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Preface

Introduction

Since the early 1990’s there have been several useful symmetric monoidal model struc-
tures on the underlying category of a point set category of spectra. Topological Hochschild
homology (THH) is constructed from smash powers of ring-spectra, that is, monoids in
the category of spectra. Already in the 1980’s such a construction was made. Build-
ing on ideas of Goodwillie and Waldhausen, Bökstedt introduced a class of ring-spectra
for which he could define THH via a homotopy-invariant ad hoc construction of smash
powers [Bö], and he determined the homotopy types of THH applied to Z and to Z/pZ.
When symmetric monoidal model categories of spectra appeared (e.g. S-modules in
the sense of Elmendorf-Kriz-Mandell-May [EKMM], symmetric spectra [HSS] and or-
thogonal spectra [MMSS],) it turned out that the Hochschild complex in these model
categories provided a construction of THH. For S-modules this was shown already in
[EKMM], for symmetric spectra it was shown by Shipley [Sh]. The case of orthogonal
spectra was treated thesis [Kr] of Kro.

It was discovered by Bökstedt, Hsiang and Madsen that the action of the circle group
S1 on THH contains crucial information about algebraic K-theory [BHM]. However it
was surprisingly hard to provide symmetric monoidal model structures of equivariant
spectra, and the equivariant homotopy type of the Hochschild complex depends on the
chosen point set category of spectra as remarked in [EKMM, IX.3.9]. For a commuta-
tive ring-spectrum A there is an alternative description of the Hochschild complex as the
categorical tensor A⊗ S1 in the category of commutative ring spectra. In order for this
to be homotopically meaningful we need a convenient model structure on the category
of commutative ring spectra [Sh04]. The action of S1 on topological Hochschild homol-
ogy needed for the construction of Bökstedt, Hsiang and Madsen’s Topological Cyclic
homology (TC) [BHM] has been addressed by Kro in his thesis [Kr], but he works in the
category of ring-spectra as opposed to the category of commutative ring-spectra. Model
structures on commutative orthogonal ring-spectra with action of a compact Lie group
are also important in the norm construction of Hopkins, Hill and Ravenel in [HHR].

Recently iterated Topological Hochschild homology and its relation to the chromatic
filtration has been studied together with its versions of “higher Topological Cyclic ho-
mology” (e.g. [BCD], [CDD], [Schl] and [BM]). In the present work we study the
categorical tensor A ⊗ X of a commutative orthogonal ring-spectrum and a space X.
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CONTENTS

When a compact Lie group G acts on X, then by functoriality it also acts on A ⊗ X.
We study properties of this action and use it as a basis for a new and relatively simple
construction of higher TC.

Motivated by the construction of higher TC we introduce, following [Sh04] various
more or less convenient model structures on the category of orthogonal spectra with
action of a compact Lie group G. We call the model structure we find most convenient
the S-model structure. Working with the S-model structure, the categorical tensor A⊗X
of a commutative orthogonal ring spectrum A and a G-space X is a model for the Loday
functor ΛXA from [BCD]. Thus, in this setting, the constructions of higher versions of
TC in [BCD], also called covering homology, can be transferred to A⊗X.

Organization

In Chapter 1 we collect the results about unstable equivariant spaces that we are going
to need. In particular we recall Illman’s Triangulation Theorem and inspired by Ship-
ley [Sh04] we provide mixed model structures on G-spaces for G a compact Lie group
depending on pairs of families of subgroups of G.

In Chapter 2 we present mixed model structures on the category of orthogonal G-
spectra. We follow the by now standard way of passing from so called level model
structures on orthogonal spectra to stable model structures. By focusing more on semi-
free orthogonal spectra than on free ones we gain flexibility in the choice of level model
structures. We observe that there is a bijection between the set of isomorphism classes
of n-dimensional orthogonal representation of G and the set of conjugacy classes of
subgroups P of G×ORn with the property that the projection to the first factor induces
an embedding of P in G. This observation leads us to work with compatible families
of subgroups of the groups G×ORn instead of universes of G-representations, which in
turn leads level model structures on orthogonal G-spectra different from the ones usually
obtained from universes.

In Chapter 3 we study fixed point spectra of finite smash powers of orthogonal
spectra. First we recall some general results about filtrations of smash powers of cell
complexes. Next we recollect some results about geometric fixed point spectra. In
particular we review results of Kro stating that geometric fixed points commute with
restriction to subgroups. The main result 3.2.14 of this chapter is quite technical. It
is both used in the construction of model structures on the category of commutative
orthogonal G-ring-spectra and in the identification of geometric fixed points of a smash-
power as a smash-power 3.2.16.

In Chapter 4 we introduce the Loday functor as the categorical tensor of a com-
mutative orthogonal ring-spectrum and a space. This is a kind of smash-power with
a topological space as exponent. We use the results of Chapter 3 to equip the Loday
functor with the structure needed to construct covering homology, that is, a general-
ized version of topological cyclic homology. We end the chapter by comparing to the
construction of covering homology in [BCD].

Chapter 5 consists of general results about category theory needed in the main part.
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Chapter 6 is a recollection of facts about topological model categories together with
a result about assembling model structures on certain categories to a model structure
on a functor category. This result is used in the construction of level model structures
on the category of orthogonal G-spectra.

Notation

We use the following notation:

(i) N = {0, 1, . . . }, Z = {. . . ,−1, 0, 1, 2 . . . }, Q, R and C are the sets of natural,
integer, rational, real and complex numbers, with the usual algebraic structure.

(ii) For n ≥ 0, Rn is n-dimensional Euclidean space (with the dot product.) For
1 ≤ i ≤ n, ei ∈ Rn forms the standard basis. We choose Rm+n together with
the canonical inclusions of Rm onto the first coordinates and of Rn as the last
coordinates as the direct sum Rm ⊕Rn.

(iii) The phase “let V be a Euclidean space” means “let V = Rn for some n ≥ 0”.

(iv) The one-point compactification SV of a real inner product space V with its induced
action by the orthogonal group OV is denoted SV , and is referred to as the V -
sphere. Given x ∈ V we consider x as an element x ∈ SV through the inclusion
of V in its one-point compactification SV . Given x, y ∈ SV we allow ourselves to
write x+ y with the convention that ∞+ x =∞ = x+∞.

