can be
represented as an irreducible group of monomial substitutions on
7 symbols the multipliers being + 1 ; and also as an irreducible
group of monomial substitutions on 8 symbols the multipliers being
cube roots of unity.

Ex. 7. Prove that an irreducible group of odd order which
contains the substitution

where w is a primitive (2a,+1 - l)th root of unity, must be a group of
monomial substitutions, and is soluble.

Ex. 8. Prove that a group of linear substitutions of odd order
in 3 variables can be expressed as a group of monomial substitutions
and is soluble.

Ex. 9. Prove that a group of linear substitutions of odd order
in 5 variables is soluble, and that, if its order is not divisible by 3,
it can be expressed as a group of monomial substitutions. Construct,
on the lines of Ex. 1, an irreducible group of linear substitutions
on 5 variables, of order 375, which contains a non-Abelian self-
conjugate sub-group of order 1 25 and which cannot be expressed as
a group of monomial substitutions on 5 variables.

Ex. 10. An irreducible group of linear substitutions in n
variables has an Abelian sub-group // of order M (> n*). Shew
that if E is the only operation common to H and any conjugate
sub-group, then H is contained self-con jugately in a sub-group
whose order is not less than nM.

Ex. 11. Shew that every irreducible representation of a meta-
belian group can be transformed into a group of monomial
substitutions.

Ex. 12. Prove that the number of operations of order two
contained in a group increased by unity is not greater than the
sum of the numbers of variables operated on by the self-inverse
irreducible representations.



CHAPTER XVII.

ON THE INVARIANTS OF GROUPS OF

LINEAR SUBSTITUTIONS.

260. We have already considered, in certain particular
cases, functions of the variables which are invariant for all the
substitutions of a group of linear substitutions of finite order.
In the present Chapter we shall deal with the general theory of
such functions.

Definitions. If

are the variables operated on by a group G of linear substitu
tions of finite order N, and if

are the linear functions into which the variables are changed
by a substitution S of the group, then a rational function

F(x1, ...,#n)

of the variables is called an invariant of the group, if
Ws), x2w xnM) = F{x,, 4. . . -. *.)

for each substitution S of the group. It is obvious that such
invariants always exist. In fact if from any rational function

f{Xl, xt} . . ., xn),

which is not identically zero, the N functions

be formed, where for S each of the N substitutions of G is
taken in turn, then any symmetric function of the N functions
is an invariant of G.

23—2
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A rational function of the variables such that
F (x-i®, a^2'**! . . . , xn®) = k$ F (x1 , X2 x„),

where ks is a constant which for some substitutions is different
from unity, is called a relative invariant of the group. Since

every substitution of the group is of finite order, the multipliers

ks must be roots of unity. If among the multipliers mth roots of
unity occur, but no roots of a higher index, the substitutions of
the group for which F is an invariant clearly constitute a self-
conjugate sub-group of index m, and in respect of this sub

group the group is isomorphic with a cyclical group of order m.
If therefore a group of linear substitutions is identical with its
derived group, it can have no relative invariants.

On the other hand a group which is not identical with

its derived group will necessarily have relative invariants. To

prove this, let H be a self-conjugate sub-group of G such
that O/H is a cyclical group of prime order p. Construct, as
we shall see can always be done, an invariant F of H which is
not an invariant of G. Then if S is a substitution of G which
does not belong to H, and if a is a primitive pth root of unity,

F+ aF™ + aW> + ... + a^Fs'"l)

is clearly a relative invariant of G.

261. Any rational invariant of G can be put in the form of

a rational fraction N/D, where N and D are integral functions
of the variables without a common factor. The relation

n —iy<8)

implies a relation among the variables unless and are

the same constant multiples of N and D. Hence N and D
must be invariants or relative invariants; and from N/D an
integral invariant may be formed by multiplying by a suitable

power of D.

Any rational function of a set of invariants of G is neces

sarily another invariant. Moreover it is an immediate conse

quence of the definition of a covariant that every covariant of

an invariant of G, or of a number of invariants of G, is either
an invariant or a relative invariant of G.
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That a covariant of a set of invariants of a group may in certain
cases be a relative invariant is shewn by the following simple
example. The Jacobian of n functions of n variables, viz.

3 (/,,/,,
d (a?], a^, . . ., r„)

is a covariant of the functions.

Now for the group generated by E and (xlxi), the functions
a;, + ara and a;,a^ are independent invariants. But

which is a relative invariant for the group.

262. Since an invariant of G is a function of n independent
variables, any n + 1 invariants are connected by an algebraic
equation ; while a smaller number than n may be connected by
such an equation. We shall first shew that a set of n algebrai

cally independent invariants must always exist.

If a^, x,, xn are the n independent variables operated on

by a group of linear substitutions, and if

*P, (S = S1,Si Sy),

are the N values that <r, takes under the substitutions of the
group, we have seen in § 260 that the symmetric functions of
the N quantities a?,(S) are invariants. Hence x, satisfies an
algebraic equation whose coefficients are invariant* of the

group. In other words x, is an algebraic function of in
variants. Similarly each of the other variables is an algebraic
function of invariants. If then the number of algebraically
independent invariants were rt'(<n), the n independent
variables would be algebraic functions of the n invariants.
This involves a contradiction. Hence :—

Theorem I. For a group of linear substitutions in n
variables there always exist systems of n algebraically inde
pendent invariants.

263. Suppose that 7r(r=l, 2, n) is such a set of n

algebraically independent invariants, and consider the simul

taneous equations
Ir = ar, 0=1, 2 n)

where the as are constants.
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If a;,■«„ x,= a„ ...,a;n = an

is a solution of these equations, so also is

x, = a,"", <c2= a,(S), . . ., xn = an(s),

where S is any substitution of the group.

Two such solutions will be called "equivalent"; and the
solutions that arise, when for S is taken each substitution of the
group in turn, will be called a system of equivalent solutions,
or more shortly a " system."

In general a,, Oi, an are algebraic functions of the a's.
A system of solutions for which this is the case will be called a
variable system. The n equations may however also admit

systems of solutions which are independent of the a's. Such

systems will be called fixed systems. The number of distinct
variable systems of equivalent solutions that the n equations
admit is necessarily finite; and, when different values are

assigned to this number must have a greatest
value M.

Suppose now that J is any other invariant. It is connected
with Ii, /2, /n by an irreducible equation

/(/,,/„...;/,, J) =o.
When the values Oi, a„, an are assigned to /„ /2, /n,
the invariant J as determined directly from this equation is
an algebraic function of a,, a2, an. It is possible however
to determine J by first determining the variables from

I! = <Zi, /i = oi, . . ., ln = On,
and then substituting their values in the expression for J.
When this is done the variable systems give for J an algebraic
function of Oi, a„ an; but the fixed systems give values forJ which are independent of alt a2, an. Since the same
value of J arises from all the equivalent solutions contained in
any variable system, it follows that the degree in J of the
equation

f(ti,it,...,jn,j)
cannot exceed M*.
* In connection with the point here discussed the reader should compare

the investigation of a similar but more general question in article 79 of Dr
H. F. Baker's Multiply periodic function (1907).
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Suppose now the a's are such that the equations

Ii = a, , /s = (ii, ...,/n = an
have M distinct variable systems of solutions ; and denote by

x, = atl, xt=att, ...,xn = atn, (t=l, 2, ...,M)

a solution belonging to the <th system.

Take MN distinct arbitrary constants

hs(t = l, 2,...,M; S = SltSt SN)

and a rational function F(x,t x„ xn) such that

These conditions can certainly be satisfied by taking for F a
polynomial of sufficiently high degree. Further denote the
invariant

UF(x^\ x^,...,xn^)
8

by In+1. Then if the constants kts are chosen so that no two
of the M numbers Wkts are the same, the invariant /n+1 takes

s

M different values for the M distinct variable systems of
solutions of

11 = ttl, It = fti, . . . , In = <'n-
Hence the irreducible equation

4i C!, Ilt..., In, ^n+1) = 0
connecting In+1 with the previous n invariants is of degree M
in In+1. To a set of values of the n + l invariants, consistent
with the equation

tf
i = 0,

there therefore corresponds just one variable system of values
for the variables, and therefore just one value of any other
invariant. Every invariant can therefore be expressed ration

ally in terms of /,, i„ ...,/n, /n+1. Hence:—

Theorem II. Given a set of n algebraically independent
invariants o
f a group o
f linear substitutions on n variables, it

is always possible to determine an (n + l)th invariant such
that every invariant is rationally expressible in terms o
f the
set o
f n+l invariants so formed.
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264. Let
Ir=fr(Xl, xt,...,xn) (r = l, 2, ...,n + 1)

be a set of invariants in terms of which every invariant of a
group of linear substitutions on the n variables is rationally
expressible, and let

/„,...,/n+1) = 0

be the irreducible algebraic equation connecting them. If there
is a set of n (not n + 1) invariants in terms of which every in
variant of the group is rationally expressible, there must be n
rational functions of/,, /„ /n+,, viz.

Ji = F,;(/„/„.. ., In+i), (' = 1,2 7
1
)

such that, in virtue of the equation
tf
l = 0
,

each / can be rationally expressed in terms of the J's.
For the case n=2 this is always possible. In fact Prof.

Castelnuovo* has proved the much more general theorem
that if

*1=/i («, v ), xt =/2 («, v)
,

xt =/, (m, v)
,

where /,, f„ /, are rational functions, then there are always
two rational functions of x,t x„ xt in terms of which x,t xt, xt
can themselves be expressed rationally. From this it follows
that for a group of linear substitutions on 2 variables there
are always two invariants in terms of which all others can be

expressed rationally.

For a group of linear substitutions on 3 variables, which
contains no self-con/ugate substitutions, the possibility of always
obtaining a set of three invariants in terms of which all others
are rationally expressible may be deduced from Castelnuovo's
theorem. Examples of such sets are given below. For groups
on more than 3 variables it is not at present known whether
such reduction is always possible or not.

265. Just as a group of linear substitutions on n variables
determines a class of rational functions which are invariant for
the group, so a given set of rational functions of n variables
defines a certain group of linear substitutions on the n variables
* " Sulla razionalita delle involuzioni piane," Math. Ann. Vol. xi.iv.
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that consists of all those substitutions for which each of the

functions is invariant. This group may consist of the identical
substitution only; and on the other hand may be a group
whose order is not finite.

For a group G of finite order the question arises as to
whether the class of functions which are invariant for G may not
be invariant for some greater group containing G. The pre
ceding investigation shews immediately that this question
must be answered in the negative. Let

be the set of invariants of G, considered in § 263, in terms of

which all the others are expressible rationally; and suppose
that the first n of them are invariant for a greater group H
containing G as a group of index fi. The equations

Ir = ar, 0= 1, 2 n)

which give M systems of values of the variables for G, will give
M/fi systems for H. Hence if In+l is also invariaut for H,
it will take at most M/fi values when the other invariants
are given. The supposition that all the n + 1 invariants for G
are also invariant for H leads therefore to a contradiction.
Hence:—

Theorem III. The class of rational functions which are
defined as the invariants of a group of linear substitutions G,
themselves define G as the greatest group of linear substitutions

for which they are invariant.

Corollary. If the greatest common factor of the degree of
the homogeneous invariants of a group of linear substitutions is

greater than unity, the group must contain self-conjugate sub
stitutions which multiply every variable by the same root of

unity. In fact if the degree of every homogeneous invariant is
a multiple of p, the substitution

x{ = aw<, top = 1, (i = 1, 2, n),

leaves every invariant unchanged and therefore by the theorem

belongs to the group.

266. In illustration of the preceding results we will now
take some particular cases. Consider first the irreducible group



302 [266EXAMPLES OF

of order 2n on 2 variables, generated by the substitutions

x' = tox, y'=«i-iy;
and x = y, y' = x ;

where to" = 1.

The simplest invariants are obviously xy and of1 +yn. Now
the equations

xy = alt xn + yn = 0?

have, for general values of a, and a,, just 2n solutions which
form a single system. Hence every invariant of the group can

be expressed rationally in terms of these two.

As a second example we take the irreducible representation
of the alternating group of degree 5 as a group of linear
substitutions on 3 variables (§ 232). It is generated by

xd = x2, Xi' = tox,t xj — ;

and \J5xn'= x„ +xt, to*=1,

t/ox/ = 2*0 + (a>2 + to-i) Xi + (a> + a>-1) <r2,

V5#2' = 2x0 + (ol + a>-1) + (o>s + o>-a) a;2.

The substitution of order 2 which transforms

#o' = xn, xl = ftJ^D xt' = o>-1a;s

into its inverse must change <r„ into — x0; and therefore av* is

invariant for a sub-group of order 10, and takes just six values
under the substitutions of the group. These are

*o2, \ (*o +to"£, + »-na;2)2. (n = 0, 1 , 2, 3, 4)

The symmetric functions of these six quantities are therefore
invariants of the group.

It is easily verified that the sum of their squares and the
sum of their fourth powers are not algebraically independent of
the sum of the first powers and the sum of the cubes; while
the sum of the fifth powers is algebraically independent of the

simpler symmetric functions. Hence
4

/, = 5x2 + 2 (x0 + anx, + to-nxt)\
0

4

/t = &X* + 1 (.T0 + »"*, + O>-"^)6,
0

4

fw = 55aV + 2 (x0 + tonx, + »-"*,)10
o
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is a set of algebraically independent invariants. The set of

equations

fi=Oi, yt=a6, /i
o = Oio

admits 120 solutions forming two systems, and therefore every
other invariant must be connected with /2,/t,/io by an equation
of the first or second degree.

Since the group is simple, so that there can be no relative
invariant, the Jacobian of /„ /„ Jw is an absolute invariant.
Its degree is 15, and therefore it cannot be rationally expressed
in terms of ft,ft, fw. Hence if the Jacobian be denoted b

y /„,
every invariant can be expressed rationally in terms of

fit /», yioi fu\
and these are connected b

y an algebraic equation which is

quadratic in fu.
Consider now the three invariants

jr — /t 7 — /it j — fio/t

The equations l1=a1, /j=a,,

being homogeneous equations of degrees 6 and 10 in the
variables, determine 60 values of the ratios For

given values of the ratios, the further equation

I* = ai
determines a;„, xlt xt uniquely. Hence to given values of

-fi. 12, Is there corresponds a single system of values of the
variables. It follows that every invariant of the group can be
expressed rationally in terms of /„,

267. For the simple group of order 168, expressed as a
group of linear substitutions on 3 variables as in § 232, the

generating function for determining the numbers of invariants
of various degrees (§ 227) i

s

1 f 1_ 21 _56^ 42

168 [(
1 -xf+ (1 -x)(l -a?)+ I -^(l -*)(1 +*i)
24 24 "I

+

(1

- ax) (1 - a'x) (1 - a4x) (1 - c?x) (1 - a'x) (1 - a*x) \

= 1 +xi + x°+x? + xw+2x"+2xlt+ ....
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This indicates the existence of invariants of degrees 4, 6, 14
which are rationally independent. Now for the substitution

x,' = axlt = a'x^ , x,' = a'xt, a7 = 1

the only invariants of degree 4 are x1xf, xtx,' and xtx2. The
only linear function of and xtxf, which is invariant
for the other generating substitution of the group, is found to be

rp n* S I »i r**2 j ™>r,i 2J l ti*\ 1 '' ^^'2 1 '<2'' 1 .

Denoting this by ft
,

its Hessian (which since the group is

simple is necessarily an absolute invariant) is of degree 6 and
may be denoted b

y /,. From the above considerations it is the
only invariant of degree 6

.

Every covariant of /t and /, is an
absolute invariant of the group. Denote b

y

fu the covariant

dfi

dfi
d.r2

dfi
dx,

9*2 dxt

It will be found on calculating its leading terms that it

does not vanish identically. Moreover as will be seen im

mediately it is algebraically independent of ft and Hence

fi, fi and fu are the only rationally independent invariants
whose degrees do not exceed 14. Now when the Jacobian of

fi, fi, fu is calculated it is found not to be identically zero.
Denote it by fa. Being of odd degree it cannot be expressed
rationally in terms of ft, /t,/». The equations

fi = a. ft = fu = c

determine 2.168 sets of values of the variables forming two
systems. Hence the equation connecting ft, f„ fi„ fn is of
degree 2 in fi, and every invariant can be expressed rationally
in terms of these four. Finally if

dfi dfi4 *f4
dx2 dXidxt dxt dxt

Vfi Vfi wt
dXidXi dx^dx,

dfi dfi dfi
dx1 dxt dxtdxt dxt2

dfi dfi d
fi

d.r.2 dx„

fi
.

t — /»
tr 2 fifr



268] 365INVARIANTS

the equations
i,=a,, /, = as

determine just 168 values of the ratios and when the

ratios are known
12= o.2

determines x,t xtt x, uniquely. Hence

I1 = al, 72 = a2, I2 = <h

determine just one system for the variables, and therefore every
other invariant of the group is expressible rationally in terms
of these three.

268. In the last two examples, the groups of sub
stitutions (birational) on the ratios of the variables are simply
isomorphic with the groups of linear substitutions themselves,
and the groups have invariants of degree 1 in the variables.
If the group of linear substitutions has self-conjugate sub
stitutions and is irreducible, these conditions are not satisfied.
As a further example we will consider a simple case of such
a group. The two substitutions

Xq — Xl , Xi — X2 , X} — Xq i

and x0' = Xt,, x-[ = <ux1 , = afx^ ; oi* = 1 ;

generate a group of order 27. Its invariants are obviously
xyz and all symmetric and alternating functions of a?, y2 and
ai. The three invariants

a = x2 + y2 + z2,

b = ifz? + s?a? + x2y2,

c = xyz,

are algebraically independent, and to given values of them

there correspond two systems for the variables. If
d = (x2 + toy2 + toV)',

d is invariant, and it will be found that

d2 - d (2a2 -9ab + 27ci) + (a2 - Sbf = 0.
Hence every invariant of the group is rationally expressible in

terms of a, b, c and d. If, in this case again, there are three
invariants in terms of which all invariants of the group are
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rationally expressible, there must be three rational functions of
a, b, c, d in terms of which, in virtue of the preceding equation,
a, b, c and d can be expressed rationally.

Now if
d (a'-36)2

(a' - 36) (a - 3toc) - d (a - 3«'c) ~
the equation may be written

u (a - 3»c) + v (a - 3<b2c) - - (a - 3c) - 3a = 0,
+ v - — - 3

or c =

a

3 ftou + ais» ^

Hence 6, c and d can be expressed rationally in terms of a, u
and v. It follows that ,

a* + yi + *i,

(a? + coy2+ «V)2
(a? + + tb«s) (a? + yi + ^ - 3(oxyz) '

(a? + to2y' + oli2)'

(x' + 6ly2 + uV) (a? + y2 + ^ - Stfxyz)
is a set of three invariants in terms of which all the invariants
of the group can be expressed rationally.

269. From the equations

xj = 'Zaijxj, (».i=l, 2,..., n)i
defining a linear substitution, there follow the equations

— «2 —
dxi j dxj

giving the relations between differential coefficients with re

spect to the old and new variables. This is equivalent to the
statement that if the variables a;< undergo any substitution of

a group G, then the operators ^— undergo the corresponding

substitution of the transposed group 0t. Suppose that

^. = ?ai'5^, ftj- 1,2, ...,.)
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F(x,t xt, xn) is an invariant for G. Then it follows that
when the x's undergo any substitution of G, the n functions

dF dF dF-
dxi
'
dxt
' " '

dxn
'

undergo the corresponding substitution of Gt. If when new
variables £<(» = 1, 2 n), linearly independent linear functions
of the x's, are taken G becomes G' and F(x,t xt, xn) be

comes F'(f-lt f„ fn), then when the fs undergo any
substitution of G', the n functions

d_F dF dF
afc' af,

undergo the corresponding substitution of Gt'. Suppose now
that in the function F' only the first s actually occur. Then
since

dF dF dT
o o 0

at,* 3f,' ...* at/ ' ' .

undergo formally the substitutions of Gt', this group and there
fore also G' must be reducible, transforming the first s fa
among themselves. Hence :—

Tbeorem IV. If G is an irreducible group of linear
substitutions on n variables and if F is an invariant for G, it is
not possible, by any linear substitution performed on the variables,
to express F as a function of less than n variables.

270. A group of linear substitutions in which all the
coefficients are real has obviously at least one quadratic invariant

(see Ex. 2, p. 268). The conditions under which an irreducible

group of linear substitutions may have a quadratic invariant

(by the preceding result there cannot be more than one)
can be expressed in a form which depends only on the
characteristics.

Suppose that for an irreducible group of linear substitutions
G, the quadratic function F(x,t xt, xn) is invariant. Then
when the x's undergo the substitutions of G, the n linear
functions of the x's

dF- dF d-F
dx1
'
dxt
' '

dxi
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undergo the corresponding substitutions of the transposed
group Ot. Hence G and Gt are equivalent. Now it has been
seen that in any case Gt and G, the conjugate group, are

equivalent; and therefore G and G are equivalent. The
characteristics in G must therefore be real.

Now in § 227 we have obtained an expression for the
number of invariants of any given degree m in the variables,

which may be written

.tym(S) being the sum of the homogeneous products of m
dimensions of the multipliers of S. If to,, ol„ ton are the

multipliers of S,

2ft (S) = (O>, + 0>2+ ... + (o,,y + + 0>,'+ ...+»n'

Hence the number of quadratic invariants is

Now (§218) for a group which is equivalent to its conjugate

s

The number of invariants is therefore

1 1 -
2+2T?^-

This number is either zero or unity. Hence for a group
which is equivalent to its conjugate S^tis either ± N ; and

s
the condition that the group should have a quadratic in
variant is

s

The simplest instance of an irreducible group whose character
istics are real, for which there is no quadratic invariant, is given
by the quaternion group in two variables. This is generated by

and = SB,, xj = — xv
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The characteristics of the five conjugate sets are 2, - 2, 0, 0, 0; and
2 Xs' = - 8-
s

271. A quadratic invariant of an irreducible group of
linear substitutions stands in a different relation to the group
from that of the other invariants. In fact a quadratic function
of n variables has no covariant which is algebraically independent
of itself; and it is invariant for a group of linear substitutions
whose order is not finite. Thus

Xi2 + atf+ ...+#n'

is invariant for the linear substitution

ml = 1 (Hj x} , (t
, j = 1, 2 n
)

}

if 2O<,2 = l and 2 a„ Oit = 0, (s 4= 0

i i

and these equations are known to have an infinite number of

solutions.

On the other hand, a homogeneous function f of degree
m(> 2), which is not the product of homogeneous functions of

lower degree, has in general* an algebraically independent
system of covariants ; so that covariants /,, ft, .... /n-, can in
general be found such that the system of equations

/=a., /."2. = a. = On-,,

where the a's are assigned constants, have only a finite number
of solutions. Now if f is an invariant of a group of linear
substitutions of the variables, the covariants of f are absolute
or relative invariants for the same group, and suitably chosen

powers of them are absolute invariants. If the group were not
of finite order, there would arise from any set of values of the

variables satisfying the above equations an infinite number of

sets of values, in contradiction of the fact that the equations
have only a finite number of solutions.

Hence, in general, any homogeneous invariant, of degree

greater than two, of a group of linear substitutions, which is not

* Tbat there are exceptions to this statement is well known. For instance,
any invariant of a general quantic, when in it the coefficients are regarded as
independent variables, gives an exception.

B. 24
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expressible as a product of factors of lower degree, will, in the

sense of § 265, determine either the group itself or a group of

finite order containing it.

272. Ex. 1. Prove that if

xl + xi + xl + xA = s, xl + xi —«,-*, = z,,

«! + X, - - Xt = Z2, X, + *4
- X, - X, =

Zj' + + 2j' = a, «i4 + Zj* + V = b,
(«," + tor,* + (us23a)s

= c, z,z,z, = d,

oj;,= 1,

then all the invariants of the alternating group in xlt x,, xz, sc4 can
be expressed rationally in terms of s, ajd, b/d, c/d.

Ex. 2. Shew that for the group of order 20 generated by the
two substitutions

x1' = o>x1, «,' = (oaa^, Xj' = <o^c,, xt'
= <o'xt; of=l

and x-l = x„ xj = a;3, a;,' = xt, xt' = ;

four invariants in terms of which all others can be rationally
expressed are

xlx2 avej x1pci xfr
-r -r -r I

X± Xy X} Xj

fX-fl^ . XfKt . S^ft\
I + t I I ,
\ Xi Xy X% Xj /

Xt Xy Xt XsJ\xt Xy X% X,J'

and (XlX* + i X*K3 _ XsX* _ { X*K'\ (xix? _ ^ "V-a _ x*c* + ^x*ci\
\ *4 «i aSa «j / \ *i a~i Xf J'

where ia = — 1.

Ex. 3. Shew that for the sub-group of order 10 of the group in
the previous example, a;,^,, a:,5 + a^5, x^x^ + x£xt , xli.vl + a%'a^ is a set
of invariants in terms of which all can be rationally expressed.

Ex. 4. The sub-group of a transitive permutation-group, which
leaves one symbol unchanged, permutes the symbols in m transitive
sets. Prove that if the order of the group is odd, it has J (m + 1)
independent quadratic invariants ; and that if the order is even the
number of quadratic invariants is greater than £ (m + 1).
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Ex. 5. Determine the group of linear substitutions for which
afy + y5* + &x is invariant.

Ex. 6. Prove that

x' =
Yi(x +
y-iz + it)' y' = ^(*-y-*2-i*)i

*' = 2j(-a;-y-w + i<)i *' =
^ (- a; + y
- i» - i<X

is a substitution of order 5 for which the homogeneous quartic
function

x4 +y4 + «4 + t4+ l2xyzt

is invariant. Hence prove that this expression is invariant for
a group of linear substitutions of order 2". 120, which contains a
self-conjugate substitution of order 4.

(From this it follows that the quartic surface

x4 + + t4 + Vixyzt = 0

is invariant for a group of 24. 120 collineations. It may be shewn
that no quartic surface which is not protectively equivalent to the
above admits so large a group of collineations of finite order for
which it is unaltered.)

Ex. 7. Prove that the necessary and sufficient condition that
an irreducible group T of odd order shall have a cubic invariant is
that r(s) and T are equivalent.

Ex. 8. Shew that the group of linear substitutions on a;,1, xf, a:,*
xjc2, x#slt x1xtt when x,t xt, xt undergo the substitutions of the
second group of § 232, is irreducible. Prove that this group of
linear substitutions on 6 symbols has an invariant of degree 3
which does not possess a system of algebraically independent
covariants.

24—2



CHAPTER XVIII.

ON THE GRAPHICAL REPRESENTATION OF A GROUP*.

273. Our discussions hitherto have been confined mainly
to groups of finite order. When however, as we now propose
to do, we consider a group in relation to the operations that

generate it
,
it becomes almost necessary to deal, incidentally

at least, with groups whose order is not finite; for it is not
possible to say a priori what must be the number and the
nature of the relations between the given generating operations,
which will ensure that the order of the resulting group is finite.

Many of the definitions given in respect of finite groups

may obviously be extended at once to groups containing an
infinite number of operations. Among these may be specially
mentioned the definitions of a sub-group, of conjugate opera
tions and sub-groups, of self-conjugate sub-groups, of the
relation of isomorphism between two groups and of the factor-

group given by this relation. In regard to the last of them,
the isomorphism between two groups, one at least of which

is not of finite order, may be such that to one operation of

the one group there correspond an infinitely great number of

operations of the other. On the other hand, all the results
obtained for finite groups, which depend directly or indirectly
on the order of the group, necessarily become meaningless when
the group is not a group of finite order.

* The investigations of this Chapter are due to Dyck, " Gruppentheoretische
Studien," Math. Ann., Vol. xx (1882), pp. 1—U. We have followed Dyck's
memoir closely except in two respects. Firstly, we have used a rather more
definite geometrical operation than that of the memoir ; and secondly, we have
not specially considered a regular and symmetric division of a closed surface,
apart from a merely regular division.
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274. Suppose that
$1, $2, ..., $n

represent any n distinct operations which can be performed,
directly or inversely, on a common object, and that between
these operations no relations exist. Then the totality of the

operations represented by

...Sp"s/sry...,
where the number of factors is any whatever and the indices

are any positive or negative integers, form a group G of infinite

order, which is generated by the n operations. If, moreover,
whenever such a succession of factors as SpaSp* occurs in the

above expression, it is replaced by Spa**, each operation of the

group can be expressed in one way and in one way only by an

expression of the above form, which is then called reduced.

It will sometimes be convenient to avoid the use of negative
indices in the expression of any operation of the group. To this
end we may write

SlSt. ..SnSn+1 = E,

so that ,Sih-i is a definite operation of the group ; then

Sr-1= Sr+1Sr+i...SnSn+1S1...Sr-1, (r = 1, 2, ...,n).
By using these relations to replace all negative powers of

operations wherever they occur, we may represent every

operation of the group in a single definite way by means of
the n + 1 operations

Si, St, ...,Sn, Sn+1,

with positive indices only.

The group, thus defined and represented, is the most

general group conceivable that is generated by n distinct

operations. Any two such groups, for which n is the same, are
simply isomorphic with each other.

Suppose now that
$n St Sn

represent n distinct operations, but that, instead of being entirely

independent, they are connected by a relation of the form

which will be represented by
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If G is the group generated by these operations, an iso
morphism may be established between G and (r by taking Si

(* = 1, 2, ...n) as the operation of 0 that corresponds to the
operation S

,- of G.

Then to every operation of G

...sss/ss...
will correspond a single definite operation

...Sp'SfSry...

of 0; for tbe supposition that two distinct operations of G

correspond to the same operation of G leads to the result that
between the generating operations of G there is a relation,

which is not the case. On the other hand, to the identical

operation of there will correspond an infinite number of
distinct operations of G

,

namely those which are formed by

combining together in every possible way all operations of G of

the form

where R is any operation of G. These operations of G form
a self-conjugate sub-group H, and the corresponding factor-
group G/H is simply isomorphic with 0

.

