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DIEUDONNÉ MODULES AND p-DIVISIBLE GROUPS ASSOCIATED WITH

MORAVA K-THEORY OF EILENBERG-MAC LANE SPACES

VICTOR BUCHSTABER AND ANDREY LAZAREV

Abstract. We study the structure of the formal groups associated to the Morava K-theories of
integral Eilenberg-Mac Lane spaces. The main result is that every formal group in the collection
{K(n)∗K(Z, q), q = 2, 3, . . .} for a fixed n enters in it together with its Serre dual, an analogue
of a principal polarization on an abelian variety. We also identify the isogeny class of each
of these formal groups over an algebraically closed field. These results are obtained with the
help of the Dieudonné correspondence between bicommutative Hopf algebras and Dieudonné
modules. We extend P. Goerss’s results on the bilinear products of such Hopf algebras and
corresponding Dieudonné modules.

1. Introduction

The theory of formal groups gave rise to a powerful method for solving various problems of
algebraic topology thanks to fundamental works by Novikov [9] and Quillen [12]. Formal groups
in topology arise when one applies a complex oriented cohomology theory to the infinite complex
projective space CP∞. However the formal groups obtained in this way are all one-dimensional
and so far the rich and intricate theory of higher dimensional formal groups remained outside of
the realm of algebraic topology. One could hope to get nontrivial examples in higher dimensions
by applying a generalized cohomology to an H-space. For most known cohomology theories
and H-spaces this hope does not come true, however there is one notable exception. Quite
surprisingly, the Morava K-theories applied to integral Eilenberg-Mac Lane spaces give rise to
formal groups in higher dimensions. Moreover, these formal groups are exceptionally good in
the sense that they have finite height.

This striking result belongs to Ravenel and Wilson [14] who used it to prove the so-called
Conner-Floyd conjecture. However until now there has not been a systematic study of the
remarkable collection of formal groups discovered by Ravenel and Wilson. This study is our
main objective in this paper.

The main tool for Ravenel and Wilson was the notion of a Hopf ring and its behaviour in
spectral sequences. The definition of a Hopf ring was recently put in a conceptual framework by
Goerss by introducing a suitable symmetric monoidal category for bicommutative Hopf algebras
in [4]. We make substantial use of the results of this paper.

It is well-known that the most effective way to study formal groups, particularly those of
finite height or, more generally, p-divisible groups is via the Dieudonné functor which associates
to a formal group a module over a certain ring called the Dieudonné ring cf. [7], [2]. Goerss
supplied the category of Dieudonné modules with a monoidal structure and showed that the
Dieudonné functor is monoidal. We use this technique to study the structure of Ravenel-Wilson
formal groups.

Our main result is that the spectrum multiplication

K(Z/pν , q) ∧K(Z/pν , n− q)→ K(Z/pν , n)

induces a kind of Poincaré duality onK(n)∗K(Z/pν ,−) whereK(n) is the nth Morava K-theory.
More precisely, we show that the Hopf algebras K(n)∗K(Z/pν , q) and K(n)∗K(Z/pν , n− q) are
dual to each other for n odd and ‘twisted dual’ for n even (precise formulations are found in
the main text). Moreover, the formal groups K(n)∗K(Z, q + 1) and K(n)∗K(Z, n − q + 1) are
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Serre dual to each other and we identify explicitly the isogeny classes of these formal groups
over an algebraic closure of Fp, the field of p elements.

The main ingredient in the proof is the theorem of Ravenel and Wilson which shows that the
collection of Hopf algebras K(n)∗K(Z/pν ,−) forms an exterior Hopf ring on K(n)∗K(Z/pν , 1).
The ‘Poincaré duality’ mentioned above is not a formal consequence of the Ravenel-Wilson theo-
rem, though, but follows from rather exceptional properties of the Hopf algebraK(n)∗K(Z/pν , 1).

The paper is organized as follows. In sections 2 and 3 we introduce the so-called ⊠-product
(or bilinear product) in the category of bicommutative Hopf algebras H. We mostly follow
Goerss’s paper [4]; however our construction of the bilinear product is more explicit than his
and we provide some instructive examples. In section 4 we discuss an appropriate version of
the Cartier duality which is more general than the usual one in that we do not restrict our
study to finite-dimensional Hopf algebras. We also answer Paul Goerss’s question to explicitly
describe the internal Hom functor in H. Sections 5 through 8 discuss the monoidal structure
on the category of Dieudonné modules D as well as the Dieudonné correspondence. Again, our
main source is [4], but we also consider the internal Hom functor and duality in D. In section
9 we discuss exterior Hopf rings, exterior Dieudonné algebras and their relations to generalized
homology of Ω-spectra. Sections 10 and 11 are devoted to the study of the structure of the
exterior Hopf algebra on K(n)∗K(Z/pν , 1) and the associated Dieudonné exterior algebra. The
main results are formulated and proved in Section 12.

1.1. Notation and conventions. We consider bialgebras over a fixed field k i.e. collections
of data (H,∆H ,mH , ǫH , iH). Here H is a vector space over k, mH : H ⊗k H → H and
∆H : H → H ⊗k H are associative and coassociative multiplication and comultiplication,
ǫH : H → k and iH : k→ H are the unit and the counit respectively. We will usually omit the
subscript H when it is clear from the context. A bialgebra having an antipode will be called a
Hopf algebra.

Additionally all bialgebras and Hopf algebras will be assumed to be commutative and co-
commutative. The antipode H → H will be denoted by [−1]H . Thus, for two Hopf algebras
A,B the set of all Hopf algebra homomorphisms A → B is an abelian group. The addition of
two homomorphisms f, g : A→ B is defined as the composition

A
∆A // A⊗A f⊗g // B ⊗B mB // B .

The zero homomorphism is the composite map

A
ǫA // k

iB // B .

The additive inverse to a homomorphism f : A → B is given by precomposing f with [−1]B :
B → B or, equivalently, postcomposing it with [−1]A : A → A. It is well-known that Hopf
algebras form an abelian category which will be denoted by H. The zero object in H is the
ground field k.

If A = B then the set of endomorphisms of A is also a ring with respect to the composition
of endomorphisms. The ring of integers Z maps canonically into this ring and we denote by
[n]A or simply by [n] the image of n ∈ Z under this map.

For an element x in a Hopf algebra we will write ∆(x) =
∑
x(1) ⊗ x(2). Similarly the n-fold

diagonal ∆n : H → H⊗n will be written as
∑
x(1) ⊗ . . . ⊗ x(n). Our ground field k will have

characteristic p unless indicated otherwise; from Section 8 onwards p will be odd. In Sections 2
through 4 the symbol ⊗ will stand for ⊗k; later on all unmarked tensor products are assumed to
be taken over the p-adic integers Zp. We will denote by Fp the field consisting of p elements, and
by Qp the field of p-adic rational numbers. For a Hopf algebra H we will denote by F : H → H
the Frobenius morphism x 7→ xp and by V : H → H the Verschiebung.

2



2. Bilinear products of Hopf algebras

In this section we will introduce the operation in the category of Hopf algebras which models
the tensor product of abelian groups.

Definition 2.1. Let H1,H2,K be Hopf algebras. Let φ be a morphism of coalgebras

φ : H1 ⊗H2 → K.

We will write x ◦ y for φ(x, y). Then φ is called a bilinear map if the following axioms hold for
all x, y ∈ H1, z, w ∈ H2:

(1) xy ◦ z =
∑

(x ◦ z(1))(y ◦ z(2))

(2) x ◦ wz =
∑

(x(1) ◦ w)(x(2) ◦ z)
(3) x ◦ 1 = ǫ(x) · 1
(4) 1 ◦ z = ǫ(z) · 1

The bilinear product of two Hopf algebras is defined with the help of a suitable universal
property with respect to bilinear maps. More precisely:

Definition 2.2. For two Hopf algebras H1,H2 their bilinear product H1 ⊠ H2 is the unique
Hopf algebra together with a bilinear map

γ : H1 ⊗H2 → H1 ⊠H2

such that for any bilinear map H1⊗H2 → K there exists a unique Hopf algebra map H1⊠H2 →
K making commutative the following diagram

H1 ⊗H2
γ //

��

H1 ⊠H2

xxpppppppppppp

K

Of course, one still needs to prove that H1 ⊠ H2 satisfying the afore-mentioned universal
property exists. A proof of this result is contained in [4]. Below we will give another, hopefully
more explicit description of the bilinear product.

Let S(H1 ⊗H2) be the symmetric algebra on H1 ⊗H2. For a1 ∈ H1, a2 ∈ H2 we will write
the elements a1 ⊗ a2 ∈ S(H1 ⊗H2) as a1 ◦ a2. The algebra S(H1 ⊗H2) has a unique structure
of a bialgebra defined by the requirement that the canonical inclusion H1 ⊗H2 → S(H1 ⊗H2)
be a map of coalgebras. Explicitly, for a1 ∈ H1, a2 ∈ H2 we have

(2.1) ∆(a1 ◦ a2) =
∑

a
(1)
1 ◦ a

(1)
2 ⊗ a

(2)
1 ◦ a

(2)
2 .