(v) The category U is the category of compactly generated weak Hausdorff spaces and
continuous functions (see e.g., [St]), and T is the category of based spaces in U .
Unless we explicitly state otherwise, a space is an object in T and maps between
spaces are assumed to be continuous (and basepoint preserving). If X ∈ U is an
unbased space, then X+ ∈ T is the space obtained by adding a disjoint basepoint.

(vi) When we use the symbol G to denote a group it will always be a compact Lie
group. Subgroups of compact Lie groups are always assumed to be closed.





Chapter 1

Unstable equivariant homotopy

theory

In this section we will recall results from (unstable) equivariant homotopy theory. We
begin with a recollection on model structures on G-spaces and will continue with some
consequences of the results of Illman [Ill83]. We work in the pointed setting T (the
category of based, compactly generated, weak Hausdorff spaces) as this is the more
important case for us, but all results could be stated in the unbased category U as well.

1.1 G-Spaces

Let G be a compact Lie group, and let GT be the category of spaces with a continuous
action of G. Considering G as a one object category, GT is the category of continuous
functors from G to T . We let IG be the set of G-maps given by the standard inclusions
(Sn−1 ×G/H)+ → (Dn × G/H)+ for n ≥ 1 and H a closed subgroup of G. A map of
G-spaces is a genuine cofibration if it is a retract of a relative IG-cell complex. Limits
and colimits in GT are formed in T and then given the induced G-action.

Definition 1.1.1. The continuous functor T → GT equipping a space with the trivial
G-action has both a left and a right adjoint. The left adjoint

(−)G : GT → T ,

assigns to a G-space X its orbit space XG, and the right adjoint

(−)G : GT → T ,

assigns the subspace XG of X of G-fixed points.

The fact that they are adjoints, implies in particular that (−)G preserves colimits
and (−)G preserves limits, but even more is true (cf. [MM, III.1.6], or [Mal, Proposition
1.2]):

9



CHAPTER 1. UNSTABLE EQUIVARIANT HOMOTOPY THEORY

Lemma 1.1.2. The functor (−)G preserves coproducts, pushouts of diagrams one leg
of which is a closed inclusion, and colimits along sequences of closed inclusions. For X
and Y in GT , we have (X∧Y )G = XG∧Y G.

For subgroups H of G, we can use the forgetful functors induced by the inclusion of
one object categories i : H → G to define fixed point functors

GT
i∗ // HT

(−)H // T ,

and analogously for orbit spaces. It is often convenient to factor these functors in a
different way, so that not all of the group action is forgotten: Let N be a closed normal
subgroup of G. For a G-space X, the quotient group G/N acts on the N -fixed points
XN , and we can redefine the functor (−)N : GT → (G/N)T . The slight double use of
notation is remedied by the fact that the following diagram of functors commutes:

GT

(−)N

��

i∗1 // NT

(−)N

��
(G/N)T

i∗2 // T ,

where i1 : N → G and i2 : {e} → G/N are the inclusions. Similarly we can consider the
N -orbit functors GT → (G/N)T .

Recall that an h-cofibration is a map i : A → X in GT so that the canonical map
Mi = X

∐
AA ∧ I+ → X ∧ I+ has a retract. The following technicality proves to be

helpful in several places:

Lemma 1.1.3. The fixed point functors (−)H preserve h-cofibrations.

Proof. By Lemma 1.1.2 there are homeomorphisms (X ∧ I+)
H ∼= XH ∧ I+ and (Mi)H ∼=

M(iH), so that (Mi)H → (X ∧ I+)
H has a retraction.

The same arguments also apply to the case where H is a normal subgroup and we
consider (−)H as a functor to G/HT .

The left adjoint of the restriction i∗ : GT → HT is given by inducing up:

Definition 1.1.4. For an H-space Y ∈ HT the smash product G+∧Y has an action of
G ×H, with G acting from the left on G+ and H acting diagonally, from the right on
G+ and from the left on Y , that is, (g, h)(a ∧ y) = gah−1 ∧ hy for (g, h) ∈ G ×H and
a ∧ y ∈ G+∧Y . The induced G-space is the H-orbit G-space

G+∧HY = (G+∧Y )H .

While the inducing up functor is generally not symmetric monoidal, there is an
important compatibility property with the smash product of spaces which one checks by
inspection:

Lemma 1.1.5. If X is an H-space and Y a G-space there is a natural G-equivariant
homeomorphism

(G+∧HX)∧Y ∼= G+∧H(X∧i
∗Y ), ([g, x], y) ↔ [g, (x, g−1y)].

10



1.1. G-SPACES

Orbits and Fixed Points for semi-direct Products

Throughout our work, actions of groups that are semi-direct products appear in various
places. We will recall a few elementary properties, before investigating the more compli-
cated interactions of the orbit and fixed point functors that play a role in computing the
fixed points of smash powers. We restate the definition, in order to fix some notation:

Definition 1.1.6. Let (G, ·, e) ∈ U be a compact Lie group acting on another compact
Lie group (O,⊙, E) ∈ U via a group homomorphism φ : G → Aut(O). The semi-direct
product G⋉ (O,φ) is the product space G×O equipped with the multiplication defined
by

(G⋉ (O,φ)) × (G⋉ (O,φ)) → (G⋉ (O,φ))

(g,A), (h,B) 7→ (g · h,A⊙ φ(g)(B)).

When φ is implicit in the context we write G⋉O instead of G⋉ (O,φ).

For the rest of this section G and O are compact Lie groups with a group homomor-
phism φ : G→ Aut(O).

Remark 1.1.7. Specifying an action of the semi-direct product G ⋉ O on a space Z is
the same as a giving actions of G and O on Z such that the map O → T (Z,Z) defining
the action of O on Z is a G-map.

Remark 1.1.8. If G acts on O through inner automorphisms, that is, if there is a ho-
momorphism ψ : A → O such that φ(g)(A) = ψ(g) ⊙ A ⊙ ψ(g−1), we write G ⋉ψ O
instead of G⋉ (O,φ). In this situation then there is an isomorphism G⋉ψ O → G×O
of topological groups taking (g,A) to (g,A ⊙ ψ(g)).