If between the generating operations of Q there are several
independent relations

MSi) = E, /,(&) = #,..■,/»

it may be shewn exactly as before that the groups G and G are
isomorphic in such a way that to the identical operation of G

there corresponds that self-conjugate sub-group of G
,

which is

formed by combining in every possible way all the operations
of G of the form

R-tfjWR, (j = l,2,...,m).

275. We may at once extend the result of the preceding
paragraph in the following way :—

Theorem I. If G is the group generated by the n operations
$li • • •>$n>

between which the m relations

/, (S{) = E, /2 (S^ = E,...,/m (Si) = E,
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exist ; and if @ is the group generated by the n operations
Si, Sit Sn,

which are connected by the same m relations

f,(St) = E,...,

as hold between the generating operations of G, and by the

further m relations

9l fa) = E, g, (Si) = #,..., sw (S~{) = E;

then @ is simply isomorphic with the factor-group G/H ; where
H is that self-conjugate sub-group of G, which results from com
bining in every possible way all operations of the form

R-tyWR, (j=l,2,....m').
R being any operation ofG.
In proving this theorem, it is sufficient to notice that, if we

take Si(i = 1, 2, n) as the operation of G which corresponds
to the operation Si of G, then to each operation of G a single
definite operation of G will correspond, while to the identical

operation of G there corresponds the self-conjugate sub-group
H of G.

The theorem just stated is of such a general nature that it is
perhaps desirable to illustrate it by considering shortly some simple
examples.

Let us t&ke first the case of a group G, generated by two in
dependent operations £, and S2, subject to no relations ; and let us
suppose that the single relation

holds between the generating operations of G. The self-conjugate
sub-group II of G then consists of all the operations

...Oj Oj ...

of G which reduce to identity if we regard <
S
j

and S
2 as permutable ;

or, in other words, of those operations of G for which the relations

2^ = 0
,

2^B = 0

simultaneously hold.

In respect of this sub-group, the operations of G can be divided
into an infinite number of classes of the form
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For the operations of the class SfSfH, multiplied by those of
the class SfS/H, give always operations of the class

SfSfSfSfH,
since H is a self-conjugate sub-group ; and, because

SfSfSfSf = S1>+*. St-'SfSfS,-* . Sf+*,
while Srp'S2qSfS2-* belongs to H, the class SfSfSfS/H is the
same as Slp*p'S£+'iH. Hence the operations of any two given classes,
multiplied in either order, give the same third class ; and therefore
the group G/H is an Abelian group generated by two permutable,
but otherwise unrestricted, operations.

As a second illustration, we will choose a case in which G is of
finite order. Let G be generated by the operations S and T, which
satisfy the relations

S2=E, T'=E, (ST)2 = E-

and for G, suppose that the generating operations satisfy the addi
tional relation

(STi)'=E.
Then H is formed by combining in all possible ways the

operations
R-1 (ST2)2 R.

Now it may be easily verified that, in G, the operation ST2
belongs to a set of three conjugate operations

ST2, TST, T2S;

and that these three operations are permutable among themselves,
while their product is identity. Hence H consists of the Abelian
group whose operations are

(STT(TST)*>, (a,/3 = 0, 1, 2, ...);

and in respect of H, G may be divided into 27 classes of the form

& (STy (TST)* H, (x
,

y, z = 0
,

1
,

2).

The group G will be defined by the laws according to which these
27 classes combine among themselves ; and the reader will have no
difficulty in verifying that it is simply isomorphic with the non-
Abelian group of order 27, whose operations are all of order 3 (§ 117).

276. For the further discussion of a group, as defined by its

generating operations and the relations between them, a suitable

graphical mode of representation becomes of the greatest assist
ance. To this we shall now proceed.

In the simple case in which the group is generated by a
single unrestricted operation, such a representation may be
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constructed as follows. Let (7
,

and (7-, be two circles which
touch each other; (7

2 and C-2 the inverses of CL, in (7
i and (7
i

in ; C
2 and CL2 the inverses of CL2 in (7
i and (7
2 in CLi, and

so on. These circles (fig. 1
) divide the plane in which they are

drawn into an infinite number of crescent-shaped spaces. Sup
pose now that the space between and CL, is left white, and
the spaces between C

l and C
s and between CL} and CL2 (on either

side of this white space) are coloured black; the next pair on
either side left white, the next coloured black, and so on. Then

any white space may be transformed into any other (and any
black into any other) by an even number of inversions at

Fig. L

the circles (7—i and C^; and if S denote the operation consist
ing of an inversion at CL, followed by an inversion at Ci,
the space between and (7

, will be transformed into
another perfectly definite white space by the operation Sn,
while conversely the operation necessary to transform the space
between CL! and (7

, into any other given white space will be a

definite power of S
. Hence if one of the white spaces, say

that between CL, and Clt is taken to correspond to the identical

operation, there is then a unique correspondence between the
white spaces and the operations of the group generated b

y

the unrestricted operation S; and the figure that has been
constructed gives a graphical representation of the group.
It should be noticed that the actual geometrical process of
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inversion, which has been here used to construct the spaces

corresponding to the operations of the group, is in no way
essential to the graphical representation. It is however con
venient as giving definiteness to the construction; and later,

when we deal with the case of a general group, such definite
ness becomes almost a necessity.

In a precisely similar manner, the group generated by a
single operation S, satisfying the relation

Sn = E,

may be treated. In this case, we take two circles CLi and (7
,

intersecting at an angle ir/n, and from these form, as before,

Fig. 2.

the circles obtained by successive inversions. This gives a
finite series of n circles, each of which intersects the two next
to it on either side at angles ir/n, while the n circles divide the
plane into 2n spaces. If these are left white and coloured
black in alternate succession, and if one of the white is taken
to correspond to the identical operation, there is a unique
correspondence between the white spaces and the operations of
the group generated b
y S
,

where ,S
,

represents the result of
successive inversions first at CLi and then at (7,.
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This operation obviously satisfies the relation

S"= E

and no simpler relation; so that the figure gives a graphical

representation of a cyclical group of order n.

The systems of circles in figures 1 and 2 have a common

geometrical property which may be noticed here as it will be of
use in the sequel. Successive inversions at any one of the pairs

t7-i! and Glt Gl and G2, (7
2 and C
s are equivalent to the operation

S
;

and therefore successive inversions at G-i and Gr are equi
valent to the operation Sr. Hence the result of an even

number of inversions at any of the circles in either figure is

equivalent to some operation of the group that the figure
represents.

277. We may now proceed to construct a graphical repre
sentation of the group which is generated by n operations

subject to no relations. To this end, suppose n + 1 circles
drawn, each of which is external to all the others while each

touches two and only two of the rest. Such a system can be
drawn in an infinite variety of ways: we will suppose, to give
definiteness and simplicity to the resulting figure, that the

n + 1 points of contact lie on a circle, which cuts the n + 1
circles orthogonally. If these n + 1 points taken in order are
Alt A„ An+lt the successive circles are An+1Al, A,A„
AnAn+1. We will suppose that only so much of these

circles is drawn as lies within the common orthogonal circle

AiAi...AnJrl. The n+1 circular arcs An+1Alt AlA2,... then
bound a finite simply connected plane figure which we will
denote provisionally by P. Suppose now that P is inverted in
each of its sides, that the resultiug figures are inverted in

each of their new sides, and so on continually. Then from
their mode of formation no two of the figures thus arising can

overlap either wholly or in part ; and when the process is

continued without limit, every point in the interior of the

orthogonal circle AlAt...An+l will lie in one and only one of
the figures thus formed from P by successive inversions.
If AB, AG, AD are consecutive sides of three polygons

having a common corner at A, an inversion at AD is the same
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as three consecutive inversions at AG, AB, AG. Hence in
versions at the new sides of the new polygons may be expressed
in terms of inversions at the sides of P.

If P' is any one of the new figures or polygons, the set of
inversions at the sides of P by which it is derived from P is
perfectly definite. For suppose, if possible, that P' is derived

A;,

A,

Fig. 3.

from P by two distinct sets of inversions represented by 2
and 2'. Then 22'-1 is a set of inversions in the sides of P
which transforms P into itself. But every such set of inver
sions, which does not reduce to identity, necessarily transforms
P into some polygon lying outside it, and therefore

22'-1 = J?;

or the set of inversions composing 2 is identical term for term
with the set composing 2'. It immediately follows that the
polygons can be divided into two sets, according as they are
derived from P by an even or an odd number of inversions.
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The latter we shall suppose coloured black, and the former (in
cluding P) left white. Every white polygon will be surrounded
by black polygons and vice versa. Since there is only one
definite set of inversions that will transform P into any other
white polygon P', the n + 1 corners of P' will correspond one
by one to the n + 1 corners of P; and when the perimeters of
the two polygons are described in the same direction of rotation
with regard to their interiors, the angular points that correspond
will occur in the same cyclical order. On the other hand, in
order that the corresponding angular points of a white and a
black polygon may occur in the same cyclical order, their peri
meters must be described in opposite directions. In consequence
of these results, we may complete our figure (fig. 3) by lettering
every angular point of every polygon with the same letter that

occurs at the corresponding angular point of the polygon P.

278. If now Tlt T„ Tn+1 represent inversions at
AlAt2, A2A2, ... An+1Alt the operation Tr^Tr leaves the
corner Ar of P unchanged and it transforms P into the next
white polygon which has the corner Ar in common with P, the
direction of turning round Ar coinciding with the direction

An+lAn...Al of describing the perimeter of P. For brevity,
we shall describe this transformation of P as a positive rotation
round Ar. If then we denote the operation 7V-,Tr by the
single symbol Sr, we may say that Sr produces a positive
rotation of P round Ar. Let P, be the new polygon so
obtained ; and let P,' be the polygon into which any other
white polygon P is changed by a positive rotation round the
corner of P' that corresponds to Ar. Then if 2 is the set of
inversions that changes P into P', it also changes Pi intoP/: so
that 2-1<Sr2 changes P' into P/, i.e. produces a positive rotation
round the corner Ar of P'; and Sr% changes P into P/.
Let us now represent the operations

Then every operation, consisting of a pair of inversions in
the sides of P, can be represented in terms of

so that

by

n * n+1 ,
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For an inversion at ArAr+l, followed by an inversion at A,A,+1,
is given by TrT„; and

Jr» 8 — .* r * r+1 . 1 r+11 r+s . . . -* «—1-» .
=
<Sr+1 ...S,.

If s > r, this is of the form required. If a < r, the term
Sn+1 that then occurs may be replaced by

sfl-'Sn-r'...s,-'Sr'.
Hence finally, every operation consisting of an even number of
inversions in the sides of P can be expressed in terms of

iS
l
, tiit St, Sn ;

and with a restriction to positive indices, every such operation
can be expressed in terms of

Si, S2, Sn, Sn+l.

Now it has been seen that no two operations, each consisting
of a set of inversions in the sides of P, can be identical unless
the component inversions are identical term for term. Hence
no two reduced operations of the form

/(St)
are identical; in other words, the n generating operations

Slt Si, Sn

are subject to no relations.

If then we take the polygon P to correspond to the identical
operation of the group G generated b

y

Si, S2t Sn,

each white polygon may be taken as associated with the

operation which will transform P into it. The foregoing dis
cussion makes it clear that in this way a unique correspondence

is established between the operations of G and the system of
white polygons ; or in other words, that the geometrical figure
gives a complete graphical representation of the group.

Moreover, since the operation S-1iSrS is a positive rotation
round the corner Ar of the polygon 2 (calling now P the
polygon E), a simple rule may be formulated for determining
by a mere inspection of the figure what operation of the group
any given white polygon corresponds to.
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This rule may be stated as follows. Let a continuous line
be drawn inside the orthogonal circle from a point in the white

polygon E to a point in any other white polygon, so that every
consecutive pair of white polygons through which the line

passes have a common corner, a positive rotation round which

leads from the first to the second of the pair. This is always

possible. Then if the common corners of each consecutive pair
of white polygons through which the line passes, starting from
E, are Ap, Aq, Ar, A,, the final white polygon corresponds
to the operation

Sfir . . . SgSp*.

279. The graphical representation of a general group we have
thus arrived at is only one of an infinite number that could be con
structed ; and we choose this in preference to others mainly because
the form of the figure and the relative positions of the successive
polygons are readily apprehended by the eye. As regards the mere
establishment of such a representation we might, still using the
process of inversion for the purpose of forming a definite figure,
have started with n + 1 circles each exterior to and having no point
in common with any of the others. Taking as the figure P the
space external to all the circles and inverting it continually in the
circles, we should form a series of black and white spaces of which
the latter would again give a complete picture of the group. It
is however only necessary to begin the construction of such a figure
in order to convince ourselves that it would not appeal to the eye in
the same way as the figure actually chosen.

Moreover, as in the representation of a cyclical group, the process
of inversion is in no way essential to the representation at which we
arrive. Any arbitrary construction, which would give us the series
of white and black polygons having, in the sense of the geometry of
position, the same relative configuration as our actual figure, would
serve our purpose equally well

280. If 2 is the operation which transforms P into P', and
if Q is the black polygon which has the side ArAr+1 in common
with P, then 2 transforms Q into the black polygon which has
in common with P' the side corresponding to ArAr+l. If then
we take Q to correspond to the identical operation, any black

polygon will correspond to the same operation as that white

* The reader who refers to Prof. Dyck's memoir should notice that the
definition of the operation Sr above given is not exactly equivalent to that used
by Prof. Dyck. With his notation, the white polygon here considered would
correspond to the operation S„S, SrSt.
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polygon with which it has the side ArAr+1 in common. In this
way we may regard our figure as divided in a definite way into

double-polygons, each of which represents a single operation of
the group

281. We have next to consider how, from the representation
of a general group whose n generating operations are subject
to no relations, we may obtain the representation of a special
group generated by n operations connected by a series of
relations

F}{8i) = E, (j=l,2,...,m).
It has been seen (§ 274) that to the identical operation of the

special group there corresponds a self-conjugate sub-group i/ of
the general group; or in other words, that the set of operations
2.H of the general group give one and only one operation in the

special group.

Hence, to obtain from our figure for the general group one

that will apply to the special group, we must regard all the

double-polygons of the set as equivalent to each other;
and if from each such set of double-polygons we choose one as
a representative of the set, the totality of these representative
polygons will have a unique correspondence with the operations
of the special group.

We shall first shew that a set of representative double-

polygons can always be chosen so as to form a single simply
connected figure. Starting with the double-polygon, P,, that
corresponds to the identical operation of the general group as
the one which shall correspond to the identical operation
of the special group, we take as a representative of some
other operation of the special group a double-polygon, P„
which has a side in common with P,. Next we take as
a representative of some third operation of the special group
a double-polygon which has a side in common with either

Pi or Ps; and we continue the choice of double-polygons
in this way until it can be carried no further. The set of
iouble-polygons thus arrived at of necessity forms a single

dimply connected figure C, bounded by. circular arcs ; and no

two of the double-polygons belonging to it correspond to the
same operation of the special group. Moreover, in G there is
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one double-polygon corresponding to each operation of the

special group. To shew this, let C be the figure formed by
combining with G every double-polygon which has a side in

common with G; and form G" from C", C" from G", and so on,
as C has been formed from C. From the construction of G it
follows that every polygon in C is equivalent, in respect of the
special group, to some polygon in C. Similarly, every polygon
in C" is equivalent to some polygon in C and therefore to some
polygon in C; and so on. Hence finally, every polygon in the
complete figure of the general group is equivalent to some

polygon in G, in respect of the special group; and therefore,
since no two polygons of G are equivalent in respect of the

special group, the figure C is formed of a complete set of repre
sentative double-polygons for the special group.

Suppose now that S is a double-polygon outside G, with a

side Ar'A'T+1 belonging to the boundary of C. Within G there
must be just one polygon, say ST, of the set SH. If this
polygon lay entirely inside C, so as to have no side on the

boundary of G, every polygon having a side in common with it
would belong to C. Now since S and ST are equivalent, every
polygon having a side in common with S is equivalent to some
polygon having a side in common with ST. Hence since C

contains no two equivalent polygons, ST must have a side on
the boundary of C; and if this side is Ar"A"r+1, the operation T
of H transforms Ar'A'r+1 into Ar"A"r+l. Moreover, no operation
of H can transform AT'A'r+1 into another side of C; for if this
were possible, G would contain two polygons equivalent to S.
It is also clear that, regarded as sides of polygons within G,
Ar'A'r+1 and Ar"A"T+1 belong to polygons of different colours.
Hence a correspondence in pairs of the sides of G is established :
to each portion Ar'A'r+1 of the boundary of C, which forms
a side of a white (or black) polygon of G, there corresponds
another definite portion Ar"A"r+1, forming a side of a black (or
white) polygon of G, such that a certain operation of H and its
inverse will change one into the other, while no other operation
of H will change either into any other portion of the boundary
of G.

The system of double-polygons forming the figure G, and
the correspondence of the sides of C in pairs, will now give a

b. 25
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complete graphical representation of the figure. For the figure
has been formed so that there is a unique correspondence
between the white polygons of G and the operations of the

group, such that until we arrive at the boundary the previously
obtained rule will apply; and when we arrive at a polygon on
the boundary, the correspondence of the sides in pairs enables
the process to be continued.

282. From the mode in which the figure C has been formed,
no two of the figures CH can have a polygon in common, when
for H is taken in turn each operation of the self-con/ugate
sub-group H of the general group G ; also the complete
set contains every double-polygon of our original figure. This
set of figures, or rather the division of the original figure into
this set, will then represent in a graphical form the self-con
jugate sub-group H of G. Moreover, the operations which
transform corresponding pairs of sides of C into each other will,

when combined and repeated, clearly suffice to trausform C into

any one of the figures CH and will therefore form a set of
generating operations of H.

283. A simple example, in which the process described in the
preceding paragraphs is actually carried out, will help to familiarize
the reader with the nature of the process and will also serve to
introduce a further modification of our figure. The example we

propose to consider is the special group with two generating operas
tions which are connected by the relations

82 = E, S2 = E, Sl St ==tS^S) .

As a first step, we will take account only of the relation

and form for this special group the figure C. All operations

S^Sfn ,

for which 2an and 2/3n have given values, are in the special group
identical. We may thus select from the figure for the general
group the set of polygons

StaSf (a, /8 = - oo to + oo )
as a set of representative polygons; and a reference to the diagram*
(fig. 4) makes it clear that this set of polygons forms a figure with
a single bounding curve. The black polygon which corresponds to
the operation 2 has here been chosen as that which has the side

AlAt in common with the white polygon 2.
* In fig. 4 the orthogonal circle, which is not shewn, is taken to be a straight

line.
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Each double-polygon, except those of the set S™, contributes two
sides to the boundary of C, one belonging to a white polygon and
one to a black. The polygons, which border C and have sides in

common with SfSJ, are Sjti'S^ and Sx~lSfSJi and these, regarded
as operations of the special group, are equivalent to S3"S^+1 and

SfSf-1. Hence the correspondence between the sides of C is such
that

(i
) to the side AxAf of the white polygon SfSf corresponds the

side AxAs of the black polygon S°S^~' ;

(ii) to the side AxAt of the black polygon SfSf corresponds the
side A,A3 of the white polygon S*Sf+K

When we now take account of the additional relations

Si =-E, 8f = E,

Fig. 4.

the figure C is found to reduce to a set of nine double-polygons,
which is completely represented by fig. 5

.

In addition to the correspondences between the sides of C to
which those just written simplify when the indices of »

S
'i

and $
2 are

reduced (mod. 3), we have now also the correspondences, indicated
in the figure by curved lines with arrowheads, which also result from
the new relations. Our figure may be further modified in such a way
that its form takes direct account of these four new correspondences.
Thus without in any way altering the configuration of the double-
polygons, from the point of view of geometry of position, we may
continuously deform the figure so that the pairs of corresponding
sides indicated by the curved arrowheads are brought to actual
coincidence. When this is done, the resulting figure will have the
form shewn in fig. 6
. The correspondence in pairs of the sides of

the boundary is indicated in the figure by full and dotted lines.

25—2
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The two unmarked portions A^Ai correspond, as also do the two
similar portions marked with a full line, and the two marked with a
dotted line.

It will be noticed that, in this final form of the figure for the
special group, direct account is taken of the finite order of the
generating operations St and and also of the operation . The
simplification of the figure that results by thus taking account
directly of the finite order of the generating operations, and the
greater ease with which the eye follows this simplified representa
tion, are immediately obvious on a comparison of figs. 5 and 6.

Fig. 6.

284. In the applications of this graphical representation
of a group that we have specially in view, namely to groups
of finite order, the generating operations themselves are

necessarily of finite order. The generating operations

Si, S2, ...,Sn.

of such a group may be taken as of orders

m,, m2, ...,mn;
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and if S1S2...SnSn+1 = E,

then Sn+l will be of finite order mn+1. We shall therefore next
consider a group generated by n operations which satisfy the
relations

Sfi-B, Sjt2 = E Sn"n = E, (S1S1...Sn)mn« = ^.

The simple example we have given makes it clear that,
at least in some particular cases, relations of this form may
be directly taken into account in constructing our figure ; in
such a way that in the complete figure, consisting of a finite or
an infinite number of double-polygons, the correspondence in

pairs of the sides of the boundary, if any, will depend upon
further relations between the generating operations.

We may, in fact, always take account of relations of the
form in question in the construction of our figure as follows.

Let us take as before n + 1 arcs of circles

.^n+l-^lt -^l^si ...• ^n-i-^ni AnAn+1,

bounding a polygonal figure P of n + 1 corners ; but now,
instead of supposing the circles Ar-iAr and ArAr+1 to touch at
Ar, let them cut at an angle (measured inside P) of ir/mr,
(r= 1, 2, n), while AnAn+1 and An+1A1 cut at an angle

Wwn+1- Such a figure can again be chosen in an infinite

variety of ways; and we will suppose that it is drawn so that the
n + 1 circles have a common orthogonal circle. This clearly is
always possible ; but it is not now necessarily the case that this
orthogonal circle is real. Let the figure P be now inverted in
each of its sides; let the new figures so formed be inverted
in each of their new sides ; and so on continually. Then since

the angles of P are sub-multiples of two right angles, no two of
the figures thus formed can overlap in part without coinciding
entirely. Moreover, when the process is completely carried out,

every point within the orthogonal circle when it is real, and

every point in the plane of the figure when the orthogonal circle

is evanescent or imaginary, will lie in one and in only one of

the polygons thus formed from P by successive inversions.

285. Exactly as with the general group, these polygons
are coloured white or black according as they are derivable
from P by an even or an odd number of inversions. The
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corners of any white polygon correspond one by one to the

corners of P; so that, when the perimeters of the polygons are
described in the same direction, corresponding corners occur in
the same cyclical order.

If now the operation of successive inversions at An+iAl and
AtAt is represented by Slt and that of successive inversions at

Ar^Ar and ArAr+^ by Sr, (r = 2, 3, n); all operations,
consisting of an even number of inversions in the sides of P,
can be represented in terms of

Si, S2 Sn.

Moreover, from the construction of the polygon P, these
operations satisfy the relations

Sr* = E, Sf = E Snn,n = E, Sn+1»~i = E,

where S1 S2 . . .Sn Sn+1 = E.

Again, if P' is any white polygon of the figure, which can be
derived from P by the operation 2, a positive rotation (§ 278) of
P' round its corner A / is effected by the operation 2-,iS,r2 ;
and, if P" is the polygon so obtained, P" is derived from P by
the operation <SrZ. It is to be observed that a positive rotation
of a polygon round its Ar corner is now an operation of finite
order mT.

Suppose now that two operations S and £' transform P into
the same polygon P', so that 2S'-1 leaves P unchanged. If
this operation, written at length, is

Sp:..S9*SrrS*,

and if P is transformed into Pi by a positive rotation round
A, repeated 8 times, P, into P2 by a rotation round its
corner Ar repeated 7 times, and so on ; then the operation
may be indicated by a broken line drawn from P to P,, from
P, to P2, and so on, the line returning at last to P. But the
operation indicated by such a line is clearly equivalent to com

plete rotations (i.e. rotations each of which lead to identity),
round each of the corners which the broken line includes. In
other words, reduces to identity when account is taken of
the relations which the generating operations satisfy. Hence

finally, to every white polygon P' will correspond one and only
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one of tlie operations of the group, namely that operation
which transforms P into P'. The same is clearly true of the
black polygons; and by taking P and a chosen black polygon
which has a side in common with P as corresponding to the
identical operation, the required unique correspondence is
established between the complete set of double-polygons in the

figure and the operations of the group, the relations which the

generating operations satisfy being directly indicated by the

configuration of the figure. Moreover, as with the general
group (§ 278), a simple rule may be stated for determining,
from an inspection of the figure, the polygon that corresponds
to any given operation of the group.

286. The number of polygons in the figure and therefore
the order of the group will still, in general, be infinite. We
may now proceed, just as in the previous case of a quite general
group, to derive from the figure representing the group G,

generated by n operations satisfying the relations

Sr^E, S^^E, .... Snnn = E, (S1Si...Sn)m*-* = E,
a suitable representation of the more special group G, generated
by n operations which satisfy the above relations and in addition
the further m relations

fj(Si) = E, 0 = 1, 2 m).

As has been seen in § 275, if H is the self-conjugate sub
group of G which is formed by combining all possible operations
of the form

and if S is any operation of G, then the set of operations
regarded as operations of G, are all equivalent to each other.
From each set of polygons "EH in the figure of G, we may
therefore choose one to represent the corresponding operation
of G ; and, as was shewn with the general group, a complete
set of such representative polygons may be selected to form a
connected figure, i.e. a figure which does not consist of two or
more portions which are either isolated or connected only by
corners. Moreover, as in the former case, the sides of this

figure G will be connected in pairs Ar'A'r+1 and Ar"A"r+1, which
are transformed into each other by some operation I1 of H and
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its inverse, while no other operation of H will transform either
Ar'A'r+1 or Ar"A"r+1 into any other side of 0.

It is not now however necessarily the case that the figure C,
as thus constructed, is simply connected. Let us suppose then
that C has one or more inner boundaries as well as an outer

boundary, and denote one of these inner boundaries by L. If
the sides of L do not all correspond in pairs, and if Ar'A'r+1 is a
side of L such that the other side Ar"A"r+1 corresponding to it
does not belong to //

,
we may replace the double-polygon P" in

C of which Ar"A"r+1 is a side by the double-polygon, not
previously belonging to C

,
of which Ar'A'r+1 is a side. If P"

has a side on the boundary L
,

the new figure C thus obtained
will have one inner boundary less than C ; and if P" has no side
on the boundary L

,

the new inner boundary L' that is thus
formed from L will contain one double-polygon less than L

,

while the number of inner boundaries is not increased. This

process may be continued till the new inner boundary Ll which
replaces L is such that all of its sides correspond in pairs.

Let now A,A,+1 and A,'A',+1 be a pair of corresponding
sides of L,, such that A,A,+1 is transformed into A,'A',+l by an
operation h of the self-conjugate sub-group H. A side AtAt+1
of another boundary of C may be chosen such that AtAl+1
and AtAt+i are sides of a simply connected portion, say B, of (7;
while no side of Z

,

except A,A,+1 forms part of the boundary of
B. The polygons of B are equivalent, in respect of the special
group, to those of Bh. Moreover, since the sides of Ll corre
spond in pairs, no side of Bh, except A,'A',+1, can coincide with
a side of Ll. Hence when B is replaced b

y Bh, the inner

boundary Z
,

will be got rid of and no new inner boundary will
be formed. Finally then, C may always be chosen so as to form
a single simply connected figure.

The simply connected plane figure G
,

which has thus been
constructed, with the correspondence of the sides of its boundary
in pairs, will now give a complete graphical representation of
the special group. The rule already formulated will determine
the operation of the group to which each white polygon
corresponds ; and when, in carrying out this rule, we come to
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a polygon on the boundary, the correspondence of the sides of
the boundary in pairs will enable the process to be continued.

The correspondence of the sides of C in pairs involves a
correspondence of the corners in sets of two or more. Thus if
Ar is a corner of C and if

, of the mr white polygons which in
the complete figure have a corner at AT, lie within C

,

there
must within C be m, — n, white polygons equivalent to the
remainder, and each of these must have an Ar corner on the
boundary. If Ar' is a corner of C such that there are white
polygons, lying within C and having a corner at Ar', and if one
of the sides of the boundary with a corner at Ar' corresponds
to one of the sides of the boundary with a corner at Ar, these
ns white polygons must be equivalent to of the white polygons,
lying outside C and having a corner at Ar. If

n, + r?a < mr,

there must be a third corner Ar", contributing n3 more white

polygons towards the set. With this we proceed as before ; and
the process may be continued till the whole of the mr white
polygons surrounding Ar are accounted for. The set of corners
Ar, A?, Ar", ... will then form a set of corresponding corners,
which are equivalent to each other in respect of the special
group ; and the whole of the corners of G may be divided into
such sets. At each set of corresponding corners Ar of C there
must clearly be also mr black polygons belonging to C; and
the sum of the angles of C at a set of corresponding corners
must be equal to four right angles.

287. When the order of the group is finite, we may still
further so modify our figure as to take account of the corre

spondence of the sides of the boundary in pairs. We may, in
fact, b

y a suitable bending and stretching of the figure, bring

corresponding sides of the boundary to actual coincidence.
When this is done, the figure will no longer be a piece of a

plane with a single boundary, but will form a continuous
surface, which is unbounded and in general is multiply con
nected. Every point Ar on the surface, which in the plane
figure did not lie on the boundary, will be a corner common
to 2mr polygons alternately black and white ; and, in con
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sequence of what has just been seen in regard to the corre
spondence of corners of the boundary, the same is true
for every point Ar on the surface which in the plane figure
consisted of a set of corresponding corners of the boundary. If
N is the order of the group, the continuous unbounded surface
will be divided into 2iV polygons, black and white. The con

figuration of the set of white polygons with respect to any one
of them will, from the point of view of geometry of position, be
the same as that with respect to any other ; and the like is

Fig. 7.

true for the black polygons. Such a division of a continuous
unbounded surface is described as a regular division ; and we
have finally, as a graphical representation of any group of finite
order N, a division of a continuous surface into 2N polygons,
half black and half white, which is regular with respect to each

set. The correspondence between the operations of the group
and the white polygons on the surface is given by the rule that

a single positive rotation of the white polygon 2 round its
corner Ar leads to the white polygon /Sr2.
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288. We may again here illustrate this final modification of the

graphical representation of a finite group by a simple example.
For

this purpose, we choose the quaternion group defined by

SS = E, S4 = E, S24 = E,

StS2SS = E, S2-1S1SiS} = E, = S2.