Consider the ideal J in S(H1 ⊗H2) generated by the elements

(1) a1(x, y, z) = xy ◦ z −∑
(x ◦ z(1))(y ◦ z(2))

(2) a2(x,w, z) = x ◦ wz −∑
(x(1) ◦ w)(x(2) ◦ z)

(3) b1(x) = x ◦ 1− ǫ(x) · 1
(4) b2(z) = 1 ◦ z − ǫ(z) · 1.

Let us show that J is a coideal with respect to the coalgebra structure in S(H1 ⊗H2). We will
restrict ourselves with checking the elements a1(x, y, z) and b1(x) only; the proof for a2(x,w, z)
and b2(z) is similar. We have

∆b1(x) =
∑

x(1) ◦ 1⊗ x(2) ◦ 1− ǫ(x)1 ⊗ 1

=
∑

(b1(x
(1)) + ǫ(x(1))1) ⊗ (b1(x

(2)) + ǫ(x(2))1)− ǫ(x)1⊗ 1

=
∑

b1(x
(1))⊗ b1(x(2)) + b1(x

(1))⊗ ǫ(x(2))1 + ǫ(x(1)1)⊗ b1(x(2)).

We see that ∆b1(x) ∈ J ⊗ S + S ⊗ J . Further,

∆(xy ◦ z) = (∆x∆y) ◦∆z =
∑

(x(1)y(1)) ◦ z(1) ⊗ (x(2)y(2)) ◦ z(2).

3



On the other hand,

∆
∑

(x ◦ z(1))(y ◦ z(2)) =
∑

∆(x ◦ z(1))∆(y ◦ z(2))

=
∑

[(x(1) ◦ z(1)(1))⊗ (x(2) ◦ z(1)(2))][(y(1) ◦ z(2)(1))⊗ (y(2) ◦ z(2)(2))]

=
∑

(x(1) ◦ z(1)(1))(y(1) ◦ z(2)(1))⊗ (x(2) ◦ z(1)(2))(y(2) ◦ z(2)(2))

Using cocommutativity of the comultiplication on H2 we can rewrite the last expression as
follows:∑

(x(1) ◦ z(1)(1))(y(1) ◦ z(1)(2))⊗ (x(2) ◦ z(2)(1))(y(2) ◦ z(2)(2)) ≡ ∆(xy ◦ z) mod (S ⊗ J + J ⊗S).

We have the following result.

Proposition 2.3. The algebra S(H1 ⊗ H2)/J has the structure of a Hopf algebra where the
diagonal is given by the formula (2.1). The antipode is given by the formula

[−1](x ◦ y) = ([−1]x) ◦ y.
Proof. It only remains to check the formula for the antipode. We have

x ◦ y ∆ // ∑x(1) ◦ y(1) ⊗ x(2) ◦ y(2)
[−1]⊗[1]// ∑([−1]x(1)) ◦ y(1) ⊗ x(2) ◦ y(2)

=
∑

[([−1]x(1))x(2)] ◦ y =
∑

ǫ(x)1 ◦ y = ǫ(x)ǫ(y)1

as required. �

Remark 2.4. Similarly we can show that [−1](x◦y) = x◦([−1]y). Furthermore, using the equality
[−1]2 = [1] = id it is easy to see that the following identity holds for any x ∈ H1, y ∈ H2:

x ◦ y = [−1]x ◦ [−1]y.

Finally we have the following result which is a direct consequence of the above constructions.

Corollary 2.5. The Hopf algebra S(H1 ⊗H2)/J satisfies the universal property of Definition
2.2 and thus realizes the bilinear product H1 ⊠H2.

Example 2.6. Let G1, G2 be abelian groups. Then we have the following isomorphism of Hopf
algebras:

k[G1] ⊠ k[G2] ∼= k[G1 ⊗Z G2].

Example 2.7. For any Hopf algebra H we have natural isomorphisms:

k[Z] ⊠H ∼= H ∼= H ⊠ k[Z].

The canonical bilinear map k[Z]⊗H → H is constructed as follows. Let tn ∈ k[Z] = k[t, t−1] and
a ∈ H. Then tn◦a 7→ [n](a). This determines a homomorphism of Hopf algebras k[Z]⊠H → H.
The inverse map is specified by a 7→ t ◦ a. The second isomorphism is constructed similarly.

Example 2.8. Let H1 = k[x1, . . . , xn],H2 = k[y1, . . . , yk] where xi and yi are primitive. Then
H1⊠H2 is isomorphic to the polynomial algebra on primitive generators xi◦yji = 1, 2, . . . n, j =
1, 2, . . . k.

Example 2.9. Let H = k[x]/xp. Then H ⊠H ∼= k[x] where x is primitive.

Remark 2.10. The isomorphisms of Examples 2.8 and 2.9 could be obtained directly using
our explicit construction of H1 ⊠ H2. It is simpler, however, to do this using the Dieudonné
correspondence which will be discussed later on.

Remark 2.11. We are only interested in the case when the field k has characteristic p 6= 0. Note,
however, that the construction of the bilinear product goes through also in the characteristic
zero case. The isomorphisms of examples 2.6, 2.7 and 2.8 continue to hold. Example 2.9 has
no analogue in characteristic zero.

Summing up the above discussion we have the following result.
4



Theorem 2.12. The category H together with the bilinear product ⊠ is a symmetric monoidal
category. The unit for this monoidal structure is the Hopf algebra k[Z].

Proof. The existence of the natural commutativity and associativity isomorphisms follows from
the corresponding properties of the usual tensor product together with the universality of ⊠.
The same arguments give rise to the commutativity of the hexagon and pentagon diagrams. We
will refer to [6] for the definition and basic properties of symmetric monoidal categories. �

3. Further properties of the bilinear product

We list a few basic properties of the product ⊠.

Proposition 3.1. Let x ∈ H1, y ∈ H2. Then the following formulas hold in H1 ⊠H2:

(1) V (x ◦ y) = V x ◦ V y
(2) F (V x ◦ y) = x ◦ Fy
(3) F (x ◦ V y) = Fx ◦ y.
(4) ([n]x) ◦ y = [n](x ◦ y) = x ◦ [n]y

Proof. The stated formulas follow directly from the definition of the product ⊠. Equations (1),
(2) and (3) are essentially proved in [14], Lemma 7.1. For (4) we have the following identities:

([n]x) ◦ y =
∑

(x(1) . . . x(n)) ◦ y

=
∑

(x(1) ◦ y(1)) . . . (x(n) ◦ y(n))

=[n](x ◦ y)
=

∑
x ◦ (y(1) . . . y(n))

=x ◦ ([n]y).

�

Furthermore, for any two Hopf algebrasH1,H2 there exists an internal Hom object Hom(H1,H2)
so that for any K in H

HomH(H1 ⊠K,H2) ∼= HomH(H1,Hom(K,H2)).

We will denote by Hν the subcategory of H consisting of the Hopf algebras H such that
[pν ](a) = ǫ(a) for any a ∈ H (the equivalent condition is that [pν ] is a zero element in the
ring HomH(H,H). Using the language of algebraic geometry one can say that H represents a
pν-torsion group scheme. The union of all subcategories Hν will be denoted by H∞.

Similarly we denote by H(N) the subcategory of H formed by those Hopf algebras for which
the Nth iteration of the Verschiebung V N is the zero endomorhism. The union of all H(N) will
be denoted by H(∞). We will call the objects in H(∞) irreducible Hopf algebras (in algebraic
geometry the corresponding objects are called unipotent group schemes.)

Note that the category Hν as well as H∞ forms an ideal inside the symmetric monoidal
category H in the sense that if H ∈ Hν then for any A ∈ H the Hopf algebras H⊠A and A⊠H
belong to Hν. This follows from formula (4) of Proposition 3.1.

We also have the corresponding statement for the internal Hom functor:

Proposition 3.2. Let H be a Hopf algebra in Hν. Then for any A ∈ H the Hopf algebra
Hom(A,H) as well as Hom(H,A) also belong to Hν.

Proof. Let us prove that Hom(A,H) ∈ Hν , the remaining case is treated similarly. Con-
sider Hom(A,H) as a functor of the second argument; we claim that for any n the map
[n] : Hom(A,H) −→ Hom(A,H) is induced by the map [n] : H −→ H. The claim obviously
implies the statement of the proposition.

We have two maps: [n] and Hom(A, [n]) : Hom(A,H) −→ Hom(A,H); to show that they
coincide it suffices to check that the induced two maps

φ,ψ : Hom(C,Hom(A,H)) −→ Hom(C,Hom(A,H))
5



coincide for any C ∈ H. Identifying Hom(C,Hom(A,H)) with Hom(C ⊠ A,H) we see that φ
and ψ are both equal to the map C −→ Hom(A,H) which is induced by [n] : C −→ C. �

The category Hν (but not H(N)) has a unit making it a symmetric monoidal category:

Proposition 3.3. The unit in the monoidal category Hν is the Hopf algebra k[Z/pν ].

Proof. Let t ∈ k[Z/pν ] be the generator in Z/pν . The unit map k[Z/pν ] ⊠H → H is specified
by tn ◦ a 7→ [n]a for a ∈ H. This is a well-defined map since

ǫ(a) = [pν ]a = tp
ν ◦ a = 1 ◦ a.

