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1. Introduction

In these notes I will sketch the construction tmf of using Goerss-Hopkins obstruction theory.
These notes are the result of my attempts to understand the material surrounding a talk I gave at
the Talbot workshop in 2007. There is no claim to originality in this approach. All of the results
are the results of other people, namely: Paul Goerss, Mike Hopkins, and Haynes Miller. I benefited
from conversations with Niko Naumann and Charles Rezk, and from Mike Hill’s talk at the Talbot
workshop. I am especially grateful for numerous corrections and suggestions which Tyler Lawson,
Lennart Meier, Niko Naumann, and Markus Szymik supplied me with. The remaining mathematical
errors, inconsistencies, and points of inelegance in these notes are mine and mine alone.

Let Mell denote the moduli stack of generalized elliptic curves over Spec(Z). For us, unless we
specifically specify otherwise, a generalized elliptic curve is implicitly assumed to have irreducible
geometric fibers (i.e. no Néron n-gons for n > 1). That is to say,Mell is the moduli stack of pointed
curves whose fibers are either elliptic curves, or possess a nodal singularity. Our aim is to prove the
following theorem.

Theorem 1.1. There is a presheaf Otop of E∞-ring spectra on the site (Mell)et, which is fibrant
as a presheaf of spectra in the Jardine model structure. Given an affine étale open

Spec(R)
C−→Mell

classifying a generalized elliptic curve C/R, the spectrum of sections E = Otop(Spec(R)) is a weakly
even periodic ring spectrum satisfying:

(1) π0(E) ∼= R,

(2) GE ∼= Ĉ.

Here, Ĉ is the formal group of C.

Date: June 18, 2012.
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Remark 1.2. A ring spectrum E is weakly even periodic if π∗E is concentrated in even degrees, π2E
is an invertible π0E-module, and the natural map

π2E ⊗ π2tE ∼= π2t+2E

is an isomorphism. The spectrum E is automatically complex orientable, and we let GE denote the
formal group over π0E associated to E. It then follows that there is a canonical isomorphism

π2tE ∼= Γω⊗tGE

where ωGE is the line bundle (over Spec(R)) of invariant 1-forms on GE .

Remark 1.3. The properties of the spectrum of sections of E = Otop(Spec(R)) enumerated in
Theorem 1.1 make E an elliptic spectrum associated to the generalized elliptic curve C/R in the
sense of Hopkins and Miller [Hop95]. Thus Theorem 1.1 gives a functorial collection of E∞-elliptic
spectra associated to the collection of generalized elliptic curves whose classifying maps are étale.

Remark 1.4. This theorem practically determines Otop, at least as a diagram in the stable homotopy

category. Given an affine étale open Spec(R)
C−→Mell , the composite

Spec(R)
C−→Mell →MFG

is flat, since the mapMell →MFG classifying the formal group of the universal generalized elliptic
curve is flat (this can be verified using Serre-Tate theory, see [BL10, Lemma 9.1.6]). Thus the
spectrum of sections E = Otop(R) is Landweber exact [Nau07]. Fibrant presheaves of spectra
satisfy homotopy descent, and so the values of the presheaf are determined by values on the affine
opens using étale descent.

Remark 1.5. The spectrum tmf is defined to be the connective cover of the global sections of this
sheaf:

tmf = τ≥0Otop(Mell).

We give an outline of the argument we shall give. Consider the substacks

(Mell)p
ιp−→Mell ,

(Mell)Q
ιQ−→Mell ,

where:

(Mell)p = p-completion of Mell ,

(Mell)Q =Mell ⊗Z Q.

Remark 1.6. We pause to make two important comments on our use of formal geometry in this
paper.

(1) The object (Mell)p is a formal Deligne-Mumford stack. We shall use these throughout this
paper — we refer the reader to the appendix of [Har05] for some of the basic definitions.
Given a formal Deligne-Mumford stack X and a ring R complete with respect to an ideal
I, we define the R-points of X by X (R) = lim←−i X (R/Ii).

(2) If R is complete with respect to an ideal I, a generalized elliptic curve C/Spf(R) is a
compatible ind-system Cm/ Spec(R/Im). There is, however, a canonical “algebrization”

C̃/Spec(R) where C̃ is a generalized elliptic curve which restricts to Cm over Spec(R/Im)
[Con07, Cor. 2.2.4]. With this in mind, we shall in these notes always regard C/Spf(R) as
being represented by an honest generalized elliptic curve over the ring R.
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We shall construct Otop as the homotopy pullback of an arithmetic square of presheaves of E∞-
ring spectra

Otop //

��

∏
p prime(ιp)∗Otopp

��

(ιQ)∗OtopQ αarith

//
(∏

p prime(ιp)∗Otopp
)
Q

Here, Otopp is a presheaf on (Mell)p, and OtopQ is a presheaf on (Mell)Q. The presheaf ∏
p prime

(ιp)∗Otopp


Q

is the (sectionwise) rationalization of the presheaf
∏
p prime(ιp)∗Otopp . The presheaf OtopQ will be

constructed using rational homotopy theory, as will the map αarith.
It remains to construct the presheaves Otopp for each prime p. Define

(Mell)Fp =Mell ⊗Z Fp.

Let

(Mord
ell )Fp ⊂ (Mell)Fp

denote the locus of ordinary generalized elliptic curves in characteristic p, and let

(Mss
ell)Fp = (Mell)Fp − (Mord

ell )Fp

denote the locus of supersingular elliptic curves in characteristic p. Consider the substacks

Mord
ell

ιord−−→ (Mell)p,(1.1)

Mss
ell

ιss−−→ (Mell)p,(1.2)

where

Mord
ell = moduli stack of generalized elliptic curves over p-complete rings with ordinary reduction,

Mss
ell = completion of Mell at (Mss

ell)Fp .

The presheaves Otopp will be constructed as homotopy pullbacks:

Otopp //

��

(ιss)∗OtopK(2)

��

(ιord)∗OtopK(1) αchrom

//
(

(ιss)∗OtopK(2)

)
K(1)

Here, (
(ιss)∗OtopK(2)

)
K(1)

denotes the (sectionwise) K(1)-localization of the presheaf (ιss)∗OtopK(2).

The presheaf OtopK(2) will be constructed using the Goerss-Hopkins-Miller Theorem — its spectra

of sections are given by homotopy fixed points of Morava E-theories with respect to finite group
actions.

The presheaf OtopK(1) will be constructed using explicit Goerss-Hopkins obstruction theory. The

map αchrom will be be produced from an analysis of the K(1)-local mapping spaces, and the θ-algebra
structure inherent in certain rings of p-adic modular forms.
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2. Descent lemmas for presheaves of spectra

For a small Grothendieck site C with enough points, let PreSpC denote the category of presheaves
of symmetric spectra of simplicial sets. The category PreSpC has a Jardine model category structure
[Jar00], where

(1) The cofibrations are the sectionwise cofibrations of symmetric spectra,
(2) The weak equivalences are the stalkwise stable equivalences of symmetric spectra,
(3) The fibrant objects are those objects which are fibrant in the injective model structure of

the underlying diagram model category structure, and which satisfy descent with respect to
hypercovers [DHI04].

The following lemma will be useful.

Lemma 2.1.

(1) If F ∈ PreSpC satisfies homotopy descent with respect to hypercovers, then the fibrant re-
placement in the Jardine model structure

F → F ′

is a sectionwise weak equivalence.
(2) If f : F → G is a stalkwise weak equivalence in PreSpC, and F and G satisfy homotopy

descent with respect to hypercovers, then f is a sectionwise weak equivalence.

Proof. (1) The Jardine model category structure is a localization of the injective model category
structure on PreSpC . In the injective model structure, weak equivalences are sectionwise. Let

F → F ′

be the fibrant replacement in the injective model category structure. This map is necessarily a
sectionwise weak equivalence. By the Dugger-Hollander-Isaksen criterion, to see that F ′ is fibrant
in the Jardine model structure, it suffices to show that F ′ satisfies homotopy descent with respect
to hypercovers. Let U ∈ C and let U• be a hypercover of U . Consider the diagram

F(U)
' //

'
��

holim∆ F(U•)

'
��

F ′(U) // holim∆ F ′(U•)

We deduce that the bottom arrow is an equivalence. Thus F ′ satisfies descent with respect to
hypercovers, and is fibrant in the Jardine model category structure.

(2) Consider the diagram of Jardine fibrant replacements:

F
f //

u

��

G

v

����
F ′

f ′
// G′

By (1), the maps u and v are sectionwise equivalences. The map f ′ is a stalkwise weak equivalence
between Jardine fibrant objects. Because the Jardine model structure is a localization of the injective
model structure, we deduce that f ′ is a sectionwise weak equivalence. We therefore conclude that
f is a sectionwise weak equivalence. �

Let X be a Deligne-Mumford stack, and consider the site Xet. Being a Deligne-Mumford stack,
X possesses an affine étale cover. The full subcategory

Xet,aff
i−→ Xet
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consisting of only the affine étale opens is also a Grothendieck site. The map i induces an adjoint
pair of functors

i∗ : PreSpXet � PreSpXet,aff
: i∗

where i∗ is the functor given by precomposition with i, and i∗ is the right Kan extension.

Lemma 2.2.

(1) The adjoint pair (i∗, i∗) is a Quillen equivalence.
(2) To construct a fibrant presheaf of spectra on Xet, it suffices to construct a fibrant presheaf

on Xet,aff and apply the functor i∗.

Proof. By [Hov99, Cor. 1.3.16], to check (1) it suffices to check that (i∗, i∗) is a Quillen pair, that
i∗ reflects weak equivalences, and that the map

i∗Li
∗X → X

is a weak equivalence. The functor i∗ is easily seen to preserve cofibrations, and it preserves and
reflects all weak equivalences, since the sites Xet and Xet,aff have the same points. Since the functor
i∗ preserves stalks, the map above is a stalkwise weak equivalence, hence is an equivalence. Therefore
(i∗, i∗) is a Quillen equivalence. (2) In particular, the functor i∗ preserves fibrant objects. �

The following construction formalizes the idea that a Jardine fibrant presheaf on Xet is determined
by its sections on étale affine opens.

Construction 2.3.
Input: A presheaf F on Xet,aff that satisfies hyperdescent.

Output: A Jardine fibrant presheaf G on Xet, and a zig-zag of sectionwise weak equivalences
between F and i∗G.

We explain this construction. Let

u : F → F ′

be the Jardine fibrant replacement of F . By Lemma 2.1, u is a sectionwise weak equivalence. Let
G be the presheaf i∗F ′. By Lemma 2.2, G is Jardine fibrant. The counit of the adjunction

ε : i∗G = i∗i∗F ′ → F ′

is a stalkwise weak equivalence since, by Lemma 2.2, the adjoint pair (i∗, i∗) is a Quillen equivalence.
The sheaf i∗G is easily seen to satisfy hyperdescent — it is the restriction of G to a subcategory.
Therefore, by Lemma 2.1, the map ε is a sectionwise weak equivalence. Thus we have a zig-zag of
sectionwise equivalences

i∗G → F ′ ← F .

Construction 2.3 requires a presheaf F on Xet,aff which satisfies homotopy descent with respect
to hypercovers. The following lemma gives a useful criterion for verifying that F has this property.

Lemma 2.4. Suppose that F is an object of PreSpXet,aff
, and suppose that there is a graded quasi-

coherent sheaf A∗ on X and natural isomorphisms

fU : A∗(U)
∼=−→ π∗F(U)

for all affine étale opens U → X . Then F satisfies homotopy descent with respect to hypercovers.

Proof. Suppose that U → X is an affine étale open, and that U• is a hypercover of U . Consider the
Bousfield-Kan spectral sequence

Es,t2 = πsAt(U•)⇒ πt−s holim∆ F(U•).

Since A∗ quasi-coherent, it satisfies étale hyperdescent, and we deduce that the E2-term computes
the quasi-coherent cohomology

Es,t2
∼= Hs(U,At)
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and since U is affine, there is no higher cohomology. The E2-term of this spectral sequence is
therefore concentrated in s = 0. The spectral sequence collapses to give a diagram of isomorphisms

A∗(U)

fU ∼=
��

∼=

''PPPPPPPPPPPP

π∗F(U) // π∗ holim∆ F(U•)

We deduce that the map

F(U)→ holim∆ F(U•)

is an equivalence. �

Remark 2.5. Construction 2.3 shows that to construct the presheaf Otop, it suffices to construct
Otop(U) functorially for affine étale opens U →Mell , as long as the resulting values Otop(U) satisfy
homotopy descent with respect to affine hypercovers. This is automatic: there is an isomorphism

π2tOtop(U) ∼= ω⊗t(U)

for an invertible sheaf ω on Mell . Lemma 2.4 implies that Otop satisfies the required hyperdescent
conditions.

3. p-divisible groups of elliptic curves

Let C be an elliptic curve over R, a p-complete ring. The p-divisible group C(p) is the ind-finite
group-scheme over R given by

C(p) = lim−→
k

C[pk].

Here, the finite group scheme C[pk]/R is the kernel of the pk-power map on C.

Let Ĉ be the formal group of C. If the height of the mod p-reduction of Ĉ is constant, then over
Spf(R) there is short exact sequence

0→ Ĉ → C(p)→ C(p)et → 0

where C(p)et is an ind-étale divisible group-scheme over R.
If R = k, a field of characteristic p, then we have

2 = height(C(p)) = height(Ĉ) + height(C(p)et).

The height of Ĉ is the height of the formal group. The height of C(p)et is the corank of the
corresponding divisible group. There are two possibilities:

(1) C is ordinary : Ĉ has height 1, and the divisible group C(p)et has corank 1.

(2) C is supersingular : Ĉ has height 2, and the divisible group C(p)et is trivial.

Theorem 3.1 (Serre-Tate). Suppose that R is a complete local ring with residue field k of charac-
teristic p. Suppose that C is an elliptic curve over k. Then the functor

{deformations of C to R}
↓

{deformations of C(p) to R}

is an equivalence of categories.
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4. Construction of OtopK(2)

Lubin and Tate identified the formal neighborhood of a finite height formal group in MFG :

Theorem 4.1 (Lubin-Tate). Suppose that G is a formal group of finite height n over k, a perfect
field of characteristic p. Then the formal moduli of deformations of k is given by

DefG ∼= Spf(B(k,G))

where there is an isomorphism

B(k,G) ∼= W(k)[[u1, . . . , un−1]].

(Here, W(k) is the Witt ring of k.)

Let G̃/B(k,G) denote the universal deformation of G. The following theorem was proven by
Goerss, Hopkins, and Miller [GH04].

Theorem 4.2 (Goerss-Hopkins-Miller). Let C be the category of pairs (k,G) where k is a perfect
field of characteristic p and G is a formal group of finite height over k. There is a functor

C → E∞ ring spectra

(k,G) 7→ E(k,G)

where E(k,G) is Landweber exact and even periodic, and

(1) π0E(k,G) = B(k,G),

(2) GE(k,G)
∼= G̃.

Theorem 3.1 and Theorem 4.1 give the following.

Corollary 4.3.

(1) Suppose that C is a supersingular elliptic curve over a field k of characteristic p. There is
an isomorphism

DefC ∼= Spf(B(k, Ĉ)).

(2) The substack (Mss
ell)Fp ⊂ (Mell)p is zero dimensional.