It is usually cumbersome to explicitly write the signs “·” and “⊙” for the multipli-
cations of G and O, so we often omit them. The following properties are elementary:

Lemma 1.1.9. (i) Mapping A ∈ O to (e,A) ∈ G⋉O embeds O as a (closed) normal
subgroup.

(ii) Mapping g ∈ G to (g,E) ∈ G⋉O embeds G as a closed subgroup.

(iii) For A ∈ O and g ∈ G, the following elements of the semi-direct product are equal:

(e, φ(g)(A)) = (g,E)(e,A)(g,E)−1

(iv) G is normal in G ⋉ O if and only if φ is trivial. In this situation the semi-direct
product is actually the direct product.

(v) The projection pr1 : G⋉O → G to the first factor is a group homomorphism.

Motivated by the first two points in the lemma, we identify A ∈ O with (e,A) ∈ G⋉O
and g ∈ G with (g,E) ∈ G⋉O. Under this identification, the third point of the lemma
reads gAg−1 = φ(g)(A).

11



CHAPTER 1. UNSTABLE EQUIVARIANT HOMOTOPY THEORY

Lemma 1.1.10. Let Z be an G⋉G-space (cf. Remark 1.1.7.) Given z ∈ Z, write Stabz
for the stabilizator subgroup of z with respect to the corresponding action of G ⋉ O on
Z. The O-orbit Oz is free if and only if the composition

Stabz ⊆ G⋉O
pr1−−→ G

is injective.

Proof. The O-orbit Oz is free if and only if the stabilizer subgroup StabOz of O is trivial.
Under the embedding of O in G⋉O, this stabilizer subgroup corresponds to the kernel
Stabz ∩({e}⋉O) = Stabz ∩ pr

−1
1 (e) of the composite homomorphism in question.

For any space Z with an action of the semi-direct product, its orbit space ZO inherits
an action of G. We want to investigate in how far taking such O-orbits commutes with
taking fixed points with respect to subgroups of G.

Proposition 1.1.11. Let Z be an G⋉G-space (cf. Remark 1.1.7.) Assume that O acts
freely on Z (away from the basepoint).
Then the canonical map from the quotient of the fixed points into the fixed points of the
quotient

(ZG)OG → (ZO)
G (1.1.12)

is injective.

Proof. Assume [z1] and [z2] in (ZG)OG map to the same element in the target, i.e.,
z1 = Az2, for some A in O. Then for any g in G we have

Az2 = z1 = gz1 = g(Az2) = (φ(g)A)(gz2) = (φ(g)A)z2.

But since the O action on Z was free, this implies that A = φ(g)A for all g ∈ G. Thus
A ∈ OG and [z1] = [z2].

Surjectivity can not be guaranteed in this generality, as the following example illus-
trates:

Example 1.1.13. Let Z = S(C)+ the unit circle in C, with some disjoint basepoint.
Let O = Z/4 and G = Z/2 such that the action of the non trivial element in G maps an
element of O to its inverse. In particular G⋉O is the dihedral group D4. Then O acts
freely on S(C) through rotations by 90 degrees, G acts by complex conjugation, and one
checks that the actions compatibly fit together into an action of D4. Take a closer look
at source and target of the map (ZG)OG → (ZO)

G:
Note that OG is the subgroup of self inverse elements Z/2 ⊂ Z/4, i.e., generated by the
rotation by 180 degrees. The G-fixed point space (S(C))G has 2 points which are in the
same OG-orbit, i.e., the source of (ZG)OG → (ZO)

G contains only one point. On the
other hand, taking orbits first, we see that ZO is isomorphic to S(C), with the action
of G again given by complex conjugation, i.e., target of (ZG)OG → (ZO)

G consists of 2
points, such that the map can not be surjective.

12



1.1. G-SPACES

The intuition behind the failure in surjectivity is that there are “diagonal” copies of
G in G ⋉ O, and points with isotropy type of such a diagonal copy contribute to the
target of (ZG)OG → (ZO)

G but not to the source. Motivated by this, we will give a
formal sufficient condition for the surjectivity of (ZG)OG → (ZO)

G. First, consider the
simple case of only one G⋉O-orbit, and take a closer look at the target space:

Lemma 1.1.14. Let Z be a G⋉O-space consisting of a single O-free G⋉O-orbit, i.e.,
Z = G⋉O/P for some closed subgroup P of G⋉O with the projection pr1 : P → G to
the first factor injective. Then (ZO)

G contains at most one element, and is non-empty
if and only if the projection pr1 : P → G is an isomorphism.

Proof. The projection pr1 : P → G to the first factor is injective by 1.1.10. Hence
ZO ∼= G/pr1 P as G-spaces, and the latter has exactly one G-fixed point if and only if
pr1(P ) = G, and is empty otherwise.

On the other hand, the following elementary fact gives a characterization of the
source:

Lemma 1.1.15. Let H be a topological group with subgroups P and G. Then the space
(H/P )G is non-empty, if and only if G is subconjugate to P .
More precisely, (H/P )G is a quotient of the subspace of all those elements h ∈ H, that
conjugate G into P .

Proof. Let hP be a point in the orbit space. Then hP is G-fixed, if and only if for all
g ∈ G we have ghP = hP , or equivalently h−1gh ∈ P .

Proposition 1.1.16. Let Z be a genuinely cofibrant G⋉O-space. Suppose O acts freely
on Z. Then the map (ZG)OG → (ZO)

G is an isomorphism if for every stabilizer subgroup
P of an orbit appearing in the cell-decomposition of Z the following two statements are
logically equivalent:

(i) the projection to the first factor induces an isomorphism pr1(P )
∼= G

(ii) G⋉ {E} ⊂ G⋉O is subconjugate to P .

Proof. Note that both taking fixed points and taking orbits preserves the cell-complex
construction by 1.1.2. Hence the natural map (ZG)OG → (ZO)

G induces a natural iso-
morphism of cell diagrams, hence an isomorphism on the transfinite composition.