The inverse map is defined as a 7→ t ◦ a. �

We will finish this section by introducing another subcategory Hf insideH consisting of finite
dimensional Hopf algebras. In the algebro-geometric literature they are known under the name
of finite abelian group schemes. It is well-known (Demazure-Gabriel, [3]) that the category Hf

splits as a direct product:
Hf = Hll ×Hlr ×Hrl ×Hrr.

Here Hll consists of Hopf algebras which are local with local dual, Hlr are the Hopf algebras
which are local and whose duals are reduced (have no nilpotent elements), Hrl are the Hopf
algebras which are reduced with local duals and Hrr stands for those Hopf algebras which are
reduced together with their duals. Let us give some typical examples of Hopf algebras in each
of the four categories listed above.

(1) Hll: k[x]/xp where x is primitive;
(2) Hlr: a group algebra of a finite abelian p-group:
(3) Hrl: a k-dual to the group algebra of a finite abelian p-group;
(4) Hrr: a group algebra of a finite abelian group whose order is coprime to p.

Remark 3.4. Note thatHll×Hlr×Hrl coincides withHf
∞ := Hf

⋂H. The reason for considering

the category Hf
∞ is that it is closed with respect to the Cartier duality which will be discussed

in the next section and that it behaves well with respect to the Dieudonné correspondence.

However observe, that Hf or Hf
∞ are not closed with respect to ⊠. Consider, e.g. the Hopf

algebra H = k[x]/xp with ∆(x) = x⊗ 1+1⊗x. Then H ⊠H ∼= k[x] according to Example 2.9,
in particular, H ⊠H is not finite-dimensional.

4. Duality for Hopf algebras

We will now describe a version of the Cartier duality in the category H and some of its
subcategories. We start by defining for any Hopf algebra H ∈ H its dual Hopf algebra H0. This
construction makes sense for an arbitrary (not necessarily commutative or cocommutative) Hopf
algebra over a field.

Note that if H is not finite dimensional over k then H∗ = Hom(H,k) is a topological Hopf
algebra rather than a usual Hopf algebra. That means that the comultiplication ∆ : H∗ −→
H∗⊗̂H∗ := (H ⊗H)∗ does not take its values in H∗ ⊗H∗ as required for a Hopf algebra but in
a bigger space H∗⊗̂H∗. We say that A ⊂ H∗ is a Hopf subalgebra of H∗ if A is a subalgebra
and ∆(A) ∈ A ⊗ A ⊂ H∗⊗̂H∗. In addition, we require that A be closed under the antipode.
Clearly then, A itself is a Hopf algebra.

Definition 4.1. Let H ∈ H. Define the (Cartier) dual Hopf algebra H0 to be the union of all
Hopf subalgebras inside H∗.

Remark 4.2. Note that if A,B are Hopf subalgebras in H∗ then so is A · B, the set of all
linear combinations of products of elements in A and B. It implies that the union of all Hopf
subalgebras in H∗ is again a Hopf algebra.

Clearly, if H is finite-dimensional then H0 coincides with H∗. However, in general H0 could
be very complicated. Consider, e.g. the Hopf algebra k[t] where the generator t is primitive.
It is well-known that the graded dual to k[t] (where t is taken to be a homogeneous element

6



of degree 2) is Γ, the algebra of divided powers. However, k[t]0 is much bigger than Γ, in
particular it always contains k[k], the k-group ring of k considered as an additive group. To see
that observe that there is a natural evaluation map k[t] −→ Map(k,k) where Map(k,k) stands
for the set of all maps of sets k −→ k. It is clear that Map(k,k) is a topological Hopf algebra
which is dual to k[k]. Taking the continuous dual to the above map we arrive at the inclusion
k[k] −→ H∗. Related questions are discussed in authors’ paper [1].

Definition 4.3. The dualizing object Dh in H is defined as Dh := k[Z]0, the dual Hopf algebra
to the unit object k[Z]. Similarly define the dualizing object in Hν to be D(ν)h := k[Z/pν ]∗,
the k-linear dual to the unit object in Hν .

Remark 4.4. The subscript h in the notation for the dualizing object stands for ‘Hopf’ and its
purpose is to distinguish it from the dualizing object in the category of Dieudonné modules.
We will suppress this subscript as well as the dependence on ν in cases when no confusion is
possible.

Definition 4.5. Let A,B be Hopf algebras in H. A map 〈, 〉 : A ⊗ B → k is called a bilinear
pairing if the following axioms hold for any a, a1, a2 ∈ A, b, b1, b2 ∈ B:

(1) 〈a, b1b2〉 = 〈∆a, b1 ⊗ b2〉
(2) 〈a1a2, b〉 = 〈a1 ⊗ a2,∆b〉
(3) 〈1, b〉 = ǫ(b)
(4) 〈a, 1〉 = ǫ(a)

Clearly, a bilinear pairing A ⊗ B → k is equivalent to a map of Hopf algebras A → B0. In
what follows we treat the Cartier duality in the category Hν . However Lemma 4.6, Definition
4.7 and Theorem 4.8 have obvious analogues, with similar proofs in the category H.

Lemma 4.6. A bilinear pairing A⊗B → k for A,B ∈ Hν determines and is determined by a
map of Hopf algebras A⊠B → D(ν).

Proof. Let φ : A ⊠ B → D(ν) be a Hopf algebra map. Taking its linear dual we obtain a map
of algebras D(ν)∗ = k[Z/pν ]→ (A⊠B)∗ (since φ is a map of coalgebras). The latter gives rise
to an invertible element in (A⊠B)∗ whose pνth power is 1. We can consider this element as a
map A⊗B → k. The axioms 1-4 for the bilinear pairing follow from the corresponding axioms
for a bilinear map.

Conversely, a bilinear pairing 〈, 〉 : A⊗B → k could be considered as an element f ∈ (A⊗B)∗.
We need to show that fpν

= 1 in (A⊗B)∗. Let a⊗ b ∈ A⊗B. We have:

fpν

(a⊗ b) =
∑

f(a(1) ⊗ b(1)) . . . f(a(pν) ⊗ b(pν))

=
∑
〈a(1), b(1)〉 . . . 〈a(pν), b(p

ν)〉

= 〈a(1) . . . a(pν), b〉
= 〈[pν ](a), b〉
= 〈ǫ(a), b〉
= ǫ(a)ǫ(b).

as required. �

Definition 4.7. For H ∈ Hν define its dual DhH as DhH := Hom(H,D(ν)).

Following our customary abuse of notation we will usually shorten DhH to DH. Then we
have the following result.

Theorem 4.8. There is a natural isomorphism of Hopf algebras DH ∼= H0 in Hν.

Proof. Let A be a Hopf algebra in H. We have a natural isomorphism HomHν (A,DH) ∼=
HomHν (A ⊠ H,D). By the previous lemma the set HomHν (A ⊠ H,D) is in natural 1 − 1

7



correspondence with the set of bilinear pairings A⊗H → k and the latter bijects with the set
of topological Hopf algebra maps A→ H∗. Thus, there is a natural bijection of sets

HomHν (A,DH) ≈ HomHν (A,H0)

and therefore DH ∼= H0. �

Corollary 4.9. The Cartier duality functor restricts to the subcategory Hf .

Proof. Indeed, it interchanges the categories Hlr andHrl and maps the categoryHll to itself. �

Corollary 4.10. For any finite-dimensional Hopf algebra H in Hν there is a natural isomor-
phism H ∼= DDH.

�

Corollary 4.11. Let H1,H2 be Hopf algebras in Hν and assume that H2 is finite dimensional.
Then

Hom(H1,H2) ∼= (H1 ⊠H∗
2 )0.

Proof. We have the following sequence of isomorphisms of Hopf algebras

Hom(H1,H2) ∼= Hom(H1,DDH2)

∼= Hom(H1 ⊠DH2,D)

∼= D(H1 ⊠DH2)

∼= (H1 ⊠H∗
2 )0

�

The above formula for the internal Hom functor answers the question of Paul Goerss, cf. [4],
section 5, at least for finite dimensional p-torsion Hopf algebras. In the next section we will
give a corresponding formula for the internal Hom of Dieudonné modules.

5. The bilinear product of Dieudonné modules

In this section we specialize k = Fp. There is little doubt that all our constructions could be
generalized to the case of an arbitrary perfect field, however our topological examples do not
require this level of generality and we restrict ourselves with considering the case of a prime
field only.

Definition 5.1. The category D is the category of modules over the Dieudonné ring R =
Zp[V, F ]/(V F −p). The objects in D will be called Dieudonné modules. The subcategory D(N)

consists of those Dieudonné modules for which V N acts trivially. The subcategory Dν of D
consists of those Dieudonné modules for which pν acts trivially. The union of D(N) will be
denoted by D(∞).

Clearly D,D(N),Dν are abelian categories. We will next introduce the notion of a bilinear
map in D similar to the bilinear map of Hopf algebras discussed in the second section of the
paper.

Definition 5.2. Let M,N,L be R-modules. A map f : M ⊗N −→ L is called a bilinear map
if it is Zp-bilinear and

(1) Ff(V m⊗ n) = f(m⊗ Fn)
(2) Ff(m⊗ V n) = f(Fm⊗ n)
(3) V f(m⊗ n) = f(V m⊗ V n).