This group (§ 118) is a non-Abelian group of order 8, containing

a single operation of order 2. The reader will have no difficulty in

verifying that the plane figure for this group is given by fig. 7 ; and

that opposite sides of the octagonal boundary correspond.
The

single operation of order 2 is

Fig. 8.

this corresponds to a displacement of the triangles among themselves
in which all the six corners remain fixed If now corresponding
sides of the boundary are brought to coincidence, the continuous

surface formed will be a double-holed anchor-ring, or sphere with
two holes through it. A view of one half of the surface divided
into black and white triangles, is given in fig. 8. The half of the

surface, not shewn, is divided up in a similar manner; and the

operation of order 2 replaces each white triangle of one half by the

corresponding white triangle of the other, an operation which clearly

leaves the six corners of the polygons undisplaced.
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289. The form of the plane figure G, which with the corre

spondence of its bounding sides in pairs represents the group,
is capable of indefinite modification by replacing individual

polygons on the boundary by equivalent polygons. If however
we reckon a pair of corresponding sides of the boundary as a

single side and a set of corresponding corners of the boundary
as a single corner, it is clear that, however the figure may be
modified, the numbers of its corners, sides and polygons remain
each constant. This may be immediately verified on replacing
any single boundary polygon by its equivalent.

If now A be the number of corners, and S the number of
sides in the figure G when reckoned as above, 2N being the
number of polygons, then the genus* p of the closed surface is

given by the equation

2^
= 2 + 5-2^-^4.

When the group and its generating operations are given,
the integer p is independent of the form of the plane figure G,
which as has been seen is capable of considerable modification.
The plane figure G however depends directly on the set of

generating operations that is chosen for the group. For a given
group of finite order, such a set is not in general unique ; and
the number of generating operations as well as their order will
in general vary from one set to another. It does not necessarily
follow, and in fact it is not generally the case, that the

genus of the surface by whose regular division the group is

represented, is independent of the choice of generating opera
tions. There must however obviously be a lower limit to the
number p for any given group of finite order, whatever

generating operations are chosen ; this we shall call the genus
of the group -f"

.

290. We shall now shew that there is a limit to the order

of a group which can be represented by the regular division of

* Forsyth, Theory of Functions (second edition), p. 353.

t Hurwitt, "Algebraiache Gebilde mit eindeutigen Transformationen in
Biob," Math. Ann. xli (1893), p. 426.
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a surface of given genus p. If N is the order of such a group,
generated by the n operations

Si, S2, Sn,

which satisfy the relations

S,m! = E, Sm2 = E, Snma = E,

&,&,...Sn = E;

the surface will be divided in 2N polygons of n sides each.
Let Ai, At, An be the angular points of one of these

polygons ; and suppose that on the surface there are (7
,

corners

in the set to which Al belongs, (7
,

in the set to which At belongs,
and so on. Round each corner Ar there are 2mr polygons; and
each polygon has one and only one corner of the set to which

Ar belongs. Hence
Crmr = N,

and so (7
,

+ G,+ ... +Cn = iV2 — .

i mr

Again, each side belongs to two and only to two polygons, so
that the number of sides is

Nn.

Using these values for A and <
S in the formula of § 289, we

obtain the equation

A complete discussion of this equation for the cases p = 0
and p= 1 will be given in the next chapter.

When p is a given integer greater than unity, we can
determine the greatest value that is possible for N by finding
the least possible positive value of the expression

i ln-2-1- .
l mr

If n >4, this quantity is not less than since mr cannot be
less than 2

.

If n =4, the simultaneous values
m, = m2 = in, = m, = 2
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are not admissible, since they make the expression zero. Its
least value in this case will therefore be given by

wi, = wi„ = wii = 2, m, = 3 ;

and the expression is then equal to

If n = 3, we require the least positive value of

m, m2

Now the three sets of values

m, = 3, tw2 = 3, mt = 3,

7»l = 2, m, = 4, wi, = 4,

and to, = 2, m, = 3, m, = 6,

each make if zero ; and therefore no positive value of K can be
less than the least of those given by

m, = 3, m2 = 3, m, = 4,

Tol = 2, TO2 = 4, m2 = 5,

and >«, = 2, m, = 3, m, = 7.

These sets of values give for K the values ^ and ^5.
Hence finally, the absolutely least positive value of the expression
is ^j, and therefore the greatest admissible value of N is

84(p-1).
Hence*: —

Theorem II. The order of a group, that can be represented
by the regular division of a surface of genus p, cannot exceed
84 (p — 1), p being greater than unity.

291. If
,

when a group is represented b
y the regular division

of an unbounded surface, we draw a line from any point inside
the white polygon E (or any other polygon) returning after any
path on the surface to the point from which it started, it will
represent a relation between the generating operations of the

group. For in following out along the line so drawn the rule
that determines the operation of the group corresponding to
each white polygon, some operation

F(St)
* Hurwitz, loc. cit. p. 424.
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will be found to correspond to the final polygon ; and this

being the white polygon E, it follows that

If the surface is simply connected, any such line can be
continuously altered till it shrinks to a point ; and therefore the
n + 1 relations between the n generating operations completely
define the group, since all other relations can be deduced from
them.

If however the surface is of genus p, there are 2p
independent closed paths that can be drawn on the surface,
no one of which can by continuous displacement either be
shrunk up to a point or brought to coincidence with another ;
and every closed path on the surface can by continuous dis

placement either be brought to a point or to coincidence with
a path constructed by combination and repetition of the 2p
independent paths*. Any one of these 2p independent paths
will give a relation between the n generating operations of the
group, which cannot be deduced from the >i + 1 relations on
which the angles of the polygons depend. Moreover, every rela
tion between the generating operations can be represented by a
closed path on the surface ; and therefore there can be no further
relation independent of the original relations and those obtained
from the 2p independent paths. There cannot therefore be
more than 2p independent relations between the n generating
operations of a group, in addition to the n + 1 relations that give
the order of the generating operations and of their product ;
p being the genus of the surface by whose regular division into
n-sided polygons the group is represented.

The 2p relations given by 2p independent paths on the
surface are not, however, necessarily independent. In fact we
have already had an example to the contrary in § 288. On the
closed surface, by the regular division of which the group there
considered is represented, four independent closed paths can
be drawn. Two of the corresponding relations are therefore

necessary consequences of the other two.

The only known cases in which the 2p relations are in

dependent are those of a class of groups of genus one (§ 298).
* Forsyth, Theory of Functions (second edition), p. 358.
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Ex. Draw the figure of the group generated by 8lt St, S2, where

Shew from the figure that the special group, given by the
additional relation

(S1Sty=£!,

is a finite group of order 48 ; and that it can be represented by the
regular division of a surface of genus 2.

Note to § 287.

If in the process of bending and stretching, described in § 287,
by means of which the plane figure C is changed into an unbounded
surface, the angles of the polygons all remain unaltered, the circles
of the plane figure will become continuous curves on the surface.
These curves on the surface, which we will still call circles, are
necessarily re-entrant. It is not however necessarily the case that,
on the surface, a circle will not cut itself.

In the plane figure for the general group, an inversion at any
circle of the figure leaves the figure unchanged geometrically but
interchanges the black and white polygons. Each circle is, in fact, a
line of symmetry for the figure such that, in respect of it

,

there

is corresponding to every white polygon a symmetric black polygon
and vice versa.

Similarly on the surface a circle which does not cut itself may
be a line of symmetry, such that a reflection at it is an operation of
order two which leaves the surface and its division into polygons
unchanged, but interchanges black and white polygons. When this

is the case, every circle on the surface will be a line of symmetry and
no circle will cut itself. On the other hand no such operation can
ever be connected with a circle which cuts itself.

When such lines of symmetry exist, Prof. Dyck speaks of the
division of the surface as regular and symmetric.

B. 26



CHAPTER XIX.

ON THE GRAPHICAL REPRESENTATION OF GROUPS:
GROUPS OF GENUS ZERO AND UNITY; CAYLEY'S
COLOUR GROUPS.

292. We shall now proceed to a discussion in the cases

p = 0 and p = 1 of the relation

2(»-l) =Wn-2-i— V

which connects the number and the orders of the generating
operations of a group with the order of the group itself ; and to
the consideration of the corresponding groups.

For any given value of p, other than p = 1, we may regard
this relation as an equation connecting the positive integers
If, n, wi,, ra,, ... m„. It does not however follow from the
investigations of the last Chapter that there is always a

group or a set of groups corresponding to a given solution of

the equation. In fact, for values of p greater than I, this is not
necessarily the case. We shall however find that, when p = 0,
there is a single type of group corresponding to each solution
of the equation ; and that, when p = 1, there is an infinite
number of types of group, all characterized by a common

property, corresponding to each solution of the equation.
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When p = 0, the groups are (§ 289) of genus zero; and all
possible groups of genus zero are found by putting p = 0
in the equation. The groups thus obtained are of special
importance in many applications of group-theory; for this
reason, they will be dealt with in considerable detail.

293. When p = 0, the equation may be written in the form

in this form, it is clear that the only admissible values of n are
2 and 3.

First, let n = 2. The only possible solution then is

nil = mi = N,

N being any integer. The corresponding group is a cyclical
group of order N.

Secondly, let n = 3. In this case, one at least of the three
integers ml, m2, m, must be equal to 2, as otherwise the right-
hand side of the equation would be not less than 2. We may
therefore without loss of generality put m, = 2. If now both
and m3 were greater than 3, the right-hand side would still

be not less than 2 ; and therefore we may take mt to be either
2 or 3. When m, and m2 are both 2, the equation becomes

2 J_
N~m3'

giving m, = n, N = 2n,

where n is any integer.

When wi, is 2 and is 3, the equation is

2 1 _ ^
N 6

—
m,"

This has three solutions in positive integers ; namely,

m, = 3, iV=12;

fws = 4, iV=24;

and 1713=5, N = 60.
26—2
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The solutions of the equation for the case p = 0 may there
fore be tabulated in the form :—

«1 7«2 m. N

I n n H

II 2 2 n in

III 2 3 3 12

IV 2 3 4 24

V 2 3 5 60

294. That a single type of group actually exists, corre

sponding to each of these solutions, may be seen at once by

returning to our plane figure. The sum of the internal angles
of the triangle AiAtAt formed by circular arcs is

,

in each of
these cases, greater than two right angles;, and the common

orthogonal circle is therefore imaginary. The complete figure
will therefore divide the whole plane into black and white

triangles, so that there are no boundaries to consider. More

over, the number of white triangles in each case must be equal
to the corresponding value of N; for the preceding investigation
shews that this is a possible value, and on the other hand the

process, by which the figure is completed from a given original
triangle, is a unique one. There is therefore a group corre

sponding to each solution ; and the correspondence which has
been established in any case between the operations of a group
and the polygons of a figure, proves that there cannot be two
distinct types of group corresponding to the same solution.

295. The plane figure for p = 0 does not, in fact, differ

essentially from the figure drawn on a continuous simply con
nected surface in space. The former may be regarded as the

stereographic projection of the latter. The five distinct types
are represented graphically b

y the following figures.

The first is a cyclical group, and the figure (fig. 9) agrees
with fig. 2 in § 276, when one point of intersection of the circles

is at infinity.

The group given by the second solution of the equation

is called the dihedral group. It is represented by fig. 10.





Fig. 12.
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The group given by the third solution of the equation is

represented in fig. 11. It is known as the tetrahedral group.
To the fourth solution of the equation corresponds the group

represented in fig. 12. It is known as the octohedral group.
To the fifth solution of the equation corresponds the group

represented in fig. 13. It is known as the icosahedral group.

Fig. 13.

The four last groups are identical with the groups of rotations

which will bring respectively a double pyramid on an n- sided
base, a tetrahedron, an octohedron, and an icosahedron to co

incidence with itself*.

When the figures are drawn on a sphere, and the three circles

of the original triangle and therefore also all the circles of the

figure are taken to be great-circles of the sphere, the actual dis-
* Klein, " Vorlesungen iiber das Ikosaeder," Chap. i.
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placements of the triangles among themselves which correspond
to the operations of the group can be effected by real rotations
about diameters of the sphere ; thus the statement of the pre
ceding sentence may be directly verified.

296. In terms of their generating operations, the five types
of group of genus zero are given by the relations :—

I. Sf = E, Sin = E, S&^E;
II. Sf = E, SJ^E, S,n = E, ^S^E;
III. S' = E, St2 = E, S2i = E, S1SJS^E;
IV. S? = E, Sf = E, SS = E, S,S& = E;
V. S2 = E, Sf = E, S22

= E, S&S^E.
The first of these does not require special discussion.

In the dihedral group, we have

S-lStS1 = SiSs = <Sa-1.

The dihedral group of order 2n therefore contains a cyclical
sub-group of order ri self-conjugately ; and every operation of
the group which does not belong to this self-conjugate sub

group is of order 2. The operations of the group are given,
each once and once only, by the form

8fSf, (a- 0,1; 0 = 0,1, 2 n-1).
When n = 3, this group is simply isomorphic with the

symmetric group of three symbols.

In the tetrahedral group, since

(SAY = E,

and therefore Slt Sf"lSxS2, SiiSi&r1 are permutable with each
other. These operations of order 2 (with identity) form a self-

conjugate sub-group of order 4; and the 12 operations of the
group are therefore given by the form

or SfSfS&*, (a = 0, 1, 2 ; fft y = 0, 1).
If S
, = (12)(34), S
, = (123),

then S,£, = (134);

and therefore the tetrahedral group is simply isomorphic with
the alternating group of four symbols.
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If, in the octohedral group, we write

then a/r-aA-Bjs&i
and therefore (S£'Y = E.
Hence S2 and S' generate a tetrahedral group.
Again S,SA = (S^')1,

and SiS'Si = S^S'Sf1,

so that this is a self-conjugate sub-group. The operations of

the group are given, each once and once only, in the form

Sf8f8f*8&* («, 7. « - 0, 1 ; £ - 0, 1, 2).
If -S

,

= (12), S
, = (234),

then $5, = (1342);
and therefore the octohedral group is simply isomorphic with

the symmetric group of four symbols.

The icosahedral group is simple. It is
,

in fact, simply

isomorphic with the alternating group of five symbols which
has been shewn (§ 139) to be a simple group. Thus if

$ = (12) (34), $ = (135),
then $$ = (12345);
so that the substitutions S

1 and S
3 satisfy the relations

$* = E, Sf = E, ($$)■ = E.

They must therefore generate an icosahedral group or one

of its sub-groups. On the other hand, from the substitutions

S
,

and $ all the even substitutions of five symbols may be
formed, and these are 60 in number. The group therefore
cannot be a sub-group of the icosahedral group; the only
alternative is that the two are identical.

As the icosahedral group has no self-conjugate group, we
cannot in this case so easily construct a form which will
represent each operation of the group just once in terms of
the generating operations. It is however not difficult to verify
that this is true of the set of forms *

(«,£-0,l,2,3,4).
* Dyok, " Gruppentheoretische Stndien," Math. Ann. xx (1882), p. 85, and

Klein, loc. cit. p. 26.
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297. We shall next deal with the equation in the case
p=l. In this case alone, the order of the group disappears
from the equation, which merely gives a relation between the
number and order of the generating operations. This may be
written in the form

2 = ifl--1-);
1 V Itlrl

and n must therefore be either 4 or 3.

When n is 4, the equation becomes

„ 11112= — + — + -+ — ,
ml wii m, to4

and the only solution is clearly

mi = wii = wis = trii = 2.

When n is 3, the equation takes the form

1 1 1
1 + — +- ,
m, m, flit

and is easily seen to have three solutions, viz.

m1 = 3, ms = 3, m, = 3 ;

r», = 2, m2
— 4, mt = 4 ;

and m, = 2, m2 = 3, m2 = 6.

298. Take first the solution

n = 4, m, — m2 = m2 = m4 = 2.

The corresponding general group is defined by the relations

SS = E, S2=E, St2=:E, S42 = E,

SlS2S2Si = E.

If we proceed to form the plane figure representing this
group, the sum of the internal angles of the quadrilateral

A^AtAtAi is equal to four right angles, and the four circles
that form it therefore pass through a point. If this point be
taken at infinity, the four circles (and therefore all the circles of
the figure) become straight lines. The plane figure will now
take the form given in fig. 14, and the four generating opera
tions are actual rotations through two right angles about lines

through Alt At, A2 and At, perpendicular to the plane of the
figure.



298] 411OF GENUS ONE

Every operation of the group is therefore, in this form of

representation, either a rotation through two right angles
about a corner of the figure or a translation ; and it will clearly
be the former or the latter according as it consists of an odd

or an even number of factors, when expressed in terms of the

generating operations. The operations which correspond to

translations form a sub-group ; for if two operations each
consist of an even number of factors, so also does their

product. Moreover, this sub-group is self-conjugate, since the

number of factors in S-1<S2 is even if the number in S is

S, S..S.,

|j III

,s,
;;</'( Ja, a.

illlllllllllf1
'

mi ilPfllliiilll til
l lllllll'!1

Fig. 14.

even. This self-conjugate sub-group is generated by the two

operations
S& and SA;

for SA = SiSi .SA ,

sa = (S&r, sa = (Sj3,)-\ S& = (sjsjr* (W-1 ;

and therefore every operation containing an even number of

factors can be represented in terms of SA and <SySv Lastly,
these two operations are permutable with each other; for

S2S2 . StS2 = SA . StS2 = SA = SA . SiSi ;

and therefore every operation of the group is contained, once

and only once, in the form

Sf(SAY(SAy, (« = 0
, 1; /3,7=-oo,...,0, ...,oo).
The results thus arrived at may also be verified very simply

b
y

purely kinematical considerations. If a group generated
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by <Si, $2, S, and is of finite order, there must, since it is of
genus 1, be either one or two additional relations between the

generating operations ; and any such relation is expressible by
equating the symbol of some operation of the general group to

unity. Such a relation is therefore either of the form

or (SlSif(StSty=E.
The operation Si{SiS2)b (S^S,)" of the general group, con

sisting of an odd number of factors, must be a rotation round
some coi ner of the figure, say a rotation round the corner Ar of
the white quadrilateral 2; it is therefore identical with £-,$r2.

Now the relation 2-'Sr2 = E
gives Sr = E.
A relation of the first of the two forms is therefore incon

sistent with the supposition that the group is actually generated
by Slt <

S
2

and Ss. It, in fact, reduces the generating operations
and the relations among them to

/Sl2 = E
,

S
i = E
,

S
2 E, SflnSs = E,

which define a group of genus zero.

The only admissible relations for a group of genus 1 are

therefore those of the form

(S&)b(Sis2y = E.

A single relation of this form reduces the operations of the
general group to those contained in

(a = 0
, 1; /3 = 0
,
1 6-1; y = - co, ...,0, oo );

and the group so defined is still of infinite order.

Finally, two independent relations

(s1s2f(s2ssy = E,

where i + —. ,
b c

must necessarily lead to a group of finite order. If to is the
greatest common factor of b and b
', so that

b = 6,t», b
' = bi'm,
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where 6, and 6/ are relatively prime ; and if

b1x-b1'y = l;
the two relations give

and (SlSt)m = (SAyy-a'.

Every operation of the group is now contained, once and

only once, in the form

(« = 0, 1; £ = 0, 1 m-1; 7 = 0, 1 cW - 6,c' - 1);
and the order of the group is 2 (be' - b'c).

Fig. 15.

299. Corresponding to the solution

n = 3, to, = m2 = »ii = 3 ,

we have the general group generated by Slt St, St, where

S1' = E, Sf=E, Sf=E,

oiSJSt = E.
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The sum of the three angles of the triangle A,A3At is two
right angles, and therefore again the circles in the plane figure

(fig. 15) may be taken to be straight lines. When the figure is
thus chosen, the generating operations are rotations through §7r
aboutthe angles of an equilateral triangle; and every operation
of the group is either a translation or a rotation.

The three operations

when transformed by S,, are interchanged among themselves.
When transformed by Slt they become

and since (S,S2Y = E,

the two latter are S^S* and /SyS^S, respectively.

Hence the three operations generate a self-conjugate sub

group ; and since
S^S* . (SjiSjjSj . S1iS1 = E,

this sub-group is generated by S,8f and

These two operations are permutable; for

Hence finally, every operation of the group is represented,
once and only once, by the form

(S&f (« = 0. I. 2 ; 0, y- - .oo 0 oo ).

This result might also be arrived at by purely kinematical
considerations; for an inspection of the figure shews that the
two simplest translations are

S&* and S&S,,

and that every translation in the group can be obtained by the
combination and repetition of these. Every operation in which
the index o is not zero must be a rotation through §7r or
about one of the angles of the figure ; it is therefore neces
sarily identical with an operation of the form

S-tfr'S.
If now the group generated by Slt S3, S, is of finite order,

there must be either one or two additional relations between
them. A relation of the form
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whether a is either 1 or 2, is equivalent to

l-*Sr't = E,
so that Sr = E.

Such a relation would reduce the group to a cyclical group of

order 3. This is not admissible, if the group is actually to be
generated by two distinct operations S, and <S2.

A relation (SJS&f = E,

gives, on transformation by <S2-1,

(W(W = £,

or (S&)r,(SJ3l8,y-* = E.

If m is the greatest common factor of b and c, so that
6 = b'm, c = c'm,

where 6' and c' are relatively prime ; and if

b'x — c'y = 1,

the two relations

(S&f{SS&Y = E,
and (SMS,)*-* = E,

lead to (S^SAT^"'^1 = E,

and (S1S2)m= (S&S,)^-**-*'};
so that every operation of the group is contained, once and only
once, in the form

where

a = 0,l,2; £ = 0,1 m-1; 7=0,1 m(&'2 -b'c' + c'2) - 1.
Thus the group is of finite order 3 (6s — be + c2). In this case
then, unlike the previous one, a single additional relation is
sufficient to ensure that the group is of finite order. Any
further relation, which is independent, must of necessity reduce
the group to a cyclical group of order 3 or to the identical

operation. The case b = c = 1 reduces the group to a cyclical
group of order 3 and must be excluded.

300. The two remaining solutions may now be treated in
less detail. The general group corresponding to the solution

n = 3, m, = 2, m, = m, = 4,
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is given by = E, = E, S,* = E,

SiS^Si = E,

and is represented graphically by fig. 16.

All the translations of the group can be generated from the
two operations

and every operation of the group is given, once and only once,

by the form

fltf (a = 0, 1, 2, 3 ; 0, y = - oo 0 oo ).

Fig. 16.

An additional relation of the form

where a is 1, 2 or 3, leads either to

S1 = E, S2=E, or S, = E,

and is therefore inconsistent with the supposition that the

group is generated by two distinct operations of orders two

and four.

An additional relation

gives i&SfyiS&Stf-E:
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and if b = b^m, c = c,m,

b,x + dy = 1,

where b, and c, are relatively prime, these relations are

equivalent to

(S&S2)m<"W = E,

Every operation of the group is then contained, once and

only once, in the form

(« = 0, 1, 2, 3; £ = 0, l,...,m-l; y - 0, 1, .... m (V + c,1)- 1);
and the order of the group is 4 (b- + c').

Fig. 17.

301. Lastly, the general group corresponding to the
solution

n = 3, wi, = 2, nta = 3, m, = 6,

is given by S,2 = E, Sji = E, S2t = E,
SiS2S, = E ;

and it is represented graphically by fig. 17.
b. 27
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Now it may again be verified, either from the generating
relations or from the figure, that the two operations

and

which are permutable with each other, generate all the opera
tions which in the kinematical form of the group are translations;
and that every operation of the group is represented, once and

only once, by the form

Sf(SfSff(SJ3fSJr,

(a = 0,l, .... 5; /3,7 = -oo 0, . ..,«).

Also as before any further relation, which does not reduce

/S
8 to an operation of lower order, is necessarily of the form

On transforming this relation by Sfl, we obtain

Now SfSf^WSjyHS&'S,);
so that (SfSjy- (S,S2S2f+e = E.

If then b = blm, c = clm,

b1x + c1y = l,

where 6
, and C
i are relatively prime, it follows that

(SsSi'Si)m^'+>»c^ = E,

and (SfSjy = (SJ3&)m v>«+e,

Every operation of the group is then contained, once and

only once, in the form

(a=0,l,...t5;/9=*0,l...,m-l;7 = 0,l,...,m(6l' + 61c1 + c1')-l;
and the order of the group is 6 (£," + be + c2).

302. There are thus four distinct classes of groups* of

genus 1
, which are defined in terms of their generating opera

tions by the following sets of relations:—

I. S?=E, Sf = E, S/ = E, (S^Y^E,
OW (W = E, {SAY (W = E
,

(ab' - a'b * 0);
N=2(ab' -a'b).

,
Dyck, " Ueber Aufstellung und Untersuchung von Gruppe und Irrationali-

tat regularer Biemann'soher Flaoben," Math. Ann. xvn (1880), pp. 601—509.
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II. Sf^E, S2' = E, (SlS2y=E,

N=3(a2-ab + b').

III. S12=E, SJ = E, (SAY = E,
(S&y{S&Stf-E;
^=4(^ + 6').

IV. S° = E, Sj = E, (S&y^E,
WStf{SMStf-E;
N=6(a2 + ab + b2).

For special values of a and b, some of these groups may be
groups of genus zero ; for instance, in Class I, if ab' — a'b is a
prime, the group is a dihedral group. It is left as an exercise
to the reader to determine all such exceptional cases.

Ex. Prove that the number of distinct types of group, of genus
two, is four ; viz. the groups defined by

(i
) A4=E, & = A\ B-1AB^A-1; (ii) A*=E, Bi=E, B^AB^A';

(iii) A4 = E
,

B2 = E, A-1BA=B2;

(iv) A*=E, B' = E, (ABf=E, (A4Bf = E.

303. As a final illustration of the present method of
graphical representation, we will consider the simple group of
order 168 (§ 166), given by

{(1236457), (234) (567), (2763) (45)}.

The operations of this group are of orders 7
, 4,3 and 2; and

it is easy to verify that three operations of orders 2
,

3
, and 7

can be chosen such that their product is identity.

In fact, if

S
2 = (16)(34), S
, = (253) (476), S
7 = (1673524);

then iSySySf? = E.

Moreover, these three operations generate the group. The

genus of the corresponding surface, by the regular division of
which the group can be represented, is p ; where

2p- 2= 168 (3 -2 -£-£-!).
27—2
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This gives p = 3 ;

it follows from Theorem II, § 290, that the genus of the group is 3.
The figure for the general group, generated by ,%, S2, and

S7, where
Sf-E, S' = E, S,'=E,

StSaS, = E,

acquires as symmetrical a form as possible, by taking the

centre of the orthogonal circle for that angular point of the

triangle E at which the angle is ^7r. In fig. 18 a portion of
the general figure, which is contained between two radii of the

orthogonal circle inclined at an angle \ir, is shewn. The
remainder may be filled in by inversions at the different

portions of the boundary.
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The operations, which correspond to the white triangles of
the figure, are given by the following table :—

1 E 9 17

2 St 10 S7S*S7°S2 18
3 SiSt 11 19 SJS/S.
4 SJS, 12 20
5 SfS, 13 21

6 14 22

7 4>4 15 23

8 SflS, 16 24

The representation of the special group is derived from

this general figure by retaining only a set of 168 white (and
corresponding black) triangles, which are distinct when Sit S2
and S, are replaced by the corresponding substitutions given on

p. 419. When each white triangle is thus marked with the

corresponding substitution, it is found that a complete set of
168 distinct white (and black) triangles is given by the portion
of the figure actually drawn and the six other distinct portions
obtained by rotating it round the centre of the orthogonal
circle through multiples of f v.

To complete the graphical representation of the group of
order 168, it is necessary to determine the correspondence in
pairs of the sides of the boundary. This is facilitated by
noticing that the angular points A1, A2, A„ ...of the boundary
must correspond in sets. Now the white triangle, which has an

angle at Al and lies inside the polygon, is given by

This must be equivalent to a white triangle, which lies

outside the polygon, and has a side on the boundary and an

angle at one of the points A„ At,..„

The triangle, which satisfies these conditions and has an

angle at Am+lt is given by

while the triangle, which satisfies the conditions and has an

angle at Am+t, is given by
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When (16) (34) and (1673524) are written for St and S7, we
find that

S3S7*S2S728t — SfS^S^SiSfSsSf.

The white triangle with an angle at .4, inside the polygon
is therefore equivalent to the white triangle with an angle at
Au, which lies outside the polygon and has a side on the
boundary. It follows, from the continuity of the figure, that
the arcs A^A, and AUAW of the boundary correspond. Since
the operation S7 changes the figure and the boundary into
themselves, it follows that AsAt, AUAU; A,At, AjAu; A7A9,
AaA,; A9A10, AsAt\ AuAa, A7At; and AUAU, AtAs; are pairs
of corresponding sides. Hence the above single condition is
sufficient to ensure that the general group shall reduce to the

special group of order 168.

By taking account of the relation

(S,Stf = E, or (S.2S7)' = E,

the form of the condition may be simplified. Thus it may be
written

S-'StSSSi = 8,8,8,8, . SfStSsStS,1

or 8,8,'S, = 8,*8t8f8A*8A'-

Now St87 . S7S, = SfSJSfS, . SiSfStSf
=

Hence S^S^S.S,^ S,S73S2S7'S2,
or S7*StS7* . StSfS, = StS73StS7*S2,

or Sf'SiSSSiS,* = StSSS,,

or finally (8,*S,Y = E.