Proof. If C is a supersingular curve, then the inclusion of p-divisible groups Ĉ → C(p) is an
isomorphism. Therefore, Theorem 3.1 implies that there is an isomorphism

DefC ∼= DefĈ

and Theorem 4.1 identifies DefĈ .
To compute the dimension of (Mss

ell)Fp it suffices to do so étale locally. Let k be a finite field,

and suppose that C is a supersingular elliptic curve over k. The completion ofMell along the map

classifying C is the deformation space DefC ∼= Spf(B(k, Ĉ)), and there is an isomorphism

B(k, Ĉ) ∼= W(k)[[u1]].

Since we have
u1 ≡ v1 mod p,

the locus where Ĉ has height 2 is given by the ideal (p, u1). The quotient B(k, Ĉ)/(p, u1) is k, and
is therefore zero dimensional. �

We now construct the values of the presheaf OtopK(2) on formal affine étale opens

f : Spf(R)→Mss
ell .

Here R is complete with respect to an ideal I. This suffices to construct the presheaf OtopK(2) onMss
ell

by Construction 2.3.
The induced map of special fibers

f0 : Spec(R/I)→ (Mss
ell)Fp
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is étale. Since (Mss
ell)Fp is smooth and zero-dimensional, Spec(R/I) must be étale over Fp. We

deduce that there is an isomorphism

R/I ∼=
∏
i

ki,

a finite product of finite fields of characteristic p. Let C be the elliptic curve classified by f , and let
C0 be the elliptic curve classified by f0. The decomposition of R/I induces a decomposition

C0
∼=
∐
i

C
(i)
0 .

Since f is étale, the elliptic curve C is a universal deformation of the elliptic curve C0, and hence
by Corollary 4.3 there is an isomorphism

R ∼=
∏
i

B(ki, Ĉ
(i)
0 ).

We define

OtopK(2)(Spf(R)) :=
∏
i

E(ki, Ĉ
(i)
0 ).

Let G be the formal group of this even periodic ring spectrum. By Theorem 3.1, since G is a

universal deformation of Ĉ0 and C is a universal deformation of C0, there is an isomorphism

G ∼= Ĉ.

We have therefore verified

Proposition 4.4. The spectrum of sections OtopK(2) is an elliptic spectrum associated to the elliptic

curve C/Spf(R).

5. The Igusa tower

If C is a generalized elliptic curve over a p-complete ring R, let Cns denote the non-singular locus
of C → Spf(R). Then Cns is a group scheme over R. Given a closed point x ∈ Spf(R), the fiber
(Cns)x is given by

(Cns)x =

{
Cx Cx nonsingular,

Gm Cx singular.

The formal group Ĉ is the formal group Ĉns. We still may consider the ind-quasi-finite group-scheme

C(p) = lim−→
k

Cns[p
k].

C(p) is technically not a p-divisible group, because its height is not uniform. Rather, we have the
following table:

Cx ht(C(p)x) ht((C(p)x)et) ht(Ĉx)
supersingular 2 0 2

ordinary 2 1 1
singular 1 0 1

If the classifying map

C : Spf(R)→ (Mell)p

factors through Mord
ell , then C has no supersingular fibers, but may have singular fibers. We shall

call such a generalized elliptic curve C ordinary.
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Let Mord
ell (pk) be the moduli stack whose R-points (for a p-complete ring R) is the groupoid of

pairs (C, η) where

C/R = ordinary generalized elliptic curve,

(η : µpk
∼=−→ Ĉ[pk]) = isomorphism of finite group schemes.

The isomorphism η is a pk-level structure. The stacks Mord
ell (pk) are representable by Deligne-

Mumford stacks.
A pk+1-level structure induces a canonical pk-level structure, inducing a map

(5.1) Mord
ell (pk+1)→Mord

ell (pk).

Lemma 5.1. The map Mord
ell (pk+1)→Mord

ell (pk) is an étale Z/p-torsor (an étale (Z/p)×-torsor if
k = 0).

Proof. (This proof is stolen from Paul Goerss.) By Lubin-Tate theory, the p-completed moduli stack
Mmult

FG of multiplicative formal groups admits a presentation

Spf(Zp)→Mmult
FG

which is a pro-étale torsor for the group:

Aut(Ĝm/Zp) = Z×p .

Associated to the closed subgroup 1 + pkZp ⊂ Z×p is the étale torsor

Mmult
FG (pk)→Mmult

FG

for the group (Z/pk)×. The intermediate cover

Mmult
FG (pk+1)→Mmult

FG (pk)

is an étale Z/p-torsor (it is an étale (Z/p)×-torsor if k = 0). The R-points of Mmult
FG (pk) is the

groupoid whose objects are pairs (G, η) where G is a formal group over Spf(R) locally isomorphic

to Ĝm, and η is a level pk-structure:

η : µpk
∼=−→ G[pk].

The stacks Mord
ell (pk) are therefore given by the pullbacks

Mord
ell (pk+1) //

��

Mord
ell (pk) //

��

Mord
ell

��
Mmult

FG (pk+1) //Mmult
FG (pk) //Mmult

FG

where the map Mord
ell → Mmult

FG classifies the formal group of the universal ordinary generalized
elliptic curve. The result follows. �
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Thus we have a tower of étale covers:

...

��
Mord

ell (pk+1)

��
Mord

ell (pk)

��
...

��
Mord

ell

This is the Igusa tower.

Lemma 5.2. For k ≥ 1 (k ≥ 2 if p = 2) the stackMord
ell (pk) is formally affine: there is a p-complete

ring Vk such that

Mord
ell (pk) = Spf(Vk).

Proof. The variant of this lemma where a sufficiently large level structure has been introduced is
well-known (see, for instance, [Hid04, Sec 3.2.7-9]). Let (Mord

ell )n denote the moduli stack of ordinary

elliptic curves with the structure of an n-jet at the basepoint. By fixing a coordinate T0 of Ĝm, we
observe that there is a closed inclusion

Mord
ell (pk) ↪→ (Mord

ell )p
k−1

as a level pk-structure η gives an elliptic curve the structure of a (pk − 1)-jet η∗T0, and this jet

uniquely determines the level structure. Thus it suffices to show that (Mord
ell )p

k−1 is formally affine.

Case 1: p > 3. LetR be a complete Zp-algebra. Suppose that (C, T ) is an object of (Mord
ell )p

k−1(R)
for k ≥ 1. Zariski-locally over Spec(R), there is a Weierstrass parameterization

C = Ca : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The Weierstrass curve Ca has a canonical coordinate at infinity given by Ta = −x/y. Suppose that
T is a (pk − 1)-jet on Ca, given by

T = m0Ta +m1T
2
a + · · ·+mpk−2T

pk−1
a +O(T p

k

a ).

According to [Rez, Rmk. 20.3], there are unique values

λ = λ(m0)

s = s(m0,m1)

r = r(m0,m1,m2)

t = t(m0,m1,m2,m3)

such that under the transformation

fλ,s,r,t : Ca → Ca′

x 7→ λ2x+ r

y 7→ λ3y + sx+ t

the induced level (pk − 1)-jet T ′ = (fλ,s,r,t)∗T is of the form

T ′ = Ta′ +m′4T
5
a′ + · · ·+m′pk−2T

pk−1
a′ +O(T p

k

a′ ).
10



We have shown that the pair (C, η) is (Zariski locally) uniquely representable by a pair (Ca, T )
where

T = Ta +m4T
5
a + · · ·mpk−2T

pk−1
a +O(T p

k

a ).

The only morphism fλ,s,r,t : Ca → Ca′ which satisfies

f∗λ,s,r,tTa′ = Ta +O(T 5
a )

has λ = 1 and s = r = t = 0. Thus (C, T ) is determined, Zariski locally, up to unique isomorphism,
by the functions

a1, a2, a3, a4, a6,m4, . . . ,mpk−2.

The uniqueness of these functions implies that they are compatible on the intersections of a Zariski
open cover, and hence patch to give global invariants of (C, T ). Expressing the Eisenstein series
(Hasse invariant) Ep−1 of Ca as

Ep−1 = Ep−1(a1, a2, a3, a4, a6),

if follows that we have

(Mord
ell )p

k−1 ∼= Spf(Zp[a1, a2, a3, a4, a6,m4, . . . ,mpk−2])[E−1
p−1]).

SinceMord
ell (pk) is a closed formal subscheme of this formally affine scheme, it is also formally affine.

There is an ideal Ik such that the representing ring Vk is explicitly given as

Vk = (Zp[a1, a2, a3, a4, a6,m4, . . . ,mpk−2]/Ik)[E−1
p−1].

With minor modification, the method for p > 3 extends to the cases p = 2, 3. The canonical
forms for (C, T ) just change slightly.

Case 2: p = 3. Suppose that (C, T ) is an object of (Mord
ell )3k−1 for k ≥ 1. If k > 1, then

3k − 1 ≥ 4, and thus (C, T ) admits a canonical Weierstrass presentation.
If k = 1, then this no longer holds. Instead, choosing

λ = λ(m0)

s =s(m0,m1)

there exists (Zariski locally) a Weierstrass curve (Ca, T ) ∼= (C, T ) such that

T = Ta +O(T 3
a ).

Choosing t0 accordingly, there is a transformation

ft0 : Ca → Ca′

(x, y) 7→ (x, y + t0)

such that a′3 = 0. The induced 2-jet T ′ = (ft0)∗T still satisfies T ′ ≡ Ta′ mod T 3
a′ . The automor-

phisms fλ,s,r,t of (Ca′ , T
′) preserving the property that a3 = 0, and the trivialization of the 2-jet,

satisfy

λ = 1

s = 0

t = −a1r/2.

Under such a transformation, we find that

a4 7→ a4 + 2b2r + 3r2

where b2 = a2 + a2
1/4. Because C is assumed to be ordinary, the element b2 is a unit. Because R

is p-complete, there is a unique r such that a4 7→ 0. Thus we have shown that there is a canonical
Weierstrass presentation which trivializes the 2-jet, and for which a3 = a4 = 0.
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Case 3: p = 2. Assume that k = 2 (for k > 2, we have 2k − 1 ≥ 4, and therefore an elliptic curve
with a 2k − 1-jet admits a canonical Weierstrass presentation). Let (C, T ) be an object of (Mord

ell )3.
Choose (Zariski locally) a Weierstrass presentation (Ca, T ) ∼= (C, T ). Choosing

λ = λ(m0)

s = s(m0,m1)

r = r(m0,m1,m2)

we may assume that T satisfies

T = Ta +O(T 4
a ).

The automorphisms fλ,s,r,t of (Ca, T ) preserving the property the trivialization of the 3-jet satisfy

λ = 1

s = 0

r = 0

Under such a transformation, we find that

a4 7→ a4 − a1t.

Because C is assumed to be ordinary, the element a1 is a unit. Letting t = a4/a1, we have a4 7→ 0.
Thus we have shown that there is a canonical Weierstrass presentation which trivializes the 3-jet,
and for which a4 = 0. �

Define

V ∧∞ := lim←−
m

lim−→
k

Vk/p
mVk.

The ring V ∧∞ is the ring of generalized p-adic modular functions (of level 1).
Let Mord

ell (p∞) be the formal scheme Spf(V ∧∞). There is an isomorphism between the R-points
Mord

ell (p∞)(R) and isomorphism classes of pairs (C, η) where

C = a generalized elliptic curve over R,

(η : Ĝm ∼= µp∞
∼=−→ Ĉ) = an isomorphism of formal groups.

(Note that the existence of η implies that C has ordinary reduction modulo p.)
The ring V ∧∞ possesses a special structure: it is a θ-algebra (see [GH]). That is, it has actions of

operators

ψk, k ∈ Z×p ,
ψp, lift of the Frobenius,

θ, satisfying ψp(x) = xp + pθ(x).

The operations ψk and ψp are ring homomorphisms. The operation θ is determined from ψp, since
V ∧∞ is torsion-free and we have

ψp(x) ≡ xp mod p.

We determine ψk and ψp on the functors of points ofMord
ell (p∞). Suppose that R is a p-complete

ring. Note that

AutZp(Ĝm) ∼= Z×p .

We may therefore regard Z×p as acting on Ĝm/R. Let [k] be the automorphism corresponding to

k ∈ Z×p . Define

(ψk)∗ :Mord
ell (p∞)(R)→Mord

ell (p∞)(R)

(C, η) 7→ (C, η ◦ [k]).

12



The map (ψk)∗ is represented by a map

ψk : V ∧∞ → V ∧∞.

Suppose that (C, η) is an R-point of Mord
ell (p∞). Since C has ordinary reduction mod p, the pth

power endomorphism of Cns factors as

(5.2) Cns

Φinsep ""D
DD

DD
DD

D
[p] // Cns

C
(p)
ns

Φsep

<<zzzzzzzz

where Φinsep is purely inseparable. The morphism Φsep is not, in general, étale, but ker Φsep is an
étale group scheme over R. On the non-singular fibers of C, Φsep has degree p, whereas on the
singular fibers it has degree 1.

These morphisms, and their kernels, fit into a 3 × 3 diagram of short exact sequences of group
schemes:

Ĉ[p] // Cns[p] //

��

C[p]et

��
Ĉ[p] //

��

Cns
Φinsep

//

[p]

��

C
(p)
ns

Φsep

��
0 // Cns Cns

where Ĉ[p] is the p-torsion subgroup of the height 1 formal group Ĉ and C[p]et is the p-torsion of
the ind-finite group scheme C(p)et.

Given a uniformization

η : Ĝm
∼=−→ Ĉ

we get an induced uniformization η(p):

(5.3) µp //

∼=
��

Ĝm
∼= η

��

[p] // Ĝm

η(p)

��
Ĉ[p] // Ĉ (Φinsep)∗

//
Ĉ(p)

Remark 5.3. The uniformization η(p) admits a different characterization: it is the unique isomor-
phism of formal groups making the following diagram commute:

Ĝm
η

��

η(p)

}}

Ĉ(p)
(Φsep)∗

// Ĉ

13



(The isogeny Φsep induces an isomorphism on formal groups.) The equivalence of this definition of

η(p) with the previous is proved by the following diagram.

Ĝm
[p] //

η

��

Ĝm

η(p)

��

Ĝm

η

��
Ĉ

(Φinsep)∗ //

[p]

;;Ĉ(p)
(Φsep)∗

∼=
// Ĉ

We get a map on R-points

(ψp)∗ :Mord
ell (p∞)(R)→Mord

ell (p∞)(R)

(C, η) 7→ (C(p), η(p))

which is represented by a ring map

ψp : V ∧∞ → V ∧∞.

It is easy to see that ψp commutes with ψk. To show that ψp induces a θ-algebra structure on
V ∧∞, it suffices to prove the following:

Lemma 5.4. We have ψp(x) ≡ xp mod p.

Proof. It suffices to show that (ψp)∗ is represented by the Frobenius when restricted to characteristic
p. That is, we must show that if R is an Fp-algebra, and (C, η) is an R point of Mord

ell (p∞), then
the Frobenius

σ : R→ R

x 7→ xp

gives rise to an isomorphism

(C(p), η(p)) ∼= (σ∗C, σ∗η).

We briefly introduce some notation: if X is a variety over R, then we have the following diagram
of morphisms.

C

Frrel
HHH

H

$$HH
HH

Frtot

##

$$

σ∗C
Fr //

��

C

��
Spec(R)

σ∗
// Spec(R)

The square is a pullback square, and Fr is the pullback of σ. The map Fr tot is the total Frobenius,
and the universal property of the pullback induces the relative Frobenius Frrel.

Because the isogeny Frrel has degree p, we have a factorization

Cns
[p] //

Frrel ##G
GG

GG
GG

GG
Cns

σ∗Cns
F̂rrel

;;wwwwwwwww

Because C has no supersingular fibers, the dual isogeny F̂rrel has separable kernel (see, for instance,
[Sil86, Thm. V.3.1]).