Just as before, the notion of a bilinear map leads naturally to the notion of a bilinear product
in the category of Dieudonné modules.
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Definition 5.3. For two Dieudonné modules M and N we define their bilinear product M ⊠N
as the unique Dieudonné module supplied with a bilinear map M ⊗ N → M ⊠ N such that
for any bilinear map M ⊗ N → L there exists a unique R-module map M ⊠ N → L making
commutative the following diagram

M ⊗N //

��

M ⊠N

xxrrrrrrrrrrr

L

.

An explicit description of M ⊠N is given in the following construction.
Let M,N ∈ D and consider M ⊗N as an Zp[V ]-module so that

V (x⊗ y) = V x⊗ V y.
Then R⊗Zp[V ] (M ⊗N) has an obvious structure of a left R-module. Set

M ⊠N := R⊗Zp[V ] (M ⊗N)/ ∼
where ∼ is the R-submodule generated by the following elements:

(5.1) F ⊗ V m⊗ n− 1⊗m⊗ Fn;

(5.2) F ⊗m⊗ V n− 1⊗ Fm⊗ n.
Hence the structure of an R-module on M ⊠N as follows:

F (r ⊗m⊗ n) = Fr ⊗m⊗ n;

V (r ⊗m⊗ n) = r ⊗ V m⊗ V n.
The element 1⊗m⊗ n ∈M ⊠N will be denoted by m ◦ n.

The following result is an analogue of Theorem 2.12. Its proof is a direct inspection of
definitions.

Theorem 5.4. The category D together with the bilinear product ⊠ is a symmetric monoidal
category. The unit for this monoidal structure is R-module ID = Zp where F acts as a multi-
plication by p and V is the identity automorphism.

�

The product ⊠ also determines a monoidal structure in Dν and D(N). The unit in Dν is the
module ID(ν) = Zp/p

ν where, as above, F acts as a multiplication by p and V is the identity
automorphism. The category D(N) has no unit.

Remark 5.5. The structure of the bilinear product of two R-modules is not so obvious even in
the simplest cases. For example one can prove that R ⊠ R is isomorphic to the direct sum of
copies of R with generators 1 ◦ 1, V l ◦ 1, 1 ◦ V l where l = 1, 2, . . ..

6. Duality for Dieudonné modules

We will start our treatment of duality in the category D by introducing the internal Hom
functor.

Definition 6.1. Let M,N ∈ D or M,N ∈ Dν . Define Hom(M,N) to be the subgroup of
Hom(R ⊗M,N) consisting of such f : R⊗M −→ N for which

(1) Ff(V r ⊗m) = f(r ⊗ Fm)
(2) Ff(r ⊗ V m) = f(Fr ⊗m)
(3) V f(r ⊗m) = f(V r ⊗ V m)

Furthermore, define the structure of an R-module on Hom(M,N) by the following formula:

(r · f)(a⊗m) = f(ra⊗m).(6.1)

9



Remark 6.2. It is clear that Hom(M,N) is isomorphic to HomR(R⊠M,N) as an abelian group.
It implies, in particular, that Hom(M,N) is a Zp-module. However the structure of an R-module
on Hom(M,N) is different from that on HomR(R⊠M,N)

Proposition 6.3. Formulas (6.1) determine the structure of an R-module on Hom(M,N).

Proof. One needs to check that (F · f)(a ⊗ m) and (V · f)(a ⊗m) belong to Hom(M,N) i.e.
that they satisfy the formulas (1)-(3) of Definition 6.1 and that the relations V F = FV = p
hold. This verification is completely straightforward. �

Proposition 6.4. There is a natural isomorphism in D:

(6.2) HomR(M ⊠N,L) ∼= HomR(M,Hom(N,L)).

Proof. The R-module Hom(N,L) is, by definition, a subgroup in Hom(R ⊗ N,L). Therefore
HomR(M,Hom(N,L)) is identified with a certain subgroup inside

HomR(M,Hom(R⊗N,L)) ∼= Hom(M ⊗R (R⊗N), L)

∼= Hom(M ⊗N,L).

More precisely, an easy inspection shows that this subgroup consists of f ∈ Hom(M ⊗ N,L)
for which the identities (1)-(3) of Definition 5.2 hold. It follows that the collection of such f is
isomorphic to HomR(M ⊠N,L).

So we showed that (6.2) is an isomorphism of abelian groups. Let us now check that this is an
R-module isomorphism. Let f ∈ HomR(M ⊠N,L). We will consider f as a map M ⊗N −→ L.
Denote by f̄ the corresponding homomorphism

M −→ Hom(N,L) ⊂ Hom(R⊗N,L).

Thus, f̄(m)(r ⊗ n) = f(rm⊗ n). Let a ∈ R. We have:

f̄(am)(r ⊗ n) = f(ram⊗ n)

= f̄(m)(ar ⊗ n)

= (a · f̄)(m)(r ⊗ n).

�

Finally, we introduce the notion of the Cartier duality in the category Dν .

Definition 6.5. The dualizing module in the category Dν is the group Dd(ν) := Z/pνZ where
V acts as multiplication by p and F is the identity automorphism. For M ∈ Dν define its dual
Dieudonné module DdM as Hom(M,Dd(ν)).

Remark 6.6. The subscript d in the definition of the dualizing module is supposed to distinguish
it from the dualizing object for Hopf algebras. We will suppress this subscript as well as the
dependence on ν whenever practical.

We now introduce the notion of a bilinear pairing of Dieudonné modules analogous to the
corresponding notion in the category of Hopf algebras.

Definition 6.7. A bilinear pairing of two Dieudonné modules M,N ∈ Dν is a map

{, } : M ⊗N → Z/pν

such that for any m ∈M and n ∈ N
(1) {m,Fn} = {V m,n}
(2) {Fm,n} = {m,V n}.

Remark 6.8. Obviously a bilinear pairingM⊗N → Z/pν nothing but a bilinear mapM⊗N → D
or, equivalently, a map of Dieudonné modules M ⊠N → D.

We have the following result whose proof is a simple check.
10



Proposition 6.9. For M ∈ Dν the module DM can be identified with the abelian group
Hom(M,Z/pν). The action of the operators F and V is specified by the formulas

(F · f)(m) = f(V m);

(V · f)m = f(Fm).

�

Remark 6.10. It is also possible to consider the Cartier duality in the whole category D. In this
case the dualizing module D will be the abelian group Qp/Zp where V and F act as before.
The analogue of Proposition 6.9 continues to hold in this context.

7. The Dieudonné correspondence

Recall that the Witt Hopf algebraWZ
n = Z[x0, . . . , xn] admits a unique Hopf algebra structure

over Z for which the Witt polynomials Pk = xpk

0 + pxpk−1

1 + . . . + pkxk are primitive. We will
write Wn for WZ

n ⊗ Fp.
There is a map of Hopf algebras V̄n : Wn+1 −→Wn defined as V̄n(x0) = 0 and V̄n(xi) = xi−1

for i > 0. Then the classical Dieudonné theorem cf. [3] states:

Theorem 7.1. The functor F : H −→ D:

H 7→ lim−→
n

HomH(Wn,H)

establishes an equivalence of the subcategory H(∞) of H and the subcategory D(∞) of D.

The proof of the above theorem uses the fact that Wn is a projective generator of the abelian
category H(n).

Next recall that the categories H(∞) and D are monoidal. The following result shows that
F is a monoidal functor.

Theorem 7.2. There is a natural isomorphism

F(H1 ⊠H2) ∼= F(H1) ⊠ F(H2).

Proof. A detailed proof in the graded case is contained in Goerss’s paper [4]. Goerss’s scheme
carries over to the ungraded case and we will show briefly how this is done.

The first step is to construct a homomorphism of R-modules

(7.1) φ : F(H1) ⊠ F(H2) −→ F(H1 ⊠H2).

Arguing as in Goerss’s paper one can show that for a Hopf algebra H over Zp having a lifting of
the Frobenius the Dieudonné module F(H ⊗Fp) is isomorphic to R⊗Zp[V ]Q(H) where Q(H) is
the space of indecomposables of H. Next one proves that for such Hopf algebras H1,H2 there
is an isomorphism

Q(H1 ⊠H2) ∼= Q(H1)⊗Q(H2).

Since the Hopf algebra Wn ⊠Wn does have a lifting of the Frobenius we conclude that

F(Wn ⊠Wn) ∼= R⊗Zp[V ] Q(WZ
n ⊠WZ

n )

∼= R⊗Zp[V ] Q(WZ
n )⊗Q(WZ

n ).

Consider the element

κn ◦ κn = 1⊗ xn ⊗ xn ∈ R⊗Zp[V ] Q(WZ
n )⊗Q(WZ

n ).

This element represents a map of Hopf algebras

∆n : Wn −→Wn ⊠Wn.
11



We will use ∆n to construct the homomorphism (7.1) as follows. Without loss of generality
assume that in H1 and H2 the operator V n is trivial. Then F(H1) = HomH(Wn,H1) and
F(H2) = HomH(Wn,H2). Consider the composite map

φ̃ : F(H1)⊗F(H2) ∼= HomH(Wn,H1)⊗HomH(Wn,H2)

��
HomH(Wn ⊠Wn,H1 ⊠H2) // HomH(Wn,H1 ⊠H2) ∼= F(H1 ⊠H2).