Corollary 1.1.17. Suppose G⋉O has the property that for every subgroup P of G⋉O
the projection to the first factor induces an isomorphism pr1(P )

∼= G if and only if
G ⋉ {E} ⊂ G⋉ O is subconjugate to P . Then for any genuinely cofibrant G⋉ O-space
the natural map (ZG)OG → (ZO)

G is an isomorphism.

Example 1.1.18. Note that 1.1.13 gives a non-example of this. In particular, the semi-
direct product D4 has a subgroup P of order 2 generated by (1, 2) ∈ Z/2 ⋉ Z/4 which
acts on S(C) via the reflection with respect to the imaginary axis. Note that since this

13



CHAPTER 1. UNSTABLE EQUIVARIANT HOMOTOPY THEORY

element is in the center of D4 the subgroup it generates can not be conjugate to G.
In particular, since S(C) has two P -fixed points, an equivariant cell decomposition will
have to use a cell of type G⋉O/P+∧S0.

The main example we want to apply Corollary 1.1.17 to is the following:

Example 1.1.19. Let G be a discrete group, X a discrete free G-space and ϕ : G→ OV

a finite dimensional G-representation. Then G acts on OV through the compositon
G

ϕ
−→ OV → Aut(OV ) of ϕ and the conjugation homomorphism letting OV act on it-

self by inner automorphisms. Let in the above notation O =
∏
XOV with G acting by

conjugation: g ∈ G acts on {Mx}x∈X ∈ O by taking it to {ϕ(g)Mg−1xϕ(g
−1)}x∈X . The

conditions of Corollary 1.1.17 are satisfied by the semi-direct product G⋉
∏
XOV :

Indeed, consider a subgroup P with pr1(P )
∼= G and let

ψ : G → P ⊂ G⋉O

g 7→ (g, {Agx}x∈X)

be the inverse of pr1. Looking at the multiplication in G⋉O, the fact that ψ is a group
homomorphism, i.e., ψ(gh) = (gh, {Aghx }x∈X) the formula

Agxϕ(g)A
h
g−1xϕ(g

−1) = Aghx ∀g, h ∈ G, x ∈ X (1.1.20)

Now chose a system of representatives R for the G-orbits in X. Let B = {Bx} ∈ O be
the element given by

Bx = Bhr := ϕ(h)Ah
−1

r ϕ(h−1),

where x = hr is the unique presentation of x with h ∈ G and r ∈ R. Combining the
formulas above gives us that for any (g, {Agx}) ∈ P , we have:

(e, {Bx})(g, {A
g
x}) = (g, {BxA

g
x})

and
(g,E)(e, {Bx}) = (g, {ϕ(g)Bg−1xϕ(g

−1)}).

If x = hr, then g−1x = g−1hr and Bg−1x = ϕ(g−1h)Ah
−1g
r ϕ(h−1g). By equation 1.1.20

we have Ah
−1g
r = Ah

−1

r ϕ(h−1)Aghrϕ(h) so

ϕ(g)Bg−1xϕ(g
−1) = ϕ(h)Ah

−1g
r ϕ(h−1) = ϕ(h)Ah

−1

r ϕ(h−1)Aghr = BxA
g
x.

Hence P is subconjugate to G ⋉ {E} via B ∈ O. Because pr1 is surjective this implies
that P is conjugate to G ⋉ {E} and therefore taking O-orbits commutes with taking
G-fixed points.

Proposition 1.1.21. Let G be a discrete group, X a free discrete G-space and let V be
a finite dimensional G-representation. Let as in Example 1.1.19 O be the group

∏
XOV

with G acting by conjugation. For every O-free genuinely cofibrant G ⋉ O-space Z and

14
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for every subgroup H of G, taking O-orbits commutes with taking H-fixed points in the
sense that the canonical map

(ZH)OH → [ZO]
H ,

is an isomorphism.

Proof. Note that for subgroups H ⊂ G, any free G-set is a free H-set, and any genuinely
cofibrant G⋉

∏
XOV -space is also genuinely cofibrant as a H ⋉

∏
XOV -space by 1.2.4.

We can then apply Corollary 1.1.17 with the help of Example 1.1.19 for all choices of
H.

1.2 Illman’s Triangulation Theorem

In several places we will need to check cofibrancy with respect to the genuine cofibrations.
By the general theory for model categories it will usually suffice to understand the class
of IG-cell complexes in GT . From here on for the rest of the section, we restrict to the
case of G a compact Lie group. For convenience, we will recall the statements and the
relevant definition from [Ill83] before we give some corollaries.

Definition 1.2.1. Let X be a G-space. Given an orbit [x] ∈ XG, define the G-isotropy
type of [x] as the conjugacy class of the stabilizer subgroup Stabx = {g ∈ G | gx = x} of
G. Since the stabilizer subgroups of elements in the same orbit are all conjugate, this
indeed only depends on the element [x] ∈ XG.

Theorem 1.2.2 ([Ill83, 5.5, 6.1, 7.1]). Let X be space with action of a compact Lie
group G and a triangulation t : K → XG of the orbit space XG, such that the G-isotropy
type is constant on open simplices, i.e., for each open simplex s̊ of K the G-isotropy type
is constant on t(̊s) ⊂ XG. Then X admits a structure of a G-equivariant CW -complex.
In particular X is an IG-cell complex.

Furthermore, if M is a smooth G-manifold (with or without boundary), then the orbit
space MG does admit a triangulation such that the G-isotropy type is constant on open
simplices, and consequently M admits a structure of a G-equivariant CW -complex.

Remark 1.2.3. In particular, for every representation V of a compact Lie group G, its
one-point compactification SV is a G-CW-complex.

Corollary 1.2.4. Let G be a compact Lie group and H a closed subgroup. Then G is
an H-CW complex and an IG-cell complex is an IH-cell complex.

Proof. By induction on the cell structure, and since smashing with a space preserves
colimits, it suffices to show that for any closed subgroup K ⊂ G the orbit space G/K
is an IH -cell complex. However, G/K is a smooth G-manifold, and thus also a smooth
H-manifold. Theorem 1.2.2 now implies that G/K is an IH -cell complex.