14



Therefore, we have

σ∗C ∼= C(p),

Φinsep
∼= Frrel,

Φsep
∼= F̂rrel.

We just have to show that under these isomorphisms, we have σ∗η ∼= η(p). We have the following
diagram of formal groups.

Ĝm
Frrel //

η

��

Ĝm
Fr //

σ∗η

��

Ĝm
η

��
Ĉ

Frrel
//
σ̂∗C Fr

// Ĉ

On Gm, the relative Frobenius is the pth power map. Therefore, by the definition of η(p), we have
σ∗η ∼= η(p) under the isomorphism σ∗C ∼= C(p). �

More generally, letting ω∞ denote the canonical line bundle over Spf(V ∧∞), then the graded algebra

(V ∧∞)2∗ := Γω⊗∗∞

inherits the structure of an even periodic graded θ-algebra. The θ-algebra structure may be described
by the isomorphism

(V ∧∞)∗ ∼= (Kp)∗ ⊗Zp V
∧
∞.

Here (Kp)∗ is the coefficients of p-adic K-theory, and the θ-algebra structure is induced from the
diagonal action of the Adams operations.

Remark 5.5. By defining ψp on V ∧∞ using its modular interpretation, I have glossed over several
technical issues related to extending the quotient by the cannonical subgroup of ordinary elliptic
curves to the sigular fibers of a generalized elliptic curve. The careful reader could instead choose a
different path to defining the operation ψp: define it just as I have on the non-singular fibers, and
then explicitly define its effect on q-expansions to extend this definition over the cusp. (The effect
of ψp on q expansions is to raise q to its pth power.)

6. K(1) local elliptic spectra

In this section we will investigate the abstract properties satisfied by a K(1)-local elliptic spec-
trum. Throughout this section, suppose that (E,α,C) be an elliptic spectrum. That is to say, E
is a K(1)-local weakly even periodic ring spectrum, C is a generalized elliptic curve over R = π0E,
and α is an isomorphism of formal groups

α : GE → Ĉ.

We shall furthermore assume that R is p-complete, and that the classifying map

f : Spf(R)→ (Mell)p

is flat. This implies:

(1) E is Landweber exact (Remark 1.4),
(2) C has ordinary reduction modulo p (Lemma 8.1).

There are three distinct subjects we shall address in this section.

(1) The p-adic K-theory of K(1)-local elliptic spectra.
(2) θ-compatible K(1)-local elliptic E∞-ring spectra.
(3) The θ-algebra structure of the p-adic K-theory of a supersingular elliptic E∞-ring spectrum.

15



The p-adic K-theory of K(1)-local elliptic spectra.
Let

(K∧p )∗E := π∗((K ∧ E)p)

denote the p-adic K-homology of E. It is geometrically determined by the following standard
proposition.

Proposition 6.1. Let Spf(W ) be the pullback of Spf(R) over Mord
ell (p∞). Then there is an isomor-

phism

(K∧p )0E ∼= W.

This isomorphism is Z×p -equivariant, where the Z×p -acts on the left hand side through stable Adams

operations, and it acts on the right hand side due to the fact that Spf(W ) is an ind-étale Z×p -torsor
over Spf(R).

Proof. By Landweber exactness, choosing complex orientations for Kp and E, we have

(K∧p )0E = ((Kp)0 ⊗MUP0
MUP0MUP ⊗MUP0

R)∧p .

Using the fact that Spec(MUP0MUP ) = Spec(MUP0)×MFG Spec(MUP0), it is not hard to deduce
from this that we have

Spf((K∧p )0E) ∼= Spf(R)×MFG Spf((Kp)0).

Consider the induced diagram

Spf((K∧p )0E) //

��

Mord
ell (p∞) //

��

Spf((K∧p )0)

��
Spf(R)

f
//Mord

ell
//MFG

The right-hand square is a pullback by the proof of Lemma 5.1, and we have established that the
composite is a pullback. We deduce that the left-hand side is a pullback, which completes the
proof. �

θ-compatible K(1)-local elliptic E∞-ring spectra
If E is an E∞-ring spectrum, then the completed Kp-homology

(K∧p )∗E := π∗((K ∧ E)p)

naturally carries the structure of a θ-algebra: for k ∈ Z×p , the operations ψk are the stable Adams
operations in Kp-theory, and the operation θ arises from the action of the K(1)-local Dyer-Lashof
algebra [GH].

If the classifying map

f : Spf(R)→Mord
ell

is étale, then the pullback W of Proposition 6.1 carries naturally the structure of a θ-algebra which
we now explain. Since Spf(R) is étale over Mord

ell , the pullback Spf(W ) is étale over Mord
ell (p∞) =

Spf(V ∧∞). It is in particular formally étale, and therefore there exists a unique lift

Spec(W/p)

��

σ∗ // Spec(W/p) // Spf(W )

��
Spf(W )

(ψp)∗

33

//Mord
ell (p∞)

(ψp)∗
//Mord

ell (p∞)

where

(ψp)∗ :Mord
ell (p∞)→Mord

ell (p∞)
16



is the lift of the Frobenius coming from θ-algebra structure of V ∧∞ and σ : W/p → W/p is the
Frobenius. Note that because Spf(R) is étale over Mord

ell , it is in particular flat, and so W must be
torsion-free. Therefore, the induced homomorphism

ψp : W →W

determines a unique θ-algebra structure on W .
If E is E∞, and the classifying map f is étale, it is not necessarily the case that the isomorphism

(K∧p )0E ∼= W

of Proposition 6.1 preserves the operation ψp. This is rather a reflection of the choice of E∞-structure
on E. We therefore make the following definition

Definition 6.2. Suppose that E is a K(1)-local E∞ elliptic spectrum associated to an elliptic curve
C/R, and suppose that the classifying map

Spf(R)→ (Mell)p

is étale. If the isomorphism (K∧p )0E ∼= W is a map of θ-algebras, then we shall say that (E,C) is a
θ-compatible.

Remark 6.3. As a side-effect of our construction of OtopK(1) it will be the case that the E∞-structure

on the spectrum of sections E = OtopK(1)(Spf(R)) is θ-compatible.

Remark 6.4. In [AHS04], the authors define the notion of an H∞-elliptic ring spectrum, which is
a stronger notion than that of an elliptic H∞-ring spectrum in that they require a compatibility
between the H∞-structure and the elliptic structure. It is easily seen that every K(1)-local H∞-
elliptic spectrum whose classifying map is étale over the p-completion of the moduli stack of elliptic
curves is θ-compatible.

The θ-algebra structure of the p-adic K-theory of supersingular elliptic E∞-ring spectra.
In [AHS04, Sec. 3], previous work of Ando and Strickland is condensed into an elegant perspective

on Dyer-Lashof operations on an even periodic complex orientable H∞-ring spectrum T . Namely,
suppose that

(1) T is homogeneous — it is a homotopy commutative algebra spectrum over an even periodic
E∞-ring spectrum (such as MU).

(2) π0T is a complete local ring with residue field of characteristic p.
(3) The reduction ḠT of GT modulo the maximal ideal has finite height.
(4) GT is Noetherian — it is obtained by pullback from a formal group over Spf(S) where S is

Noetherian.

Then, for every morphism
i : Spf(R)→ Spf(π0T )

and every finite subgroup H < GT (i.e. H is an effective relative Cartier divisor of GT represented
by a subgroup-scheme) there is a new morphism

ψH : Spf(R)→ Spf(π0T )

and an isogeny of formal groups
fH : i∗GT → ψ∗HGT

with kernel H. This structure is called descent data for subgroups.

Remark 6.5. The authors of [AHS04] actually describe the structure of descent data for level struc-
tures. However, their treatment carries over to subgroups (see [AHS04, Rmk. 3.12]).

Example 6.6. Suppose that T is a K(1)-local E∞-ring spectrum. Then the formal group GT must
have height 1 (see the proof of Lemma 8.1), and it follows that GT has a unique subgroup of order
p, given by the p-torsion subgroup GT [p]. Taking i to be the identity map, we get an operation

ψGT [p] : π0T → π0T.
17



This operation coincides with ψp. We shall let fp denote the associated degree p isogeny

fp = fGT [p] : GT → (ψp)∗GT .

Example 6.7. Suppose that T = E(k,G) is the Morava E-theory associated to a height n formal

group G/k, with universal deformation G̃/B, and the E∞-structure of Goerss and Hopkins [GH04].
Then in [AHS04] it is proven that the associated decent data for subgroups is given as follows. Let

i : Spf(R)→ Spf(B)

be a morphism classifying a deformation i∗G̃/R of i∗G/k′. Suppose that H̃ < i∗G̃ is a finite

subgroup, and let H denote the restriction of H̃ to i∗G. Because G is a formal group of finite height
over a field of characteristic p, the only subgroups of G are of the form

Hr = ker((Frrel)r : i∗G→ i∗G)

where Frrel is the relative Frobenius. Therefore, we have H = Hr for some r. The quotient (i∗G)/Hr

is the pullback of G under the composite i(p
r):

i(p
r) : Spf(k′)

(σr)∗−−−→ Spf(k′)
i−→ Spf(k)

where σ is the Frobenius. The quotient i∗G̃/H̃ is then a deformation of (i∗G)/H ∼= (i(p
r))∗G, hence

is classified by a morphism

ψH̃ : Spf(R)→ Spf(B).

This determines the operation ψH̃ . The morphism fH̃ is given by

fH̃ : i∗H̃ → (i∗G̃)/H̃ ∼= (ψH̃)∗G̃.

Suppose now that k is a finite field, and that C/k is a supersingular elliptic curve. Then, by

Serre-Tate theory, there is a unique elliptic curve C̃ over the universal deformation ring

B := B(k, Ĉ) ∼= W(k)[[u1]]

such that the formal group C̃∧ is the universal deformation of the formal group Ĉ. Furthermore, we

have seen that the Goerss-Hopkins-Miller theorem associates to Ĉ/k an elliptic E∞-ring spectrum

E := E(k, Ĉ) = OtopK(2)(Spf(B))

with associated elliptic curve C̃.
The curve C̃ is to be regarded as an elliptic curve over Spf(B), but by Remark 1.6, there is a

unique elliptic curve C̃alg over Spec(B) which restricts to C̃/Spf(B). Let Bord be the ring

Bord = B[u−1
1 ]∧p .

We regard Bord as being complete with respect to the ideal (p). Let C̃ord be the restriction of C̃alg

to Spf(Bord). The following lemma follows from Lemma 8.1.

Lemma 6.8. The spectrum EK(1) is an elliptic spectrum for the elliptic curve C̃ord/Bord.

The Goerss-Hopkins E∞-structure on E induces an E∞ structure on the K(1)-localized spectrum
EK(1), and there is an induced operation

ψp : Bord → Bord

on Bord = π0EK(1) which lifts the Frobenius in characteristic p. We have the following proposition.

Proposition 6.9. There is an isomorphism

(ψp)∗C̃ord ∼= (C̃ord)(p)

18



(where (C̃ord)(p) is the quotient of C̃ord of Diagram (5.2) making the following diagram of isogenies
of formal groups commute.

(6.1) (C̃ord)∧
fp //

(Φinsep)∗ &&MMMMMMMMMMM
(ψp)∗(C̃ord)∧

∼=
��

((C̃ord)(p))∧

Proof. (In some sense, this proposition is one of the most important ingrediants to the construction
of tmf , and I would have gotten it wrong except for the help of Niko Naumann and Charles Rezk.)
Let

i : Subp(C̃)→ Spf(B)

be the formal scheme of “subgroups of C̃” of order p (see, for instance, [Str97]). The formal scheme

Subp(C̃) is of the form

Spf(Γ0(p)(C̃)).

Observe that because the p-divisible group of C̃ is entirely formal, we have

Γ0(p)(C̃) = Γ0(p)(C̃∧).

Let H̃can be the universal degree p subgroup of i∗C̃. There is a corresponding operation

ψH̃can : B = π0E → Γ0(p)(C̃)

and an isomorphism ψ∗
H̃can

C̃∧ ∼= i∗C̃∧/H̃can. This operation arises topologically from the total

power operation

ψH̃can : B = π0E
PE−−→ π0E

BΣp+ � Γ0(p)(C̃∧)

where the surjection is the quotient by the image of the transfer morphisms [AHS04, Rmk. 3.12]).

Forgetting the topology on the ring B, we can regard C̃∧ simply as a formal group over the ring
B, and we get an induced formal group (C̃ord)∧/Bord and degree p subgroup

H̃ord
can < i∗(C̃ord)∧

over

Γ0(p)(C̃)ord := Γ0(p)(C̃)[u−1
1 ] ∼= Γ0(p)(C̃ord).

The last isomorphism follows from the fact that forgetting about formal schemes, there is an iso-
morphism

Subp(C̃
alg)×Spec(B) Spec(Bord) ∼= Subp(C̃

alg ×Spec(B) Spec(Bord)).

Let

c : Γ0(p)(C̃ord)→ Γ0(p)((C̃ord)∧) ∼= Bord

be the map classifying the subgroup H̃ord
can of order p of Γ0(p)((C̃ord)∧), regarded as a subgroup

of C̃ord. The isomorphism Γ0(p)((C̃ord)∧) ∼= Bord reflects the fact that there is one and only one
degree p-subgroup of a deformation of a height 1 formal group. Thus

H̃ord
can = i∗(C̃ord)∧[p].

By Example 6.6, the corresponding operation

ψH̃ordcan
: Bord → Γ0(p)((C̃ord)∧) ∼= Bord

is nothing more than the operation ψp on the K(1)-local E∞ ring spectrum EK(1). Since localization
E → EK(1) is a map of E∞-ring spectra, E and EK(1) have compatible descent data for subgroups,
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and we deduce that there is a commutative diagram:

(6.2) B //

ψH̃can

��

Bord

ψp

��

π0E //

PE
��

π0EK(1)

(PE)K(1)

��

PEK(1)

((QQQQQQQQQQQQQ

π0E
BΣp+ //

����

π0(EBΣp+)K(1)
//

����

π0(EK(1))
BΣp+

����
Γ0(p)(C̃) // Γ0(p)(C̃ord) c

// Γ0(p)((C̃ord)∧) Bord

The subgroup H̃can can be regarded as a finite subgroup-scheme of the elliptic curve i∗C̃. Using
Serre-Tate theory, we may deduce that there is an isomorphism

(i∗C̃)/H̃can
∼= (ψH̃can)∗C̃.

Using Diagram 6.2, we deduce that there is an isomorphism

(C̃ord)(p) = C̃ord/H̃ord
can
∼= (ψp)∗C̃ord.

Diagram (6.1) commutes because both fp and (Φinsep)∗ are lifts of the relative Frobenius with the
same kernel. �

Consider the pullback diagram

(6.3) Spf((K∧p )0EK(1))
g //

q

��

Spf(V ∧∞)

q′

��
Spf(π0EK(1))

g′
//Mord

ell

of Proposition 6.1. The following theorem will be essential in our construction of the map αchrom .

Theorem 6.10. The map
g : V ∧∞ → (K∧p )0EK(1)

of Diagram (6.3) is a map of θ-algebras.

Proof. We just need to check that g commutes with ψp (we already know from Proposition 6.1 that
g commutes with the action of Z×p ). The map g classifies a level structure

η : Ĝm
∼=−→ q∗(C̃ord)∧.