The simple group of order 168 is therefore defined abstractly
by the relations*

SS = E, S7->= E, (S7S3f = E, {S7tS,y = E.

Ex. Shew that the symmetric group of degree five is a group
of genus four ; and that it is completely defined by the relations

Sf = E, Sf=B, (Sf*StStStf = £.
* This agrees with the result as stated by Dyck, " Oruppentheoretische
StudieD," Math. Ann. Vol. xx (1882), p. 41.
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304. The regular division of a continuous surface into
2N black and white polygons is only one of many methods that
may be conceived for representing a group graphically.

We shall now describe shortly another such mode of

representation, due to Cayley*, who has called it the method
of colour-groups. As given by Cayley, this method is entirely

independent of the one we have been hitherto dealing with ;
but there is an intimate relation between them, and the new
method can be most readily presented to the reader by deriving
it from the old one.

Let E, Si, Sit
be the operations of a group G of order N. We may take the
N—l operations other than identity as a set of generating
operations. Their continued product

is some definite operation of the group. If it is the identical
operation, the only modification in the figure, which represents
the group by the regular division of a continuous surface, will
be that the Nth corner of the polygon has an angle of two right
angles.

With this set of generating operations, the representation
of the group is given by a regular division of a continuous
surface into N white and N black polygons A,A2 ... AN, the

2tj-
angle at Ar being — , mr being the order of Sr. Suppose

now that in each white polygon we mark a definite point.
From the marked point in the polygon 2, draw a line to

the marked point in the polygon derived from it by a positive
rotation round its angle Ar. Call this line an <Sr-line, and
denote the direction in which it is drawn by means of an
arrow. Carry out this construction for each polygon 2, and
for each of its angles except AN. We thus form a figure
which, disregarding the original surface, consists of N points
connected by N(N— 1) directed lines, two distinct lines
joining each pair of points. Now if the line drawn from a
* American Journal of Mathematics, Vol. i (1878), pp. 174—176, Vol. xi
1889), pp. 139— 157 ; Proceedings of the London Mathematical Society, Vol. ix
1878), pp. 126—133 ; Collected Papers, Vols, x, xn.
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to 6, where a and b are two of the points, is an $-line, then
the line drawn from b to a is from the construction an <S_1-line.
We may then at once modify our diagram, in the direction
of simplification, by dropping out one of the two lines
between a and b, say the $~l-line, on the understanding that
the remaining line, with the arrow-head reversed, will give the
line omitted. If S is an operation of order 2, S and <S-1 are
identical, and the arrow-head drawn on such a line may be
omitted. The modified figure will now consist of N poiuts
connected by ^iV(iV-l) lines. From the construction it
follows at once that, for every value of r, a single /S>r-line ends
at each point of the figure and a single #r-line begins at each

point of the figure ; these two lines being identical when the
order of <Sfr is 2.

We may pass from one point of the figure to another along
the lines in various ways ; but any path between two points of
the figure will be specified completely by such directions as :
follow first an /Sr-line, then an <S,-line, then an <St~l-line, and
so on. Such a set of directions is said to define a route.
It is an immediate consequence of the construction that, if
starting from some one particular point a given route leads back
to the starting point, then it will lead back to the starting point
from whatever point we begin. In fact, a route will be specified
symbolically by a symbol

and if 8U ... St-lS,SrZ = 2,

then Su...Sr1SiSr = E,
and therefore Su . . . S^S.Srl' = 2',
whatever operation 2' may be.

305. If the diagram of N points connected by ^N(N-l)
directed lines is to appeal readily to the eye, some method must
be adopted of easily distinguishing an Sr-line from an <S,-line.
To effect this purpose, Cayley suggested that all the Sr-lines
should be of one colour, all the $,-lines of another, and so on.

Suppose now that, independently of any previous considera-
iion, we have a diagram of N points connected by ^iV(^r — 1)
coloured directed lines satisfying the following conditions :—
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(i) all the lines of any one colour have either (a) a single
arrow-head denoting their directions : or (b) no arrow-head, in
which case the line may be regarded as equivalent to two coin

cident lines in opposite directions ;

(ii) there is a single line of any given colour leading to every
point in the diagram, and a single line of the colour leading from

every point : if the colour is one without arrow-heads, the two
lines coincide ;

(iii) every route which, starting from some one given point
in the diagram, is closed, i.e. leads back again to the given point,
is closed whatever the starting point.

Then, under these conditions, the diagram represents in

graphical form a definite group of order 2V.

It is to be noticed that the first two conditions are necessary
in order that the phrase "a route" used in the third shall have
a definite meaning. Suppose that R and R' are two routes
leading from a to b. Then RR'*1 is a closed route and will
lead back to the initial point whatever it may be. Hence if R
leads from c to d, so also must R' ; and therefore R and R' are
equivalent routes in the sense that from any given starting
point they lead to the same final point. There are then, with

identity which displaces no point, just N non-equivalent routes
on the diagram, and the product of any two of these is a definite
route of the set. The N routes may be regarded as operations
performed on the N points; on account of the last property
which has been pointed out, they form a group. Moreover, the

diagram gives in explicit form the complete multiplication table

of the group, for a mere inspection will immediately determine

the one-line route which is equivalent to any given route; Le.

the operation of the group which is the same as the product of

any set of operations in any given order.

From a slightly different point of view, every route will give
a permutation of the N points, regarded as a set of symbols,
among themselves ; no symbol remaining unchanged unless

they all do. To the set of N independent routes, there will
correspond a set of N permutations performed on N symbols ;
and we can therefore immediately from the diagram represent
the group as a transitive permutation-group of degree N.
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306. It cannot be denied that, even for groups of small
order, the diagram we have been describing would not be easily
grasped by the eye. It may however still be considerably
simplified since, so far as a graphical definition of the group is
concerned, a large number of the lines are always redundant.

If in the diagram consisting of N points and ^N(N-l)
coloured lines, which satisfies the conditions of § 305, all the
lines of one or more colours are omitted, two cases may occur.
We may still have a figure in which it is possible to pass
along lines from one point to any other; or the points may
break up into sets such that those of any one set are con

nected by lines, while there are no lines which enable us

to pass from one set to another.

Suppose, to begin with, that the first is the case. There will

then, as before, be N non-equivalent routes in the figure, which
form a group when they are regarded as operations ; it is
obviously the same group as is given by the general figure.
The sole difference is that there will not now be a one-line
route leading from every point to every other point, and there

fore the diagram will no longer give directly the result of the

product of any number of operations of the group.

If on the other hand the points break up into sets, the new
diagram will no longer represent the same group as the original
diagram. Some of the routes of the original diagram will
not be possible on the new one, but every route on the new

one will be a route on the original diagram. Hence the new
diagram will give a sub-group ; and since it is still the case that
no route, except identity, can leave any point unchanged, the

number of points in each of the sets must be the same. The

reader may verify that the sub-group thus obtained will be self-

conjugate, only if the omitted colours interchange these sets
bodily among themselves.

307. The simplest diagram that will represent the group
will be that which contains the smallest number of colours and
at the same time connects all the points. To each colour

corresponds a definite operation of the group (and its inverse).
Hence the smallest number of colours is the smallest number

4
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of operations that will generate the group. It may be noticed
that this simplified diagram can be actually constructed from the

previously obtained representation of the group by the regular
division of a surface, the process being exactly the same as
that by which the general diagram was obtained. For if

Slt S„ Sn

are a set of independent generating operations, and if

S1S2 ... SnSn+1 = E,

we may represent the group by the regular division of a surface
into 2N black and white (n + 1)-sided polygons. When we
draw on this surface the S2-, ,Sfn-lines, the N points
will be connected by lines in a single set, since from

$n 82 Sn

every operation of the group can be constructed ; and the set
of points and directed coloured lines so obtained is clearly the

diagram required.

As an illustration of this form of graphical representation,
we may consider the octohedral group (§ 295), defined by

= S"2 = E, St4~E,

Si S2 Ss = E.

On the diagram already given (p. 406), we may at once draw

St- and /Si-lines. These in the present figure are coloured

respectively red, yellow, and green. By omitting successively
the red, the yellow, and the green lines we form from this the
three simplest colour diagrams which will represent the group*.
* For further illustrations, the reader may refer to Young, Arntr. Journal,

Vol. xv (1893), pp. 164—167; Maschke, Arntr. Journal, Vol. xvm (1896),
pp. 156— 188 ; and Hilton, An introduction to groupt of finite order (1908),
pp. 84—89.



CHAPTER XX.

ON CONGRUENCE GROUPS*.

308. In §§ 88, 89 and again in §§ 140, 141 we have inci
dentally used systems of congruences to define a group of
finite order. This method of presenting a group in a con
crete form has been found to lend itself very readily to the
discussion and analysis of certain large classes of groups.
With the space at our disposal it is impossible to do more
than illustrate the application of the method in a few par
ticular cases.

The first that we choose for this purpose is the group
of isomorphisms of an Abelian group of order pn and type
(1, 1, ... to n units). This group has been defined and its order
determined in §§ 88, 89. It is there shewn that the group is

* The homogeneous linear group and its sub-groups forms the subject of the
greater part of Jordan's Trailt des Substittttions. The investigation of its
composition-series, given in the text, is due to Jordan.
The complete analysis of the fractional linear group, defined by

where a3 - £7 = 1,
is due originally to Gierster, " Die TJntergruppen der Galois'schen Gruppe der
Modulargleichungen fur den Fall eines primzahligen Transformationsgrades,"
Math. Ann. Vol. xvm (1881), pp. 319—365. With a few unimportant modifica
tions, the investigation in the text follows the lines of Gierster's memoir.
In connection with the theory of congruence groups the reader should con

sult Prof. L. E. Dickson's treatise on Linear groups with an exposition of the
Galois field theory (1901). This book, which is entirely devoted to the study of
groups defined by congruences, gives an admirable and complete account of the
theory.
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simply isomorphic with the homogeneous linear group defined

by all sets of congruences

y, = <XuXl + a12xt + . . . + ctln&n ,

yy
= anx1 + + ••• +amxn,

yn= anlx1 + an2x2+ ... + annxn,

whose determinants are not congruent to zero; and that its
order is

N = (pn-l)(pn-p)...(pn-pn-1).
The operation given by the above set of congruences will be
denoted in future by the symbol

(Ou<Ci + . . . + OmXn, a^a;, + ... + amXn, .... d,,*, + . . . + CLnnXn).

309. The determinant of any operation of the group is

congruent (mod. p) to one of the numbers 1, 2, ...,p— 1 ; and
if D and D' are the determinants of S and S', the determinant
of SS' is congruent (mod. p) to DD'. We have seen (note,
p. 268) that those substitutions of a group of linear substitu
tions, whose determinant is unity, constitute a self-conjugate
sub-group. From this it at once follows that those operations
of the homogeneous linear group whose determinants are con

gruent to unity (mod. p) constitute a self-conjugate sub-group.
This self-conjugate sub-group will be denoted by T, the group
itself being 0.

Suppose now that S is an operation* of Q whose determinant
is congruent to z, a primitive root of the congruence

zP~l = 1 (mod. p).

Then the determinant of every operation of the set

ST
is congruent to zr; and therefore, if r and s are not congruent
(mod. p), the two sets

ST and ST
can have no operation in common. Moreover, if S' is any
operation of 0 whose determinant is congruent to zr, then
S^S' belongs to T, and therefore S' belongs to the set SPT.
Hence finally, the sets

r, sr,sv,...,s*-T
* The operation (**,, x,2, ... , xj has z for its determinant.
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are all distinct, and they include every operation of G ; so that

G=\S,T}.

The factor-group G/T is therefore cyclical and of order p— 1.

310. It may be very readily verified that the operations of
the cyclical sub-group generated by

(zxi, tx„ .... zxn)

are self-conjugate operations of G. To prove that these are

the only self-conjugate operations of G, we will deal with the
case n = 3 : it will be seen that the method is perfectly
general. Suppose then that

T= + fix2 + yxt, a'*, + fix2 + y'xtt a"^ + /3"x, + y'x,)

is a self-conjugate operation of G, while

S = {axi + fo&i + cxt , a'x, + b'xt + c'x„ a"x^ + b"xt + c"x,)

is any operation. The relation

ST= TS

involves the nine simultaneous congruences*

aa + ba' + ctx" = aa + /3a + ya",

a/3 + bff + c/3" = ab + /3b' + yb",

ay + by' + cy" = ac + /Sc' + yc",

etc., etc.;

and these must be satisfied for all possible values of the
coefficients of S. Now

b = c = a = 0

is a possible relation between the coefficients of S, whether

regarded as an operation of 6 or T ; and therefore

7 = 0.

In the same way, it may be shewn that

/3=a' = y' = a" = /3" = 0,

and that a = /?
' = y" ;

so that T is a power of the operation
(zxlt

* These and all succeeding congruences ure to be taken mod. p, unless the
contrary is stated.
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The only self-conjugate operations of G are therefore the powers
of A, where A denotes

and the only self-conjugate operations of T are those operations
of this cyclical sub-group which are contained in T. Now the
order of A is p — 1 and its determinant is zn. Hence the self-
conjugate operations of T form a cyclical sub-group D of order
d, where d is the greatest common factor of p — 1 and n ; and
this sub-group is generated by A®-1*''1.

311. To determine completely the composition-series of G,
it is necessary to find whether T has a self-conjugate sub
group greater than and containing D. A simple calculation
will shew that, from

(#1 + xt, xt, xt, xn)

and its conjugate operations, all the operations of T may be
generated ; and hence no self-conjugate sub-group of T which
is different from T itself can contain an operation of this form.
If then it is shewn that any self-conjugate sub-group of T,
distinct from D, necessarily contains operations of this form, it
follows that D is a maximum self-conjugate sub-group of T.

We shall first deal with the case n = 2.

If p = 2, the orders of G, T and D are 6, 6 and 1. In this
case, r is simply isomorphic with the symmetric group of three
symbols, which has a self-conjugate sub-group of order 3. The
successive factor-groups of the composition-series of G are
therefore cyclical groups of orders 2 and 3.

If p = 3, the orders of G, T and D are 48, 24 and 2. The
factor-group T/D has 12 for its order, and cannot therefore be a
simple group. The reader will have no difficulty in verifying
that, in this case, the successive factor-groups of G have orders
2, 3, 2, 2 and 2. We will then, in dealing with the case n = 2,
assume that p is not less than 5.

Let us suppose now that T has a self-conjugate sub-group
/ that contains D; and let 8 or

(ax1 + bxt, a'x! + b'xt)

be one of its operations, not contained in D.
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If b is different from zero, T contains 2, where 2 denotes
( t. 1+aW \
iaax, + abxs, —

^

— —
aaxtj ,

and therefore / contains £_1/S>2iS, which is

If 6 is zero, 6' is congruent with a-1; therefore, in any case,
/ contains an operation S' of the form

(cxu dxl + <r~lxs).

Again, T contains the operation T, where T denotes

(xi , x1 + x^) ;

and I therefore contains S'T^S'^T, which is
(<r„(l -c2)<r, + x2).

Hence unless 1 — c" = 0, / must coincide with T. Now,
when p> 5, c can always be chosen so that this congruence
is not satisfied. If p = o, the square of the above operation
%-lS2.S, when unity is written for a, is

(a
h
,
j (b' + o) Xi + a
C
j;

unless b
'

+ a = 0
, this again requires that / coincides with T.

If finally, the condition b
'

+ a = 0 is satisfied in S
, it is not

satisfied in ST~lS~lT, another operation belonging to /; and
therefore again, in this case, / coincides with I\
Hence finally, if n = 2, the factor-group TjD is simple, except

when p is 2 or 3
.

312. When n is greater than 2
, it will be found that it is

sufficient to deal in detail with the case n=3, as the method
will apply equally well for any greater value of n. Suppose
here again that T has a self-conjugate sub-group / which
contains D; and let S

,

denoting

(axi + bx3 + cxs, dxy + b'x2 + c'xs, a!'xx + V'x^ + c"x3),

one of the operations of / which is not contained in D.
cannot be permutable with all operations of the form

'i . «s» ®i + t"h)> as it would then be permutable with every
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operation of I\ We may therefore suppose without loss of
generality that <

S
'

and T are not permutable, T denoting
(x,t xt, xt + xj. Then S-iT-iST is an operation, distinct from
identity, belonging to 1

. Now a simple calculation shews that
this operation, say U

,
is of the form

(#!
— cX , x, — c'X, Ax1 + Bxt + Cx,),

where X is the symbol with which S-1 replaces
If c and c' are both different from zero, T will contain an

operation V of the form
( C V

IXi — — , Xt, X2, xt j ,

and / contains V-lW, which is of the form
(a;a , ax1 + @xt + yx„ a'x, + f¥x2 + y'xt).

Moreover, if either c or c' is zero, the operation U itself
leaves one symbol unaltered. Hence I always contains opera
tions, other than the identical one, by which one symbol is

unaltered.

If now W, or
(a;,, aa\ + /3xt + yxt, a'xl + fix2 + y'x,)

is such an operation contained in /, and if R is

(a;,, Xt + Axlt Xt+Bx,),

then R-'WRW-1 is

(x,t Xi + axi, Xi + bx1),

where a = A(y' — l) — By,

b = -A8' +B(0-l).
Hence, unless ft = y

'

= 1 and y
9
'

= y = 0
, I has operations of

the form

Oi, xi + ax,, xt + bxj,

and, if these conditions hold, W is already of this form. Still
denoting this operation by W, if S is

CXt, C-'iTi),

then ^1>T,SF-<: is

(as,, x» xt + b{c-'-c)ah);

b. 28
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and it has been seen that V can be generated from this opera
tion and its conjugates. Hence finally, if n>2, the factor-
group r/D is simple for all prime values of p.

313. The composition-series of G is now, except as regards
the constitution of the simple group TjD, perfectly definite.
It has, in fact, been seen that OjT and D are cyclical groups of
orders p — 1 and d ; and therefore if a, ft

,

y, . . . are primes

whose product is p — 1, and if a, ft', 7',... are primes whose
product is d

;

the successive factor-groups of G are first, a series
of simple groups of prime orders at, /3

,

7, ...: then a simple
group of composite order N/(p — 1) d: and lastly, a series of
simple groups of prime orders a

',

ft', y

The sequence in which the set of simple groups of orders
a, ft

,

y, ... are taken in the composition-series may be clearly
any whatever, and the same is true of the set of factor-groups
of orders a

',

ft', 7
' but it is to be noticed that, when d is

not equal top — 1
, the composition-series is capable of further

modifications. In this case, [A, T) is a self-conjugate sub-group
of G of order N/d, which has a maximum self-conjugate sub
group {

A
I of order p — 1
. The successive composition-factors

of G may therefore be taken in the sequence

a
', ft', y
\ N/(p-l)d: a,ft,y,...:

and their arrangement may be yet further changed by con

sidering the self-conjugate sub-group [Am, T), where m is a
factor of p — 1 less than (p — l)/d.

314. For every value of pn, except 2J and 3a, it thus
appears that the linear group may be regarded as defining a

simple group of composite order. We shall now proceed
to a discussion of the constitution of the simple groups thus
defined when n = 2, p being greater than 3. In this case, the
group r is defined by the congruences

y%=yxl + hxi, (mod.p);

ah-fty=\,
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and since p — 1 is divisible by 2 when p is an odd prime, d is
equal to 2. Hence the self-conjugate operations of T are

(xJt a?a) and (— xlt — x2).

The order of T is pip3 — 1), and therefore the order of the
simple group, H, which it defines is ^p (p* — 1

). Suppose now,

if possible, that Y contains a sub-group g simply isomorphic
with H. If S is any operation of T, not contained in g, the
whole of the operations of Y are contained in the two sets

9,Sg.

Now (a?s, — #,), whose square (— xlt — x3) is a self-conjugate
operation, cannot be contained in the simple group g. Hence
both (x2, — xt) and (—xu — xt) are contained in Sg, an obvious
contradiction. Therefore T contains no sub-group simply
isomorphic with H.

For a discussion of the properties of H, some concrete
representation of the group itself is necessary; this may be
obtained in the following way. Instead of the pair of homo

geneous congruences that define each operation of V
,

let us,

as in § 141, consider the single non-homogeneous congruence

ax + 8

y^yxTS' (mo6-p)-

where aS — By = 1.

Corresponding to every operation

{axl + 8xt, y#, + Bx3)

of r, there will be a single operation of this new set ; namely
that in which a, 8

,

y, 8 have respectively the same values. But
since the operations

ax + 8 , —ax - 8

V = ~ and y = s9 yx+8 * -yx — B

are identical, two operations

{axx + 8xt, yx2 + &ra) and (— ax^
— 8x3, — yxy — Sx,)

of r will correspond to each operation
_ax + 8

y~yx + S

of the new set; the two self-conjugate operations

(xlt and (- xu — x?),
28—2
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in particular, corresponding to the identical operation of the
new set. Moreover, direct calculation immediately verifies
that, to the product of any two operations of T, corresponds the

product of the two corresponding operations of the new set.
Hence the new set of operations forms a group of order $p(p*—l),
with which T is multiply isomorphic; the group of order 2
formed by the self-conjugate operations of T corresponding to
the identical operation of the new group.

The simple group H, of order ^p(p" — 1), which we propose
to discuss, can therefore be represented by the set of operations

ax + /3 , , .

where aS — fty = 1,

a, /S
,

7, 8 being integers reduced to modulus p.

315. Since the order of H is divisible b
y p and not by ps,

the group must contain a single conjugate set of sub-groups of
order p. Now the operation

y = x+l,

or (x + 1) as we will write i
t in future, is clearly an operation

of order p : for its nth power is (x + n), and p is the smallest
value of n for which this is the identical operation. If

(x + 1
) and are represented by P and S, then

V- i*x + 1 + ay J

This is identical with P, only if

7 = 0
,

tP si;
and therefore P is permutable with no operations except its
own powers. On the other hand, if

7 = 0
,

then S-1PS = P-t;

and therefore every operation, for which 7 = 0
, transforms the

sub-group {P} into itself. These operations therefore form a
sub-group: a result that may also be easily verified directly.
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The order of this sub-group is the number of distinct operations

—
g-^J for which aShI. The ratio ^

must be a quadratic

residue, while /3 may have any value whatever. Hence the
order of the sub-group is \ (p — l)p ; and H therefore contains
p + 1 sub-groups of order p. Since if is a simple group, it
follows (§ 177) that it can be represented as a transitive
permutation-group of degree p + 1.

This representation of the group can be directly derived, as
in § 141, from the congruences already used to define it. Thus

if
, in

— ax + 0

m

we write for x successively 0
,

1
, 2 p — 1, oo , the p + 1

values obtained for y
, when reduced mod. p, will be the same

p+1 symbols in some other sequence. For if
axi + /8 - "X„ +
yxt + 8

-
yxt + 8

'

then (aS
- /3y) (#! - xt) = 0,

and therefore x1 = «r2.

Each operation of H gives therefore a distinct permutation
performed on the symbols 0

,

1
, p — 1, oo ; and the complete

set of permutations thus obtained gives the representation of H
as a transitive permutation-group of degree p + 1. Since H
coutains operations of order p, this permutation-group must be

doubly transitive. That this is the case may also be shewn
directly. Thus

y — a x — a'-—

T = rn 77

y — o x — b

is an operation changing a' into a and b
' into b. This operation

may be written

- k (bm — a)x + k(ab' — ma'b)
V= k{m-l)x + k(b'-ma')

'

and its determinant is

k2m(b-a)(V -a').
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If now (b — a) (b' — a') is a quadratic residue (or non-residue)
mod. p, m may be any quadratic residue (or non-residue) ; and k
can always be chosen so that the determinant is unity. There
are therefore fa(p — 1) permutations in the group, changing any
two symbols a, b' into any other two given symbols a, b.

x+S) keeP8
x uncaanged in the

permutation-group, x must satisfy the congruence

- ax + fi-
yx + 8

'

that is rya? + (8-a)z-l3 = 0.
Such a congruence cannot have more than two roots; and
therefore every permutation displaces all/all but one, or all but
two, of the p + 1 symbols.

316. The permutations, which keep either one or two

symbols fixed, must therefore be regular in the remaining p or
p— 1 symbols. Hence the order of every permutation which

keeps just one symbol fixed must be p ; and the order of every
permutation that keeps two symbols fixed must be equal to or

be a factor of p — 1. Now it was seen in the last paragraph
that the order of the sub-group that keeps two symbols fixed is

\ (p — l). Moreover, if z is a primitive root mod. p, the sub
group that keeps a and b fixed contains the operation

y — b x — b '

and the order of this operatiou is b(p — 1). Hence, the
sub-group that keeps any two symbols fixed is a cyclical group
of order ^(p — 1); and every operation that keeps two symbols
fixed is some power of an operation of order £ (p — 1). Since the
group is a doubly transitive group of degree ^+1, there must
be ^ (p + l)p sub-groups which keep two symbols fixed ; and
these must form a conjugate set. Each is therefore self-

conjugate in a sub-group of order p— 1. To determine the

type of this sub-group, we may consider the sub-group keeping

0 and oo fixed : this is generated by Q, where Q denotes .
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If tm ig represented by S, then\yx + 8J

\ —
7&C + z_1a6

— zfiy

which can be a power of Q only if

afi = 0, 78 = 0.

Hence either /8
= 7=0,

in which case S is a power of Q : or

a=8 = 0, 7 = -/3-'.
In the latter case, we have

which is an operation of order 2 ; and then

The group of order p- 1, which contains self-conjugately a
cyclical sub-group of order ^(p— 1) that keeps two symbols fixed,
is therefore a group of dihedral (§ 295) type. Moreover, if t is
any factor of p — 1, this investigation shews that {<S, Q] is the
greatest sub-group that contains {Q'\ self-conjugately.

317. A permutation that changes all the symbols must
either be regular in the p+1 symbols, or must be such that
one of its powers keeps two symbols fixed. The latter case
however cannot occur; for we have just seen that, if Q is an
operation, of order £(p — 1), which keeps two symbols fixed,
the only operations permutable with are the powers of Q.
Hence the permutations that change all the symbols must
be regular in the p + 1 symbols, and their orders must be

equal to or be factors of p +

Suppose now that i is a primitive root of the congruence
_l = o (mod. p),

so that t and ip are the roots of a quadratic congruence with

real coefficients ; and consider the operation K, denoting
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where k is not a multiple of p + 1. On solving with respect to

y, K is expressed in the form

r— tt(p+1)
|(p-d .-*(p-d .|o>-i) --i(p-i)

* k an 2 + j- i— ' -

an operation of determinant unity. It will be found, on writing
ip for t in the coefficients of this operation, that they remain
unaltered ; therefore, since they are symmetric functions of
i and ip, they must be real numbers. The operation therefore
belongs to H. The nth power of this operation is given by

itk nr — ik

and therefore, since the first power of i which is congruent to
unity, mod. p, is the (p2 — 1)th, the order of the operation is

§(p + 1). If we write kp for k in the operation K, the new
operation is K-l ; but if k is replaced by any other number k',
which is not a multiple of p + 1, the new operation K' , given by

generates a new sub-group of order £(p+l), which has no
operation except identity in common with \K). Now there are
pt— p numbers less than p2— 1 which are not multiples of
p + 1; therefore H contains ^(p2— p) cyclical sub-groups of
order ^(p + 1), no two of which have a common operation
except identity. The corresponding permutations displace all

the symbols.

318. A simple enumeration shews that the operations of
the cyclical sub-groups of orders £(p — 1), p and £(p+1),
exhaust all the operations of the group. Thus there are,

omitting identity from each sub-group :

(i
) \p(p + l) sub-groups of order £ (p — 1), containing
ip(P2- 1) — hp2- hP distinct operations;
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(ii) ( j)
— 1) sub-groups of order £ (p + 1), containing

{p{p' —1) — \p2 + hP distinct operations;

(iii) p + 1 sub-groups of order p, containing
p' — 1 distinct operations ;

and the sum of these numbers, with 1 for the identical opera
tion, gives \p(p2 — 1), which is the order of the group.

Every operation that displaces all the symbols is therefore
the power of an operation of order £ (p + 1).

319. We shall now further shew that the \p{p — 1) sub
groups of order i(p + 1) form a single conjugate set, and that
each is contained self-conjugately in a dihedral group of order

p + 1. Let S be any operation of H, which is permutable with

[K] and replaces ik by some other symbol j. Then S-1KS is
an operation which leaves j unaltered ; it may therefore be ex
pressed in the form

y-j oc-j
This can belong to the sub-group generated by K, only if j

and / are the same pair as ik and ik*. Hence j must be either
ik or ikp ; and similarly, if S replaces & by/, the latter must be
either t** or ik. Hence either S must keep both the symbols
t* and unchanged or it must interchange them ; and con
versely, every operation which either keeps both the symbols
unchanged or interchanges them, must transform \K\ into
itself. If S keeps both of them unchanged, it is a power of
K. If S interchanges them, it is of the form

y — r x — i*p
—— tt: = m =r ;
y — i*P x — \"

and a simple calculation shews that

8r*KS =Kr\
If we take m = 1, <S becomes

x + y = »* +

an operation belonging to H. Hence the cyclical sub-group [K]
is contained self-conjugately in the sub-group of {S, K\ which is
of dihedral type. If there were any other operation S', not
contained in {S, K), which transformed K into its inverse, then
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SS' would be an operation permutable with K and not con
tained in [K). It has just been seen that no such operation
exists. Hence {S, K\, of order p+ 1, is the greatest sub-group
that contaius {if) self-conjugately ; and {K) must be one of

hp(P- 1) conjugate sub-groups.