Here the last map is induced by ∆n. Then one can show that φ̃ is a bilinear map and therefore
induces a map (7.1).

Finally, one shows that φ is an isomorphism for H1 = Wk,H2 = Wl for any k and l and then
derives that φ is an isomorphism in general. �

Observe that the Dieudonné functor is defined on the category H(∞) of irreducible Hopf
algebras. This category is not closed with respect to the Cartier duality. There is another

version of the Dieudonné equivalence which is defined on the category Hf
∞ of finite dimensional

p-torsion Hopf algebras. We will now describe this version. Note that this category is closed
with respect to the Cartier duality.

The categories Hll and Hlr consist of irreducible Hopf algebras and therefore the Dieudonné
functor is defined on them as above. We will define the Dieudonné functor on Hrl using the
fact that D(Hrl) = Hlr. Namely, for H ∈ Hrl set F(H) = DF(DH).

Thus, the functor F maps the category Hf
∞ onto the subcategory Df of R-modules consisting

of Dieudonné module of finite length. This subcategory is the product of three subcategories
Dll,Dlr and Drl. Here Dll consists of those R-modules for which V and F act nilpotently, Dlr

is the R-modules with nilpotent F and invertible V and Drl is the R-modules with nilpotent V
and invertible F . We will sum this up in the following theorem, cf. [2]:

Theorem 7.3. The functor F establishes an equivalence of categories Hf
∞ and Df . The functor

F respects the Cartier duality in Hf and Df .

8. Twisted duality

Over the prime field Fp there are other candidates for a dualizing object in the categories
H and D all of which become isomorphic upon passing to the algebraic closure of Fp. In this
section we consider one particular choice of a dualizing object since it will arise naturally in our
study of the Morava K-theories of Eilenberg-Mac Lane spaces.

From now on our ground field k will have characteristic p > 2. We will work here in the
categories Hν and Dν of Hopf algebras and Dieudonné modules which are annihilated by the
νth power of p although one could make similar constructions in other categories.

Definition 8.1.

(1) The twisted dualizing module D′
d in Dν is the abelian group Z/pν where F and V act as

the multiplication by −1 and −p respectively. For a Dieudonné module M its twisted
dual D′

dM is defined as D′
dM = Hom(M,D′

d).
(2) The twisted dualizing object in Hν is the Hopf algebra D′

h whose Dieudonné module is
D′

d. For a Hopf algebra H we define its twisted dual D′
hH as D′

hH := Hom(M,D′
h).

Remark 8.2. Recall that the usual dualizing object in Hν is the dual to the group algebra of
the group Z/pν . It is unlikely that one can give such a simple explicit description of D′

h and so
we have to resort to the Dieudonné correspondence instead.

The notion of a twisted dualizing object leads one to introduce twisted bilinear pairing.

Definition 8.3. A twisted bilinear pairing of two Dieudonné modules M,N ∈ Dν is a map

[, ] : M ⊗N → Z/pν

such that for any m ∈M and n ∈ N
12



(1) [m,Fn] = −[V m,n]
(2) [Fm,n] = −[m,V n].

Remark 8.4. Obviously a twisted bilinear pairing M ⊗N → Z/pν is nothing but a bilinear map
M ⊗N → D′

d or, equivalently, a map of Dieudonné modules M ⊠N → D′
d.

To relate two types of duality in Hν we need a more general form of the Dieudonné corre-
spondence, cf. [3] which we will now recall.

Let k be an algebraic extension of Fp obtained by adjoining a root of some irreducible polyno-
mial h(x) so that k ∼= Fp[x]/(h(x)). Denote by h̄(x) an integral lifting of h(x). Then the ring of
Witt vectors W (k) is the ring Zp[x]/h̄(x). It possesses a lifting of the Frobenius automorphism
on k which will be denoted by σ. Then the Dieudonné ring R(k) consists of all finite sums of
the form ∑

i>0

α−iV
i + α0 +

∑

i>0

αiF
i

where αi ∈W (k). The multiplication law is determined by the commutation relations

V F = FV = p;

Fα = σ(α)F ;

V σ(α) = αV

where α ∈W (k). Furthermore for any Dieudonné module M the R(k)-module M(k) is defined
as W (k) ⊗M where F and V act according to the commutation rules above. Note that the
definition of the ring W (k) can easily be extended to the case of an infinite algebraic extension
by simply taking the union of W (L) over subfields L of k having finite degree over Fp.

The Dieudonné correspondence in this case reads as follows:

Theorem 8.5. The category H(∞) of irreducible Hopf algebras over k is equivalent to the
subcategory of modules over R(k) for which V acts nilpotently. For a Hopf algebra H over Fp

the Dieudonné module corresponding to k⊗H is isomorphic to F(H)(k).

We now have the following result.

Proposition 8.6. Let k be a quadratic extension of Fp. Then k⊗D′
h and k⊗Dh are isomorphic

Hopf algebras.

Proof. The Dieudonné module corresponding to k⊗Dh is W (k)⊗Z/pν where F and V act on
the factor Z/pν as the identity and multiplication by p respectively. Similarly the Dieudonné
module of k⊗D′

h is the same abelian group W (k)⊗Z/pν where now F and V act on the factor
Z/pν as the minus identity and multiplication by −p respectively.

Observe that since p > 2 the extension k is obtained by adding to Fp the square root
of a certain element q ∈ Fp. Note that the Frobenius automorphism σ : k→ k permutes
the roots of the quadratic polynomial x2 − q, i.e. σ(

√
q) = −√q. It follows that the map

1⊗ x 7→ √q ⊗ x : k⊗D′
h → k⊗Dh establishes an isomorphism between these two Dieudonné

module structures. By Theorem 8.5 the corresponding Hopf algebras are isomorphic. �

Corollary 8.7. Let H be a Hopf algebra in Hν. Then for a quadratic extension k of Fp the
Hopf algebras k⊗DhH and k⊗D′

hH are isomorphic.

�

9. Hopf rings, Dieudonné algebras and generalized homology of Ω-spectra

In this section we introduce the notion of a Hopf ring, the corresponding notion of a Dieudonné
algebra and relate them to generalized homology of multiplicative spectra. Note that Hopf rings
originally appear in the work of Milgram [8] and were later studied by Ravenel and Wilson [13]
in the context of their calculation of the homology of Ω-spectrum MU .
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Definition 9.1. A Hopf ring A is a Hopf k-algebra together with a map φ : A ⊠ A −→ A
which is required to be associative: φ(φ ⊠ 1) = φ(1 ⊠ φ). A commutative Hopf ring is a Hopf
ring A for which the product φ is commutative. In other words a (commutative) Hopf ring is a
(commutative) monoid in the symmetric monoidal category H.

Remark 9.2. Sometimes it is convenient to require that a Hopf ring A have a unit. In other
words there is a map k[Z] −→ A subject to the obvious conditions. (Of course in the category
Hν the appropriate notion of a unit is a map k[Z/pν ] −→ A).

The main example of a Hopf ring is the exterior Hopf ring on a Hopf algebra H (Ravenel
and Wilson use the term ’free Hopf ring’).

Definition 9.3. Let H be a Hopf algebra. Then its exterior Hopf ring Λ⊠(H) is defined as

Λ⊠(H) = I⊕H ⊕ (H ⊠H)/Σ2 ⊕ . . .⊕H⊠n/Σn ⊕ . . . .
Here I stands for the appropriate unit (k[Z] in H and k[Z/pν ] in Hν) and Σn is the symmetric
group on n symbols which operates on H⊠n according to the rule

σ(h1 ◦ . . . ◦ hn) = [−1]sgn σhσ(1) ◦ . . . ◦ hσ(n)

where h1, . . . , hn ∈ H.
The nonunital version Λ⊠+(H) is defined as

Λ⊠+(H) = H ⊕ (H ⊠H)/Σ2 ⊕ . . .⊕H⊠n/Σn ⊕ . . . .
Clearly Λ⊠(H) and Λ⊠+(H) are both Hopf rings with respect to the operation ◦, and Λ⊠(H)

also has a unit. The Hopf rings Λ⊠+(H) and Λ⊠(H) are not commutative, but rather skew-
commutative Hopf rings in the sense that the following relation holds for any h1, h2 ∈ H:

h1 ◦ h2 = [−1]h2 ◦ h1.

The corresponding notion in the category of Dieudonné modules is called the Dieudonné algebra:

Definition 9.4. A (commutative) Dieudonné algebra is a (commutative) monoid in the category
D or Dν .

The definition of an exterior Dieudonné algebra is likewise clear:

Definition 9.5. Let M be an R-module. Then its exterior algebra in D or Dν is defined as

Λ⊠(M) = I⊕M ⊕ (M ⊠M)/Σ2 ⊕ . . .⊕M⊠n/Σn ⊕ . . . .
Here I is the unit in D or Dν , i.e. the Dieudonné module Zp or Z/pν with appropriate actions

of F and V . The symmetric group Σn operates on M⊠n according to the rule

σ(m1 ◦ . . . ◦mn) = (−1)sgn σmσ(1) ◦ . . . ◦mσ(n)

where m1 . . .mn ∈ m. The nonunital version Λ+(M) is defined as

Λ⊠+(M) = M ⊕ (M ⊠M)/Σ2 ⊕ . . .⊕M⊠n/Σn ⊕ . . . .
Again, the exterior Dieudonné algebra Λ⊠(M) is not commutative, but rather skew-commutative

in the obvious sense.