We need to verify that there is an isomorphism

((ψp)∗q∗C̃ord, (ψp)∗η) ∼= ((q∗C̃ord)(p), η(p)).

The descent data for level structures arising from E∞-structures is natural with respect to maps of
E∞-ring spectra (see [AHS04]). It follows that the maps of E∞-ring spectra:

Kp
r−→ (Kp ∧ EK(1))p

q←− EK(1).

induce a diagram

r∗Ĝm
r∗fp //

η

��

r∗(ψp)∗Ĝm

(ψp)∗η

��
(q∗C̃ord)∧

q∗fp

// q∗(ψp)∗(C̃ord)∧
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The E∞-structure on p-adic K-theory associates to the formal subgroup µp < Ĝm over Zp the pth
power isogeny

fp = [p] : Ĝm → Ĝm
(this is a special case of Example 6.7). Combined with Diagram (6.1), we have a diagram

Ĝm
[p] //

η

��

Ĝm

(ψp)∗η

��
q∗(C̃ord)∧

(Φinsep)∗

// q∗((C̃ord)(p))∧

We deduce from Diagram (5.3) that with respect to the isomorphism (ψp)∗C̃ord ∼= (C̃ord)(p) we have
(ψp)∗η ∼= η(p). �

7. Construction of OtopK(1)

For a θ-algebra A/k and a θ-A-module M , let

H∗Algθ
(A/k,M)

denote the θ-algebra Andre-Quillen cohomology of A with coefficients in M . In [GH] (see also
[GH04]), an obstruction theory for K(1)-local E∞ ring spectra is developed. We summarize their
main results:

Theorem 7.1 (Goerss-Hopkins).

(1) Given a graded θ-algebra A∗, the obstructions to the existence of a K(1)-local E∞-ring
spectrum E, for which there is an isomorphism

(K∧p )∗E ∼= A∗

of θ-algebras, lie in

Hs
Algθ

(A∗/(Kp)∗, A∗[−s+ 2]), s ≥ 3.

The obstructions to uniqueness lie in

Hs
Algθ

(A∗/(Kp)∗, A∗[−s+ 1]), s ≥ 2.

(2) Given K(1)-local E∞-ring spectra E1, E2 such that K∧∗ Ei is p-complete, and a map of
graded θ-algebras

f∗ : (K∧p )∗E1 → (K∧p )∗E2,

the obstructions to the existence of a map f : E1 → E2 of E∞-ring spectra which induces
f∗ on p-adic K-homology lie in

Hs
Algθ

((K∧p )∗E1/(Kp)∗, (K
∧
p )∗E2[−s+ 1]), s ≥ 2.

(Here, the θ-(K∧p )∗E1-module structure on (K∧p )∗E2 arises from the map f∗.) The obstruc-
tions to uniqueness lie in

Hs
Algθ

((K∧p )∗E1/(Kp)∗, (K
∧
p )∗E2[−s]), s ≥ 1.

(3) Given such a map f above, there is a spectral sequence which computes the higher homotopy
groups of the space E∞(E1, E2) of E∞ maps:

Hs
Algθ

((K∧p )∗E1/(Kp)∗, (K
∧
p )∗E2[t])⇒ π−t−s(E∞(E1, E2), f).

Remark 7.2. The notation A∗[u] corresponds to the notation Ω−uA∗ in [GH04], [GH].
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Remark 7.3. To simplify notation in the remainder of this paper, we will write

H∗Algθ
(A∗,M∗) := H∗Algθ

(A∗/(Kp)∗,M∗).

(That is, we will always be taking our Andre-Quillen cohomology groups in the category of graded
θ-(Kp)∗-algebras unless we specify a different base explicitly.)

Remark 7.4. The homotopy groups of a K(1)-local E∞-ring spectrum E are recovered from its
p-adic K-homology by an Adams-Novikov spectral sequence

(7.1) Hs
c (Z×p , (K∧p )tE)⇒ πt−sE.

Let A∗ be a graded even periodic θ-algebra, and M∗ be a graded θ-A∗-module. In [GH, Sec. 2.4.3],
it is explained how the cohomology of the cotangent complex L(A0/Zp) inherits a canonical θ-A0-
module structure from that of A0, and that there is a spectral sequence

(7.2) ExtsModθA0

(Ht(L(A0/Zp)),M∗)⇒ Hs+t
Algθ

(A∗,M∗).

The following lemma simplifies the computation of these Andre-Quillen cohomology groups.

Lemma 7.5. Suppose that A∗/(Kp)∗ is a torsion-free graded θ-algebra, and that M∗ is a torsion-free

graded θ-A∗-module. Let Ak∗ denote the fixed points A
1+pkZp
∗ (A0

∗ = A
Z×p
∗ ). Note that we have

A∗ = lim←−
m

lim−→
k

Ak∗/p
mAk∗.

Let Ā∗ (respectively Ā0
∗ and M̄∗) denote A∗/pA∗ (respectively A0

∗/pA
0
∗ and M∗/pM∗). Assume that:

(1) A∗ and M∗ are even periodic,
(2) Ā0

0 is formally smooth over Fp,
(3) Hs

c (Z×p , M̄0) = 0 for s > 0,

(4) Ā0 is ind-étale over Ā0
0.

Then we have:
Hs

Algθ
(A∗,M∗[t]) = 0

if s > 1 or t is odd.

Proof. By [GH04, Prop. 6.8], there is a spectral sequence

Hs
AlgθFp

(Ā∗, p
mM∗/p

m+1M∗[t])⇒ Hs
Algθ

(A∗,M∗[t]).

Thus it suffices to prove the mod p result. Note that because M is torsion-free, there is an isomor-
phism

M̄∗ ∼= pmM∗/p
m+1M∗.

Since Ā0
0 is formally smooth over Fp, and since Ā0 is ind-étale over Ā0

0, we deduce that Ā0 is formally
smooth over Fp. Therefore, the spectral sequence

ExtsModθ
Ā0

(Ht(L(Ā0/Fp)), M̄∗[t])⇒ Hs+t
AlgθFp

(Ā∗, M̄∗)

collapses to give an isomorphism

ExtsModθ
Ā0

(ΩĀ0/Fp , M̄−t)
∼= Hs

AlgθFp
(Ā∗, M̄∗[t]).

Since Ā0 is ind-étale over Ā0
0, there is an isomorphism

ΩĀ0/Fp
∼= Ā0 ⊗Ā0

0
ΩĀ0

0/Fp

of θ-Ā0-modules. Because Ā0 is flat over Ā0
0, this induces a change of rings isomorphism

ExtsModθ
Ā0

(ΩĀ0/Fp , M̄−t)
∼= ExtsModθ

Ā0
0

(ΩĀ0
0/Fp , M̄−t).

There is a composite functors spectral sequence

ExtsĀ0
0[θ](ΩĀ0

0/Fp , H
t
c(Z×p , M̄u))⇒ Exts+t

Modθ
Ā0

0

(ΩĀ0
0/Fp , M̄u)
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which, by our hypotheses, collapses to an isomorphism

(7.3) ExtsĀ0
0[θ](ΩĀ0

0/Fp , M̄
Z×p
u ) ∼= ExtsModθ

Ā0
0

(ΩĀ0
0/Fp , M̄u).

Because Ā0
0 is formally smooth over Fp, the module of Kähler differentials ΩĀ0

0/Fp is projective as

an Ā0
0-module. The Ext groups in the left hand side of (7.3) therefore vanish for s > 1, and, since

M∗ is concentrated in even degrees, for u odd. �

There is a relative form of Theorem 7.1. Fix a K(1)-local E∞-ring spectrum E. The entire
statement of Theorem 7.1 is valid if you work in the category of K(1)-local commutative E-algebras
instead of K(1)-local E∞-ring spectra. The obstructions live in the Andre-Quillen cohomology
groups for graded θ-W∗-algebras:

Hs
AlgθW∗

(A∗,M∗)

where W∗ = (K∧p )∗E.

Lemma 7.6. Suppose that W∗ and A∗ are even periodic, and that A0 is étale over W0. Then for
all s,

Hs
AlgθW∗

(A∗,M∗) = 0.

Proof. Consider the spectral sequence

ExtsModθA∗
(Ht(L(A∗/W∗)),M∗)⇒ Hs+t

AlgθW∗
(A∗,M∗).

Because A∗ is étale over W∗, the cotangent complex is contractible, and the spectral sequence
collapses to zero. �

We outline our construction of OtopK(1):

Step 1: We will construct a K(1)-local E∞-ring spectrum tmf (p)ord. This will be our candi-

date for the spectrum of sections of OtopK(1) over the étale cover

Mord
ell (p)

↓ γ

Mord
ell

This cover is Galois, with Galois group (Z/p)×. We will show that there is a corresponding
action of (Z/p)× on the spectrum tmf (p)ord by E∞-ring maps. We will define tmf K(1) to
be homotopy fixed points

tmf K(1) := (tmf (p)ord)h(Z/p)× .

Step 2: We will construct the sheaf OtopK(1) in the category of commutative tmf K(1)-algebras.

We now give the details of our constructions.

Step 1: construction of tmf K(1).

Case 1: assume that p is odd.
Let X be the formal pullback

(7.4) X //

��

Mord
ell (p∞)

��
Mord

ell (p) //Mord
ell

For a p-complete ring R, the R-points of X are given by

X = {(C, η, η′)}
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where the data is given by:

C a generalized elliptic curve over R,

η : Ĝm
∼=−→ Ĉ an isomorphism of formal groups,

η′ : µp
∼=−→ Ĉ[p] an isomorphism of finite group schemes.

SinceMord
ell (p) = Spf(V1) is formally affine, we deduce that X = Spf(W ) for some ring W . Since

Mord
ell (p) is étale overMord

ell , the ring W possesses a canonical θ-algebra structure extending that of
V ∧∞. For k ∈ Z×p , the operations ψk are induced by the natural transformation on R-points:

(ψk)∗X (R)→ X (R)

(C, η, η′) 7→ (C, η ◦ [k], η′)

The operation ψp is induced by the natural transformation

(ψp)∗X (R)→ X (R)

(C, η, η′) 7→ (C(p), η(p), (η′)(p))

Here, given η′, the level structure (η′)(p) is the one making the following diagram commute (see
Remark 5.3).

µp

η′

��

(η′)(p)

{{

Ĉ(p)[p]
(Φsep)∗

// Ĉ[p]

Taking ω∞,1 to be the canonical line bundle over X , we can construct an evenly graded θ-algebra
W∗ as

W2∗ := Γω⊗∗∞,1.

Theorem 7.7. There is a (Z/p)×-equivariant, even periodic, K(1)-local E∞-ring spectrum tmf (p)ord

such that

(1) π0tmf (p)ord ∼= V1,
(2) Letting (C1, ηηη1) be the universal tuple over Mord

ell (p), there is an isomorphism of formal

groups Gtmf (p)ord
∼= Ĉ1.

(3) There is an isomorphism of θ-algebras

(K∧p )∗tmf (p)ord ∼= W∗.

Proof. Observe the following.

(1) W∗ is concentrated in even degrees.

(2) W is ind-etale over WZ×p = V1, and V1 is smooth over Zp. This is because in the following
pullback

X //

��

Mord
ell (p∞)

��
Mord

ell (p) //Mord
ell

we have Mord
ell (p∞) ind-etale over Mord

ell , thus X = Spf(W ) is ind-etale over Mord
ell (p) =

Spf(V1), and Mord
ell (p) is smooth over Spf(Zp).

(3) Hs
c (Z×p ,W ) = 0 for s > 0. This is because W is is an ind-étale Z×p -torsor over V1.

We deduce, from Lemma 7.5, that there exists a K(1)-local E∞-ring spectrum tmf (p)ord such that
we have an isomorphism

(K∧p )∗tmf (p)ord ∼= W∗
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of graded θ-algebras. As a consequence of (3) above, we deduce that the spectral sequence (7.1)
collapses to give an isomorphism

π∗tmf (p)ord ∼= (V1)∗

where, if ω1 is the canonical line bundle over Mord
ell (p), then

(V1)2∗ = Γω⊗∗1 .

Let (C1, ηηη1) be the universal tuple over Mord
ell (p). The existence of the isomorphism

ηηη1 : µp
∼=−→ Ĉ1[p]

implies that ω1 admits a trivialization. In particular, tmf (p)ord is even periodic.

We now show that the formal group of Gtmf (p)ord is isomorphic to the formal group Ĉ1. Choose

complex orientations ΦK , Φtmf (p)ord of K and tmf (p)ord. Consider the following diagram.

MUP0

ηR

��

Φ
tmf (p)ord // π0tmf (p)ord

ηR

��

V1� _

��
MUP0MUP

ΦK∧Φ
tmf (p)ord

// (K∧p )0tmf (p)ord W

The map ΦK ∧ Φtmf (p)ord classifies an isomorphism of formal groups

α : η∗LĜm
∼=−→ η∗RGtmf (p)ord .

over W . At the same time, the universal tuple (C, ηηη,ηηη′) over W has as part of its data an isomor-
phism of formal groups

ηηη : Ĝm
∼=−→ Ĉ.

The generalized elliptic curve C over W is a pullback of the elliptic curve C1 over V1 — thus it
is invariant under the action of Z×p . The same holds for the formal group η∗RGtmf (p)ord — it is

tautologically the pullback of Gtmf (p)ord . Under the action of an element k ∈ Z×p , the isomorphisms
α and ηηη transform as

[k]∗α = α ◦ [k],

[k]∗ηηη = ηηη ◦ [k].

The isomorphism

ηηη ◦ α−1 : η∗RGtmf (p)ord
∼=−→ Ĉ

is therefore invariant under the action of Z×p . Thus it descends to an isomorphism

α1 : Gtmf (p)ord
∼=−→ Ĉ1.

The Galois group (Z/p)× of Mord
ell (p) over Mord

ell acts on V1. The last thing we need to show is
that this action lifts to a point-set level action of (Z/p)× by E∞-ring maps. Because W∗ satisfies
the hypotheses of Lemma 7.5, we may deduce from Theorem 7.1 that the Kp-Hurewitz map

[tmf (p)ord, tmf (p)ord]E∞ → HomAlgθ (W∗,W∗)

is an isomorphism. The action of (Z/p)× on V1 lifts to W in an obvious way: on the R-points of
Spf(W ) = X , an element [k] ∈ (Z/p)× acts by

[k]∗ : X (R)→ X (R)

(C, η, η′) 7→ (C, η, η′ ◦ [k])
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This action is easily seen to commute with the action of ψl for l ∈ Z×p , and ψp. Thus (Z/p)× acts
on W through maps of θ-algebras. We deduce that there is a map of groups

(Z/p)× → [tmf (p)ord, tmf (p)ord]×E∞ .

The obstructions to lifting this homotopy action to a point-set action may be identified using the
obstruction theory of Cooke [Coo78] (adapted to the topological category of E∞-ring spectra).
Namely, the obstructions lie in the group cohomology

Hs((Z/p)×, πs−2(E∞(tmf (p)ord, tmf (p)ord), Id)), s ≥ 3.

Since the space E∞(tmf (p)ord, tmf (p)ord) is p-complete, and the order of the group (Z/p)× is prime
to p, these obstructions must vanish. �

Define

tmf K(1) := (tmf (p)ord)h(Z/p)× .

The following lemma is a useful corollary of a theorem of N. Kuhn.

Lemma 7.8. Suppose that G is a finite group which acts on a K(n)-local E∞-ring spectrum E
through E∞-ring maps. Then the Tate spectrum EtG is K(n)-acyclic, and the norm map

N : EhG → EhG

is a K(n)-local equivalence.