320. The distribution of the operations of H in conjugate
sets is now known. A sub-group of order p is contained self-
conjugately in a group of order ^p(p-l), while an operation
of order p is permutable only with its own powers. There are
therefore two conjugate sets of operations of order p, each set

containing i(p2 — 1) operations. Again, each of the operations
of a cyclical sub-group of order ^( p — 1) or ^(p + 1) is conjugate
to its own inverse and to no other of its powers. Hence if
\ (p + 1) is even and therefore ^ (p — 1) odd, there are J (p — 3)
conjugate sets of operations whose orders are factors of \ ( p — 1),
each set containing p2+p operations; \{p— 3) conjugate sets
of operations whose orders are factors of £(p + 1), other than
the factor 2, each set containing p2—p operations ; and a single
set of operations of order 2, containing ^(p' — p) operations. If
£ (p — 1) is even and ^ (p + 1) odd, there are ^ (p — 1) conjugate
sets of operations whose orders are factors of ^(p + 1), each
containing p2 — p operations; \{p— 5) conjugate sets whose
orders are factors of £(p — 1), other than the factor 2, each
set containing p2 + p operations ; and a single set of £ (p2 +p)
conjugate operations of order 2. In either case, the group
contains, inclusive of identity. £(p + 5) conjugate sets of
operations.

321. Since p — 1 and p + 1 can have no common factor ex

cept 2, it follows that, if qm denote the highest power of an odd
prime, other than p, which divides the order of H, qm must be a
factor of ^ (p — 1) or of £ ( p + 1) ; and the sub-groups of order
qm must be cyclical. Moreover, since no two cyclical sub-groups
of order £ (p — 1), or ^ (p + 1), have a common operation except
identity, the same must be true of the sub-groups of order qm.

If 2m is the highest power of 2 that divides J| (p— 1) or
^ (p + 1), 2m+1 will be the highest power of 2 that divides the
order of H. Moreover, a sub-group of order 2m+1 must contain
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a cyclical sub-group of order 2m self-conjugately, and it must
contain an operation of order 2 that transforms every operation
of this cyclical sub-group into its own inverse ; in other words,

the sub-groups of order 2m+1 are of dihedral type.

Suppose 77i > 1 and that two sub-groups of order 2m+1 have
a common sub-group of order 2r(r>2). Such a sub-group
must be either cyclical or dihedral : in the latter case, it
contains self-conjugately a single cyclical sub-group of order
2r-1. Hence, on the supposition made, a cyclical sub-group of
order 4 at least would be contained self-conjugately in two
distinct cyclical sub-groups of order 2m. It has been seen that
this is not the case ; and therefore the greatest sub-group, that
two sub-groups of order 2m+1 can have in common, must be a

sub-group of order 4, whose operations, except identity, are all

of order 2. Now every group of order 2m+1 contains one self-

conjugate operation of order 2, and 2m operations of order 2

falling into 2 conjugate sets of 2m-1 each. Moreover, the group
of order p ± 1, which has a cyclical sub-group of order 2m and
contains the operation A of order 2 of this cyclical group
self-conjugately, has i(p ± 1) other operations of order 2; and
therefore it contains (p ± 1)/2m+1 sub-groups of order 2m+1, each
of which has A for its self-conjugate operation. If now B is
any operation of order 2 of this sub-group of order p ± 1, and
if it is distinct from A, then B enters into a sub-group of
order 2m+! that contains A self-conjugately. But since A is
permutable with B, A must belong to the sub-group of order
p±l, which contains B self-conjugately; hence A enters into
a sub-group of order 2m+1 which contains B self-conjugately.
The sub-group [A, B) is therefore common to two distinct
sub-groups of order 2m+1. Now no group of order 2r(r>2)
can be common to two sub-groups of order 2m+1; and therefore

[A,B\ must (§ 122) be permutable with some operation <Swhose
order s is prime to 2. If s is not 3, S must be permutable with
A aud B: and then {A, S] and [B, S] would be two distinct
sub-groups of orders 2s, whose operations are permutable with

each other. It has been seen that H does not contain such
sub-groups. Hence s = 3 ; and S transforms A, B and AB cycli
cally, or {S, A, B\ is a sub-group of tetraliedral type (§ 295).
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The number of quadratic* sub-groups contained in H may
be directly enumerated. A group of order 2m+1 contains 2m-1
such sub-groups, which fall into 2 conjugate sets of 2m-' each ;
a single group of order 8 containing each quadratic group self-

conjugately. The quadratic groups, contained in the (p± 1)/2m+1
sub-groups of order 2m+1 of a sub-group of order p ± 1, are

clearly all distinct, and each quadratic group belongs to just 3
groups of order p ± 1 ; thus {A, B} belongs to the 3 groups
which contain A, B and AB respectively as self-conjugate
operations. Hence the total number of quadratic groups con
tained in H is

322. The greatest sub-group of a group of order 2m+1, that
contains a quadratic group self-conjugately, is a group of order
8 and dihedral type; and it has been shewn that 3 is the
only factor, prime to 2, that occurs in the order of the sub

group containing a quadratic group self-conjugately. Hence

finally, the order of the greatest group containing a quadratic
group self-conjugately is 24, and the ^p(ps — 1)/12 quadratic
groups fall into two conjugate sets of ^p(p2 — 1)/24 each. The

group of order 24, that contains a quadratic group self-con

jugately, contains also a self-conjugate tetrahedral sub-group,
while the sub-groups of order 8 are dihedral. Hence (§§ 126,

295) this group must be of octohedral type.

Since every tetrahedral sub-group of H contains a quadratic
sub-group self-conjugately, and every octohedral sub-group
contains a tetrahedral sub-group self-conjugately, there must
also be two conjugate sets of tetrahedral sub-groups and two

conjugate sets of octohedral sub-groups, the number in each set

being \p (p2 — 1)/24.

323. In the last two paragraphs we have supposed to > 1, or
what is the same thing, p = ± 1 (mod. 8). If now to = 1, so that
p = ± 3 (mod. 8), the highest power of 2 that divides the order of

H is 22 ; and, since 2s is not a factor of £ (p ± 1), the sub-groups
of order 2s are quadratic. Moreover, since 2' is the highest power

* A non-oyclical group of order 4 is called a quadratic group.
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of 2 dividing the order of H, the quadratic sub-groups form
a single conjugate set. Each sub-group of order p ± 1, which
has a self-conjugate operation of order 2, contains i(p±1)
sub-groups of order 4, and each of the latter belongs to 3
of the former. The total number is as before $p(p2 — 1)/12,
aud since they form a single conjugate set, each quadratic group
is self-conjugate in a group of order 12. Also, for the same
reason as in the previous case, this sub-group is of tetrahedral

type.

Finally, since every sub-group of H of tetrahedral type
must contain a quadratic sub-group self-conjugately, H must
contain a single conjugate set of £p(p2 — 1)/12 tetrahedral sub

groups. In this case the order of H is not divisible by 24, and
therefore the question of octohedral sub-groups does not arise.

324. The group H always contains tetrahedral sub-groups;
when its order is divisible by 24, it contains also octohedral
sub-groups. Now if p=±l (mod. 5), the order of H is
divisible by 60; and it may be shewn as follows that, in these
cases, H contains sub-groups of icosahedral type.
Let us suppose, first, that p = 1 (mod. 5) ; and let j be a

primitive root of the congruence

f = 1 (mod. p).
Then (^ij • which we

will denote by A, is an operation of order

5. The operations of order 2 of H are all of the form B, where

B denotes (axJr@\ since each is its own inverse. Now
\yx — at/

and (§ 295) A and B will generate an icosahedral group, if
' (ABy = E.

A simple calculation shews that this condition is satisfied, if

Also, since the determinant of B is unity,

a2 + /37 =
- 1.
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These two congruences have just p — 1 distinct solutions,
the solutions a, /8

,

7 and — a, — /9
, — 7 being regarded as

identical. There are therefore p — 1 operations of order two in
H, namely the operations

J -J 1
1
^

3-r
where ffiy = — 1 — , .

which with J. generate an icosahedral sub-group.

The group generated by

(f

and ( *=1

contains 5 of the ^ - 1 operations of order 2 of the form

yx .

1

- 1-1 .J -J
viz. those for which

flsPf, 7 = 7oi-". (7«=0,1,2,3,4).
Hence the sub-group {A}, of order 5

,

belongs to 1
)

distinct icosahedral sub-groups. Now each icosahedral sub

group has 6 sub-groups of order 5
;

and H contains ^p(p+ 1
)

sub-groups of order 5 forming a single conjugate set. The
number of icosahedral sub-groups in H is therefore

The group of isomorphisms of the icosahedral group is the

symmetric group of degree 5 (§ 162). Now H can contain no
sub-group simply isomorphic with the symmetric group of

degree 5
. For if it contained such a sub-group, an operation
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of order 5 would be conjugate to its own square; and this is
not the case.

Hence (§ 70), if an icosahedral sub-group K of H is con
tained self-conjugately in a greater sub-group L, then L must be
the direct product of if and some other sub-group. This also is
impossible; for the greatest sub-group of H in which any cyclical
sub-group, except those of order p, is contained self-conjugately,
is of dihedral type. Hence L must coincide with K, and K
must be one of %p(p2 - 1)/60 conjugate sub-groups. The
icosahedral sub-groups of H therefore fall into two conjugate
sets of $p(jp»-l)/60 each.

In a similar manner, when p = - 1 (mod. 5), we may take as
a typical operation A, of order o,

y — t _ . » x — i
y — iP~ X — iP'

and it may be shewn, the calculation being rather more
cumbrous than in the previous case, that there are just p + 1

fax + B\
operations B, of the form

^—

-—
-J , such that

(ABf = E,
and that five of these belong to the icosahedral group gene
rated by A and any one of them. It follows, exactly as in
the previous case, that H contains ^p(p* — l)/30 icosahedral
sub-groups, which fall into two conjugate sets, each set con

taining kp(P2 ~ l)/60 groups.

325. Finally, we proceed to shew that H has no other
sub-groups than those which have been already determined.

Suppose, first, that a sub-group h of H contains two distinct
sub-groups of order p. These must, by Sylow's theorem, form

part of a set of kp + 1 sub-groups of order p conjugate within
h. Now H contains only p + 1 sub-groups of order p, and
therefore k must be unity and h must contain all the sub-groups
of order p; or since H is simple, h must contain and therefore
coincide with H. Hence the only sub-groups of H, whose orders
are divisible by p, are those that contain a sub-group of order
p self-conjugately. They are of known types.
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S oppose text that g is a sub-group of H, whose order n
is not divisible by p, and kt i be an operation of g whose
order q

., is not less than :he order of any other operation of g.
In H the snb-gro»ip ^S-M is self-conjugate in a dihedral group of
order p ± 1 ; and the greatest sub-group of this group, which
contains no operation of order greater than qlt is a dihedral
group of order So,. Hence in g the sub-group {S,} is self-
conjugate in a group of order 9, or 3jj , and therefore it forms
one of r 9, or of it tq^ conjugate sub-groups. Moreover, no two
of these sub-groups contain a common operation except identity;
and they therefore contain, excluding identity, n (9, — l)/e,g,
distinct operations, where ex is either 1 or 2

.

Of the remaining operations of g, let S
,

be one whose

order qt is nut less than that of any of the others. The opera
tion $

,

cannot be permutable with any of the n(g, — l)/e,g,

operations already accounted for, since & is not a power of any
one of these operations. Hence, exactly as before, {S,} must form

one of n e^q, conjugate sub-groups in g, e, being either 1 or 2 ;

and these sub-groups contain n (oj— 1 ) e,g, operations which are

distinct from identity, from each other, and from those of the

previous set. This process may be continued till the identical
operation only remains. Hence, finally, n being the total

number of operations of g, we must have

e.q,

n , e.q,

326. In this equation, let r of the e's be 1 and s of them
be 2

. Then

<l-ir-i*.
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Hence, since n is a positive integer, r cannot be greater than 1,
and therefore not more than one of the e's can be unity. Also,
when one of the e's is unity, we have11, v 1

<i(2-«),
so that, in this case, s cannot be greater than unity. The
solutions are now easily obtained by trial.

(i) For one term in the sum, the only possible solution is

e, = l, n = qlt
and the corresponding group is cyclical.

(ii) For two terms in the sum, the solutions are

(a) e1-ei.2>»-^-;
<fl T V»

08) ei = 2, e,-l, ?, = 2, n = 2gi;
(7) e1 = l, es = 2, ?1 = 3, 9j=2, n = 12.

To the solution (a) there corresponds no sub-group; for
n < 2qlt and the values ji = qu ^ = 2 imply that g has a sub
group of order 2qx.

To the solution (/9) correspond the sub-groups of order 2qt
of dihedral type, for which 5, is odd, so that the operations of
order 2 form a single conjugate set.

To the solution (7) corresponds a sub-group of order 12

containing 8 operations of order 3 and 3 operations of order 2,
i.e. a tetrahedral sub-group.

(iii) For three terms in the sum, the solutions are

(a) e1 = e, = e3= 2, qt = 2, q, = 2, n = 2qi;

(0) „ „ ?, = 3, q, = 3, ?,= 2, n=12;

(7) ». ?i = 4, q,= 3, q3 = 2, n = 24 ;

(8) „ „ ?i = 5, ?2 = 3, q, = 2, n = 60.

To the solution (a) correspond the sub-groups of order 2q}
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of dihedral type, in which qx is even, so that the operations of

order 2, which do not belong to the cyclical sub-group of order

qu fall into two distinct conjugate sets.

To the solution (#) would correspond a group of order 12

containing 3 operations of order 2 and 4 sub-groups of order 3
which fall into two conjugate sets of 2 each. Sylow's theorem
shews that such a group cannot exist ; and therefore there is no

sub-group of H corresponding to this solution.
Solution (7) gives a group of order 24, with 3 conjugate

cyclical sub-groups of order 4, 4 conjugate cyclical sub-groups
of order 3, and 6 other operations of order 2 forming a single

conjugate set. No operation of this group is permutable with
each of the 4 sub-groups of order 3; and therefore, if the group
exists, it can be represented as a transitive group of 4 symbols.
On the other hand, the order of the symmetric group of 4

symbols, which (§ 296) is simply isomorphic with the octohedral

group, is 24; and its cyclical sub-groups are distributed as
above. Hence to the solution (7) there correspond the octohedral

sub-groups of H.

Solution (8) gives a group of order 60, with 6 conjugate
sub-groups of order 5, 10 conjugate sub-groups of order 3, and
a conjugate set of 15 operations of order 2. It has been shewn,
in § 127, that there is only one type of group of order 60 that
has 6 sub-groups of order 5 ; viz. the alternating group of
degree 5: and that, in this group, the distribution of sub-groups
in conjugate sets agrees with that just given. Moreover, the
alternating group of degree 5 is simply isomorphic with the
icosahedral group. Hence to this solution there correspond the
icosahedral sub-groups of H.

(iv) For more than three terms in the sum there are no
solutions.

327. When p > 11, then \p(p - 1) > 60; and, when p > 3,
^p(p — l)>p + 1. Hence when p>ll, the order of the
greatest sub-group of H is \p (p — 1), and the least number
of symbols in which H can be expressed as a transitive group
is p + 1.
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When p is 5, 7 or 11, however, H can be expressed as a
transitive group of p symbols*.

For, when p = 5, H contains a tetrahedral sub-group of
order 12, forming one of 5 conjugate sub-groups; therefore H
can be expressed as a transitive group of 5 symbols. It is to be
noticed that in this case H is an icosahedral group.
When p = 7, H contains an octohedral sub-group of order

24, which is one of 7 conjugate sub-groups ; and H can there
fore be expressed as a transitive group of 7 symbols. Similarly,
when p= 11, H contains an icosahedral sub-group of order 60,
which is one of 11 conjugate sub-groups ; and the group can be

expressed transitively in 11 symbols.

328. The simple groups, of the class we have been dis

cussing in the foregoing sections, are self-conjugate sub-groups
of the triply transitive groups of degree p + 1, defined by

v=^+s-
(mod-p)-

the existence of which was demonstrated in § 141. In fact,

since (axJr &\ an(j (-— represents the same trans-
\yx + Bj \kyx+kS/ r

formation, the determinant, aB — j3y, of any transformation may
always be taken as either unity or a given non-residue ; and it
follows at once that the transformations of determinant unity
form a self-conjugate sub-group of the whole group of trans
formations.

If, as in § 141, a, /8
,

7, 8 are powers of i, where i is a primi
tive root of the congruence

I*"-1 = 1, (mod. p),

the triply transitive group 0 of degree pn + l, which is defined

b
y the transformations, has again, when p is an odd prime, a

self-conjugate sub-group Hoi order \pn{p'm — 1), which is

given by the transformations of determinant unity. It follows
from Theorem XIII, § 154, that O

,

being a triply transitive group
of degree pn + l, must have, as a self-conjugate sub-group, a

* This is another of the results stated in the letter of Galois referred to in
the footnote on p. 202.

29—2
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doubly transitive simple group; and it is easy to shew that H
is this sub-group.

In fact, if a simple group h is a self-conjugate sub-group of
0 it must be contained in H. Also, since A is a doubly
transitive group of degree pn+ 1, it must contain every opera
tion of order p that occurs in O. Now we may shew that these

operations generate H. Thus ( _g j and (x + 2 — t — t-1) are

operations of order p belonging to 0. Therefore ( -——— J

belongs to h. But this operation is transformed into by

•
^.
Hence belongs to A; and a sub-group of h

which keeps one symbol unchanged is the group of order

lpn(pn— 1) generated by and (jzj)- The order of A

therefore is not less than ^pn(pa> — 1); in other words h is

identical with H.

When p — 2, every power of t is a quadratic residue, and the
determinant of every transformation is unity. In this case it
may be shewn, by an argument similar to the above, that the

group G of order 2" (2s" — 1) is itself a simple group.

We are thus led to recognize the existence of a doubly-
infinite series of simple groups of orders 2n(2jn — 1) and
\pn(jt*—\), which are closely analogous to the groups of order
Itpip* — 1) already discussed. For an independent proof of the
existence of these simple groups and for an investigation of
their properties, the reader is referred to the memoirs mentioned
below *.

329. We will now return to the linear homogeneous group
0 of transformations of n symbols, taken to a prime modulus p ;
and consider it more directly as the group of isomorphisms of
an Abelian group of order pn and type (1, 1, ... to n units). As
in § 63 it may be expressed in the form of a substitution
* Moore, " On a doubly-infinite series of simple groups," Chicago Congress
ihematical Papers (1893); Burnside, "On a class of groups defined by con
duces," Proc. L. M. S. Vol. xxv (1894), pp. 113—139.
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group performed on the pn — 1 symbols of the operations, other
than identity, of the Abelian group. In this form it is clearly
transitive, since there are isomorphisms changing any operation
of the Abelian group into any other operation. If P is any
operation of the Abelian group, an isomorphism which changes
any one of the p — 1 operations

P, P2, ....I*-1
into any other, will certainly interchange the set among them
selves. Hence, when expressed as a group of degree pn — 1, G

is imprimitive ; and the symbols forming an imprimitive system
are those of the operations, other than identity, of any sub

group of order p of the Abelian group. If
P1, Pit ..., Pn

are a set of generating operations of the Abelian group, an

isomorphism, which changes each of the sub-groups

{Pl\, {Pi}, {Pn}

into itself, must be of the form

/Plt Pit Pn \
U*,", P," PnV'

This isomorphism changes P,P, into •')■'; therefore it
will only transform the sub-group {PiPi} into itself when
al = a„ (mod. p). If then the given isomorphism changes every
sub-group of order p into itself, we must have

«, = «,= ... = an, (mod. p).

Hence the only operations of G, which interchange the
symbols of each imprimitive system among themselves, are
those given by the powers of

fPi, Pi Pn\
I p . p n P n/ '

where a is a primitive root of p. This operation is the same as
that denoted by A in § 310. It follows immediately that the
factor-group G/{A} can be represented as a transitive group
in (pn — 1)/(p — 1) symbols. In fact, the operations of {A} are
the only operations of G which transform each of the

(pn-1)/(p-1)
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sub-groups of order p into itself; and these (p"— 1)/(p— 1) sub
groups must be permuted among themselves by every operation
of G. The substitution group thus obtained is doubly transitive;

for if P and P' are any two operations of the Abelian group
such that P is not a power of P, and if Q and Q' are any other
two operations of the Abelian group subject to the same con
dition, there certainly exists an isomorphism of the form

and this isomorphism changes the sub-groups {P\ and [P'] into
the sub-groups [Q] and {Q1}.

These results will still hold if, instead of considering G the

total group of isomorphisms, we take T the group of iso
morphisms of determinant unity. Thus the determinant of

(P
, F....\

\Qr. Q', ...)

is a times the determinant of

(P
.

P-,...)
\Q, Of,. J'

It is therefore possible always to choose a so that the de
terminant of

(P
.

P',...)

shall be unity; and this isomorphism still changes the sub

groups jP} and {P'} into {Q} and {Q'\ respectively.

The lowest power of A contained in T is (§ 310) A<*-l)'d.
Hence the group r/[^.<p-1)"i} can be represented as a doubly
transitive group of degree (pn- l)/(p—l). This group is (§313)
simply isomorphic with the simple group of order N/(p — l)d,
which is defined b

y the composition-series of G.

We may sum up these results as follows:—

Theorem. The homogeneous linear group o
f order

N=(pn-l)(pn-p)... (pn-pn-1)
when pn is neither 22 nor 3s, defines, by its composition-series, a

simple group o
f order N/(p — l)d, where d is the greatest common
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factor of p — 1 and n. This simple grovp can be represented as
a doubly transitive group of degree pn-1 +pn-2 + . . . + p + 1.

330. The (pn— 1)/(p — 1) symbols, permuted by one of these

doubly transitive simple groups, may be regarded as the sub

groups of order p of an Abelian group of order pn and type
(1, 1, ... to n units). Now every pair of sub-groups of such an
Abelian group enters in one, and only in one, sub-group of order

p2; and every sub-group of order p2 contains p + 1 sub-groups of
order p. Hence from the (pn — 1)/(P — 1) symbols permuted by
the doubly transitive group, (pn— 1)(pn-1 - l)/(p— 1)(p2— 1)
sets of p + 1 symbols each may be formed, such that every pair
of symbols occurs in one set and no pair in more than one set,
while the sets are permuted transitively by the operations of
the group. These groups therefore belong to the class of

groups referred to in § 168. The sub-group, that leaves two

symbols unchanged, permutes the remaining symbols in two
transitive systems of p—1 and pn-I +pnr"*+ ... + p2; and the
sub-group, that leaves unchanged each of the symbols of one
of the sets of p+1, is contained self- conjugate ly in a sub
group whose order is (p+1)p times that of a sub-group leaving
two symbols unchanged. This latter sub-group permutes the
symbols in two transitive systems of p + 1 and

It may be pointed out that, when n is 3, such a sub-group is
simply isomorphic with, but is not conjugate to, the sub-groups
that leave one symbol unchanged : this may be seen at once by
noticing that an Abelian group, of order p2 and type (1, 1, 1),
has the same number of sub-groups of orders p and p2.

331. Some special cases may be noticed. First, when p = 2,
both p—1 and d are unity, and the homogeneous linear group is
itself a simple group.

If n = 3, then N = 1 68 ; so that the group of isomorphisms of a
group of order 8, whose operations are all of order 2, is the simple
group of order 168 (§ 166).
If n = 4, then N= 2t . 32 . 5 . 7. This is the order of the

alternating group of 8 symbols; and it may be shewn that this
group is simply isomorphic with the group of isomorphisms*.
* This result is due to Jordan, Traitg det Subttitutiont, pp. 380—382.
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It has been seen in § 166 that the symmetric group of degree 8
contains a sub-group of order 8.7.6.4 which can be expressed as
a primitive group of degree 8. The only sub-group of greater order
is the alternating group. The sub-group is therefore one of 30
conjugate sub-groups ; and in the alternating group, to which they
belong, these sub-groups fall into two distinct conjugate sets of
15 each.

The alternating group of degree 8 can therefore be represented
as a transitive group of degree 15; and the sub-groups that then
leave one symbol unchanged constitute one of the above two sets of
conjugate sub-groups. In this form of the group the other set of
sub-groups of order 8.7.6.4 must be intransitive (since their order
is not divisible by 5), and must therefore permute the symbols in
two transitive sets of 7 and 8 symbols respectively.

When the alternating group of degree 8 is represented as a
transitive group of degree 15 it is therefore possible to choose a set
of 7 out of the 15 symbols which only takes 15 values under the
permutations of the group.

When the alternating group of degree 8 is represented as a
transitive group of degree 15, an alternating group of degree 6
contained in it is necessarily transitive, because there are no
representations of the alternating group of degree 6 as a transitive
group of degree 9. The alternating group of degree 6 contains
a doubly transitive sub-group simply isomorphic with the alter
nating group of degree 5. When the alternating group of degree 6
is represented as a transitive group of degree 15, this sub-group
is necessarily transitive. Hence when the alternating group of
degree 8 is represented as a transitive group of degree 15 it contains
transitive icosahedral sub-groups. Such a sub-group is generated by

S or (123) (456) (lab) (ode) (fgh),
and T or (l/6c2) (ihbd5) (Sealg).
For ST is (2e) (3/) (5c) (6h) (ad) (bg),
so that S*=E, TS = E, (STf = E.
The sub-group that leaves 1 unchanged consists of identity and

(2e)(3/)(5c)(6h)(ad)(bg),

(2/)(3e) (5h)(6c)(ag) (bd),

(23) (ef) (5G)(ch)(ab)(dg).

If a set of 7 symbols takes only 15 values under the permuta
tions of the group, one of the values must be invariant for this
sub-group ; and therefore it must be

14723e/

14756cA,

or 1 ilabdg.
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Now each of these lead to the same set of 15, viz.

14723e/, 24/56arf,

14756cA, tybcgh,

Ulabdg, 27e5abh,

U35acg, 27e§cdy,

1236bdh, 3ieacdh,

lef6agh, 3ie56bg,

lef5bcd, 37/6a6c,

31f5dgh.

Hence, since this set is unique for the icosahedral sub-group,
it must be the set for the alternating group of degree 8 in 15 symbols
which contains the icosahedral sub-group.

Consider now the linear substitutions formed by multiplying
each of the 7 symbols in one of the sets by ], and each of the
remaining 8 symbols by - 1. Fifteen linear substitutions thus
arise of order 2, and they are permuted among themselves by every
permutation of the transitive group of degree 15.

But these fifteen substitutions with identity constitute an
Abelian group of order 16. Thus, if A multiplies each of 14723e/"
by + 1 and each of 56abcdgh by - 1, and if B multiplies each of
34e566^ by + 1 and each of l27acdfh by — 1, then AB multiplies each
of Meaedh by + 1 and each of 125676/i? by - 1 ; so that AB belongs
to the set. Moreover this completes the verification since the group
of permutations of the 15 sets is doubly transitive. The group of
permutations is thus actually exhibited as a group of isomorphisms
of an Abelian group of order 16. Since the alternating group is
simple none of its permutations, except identity, can give the
identical isomorphism. Hence the order of the group of isomor
phisms being the same as that of the group of permutations, the
two must be simply isomorphic.

An alternative proof of this result may be based upon Ex. 2,
p. 230. The reader will find it instructive to develop this proof.
If p" = 3i, then p'-l + ...+p+l = U, d=l, and iV=24.3M3.

There is therefore a doubly transitive simple group of degree 13 and
order 24. 3s. 13 ($ 164, 169).

332. The homogeneous linear group may be generalized
by taking for the coefficients powers of a primitive root of

iP"-1 = 1, (mod. p),

instead of powers of a primitive root of

t'y-'sl, (mod.p).
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When the coefficients are thus chosen, the order of the group
Gp.n,*, defined by all sets of transformations

=
O^X* + aiiX.t + . . . +

x. =cuax1 + a12x2+ ... +amxn, r

xn — G^nixl + &mxt T . . . + Xnnxn ,
whose determinant differs from zero, may be shewn, as in § 85,
to be

N = (pn"-l) <jl"" - p") (pn* -p»)... (pw - pin-» ") ;
and the order of the sub-group T, formed of those transfor
mations whose determinant is unity, is N/(p"—l). The only
self-conjugate operations of T are the operations of the sub
group generated by (ix,t ixt ixn), which are contained in T.
If 8 is the greatest common factor of pr— 1 and n, these self-
conjugate operations of T form a cyclical sub-group y of order 8.
Finally it may be shewn by a process similar to that of § 312
that r/7 is a simple group.
The homogeneous linear group Gp,n,v, when values of v

greater than unity are admitted, thus defines a triply infinite

system of simple groups; and it may be proved that these groups
can, for all values of v, be expressed as doubly transitive groups
of degree (pw- 1 )/(p- -1).

333. We may shew, in conclusion, that the group Gp n t, is
simply isomorphic with a sub-group of Gp ltr l. For this purpose,
we consider the group defined by

xl — *1 + Vi' a;i = a;s + ir,, , = xn + *rn 1

(ir,, ir, 1 ir. = 0, t, t2 , i*"-1) ;

the congruences being taken to modulus p. This is an Abelian
group of order pw and type (1, 1, to nv units). Moreover,
the operation

= «i.3;, + + ainxn,

xn = anlxl + + ann.xni

of Gp niV transforms the given operation of the Abelian group into

xl = xJ + i^, x2 = .'Ki + t^, , xn = xn + it
„
;

where \ = o„ir, + «i2ir, + + Oi.V..
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Every operation of Gp,n,„ as defined in § 332, is therefore
permutable with the Abelian group, and gives a distinct isomorphism
of it; or in other words, as stated above, GpntV is simply isomorphic
with a sub-group of GpnVtl.

Further, the sub-group

2*1 = xi + Vi xt = ^ti t xn = xnt

(V = 0, , i*"-1),

is transformed by the given operation of Gp^r into the sub-group

a;l = Xi + Onir, = a„i + o^i*rt , x" = xa + aiiVi
(»;=(>,;,?