Remark 9.6. Let H be an irreducible Hopf algebra. Then H⊠n as well as (H⊠n)/Σn will be
irreducible as well for any n > 0. By the Dieudonné correspondence theR-module F(Λ⊠+(H)) is
isomorphic to Λ⊠+(F(H)). In particular, it is a Dieudonné algebra. If H is a finite-dimensional
Hopf algebra we can use the version of the Dieudonné equivalence given in Theorem 7.3 and
extend F to the unital Hopf ring Λ(H). In this case we obtain F(Λ⊠(H)) = Λ⊠(F(H)).

Now let E be an Ω-spectrum, i.e. a sequence {Eq, q = 0, 1, . . .} of based spaces together with
weak equivalences Ω(Eq+1) ≃ Eq. We assume that E is a ring spectrum, i.e. there exist maps
of based space

(9.1) Eq ∧El −→ Eq+l
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satisfying the usual associativity axioms.
Furthermore, let h∗(−) be a generalized (multiplicative) homology theory which satisfies the

perfect Künneth formula i.e. h∗(X × Y ) ∼= h∗(X) ⊗h∗
h∗(Y ) for any spaces X and Y . Then

according to [13] the graded h∗-module
⊕

n h∗(En) has the structure of a Hopf ring where the
◦-product

◦ : h∗(En)⊗ h∗(Em) −→ h∗(En+m)

is induced by the mutiplication (9.1) in E. Now take E = HZ/pν , the Eilenberg-Mac Lane
spectrum mod pν . In this case Eq = K(Z/pν , q). Next, set h∗(−) = K(n)∗(−), the nth Morava
K-theory at an odd prime p. It will be convenient for us to consider its ungraded version K̄(n).
It is defined as K̄(n)∗(X) = K(n)∗(X) ⊗K(n)∗ Fp where K(n)∗ acts on Fp through the map

K(n)∗ = Fp[v
±1
n ]→ Fp : vn 7→ 1. Since we do not consider the graded Morava K-theory we will

use the notation K(n)∗(−) for K̄(n)∗(−).
Now recall the following fundamental result of Wilson and Ravenel [14].

Theorem 9.7. The Hopf ring K(n)∗K(Z/pν ,−) is the exterior Hopf ring on K(n)∗K(Z/pν , 1).

The Hopf algebra Hν = K(n)∗K(Z/pν , 1) is a well-understood object. It is a finite dimen-
sional Hopf algebra whose dual has the form H∗

ν = Fp[[t]]/[p
ν ](t) where the diagonal is induced

by the formal group law of the Morava K-theory and [pν ](t) is the corresponding p-series. If
one uses Hazewinkel’s generators to construct the spectrum K(n) then its p-series has the form
[p](t) = tp

n

.
Note that Hν is a finite-dimensional irreducible Hopf algebra. Let us now find its Dieudonné

module. Consider instead the Hopf algebra

H = lim←−
ν

H∗
ν = K(n)∗K(Z, 2).

Then H = Fp[[t]] and ∆(t) ∈ H⊗̂H is determined by the formal group law of the Morava
K-theory. It has finite height n and it is easy to see that Φ(λ), the characteristic polynomial of
the Frobenius endomorphism t 7→ tp has the form λn − p.

Recall (cf. for example [2]) that there is a contravariant one-to-one correspondence between
formal groups of finite height and Dieudonné modules of finite type which are free as Zp-modules.
We claim that the Dieudonné module corresponding to H has the form M = R/(V n−1 − F ).
Indeed, M clearly has height n and the dimension of the formal group corresponding to M
equals the length of the R-module M/VM which is equal to one. Now a 1-dimensional formal
group of a given height is determined uniquely by the characteristic polynomial of the Frobenius
which is λn − p in our case. Under the contravariant correspondence between formal groups
and Dieudonné modules the Frobenius endomorphism on the formal group side corresponds to
the Verschiebung on the Dieudonné module side. Since this characteristic polynomial of the
Verschiebung on M is λn − p we conclude that the Dieudonné module of H is indeed M .

Finally, the Dieudonné module F(Hν) is obtained by reducing M modulo pν and we arrive
at the following result:

Lemma 9.8. The Dieudonné module F(Hν) is isomorphic to Z/pν [F, V ]/ ∼ where ∼ is gen-
erated by the relations V n−1 = F and V F = p.

�

This lemma allows one to obtain results about the Hopf ring Λ⊠Hν via the corresponding
Dieudonné algebra Λ⊠(Mν).

Remark 9.9. The ring of coefficients of K(n) is isomorphic to Fp[v
±1
n ] where vn has degree

2(pn − 1). For this version of the Morava K-theory its multiplicative structure is determined
uniquely and leads to a unique formal group law whose Dieudonné module is as described.
Over the field Fp there exist many nonisomorphic 1-dimensional formal groups of height n (all
of which become isomorphic after passing to the algebraic closure of Fp). These formal groups
could be realized by the 2-periodic version of K(n) (which supports many inequivalent product
structures).
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10. Structure of the Dieudonné algebra Λ⊠[R/(V n−1 − F )]

In this section we investigate the structure of the exterior Dieudonné algebra on the module
M = R/(V n−1 − F ). It turns out that with this particular choice of a module this exterior
algebra is isomorphic to the conventional exterior algebra on M . Note that the formula for the
Dieudonné module of K(n)∗K(Z/pν , q) also appears in [16]

To fix the notation, observe that M is a free Zp-module with basis 1, V, V 2, . . . , V n−1 = F .

Denote V k by an−k−1 where k = 0, . . . , n− 1. In the basis a0, . . . , an−1 the R-module structure
on M is specified by the formulas:

V a0 = pan−1;V ai = ai−1, i ≥ 1

Fai = V n−1ai, i ≥ 0.

Let us consider the (conventional) exterior algebra Λ(M) of the free Zp-module M . Thus,

Λ(M) = Λ0 ⊕ Λ1 ⊕ . . .⊕ Λn

where Λq is a free Zp-module with the basis aI = ai1 ∧ . . . aiq , 0 ≤ i1 < . . . < iq < n. We

will denote the generator of the 1-dimensional Zp-module Λ0 by 1 and that of Λn - by a∗ =
a0 ∧ . . . ∧ an−1.

We will regard Λ0 = Zp as the R-module I. Note that Λ1 = M has a structure of an
R-module. Define the structure of an R-module on Λq for q > 1 inductively by the formulas:

(10.1) V aI = V (ai1 ∧ . . . ∧ aiq−1
) ∧ aiq−1.

(10.2) FaI = ai1+1 ∧ F (ai2 ∧ . . . ∧ aiq).

Note that the right hand side of (10.1) and (10.2) is well defined since i1 < n − 1 and iq > 0
when q > 1. Let us check the consistency of the above action. We have:

FV aI = F (V (ai1 ∧ . . . ∧ aiq−1
) ∧ aiq−1)

= (−1)q−1F (aiq−1 ∧ V (ai1 ∧ . . . ∧ aiq−1
))

= (−1)q−1aiq ∧ FV (ai1 ∧ . . . ∧ aiq−1
)

= (−1)q−1paiq ∧ (ai1 ∧ . . . ∧ aiq−1
)

= pai1 ∧ . . . ∧ aiq

= paI .

The condition V F = p is checked similarly. Observe that formulas (10.1) and (10.2) imply the
following identities:

(10.3) V (ai1 ∧ . . . ∧ aiq) = V ai1 ∧ . . . ∧ V aiq .

(10.4) F (V (ai1 ∧ . . . ∧ ais) ∧ ais+1
∧ . . . ∧ aiq) = ai1 ∧ . . . ∧ ais ∧ F (ais+1

∧ . . . ∧ aiq).

Note that for these formulas to hold the indices do not necessarily have to be ordered.
The structure of a Dieudonné module on Λn turns out to be especially simple as the following

result demonstrates.

Lemma 10.1. The following formulas hold:

(10.5) V a∗ = (−1)n−1pa∗.

(10.6) Fa∗ = (−1)n−1a∗.

Proof.

F (a0 ∧ . . . ∧ an−1) =a1 ∧ F (a1 ∧ . . . ∧ an−1)

= . . . = a1 ∧ a2 . . . ∧ an−1 ∧ Fan−1

=a1 ∧ a2 ∧ . . . ∧ an−1 ∧ a0

=(−1)n−1a∗.
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Next, using formula (10.6) and the identity V F = p we arrive at formula (10.5). �

We will introduce a Zp-linear scalar product on Λ(M) as follows. For A ∈ Λq(L), B ∈ Λp(L)
the product 〈A,B〉 = 0 if p+ q 6= n; the case p+ q = n is determined by the formula

(10.7) A ∧B = 〈A,B〉a∗.

Lemma 10.2. The scalar product 〈, 〉 : Λq ⊗ Λn−q → Zp satisfies the following property:

〈V aI , aJ 〉 = (−1)n−1〈aI , FaJ〉.

Proof. We have for q > 0:

V aI ∧ aJ = 〈V aI , aJ〉a∗.
Applying the operator F to the last formula we obtain:

F (V aI ∧ aJ) = 〈V aI , aJ 〉Fa∗ = (−1)n−1〈V aI , aJ〉a∗.
On the other hand according to formula (10.4) we have:

F (V aI ∧ aJ) = aI ∧ FaJ = 〈aI , FaJ〉a∗
as required.