Proof. Kuhn proves that the localized Tate spectrum ((ST (n))
tG)T (n) is acyclic [Kuh04, Thm. 1.5],

where T (n) is the telescope of a vn-periodic map on a type n complex. The Tate spectrum (EtG)K(n)

is an algebra spectrum over ((ST (n))
tG)T (n). In particular, it is a module spectrum over an acyclic

ring spectrum, and hence must be acyclic. �

Lemma 7.9. There is an isomorphism of θ-algebras (K∧p )∗tmf K(1)
∼= (V ∧∞)∗.

Proof. By Lemma 7.8, the natural map

(Kp ∧ (tmf (p)ord)h(Z/p)×)K(1) → (Kp ∧ tmf (p)ord)
h(Z/p)×
K(1)

is an equivalence (the homotopy fixed points are commuted past the smash product by changing
them to homotopy orbits). The homotopy fixed point spectral sequence computing the homotopy
groups of the latter collapses to give an isomorphism:

(V ∧∞)∗ ∼= (W∗)
(Z/p)× ∼= (K∧p )∗tmf K(1).

(The first isomorphism above comes from the fact that X is an étale (Z/p)×-torsor overMord
ell (p∞).)

�

Case 2: p = 2.

If one were to try to duplicate the odd-primary argument, one would do the following: the first
stack in the 2-primary Igusa tower which is formally affine is

Mord
ell (4) = Spf(V2).

The cover Mord
ell (4)

γ−→Mord
ell is Galois with Galois group (Z/4)×. One must begin by constructing

the K(1)-local E∞-ring spectrum tmf (4)ord. One would like to use the obstruction theory of Cooke
to make this spectrum (Z/4)×-equivariant, but the order of the group is 2, so we cannot conclude
that the obstructions vanish.

We instead replace K with KO. Define a graded reduced θ-algebra to be a graded θ-algebra over
KO∗ where the action of Z×2 is replaced with an action of Z×2 /{±1}.
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Suppose that V is a θ-algebra, and that the subgroup {±1} ⊂ Z×2 acts trivially on V . Then V
may be regarded as a reduced θ-algebra. One may form a corresponding graded reduced θ-algebra
by taking

(7.5) W∗ = KO∗ ⊗ V.

Definition 7.10. We shall say that a graded reduced θ-algebra W∗ is Bott periodic if it takes the
form (7.5). We shall say that a K(1)-local E∞ ring spectrum is Bott periodic if

(1) (K∧2 )∗E is torsion-free and concentrated in even degrees.
(2) The map (KO∧2 )0E → (K∧2 )0E is an isomorphism.

The relevance of this definition is given by the following lemma.

Lemma 7.11. Suppose that E is a Bott periodic K(1)-local E∞-ring spectrum. Then we have

(KO∧2 )∗E ∼= KO∗ ⊗ (K∧2 )0E

In particular, the graded reduced θ-algebra (KO∧2 )∗E is Bott periodic.

Proof. Use the homotopy fixed point spectral sequence

Hs(Z/2, (K∧2 )tE)⇒ (KO∧2 )t−sE.

�

Remark 7.12. Both KO2 and tmf K(1) (once we construct it) are Bott periodic.

Unfortunately the homology theory KO∧2 does not seem to satisfy all of the hypotheses required
for the Goerss-Hopkins obstruction theory to apply. Nevertheless, when restricted to Bott periodic
spectra with vanishing positive cohomology as a Z×2 /{±1}-module, it can be made to work. This
is discussed in Appendix A. There it is shown that given a Bott periodic graded reduced θ-algebra
W∗ satisfying

Hs
c (Z×2 /{±1},W0) = 0 for s > 0,

the obstructions to the existence of a K(1)-local E∞-ring spectrum E with (KO∧2 )∗E ∼= W∗ lie in
the cohomology groups

Hs
Algredθ

(W∗,W∗[−s+ 2]), s ≥ 3.

Given Bott periodic K(1)-local E∞-ring spectra E1 and E2, the obstructions to realizing a map of
graded reduced θ-algebras

(KO∧2 )∗E1 → (KO∧2 )∗E2

lie in
Hs

Algredθ
((KO∧2 )∗E1, (KO

∧
2 )∗E2[−s+ 1]), s ≥ 2.

We have the following analog of Lemma 7.5.

Lemma 7.13. Suppose that A∗/(KO2)∗ is a graded 2-complete reduced θ-algebra, and that M∗ is a

graded 2-complete reduced θ-A∗-module. Let Ak∗ denote the fixed points A1+2kZ2
∗ (A0

∗ = A
Z×2
∗ ). Note

that we have
A∗ = lim←−

m

lim−→
k

Ak∗/p
mAk∗.

Let Ā∗ (respectively Ā0
∗ and M̄∗) denote the mod 2 reduction. Assume that:

(1) A∗ and M∗ are Bott periodic,
(2) Ā0

0 is formally smooth over F2,
(3) Hs

c (Z×2 /{±1}, M̄0) = 0 for s > 0,
(4) Ā0 is ind-étale over Ā0

0.

Then we have:
Hs

Algredθ
(A∗,M∗[t]) = 0

if either s > 1 or −t ≡ 3, 5, 6, 7 mod 8.
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The following lemma is of crucial importance.

Lemma 7.14. Let V ∧∞ be the representing ring for Mord
ell (2∞) (a.k.a. the θ-algebra of generalized

2-adic modular functions).

(1) The element [−1] ∈ Z×2 acts trivially on V ∧∞.
(2) The subring V2 ⊂ V∞ is isomorphic to the fixed points under the induced action of the group

Z×2 /{±1}.
(3) We have Hs

c (Z×2 /{±1}, V ∧∞/2V ∧∞) = 0 for s > 0.

Proof. The stack Mord
ell (2∞) represents pairs (η, C) where

η : Ĝm → Ĉ

is an isomorphism. However, we have ([−1]∗η, C) ∼= (η, C):

Ĝm
[−1] //

[−1]∗η

  

η

&&LLLLLLLLLLLLLLLLL Ĝm
η // Ĉ

[−1]

��
Ĉ

This proves (1). Under the isomorphism given by the composite

1 + 4Z2 ↪→ Z×2 → Z×2 /{±1}
the action of the subgroup 1+4Z2 agrees with the induced action of Z×2 /{±1} on V ∧∞. But V ∧∞/2V

∧
∞

is ind-Galois over V2/2V2 (the representing ring forMord
ell (4)⊗F2) with Galois group 1 + 4Z2. This

proves (2) and (3). �

The algebra V ∧∞/2V
∧
∞ is ind-etale over V2/2V2, andMord

ell (4)⊗F2 is smooth. Lemma 7.13 implies
that the groups

Hs
Algredθ

(KO∗ ⊗ V ∧∞,KO∗ ⊗ V ∧∞[u])

vanish for s > 1 and −u ≡ 3, 5, 6, 7 mod 8. This is enough to deduce that there exists a K(1)-local
E∞-ring spectrum tmf K(1) such that there is an isomorphism of graded reduced θ-algebras

(KO∧2 )∗tmf K(1)
∼= KO∗ ⊗ V ∧∞.

Remark 7.15. There is another construction of tmf K(1) at p = 2 which is described in [Lau04] (see

also [Hop]). The spectrum is explicitly constructed by attaching two K(1)-local E∞-cells to the
K(1)-local sphere. Unfortunately, it seems that this approach does not generalize to primes p ≥ 5,
though it does work at p = 3 as well [Hop].

Step 2: construction of the presheaf OtopK(1). We shall now construct the sections of a presheaf

OtopK(1) on (Mord
ell )et. By Remark 2.5, it suffices to produce the values of OtopK(1) on étale formal affine

opens of Mord
ell .

Let Spf(R)
f−→Mord

ell be an étale formal affine open. Consider the pullback:

Spf(W )
f ′ //

��

Mord
ell (p∞)

��
Spf(R)

f
//Mord

ell

Since f is étale, W is an étale V ∧∞-algebra, and W carries a canonical θ-algebra structure (Section 6).
We have an associated even periodic graded θ-(V ∧∞)∗-algebra W∗.
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The relative form of Theorem 7.1 indicates that the obstructions to the existence and uniqueness
of a K(1)-local commutative tmf K(1)-algebra E such that there is an isomorphism

(K∧p )∗E ∼= W∗

of θ-(V ∧∞)∗-algebras lie in the Andre-Quillen cohomology groups

Hs
Algθ

(V∧∞)∗
(W∗,W∗[u]).

These cohomology groups vanish by Lemma 7.6.
Given a map

g : Spf(R2)→ Spf(R1)

in (Mord
ell )et, we get an induced map

g∗ : (W1)∗ → (W2)∗

of the corresponding θ-(V ∧∞)∗-algebras. Let E1, E2 be the corresponding K(1)-local commutative
tmf K(1)-algebras. The obstructions for existence and uniqueness of a map of tmf K(1)-algebras

g̃∗ : E1 → E2

realizing the map g∗ on Kp-homology lie in the groups

Hs
Algθ

(V∧∞)∗
((W1)∗, (W2)∗[u]).

Furthermore, given the existence of g̃∗, there is a spectral sequence

Hs
Algθ

(V∧∞)∗
((W1)∗, (W2)∗[u])⇒ π−u−s(AlgtmfK(1)

(E1, E2), g̃∗).

Again, these cohomology groups all vanish by Lemma 7.6. We deduce that:

(1) The Kp-Hurewitz map

[E1, E2]AlgtmfK(1)
→ HomAlgθ

(V∧∞)∗
((W1)∗, (W2)∗)

is an isomorphism.
(2) The mapping spaces AlgtmfK(1)

(E1, E2) have contractible components.

We have constructed a functor

ŌtopK(1) : ((Mord
ell )et,aff )op → Ho(Commutative tmf K(1)-algebras).

Since the mapping spaces are contractible, this functor lifts to give a presheaf (see [DKS89])

OtopK(1) : ((Mord
ell )et,aff )op → Commutative tmf K(1)-algebras.

The same argument used to prove part (2) of Theorem 7.7 proves the following.

Proposition 7.16. Suppose that Spf(R)→Mord
ell is an étale open classifying a generalized elliptic

curve C/R. Then the associated spectrum of sections OtopK(1) is an elliptic spectrum for the curve

C/R.

8. Construction of Otopp
To construct Otopp it suffices to construct the map

αchrom : (iord)∗OtopK(1) → ((iss)∗OtopK(2))K(1).

Our strategy will be to do this in two steps:

Step 1: We will construct

αchrom : tmf K(1) → (tmf K(2))K(1)

where
tmf K(2) := OtopK(2)(M

ss
ell).
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Step 2: We will use the K(1)-local obstruction theory in the category of tmf K(1)-algebra
spectra to show that this map can be extended to a map of presheaves of spectra:

(ιord)∗OtopK(1) → ((ιss)∗OtopK(2))K(1).

We will need the following lemma.

Lemma 8.1. Suppose that C is a generalized elliptic curve over a ring R, and that E is an elliptic
spectrum associated with C. Then

(1) E is E(2)-local.
(2) Suppose that R is p-complete, and that the classifying map

Spf(R)→ (Mell)p

for C is flat. Then there is an equivalence

EK(1) ' E[v−1
1 ]p.

Proof. Greenlees and May [GM95] proved that there is an equivalence

EE(n) ' E[I−1
n+1].

They also showed there is a spectral sequence

(8.1) Hs(Spec(R)−Xn, ω
⊗t)⇒ π2t−sE[I−1

n+1]

where Xn = Spec(R/In+1) is the locus of Spec(R/p) where the formal group of E has height greater

than n. (1) therefore follows from the fact that Ĉ never has height greater than 2. For (2), since R
is assumed to be p-complete, there is an isomorphism

π0(E[v−1
1 ]p) ∼= R[v−1

1 ]p.

Over R[v−1
1 ]/pR[v−1

1 ], the generalized elliptic curve C is ordinary, hence X1 is empty and the spectral
sequence (8.1) collapses to show that E[v−1

1 ]p is E(1)-local. It is also p-complete by construction,

and since K(1)-localization is the p-completion of E(1)-localization, we deduce that E[v−1
1 ]p is

K(1)-local. It therefore suffices to show that the map

E → E[v−1
1 ]p

is a K(1)-equivalence. It suffices to show that it yields an equivalence on p-adic K-theory. However,
by Proposition 6.1, both (K∧p )0E and (K∧p )0(E[v−1

1 ]p) are given by W , where we have pullback
squares:

Spf(W ) //

��

Spf(R[v−1
1 ]∧p ) //

��

Spf(R)

��
Mord

ell (p∞) //Mord
ell

// (Mell)p

�

Step 1: construction of αchrom : tmf K(1) → (tmf K(2))K(1)αchrom : tmf K(1) → (tmf K(2))K(1)αchrom : tmf K(1) → (tmf K(2))K(1).

We shall temporarily assume that p is odd. After we complete Step 1 for odd primes, we shall
address the changes necessary for the prime 2.

Fix N to be a positive integer greater than or equal to 3 and coprime to p. LetMell(N)/Z[1/N ]
denote the moduli stack of pairs (C, ρ) where C is an elliptic curve and ρ is a “full level N structure”:

ρ : (Z/N)2 ∼=−→ C[N ].

Since N is greater than 3, this stack is a scheme [DR73, Cor. 2.9]. The cover

Mell(N)→Mell ⊗ Z[1/N ]
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given by forgetting the level structure is an étale GL2(Z/N)-torsor. Let Mell(N)p denote the
completion of Mell(N) at p, and let Mss

ell(N) denote the pullback

Mss
ell(N) //

��

Mell(N)p

��
Mss

ell
// (Mell)p

Since Mell(N)p is a formal scheme, Mss
ell(N) is also a formal scheme. By Serre-Tate theory, the

formal scheme Mss
ell(N) is given by

Mss
ell(N) =

∐
i

Spf(W(ki)[[u1]])

for a finite set of finite fields {ki} (this set of finite fields depends on N). Let AN denote the
representing ring

AN :=
∏
i

W(ki)[[u1]]

and let BN be the ring

BN := AN [u−1
1 ]∧p =

∏
i

W(ki)((u1))∧p .

(Elements in the ring W(ki)((u1))∧p are bi-infinite Laurent series∑
j∈Z

aju
j
1

where we require that aj → 0 as j → −∞.) We shall use the notation

Mss
ell(N) = Spf(p,u1)(AN )

to indicate that Spf is taken with respect to the ideal of definition (p, u1). DefineMss
ell(N)ord to be

the formal scheme given by
Mss

ell(N)ord = Spf(p)(BN ).

Let (CssN , η
ss
N )/Mss

ell(N) be the elliptic curve with full level structure classified by the map

Mss
ell(N)→Mell(N).