The following result is elementary:

15
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Lemma 1.2.5. Let Y be a retract of an IG-cell complex X. The cells of X are of the
form Dn ×G/L, where L is the isotropy group of an element of X. Conversely, if L is
the isotropy group of an element of Y , then there is at least one cell of X isomorphic to
a cell of the form Dn ×G/L.

Corollary 1.2.6. Let H and K closed subgroups of G. The product G/H × G/K is
again an IG-cell complex, and the only orbit types that appear are of the form G/L, with
L subconjugate to both H and K.

Proof. Note that G/H × G/K is isomorphic to (G×G)/(H ×K) and embed G into
G×G as the diagonal (closed) subgroup, so that Corollary 1.2.4 gives that G/H ×G/K
is an IG-cell complex. For the statement about orbit types, we check what kind of
stabilizer subgroups can appear in the product G/H × G/K and use Lemma 1.2.5. In
fact, if L is the stabilizer of ([g1], [g2]), then we have that Lg1 ⊂ g1H or equivalently
that L is subconjugate to H. The analogous argument for K finishes the proof.

1.3 Mixed Model Structures

In this section G is a compact Lie group.

Definition 1.3.1. A set A of closed subgroups of G is a family , if it is closed under
taking subgroups and conjugates.

Definition 1.3.2. Let A be a family of subgroups of G. A map f : X → Y in GT is
an A -equivalence if fH : XH → Y H is a weak equivalence in T for every H in A .

It is often convenient to have homotopical properties of h-cofibrations at hand when
working with topological model categories. The following lemma sums up what we will
use in the G-equivariant context:

Lemma 1.3.3. Let A be a family of subgroups of G.

(i) sequential colimits of A -equivalences along h-cofibrations are A -equivalences

(ii) pushouts of A -equivalences along h-cofibrations between well based G-spaces are
A -equivalences

(iii) the cube lemma 6.1.6 holds for A -equivalences and h-cofibrations between well-
based G-spaces

(iv) the cube lemma holds for G-homotopy equivalences and h-cofibrations.

Proof. All points follow directly from the analogous statement about weak equivalences
in T 6.1.28, and Lemma 1.1.2.

Let B ⊆ A be families of subgroups of G. We consider A and B as orbit categories,
that is, as T -categories with A (K,H) = GT (G/H+, G/K+). The inclusion i : B → A

induces a functor i∗ : A T → BT with a left adjoint functor L : BT → A T . Explicitly
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L can be constructed by left Kan extension. With respect to the projective level model
structures provided by Theorem 6.2.1 the functors L and i∗ form a Quillen adjoint pair.

For H ∈ A − B, we let lH : CH → i∗A (H,−) = A (H, i(−)) be the cofibrant
replacement of i∗A (H,−) in the projective level model structure on BT , and we let
λH : LCH → A (H,−) be the adjoint morphism of lH in A T . Using the mapping
cylinder like in the proof of Ken Brown’s Lemma [HirL, Lemma 7.7.1], we factor λH as

the composition LCH
sH−−→MH

rH−−→ A (H,−) of a cofibration sH and the left inverse rH
of an acyclic cofibration in A T .

Definition 1.3.4. The set S consists of the morphisms sH for H ∈ A −B, and we W
is the class of B-equivalences in A T , that is, morphisms f in A T with the property
that i∗f is a weak equivalence in BT . A map g : z → w in A T is an S-fibration if it is
a fibration in A T with the property that for every morphism s : a→ b of S, the square

A T (b, z)
g∗ //

s∗

��

A T (b, w)

s∗

��
A T (a, z)

g∗ // A T (a,w)

is a homotopy pullback square in T .

Note that every member of S is a B-equivalence.

Proposition 1.3.5. If g : z → w is both a B-equivalence in A T and an S-fibration,
then it is a weak equivalence in the projective level model structure on A T .

Proof. It suffices to show that if H ∈ A −B, then A T (A (H,−), g) ∼= g(H) is a weak
equivalence in T . Since g is a fibration in A T and a B-equivalence, the map i∗g is an
acyclic fibration in BT so A T (LCH , g) ∼= BT (CH , i

∗g) is an acyclic fibration in T .
Since g is an S-fibration, for every sH : LCH →MH in S, the square

A T (MH , z)
A T (sH ,z) //

A T (MH ,g)
��

A T (LCH , z)

A T (LCH ,g)
��

A T (MH , w)
A T (sH ,w) // A T (LCH , w)

is a homotopy pullback. Since rH is the left inverse of an acyclic cofibration in A T , also
the square

A T (A (H,−), z)
A T (λH ,z) //

A T (A T (H,−),g)
��

A T (LCH , z)

A T (LCH ,g)
��

A T (A (H,−), w)
A T (λH ,w) // A T (LCH , w)

is a homotopy pullback. Since i∗g is an acyclic fibration, the right hand vertical map
A T (LCH , g) ∼= BT (CH , i

∗g) a weak equivalence. Thus also the left hand vertical map
A T (A (H,−), g) ∼= g(H) is a weak equivalence in T .

17
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Applying Bousfield localization [HirL, Theorem 4.1.1] we obtain an S-local model
structure on A T .

Definition 1.3.6. The B-model structure on A T is the Bousfield localization of the
projective level model structure on A T with respect to the set S. We write JS for the
generating set of acyclic cofibrations given by the union of the set of generating acyclic
cofibrations for the projective level model structure on A T and the set consisting of
morphisms of the form i�s for i ∈ I a generating cofibration for T and s ∈ S.

Note that the cofibrations for the B-model structure on A T are the original cofi-
brations of A T and that this model structure is left proper and cellular.

Definition 1.3.7. Let B ⊆ A be non-empty families of subgroups of G. The set IA is
the set of G-maps of the form (i×G/H)+ for i ∈ I a generating cofibration for T and
H ∈ A . The set JB,A is the union of the set of JA of G-maps of the form (i×G/H)+
for j ∈ J a generating acyclic cofibration for T and H ∈ A with the set consisting of
maps of the form i�kH for i ∈ I a generating cofibration for T and kH = sH(G/e) for
H ∈ A −B and sH in the set S from 1.3.4.