Now let q = 0. For the generator 1 ∈ Zp = Λ0 we have V · 1 = 1. Therefore

〈V · 1, a∗〉 = 〈1, a∗〉.
Using (10.6) we get

〈1, Fa∗〉 = (−1)n−1〈1, a∗〉.
�

As a final preparation to our main theorem in this section we will formulate and prove the
following general result.

Lemma 10.3. Let M,N be two R-modules which are free as Zp-modules. Then the canonical
map

M ⊗N →M ⊠N : m⊗ n 7→ m ◦ n = 1⊗m⊗ n ∈M ⊠N

is a monomorphism.

Proof. Since M,N have no p-torsion it suffices to prove that the map M ⊗ N → M ⊠ N is
monomorphic after tensoring with Q. In other words we have to show that the localization map

M ⊗M → Q[V, V −1]⊗Q[V ] M ⊗M
is an inclusion. The latter condition is equivalent to the Q[V ]-module M ⊗ N having no V -
torsion. This holds since M ⊗N has no p-torsion. �

Corollary 10.4. Let M be a free Zp-module. Then the canonical map

Λ(M)→ Λ⊠(M)

is an inclusion.

�

We are now ready to relate Λ(M) to the exterior Dieudonné algebra Λ⊠(M).

Theorem 10.5. For any q = 0, 1, . . . , n there is an isomorphism of R-modules φq : Λq(M)→
Λq

⊠
(M) given by the formula

I = Λ0 → Λ0
⊠ = I : 1 7→ 1;

Λq → Λq
⊠

: ai1 ∧ . . . ∧ aiq 7→ ai1 ◦ . . . ◦ aiq for q > 0.
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Proof. A straightforward inspection shows that φ is indeed a map of R-modules. It follows from
Corollary 10.4 that φ is an inclusion. It remains to prove that it is an epimorphism. Consider
the elements ai1 ◦ . . . ◦ aiq ∈ Λq

⊠
where i1 < . . . < iq. We will call such elements admissible.

Therefore we are reduced to proving that admissible elements additively span Λq
⊠
. Suppose by

induction that this is so and show that admissible elements span Λq+1
⊠

.
We are assuming that q > 1 since the cases q ≤ 1 are obvious. It follows from the inductive

assumption that the collection {F k ⊗ ai1 ◦ . . . ◦ aiq+1
} span Λq+1

⊠
. Here k = 0, 1, 2 . . . and

i1 < . . . < iq+1. Since q > 1 for any given x = F k ⊗ ai1 ◦ . . . ◦ aiq+1
the elements ai1 , . . . , aiq are

in the image of V , namely ai1 = V (ai1+1), . . . , aiq = V (aiq+1). Using repeatedly the relation
(5.1) we conclude that x can be rewritten as a multiple of an admissible element. This completes
the inductive step. �

Now fix a positive integer ν and consider the Dieudonné module Mν := M ⊗ Z/pν and the
corresponding Hopf algebra Hν . Then the corresponding exterior algebra Λ(Mν) ∼= Λ⊠(Mν)
has a scalar product induced from Λ(M) and we arrive at the following result.

Corollary 10.6.

(1) Let n ≥ 1 be odd, 0 ≤ q ≤ n. Then the Dieudonné modules Λq
⊠
(Mν) and Λn−q

⊠
(Mν) as

well as Hopf algebras Λq
⊠
Hν and Λn−q

⊠
Hν are dual to each other.

(2) Let n > 1 be even, 0 ≤ q ≤ n. Then the Dieudonné modules Λq
⊠
(Mν) and Λn−q

⊠
(Mν)

as well as Hopf algebras Λq
⊠
Hν and Λn−q

⊠
Hν are twisted dual to each other. Thus, they

become dual in the usual sense after a quadratic extension of Fp.

Proof. It follows from Lemma 10.2 that the scalar product on Λ⊠(M) induces a bilinear pairing

between Λq
⊠
(Mν) and Λn−q

⊠
(Mν) for n odd. Similarly for n even this pairing is twisted bilinear.

It is clearly nondegenerate and the result follows. �

We conclude this section with the useful observation that the R-module Λq(M) ∼= Λq
⊠
(M) is

actually a module over R/(V n−q − F q).

Proposition 10.7. In the R-module Λq(M) the following relation holds: V n−q = F q.

Proof. Note that since V F = p and Λq(M) is a free Zp-module the operator V is monomorphic
on Λq(M). Therefore it suffices to prove the relation V q · V n−q = V q · F q or V n = pq. For a
generator ai1 ∧ . . . ∧ aiq we have according to formula (10.3)

V n(ai1 ∧ . . . ∧ aiq) =V nai1 ∧ . . . ∧ V naiq

=pai1 ∧ . . . ∧ paiq

=pqai1 ∧ . . . ∧ aiq

as required. �

Remark 10.8. We want to stress that the isomorphism of Λ⊠(M) with the usual exterior algebra
Λ(M) relies essentially on the peculiar properties of the module M = R/(V n−1 − F ). Calcu-
lations show that bilinear products as well as exterior Dieudonné algebras of cyclic R-modules
which are free of finite rank over Zp usually contain p-torsion and are often no longer finitely
generated over Zp.

11. Decomposition of Λ⊠[R/(V n−1 − F )] up to isogeny over F̄p

Here k will be an algebraic extension of Fp, in fact we will be most interested in the case
when k = F̄p, the algebraic closure of Fp. Recall the definition of the Dieudonné ring R(k) and

R(k)-module N(k) for an R-module N from Section 8. We will denote by W̃ (k) the field of

fractions of W (k). The ring W̃ (k)⊗W (k)R ∼= Q⊗R(k) will be denoted by R̃(k) and Ñ(k) will

stand for the R̃(k)-module W̃ (k)⊗W (k) N ∼= Q⊗N(k).
18



Definition 11.1. An F -space is a R̃(k)-module which is finite-dimensional as a W̃ (k)-vector

space. F -spaces form a category whose morphisms are simply the morphisms of R̃(k)-modules.

The R(k)-modules we will be interested in here will be torsion-free and finite rank over W (k).

Any such module N determines a lattice in the F -space Ñ = Q⊗N .

Definition 11.2. Let N1 and N2 be two torsion-free R(k) modules of finite rank over W (k).

We say that N1 and N2 are isogenous if the corresponding F -spaces Ñ1 and Ñ2 are isomorphic.

Now let us introduce the Dieudonné modules Rn,q = R/(V n−q − F q). Observe that

R̃n,q = W̃ (k)[T ]/(pn−q − T n)

and F acts as a multiplication by T . It is interesting to note that for p, q coprime and k an
algebraic extension of Fp of degree n the module R̃n,q(k) is a division algebra over Qp with
Hasse invariant q/n, see. e.g. [11], Chapter 17. The module Rn,q(k) is in this case a maximal

order in R̃n,q(k).
From now on we assume that k = Fp. It is known that the category of F -spaces is semisimple

and all simple objects are of the form R̃n,q where n, q are nonnegative relatively prime integers
and n > 0. Recall that we denoted by M the R-module Rn,1 = R/(V n−1 − F ). Let (n, q) be
the greatest common factor of n and q and set n0 := n

(n,q) , q0 := q
(n,q) We have the following

result.

Theorem 11.3. The R(k)-module Λq(M) is isogenous to the direct sum of 1
n0

(
n
q

)
copies of the

R(k)-module Rn0,q0
.

Proof. Observe that the operator V permutes (up to multiplication by a scalar factor) the basis

vectors aI in the R̃-module Q ⊗ Λq(M). Since V n = pq in Q ⊗ Λq(M) by Proposition 10.7 we
see that this module decomposes into a direct sum of submodules isomorphic to quotients of
R̃n,q. Similarly Q⊗Λq(M)(k) decomposes into a direct sum of quotients of R̃n,q(k). Therefore

it suffices to show that R̃n,q(k) is isomorphic to the direct sum of copies of R̃n0,q0
(k). We claim

that if there exists a nontrivial map of R-modules

(11.1) R̃r,s(k)→ R̃n,q(k)

then r
s

= n
q
. This claim will clearly imply what we need.

The proof of the claim is similar to Proposition D in [2], page 79. A map (11.1) is equivalent

to having an element x ∈ R̃n,q(k) for which F rx = pr−sx. Note that R̃n,q(k) has a basis fj such
that if x =

∑
bjfj then

Fnx =
∑

σn(bj)p
n−qfj

and so

F rnx =
∑

σrn(bj)p
r(n−q)fj.

On the other hand if F rx = pr−sx then

F rnx =p(r−s)nx

=
∑

bjp
(r−s)nfj.

It follows that σn(bj)p
(r−s)n = bjp

r(n−q) and since the Frobenius σ preserves p-adic valuation

on W̃ (k) we conclude that (r − s)n = r(n− q). It follows that r
s

= n
q

as required. �

12. p-divisible groups associated with K(n)∗K(Z, q)

12.1. Basic definitions. We start by recalling some standard definitions and facts from the
theory of p-divisible groups referring the reader to [2], [15] or [17] for details. Here k is an
algebraic extension of Fp.
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Definition 12.1. A p-divisible group of height h over a field Fp is a sequence G = (Hν , iν),
ν = 0, 1, 2, . . . of Hopf algebras over k with dimHν = νh and iν : Hν+1 → Hν is a Hopf algebra
homomorphism such that for each ν the sequence

Hν+1
[pν ] // Hν+1

iν // Hν
// 0

is exact in H.