If Oa s a21 = = aal = 0,

the two sub-groups are identical ; but if these conditions are not
satisfied, they have no operation in common except identity.
Moreover,

"in "ai i °nl

may each have any value from 0 to simultaneous zero values
alone excluded. Hence the sub-group of order p" defined by

xl =a'l+ir, ^ = ^ , = xn i

(i
r = 0,t,t',

is one of (pw - l)/(p"— 1
) conjugate sub-groups in the group formed

by combining the Abelian group with Gp,",,; and no two of these
conjugate sub-groups have a common operation except identity.

The /l"*
— 1 operations, other than identity, of an Abelian group

of order pn" and type (1, 1
, to nv units), can therefore be

divided into (p""— 1)/Cp"- 1) sets of p*— 1 each, such that each set,
with identity, forms a sub-group of order p*; and the group GpniV

is isomorphic with a group of isomorphisms of the Abelian group
which permutes among themselves such a set of (pnv — ^)&p" — 1)

sub-groups of order p".

Ex. 1. Shew that the ^—z— f sub-groups of

p - 1 . p2 - 1 p"-l 8 r
order p" of an Abelian group of order pnv and type (1, 1 to

nv units) can be divided into sets of (pnv - l)/(p"—l) each, such
that each set contains every operation of the group, other than
identity, once and once only ; and discuss in how many distinct
ways such a division may be carried out.

Ex. 2. Shew that the simple group, defined by the group of
isomorphisms of an Abelian group of order pn and type (1, 1, 1),
admits a class of outer isomorphisms, which change the operations
of the simple group, that correspond to isomorphisms leaving a
sub-group of order p of the Abelian group unaltered, into operations
that correspond to isomorphisms leaving a sub-group of order p"-1
of the Abelian group unaltered.



460 EXAMPLES [333

Ex. 3. Prove that the group G, of order 2" (2*2 - 1), defined by
all congruences of the form

, - ax+ B . ,

X£E^' (m0d-2)'
where each coefficient is either zero or a power of a primitive root
of the congruence

2s"-1- 1 = 0, (mod. 2),

has 2"+ 1 con/ugate sets of operations.

If H' is a sub-group of order 2" and S an operation of order
2" — 1 which transforms H' into itself, shew that the group of
monomial substitutions G„s,H' (note D), where <o is an imaginary

(2"
— 1)th root of unity, is an irreducible representation of G.

Shew also that 2"-l — 1 distinct irreducible representations of G
thus arise ; and that they are the only ones which can be expressed
as groups of monomial substitutions.



NOTE A.

ON THE EQUATION N=hl + ht + ... + hr.

If hi is the number of operations in the ith conjugate set of a
group of order N, each one of them is contained self-conjugately
in a sub-group of order mit where

m,A( = y.

The equation of § 26 may therefore be written111.— + +... +— =1.

When r is a given positive integer, this equation has only a finite
number of solutions in positive integers. Hence for a group of
finite order with a given number of conjugate sets, this condition
alone limits the possible sets of values of A,, ht, ...,hr. A further
limitation is immediately given by the condition that if

m1 ^ ffi2 ^ ... ^ tnr,

then each m must be equal to or a factor of m,, since the order of
any sub-group is a factor of the order of the group. Other limita
tions suggest themselves. For instance, if m{ is a prime, m, is
divisible only by the first power of m4 ; and no other tn, which is
not equal to mi, can be divisible by wi<. The number of solutions
of the equation which can correspond to a group may thus be
further limited; but eventually a detailed examination of each
separate solution will be necessary, before it can be decided whether
one or more types of group correspond to it. One solution, which
always gives a group, is

wil = wii = . . . = tnr = r,

so that h1= A2 = . . . = hr=l.
In this case every operation is self-conjugate and any Abelian
group of order r satisfies the conditions. Putting this case on one
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side, it will be found that for values of r not exceeding 5, the only
solutions which correspond to groups are

* + i + i = l.

A+l + i + i + i=i.

A + l + i + i + s=l.
*W + i + i + * = i.

*W+i + i + i = i-
Each of these, except the last but one, corresponds to a single type of
group, while the last but one gives two types.
If to, = 2, the order of the group must be 2n, where n is odd, and
it must contain n operations of order 2. We have seen (§ 66) that
in such a case the group has an Abelian sub-group of order n,
every operation of which, except identity, belongs to a set of two
conjugate operations. Hence if mr = 2, the only solution of the
equation which gives a group is

to, = 2 (2r — 3), to, = tos = . . . = TOr_[ = 2r — 3, mr = 2 ;

and the number of distinct groups is the same as the number of
distinct Abelian groups of order 2r — 3.
If mr = r— 1, the greatest possible value of to, is clearly r (r— 1),

and the corresponding solution of the equation is

m1 = r(r— 1
),

TO2 = r
, to, = m4 = ... =mr = r— 1
.

Hence if the order of the sub-group which contains an operation
of the greatest conjugate set self-conjugately is r— 1

, the order of
the group cannot exceed r(r — 1). When r is the power of a prime,
there are always groups corresponding to this solution (§ 140).
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ON THE GROUP OF ISOMORPHISMS OF A GROUP.

The analysis of the group of isomorphisms of a given group may
be carried a step further than in the text. It is there shewn that
the isomorphisms which change every conjugate set into itself con
stitute a self-conjugate sub-group of the group of isomorphisms.

Using the notation of § 234, the system of conjugate sets (7M,
where /* is any number relatively prime to A, may be called a" family

" of sets. Suppose that

is an isomorphism which changes each family of sets into itself,
while

is any isomorphism. If the latter changes the set Ct into the set
C}, it also changes (74M into Cft). Hence, if the former changes
C( into CJ-rf, the isomorphism

changes the set C} into the set CjM. It follows that those isomor
phisms which change each family of conjugate sets into itself
constitute a self-conjugate sub-group of the group of isomorphisms.
If /, If, I„ I{ are respectively the group of isomorphisms, the group
of isomorphisms which change each family of conjugate sets into
itself, the group of isomorphisms which change each conjugate set
into itself and the group of inner isomorphisms, each of the latter
three are self-conjugate sub-groups of the first. Moreover the
group 1

/
/ It is clearly an Abelian group ; and it may be shewn by

an extension of the method of § 249 that /t//( is an Abelian group.
The chief outstanding problems in connection with the isomor

phisms of a group are, (i
) whether /t and I, are necessarily

identical ; and (ii) whether a group of linear substitutions in
which S and (n relatively prime to the order of S

) have different
characteristics necessarily admits an outer isomorphism for which
Si1 corresponds to S.



NOTE C.

ON THE SYMMETKIC GROUP.

The symmetric group is of great importance in many branches of
analysis ; and we shall devote this note to dealing with some points
connected with it that have not been referred to in the text
We consider first its abstract definition by means of a number of

generating operations connected by relations. The most symmetrical
form into which the abstract definition can be thrown is probably
given by a system of generating operations St (t=l, 2 n — 1),
satisfying the relations

(StSjf=X, (SiSJS,S„Y = B,

(i±j*k; i,j,k=l,2,...,n-l).
In this form however a large number of the relations are redundant,
being consequences of the remainder. The form actually given
below is due to Prof. E. H. Moore (Proc. L. M. S., Vol. xxvm (1897),
pp. 357— 366). In Professor Moore's paper an alternative form of
definition will be found ; and in a paper by the author in the same
volume (pp. 119—129) another form is given.

The n operations St (*= 1, 2, n), subject to the relations

S?=E, (t = l,2,...,n),
(S(S„j> = E, (t=l,2,...,n-l)>

(StSif = £, (< = 1, 2 n - 2 ; j>%+ 1 ),
generate a group G simply isomorphic with the symmetric group of
n + 1 symbols.

Let H be the sub-group of G which is generated by

Slt S2, Sn_i ;

and consider the n + 1 sets of operations

H> HSn, HSnSn.lt H8MSn-1Sn-t,...,HS9Sn_l...StS1.

On post-multiplication by any S they are permuted among them
selves. To verify this statement consider the operation
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If j < i— 1, Si is permutable with each of the previous operations,
and

Tiij>i, since Si is permutable with SJ-2, Si-„ ...,/S'(,

= ^n^n-l ... Sf+iSi^SiSi^Sij ... S(

(since SJSJ-1Sj = Si^SiSj-,)
= SJ-iS^S^ ... S(,

since is permutable with Sk if k is greater than j.
Hence when the n + 1 sets of operations are post-multiplied by

Sj, all remain unchanged except

HSnSn-l ... Sj+2Si+1SJ and HSnSn-1 ... SJ+,SJ+1,
while these two are permuted.

Every operation of G is therefore contained in the n+l sets ;
and if U is a group of finite order, the order of G does not exceed
n + l times the order of H. Now when n = 2 the order of H is 2.
Hence G is a group of finite order not exceeding (n + 1)!. Further
G is isomorphic with a group of permutations of the n+l symbols
B, HS%, BSnSn-lt HSnSn^1Sn- , HSaSn^ ... S^;

and if these be denoted respectively by

°n+l, °i, an-l, °n-2, ...,ai,
it has been shewn that the permutations corresponding to

Slt St, Sn are (a^), (Oi«s), (anan+l).

Now these permutations generate the symmetric group in the n+l
symbols. Hence G is isomorphic with the symmetric group of
n + l symbols ; and, since the order of G does not exceed (n + 1) !,
the isomorphism must be simple.

Although not directly connected with the subject of the present
note, we add the system of relations defining abstractly the alter
nating group which Prof. Moore gives.

The n — l operations St (t= 1, 2, n - 1)
,

subject to the relations

Sf-B, S('=E, (i = 2,3, ...,n-1),
(SiS^y^E, (i = l,2,...,„-2),
(W = ^. (i=1,2 n-ZJ>i+l),

generate a group G simply isomorphic with the alternating group of
n+l symbols.
The proof of this theorem follows precisely the same lines as

that of the previous one, the n + l sets of operations used being
&t HSn, HSnSn-lt HSn ... St, ffSa ... StS,, HSn ... StS',
where H denotes the sub-group generated by Slt S„ It is

not necessary to give it at length.
b. 30
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We now proceed to consider certain irreducible representations
of the symmetric group, with the view of proving that, when
n > 4, there is no irreducible representation in a number of symbols
lying between 1 and n — 1. When n is a prime this follows
necessarily from the fact that every characteristic is rational.
Herr Wiman has proved* that, with certain exceptions for small
values of n, there is no group of linear substitutions simply or
multiply isomorphic with either the symmetric or the alternating
group of degree n in a number of variables lying between 1

and n— 1.

It is an immediate consequence of Theorem V, Chap. XIV, that
the symmetric group of degree n has just two representations in a
single symbol. One of these is ru the identical representation; the
other is a representation t I1,', in which the operations not belonging
to the alternating group correspond to i'=-it. If T is any irre
ducible representation, then the representation denoted by T/r
(§ 220) is also irreducible. It is distinct from Y unless the
characteristic in V of every operation which does not belong
to the alternating group is zero. In any case it may be denoted
byr\
When the symmetric group G, of degree n, is expressed by the

permutations of a,, a,, a„, we will denote the sub-groups

{K«s). (««««)t (««-!«■),, {K^). («4«»)» •••» («»-l«n)}
and {(<h<h), («s<0, (Wi),

by H, I and J. Then the transitive representation Gg (§ 177) is the
ordinary representation of the symmetric group in n symbols. It is
multiply transitive and has therefore just two irreducible represen
tations, of which one is Tu and the other is a representation in n— 1
symbols which may be denoted by Yn_l. There are therefore only
two representations in which H has linear invariants and in each it
has one. In Gg, J has obviously 2 linear invariants and / has 3.
Hence in r»_, J has 1 and / has 2.
Consider next the transitive representation Gj. It is the group

of permutations of the (n — 1) symbols ab,

(a, b = 1, 2, n), a* b, ab = ba
that arises when 1,2, n undergo all permutations. In this groupJ has just three linear invariants, viz.

10 13 + 14+ ... + 1« „. „, ,
12'
+ 23 + 24+...+2«'

34 + 35 + ...+n-l,».

* "Cber die Daretellung der symmetrischen und alteruirenden Vertau-
schuDgRgruppen als CollineationBgruppen von moglichst geringer Dimensionen-
zahl" (Math. Ann. Vol. xlv (1899), pp. 243—270).
t Since every representation of the symmetric) group is self-inverse, the

aoeent may here, without risk of confusion, be used in a sense different from
that of Chap. XV.
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Hence Gj has just three irreducible components. Now it has been
seen that J has one linear invariant in r„_i, so that T, and r„_,
must be two of the irreducible components. The other therefore
affects £n (n — 3) symbols and may be denoted by T^„ (»_s). The

only representations in which J has a linear invariant are therefore
ri> rn_i aQd r^,, („_s) ; and from this it follows that the only repre
sentations in which J can have a linear relative invariant are IY, V%_x
r'i« (*-3j-

Consider further the transitive representation Gj. It is the
group of permutations of the n (n - 1) symbols ab,

(a, 6 = 1, 2, ...,n), a=*=6, 06=4=60.

In this group / has just seven linear invariants, viz.
12, 13+14+. .. + ln, 23 + 24+... + 2«,
01 01 «i 1 0.1 ..n n 34 + 43+. ..+n— 1, n+n, n— 1.21, 31+41 + . ..+wl, 32 + 42+ ... +n2,

Now / has two linear invariants in rn-1 ; and therefore rn-1 enters
twice among the irreducible components of Gj. There must there
fore be just three others of which I\ is one, and r^„ (n- 3) another ; forJ having a linear invariant in the latter group, / necessarily has
one. The remaining one then must affect

»(n-l)-l-2(n-l)-|n(*»-3)=|n(n-3) + l
symbols. It may be denoted by r^B(B_3)+1. The only irreducible
representations of G in which / has linear invariants are therefore
I'll r»_i, r^B(„_3) and rj„(„_j) + 1; and the only representations in
which I can have a linear relative invariant are T/, T r

^»(»— 3)

and r'jB(B_3) +1.

In every irreducible representation of G, I is necessarily re
ducible. In fact every operation of / is permutable with (OjO,).
Hence if

,

in an irreducible representation r of G in Vj + v2 symbols,
the substitution corresponding to (o,os) leaves symbols unchanged
and multiplies the other v2 by - 1, the substitutions of / must
transform the v, symbols and the p, symbols each among themselves.
If the substitutions corresponding to (o^), (atas), ... (aB_]a„) either
leave all the v, symbols unchanged or multiply all of them by — 1

,

/ will have at least v, linear invariants (absolute or relative) in T.
In every other case the group of linear substitutions in the vt
symbols, corresponding to the operations of /, is simply isomorphic
with /. Suppose now, if possible, that v

t + vt were less than
n - 1 (w > 4). Then it has been seen above that, in T, there is

neither an absolute nor a relative invariant for /; and therefore
the groups of linear substitutions in the ^ symbols and in the va
symbols must be simply isomorphic with /, while either v, or va is

equal to or less than £ (n - 2).
30—2
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Hence, if the symmetric group in n symbols (n > 4) admits an
irreducible representation in v symbols (l<v<n— 1

), the symmetric
group of n — 2 symbols must be simply isomorphic with a group of
linear substitutions in not more than \v symbols. Now for the
smaller values of n it is easy to verify directly that the symmetric
group of degree n cannot be simply isomorphic with a group of
linear substitutions in less than n — 1 symbols. Hence, when n > 4,

the symmetric group of degree n admits no irreducible representation
in v symbols where v is greater than 1 and less than n—1.

Since the symmetric group of degree n admits of no irreducible
representation, with which it is simply isomorphic in fewer than
n—1 symbols as a group of linear substitutions, any concrete
representation involving a smaller number of symbols possesses
a certain interest. It may be shewn that for all values of n greater
than 4, there is a group of birational substitutions in n - 3 symbols
with which the symmetric group is simply isomorphic*.

It is well known that the expression o, or
(a,-<h)(<h-at)

(Oi-o») («<-«*)

is changed into a linear function of itself by every permutation of
the four symbols a,, a,, a,, o4. It is unaltered by the permutations

so that the group of birational substitutions of a single symbol that
thus arises is simply isomorphic with the symmetric group of three
symbols.

From a, there arise, under all the permutations of o,, a,, aB,
a set of \n ! expressions. These cannot all be independent, and it
may in fact be shewn that they are all rationally expressible in
terms of a suitably chosen set of n — 3.

Let Ja^Ma^-a^
(ar - ar+1) (ar+! - ar+1) '

Under the permutation (0,0,,), a,, aB, a„_8 remain unchanged. If
Oj and a2 become a,' and a^, then

,

= {<h-<h) («>-«4) = <H
Ql
(<h-<h)("4-<h) o,+ r

and

, (q,-a,)(a<-q.)
(«1
-
at) (°5
_
as) O, + 1

'

* See E. H. Moore, "The crosa-ratio group of n ! Cremona Transformations
of order n - 8 in fiat space of n - 3 dimensions," Amer. Journ. Math. Vol. xxn,
pp. 279—291 (1900); and W. Burnside, "Note on the Symmetrio Group,"
Mess, o

f Math. Vol. xxx, pp. 148—153 (1901).
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Under the permutation (a,^ ... an-,an), a{ becomes a^, (i = 1, 2,
n - 4) ; and if on-S becomes o'n-,, tben

, -(an-2-On-i) (an-<h)
(an-2-ai)(ai-an-i)

- - J - (**i-t (*i-!-*u)

- - j («in-i - (<*n-!
- a■) (On-8-an-i) (g.-2-th)

K-s - - at-s) K-s - an-l) (<h - an-l)
= _i + i=! .

(an-2-an-2) (tn-l-0!)
(an-S-an-i)(fl[l-an-2)

Similarly

(On-2
— K-i = - 1 +

(an-s - an-i) (ai - an-2) (an-4 - an-2) (an-2- ai)'
(O,-4 - a"-2) (ai - an-s)

and so on. Hence

«.-i = - it; -n-
To the two permutations (e^«s) and (Oi«, ... an-i<i„) which generate
the symmetric group, there therefore correspond the two substi
tutions

and

—T-T , ^ - —Ti "S =aS. ..., <*n-S= an-2 ,
a! + 1 ai + 1

al = "2. "a' = a2. a'n-t = an-8, a'n-s = — 1 +
an-2 °1

Now these two substitutions are obviously birational; that is to say,
if the accented symbols are regarded as given, the unaccented
symbols are uniquely determined. Hence the totality of the
birational substitutions formed by combining these two in all
possible ways constitute a group simply isomorphic with the
symmetric group of n symbols.
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ON THE COMPLETELY REDUCED FORM OF A GROUP
OF MONOMIAL SUBSTITUTIONS.

The representation of a group of finite order as a group of
monomial substitutions, given in § 242, may be expressed in terms
of the irreducible representations of the group by a formula closely
analogous to that given in § 207 for any representation as a transi
tive permutation-group.

We will denote the representation of G established in § 242 by
G»s.h', and assume that the completely reduced form of this repre
sentation is given by

Let x,, a;„ . . ., xn be the symbols operated on by Gus,ir; and suppose
that the sub-group {S, IT) permutes the symbols, with factors, in m
transitive sets, viz.

The conjugate group will be set up by taking <u-1 for the multiplier
in the place of at. The Hermitian invariant for G„s,H' and <?M-is,H'
that arises from + x\x^ is the same as that which arises from
2,2, + ; and, unless it is identically zero, is distinct from
that given by XiXt+i + x\xs+1. The condition that the Hermitian
invariant form arising from sc,5, + x\x, shall not be identically zero
is that the group of monomial substitutions on a-2, a%, ...,xt corre
sponding to {S, H'\ shall have a linear invariant for H', which is
changed into <o times itself by S. Hence the number of indepen
dent Hermitian invariants for G„s,H' and G^-is.h' is equal to the
number of independent linear invariants for H' in Gas,H', each of
which is changed into <u times itself by S. Such a linear function
of the variables may, for shortness, be called an <o-invariant for
{S, H').

Denote by n( the number of oi-invariants for {S, W) in I\.
Then what has just been proved takes the form

26^ = 26^.
ft ft
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Now it may be shewn, by considering the expression of xt in terms
of the reduced variables exactly as in § 207, that

Combining this with the immediately previous result, it follows
that

and therefore the completely reduced form of GMgtgi is given by

6,«s.a, = Snir1,
i

where n( is the number of independent <o-invariants for {S, II'}
in TV

From this result it may be shewn that every representation of a
group G as an irreducible group of monomial substitutions can be
set up by the method used in § 242.

Let r, an irreducible group of monomial substitutions on the
symbols ac,, a;2, xn, be a representation of G. Denote by 27 the
sub-group of G which changes xt into a multiple of itself. Let <a
be a primitive with root of unity, m being taken as small as
possible consistently with the condition that, if an operation of H
changes xx into ax^, then a is a power of o>. Then the operations of
H which leave xl unchanged form a self-conjugate sub-group H' of H,
and HjH' is a cyclical group of order m. Let S be an operation of
H such that S* is the lowest power of S that occurs in H', and as
in § 242 form the representation denoted by Gus,H'- The number
of times that any irreducible representation of G enters in Gag,H' is
equal to the number of ^invariants for {£, H'\ in the irreducible
representation. Now in Y «j is an co-invariant for {S, H'}. Hence
r enters as an irreducible component in G^s.ir- But the number
of symbols operated on by these two groups is the same. Hence T
is equivalent to Gus,a'l and> further, this representation has only
one o»-invariant for {S, H'\.
It has been shewn in § 258 that every irreducible group of linear

substitutions whose order is a power of a prime p can be expressed
as a group of monomial substitutions. The result that has just been
proved shews further that the variables may always be chosen so
that the coefficients in the group of monomial substitutions are jt>mth
(?«^1) roots of unity. Moreover for a given representation of
a given group there must be a minimum value of m such that it is
not possible to express the representation in a form in which all
the coefficients are />m-1th roots of unity.
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ON THE IRREDUCIBLE REPRESENTATIONS OF A GROUP WHICH
HAS A SELF-CONJUGATE SUB-GROUP OF PRIME INDEX.

Let a group G, of order N, with r conjugate sets be contained
self-conjugately in a group II of order Np, where p is prime.
Suppose further that the isomorphism of G, given by an operationJ of H which does not belong to G, leaves r, conjugate sets of G
unchanged and permutes the remaining r - r, sets in cyclical sets
of p. If Si (i= 1, 2, If) are the operations of G, the N
operations

JSlt JS2, ... , JSN (1)

when transformed by any operation of H are permuted among
themselves. If S is an operation of G, belonging to a conjugate
set which is unchanged on transformation by J, just N/hjj of the
operations of the set (1) are unchanged on transformation by S. If
S is an operation of G, belonging to a conjugate set which is
changed on transformation by J, none of the set (1) are unchanged
on transformation by S. Hence in the permutation-group that
arises when the set (1) is transformed by all the operations of G,
Nrl is the total number of unchanged symbols in all the per
mutations. It follows (Theorem XII, Chapter X) that the N
symbols are permuted, on transformation by the operations of G, in

rl transitive sets.

If JSltJS2,...,JS,
is one of these sets, it must on transformation by any operation of
H that does not belong to G be changed either into itself or into
another of the sets. Hence, since JSl transforms JSl into itself, the
operations of the set are permuted among themselves on trans
formation by any operation of H. They therefore form a conjugate
set for H, and the operations of the set JG fall into r, conjugate
sets. The same is true for the operations of each of the sets JiG
(t = l, 2, ...,p— 1

). Now by supposition the operations of & fall

into rl H conjugate sets in H. Hence r, the number of

conjugate sets in H, is given by
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Denote now by A, (t = 1, 2, . . . , r'
) the irreducible representations

of H, A, being the identical representation. Also let At, A2 A.
be the other p — I representations in a single symbol, in which
every operation of G corresponds to the identical substitution.

Suppose that G is irreducible in the representation A4 (i > p) of
H. Then in the representation A<Af, when reduced, the repre
sentations A2, A_ do not occur. For if they did G would have p

bilinear invariants in A^A^, in contradiction of the assumption that

G is irreducible in A1.

Hence A,, AiA<, ApA,

are p distinct representations of H, each containing the same
irreducible representation of G.

Suppose next that, in A>, G is reducible. Then in AjAj. there must
be more than one bilinear invariant for G. Hence, in the reduced
form of AjAf at least one, and therefore all, of the representations
A2, A2, A,, occur. It follows that, in A,, G must have at least p

irreducible components. Since (§ 218) SxsXs-1 *s equal to the order
s

of the group, G cannot have more than p irreducible components in
Ai, and its p irreducible components must be all distinct. More
over, for the same reason, the characteristic in A

j of every operation
of H, which does not belong to G

,

must be zero.

Consider now the representation Hg of H as a regular
permutation-group. In it G has the representation pG%; and
any irreducible representation of G in \i symbols occurs p\t times.
From this it at once follows that the irreducible representation of

G that occurs in
A<, AiAi, ApA(

can occur in no other irreducible representation of H ; and similarly
that the irreducible representations of G

,

that occur in Ai, occur in
no other irreducible representation of H.

Denote by x the number of the irreducible representations of G

that occur in representations of H in which G is irreducible. Then
. r — x

r =px-\ ,

P

for either side of this equation is the number of distinct irreducible
representations of H. Hence x — r^
Let Clt Ct, ...,Cvi be the conjugate sets of G each of which

is transformed into itself by J; and Ctlt Ca,..., Cv, (»=1,

2
, (r-r^/p) be the cyclical sets of p each, in which the

remaining r-r, conjugate sets are permuted on transformation
by J-\
In A4 the sets (7„, C„, Cv form a single conjugate set, and

therefore the characteristics of all the operations contained in these
sets are the same. Now, in A<, G is irreducible. Hence in this
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irreducible representation of G, the p sets Ca, Ca, Cy have the
same characteristic for each s. There are therefore r, irreducible
representations of G in each of which the> p sets Ca, Ga, G^
(«=1, 2, (r — r^/p) have the same characteristic.

Consider next the irreducible representation Ay of H. Let

r(i, ria, .... r4jj be the p distinct irreducible representations of G
that occur in it

,

and

*UI *<,». (*= It 2
, p
)

the corresponding reduced variables. The operation J of H must
change x^, , xti, xln into another set of n variables which are trans
formed among themselves by G. Since H is irreducible, Jcannot change
*Mi xt,tt •■•>*<,» into linear functions of themselves ; and therefore i

t

must change them into linear functions of another of the sets of
reduced variables. Hence, since Jp is the lowest power of J that
occurs in G

, J must permute the p sets of variables, and we may
take J to be

«'».i.
= Sc,„a;,+,i„ (u, v=l, 2, n; t = l, 2, p).
V

It follows that on replacing each reduced set by suitable linear
functions of themselves, J will be

*'<,« = ««+i,m, 2
, p- 1 ; u=l, 2, n),

a;'pi. = 2a.t,«lt„ (w, v=l, 2, ...,«);
while J* is

*'<.«
= 2 ««.*<,,> t» = l, 2, ...,n; i = l, 2, ...,;>).

When J has this form it is clear that the sets of linear sub
stitutions which form the representations T^, T^, T

t^ are the

same, though of course the correspondence between the substitutions
and the operations of G is different for each representation.

Let aa.« = «».jra^,„ (u, t>= 1
, 2
,

.... n)

be the substitution of that corresponds to the operation K of G ;

and let

be the isomorphism of G given by Jr_1, so that

JSJ-l=S', JS'J-* = S", ....
Then the substitution of A

j

that corresponds to A" is

a;'jiB = S8„jra^e, (m, t> = l, 2, n
)
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Now if K belongs to one of the first r, conjugate sets, K' and K
are conjugate in G, and therefore from the form of the above sub
stitution K has the same characteristic in each of the p representations
r< i r^, r,y On the other hand the characteristics of an
operation of Ca in T(^, T^, are the same as those of

operations of CA, Gn, Cv in IV; and, for some value of s,
these must be all different, as otherwise the p representations would
not be distinct.

These results may be summed up as follows :

If a group with r conjugate sets admits an isomorphism which
leaves the first r, sets unaltered and permutes the remaining sets in
cycles of p (prime), whose plh power is an inner isomorphism; then
there are r, irreducible representations in each of which each of the p
conjugate sets belonging to the same cycle have t/ie same characteristics.
The remaining r-r, irreducible representations fall into (r — r^/p
systems of p each, such that the p representations of each system
are given by the same set of linear substitutions, while in each of the
p representations of a system any one of the first r, conjugate sets has
the same characteristic.
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ON GROUPS OF FINITE ORDER WHICH ARE SIMPLY ISOMORPHIC
WITH IRREDUCIRLE GROUPS OF LINEAR SUBSTITUTIONS.

The self-con jugate substitutions of an irreducible group of linear
substitutions have the same multipliers (§ 202), and therefore the
central, i.e. the sub-group formed of the self-conjugate substitutions,
of such a group is necessarily cyclical. It follows that a group of
finite order, whose central is not cyclical, cannot be simply
isomorphic with an irreducible group of linear substitutions. It
may however be the case that the central of a group is cyclical, or
even consists of the identical operation only, and still the group may
not be simply isomorphic with any irreducible group of linear
substitutions.

Consider, for instance, the group of order 18 defined by

P' = E, Q' = E, A' = E, PQ = QP, APA = P-\ AQA=Q-\
The conjugate sets are E ; P, P-l ; Q, Q-1 ; PQ, P^Q-1; PQ-\
P-*Q; A, AP, AP-\ AQ, AQ-\ APQ, AP^Q-\ AP-*Q, APQ-1 ;
so that r is 6. There are two irreducible representations in a single
symbol, and four in two symbols. The latter four representations
may be set up by taking the substitutions

x = <dx ; x' = x ; x = y ;
t -i t , <D2= 1
y=<o"y; y=y; y=a;;

to correspond to P, Q, A for (i), P, QP, A for (ii), P, QP-\ A
for (iii), and Q, P, A for (iv).
Hence in every irreducible representation of the group there are

operations, other than E, which correspond to the identical sub
stitution. The group is therefore multiply isomorphic with each
of its irreducible representations and at the same time has no self-
conjugate operations other than E.