Note that if A is equal to the family of all closed subgroups of G, then IA = IG

Theorem 1.3.8. Let B ⊆ A be non-empty families of subgroups of G. The set IA is a
set of generating cofibrations and the set JB,A is a set of generating acyclic cofibrations
for a left proper cellular monoidal model structure on GT of pointed G-spaces with the
class of B-equivalences as weak equivalences.

Proof. The functor Φ: GT → A T with Φ(X)(H) = XH is right adjoint to the functor
Λ: A T → GT with Λ(Y ) = Y (G/e). Via this adjunction we can follow Mandell and
May [MM, Theorem III.1.8] and pull the B-model structure on A T back to a model
structure on GT , where a G-map f : X → Y is a cofibration, weak equivalence or
fibration if and only if Φ(f) is so in the B-model structure on A T . This is the (B,A )-
mixed model structure on GT . The statement about generating (acyclic) cofibrations is
a consequence of the fact that Λ takes a set of generating (acyclic) cofibrations for the B-
model structure on A T to a set of generating (acyclic) cofibrations for the (B,A )-model
structure on GT .

Definition 1.3.9. The (B,A )-model structure, on the category GT of pointed G-spaces
is the model structure specified in Theorem 1.3.8.

Note that in the particular case where B = A , the fibrations in the (B,A )-model
structure are the A -fibrations, that is, the maps f : X → Y with the property that
fH : XH → Y H is a fibration for every H in A .

Definition 1.3.10. Let A be the family of all closed subgroups of G. The genuine
model structure on GT is the (A ,A )-model structure. The genuine cofibrations, genuine
equivalences and genuine fibrations are the cofibrations, weak equivalences and fibrations
in the genuine model structure.
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Definition 1.3.11. The cofibrant replacement of S0 in the (A ,A )-model structure is
denoted EA+. The fiber over the non base point of the map EA+ → S0 is an unpointed
space denoted EA .

Lemma 1.3.12. Let B ⊆ A be non-empty families of subgroups of a compact Lie group
G and let i : H → G be the inclusion of a subgroup. If we let i∗B be the family of
subgroups PCatH of H obtained by intersecting members P of B with H and likewise
let i∗A be the family of intersections members of A with H, then the forgetful functor
i∗H : GT → HT is a right Quillen functor of mixed model structures with respect to
(B,A ) and (i∗B, i∗A ) respectively.
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Chapter 2

Equivariant Orthogonal Spectra

2.1 Orthogonal spectra as functors

In this section we give a short review of one definition of orthogonal spectra as functors.
Later, when we work with model structures, this functoriality is convenient. An orthog-
onal spectrum is defined to be a functor from a T -category O to spaces. This category
appeared first in [MMSS, Example 4.4.].

Definition 2.1.1. The U -category L of linear isometric embeddings has as objects the
class of inner product spaces, and as morphism spaces the spaces of linear isometric
embeddings.

The following is essentially [MM, Definition I.5.9].

Definition 2.1.2. The T -category O has as objects the class of inner product spaces.
Given inner product spaces V and W , the morphism space O(V,W ) is the subspace of
L(V,W )+ ∧ SW consisting of points of the form f ∧ x for f : V → W a linear isometric
embedding and x contained in the subspace of SW given by the one-point compactifica-
tion of the orthogonal complement of f(V ) in W . The composition (f, x) ◦ (g, y) of two
non-trivial morphisms f ∧ x ∈ O(V,W ) and g ∧ y ∈ O(U, V ) is fg ∧ (x+ fy).

The category O has a symmetric monoidal product

O(V,W )×O(V ′,W ′)
⊕
−→ O(V ⊕ V ′,W ⊕W ′)

(f ∧ x, f ′ ∧ x′) 7→ (f ⊕ f ′) ∧ (x+ x′).

There is a T -functor p : O → L+ which is the identity on objects and with p(f∧x) = f
when f ∧ x is different form the base point in O(V,W ).

Definition 2.1.3. The untwisting map

τV,W : O(V,W ) ∧ SV → L(V,W )+ ∧ S
W

takes f ∧ x∧ y ∈ O(V,W )∧ SV , where f ∈ L(V,W ), x is in the orthogonal complement
of f(V ) in W and y ∈ V , to f ∧ (x+ f(y)) ∈ L(V,W )+ ∧ S

W .
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Lemma 2.1.4. The untwisting map

τV,W : O(V,W ) ∧ SV
∼=
−→ L(V,W )+ ∧ S

W

is a homeomorphism.

Lemma 2.1.5. For all morphisms ϕ : V ′ → V and ψ : W → W ′ the following diagram
commutes:

O(V,W ) ∧ SV
τV,W //

ψ∗

��

L(V,W ) ∧ SW
ϕ∗

// L(V ′,W ) ∧ SW
τ−1
V ′,W // O(V ′,W ) ∧ SV

ψ∗

��
O(V,W ′) ∧ SV

τV,W ′
// L(V,W ′) ∧ SW

′ ϕ∗

// L(V ′,W ′) ∧ SW
′
τ−1
V ′,W ′

// O(V ′,W ′) ∧ SV .

Definition 2.1.6. The symmetric monoidal category O is the full subcategory of O with
the coordinate spaces Rn for n ∈ N as objects and the symmetric monoidal category L
is the full subcategory of L with the coordinate spaces Rn for n ∈ N as objects.

Note that form ≤ n, the morphism space L(Rm,Rn) is homeomorphic toORn/ORn−m .

Remark 2.1.7. The standard basis gives an isomorphism ORn ∼= On between the group
ORn = L(Rn,Rn) of isometric automorphisms of Rn and the group On of orthogonal
n× n-matrices.

Definition 2.1.8. An orthogonal spectrum X is a T -functor X : O → T . Morphisms
of orthogonal spectra are natural transformations. We write OT for the category of
orthogonal spectra.

Given an orthogonal spectrum X and an object V of O, we write XV for the value
of the functor X at V . Let us stress that in this paper, an orthogonal spectrum is only
defined on the inner product spaces Rn with the dot product as inner product. Choosing
an equivalence O → O of categories we can extend an orthogonal spectrum to a functor
defined on O. A more canonical way of extending orthogonal spectra to O is by letting
X(V ) = L(Rn, V )+ ∧ORn

XRn when V is an n-dimensional inner product space. We
have chosen only to evaluate orthogonal spectra on coordinate spaces since this leads us
to be more explicit about morphisms in certain constructions.