Since [pν+1] = [p] · [pν ] is the trivial endomorphism of Hν+1 we conclude that there exists a
map jν : Hν −→ Hν+1 making commutative the following diagram

Hν+1

Hν+1

[p]

OO

iν // Hν

jν

bbE
E
E
E
E
E
E
E

The topological Hopf algebra H = lim←−Hν represents a formal group from which the sequence

(Hν , iν) could be recovered by setting Hν := coker{[pν ] : H → H}. We will use the term
‘p-divisible group’ also for the corresponding formal group. The dimension of the p-divisible
group G is the Krull dimension of H.

Next, H will be isomorphic to a ring of formal power series (one say that in this case the
corresponding formal group is smooth) if and only if each Hν is a local ring.

There is a suitable version of duality for p-divisible groups. As far as we know twisted duality
has not been considered before.

Definition 12.2. If G = (Hν , iν) is a p-divisible group then its Serre dual p-divisible group
is defined as DG = (H∗

ν , j
∗
ν). It has the same height as (Hν , iν). Its twisted Serre dual is the

collection D′G = (D′Hν ,D
′jν) where D′ is the functor of twisted duality on the category of

p-torsion Hopf algebras.

Remark 12.3. Of course, the notions of the Serre dual and twisted Serre dual p-divisible group
coincide when k contains a quadratic extension of Fp.

Example 12.4.

(1) A one-dimensional p-divisible group of height 1 is represented by the topological Hopf
algebra H = k[[x]] with ∆(x) = 1⊗x+x⊗1+x⊗x, the so-called multiplicative formal
group. This p-divisible group is smooth. Its Serre dual p-divisible group is represented
by the Hopf algebra k[Z]∗, the dual group ring of the infinite cyclic group. The dimension
of this p-divisible group is zero and it is not smooth.

(2) Let X be an abelian scheme over k. Then the kernel of the multiplication by pν on
X is a finite group scheme which is represented by a Hopf algebra whose dimension is
a power of p. The resulting inverse system of Hopf algebras constitutes a p-divisible
group.

To conclude our review of the background material we note that the height of a p-divisible
group is equal to the sum of its dimension and the dimension of its dual:

height(G) = height(DG) = dim(G) + dim(DG).

12.2. Dieudonné correspondence. We now briefly review the Dieudonné correspondence
adapted to p-divisible groups following [2]. Let G = (Hν , iν) be a p-divisible group. Its
Dieudonné module is defined as F(G) = lim←−F(Hν). Then we have a theorem:

Theorem 12.5. The correspondence G 7→ F(G) induces an equivalence between the categories
of p-divisible groups over k and R(k)-modules which are finite rank free W (k)-modules. The
height of G is equal to the dimension of F(G). If the Dieudonné module corresponding to G is

actually a module over R̂(k) := lim←−n
R(k)/V n then G is smooth. The dimension of G equals

dimk[(F(G)/V F(G)].
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Example 12.6. Let Rn,q = R(k)/(V n−q − F q). The corresponding p-divisible group G has
height n. It is smooth of dimension q for q = 1, 2 . . . , n. The Serre dual to G has Dieudonné
module Rn,n−q = R(k)/(V q − Fn−q).

For any p-divisible group G one can define the F -space F(G)⊗Q. Then two p-divisible groups
are isogenous (i.e. there exists a monomorphism between their representing Hopf algebras with
a finite-dimensional cokernel) if and only if the corresponding F -spaces are isomorphic.

12.3. Main theorems. Now letHν(q) := K(n)∗K(Z/pν , q). Also denoteH∗
ν (q) = K(n)∗K(Z/pν , q)

by Hν(q). The inclusion
Z/pν −→ Z/pν+1

induces a map of spaces
K(Z/pν , q) −→ K(Z/pν+1, q)

which in turn gives rise to a map of Hopf algebras iν : Hν+1(q)→ Hν(q).
We can formulate now our main result.

Theorem 12.7.

(1) The sequence (Hν(q), iν) forms a p-divisible group of height
(
n
q

)
.

(2) For q = 1, 2, . . . , n − 1 the p-divisible group (Hν(q), iν) is smooth. The corresponding

formal group is represented by a formal power series ring on
(
n−1
q−1

)
variables and could

be identified with K(n)∗K(Z, q + 1).
(3) If n is odd then there is an isomorphism

Hν(n) ∼= D(ν) := Fp[Z/p
ν ]∗.

If n is even then Hν(n) ∼= D′(ν) where D′(ν) is the twisted dualizing Hopf algebra.
(4) (a) Let n be odd and 0 < q < n. Then the ◦-pairing

Hν(q)] ⊠Hν(n− q) −→ Hν(n)

induces an isomorphism of the formal group of K(n)∗K(Z, q + 1) with the Serre
dual of the formal group of K(n)∗K(Z, n− q + 1). In particular the Hopf algebras
Hν(q) and Hν(n− q) are isomorphic.

(b) For n even the above statement holds provided one replaces ‘dual’ with ‘twisted
dual’.

Proof. We saw in section 10 that the Dieudonné modules corresponding to K(Z/pν , q) are
obtained by reducing modulo pν from the modules Λq

⊠
(M) where M = R/(V n−1 − F ). These

modules torsion-free and their rank over Zp is equal to dim Λq(M) =
(
n
q

)
. This proves part (1).

Further note that since the identity V n−q = F q holds in Λ⊠(M) ∼= Λ(M) the corresponding
p-divisible group is smooth for q < n. From the formula (10.3) for the action of V on Λ⊠(M)
we deduce that the image of V is spanned modulo p by the monomials ai1 ∧ . . . ∧ aiq where
iq 6= n − 1. It follows that the monomials ai1 ∧ . . . ∧ aiq−1

∧ an−1 mod V form a basis in

Λq(M)/V Λq(M) and so its dimension over Fp equals
(
n−1
q−1

)
. Therefore the dimension of the

formal group in question is as claimed.
Next, observe that there is a homotopy equivalence of spaces

K(Q/Z, q) ≃ hocolimK(Z/pν , q)

where the homotopy colimit is taken over all ν and prime numbers p. This homotopy equivalence
induces an isomorphism of Hopf algebras

lim←−
ν

K(n)∗K(Z/pν , q) ∼= K(n)∗K(Q/Z, q).

The obvious map K(Q/Z, q)) → K(Z, q + 1) induces an isomorphism on K(n)-theory. There-
fore the p-divisible group Hν = K(n)∗K(Z/pν , q) is indeed representable by the Hopf algebra
K(n)∗K(Z, q + 1) as claimed. This proves part (2). The remaining claims (3) and (4) follow
from Corollary 10.6. �
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Remark 12.8. It is curious to note that the Serre duality between K(n)∗K(Z, q + 1) and
K(n)∗K(Z, n − q + 1) breaks down for q = 0. Indeed, K(Z, 1) is simply the circle S1 and so
K(n)∗K(Z, 1) cannot give rise to a formal group. However the duality between K(n)∗K(Z/pν , 0)
and K(n)∗K(Z/pν , n) continues to hold. The point is that K(n)∗K(Z, q + 1) can no longer be
related to K(n)∗K(Z/pν , q) for q = 0.

Remark 12.9. Our results are formulated under the assumption that k has characteristic p 6= 2.
Note, however, that an appropriate version of Theorem 12.7 holds for p = 2 as well. The point
is that although in this case K(n) is not a commutative ring spectrum, K(n)∗K(Z/2ν , q) is
still a bicommutative Hopf algebra. See [5] for details. In the exterior Dieudonné algebra we
should impose the additional condition that the circle product of two equal elements is zero.
The notion of twisted duality is extraneous; the twisted dualizing object is the same as the
untwisted one.

The identification of the isogeny class of K(n)∗K(Z, q + 1) is an immediate consequence of
Theorem 11.3. Recall that for two nonnegative integers q, n the pait n0, q0 is specified by the
condition that q

n
= q0

n0
and that q0, n0 be coprime. Thus, we obtain the following result.

Theorem 12.10. For 0 < q < n the formal group of K(n)∗K(Z, q + 1) is isogenous to the
product of 1

n0

(
n
q

)
copies of the p-divisible group corresponding to the Dieudonné module Rn0,q0

.

�

Remark 12.11. One might wonder whether the formal groups corresponding to K(n)∗K(Z, q+1)
are algebraicizable, i.e. whether there exists abelian schemes of which they are formal comple-
tions. Since abelian schemes are always isogenous with their dual the same is true for their
completions. This is the so-called Manin symmetry condition, see [7] or [10]. It follows that if n
is odd or if n is even but q 6= n

2 the formal group of K(n)∗K(Z, q + 1) cannot be algebraicized.
Note that for n even the formal group of K(n)∗K(Z, n

2 + 1) is supersingular, i.e. it is isogenous

(over F̄p) to the product of copies of one-dimensional formal group of height 2.
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