The conditions necessary and sufficient to ensure that a group of
finite order may be simply isomorphic with an irreducible group of
linear substitutions are not yet known. The following investigation
gives a sufficient condition in a simple form.
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Let G be a group of finite order which is multiply isomorphic
with each of its irreducible representations. Then in each repre
sentation there must be conjugate sets such that their operations
correspond to the identical substitution. Choose the conjugate set
C„, so that in some irreducible representation the operations of C„
correspond to identity, while at the same time the self-conjugate
sub-group {Ca\ generated by the operations of the set is of as small
an order as possible.

Further let T,, r,^, r^, raj be the irreducible representations
in which the operations of Ca correspond to identity. These then
are the irreducible representations of G/{Ca\. They cannot include
all the irreducible representations ; in each of them all the operations
of \Ca) correspond to identity ; and in no other irreducible repre
sentation does any operation of {(?„} correspond to identity. From
the conjugate sets that correspond to identity in the remaining
representations choose Cb so that the order of {Cb) is as small as
possible. Let T, , T^, T^, . . . , r6f be the irreducible representations
in which the operations of Cb correspond to identity. The self-
conjugate sub-group {Cb\ can have no operation except E in
common with \Ca). For if it had it would contain {C„} (which
is generated by any conjugate set entering into it), and the
operations of Ca would correspond to identity in other repre
sentations besides T,, r0j, raj, contrary to supposition. If
all the irreducible representations do not enter in the two sets

and r„ i\ rv
choose Ce in connection with the remaining ones as C„ and Cb
have been chosen ; and continue the process till all the irreducible
representations have been accounted for. The self -conjugate sub
groups {C0}, {(?(,}, {Cc}, {Cd} so chosen are such that (i

) no
two have a common operation except E

,

and (ii) in every irreducible
representation the operations of one or more of them correspond to
identity.

Since \Ca) and \Cb\ are self-conjugate sub-groups of G with no
commou operation except E, {Ca, Cb\ is their direct product. From
the way in which {Cc} is chosen it follows that either {Ce} belongs to
{Ca, CJ or the two groups have no operation except E in common.
Hence \Ca, Cb, Ce, Cd} i

s the direct product of a certain
number of the groups \Ca), {Cb}, {Cd}. Now in the irreducible
representations of G every irreducible representation of the self-
conjugate sub-group {Ca, Cb, Cd) must occur. But in every
representation of G all the operations of at least one of the
component groups {€'„}, {Cb}, ... correspond to identity. Hence
in every irreducible representation of {Ca, Cb, Cd\ all the
operations of at least one of the component groups must corre
spond to identity.
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Lastly, the groups {Ctt}, {C„\, ... are minimum (§ 52) self-
conjugate sub-groups of G. Each of them is therefore either a
simple group or the direct product of simply isomorphic simple
groups.

Suppose now that simple groups Gx, G¥, G,, of composite order,
are represented by irreducible groups of linear substitutions on the
symbols

xJt x2, ... , xu,

Vu y%, •••> Vv,

*1» "■ I Z»l

respectively. Then when the x's undergo the substitutions of Gx,
the y'a those of Gv and the z's those of G, independently, the
uvw products x(yjZ4 undergo a group of linear substitutions which is
easily seen to be irreducible and simply isomorphic with the direct
product of Gx, Gy and Gz. The direct product of any number of
simple groups of composite order is therefore always simply iso
morphic with an irreducible group of linear substitutions. More
over the same is true of the direct product of a number of simple
groups of composite order and a number of cyclical groups the
order of each of which is a different prime.

Suppose now that {Ca} is the only one of the groups {Ca\, {Cb), ...
whose order is a power of p, and that {Cj, Ce, Gd\ is simply
isomorphic with an irreducible group of linear substitutions. Then
the order of {Ca} were p, {Ca, Cb, ... , Cd( would be simply isomorphic
with a group of linear substitutions; and if the order of {C„}
were greater than p, there would be irreducible representations of
{Ca, Cb, ... , Cd} in which some of the operations of {Ca} correspond
to identity and some do not. If G is not simply isomorphic with
an irreducible group, neither of these cases is possible ; and therefore
the orders of at least two of the groups {(?„}, \Gb), ... must be powers
of the same prime.

Hence, unless G has two distinct minimum self-conjugate sub
groups whose orders are powers of the same prime, it is simply
isomorphic with an irreducible group of linear substitutions. In
particular, a group of prime power order, whose central is cyclical
is simply isomorphic with an irreducible group.
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ON THE REPRESENTATION OF A GROUP OF FINITE ORDER AS
A GROUP OF LINEAR SURSTITUTIONS WITH RATIONAL CO
EFFICIENTS.

If IYi T^, ...,r(( form a family (§ 234) of irreducible represen
tations of a group G, the representation of 0 denoted by

r,i + rii+...+r,,
has all its characteristics rational. It does not necessarily follow
that this representation can be thrown into a form in which all the
coefficients are rational ; but, if to is the number of symbols on
which r, operates,

m(rii + r(i+... + r<()
can certainly be thrown into such a form. This follows immediately
from the fact that ml\ can be expressed in a form in which the
coefficients are rational functions of the characteristics of

T^.
Let a to) be the smallest integer such that

*(Th + Tit+...+Ti}
can be represented in a form in which all the coefficients are rational
numbers. This representation of G may be called a rationally
irreducible rational representation. Unless both a and t are unity,
it is a reducible representation when there is no limitation on the
field of rationality ; but when the field is restricted to rational
numbers, it is irreducible. In fact a reduced component of the
form 2OtI\( (at % a) has some of its characteristics irrational unless
the at's are all equal, and therefore certainly some of the coefficients
must be irrational. On the other hand if the at's are all equal, the
statement follows from the assumption that has been made in
respect of a.

Each family of representations will give such a rationally irre
ducible rational representation; and the p representations so arising
are necessarily distinct, because the r irreducible representations are
distinct.
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Let a'(Th + T
jt + ...+Tit)

be another rationally irreducible rational representation, and denote
this and the previous one by A' and A. Suppose now that

a (Th + + . . . +
r<()

+ a
'

(1^ + r,, + . . . + r,,)
is a rationally irreducible representation D of G
, in which a is not

a multiple of a. Take n such that na = pa and na = pa', where
n, p, p

' are integers. Then the representation nD is rationally
reducible into n representations D and also into p representations A
and p

'

representations A'. A consideration of the reduced symbols
immediately shews that this is not possible.

It follows that the p rational representations A,, A,, Ap that
arise from the p families of irreducible representations are the only
rationally irreducible rational representations ; and therefore that
every rational representation is included in

S6iA,,

where the 6's are positive integers. The number p is the number
of distinct conjugate sets of cyclical sub-groups in G.

A very remarkable property of groups of linear substitutions of
finite order with rational coefficients is that they can always be so
transformed that the coefficients are integers.

Let x
{ = 2cy*x, = 1 , 2
,

. . ., n
)

(A =1,2, ...)
be the substitutions of a group of linear substitutions, and suppose
that the coefficients Cqk are rational numbers with a finite least
common denominator d. (If the group is one of finite order, the
latter part of the condition follows from the former, since the
number of coefficients is finite.) A particular set of values of the
variables

(a,, a„ an)

may be called a point. If, for each value of i and k, Sc^«/ is an

3

integer, the point (a,, a„ . .., an) will be called an "integral" point.
It is clear that such integral points always exist, for (d, d, ...,d) is
an integral point. Moreover it follows from the definition that if
(alt di, an) and 6„, 6n) are integral points, then

is an integral point.

Suppose that a,, is the smallest positive integer such that
(an, 0
, 0
,

0
) is an integral point. Then if (o, 0, 0, 0
) is an
integral point o must be a multiple of rt^ For if it were not
integers I, m could be found such that /a,, + ma is a positive integer
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less than a,,, and then (lan + ma, 0, 0, 0) would be an integral
point, contrary to the supposition made.

Let be the smallest positive integer such that (^,0^,0, ...,0)
is an integral point. Then it follows as above that if (a, /3, 0, 0

)

is an integral point, (3 must be a multiple of O^. (It is clear that
may be taken to be equal to or less than an, but this is not

material for the present purpose.)

Similarly let a^, au, ann be the smallest positive integers
such that

(a21, a22. 0
, 0
,

...,0),

(a«. a41, a«, a44, 0
.

°).

(anl, an2i an.1t aiu, °ni, ...t aiw)i
are integral points.

Then if (Alt A2, An) is an integral point, An is a multiple
of ann.

K An = Xaann,

then (4,-ZnOnl, AQ- Xnant, An-} - Zxa^K-,, 0) is an integral
point, and therefore An^ - Xnann^ is a multiple of an-i,n-l-
Continuing thus, we find that

A
l = Zi«,, + JTi«a + JTi«s! + ... + Xnanl,

A2= Z2O2s + X2a2s+ ... + XaaM,

At = X2ax + ... + XnaM,

An= Xnann.

If a point is an integral point, its A's must be given by these
equations with integral values of the X's ; and conversely every
point whose A'b are given by these equations with integral values
for the X's is an integral point. Moreover the totality of integral
points are permuted among themselves by every substitution of the
group.

Suppose now that new variables X^X2, ...,Xn are taken con
nected with the original variables by the equations

x1 = JTia,, + Zi«ii + ... + XnaB1,

x, = X&v + ... + XnaM,

Xnann,

H. 31
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and with these new variables let

Xl^C^X}, (M = l,2 n)

(* = 1,2,...)
be the substitutions of the group. If Xlt Xt X, are integers,
(x,t x,, xn) is an integral point, and therefore (a;,', x^, xn') is
an integral point, and Xl , AY, . . . X%' are integers.
Put Xl = X, = ... = X}-, = AT,+1 = ... = Xn = 0,X}= 1.
Then JTi' = (7w,

and therefore (7yt is an integer. Hence in the transformed group
all the coefficients are integers.

For a group of rational linear substitutions on n variables it is
possible to determine in a comparatively simple manner an upper
limit for the order. To this end we find the highest power of a
prime p that can be a factor of the order.

It has been seen in Note D that an irreducible group of linear
substitutions whose order is a power of p can be expressed as a
group of monomial substitutions whose coefficients are powers of <o,
a pmth root of unity (m > 1 ), while they cannot be expressed as
powers of a pm-Hh root of unity. Denote such a group by r„,
and the group that arises on writing to for <o in all the coefficients
by IV. Then the group denoted by

where for fi each of the pm-l (p— 1) numbers less than and prime to

pm is taken, can obviously be expressed as a group of rational linear
substitutions. Moreover, since <o satisfies an irreducible equation of
degree pm-l(p — 1

), any rational group of linear substitutions
which contains T„ as an irreducible component must contain each of
the groups as an irreducible component.

If pn is the number of variables operated on by r„, p"*m-1 (p—l)

is the number of symbols operated on by 2r^». The number of

symbols operated on by any rationally irreducible group of rational
linear substitutions, whose order is a power of p, is therefore of the
form p"*m-1 1). Suppose now conversely that such a group has

pm-i (p - I) irreducible components. In each of them the coefficient*
are necessarily pmth roots of unity, and the number of variables is

pn. Now the order of the greatest group on p" variables, each of
whose substitutions replaces every variable by a multiple of itself,

the factors being pmth roots of unity, is clearly pmpn. Also we have
seen in § 172 that the order of the greatest permutation-group on
pn symbols, the order being a power of p, is pa, where

a = l + p + p2 + ... +p"-\
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Hence on the supposition made the order of the group of rational
substitutions is

If n + m — 1 = n,

and n and m take all possible values for a given /a, the greatest value
of this order corresponds to m= 1, n= fi. Hence the greatest possible
value for the order of a rationally irreducible group of rational linear
substitutions on pr- (p — 1 ) variables (the order being a power of p),
is pMn, where

= 1 + p +p2 + ... + p";

and such a group actually exists. Moreover it is easily seen that if
the group were rationally reducible its maximum order would be
less than the above value. Thus if there were p rationally irreducible
rational components in p"-1 (p—l) variables each, the maximum
order would be 1/pth of that determined.

Now suppose ii chosen so that jf*'1 (p- 1) > n>pi1 (p— 1
),

where n is the number of symbols operated on by the rational
group of linear substitutions, and express n in the form

n = a^p" (p-l) + a^p"-1 (p - 1) + ... + alP (p - 1) + a„ (p - 1) + 6,

where a^, a^^, ...,a0 are positive numbers less than p and 6 is less
than p—l.

A rational group of linear substitutions in n variables whose
order is a power of p must then be rationally reducible. The
greatest number of variables in a rationally irreducible component

is p" (p - 1 ), and the greatest possible order of this component is
pMit. It follows from the preceding discussion that the greatest
possible order for the group is obtained by taking the number of
variables in each rationally irreducible component as great as
possible. Moreover the order of the direct product of the rationally
irreducible components is clearly greater than that of the group
that results by establishing any isomorphism between them. Hence
finally the maximum order for the group is j>M, where

M = a,yMp. + «ii-i^-i + ... + a1Ml + a0M0.

It also follows that a rational group on the n variables of this
maximum order actually exists.

If the symbol f"— J be used to denote the greatest integer con
tained in — , the number M may be expressed in a form in which it

m

is easily calculated.
31—2
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Thus

+ a,p + a0 ;

and therefore M =

The expression thus arrived at as an upper limit to the order of a
group of rational linear substitutions in n variables* is UpM, the

p
product being extended to all primes equal to or less than n + 1 .

When n = 3 this upper limit is 24. 3, and the group generated by

has actually this order. In no other case is a group of rational
substitutions on n variables known to exist whose order is equal to

For all values of n there are groups of rational linear substitutions
of orders n + 1 ! and 2" . n ! respectively. In fact we have seen in
Note C that the symmetric group of degree n + 1 has a rational re
presentation in n symbols ; while the symmetric group in x,t xn,
together with the substitution

obviously generate a group of order 2" . n ! which contains an
Abelian group of order 2" and type (1, 1, ... to n symbols) self-conju-
gately. These two groups are not only rationally but also absolutely
irreducible.

Outside these two classes of groups the first group of rational
substitutions of relatively high order that presents itself for the
smaller values of n is one of order 28 . 34 . 5 on six variables that we
consider in the next note.

* Minkowski (Crelle's Journal, Vol. ci) obtains this expression for the
upper limit of the order in another way. He does not shew that the order
of any one of the Sylow sub-groups may actually attain its upper limit.

aSs — *Bsi x$ —x$'i

x1 — x2, a?2 = Xlt xt =xti
x, = xt, 2v, = xt, xt =x1;

Xl — — Xi, Xt —Xit Xn —Xn,
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ON THE GROUP OP THE TWENTY-SEVEN LINES OF A CUBIC
SURFACE.

Many of the most important and interesting groups of finite
order arise in connection with geometrical configurations. From
this point of view the groups are directly given as permutation-
groups. Thus the Hessiau configuration of 9 points lying 3 by 3
on 12 straight lines (§ 169) determines a doubly transitive per
mutation-group of 9 symbols for which the set of 1*2 triplets which
give the lines is invariant. We will consider here the group that
arises in this way in connection with the configuration of the 27
lines on a cubic surface. This group has formed the sub/ect of a
very large number of investigations. The earliest is due to
M. Jordan (Traite des Substitutions, pp. 316-329). Various
forms of the group are given by Herr Burkhardt (" Hyper-
elliptische Modulfunctionen," Math. Ann. Vols, xxxvm and xli).
Prof. L. E. Dickson lias analysed the group exhaustively in a
number of memoirs (see also, Linear Groups, Chap, xiv) ; and the
author has considered it directly as a group of collineations of
ordinary space (Proc. R. S., Vol. lxxvii). Our object here is to
present the group in as simple a form as possible, and to illustrate
in doing so a method for the rational reduction of a permutation-
group.

To define the configuration we shall use Schlafli's- notation,
replacing numbers by letters. The 27 lines are denoted by the 12
single symbols

a, b, c, d, e, f,

a, b'
,

e
', d', e, f',

and the 15 double symbols ab, ...,«/*, the sequence in which a
double symbol is written being immaterial so that ab and ba
denote the same line. With this notation it is known that the
45 triangles formed from the 27 lines may be denoted by

a, b'
,

ab ; ab, cd, e
f
;

and the triplets that arise from these by any permutation of
a, b
, c, d
,

e
, f and the consequent permutations. By consequent
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permutation is meant that if a is changed into c and b into f,
then a is changed into c'

,

6
' into f and a6 into c/
!

The group of the configuration is then the group of permutations
of the 27 symbols of the lines for which the set of 45 triplets is
invariant.

The 36 double sixes formed by the lines are given by

where the 20 of the second set and the 1 5 of the third arise from
those written by any permutation of a, b, c, d

,

e
, f and the con

sequent permutations.

The geometrical configuration suggests that this set of double
sixes must be invariant under the same permutations that leave
the 45 triangles invariant, and it is actually found that this is

the case. Moreover, if the two sets of symbols in the first and
second line of any double six are called its two halves, it is found
that any permutation of the group which changes one double six
into another, changes the first half of the one into either the first
half or the second half of the other.

Some of the permissible permutations are obvious. Thus any
permutation of a, b, c, d

,

e
, / with the consequent permutations

must form part of the group, and leaves the first half of
the first double six unchanged. Again, a permutation that
leaves all the double symbols unchanged and permutes a with
a, b with V

, f with f belongs to the group and permutes the
two halves of the first double six. A permutation interchanging

d and e
f, e and fd, f and de, a
' and 6c, b
' and ca, c and

ab, and leaving all the other symbols unchanged belongs to the
group and changes the first half of the first double six into the
first half of the second. Again, the permutation interchanging a
and 6

, c and be, d and bd, e and be, f and bf, c' and ac, d and
ad, e' and ae, f and a/, cd and e

f, ce and df, ef and de, and
leaving a, b' and ab unchanged belongs to the group and changes
the first half of the first double six into the first half of the third.
There are therefore permutations changing the first half of the first
double six into either half of any other.

Now, every permutation must either leave the first half of the
first double six unchanged or must change it into one half of

1
,

20,

15,
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another. Hence the 72 halves of the double sixes are transitively
permuted by the group. The order of the sub-group which leaves
one unchanged being 6!, the order of the group must he 72 . 6!. It
is a simply transitive group of degree 27 and therefore has at least
three irreducible components.

Suppose now that L is a linear function of the 27 symbols
which, when expressed in terms of the reduced variables, does not
contain the variables of one or more irreducible components T, T',
etc. The equation

Z = 0
and those derived from it by the permutations of the group will
then not make all the variables vanish, but will express them in
terms of the reduced variables of T,T', Take L = a + b' + ab.
The system of relations that arise under the permutations of the
group are

a + b' + ab = 0, ab + cd + ef= 0,

and those given by permutations of a, b, c, d, e, f and the con
sequent permutations. Those arising from the first obviously give

a-a' = b — b' =...—/— f = k and ab = k — a - b,
for all values of a and b. Those arising from the second then
reduce to

3k-a-b-c-d-e-f= 0.
Hence if s denotes a + b + c + d + e +f the system of relations

expresses the other 21 symbols in terms of a, b, c, d, e,f'm the form

a! = a-%8 6 equations,

06 = 58-0-6 15 equations.

By means of these relations a component of the transitive per
mutation-group in six symbols with rational coefficients is set up.
The 72 halves of the double sixes expressed in terms of O, b, c, d, e,f
are

a, 6, c, d, e, f, 1 set,

c - i«, d-\s, e-\s, f -\i, ... 1 set,
a, b, c, \i — e—f, ^8- f—d, \s-d-e, 20 sets,

0 — ^8, b — ^s, c-38, \s-e-f, \s—f—d, \s — d-e,...20 sets,
O, a— ^s, ^s — b — c, ^s-b— d, \s — b — e, \s — b—f, ...30 sets.
And if a, P, y, 8, t, £ are the symbols of any one of these sets in any
sequence, the 72.6! operations of the group are the linear sub
stitutions

O' = a, b' = /3
,

c' = y, d' = 8
, e
' = e
, f = f .

The group is thus expressed as a group of rational linear sub
stitutions on 6 symbols, the whole of the substitutions being
exhibited in explicit form.
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The substitution (abcdef) has — 1 for its determinant. Hence
the group contains a self-conjugate sub-group H of order 72. i 6 !,
in which the sub-group that permutes the six symbols is the alter
nating group of degree 6.

Suppose now that H has a self-conjugate sub-group /. Since the
alternating group of six symbols is simple, / can have no operation
except E in common with the group of permutations of a, b, c, d, e f.
The order of / is therefore equal to or a factor of 72. A group of
order 72 has one or four sub-groups of order 9. If there were four they
could not be permuted on transformation by the operations of the
alternating group of degree 6; and a group of order 9 does not
admit a group of isomorphisms isomorphic with the alternating
group of degree 6. Hence if the order of / were 72, each of
its operations whose order is a power of 3 would be permutable
with every operation of the alternating group of degree 6. This
is impossible. Similar but simpler reasoning shews that the order
of / cannot be a factor of 72. The group H is therefore a simple
group.

The group itself does not contain the substitution

a' = -a, b' = -b, ...,/=-f
Combining this with it there results a group of rational linear
substitutions in six variables of order 28 . 34 . 5.

The method of the preceding note shews that the group is trans
formed into one with integral coefficients by the substitution

a = Zx — y, b =y - z, c = z — u, d = u-v, e = v — w,f=w.



NOTE I.

ON THE CONDITIONS OF BEDUCIBILITT OF A GRODP OF LINEAR
SUBSTITUTIONS OF FINITE ORDER.

Let x
t' = 2 am x}, = 1
, 2
, ... , Xi), (*= 1
, 2
,

.... N),

i

be any irreducible group of linear substitutions of finite order. If

G is the abstract group with which it is simply isomorphic, the
group of linear substitutions is an irreducible representation of G

,

for which we will use the usual notation.

In this representation the linear substitution that corresponds
to C

j is (§ 213)

xl =^xt (i=l, 2, ...,Xl).
Xi

Hence the linear substitution that corresponds to 2x/^, or
K (§ 229), is

N

*/ = — a;, (i = l, 2
, x0;

Xi
and therefore the linear substitution which corresponds to KSx is

N
xt' = - %ai}xx} (i,j= 1

,

2
, .. , xO-

Xi i

Now we have seen in § 230 that of the N symbols KSx(x = 1,

2
, N), just (xi)2 are linearly independent. Also i
f KSx (x= 1
,

2 (Xi) J) i
s such an independent set, then any other symbol of the

set can be expressed linearly in terms of KSx (x= 1
,

2
,

(xi)2)
with coefficients which are rational in the characteristics of the
representation.

It follows (§ 213) that the (xi)2 linear substitutions
N

x;=-%atjxxi (i,j = l, 2, Xl) (*=1, 2
,

(x,)s)
Xi

must be linearly independent in the sense that there is no linear
relation

*=<X,!S

2 dxaijx = 0
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connecting the coefficients of the substitutions for all values of the
suffixes i, j.

Hence any irreducible group of linear substitutions of finite
order in n variables must contain a set of n2 substitutions which are
linearly independent in the above sense. Moreover the coefficients
in every other substitution can be expressed in the form

x=nt

where the coefficients are rational functions of the characteristics.

Now if a group of linear substitutions is reducible, it is possible
to transform it so that in the transformed group the coefficients a'y
are zero in all the substitutions for certain values of i and j. But if
«y and Sy are the coefficients in the transforming substitution and
its inverse

a'fj = % siuauvS^.
U, V

Hence a necessary condition that a group should be reducible is
that the coefficients of all its substitutions should satisfy one or
more linear relations of the form

2^0^ = 0 (A=l, 2, JT).

The preceding considerations shew that this condition is also
sufficient, since if one such relation holds there cannot be n2 sub
stitutions whose coefficients are linearly independent.



NOTE J.

ON CONDITIONS FOB THE FINITENESS OF THE ORDER OF A
GROUP OF LINEAR SUBSTITUTIONS.

In the group of linear substitutions with real coefficients

x
t' = %atikxJ (V = li 2, n
)

j

suppose that each coefficient which is not zero satisfies the
inequalities

M > | Ow | > m,
where M and m are assigned positive quantities. The sum of the
squares of the coefficients of any substitution is then less than rtW2.
Hence if the coefficients be regarded as the co-ordinates of a point
in space of n2 dimensions, the points so constructed must all lie
within a sphere of radius nM. If the number of points is not
finite, there must be some point (An, A1t, Ann) within the
sphere such that an infinite number of the points lie within a
sphere of radius \ e described round it, however small < may be.

• Let «u, ann) and (6,,, bu, bnn) be two of these points,
.so that

\aij-bij\<t.

If A and B be the corresponding substitutions and if C be the
substitution A-lB, it follows that

| cu
— 1 j < nAft,

\ev\< nMt, (i *j),
and the group has an infinite number of substitutions whose
coefficients satisfy these relations. If c0 is not zero for all values
of i and j, t may be taken so small that \cv\ is less than m, contrary
to supposition. If Cy is zero for all values of i and j, the substitution
replaces each variable by a multiple of itself. Since there is an
infinite number of such substitutions the multipliers cannot all be
+ 1 or — 1. But in a sufficiently high power of such a substitution
some of the coefficients must be either numerically greater than M
or less than m, again contrary to supposition.
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Hence under the given conditions the group is one of finite
order.

If r is a group of linear substitutions whose coefficients are not
real, T + f can, by taking i (x, + x,), - J_ (x( - x,) (* = 1, 2, n)

as variables, be represented as a group of real substitutions the

coefficients of which are ^(a.j + a^), —-= (a^-a,,), or and /Jy,
— Z v — 1

where a0 = + /Ja .

Hence, if Jf> I oe | >.m

J/> I y30 1> ni

hold for all non-zero values of and Py, T is a group of finite
order.

It may also be shewn that a group of linear substitutions in n
variables, which has only a finite number of conjugate sets, is of
finite order. Suppose first that the group is irreducible and let

a
'ij (t=l, 2, n') be the coefficients of a set of ns linearly

independent substitutions A, (Note I) contained in it. If «0 are the
coefficients of any other substitution S

,

2 a"! is the characteristic
v 't

of A,S. The system of ns independent linear equations

SOJ?«o=X*s (<

= 1
- 2
,

...'n')
U

determine the «'s when the \s are known. Now by supposition
there are only a finite number of values that the x's 0a11 take.
Hence the group contains only a finite number of substitutions.

If the group is reducible, suppose that the first s x's are trans
formed irreducibly among themselves. Then so far as it affects
these variables the group is one of finite order, and it must have
a self- conjugate sub-group which leaves each of the first s x's
unchanged. Let

x(' = x, (t=l, 2, s)
,

t = it r-(
a;',+n = 2 auixi+ 2 bnVxt+v, (u=l, 2, t)

1=1 i=i

be a typical substitution of this sub-group.

The set of substitutions

v = t

x't+u= 2 buvxt+T (u=l, 2, t)

0=1
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constitutes a group and satisfies the condition of having only a finite
number of characteristics. If it is irreducible, it is of finite order ;
and the original group has a self-conjugate sub-group whose sub
stitutions are of the form

x-=xt (t-1, 2, s)
,

i=*
= 2 aa{Xi (u=l, 2

,

...,<).
t'=l

This is an Abelian group, and if it be denoted by H, while S is

any substitution not belonging to H, the set of substitutions SH all
give the same isomorphism of H. Hence the number of operations
in H belonging to one conjugate set is finite ; and unless the order
of H is finite the number of conjugate sets is infinite. But if the
order of H is finite it must consist of E alone. Hence if the set of
substitutions

t=<

xi+u = 2 buvxt+v (u=l, 2, t)

6=1

is irreducible, the group is of finite order. If it is reducible the
same reasoning may be repeated. The group is therefore one of
finite order.

If, in a group of linear substitutions on n variables, the order of
every substitution is equal to or is less than a given finite number
m, there can only be a finite number of distinct characteristics. In
fact every characteristic is the sum of n roots of unity whose
indices do not exceed m, and these can only be chosen in a finite
number of ways. If the group is irreducible it follows, as in the
previous investigation, that it must be of finite order. If it is
reducible, it may be shewn as above that there is an Abelian self-
con/ugate sub-group of the form

Zi=Xi (i=l, 2, s)
,

i= '

x',+u = xt+u+ 2 auix, (t
t = l, 2, t)
.

i=l

If this sub-group contains operations other than E, their orders
are certainly not finite. Hence again the group must be one of
finite order.

Let T
i be a group of linear substitutions, the coefficients in

which are integers in an algebraic field of finite order wt. Let £, be
a number, satisfying an irreducible equation of degree m with
rational coefficients, which defines the field, and let <d1/ <oi, mm

be an integral basis of the field. Suppose further that when
another root of the equation satisfied by is written for (lt
u)!, <o2, <o. become w/), ujW, ft,,/).
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If xj = 2 auvxv (u, tl = 1, 2, n)
e

is any substitution of the group, each coefficient is expressible in
the form

»nt, = am,i <"l + aunui2 + . . . + aumnmm,

where auvi, auvl, <*n„, are rational integers. If in each coefficient
of each substitution id,'1*, <oJM, u,m''' are written for <u,, tom,

the set of substitutions form a group T( simply isomorphic with I\.
If the m sets of symbols

xilt xa, ..., x,n

(i=l, 2, m)

undergo simultaneously corresponding substitutions of the m groups
T,, T2, rm, the resulting group on the inn symbols can clearly
be expressed as a group of rational substitutions. Moreover if

xur = 'MWu) + SteW1 + ... + Vvm^'K

/u = 1, 2, m\

\v=l, 2, .... n)

and the y's are taken for new variables, the group will be actually
so expressed ; for the y's clearly undergo a group of linear substitu
tions with rational integral coefficients. That this is the case
follows from the fact that, if in

yW' + y'rtW' + . . . + y'm «m(u)
= 2 (av„, + avM a.2e) + . . . + avwm a,J"))(ywl *,,<n) »,<u) + . . . + y„n,u,m<")),
w

the y's and y"s are assumed rational, a linear substitution, with
integral coefficients, on the y's arises which is the same whatever
value be assigned to the symbol (u).