We regard Mss
ell(N)ord as the “ordinary locus” of CssN . This does not actually make sense in the

context of formal schemes — Mss
ell(N)ord is not a formal subscheme of Mss

ell(N). Nevertheless, by
Remark 1.6, there is a canonical elliptic curve (with level structure) ((CssN )alg, ηssN ) which lies over
Mss

ell(N)alg := Spec(AN ), and restricts to CssN /Spf(p,u1)(AN ). The formal scheme Mss
ell(N)ord is

given by the pullback

Mss
ell(N)ord //

��

Mord
ell

��
Mss

ell(N)alg //Mell

We let ((CssN )ord, ηssN ) denote the restriction of the pair ((CssN )alg, ηssN ) to Mss
ell(N)ord. We define

Mss
ell(N, p)

ord to be the pullback

Mss
ell(N, p)

ord

��

//Mord
ell (p)

��
Mss

ell(N)ord //Mord
ell

and denote the pullback of (CssN )ord toMss
ell(N, p)

ord by (CssN,1)ord. SinceMss
ell(N)ord andMord

ell (p)

are formally affine, we deduce thatMss
ell(N, p)

ord is formally affine, and is of the form Spf(p)(BN,1).
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Let Mord
ell (p)ns denote the locus of the formal affine scheme Mord

ell (p) where the universal curve
is nonsingular; it is covered by an étale GL2(Z/N)-torsor given by the pullback

Mord
ell (N, p)ns

��

//Mell(N)p

��
Mord

ell (p)ns // (Mell)p

The action ofGL2(Z/N) on the formal affine schemeMss
ell(N, p)

ord = Spf(p)(BN,1) overMord
ell (N, p)ns,

gives descent data which, by faithfully flat descent (see, for instance, [Hid00, Sec. 1.11.3]), yields a
new formal affine scheme

Mss
ell(p)

ord = Spf(p)(B1)

over Mord
ell (p)ns (where B1 = B

GL2(Z/N)
N,1 ) together with a pullback diagram

Mss
ell(N, p)

ord //

��

Mss
ell(p)

ord

��
Mord

ell (N, p)ns //Mord
ell (p)ns

Define (V ∧∞)ss to be the pullback

Spf(p)((V
∧
∞)ss) //

��

Mord
ell (p∞)

��
Mss

ell(p)
ord //Mord

ell (p)

and define W ss and W̃ ss to be the pullbacks

(8.2) Spf(p)(W̃
ss) //

��

Spf(p)(W
ss) //

��

Spf(p)((V
∧
∞)ss)

��
Mord

ell (N, p)ns //Mord
ell (p)ns // (Mord

ell )ns

By faithfully flat descent, we have

W ss = (W̃ ss)GL2(Z/N),

(V ∧∞)ss = (W ss)(Z/p)× .

Remark 8.2. Both W̃ ss and W ss possess alternative descriptions. They are given by pullbacks

Spf(W̃ ss) //

��

Spf(W ss) //

��

Mord
ell (p∞)

��
Mss

ell(N, p)
ord //Mss

ell(p)
ord //Mord

ell

Let tmf (N)K(2) be the spectrum of sections

tmf (N)K(2) := OtopK(2)(M
ss
ell(N)).

The action of GL2(Z/N) on the torsor Mss
ell(N) induces an action of GL2(Z/N) on tmf (N)K(2).

Since the sheaf OtopK(2) satisfies homotopy decent, we have

(tmf (N)K(2))
hGL2(Z/N) ' tmf K(2).
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Lemma 8.3. There is an equivalence

((tmf (N)K(2))K(1))
hGL2(Z/N) ' (tmf K(2))K(1).

Proof. Using Lemma 7.8, and descent, we may deduce that there are equivalences

((tmf (N)K(2))K(1))
hGL2(Z/N) ' ((tmf K(2))

hGL2(Z/N))K(1)

' (tmf K(2))K(1).

�

Consider the finite (Z/p)× Galois extension E
h(1+pZp)
1 of SK(1) given by the homotopy fixed

points of E1-theory with respect to the open subgroup 1 + pZp ⊂ Z×p (see [DH04], [Rog08]). Note
that we have

(8.3) (E
h(1+pZp)
1 )h(Z/p)× ' SK(1).

Define spectra

(tmf (N, p)K(2))K(1) := (tmf (N)K(2))K(1) ∧SK(1)
E
h(1+pZp)
1

(tmf (p)K(2))K(1) := (tmf K(2))K(1) ∧SK(1)
E
h(1+pZp)
1

These spectra inherit an action by the group (Z/p)× = Z×p /1 + pZp.
Using Lemma 7.8, Lemma 8.3 and Equation (8.3), we have the following.

Lemma 8.4. There are equivalences of E∞-ring spectra

((tmf (N, p)K(2))K(1))
hGL2(Z/N) ' (tmf (p)K(2))K(1)

((tmf (p)K(2))K(1))
h(Z/p)× ' (tmf K(2))K(1)

We now link up some homotopy calculations with our previous algebro-geometric constructions.

Lemma 8.5. There is an GL2(Z/N)× (Z/p)×-equivariant isomorphism

π0(tmf (N, p)K(2))K(1)
∼= BN,1

making (tmf (N, p)K(2))K(1) an elliptic spectrum with associated elliptic curve (CssN,1)ord.

Proof. By construction, there is a GL2(Z/N)-equivariant isomorphism

π0tmf (N)K(2)
∼= AN

making tmf (N)K(2) an elliptic spectrum with associated elliptic curve CssN . By Lemma 8.1, this
gives rise to an isomorphism

π0(tmf (N)K(2))K(1)
∼= BN

making the pair ((tmf (N)K(2))K(1), (C
ss
N )ord) an elliptic spectrum. For any K(1)-local even periodic

Landweber exact cohomology theory E, the homotopy groups of

E′ = E ∧SK(1)
E
h(1+pZp)
1

are given by the pullback

Spf(π0E
′) //

��

Mmult
FG (p)

��
Spf(π0E) //Mmult

FG

(where the notation here is the same as in the proof of Lemma 5.1). This is easily deduced from
the cofiber sequence

E′ → (Kp ∧ E)p
ψk−1−−−→ (Kp ∧ E)p
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where k is chosen to be a topological generator of the subgroup 1 +Zp ⊆ Z×p . In particular, we have
the desired isomorphism

π0(tmf (N, p)K(2))K(1) ' BN,1.
The formal group of E′ is the pullback of the formal group of E along the map π0E → π0E

′. The
elliptic curve (CssN,1)ord is the pullback of (CssN )ord under the same homomorphism. The canonical

isomorphism between the formal group of E and the formal group of (CssN )ord thus pulls back to give
the required isomorphism between the formal group of E′ and the formal group of (CssN,1)ord. �

Lemma 8.6. There are isomorphisms

(K∧p )∗(tmf (N, p)K(2))K(1)
∼= (Kp)∗ ⊗Zp W̃

ss

(K∧p )∗(tmf (p)K(2))K(1)
∼= (Kp)∗ ⊗Zp W

ss

(K∧p )∗(tmf K(2))K(1)
∼= (Kp)∗ ⊗Zp (V ∧∞)ss

(We shall denote these graded objects as W̃ ss
∗ , W ss

∗ , and (V ∧∞)ss∗ , respectively.)

Proof. We deduce the first isomorphism by combining Proposition 6.1 with Remark 8.2. Using
Lemma 8.4, and Lemma 7.8, we have equivalences

((Kp ∧ (tmf (N, p)K(2))K(1))p)
hGL2(Z/N) ' (Kp ∧ (tmf (p)K(2))K(1))p

((Kp ∧ (tmf (p)K(2))K(1))p)
h(Z/p)× ' (Kp ∧ (tmf (p)K(2))K(1))p

The pullback diagram (8.2) implies that W̃ ss is an étale GL2(Z/N)-torsor over W ss, and W ss is
an étale (Z/p)×-torsor over (V ∧∞)ss. The resulting homotopy fixed point spectral sequence

H∗(GL2(Z/N), (K∧p )∗(tmf (N, p)K(2))K(1))⇒ (K∧p )∗(tmf (p)K(2))K(1)

therefore collapses to give the required isomorphism

(K∧p )∗(tmf (p)K(2))K(1)
∼= (W̃ ss)

GL2(Z/N)
∗ = W ss

∗ .

This in turn allows us to conclude that the homotopy fixed point spectral sequence

H∗((Z/p)×, (K∧p )∗(tmf (p)K(2))K(1))⇒ (K∧p )∗(tmf K(2))K(1)

collapses to give the isomorphism

(K∧p )∗(tmf K(2))K(1)
∼= (W ss

∗ )(Z/p)× = (V ∧∞)ss∗ .

�

The universal property of the pullback, together with the diagram of Remark 8.2, gives a (Z/p)×-
equivariant map α̃∗:

Spf(W ss)

α̃∗

&&�� ((
Mss

ell(p)
ord

&&MMMMMMMMMM
Spf(W ) //

��

Mord
ell (p∞)

��
Mord

ell (p) //Mord
ell

Here, Spf(W ) = X is the pro-Galois cover of Mord
ell (p) given by Diagram (7.4).

To construct our desired map

αchrom : tmf K(1) → (tmf K(2))K(1)

it suffices to construct a (Z/p)×-equivariant map

α′chrom : tmf (p)K(1) → (tmf (p)K(2))K(1).
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The map αchrom is then recovered by taking homotopy fixed point spectra.
The map α̃∗ induces a map

α̃ : W∗ →W ss
∗

of graded θ-algebras. The obstructions to the existence of a map of K(1)-local E∞-ring spectra

α′chrom : tmf (p)K(1) → (tmf (p)K(2))K(1)

inducing the map α̃ on p-adic K-theory lie in:

Hs
Algθ

(W∗,W
ss
∗ [−s+ 1]) s ≥ 2.

These groups are seen to vanish using Lemma 7.5. The obstructions to uniqueness (that is, unique-
ness up to homotopy) lie in

Hs
Algθ

(W∗,W
ss
∗ [−s]) s ≥ 1,

and these groups are also zero. Because α̃ is (Z/p)×-equivariant, we deduce that the map α′chrom

commutes with the action of (Z/p)× in the homotopy category of E∞-ring spectra. Because we
are working in an injective diagram model category structure, after performing a suitable fibrant
replacement of (tmf (p)K(2))K(1), there is an equivalence of (derived) mapping spaces

E∞(tmf (p)K(1), (tmf (p)K(2))K(1))(Z/p)×-equivariant ' E∞(tmf (p)K(1), (tmf (p)K(2))K(1))
h(Z/p)× .

Because the order of (Z/p)× is prime to p, the spectral sequence

Hs((Z/p)×, πtE∞(tmf (p)K(1), (tmf (p)K(2))K(1)))⇒ πt−sE∞(tmf (p)K(1), (tmf (p)K(2))K(1))
h(Z/p)×

collapses to show that the natural map

[tmf (p)K(1), (tmf (p)K(2))K(1)] E∞
(Z/p)×−equivariant

→ [tmf (p)K(1), (tmf (p)K(2))K(1)]
(Z/p)×
E∞

is an isomorphism. In particular, we may choose α′chrom to be a (Z/p)×-equivariant map of E∞-ring
spectra.

Modifications for the prime 2.

At the prime 2, the first stage of the Igusa tower which is a formal affine scheme isMord
ell (4). All

of the algebro-geometric constructions such as Mss
ell(N, p)

ord, Mss
ell(p)

ord, etc for p an odd prime
go through for the prime 2 with Mord

ell (p) replaced by Mord
ell (4) to produce formal affine schemes

Mss
ell(N, 4)ord and Mss

ell(4)ord. One then defines (V ∧∞)ss as the pullback

(8.4) Spf((V ∧∞)ss)
α∗ //

��

Mord
ell (2∞)

��
Mss

ell(4)ord //Mord
ell (4)

Define

(tmf (N)K(2))K(1) := (OtopK(2)(M
ss
ell(N))

(tmf (N, 4)K(2))K(1) := (tmf (N)K(2))K(1) ∧SK(1)
E
h(1+4Z2)
1

(tmf (4)K(2))K(1) := (tmf K(2))K(1) ∧SK(1)
E
h(1+4Z2)
1

Just as in the odd primary case, argue (in this order) that we have

(K∧2 )0(tmf (N, 4)K(2))K(1)
∼= W̃ ss

(K∧2 )0(tmf (4)K(2))K(1)
∼= W ss

(K∧2 )0(tmf K(2))K(1)
∼= (V ∧∞)ss
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where W̃ ss and W ss are given as the pullbacks

Spf(W̃ ss) //

��

Spf(W ss) //

��

Spf((V ∧∞)ss)

��
Mord

ell (N, 4)ns //Mord
ell (4)ns // (Mord

ell )ns

Note that the homotopy groups of (tmf K(2))K(1) are easily computed by inverting c4 in the homotopy
fixed point spectral sequence for EO2:

π∗(tmf K(2))K(1) = KO∗((j
−1))∧2 .

It follows that the hypotheses of Lemma 7.11 are satisfied, and we have an isomorphism

(KO∧2 )∗(tmf K(2))K(1)
∼= KO2 ⊗Z2

(V ∧∞)ss.

The map α∗ of Equation (8.4) induces a map

α : KO∗ ⊗ V ∧∞ → KO∗ ⊗ (V ∧∞)ss

of graded reduced Bott periodic θ-algebras. The obstructions to the existence of a map of K(1)-local
E∞-ring spectra

αchrom : tmf K(1) → (tmf K(2))K(1)

inducing the map α on 2-adic KO-theory lie in:

Hs
Algredθ

(KO∗ ⊗ V ∧∞,KO∗ ⊗ (V ∧∞)ss[−s+ 1]) s ≥ 2.

These groups are seen to vanish using Lemmas 7.11 and 7.13.

Step 2: construction of αchrom as a map of presheaves over Mell .
We will now construct a map of presheaves

αchrom : (ιord)∗OtopK(1) → ((ιss)∗OtopK(2))K(1).

By the results of Section 2, it suffices to construct this map on the sections of formal affine étale
opens of Mell .

Let R be a p-complete ring, and let

Spf(p)(R)→ (Mell)p

be a formal affine étale open, classifying a generalized elliptic curve C/R. Let ωR be the pullback
of the line bundle ω over Mell . The invertible sheaf corresponds to an invertible R-module I. Let
R∗ denote the evenly graded ring where

R2t = I⊗Rt.

Consider the pullbacks:

(8.5) Spf(Rord) //

��

Spf(R)

��

Spf(Rss) //

��

Spf(R)

��
Mord

ell
// (Mell)p Mss

ell
// (Mell)p

Remark 8.7. It is not immediately clear why these pullbacks are formal affine schemes.

(1) The pullback of Spf(R) overMord
ell is a formal affine scheme because the Hasse invariant can

be regarded as a section of the restriction of the line bundle ω⊗p−1
R to Spec(R/p). Indeed,

if v1 ∈ I⊗R(p−1) is a lift of the Hasse invariant, then Rord is the zeroth graded piece of the
graded ring

Rord∗ := (R∗)[v
−1
1 ]∧p .
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(2) The pullback of Spf(R) over Mss
ell is formally affine because, by Serre-Tate theory, and the

fact that the classifying map is étale, we know that

Rss ∼=
∏
i

W (ki)[[u1]],

where {ki} is a finite set of finite fields. In Diagram (8.5), Spf(Rss) is taken with respect to
the ideal (p, u1) ⊂ Rss, while Spf(R) is taken with respect to the ideal (p) ⊂ R. The ring
Rss has an alternative characterization: it is the zeroth graded piece of the completion

Rss∗ := (R∗)
∧
(v1).

Define

(Rss)ord∗ := (Rss∗ [v−1
1 ])∧p

and let (Rss)ord ∼= Rss[u−1
1 ]∧p be the zeroth graded piece. Define generalized elliptic curves:

Cord = C ⊗R Rord

Css = C ⊗R Rss

(Css)ord = Css ⊗Rss (Rss)ord

Since the image of v1 is invertible in (Rss)ord∗ , the curve (CssR )ord has ordinary reduction modulo p,
and there exists a factorization

(8.6) R∗ //

��

Rss∗ // (Rss)ord∗

Rord∗

ḡ

55

We have K(1)-local E∞-ring spectra:

Eord := (ιord)∗OtopK(1)(Spf(R)),

Ess := (ιss)∗OtopK(2)(Spf(R)),

(Ess)ord := EssK(1).