Example 2.1.9 (The sphere spectrum). The sphere spectrum S : O → T is the repre-
sentable functor S = O(0,−) with SV = O(0, V ) ∼= SV .

Since the category OT is a category of T -functors into T it is enriched and tensored
and cotensored over T . The tensor K ∧X of a space K and an orthogonal spectrum X
is the functor given as the composition

O
X
−→ T

K∧−
−−−→ T .
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The cotensor F (K,X) is the functor given as the composition

O
X
−→ T

F (K,−)
−−−−−→ T ,

where F (K,−) takes a space L to the space F (K,L) of functions from K to L. Applying
the adjunction isomorphism for the smash product and function space objectwise we
obtain adjunction isomorphisms

T (K,OT (X,Y )) ∼= OT (K ∧X,Y ) ∼= OT (X,F (K,Y ))

that are natural in the space K and in the orthogonal spectra X and Y .

Example 2.1.10. The tensor K ∧ S of a space K with the sphere spectrum is the
suspension spectrum on K. The Yoneda homeomorphism OT (S,X) ∼= X0 and the
above adjunction isomorphism for the tensor gives a natural homeomorphism

T (K,X0) ∼= T (K,OT (S,X)) ∼= OT (K ∧ S,X).

Thus the functor Σ∞ := − ∧ S : T → OT is left adjoint to the evaluation functor
ev0 : OT → T with ev0(X) = X0.

Since the category of orthogonal spectra is the category of T -functors from a symmet-
ric monoidal T -category to T , it can be equipped with a symmetric monoidal structure.
This is discussed in detail in [MMSS, §21] based on the more general statement of [D,
§3,4].

Let X and Y be orthogonal spectra. Their external smash product is the functor

X∧̄Y : O×O → T .

(V,W ) 7→ XV ∧YW

The (internal) smash product of X and Y is the T -enriched left Kan extension

X∧Y := Lan⊕(X∧̄Y ) : O→ T

of X∧̄Y along the monoidal product ⊕ : O×O→ O. In particular, by [K, 4.25], we can
write the smash product as the coend

(X∧Y )U =

(V,W )∈O×O∫
O(V ⊕W,U)∧XV ∧YW .

The internal hom-object homOT (X,Y ) is given by

homOT (X,Y )V = OT (X,Y (V ⊕−)).

The fact that the definition given here indeed gives a closed symmetric monoidal struc-
ture on OT can be checked by applying the enriched Kan-extension to the coherence
diagrams forO, using the fact that the Kan-extension is natural in all its inputs, together
with the fact that T itself was closed symmetric monoidal.
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2.2 Equivariant Orthogonal Spectra

In this section we construct model structures on orthogonal spectra with action of a
compact Lie group G. For the rest of this chapter G will be a fixed but arbitrary
compact Lie group.

Definition 2.2.1. An orthogonal G-spectrum X is an orthogonal spectrum with con-
tinous action of G, that is, with a continous monoid homomorphism G → OT (X,X).
Morphisms of orthogonal G-spectra are required to respect the action of G. We write
GOT for the category of orthogonal G-spectra.

Similar ways of looking at G-spectra have come up before, for example in the context
of Γ-spaces [Shi].

Example 2.2.2 (The Sphere G-Spectrum). Since the automorphism group of 0 in O is
trivial, G can only act trivially on the sphere spectrum S = O(0,−).

Example 2.2.3 (Free orthogonal G-spectra). Let K be a pointed G-space. Given an
object W of O and a homomorphism ϕ : G → OW , the free orthogonal G-spectrum on
ϕ and K is the orthogonal G-spectrum FWK = O(W,−) ∧K, where G acts diagonally
on (FWK)V = O(W,V ) ∧K.

Considering G as a topological category with one object, the category GOT is the
category of T -functors from G+ to OT . Since the category OT is enriched, tensored
and cotensored over T , the category GOT is enriched, tensored and cotensored over
GT . Moreover, since OT is closed symmetric monoidal, so is GOT . Explicitly, the
enrichment in GT is given by considering the space OT (X,Y ) of morphisms between
two orthogonal G-spectra as a G-space by letting G act by conjugation, that is, g ∈ G
takes f ∈ OT (X,Y ) to the composition

X
g−1

−−→ X
f
−→ Y

g
−→ Y.

We will denote this morphism G-space OTG(X,Y ). The G-action on the smash product
X∧Y is through the diagonal embedding of G in G×G. The internal function spectrum
homGOT (X,Y ) is given by the underlying internal function spectrum homOT (X,Y ) with
G-action by conjugation as above.

For X an orthogonal spectrum, the adjunction isomorphisms for the tensor ∧ and
for the suspension spectrum Σ∞X give natural isomorphisms

T (G+,OT (X,X)) ∼= OT (G+∧X,X) ∼= OT (Σ∞G+∧X,X).

Remark 2.2.4. The action map µ : G+ → OT (X,X) is adjoint to a map µ̄ : Σ∞G+∧X →
X. The fact that µ is a map of monoids exactly translates to X being a module over the
orthogonal ring spectrum S[G] := Σ∞G+ via µ̄. Then morphisms in OTG correspond to
S-module morphisms between S[G]-modules, whereas morphisms in GOT correspond to
S[G]-module maps.
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By naturality the T -isomorphisms for tensors and cotensors in OT over T can be
considered as GT -natural isomorphisms

TG(D,OTG(X,Y )) ∼= OTG(D∧X,Y ) ∼= OTG(X,F (D,Y ))

for tensors ∧ and cotensors F in OTG over TG. Analogously to Example 5.2.29, taking
the G-fixed points of the spaces above yields

GT (D,OTG(X,Y )) ∼= GOT (D∧X,Y ) ∼= GOT (X,F (D,Y )).

Definition 2.2.5. Let V be an Euclidean space and let Y ∈ GOT be an orthogonal
G-spectrum.

(i) The restriction of Y to V is YV ∈ GOV T , and we consider it as an object YV of
(G×OV )T .