Suppose now that there is a non-zero definite Hermitian form
invariant for I1

,

and r,, and denote it by
« (i) -
.* anvXlux,v

Then for I\ and r( the non-zero form

2 auvxiuxiv

is invariant ; and for the group on the mn variables and its conjugate

Sui —
awxiu xiv

i, u, t
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is invariant. This is a quadratic form in the mn y's. It can
only vanish if

*in = 0 (i=1, 2, m; u= 1, 2, n),

which involves that each of the mn y's, assumed real, must vanish.

Hence for the group of rational integral substitutions on the
mn y's, there is an invariant quadratic form f(yn, Vm ..., ymn)i
which, assuming the y's real, vanishes only for simultaneous zero
values. If N is an assigned number there is only a finite number of
integral sets of values of the y's, for which f(ylu yu, yn,n) $ N.
These integral sets of values, or points, are permuted among them
selves by the substitutions of the group ; and if N is sufficiently
great a substitution which leaves each point unaltered is certainly
the identical substitution. The group of substitutions on the y's
is then simply isomorphic with a permutation-group of finite degree,
and is therefore a group of finite order.

Hence, lastly, if the coefficients in a group of linear substitutions
are integers in an algebraic field of finite order, and if for the
group and its conjugate there is an invariant non-zero definite
Hermitian form, then the order of the group is finite.



NOTE K.

ON THE REPRESENTATION OP A GROCP OP FINITE ORDER AS A
GROUP OF BIRATIONAL TRANSFORMATIONS OF AN ALGEBRAIC
CURVE.

The multiply-connected surface by whose regular division a
group is represented graphically may be conceived of as a Riemann's
surface. To the regular division of the surface will correspond
a group of birational transformations of the algebraic functions of
the surface, and a group of linear substitutions on the integrals
of the first kind of the surface.

That every group of finite order admits a representation of this
kind may be shewn directly as follows. Let G be a group of linear
substitutions of finite order on the variables

Xi , X^i XnJ

and let /„ /n-, be re — 1 algebraically independent invariants
of the group, so chosen that when equated to zero they do not com
pletely determine the ratios of the variables. Take./"(x,, x„ ...,xn),
a rational function of the re variables which is not invariant for
G or for any self-conjugate sub-group of G ; and consider the system
of equations

«=/(a;,, x.2, a;,), 7, = 0, 7,-0, /n-, = 0.

Let M be the greatest number of sets of values for the x'a
which they determine, however z is chosen. It is always possible,
by taking for g (x,, x2, xn) a polynomial in the variables of
sufficiently high degree, to ensure that the M values which g takes'
for the M sets of values of the x's given by the solution of the
foregoing set of n equations are all different. Put

w = g(x1, x„ xn),

and denote the result of eliminating x,, a^, xn from the system
of re + 1 equations

*o = g(x1,xt, ...,;0, *=/(a;ii a;i, ....*n). A = 0, = 0...(i)
by F(w, z) = 0.
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Then, corresponding to any pair of values of to and z which satisfy
the last equation, there is just one set of values of a^, xt, xn
which satisfy equations (i). In other words, when to and * satisfy

F(w,z) = 0,
the equations (i

) determine each x as a rational function of w
and z.

Let X<l'i (t = 1
, 2
,

n) denote what the x'a become under any
substitution S of G ; and put

*W *,<,), ...,a;n<.)),

«l<*)= ?(*,<t), -,*n")).
Then since /,, J2, /n-! are invariants of the group

F{w*\ 2i")) = 0
.

Now to<'l and z<"' are rational functions of a^, Xi, x%; and the
latter when the equations (i

) hold are rational functions of to and z.
Hence

ulM = jr, (w, z),

«<*>=/,(>,*),

where /*, and are rational functions. Moreover, by considering
the substitution S-\ it follows that to and z can be expressed as
rational functions of id') and Hence the algebraic curve (or
Riemann's surface)

F(w,z) = 0

admits a group of birational transformations into itself simply
isomorphic with G.

For a given group of linear substitutions the set of n— 1 in
variants may be chosen in an infinite variety of ways, and there are

< an infinite number of groups of linear substitutions simply isomor
phic with G. Still however the invariants or the representation
of the group are chosen the genus or deficiency of the resulting
algebraic curve must have some definite smallest value, and this
must be the genus of the group.

The group of birational transformations into itself which the
algebraic curve admits may, but will not in general, be a group of
collineations. Thus we have seen in § 267 that the algebraic
curve

admits, as a group of collineations, the simple group of order 168,
whose genus was shewn in § 303 to be 3

.

As an example we will consider the curve of genus 2
, which

admits as large a group <,f birational transformations as possible.
It has been stated on pp. 401, 419 that the group defined by

S2 = E, Sf = E
,

Si = E, = E, (S&4Y = E
,

a 32
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is a group of genus 2 ; and it will now be shewn that the curve

y' = x(x*-l),
which is obviously a curve of genus or deficiency 2, admits a group
of birational transformations into itself defined by the above
relations.

If a is a primitive eighth root of unity, the curve obviously
admits the transformation

x = a?x, y = ay,

whose order is 8, and which may be taken for S3,

Now x = - +°
1 — a?x

gives

, -x + a5 , -2>/2y
Hence a; = n j- , y =1 - a2x * ( 1 — a?x)s
is a birational transformation of order 2 which transforms the curve
into itself. If this be taken for S1} it is easily verified that

so that the two transformations <
S
,

and generate a group simply
isomorphic with that defined.

Lastly a pair of independent integrals of the first kind are
determined by

dx xdx
din = — , au = — .

y

' y

Corresponding to S„ these obviously undergo the transformation

cK,' = adiu di^ = a?di^;

and corresponding to S
l it will be found that they undergo the

transformation

dh =~J2dil~~j2
di" di* =

^
2 ~

7/2
<**1'

The pair of integrals of the first kind therefore undergo the substi
tutions of a group of linear substitutions simply isomorphic with

that defined.

It should be noticed that in this simple example the two
variables undergo a group of birational transformations indepen
dently of any relation between x and y. In fact the equations
defining St and S

3 can be solved rationally with respect to x and y,
in each case a unique solution resulting.

In general this will not be so ; and the equations expressing
x and y in terms of x and y will only be rationally soluble with
respect to x and y when account is taken of the equation to the
curve.



NOTE L.

ON THE GBOUP-CHABACTERISTICS OF THE FRACTIONAL
LINEAR GROUP.

In the fractional linear group G of order ^p (p' — 1), let P be an
operation of order p, and Q an operation of order \(p — 1

), such
that

Q-*PQ = P*

where g is a primitive root of p. Further let R be an operation of
order £ (

p + 1 ). Every operation of the group is then conjugate
to either P, P", or B" with suitably chosen values of the indices
x and y.

When G is represented in respect of the sub-group {S, P] as a
doubly transitive group of degree p + 1

, the characteristics of P
,

P", Q*, PJ1 are respectively 1
,

1
, 2
,

0
. This doubly transitive re

presentation has just two irreducible components 250), of which
one is the identical representation r, and the other is a repre
sentation in p symbols that will be denoted by Vp, In the latter the
characteristics of E, P, P", Q°, P" are (from the above values) p, 0

,

0
, 1,-1 respectively.

Consider now the representation of G as a group of monomial
substitutions denoted by 6r'aQ(7,) in the notation of Note D, where a is

a £ (p- 1)th root of unity. In this representation the substitution
corresponding to R permutes the symbols in two cycles of £ (p + 1)

each ; the substitution corresponding toPleavesone symbol unchanged
and permutes the remainder in a cycle of p ; and the substitution
corresponding to Q changes two symbols into o and o-1 times them
selves and permutes the remainder in two cycles of £(p— 1

) each.

Hence, if ^ denotes a characteristic in this representation,

We will consider in detail the case in which p = 1 (mod. 4), when
— 1 is a possible value for a. If a is unity the representation is the
one already considered. If a is any \ {p - 1)th root of unity except

1 or - 1, it is found by a simple calculation that
S^s-i=£p(p»-1).

32—2
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For these values of a the representation under consideration is
therefore an irreducible representation. In it the characteristics
are (we now use the symbol

Xs=P+l< XP=1. Xr'=l> X** = °> Xq»
= «" +

Since, omitting the values 1 and — 1 for a, the quantity a + a-1 takes
i(p — 5) values, this representation belongs to a set of \ (p — 5)
representations that arise by taking the different available values
of a.

When the value — 1 is used for a, it is found that

so that (t-qjp) has two distinct irreducible components. It is
obvious that T, is not one of these, so that in each the characteristic
of P is irrational. Hence since the group of monomial substitutions
has rational coefficients, the two irreducible components must be in
the same number, \ (p + 1), of variables. Since P and Z*5 have the
same characteristic, the characteristics of P in these two representa
tions must be

1 +<o + 4T-+... +<o»1(p-1).

and 1 +a)» + «^+... + <«»1+i,,,-1^

or \ (1 + Jp) and i (1 — Jp) respectively. The operations whose
orders are not p have rational and therefore equal characteristics in
these two representations. The characteristics in the two are
therefore

xE = i (p + l)
> xP

= i 0 + Jp), xp, = H1 - Jp)> o
>

Xq»
= (- *

xj?= i (p + 1
). Xp = Hi - n/p), Xj- = I (i + »> Xi«= o, Xq, = (- 1)».

The total number of irreducible representations is equal to the
number of conjugate sets, viz. £ (p + 5) (§ 320). Of these \(p + 11)
have been determined and there remain ^

— 1 ). When in the
equation

the values of the \{p+ll) ^,'s that have been determined are
entered, it is found that the sum of the squares of the remaining
\(p — 1) (xi)2'8 is tip— !)*• Hence unless each of the remaining
x/s is p — 1 some must be smaller. Now for a representation in less
than p — 1 symbols, %p must be irrational, and if xP i
s irrational in

any other representation than the two already found in £(f>+l)
symbols, %xpXp would certainly be greater than p, which is its
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actual value. Hence for each of the remaining i(p-l) represen
tations xi is equal to p — 1.

Now SxqXq-! *or tne + representations that have been
determined is $(p- 1)

.

Hence Q and each of its powers have zero
characteristics in the remaining \ (p — 1

). Also P and F> clearly
have — 1 for characteristic in all of them.

Let rn and Yv be any two of the remaining representations,
and suppose that in them

X
j

= 2a„ + <h (f
t + fi-1) + <h(F+ + . . . + ai(,-„ (/#<*-*) + 0-Hp-D)

and

x^
=
2b0 + b

,

(/
J
+ /?-*) + K + /?-2) + . . . + b^ + fi-i <*-i)

are the characteristics of R expressed as the sum of its multipliers,
so that each a and each b is zero or a positive integer, (S being a
primitive \ (p + 1)th of unity.
After simple reductions the equations

sx;=o, 2*1=0,

S (xp2 = hP (f - 1 ). 2 (xl)2 = |p (p2 - 1),

S S

and 2 jgxj = 0
,

give

2 0^=^-4, 2 6i2 = p-4, i

^

l i

Kf-D
Hence 2 (a( - 6,)2 = 2,

l

so that of the } (
p -

1
) differences a(~ 6
4 only two can be different

from zero, and these two must be unity. Moreover this result holds
for each pair rn and rv of the \ ( p - 1 ) representations in p — 1

symbols.

Now 2 (O0 + a,+ ... = J9- 1
,

i(p-i) i(P-D
so that 2 a{ = 2 6

( = \ (p - 3).l i

From these and the previous equations it immediately follows that
of the \ (p- 1) numbers a, one is unity and all the others are 2

.

Moreover if a( is unity bt must be 2
. Hence, since

1 +/3 + /3-1 + y
3
2

+ y3-2+ ... +/3i<f-I) + /3-i<*-l) = O
,
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the characteristic of R in any one of the \ (p — 1) remaining repre
sentations is — (/3 + /3-'), where fi is any £(p+ 1)th root of unity
except 1. The group-characteristics may now be exhibited in
tabular form*

XE
1 h(P+l) Hp+1) P p-l P + l

XP 1 i(W/l) 0 -1 1

X^v
1 (-1)" (-1)" 1 0 ai+o-i

i o o-i -(F + p-*) o

The first four columns each give a single representation, the fifth
gives \{p-l) according to the £ (p + 1)th root of unity taken for

fi
, and the sixth gives J (p — 5) according to the £ (p — l)th root of

unity, other than - 1, taken for a.
It may be shewn in a closely similar manner that if p = 3

(mod. 4
) the table of characteristics is

1 i(p-l) i (p-!) *l p-1 j»+ 1

Xp 1 -p) 0 -1 1

1 j(-i-V^) 0 - 1 1

1 0 0 1 0 a* + a'

Xif 1 (- (- - 1 - (/S* + 0

Here again the first four columns each give a single representation,
while the fifth and sixth each give \ (p — 3) representations.

* These tables are given by Prof. Frobenius, "Uber Gruppencharaktore "

[Berliner Sitiungtberichte (1896) p. 1021), where however they are established
in an entirely different way.



NOTE M.

ON GEOUPS OF ODD ORDER.

It has been seen that there is in some respects a marked
difference between groups of even and those of odd order. The
most noticeable property of groups of odd order is perhaps that they
admit no self-inverse irreducible representation, except the identical
one. From this property combined with that denoted by the
relation

ri=rw+sCli\
of §253, it is not difficult to shew that all irreducible groups of odd
order in 3, 5 or 7 symbols are soluble.

Prof. G. A. Miller was the first to examine the possibility of a
simple group of odd order under given conditions. In a paper in
Vol. xxxin (1901) of the Proceedings of the London Mat/iematical
Society he proved that no group of odd order with a conjugate set
of operations containing fewer than 50 members could be simple.
In the same volume, working from a somewhat different point of
view, the author proved that all transitive groups of odd order
whose degree is less than 100 are soluble; and in his thesis
(Baltimore, 1904) Mr H. L. Rietz extended this result to groups
whose degrees are less than 243. The author has also shewn (I.e.)
that the number of prime factors in the order of a simple group of
odd order cannot be less than 7 ; and thence, by an examination of
some particular cases, that 40,000 is a lower limit for the order of a
group of odd tlegree, if simple. The contrast that these results
shew between groups of odd and of even order suggests inevitably
that simple groups of odd order do not exist. A discussion of the
possibility of their existence must in any case lead to interesting
results. Among other methods the problem might be approached
by a detailed examination of the properties of irreducible groups of
linear substitutions of odd order, or by regarding the group as a
group of isomorphisms of an Abelian group of type (1, 1, 1)
whose order is a power of 2.



NOTE N.

ON THE ORDERS OF SIMPLE GROUPS.

The only numbers less than 1000 which are the orders of simple
groups are 60, 168, 360, 504 and 660. In each case there is one
type of simple group corresponding to the order. Those of orders
60 and 360 are the alternating groups of 5 symbols and of 6 symbols.
Those of orders 16S and 660 are the linear fractional groups for
p = 7 and p = 1 1 ; and that of order 504 is the triply transitive
group of degree 9, whose existence is proved in § 141. These
results have been proved by a direct examination of the possibility
of a simple group for each order within the given range. The
investigation was carried out by Prof. Holder {Math. Ann., Vol. XL
(1892)) for orders up to 200 ; by Dr Cole (Amer. Journal of Mathe
matics, Vol. xv (1893)) for orders from 200 to 660; and by the
author (Proc. L. M. 8., Vol. xxvi (1895)) for orders from 660 to
1000. The labour involved in such a direct examination increases
very rapidly with the order, and puts a practical limit on carrying
it on to considerable values of the order. Prof. Dickson has given
in his Linear Groups a table of all known simple groups whose
orders do not exceed 1,000,000. Their number is 53. Among them
there occur two distinct types of simple group corresponding to one
and the same order, viz. 20160. Prof. Dickson has also shewn (I.e.)
hat there is an infinite series of numbers corresponding to which as
order there exists more than one type of simple group. Of the 53
simple groups whose orders are less than 1,000,000 all, except three,
belong to known systems of simple groups, each system having an
infinite number of members. These three which appear to belong
to no system are the quintuply transitive group of degree 12 and
order 12.11.10.9.8 given on p. 229, the quadruply transitive
group of degree 11 and order 11 . 10.9.8 which it contains and a
transitive group of degree 22. These apparently sporadic simple
groups would probably repay a closer examination than they have
yet received.



NOTE 0.

ON ALGEBRAIC NUMBERS.

In dealing with groups of linear substitutions it has been
necessary to assume the reader acquainted with some of the funda
mental ideas of the theory of algebraic numbers. A real or imaginary
quantity x, which satisfies an equation

a0xn + «iX"-1 + ... + »n-!»: + an = 0,

of finite degree, in which a0, «i an are rational integers is called
an algebraic number. From this it follows at once that the sum,
difference, product and quotient of two algebraic numbers are
algebraic numbers. If a„ is unity, x is called an algebraic integer.
An algebraic integer which is a rational number is necessarily a
rational integer. The above equation is spoken of as rationally
irreducible when it is not possible to express the left-hand side in
the form

(b0xm + blxm-l + ... +bm) (cax"-m + <VC-M+1 + ... +cn-m),

where the 6's and c'h are rational integers, while neither m nor n — m
is less than 1. When this condition is satisfied the totality of the
rational functions of a; with rational coefficients is called an algebraic
field of the nth degree, and is denoted by R (x).

Every algebraic number contained in this algebraic field is
expressible in the form

"iX*-1 + a^x"-2 + ... + an-1x + on,

where the o's are rational numbers. A fundamental property of an
algebraic field of the nth degree is that a set of algebraic integers
of the field <oi, <on can always be found, so that every integer
of the field is expressible in the form

^(Di +^<u2 + ... +in<D„,
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where the i's are rational integers, while at the same time this
expression can only vanish for simultaneous zero values of the i's,
assuming them to be rational numbers. The set of integers
a,,, lDi, ... , tan is called an integral basis of the field.

If x is another root of the irreducible equation satisfied by x,
the field R (x), consisting of all rational functions of x' with rational
coefficients, is distinct from R (x), unless x belongs to R (x). If
when x is written for x, <D,, <i,2, a,n become <d2', <un', the
latter set of quantities is a rational basis of R (a;').

There is unfortunately no English book to which reference can
be made for proofs of the above statements and for the general
theory of algebraic fields. The reader who wishes for a complete
account of the theory should consult "Die Theorie der algebraischen
Zahlkorper," by Prof. Hilbert (Jahresbericht der Deulsehen Mathe-
matiker-Vereinigung, Vol. iv (1897)). The first part of a French
translation of Prof. Hilbert's memoir has just been published in the
Annates de la Factdle des Sciences de I'University de Toulouse (1909).
An admirable account of the theory is also given in Prof. Weber's
Lehrbiich der Algebra, Vol. n (1899). For an introduction to the
subject there is no better book than Prof. Minkowski's DiophatUische
Approximationen (1907), or Dr Sommer's Vorlesungen iiber ZaJden-
tlieorie (1907), where the theory of cubic and quadratic fields are
dealt with.
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Abelian group, 24
Alternating group, 132

Central of a group, 27
Characteristic equation of a linear
substitution, 192
Characteristic of a linear substitution,
192

Characteristic series, 69
Characteristic sub-group, 68
Chief composition-series, SI
Circular permutation, 9
Colour group, 305
Commutator, 38
Commutator sub-group, 39
Complete group, 70
Completely reducible group, 197
Composite group, 24
Composition-factors, 48
Composition of two groups of linear
substitutions, 191
Composition-series, 48
Conjugate groups of linear substi
tutions, 190
Conjugate operations, 24
Conjugate set of operations, 26
Conjugate sub-groups, 24
Cycle of a permutation, 4
Cyclical group, 22

Degree of a permutation-group, 131
Derived group, 39
Determinant of a linear substitution,
188
Dihedral group, 295
Direct product of two groups, 31
Distinct representations, 174, 204

Equivalent representations, 174, 204
Even permutation, 11

Factor-group, 29
Family of irreducible representations,
234
Fractional linear group, 314

Generalized linear homogeneous
group, 332
Genus of a group, 289
Group, 12
Group of isomorphisms, 62
Group of monomial substitutions, 242

Hermitian form, 194
Holomorph of a group, 64

Icosahedral group, 295
Identical isomorphism, 61
Identical operation, 13
Identical representation, 205
Imprimitive group, 146
Index of a sub-group is the ratio of
the order of the group containing it
to the order of the sub-group
Inner isomorphism, 63
Intransitive group, 133
Invariant of a group of linear substi
tutions, 260
Inverse conjugate sets, 41
Inverse of an operation, 12
Irreducible components of a group of
linear substitutions, 205
Irreducible group of linear substitu
tions, 197
Isomorphism, 61

Linear homogeneous group, 90
Linear substitution, 188

Mark of a sub-group of a permutation-
group, 180
Maximum self-conjugate sub-group,
27
Maximum sub-group, 27
Metabelian group, 40
Minimum self- conjugate sub-group, 52
Multiplication table of conjugate sets,
44

Multipliers of a linear substitution,
193

Multiply isomorphic groups, 28
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Multiply transitive group, 137

Ootohedral group, 295
Odd permutation, 11
Order of a group, 15
Order of a permutation, 8
Outer isomorphism, 63

Permutable groups, 33
Permutable operations, 12
Permutation, 2
Primitive group, 146

Quadratic group, 321

Quaternion group, 106

Reduced variables, 205
Reducible group of linear substitu
tions, 197
Regular permutation, 9
Relative invariant of a group of linear
substitutions, 260
Representation of a group as a per
mutation-group, 174

Representation of a group as a group
of linear substitutions, 204

Self-conjugate operation, 24
Self-conjugate sub-group, 24
Series of derived groups, 40
Set of generating operations, 18
Set of group-cbaracteristics, 212
Similar permutations, 10
Simple group, 24
Simply isomorphic groups, 19
Soluble group, 40, 58
Sub-group, 22
Symmetric group, 132

Tetrahedral group, 295
Transitive group, 133
Transposed groups of linear substi
tutions, 190
Transposition, 11
Type (m,, mi, mt) of Abelian group,
80
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(The numberi refer to sections.)

Abelian group, is direct product of groups whose orders are powers of primes,
75

existence of independent generating operations of, 77
sub-groups of, 78-81, 84
characteristic series of, 82
symbol for, of given type, 80
orders of the isomorphisms of, 86

Abelian group of order pn and type (1, 1, 1), number of sub-group of given
order of, 84

number of ways of choosing a set of independent generating operations
of, 85

group of isomorphisms of, 89
holomorph of, 90

Alternating group, is simple except for degree 4, 139
group of isomorphisms of, 162
of degree 5, represented as an irreducible group in 3 symbols, 232
defining relations of, Note C

Characteristic series, invariance of factor-groups of, 69
of an Abelian group, 82

Characteristic sub-group, groups with no, are either simple or the direct
product of simply isomorphic simple groups, 68

Chief composition-series or chief- series, invariance of factor-groups of, 51
examples of, 55, 56

Complete group, groups which contain a, self-conjugately are direct products,
70

group of isomorphisms of a simple group of composite order is a, 71
if an Abelian group of odd order is a characteristic sub-group of its
holomorph, the latter is a, 72

symmetric group is a, except for degree 6, 162
Completely reduced form of a transitive group, 207
of a group of monomial substitutions, Note D

Composition-series, invariance of factor-groups of, 50
examples of, 55, 56

Conjugate groups of linear substitutions, are simply isomorphic, 190
possess an invariant Hermitian form, 195

Conjugate sets, multiplication of, 41-46
invariant property of multiplication table of, 236

Cyclical group, group of isomorphisms of, 88
holomorph of, 88
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Defining relations of a group, limitations on the number of, when the genns
is given, 291

for groups of genus zero, 296
for groups of genus one, 302
for groups of genus two, 302
for the Bimple group of order 168, 303
for groups of order p', p", p*, 117
for groups of order pq, 36
for groups of order p-q, 69
for groups whose Sylow sub-groups are cyclical, 129
for groupR of order 24, 126
for the holomorph of a cyclical group, 88
for the symmetric group, Note C
for the alternating group, Note C

Derived oroups, properties of, 39
series of, 40

Direct product, of two groups represented as a transitive group, 152
of two simply isomorphic groups of order n without self-conjugate opera-
tious represented as a transitive group of degree n, 64, 136

Doubly tranbitive group, is in general simple or contains a simple self-
conjugate sub-group, 154

the sub-groups of, which keep two symbols fixed, 167
with a complete set of triplets, 169
of degree pn and order pn(pn-l), 140
has two irreducible components, 250

Finiteness of the order of a group of linear substitutions, conditions for, Note J
Fractional linear group, analysis of, 315-327
generalization of, 328
group-characteristics of, Note L

Graphical representation, of a cyclical group, 276
of a general group, 277-280
of a special group, 281-286
of a group of finite order, 287, 288, 291
of groups of genus zero, 295
of groups of genus one, 298-301
of the simple group of order 168, 303

Group of isomorphisms, general properties of, 62-67
of a cyclical group, 88
of an Abelian group of order pn and type (1, 1, 1), 89
of the alternating group, 162

Group of the 27 lines on a cubic surface, Note H
Groups whose order is p", where p ia prime, general properties of, 92 et teq.
always have self-conjugate operations, 92
are distinct from their derived groups, 94
every sub-group of, is contained self-conjugately in a sub-group of greater
order, 96

number of sub-groups of given order is congruent to 1 (mod. p), 103
with only one sub-group of given order, 104, 105
which contain a cyclical sub-group of order pn~3 self-conjugately, 109-111
types of, when n = 2, 3, 4, 112-117
irreducible representations of, can be expressed as monomial groups, 258

Groups of order p*q&, where p and q are primes, are simple, 240
characteristic sub-groups of, 241

Groups whose Sylow sub-groups are cyclical, 128, 129
Groups of linear substitutions, general properties of, 188 et teq.
composition of, 191
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Groups of linear substitutions, standard form of, 196
of finite order are irreducible or completely reducible, 200
self-conjugate operations of, 202, 203

Group-characteristics, relations between, 211-216, 218, 219
calculation of, 222, 223
congruences between, 256, 257
table of, for fractional linear group, Note L

Hermitian forms, invariant for group and its conjugate, 195
number of, for given group of linear substitutions, 206

Holomorfh, general properties of, 64
of a cyclical group, 88
of an Abelian group of order pa and type (1, 1, 1), 90
of any Abelian group, 87

Homogeneous linear group, general properties of, 308-310
composition-series of, 311-313
represented as a doubly transitive group, 329
generalization of, 332, 333

Imprimitive self-conjugate sub-group of a doubly transitive group, 151
Imprimitive systems, properties of, 147, 148
of a regular permutation-group, 176
of any transitive group, 177

Intransitive groups, general properties of, 142-144
transitive constituents of, 142
test for, 145

Invariants of a group of linear substitutions, absolute and relative invariants,
260

system of, in terms of which all are rationally expressible, 263
quadratic, 270
of an irreducible group, 269
examples of, 266-268

Isomorphisms, of a group with itself, inner and outer, 63
of a general and a special group, 275
which leave no operation except E unchanged, 66, 248
limitation on the order of, 86
which change every conjugate set into itself, 65, 249
which change every family of conjugate sets iuto itself, Note B

Minimum self-conjugate sub-group, is a simple group or the direct product
of simply isomorphic simple groups, 53

Multiply tkansitive oroups, general properties of, 137, 138
self-conjugate sub-groups of, 150
examples of, 141

Number of operations whose nth powers are conjugate to a given operation, 37
Permctable groups, general properties of, 34, 3.5

Permutations which are permutable, with a given permutation, 170
with every permutation of a given group, 171
with every permutation of a regular permutation-group, 20, 136

Permctation-group, general properties of, 131 et sey.
order of Ar-ply transitive, whose degree is n, is a multiple of n(n-l). .
(n-t + 1), 137

limits to the degree of transitivity, 138, 160
representation of a group as, 174 et seq.
transitive, whose permutations displace all or all but one of the symbols,
134, 247

doubly transitive, of degree p" and order p" (p" - 1), 140
triply transitive, of degree p" + l and order pn (p2" - 1), 141
jjuintuply transitive, of degree 12, 173
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Permutation-group, transitive, whose order is the power of a prime, 172
Primitive groups, general properties of, 147, 177
when soluble have the power of a prime for degree, 154
limit to order of, for given degree, 160
with transitive sab-group of smaller degree, 158, 159
of degrees 3 to 8, 166
simply transitive, of prime degree, are soluble, 251
test for, 147

Reducibility of a group of linear substitutions, conditions for, Note I
Representation of a group, as a permutation-group, 174 et teq.
as a group of linear substitutions, 204 et teq.
as a group of monomial substitutions, 242
as a group of linear substitutions with rational coefficients, Note G
as a group of birational transformations of an algebraic ourve, Note K

Self-conjugate operation, of a transitive permutation-group, 135
of an irreducible group of linear substitutions, 202

Self-conjugate sub-group, generated by a complete set of conjugate operations,
27

of a primitive group must be transitive, 149
of an imprimitive group, 146, 148
of an intransitive group, 142
determined by congruences between the group-characteristics, 256, 257

Simple group of order 168 represented as an irreducible group in 3 variables,
232

Simple groups, order if even is divisible by 12, 16 or 56, 245
systems of, 139, 328, 329, 332
group of isomorphisms of, is oomplete, 71
orders of, Note N

Simply isomorphic groups, concrete examples of, 17
Sylow's theorem, 120
deductions from, 122-125
generalization of, 121

Symmetric group, is a complete group, except for degree 6, 162
defining relations of, Note C
some irreducible representations of, Note C
of degree n represented as a group of birational transformations of n-3
Bymbols, Note C

Transpositions, representation of a permutation by means of, 11
number of, which enter in a permutation is either always even or always
odd, 11
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