Combining Propositions 4.4 and 7.16 with Lemma 8.1, we have the following.

Lemma 8.8. The spectra Eord, Ess, and (Ess)ord are elliptic with respect to the generalized elliptic
curves Cord/Rord, Css/Rss, and (Css)ord/(Rss)ord, respectively.

Consider the pullbacks

Spf((Wss)
ord)

g //

��

Spf(W ord) //

��

Mord
ell (p∞)

��
Spf((Rss)

ord)
ḡ
// Spf(Rord) //Mord

ell

We have, by Proposition 6.1, the following isomorphisms of graded θ-(V ∧∞)∗-algebras:

(K∧p )∗E
ord ∼= W ord

∗

(K∧p )∗(Ess)
ord ∼= (Wss)

ord
∗

where W ord
∗ and (Wss)

ord
∗ are the even periodic graded θ-algebras associated to the θ-algebras W ord

and (Wss)
ord.
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We wish to construct a map:

tmf K(1)
αchrom //

��

(tmf K(2))K(1)

��
Eord αchrom

// (Ess)ord

The map g induces a map of graded θ-(V ∧∞)∗-algebras

g : W ord
∗ → (Wss)

ord
∗ .

The obstructions to realizing this map to the desired map

αchrom : Eord → (Ess)
ord

of K(1)-local commutative tmf K(1)-algebras lie in

Hs
Algθ

(V∧∞)∗
(W ord
∗ , (Wss)

ord
∗ [−s+ 1]), s > 1.

Because W ord is étale over V ∧∞, Lemma 7.6 implies that these obstruction groups all vanish. Thus
the realization αchrom exists.

Suppose that we are given a pair of étale formal affine opens

Spf(Ri)→Mell , i = 1, 2.

Associated to these are K(1)-local commutative tmf K(1)-algebras

Eordi := (ιord)∗OtopK(1)(Spf(Ri)),

(Ei,ss)
ord := (ιss)∗OtopK(2)(Spf(Ri))K(1).

and graded θ-(V ∧∞)∗-algebras

(K∧p )∗E
ord
i
∼= (Wi)

ord
∗ ,

(K∧p )∗(Ei,ss)
ord ∼= (Wi,ss)

ord
∗ .

Again, Lemma 7.6 implies that

Hs
Algθ

(V∧∞)∗
((W1)ord∗ , (W2,ss)

ord
∗ [u]) = 0.

We deduce that

(1) the Hurewitz map

[Eord1 , (E2,ss)
ord]AlgtmfK(1)

→ HomAlgθ
(V∧∞)∗

((W1)ord∗ , (W2,ss)
ord
∗ )

is an isomorphism.
(2) The mapping spaces AlgtmfK(1)

(Eord1 , (E2,ss)
ord) have contractible components.

We conclude that:

(1) The maps αchrom assemble to give a natural transformation

αchrom : (ιord)∗ŌtopK(1) → ((ιss)∗ŌtopK(2))K(1).

of the associated homotopy functors

(ιord)∗ŌtopK(1) : ((Mell)p,et,aff )op → Ho(Comm tmf K(1)-algebras),

((ιss)∗ŌtopK(2))K(1) : ((Mell)p,et,aff )op → Ho(Comm tmf K(1)-algebras).

(2) The contractibility of the mapping spaces implies that the maps αchrom may be chosen to
induce a strict natural transformation of functors:

αchrom : (ιord)∗OtopK(1) → ((ιss)∗OtopK(2))K(1).
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Putting the pieces together.
Define Otopp to be the presheaf of E∞ ring spectra given by the pullback

Otopp //

��

(ιss)∗OtopK(2)

��
(ιord)∗OtopK(1) αchrom

// ((ιss)∗OtopK(2))K(1)

Let R be a p-complete ring and suppose that

Spf(R)→ (Mell)p

is an étale open classifying a generalized elliptic curve C/R. Using the same notation as we have
been using, there are associated elliptic spectra Eord, Ess, and (Ess)ord. The spectrum of sections
E := Otopp (Spf(R)) is given by the homotopy pullback

E //

��

Ess

��
Eord αchrom

// (Ess)ord

We then have the following.

Proposition 8.9. The spectrum E is elliptic for the curve C/R.

We first need the following lemma.

Lemma 8.10. Suppose that A is a ring and that x ∈ A is not a zero-divisor. Then the following
square is a pullback.

A //

��

A∧(x)

��
A[x−1] // A∧(x)[x

−1]

Proof. Because of our assumption, the map A → A[x−1] is an injection. The result then follows
from the fact that the induced map of the cokernels of the vertical maps

A/x∞ → A∧(x)/x
∞

is an isomorphism. �

Remark 8.11. Lemma 8.10 is true in greater generality, at least provided that A is Noetherian, but
this is the only case we need.

Proof of Proposition 8.9. The proposition reduces to verifying that the diagram

(8.7) R∗ //

��

Rss∗

��
Rord∗ g

// (Rss)ord∗

is a pullback. Since Spf(R)→ (Mell)p is étale, and the map (Mell)p → (MFG)p is flat (Remark 1.4),
the composite

Spf(R)→ (Mell)p → (MFG)p

is flat. In particular, by Landweber’s criterion, the sequence (p, v1) ⊂ R∗ is regular. Therefore R∗
is p-torsion-free, and v1 is not a zero divisor in R∗/pR∗. Using the facts that R∗ is p-complete and
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p-torsion-free, it may be deduced that v1 is not a zero divisor in R∗. Therefore, by Lemma 8.10,
the following square is a pullback.

R∗ //

��

(R∗)
∧
(v1)

��
R∗[v

−1
1 ] // (R∗)∧(v1)[v

−1
1 ]

The square (8.7) is the p-completion of the above square. Since p-completion is exact on p-torsion-
free modules, we deduce that (8.7) is a pullback diagram, as desired. �

9. Construction of OtopQ and Otop

In this section we will construct the presheaf OtopQ , and the map

αarith : (ιQ)∗OtopQ →

(∏
p

(ιp)∗Otopp

)
Q

.

By the results of Section 2, it suffices to restrict our attention to affine étale opens.

The Eilenberg-MacLane functor associates to a graded Q-algebra A∗ a commutative HQ-algebra
H(A∗). Suppose that

f : Spec(R)→ (Mell)Q

is an affine étale open. Define an evenly graded ring R∗ by

R2t := Γf∗ω⊗t.

We define
OtopQ (Spec(R)) = H(R∗).

The functoriality of H(−) makes this a presheaf of commutative HQ-algebras.

Proposition 9.1. Let C/R be the generalized elliptic curve classified by f . Then the spectrum
H(R∗) uniquely admits the structure of an elliptic spectrum for the curve C.

Proof. We just need to show that there is a unique isomorphism of formal groups

Ĉ
∼=−→ GH(R∗).

It suffices to show that there is a uniue isomorphism Zariski locally on SpecR. Thus it suffices to
consider the case where the line bundle f∗ω is trivial. In this case, the formal group GH(R∗) is just
the additive formal group. Since we are working over Q, there is a unique isomorphism given by
the logarithm. �

Because its sections are rational, the presheaf (
∏
p(ιp)∗Otopp )Q is a presheaf of commutative HQ-

algebras.
There is an alternative perspective to the homotopy groups of an elliptic spectrum that we shall

employ. Let (Mell)
1 denote the moduli stack of pairs (C, v) where C is a generalized elliptic curve

and v is a tangent vector to the identity. Then the forgetful map

f : (Mell)
1 →Mell

is a Gm-torsor. There is a canonical isomorphism

(9.1) f∗O(Mell )1
∼=
⊕
t∈Z

ω⊗t

which gives the weight decomposition ofO(Mell )1 induced by the Gm-action. We deduce the following

lemma.
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Lemma 9.2. For any étale open
U → (Mell)Q

for which the pullback
f∗U → (Mell)

1
Q

is an affine scheme, there is a natural isomorphism

π∗OtopQ (U) ∼= O(Mell )1
Q
(f∗U).

Consider the substacks:

Mell [c
−1
4 ] ⊂Mell ,

Mell [∆
−1] ⊂Mell .

A Weierstrass curve is non-singular if and only if ∆ is invertible, whereas a singular Weierstrass
curve (∆ = 0) has no cuspidal singularities if and only if c4 is invertible. Thus the pair Mell [c

−1
4 ],

Mell [∆
−1] form an open cover of Mell . Consider the induced cover

{(Mell)
1
Q[c−1

4 ], (Mell)
1
Q[∆−1]}.

The following lemma is a corollary of the computation of the ring of modular forms of level 1 over
Q.

Lemma 9.3. The stack (Mell)
1
Q is the open subscheme of

Spec(Q[c4, c6])

given by the union of the affine subschemes

(Mell)
1
Q[c−1

4 ] = Spec(Q[c±1
4 , c6]),

(Mell)
1
Q[∆−1] = Spec(Q[c4, c6,∆

−1]).

where ∆ = (c34 − c26)/1728.

Let Mell [c
−1
4 ,∆−1] denote the intersection (pullback)

Mell [c
−1
4 ] ∩Mell [∆

−1] ↪→Mell .

For a presheaf F on Mell , let

F [c−1
4 ], F [∆−1], F [c−1

4 ,∆−1]

denote the presheaves on Mell obtained by taking the pushforwards of the restrictions of F to the
open substacks

Mell [c
−1
4 ], Mell [∆

−1], Mell [c
−1
4 ,∆−1],

respectively. By descent, to construct αarith , it suffices to construct a diagram of presheaves of
HQ-algebras:

(9.2) (ιQ)∗OtopQ [c−1
4 ]

αarith //

��

(∏
p(ιp)∗Otopp

)
Q

[c−1
4 ]

��

(ιQ)∗OtopQ [c−1
4 ,∆−1]

αarith //
(∏

p(ιp)∗Otopp
)
Q

[c−1
4 ,∆−1]

(ιQ)∗OtopQ [∆−1]
αarith

//

OO

(∏
p(ιp)∗Otopp

)
Q

[∆−1]

OO

We accomplish this in two steps:

Step 1: Construct compatible maps on the sections overMell [∆
−1],Mell [c

−1
4 ], andMell [c

−1
4 ,∆−1].

Step 2: Construct corresponding maps of presheaves.
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Step 1: Construction of the αarith on certain sections.
Define commutative HQ-algebras

tmf Q[c−1
4 ] := (ιQ)∗OtopQ (Mell [c

−1
4 ])

tmf Q[c−1
4 ,∆−1] := (ιQ)∗OtopQ (Mell [c

−1
4 ,∆−1])

tmf Q[∆−1] := (ιQ)∗OtopQ (Mell [∆
−1])

tmf Af [c−1
4 ] :=

(∏
p

(ιp)∗Otopp (Mell [c
−1
4 ])

)
Q

tmf Af [c−1
4 ,∆−1] :=

(∏
p

(ιp)∗Otopp (Mell [c
−1
4 ,∆−1])

)
Q

tmf Af [∆−1] :=

(∏
p

(ιp)∗Otopp (Mell [∆
−1])

)
Q

Observe that we have

π∗tmf Af [−] ∼= π∗tmf Q[−]⊗Q Af

where Af =
(∏

p Zp
)
⊗Q is the ring of finite adeles. Therefore there are natural maps of commu-

tative Q-algebras

ᾱarith : π∗tmf Q[−]→ π∗tmf Af [−].

The Goerss-Hopkins obstructions to existence and uniqueness of maps

αarith : tmf Q[−]→ tmf Af [−]

of commutative HQ-algebras realizing the maps ᾱarith lie in the Andre-Quillen cohomology of
commutative Q-algebras:

Hs
commQ

(π∗tmf Q[−], π∗tmf Af [−][−s+ 1]), s > 1.

Because

π∗tmf Q[−] = Q[c4, c6][−]

is a smooth Q-algebra, we have

Hs
commQ

(π∗tmf Q[−], π∗tmf Af [−][u]) = 0, s > 0.

We deduce that the Hurewitz map

[tmf Q[−], tmf Af [−]]AlgHQ → HomcommQ(π∗tmf Q[−], π∗tmf Af [−])

is an isomorphism. In particular, the maps αarith exist.
We similarly find that we have

Hs
commQ

(π∗tmf Q[c−1
4 ], π∗tmf Af [c−1

4 ,∆−1][u]) = 0, s > 0,

Hs
commQ

(π∗tmf Q[∆−1], π∗tmf Af [c−1
4 ,∆−1][u]) = 0, s > 0.

This implies that the diagram

(9.3) tmf Q[c−1
4 ]

αarith //

��

tmf Af [c−1
4 ]

r1

��
tmf Q[c−1

4 ,∆−1]
αarith // tmf Af [c−1

4 ,∆−1]

tmf Q[∆−1]
αarith //

OO

tmf Af [∆−1]

r2

OO
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commutes up to homotopy in the category of commutative HQ-algebras.
Because the presheaves Otopp are fibrant in the Jardine model structure, the maps r1 and r2 in

Diagram 9.3 are fibrations of commutative HQ-algebras. The following lemma implies that we can
rectify Diagram (9.3) to a point-set level commutative diagram of commutative HQ-algebras.

Lemma 9.4. Suppose that C is a simplicial model category, and that

A
f //

p

��

X

q

��
B g

// Y

is a homotopy commutative diagram with A cofibrant and q a fibration. Then there exists a map f ′,
homotopic to f , such that the diagram

A
f ′ //

p

��

X

q

��
B g

// Y

strictly commutes.

Proof. Let H be a homotopy that makes the diagram commute, and take a lift

A⊗ 0
f //

� _

��

X

q

��
A⊗∆1

H
//

H̃

;;

Y

Take f ′ = H̃1. �

Step 2: construction of Diagram 9.2.

It suffices to construct the diagram on affine opens. Suppose that

Spec(R)→Mell

is an affine étale open. Define commutative HQ-algebras

T [c−1
4 ] := (ιQ)∗OtopQ (Spec(R[c−1

4 ]))

T [c−1
4 ,∆−1] := (ιQ)∗OtopQ (Spec(R[c−1

4 ,∆−1]))

T [∆−1] := (ιQ)∗OtopQ (Spec(R[∆−1]))

T ′[c−1
4 ] :=

(∏
p

(ιp)∗Otopp (Spec(R[c−1
4 ]))

)
Q

T ′[c−1
4 ,∆−1] :=

(∏
p

(ιp)∗Otopp (Spec(R[c−1
4 ,∆−1]))

)
Q

T ′[∆−1] :=

(∏
p

(ιp)∗Otopp (Spec(R[∆−1]))

)
Q

Let T ′ be any commutative tmf Af [−]-algebra, and let

π∗tmf Q[−]→ π∗T
′
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be a map of π∗tmf Q[−]-algebras. We have the following pullback diagram.

Spec(π∗T [−]) //

��

Spec(R⊗Q)

��
Spec(Q[c4, c6][−]) (Mell)

1
Q[−] // (Mell)Q

In particular, we deduce that π∗T [−] is étale over

π∗tmf Q[−] = Q[c4, c6,∆
−1].

Therefore, the spectral sequence

Extsπ∗T [−](Ht(L(π∗T [−]/π∗tmf Q[−])), π∗T
′[u])⇒ Hs+t

commπ∗tmf Q[−]
(π∗T [−], π∗T

′[u])

collapses to give

Hs
commπ∗tmf Q[−]

(π∗T [−], π∗T
′[u]) = 0.

We deduce that

(1) The Hurewitz maps

[T [−], T ′]Alg tmf Q[−]
→ Homcommπ∗tmf Q[−]

(π∗T [−], π∗T
′)

are isomorphisms.
(2) The mapping spaces Algtmf Q[−](T [−], T ′) have contractible components.

This is enough to conclude that there exist maps αarith , functorial in R, making the following
diagrams commute

T [c−1
4 ]

αarith //

��

T ′[c−1
4 ]

��
T [c−1

4 ,∆−1]
αarith // T ′[c−1

4 ,∆−1]

T [∆−1]
αarith //

OO

T ′[∆−1]

OO

Since, by homotopy descent, there are homotopy pullbacks

(ιQ)∗OtopQ (Spec(R)) //

��

T [c−1
4 ]

��

(∏
p(ιp)∗Otopp (Spec(R))

)
Q

//

��

T ′[c−1
4 ]

��
T [∆−1] // T [c−1

4 ,∆−1] T ′[∆−1] // T ′[c−1
4 ,∆−1]

We get an induced map on pullbacks

αarith : (ιQ)∗OtopQ (Spec(R))→

(∏
p

(ιp)∗Otopp (Spec(R))

)
Q

.

which is natural in Spec(R).
We define Otop to be the presheaf onMell whose sections over Spec(R) are given by the pullback

Otop(Spec(R)) //

��

∏
p(ιp)∗Otopp (Spec(R))

��

(ιQ)∗OtopQ (Spec(R))
αarith

//
(∏

p(ιp)∗Otopp (Spec(R))
)
Q
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The following proposition concludes our proof of Theorem 1.1.

Proposition 9.5. The spectrum Otop(Spec(R)) is elliptic with respect to the elliptic curve C/R.

Proof. The proposition follows from Propositions 8.9 and 9.1, and the pullback

R //

��

∏
pR
∧
p

��

R⊗Q //
(∏

pR
∧
p

)
⊗Q

�

Appendix A. K(1)-local Goerss-Hopkins obstruction theory for the prime 2

Theorem 7.1 provides an obstruction theory for producing K(1)-local E∞-ring spectra, and maps
between them, at all primes. These obstructions lie in the Andre-Quillen cohomology groups based
on p-adic K-homology. Unfortunately, as indicated in Section 7, the K-theoretic obstruction theory
is insufficient to produce the sheaf OtopK(1) at the prime 2. At the prime 2 we instead must use a

variant of the theory based on 2-adic real K-theory. The material in this Appendix is the product
of some enlightening discussions with Tyler Lawson.

For a spectrum E, the E-based obstruction theory of [GH] requires the homology theory to be
“adapted” to the E∞ operad. Unfortunately, KO∧2 does not seem to be adapted to the E∞-operad.
While the KO∧2 -homology of a free E∞ algebra generated by the 0-sphere is the free graded reduced
θ-algebra on one generator, this fails to occur for spheres of every dimension. Nevertheless, we
will show that the obstruction theory can be manually implemented when the spaces and spectra
involved are Bott periodic (Definition 7.10).

Theorem A.1.

(1) Given a Bott-periodic graded reduced θ-algebra A∗ satisfying

(A.1) Hs
c (Z×2 /{±1}, A∗) = 0, for s > 0,

the obstructions to the existence of a K(1)-local E∞-ring spectrum E, for which there is an
isomorphism

(KO∧2 )∗E ∼= A∗

of graded reduced θ-algebras, lie in

Hs
Algredθ

(A∗/(KO2)∗, A∗[−s+ 2]), s ≥ 3.

(2) Given Bott periodic K(1)-local E∞-ring spectra E1, E2, and a map of graded θ-algebras

f∗ : (KO∧2 )∗E1 → (KO∧2 )∗E2,

the obstructions to the existence of a map f : E1 → E2 of E∞-ring spectra which induces
f∗ on 2-adic KO-homology lie in

Hs
Algredθ

((KO∧2 )∗E1/(KO2)∗, (KO
∧
2 )∗E2[−s+ 1]), s ≥ 2.

(Here, the θ-(KO∧2 )∗E1-module structure on (KO∧2 )∗E2 arises from the map f∗.) The
obstructions to uniqueness lie in

Hs
Algredθ

((KO∧2 )∗E1/(KO2)∗, (KO
∧
2 )∗E2[−s]), s ≥ 1.

(3) Given such a map f above, there is a spectral sequence which computes the higher homotopy
groups of the space E∞(E1, E2) of E∞ maps:

Hs
Algredθ

((KO∧2 )∗E1/(KO2)∗, (KO
∧
2 )∗E2[t])⇒ π−t−s(E∞(E1, E2), f).
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Remark A.2. The author believes that Condition (A.1) is unnecessary, but it makes the proof of
the theorem much easier to write down, and is satisfied by in the cases needed in this paper.

The remainder of this section will be devoted to proving the theorem above. Most of the work

is in proving (1). As in [GH], consider the category sAlg
K(1)
E∞

of simplicial objects in the K(1)-

local category of E∞-ring spectra. Endow this category with a P-resolution model structure1 with
projectives given by

P = {ΣiTj}i∈Z,j>1

where the spectra Tj are the finite Galois extensions of SK(1) given by

Tj = KO
hGj
2

for

Gj = 1 + 2jZ2 ⊂ Z×2 /{±1} =: Γ.

Note that Tj is K(1)-locally dualizible (in fact, it is self-dual), and we have

KO2 'K(1) lim−→
j

Tj .

The forgetful functor Algredθ → ModZ2[[Γ]] has a left adjoint — call it Pθ. Let P denote the free
K(1)-local E∞-algebra functor. Then the natural map is an isomorphism:

KO∗ ⊗ Pθ(KO∧2 )0(S0)→ (KO∧2 )∗(PS0).

In fact, the same holds when S0 is replaced by the spectrum Tj .

As in [GH], an object X• of sAlg
K(1)
E∞

has two kinds of homotopy groups associated to an object
P ∈ P: the E2-homotopy groups

πs,t(X•;P ) := πs[Σ
tP,X•]SpK(1)

given as the homotopy groups of the simplicial abelian group, and the natural homotopy groups

π\s,t(X•;P ) := [ΣtP ⊗∆s/∂∆s, X•]sSpK(1)

given as the homotopy classes of maps computed in the homotopy category h(sSpK(1)). These
homotopy groups are related by the spiral exact sequence

· · · → π\s−1,t+1(X•;P )→ π\s,t(X•;P )→ πs,t(X•;P )→ π\s−2,t+1(X•;P )→ · · · .

We shall omit P from the notation when P = S0.
We will closely follow the explicit treatment of obstruction theory given by Blanc-Johnson-Turner

[BJT], adapted to our setting. Namely, we will produce a free simplicial resolution W• of the reduced
theta algebra A0, and then analyze the obstructions to inductively producing an explicit object

X• ∈ sAlg
K(1)
E∞

with

(KO∧2 )∗X• ∼= KO∗ ⊗W•.
The desired E∞ ring spectrum will then be given by E := |X•|.

Both of the resolutions W• and X• will be CW-objects in the sense of [BJT, Defn. 1.20] — the
spaces of n-simplices take the form:

Wn = W̄n⊗̂LnW•,
Xn = (X̄n ∧ LnX•)K(1).

(where Ln(−) denotes the nth latching object). The ‘cells’ W̄n (resp. X̄n) will be free reduced
θ-algebras (respectively free K(1)-local E∞ rings) and are thus augmented.

1To be precise, we are endowing the category of simplicial spectra with the P-resolution model structure associated

to the K(1)-local model structure on spectra, and then lifting this to a model structure on simplicial commutative
ring spectra.
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For Y• denoting either W• or X•, we require that for i > 0, the map di is the augmentation when
restricted to Ȳn. The simplicial structure is then completely determined by the ‘attaching maps’

d̄Yn0 : Ȳn → Yn−1.

and the simplicial identities. Saying that an attaching map d̄Yn0 satisfies the simplicial identities is

equivalent to requiring that the composites did̄
Yn
0 factor through the augmentation.

Given such a simplicial free θ-algebra resolution W• of A0, and a θ-A0-module M , the André-
Quillen cohomology of A0 with coefficients in M may be computed as follows. Let QWn denote the
indecomposibles of the augmented free θ-algebra Wn. Then QW• is a simplicial reduced Morava
module, and the Moore chains (C∗QW•, d0) form a chain complex of Morava modules. The André-
Quillen cohomology is given by the hypercohomology

Hn
Algredθ

(A0,M) = Hn(Homc
Z2[[Γ]](C∗QW•), I

∗)

where I∗ is an injective resolution of M in the category of reduced Morava modules. However, if M
satisfies

Hs
c (Γ;M) = 0, s > 0

then one can dispense with the injective resolution I∗, and we simply have

Hn
Algredθ

(A0,M) = Hn(Homc
Z2[[Γ]](C∗QW•,M).

We produce W• and X• simultaneously and inductively so that KO0X• = W•, so that W• is a
resolution of A0. Start by taking a set of topological generators {αi0} of A0 as a θ-algebra. We may
take these generators to have open isotropy subgroups in Γ: then there exist ji so that the isotropy
of αi0 is contained in the image of 1 + 2jZ2 in Γ. Note that since there are isomorphisms of Morava
modules

(KO∧2 )0Tj ∼= Z2[(Z/2j)×/{±1}],
the generators {αi0} may be viewed as giving a surjection of θ-algebras

{αi0} : Pθ(KO∧2 )0Ȳ0 → A

for Ȳ0 =
∨
αi0
Tji . Define

W0 = Pθ(KO∧2 )0Ȳ0, X0 = PȲ0.

Then take a collection of open isotropy topological generators {αi1} (as a Morava module) of the
kernel of the map

{αi0} : W0 → A0.

Realize these as maps

ᾱi1 : S0 → (KO2 ∧X0)K(1).

Suppose that αi1 factors through Tji ∧X0. Then, since Tji is K(1)-locally Spanier-Whitehead self-
dual, there will be resulting maps

α̃i1 : Tji → X0.

Take

Ȳ1 =
∨
α̃i1

Tji , W̄1 = Pθ(KO∧2 )0Ȳ1, X̄1 = PȲ1.

and let d̄X1
0 be the map induced from {α̃i1}. Suppose inductively that we have defined the skeleta

W
[n−1]
• and X

[n−1]
• . Note that since

πs,∗(KO ∧X [n−1]
• ) =

{
A, s = 0,

0, 0 < s < n− 1

we can deduce from the spiral exact sequence that

π\s,∗(KO ∧X
[n−1]
• ) ∼= A[−s] 0 ≤ s ≤ n− 3.
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Consider the portion of the spiral exact sequence

π\n−1,0(KO ∧X [n−1]
• )→ πn−1,0(KO ∧X [n−1]

• )
βn−−→ π\n−3,1(KO ∧X [n−1]

• ) ∼= A[−n+ 2]0.

The map of Morava modules βn will represent our nth obstruction. Indeed, βn may be regarded as
a map of graded Morava modules

βn : πn−1,∗(KO ∧X [n−1]
• )→ A[−n+ 2].

Since A satisfies Hypothesis (A.1), there is a short exact sequence

(A.2) Homc
Z2[[Γ]](Cn−1QW

[n−1]
• , A[−n+ 2]0)

u−→ Homc
Z2[[Γ]](πn−1,0(KO ∧X), A[−n+ 2]0)

→ Hn
Algredθ

(A;A[−n+ 2])→ 0

and this gives a corresponding class [βn] ∈ Hn
Algredθ

(A;A[−n+ 2]).

Suppose that βn was zero on the nose. Take a collection {αin} of open isotropy topological

generators of the Morava module πn−1,0(KO ∧X [n−1]
• ). Since βn is zero, these lift to elements

ᾱin ∈ π
\
n−1,0(KO ∧X [n−1]

• ).

Assume the lifts also have open isotropy. Then for ji sufficiently large, the maps

αin : S0 ⊗∆n−1/∂∆n−1 → KO ∧X [n−1]
•

come from maps

α̃in : Tji ⊗∆n−1/∂∆n−1 → X
[n−1]
• .

Define

Ȳn =
∨
α̃in

Tji , W̄n = Pθ(KO∧2 )0Ȳn, X̄n = PȲn.

We define a map of simplicial E∞-algebras

φn : X̄n ⊗ ∂∆n → X
[n−1]
•

where the restriction

φn|Λn0 : X̄n ⊗ Λn0 → X
[n−1]
•

is taken to be the map which is given by the augmentation on each of the faces of Λn0 . The map φn
is then determined by specifying a candidate for the restriction on the 0-face

d̄Xn0 = φn|∆n−1 : X̄n ⊗∆n−1 → X
[n−1]
•

which restricts to the augmentation on each of the faces of ∂∆n−1. Thus we just need to produce
an appropriate class

[d̄Xn0 ] ∈ π\n−1,0(X
[n−1]
• ; Ȳn).

We take [d̄Xn0 ] to be the map given by {α̃in}. Then we define X
[n]
• to be the pushout

X̄n ⊗ ∂∆n
φn //

��

X
[n−1]
•

��
X̄n ⊗∆n // X [n]

•

in sAlg
K(1)
E∞

, and define W
[n]
• := (KO∧2 )0X

[n]
• .

However, we claim that if the cohomology class [βn] vanishes, then there exists a different choice

of φn−1 one level down, which will yield a different (n − 1)-skeleton X
[n−1]′

• , whose associated
obstruction β′n vanishes on the nose. Backing up a level, different choices φn−1, φ

′
n−1 correspond to
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different lifts of {αin−1}. By the spiral exact sequence, any two lifts differ by an element δn−1, as
depicted in the following diagram in the category of Morava modules:

QW̄n−1

{αin−1}

uujjjjjjjjjjjjjjjj

����

δn−1

))

πn−2,0(KO ∧X [n−2]
• ) π\n−2,0(KO ∧X [n−2]

• )oo π\n−3,1(KO ∧X [n−2]
• )oo

The fact that βn−1 = 0, together with the spiral exact sequence

πn−2,∗(KO ∧X [n−2]
• )

βn−1−−−→ π\n−4,∗+1(KO ∧X [n−2]
• )→ π\n−3,∗(KO ∧X

[n−2]
• )→ 0

tells us that there is an isomorphism

π\n−3,∗(KO ∧X
[n−2]
• )

∼=←− π\n−4,∗+1(KO ∧X [n−2]
• ) ∼= A[−n+ 3]

and in particular that we can regard δn−1 to lie in (compare [BJT, Lem. 2.11]):

Homc
Z2[[Γ]](QW̄n−1, A[−n+ 2]) ∼= Homc

Z2[[Γ]](Cn−1QW
[n−1]
• , A[−n+ 2]0).

Let X
[n−1]′

• denote the (n− 1)-skeleton obtained by using the attaching map φ′n−1, with associated
obstruction β′n. The difference βn − β′n is the image of δn−1 under the map u of (A.2). There-
fore, if the cohomology class [βn] vanishes, then there exists δn−1 such that u(δn−1) = βn, and a
corresponding φ′n, whose associated obstruction β′n = 0. This completes the inductive step.

The spectral sequence (3) is the Bousfield-Kan spectral sequence associated to the (diagonal)
cosimplicial space

E∞(B(P,P, E1),KO•+1
2 ∧ E2).

The identification of the E2-term relies on the fact that since E1 is Bott-periodic,

(KO∧2 )∗P•+1E1
∼= P•+1

θ (KO∧2 )∗E1.

The obstruction theory (2) is just the usual Bousfield obstruction theory [Bou89] specialized to this
cosimplicial space.
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