(ii) If ϕ : G → OV is a continous homomorphism, then through the homomorphism
iϕ : G → G ×OV with iϕ(g) = (g, ϕ(g)) we obtain the G-space i∗ϕYV . Below we
omit i∗ϕ from the notation and refer to i∗ϕYV as the G-space YV .

Example 2.2.6 (The Sphere G-Spectrum). Recall from 2.2.2 that G must act trivially
on S. Given a homomorphism ϕ : G → OV , the G-space SV = SV is the one-point
compactification SV of the representation V .

Example 2.2.7 (Free orthogonal G-spectra). Let K be a pointed G-space and let G→
OW be a homomorphism of Lie groups. Given a homomorphism G→ OV , the G-space
(FWK)V = O(W,V ) ∧K has diagonal G-action of the G×G-action obtained from the
action of G on K and the action of G on O(W,V ) by conjugation.

Remark 2.2.8. Given any universe U of G-representations in the sense of [MM, Definition
II.1.1], the category of orthogonal G-spectra considered here is equivalent to the category
in [MM, Definition II.2.1] of spectra defined on representations isomorphic to finite
dimensional G-invariant subspaces of U , as explained by Mandell and May in [MM,
Theorem V.1.5].

2.3 Semi-Free Equivariant Spectra

Definition 2.3.1. Let V be an object of O. The functor GV : OV T → OT is the
T -functor taking a pointed OV -space K to the semi-free orthogonal spectrum GVK with

(GVK)W = O(V,W ) ∧OV
K

and with functoriality in W induced by composition in O.

Notice that if K is of the form K = OV + ∧ C for a space C, then GVK is naturally
isomorphic to FV C. The following result holds since GV is an explicit construction of
the left Kan extension of K : OV → T along the inclusion OV → O.
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Lemma 2.3.2. The T -functor GV : OV T → OT is left adjoint to the evaluation T -
functor ev′V : OT → OV T taking an orthogonal spectrum X to the OV -space XV .

Let O′ be the subcategory of O with O′(V, V ) = OV and O′(V,W ) = ∅ for V 6=
W . The functor ev′ : OT → O′T has a left adjoint G with GY ∼=

∐
V GV YV for Y ∈

O′T . Given an orthogonal spectrum X, we write cX : Gev′ X → X for the counit of this
adjunction.

Lemma 2.3.3. For every orthogonal spectrum X, the diagram

G ev′ G ev′X
G ev′ cX

//

cG ev′ X//
G ev′X

cX // X

is a coequalizer diagram.

Proof. After applying ev′ the diagram becomes a split coequalizer diagram in O′T .

One of the most important properties of semi-free spectra is that it is easy to calculate
their smash products with other spectra and in particular with each other. The following
proposition makes this precise, and generalizes Lemma [MMSS, 1.8]. It is analogous to
Lemma [S, I.4.5-6] in the case of symmetric spectra.

Proposition 2.3.4. Let V and W be objects of O, K ∈ OV T and L ∈ OWT . The
adjoint of the canonical OV ×OW -map

K∧L ∼= (GVK)V ∧(GWL)W → (GVK∧GWL)V⊕W

is a natural isomorphism

GV⊕W (OV⊕W+∧OV ×OW
K∧L)

∼=
−→ GVK∧GWL.

Proof. Using the monoidal product O(V, V ′) ∧O(W,W ′) → O(V ⊕W,V ′ ⊕W ′) of O
we obtain a map

(GVK)V ′ ∧ (GWL)W ′
∼= O(V, V ′) ∧O(W,W ′) ∧OV ×OW

K ∧ L

→ O(V ⊕W,V ′ ⊕W ′) ∧OV ×OW
K ∧ L

∼= GV⊕W (OV⊕W+ ∧OV ×OW
K ∧ L)V ′⊕W ′ .

By the universal property of the smash-product, this map induces a map

GVK ∧ GWL→ GV⊕W (OV⊕W+ ∧OV ×OW
K ∧ L).

It is a consequence of the universal defining properties of the smash-product and of
GV⊕W that this map is inverse to the map in the statement.

When studying smash-powers, we need to know how the above isomorphism interacts
with the twist isomorphism τ : X ∧ Y → Y ∧ X of orthogonal spectra. We need the
following elementary result:
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Lemma 2.3.5. Let V and W be objects of O, K ∈ OV T and L ∈ OWT . Let

t : OV⊕W+ = O(V ⊕W,V ⊕W )→ O(W ⊕ V, V ⊕W )

be induced by precomposition with the twist isomorphism τ : W ⊕ V → V ⊕ W . The
diagram

OV⊕W+ ∧OV ×OW
K ∧ L

t∧τ
��

∼= // (GVK ∧ GWL)V⊕W

τV ⊕W

��
O(W ⊕ V, V ⊕W ) ∧OW×OV

L ∧K
∼= // (GWL ∧ GVK)V⊕W ,

commutes, where the upper horizontal map is induced up from the canonical OV ×OW

used in Proposition 2.3.4 and where the lower horizontal map is the composition of the
maps

O(W ⊕ V, V ⊕W ) ∧OW×OV
L ∧K →

O(W ⊕ V, V ⊕W ) ∧OW×OV
(GWL ∧ GVK)W⊕V →

(GWL ∧ GVK)V⊕W .

Proof. This is a consequence of the fact that given orthogonal spectra X and Y , the
diagram

XV ∧ YW //

τ

��

(X ∧ Y )V⊕W
τV ⊕W // (Y ∧X)V ⊕W

(Y ∧X)τ
��

YW ∧XV
// (Y ∧X)W⊕V

commutes.

Corollary 2.3.6. Let V be an object of O, let K ∈ OV T and let t : OV⊕V → OV⊕V

given by right multiplication with the isomorphism twisting the two factors of V . The
diagram

GV⊕V (OV⊕V + ∧OV ×OV
K ∧K) //

GV ⊕V (t∧τ)

��

GVK ∧ GVK

τ

��
GV⊕V (OV⊕V + ∧OV ×OV

K ∧K) // GVK ∧ GVK

commutes.

Proof. Letting W = V and L = K, the upper- and the lower row in the commutative
diagram of Lemma 2.3.5 are identical. By Proposition 2.3.4 that commutative diagram
gives the asserted commutative diagram.

Notice that the right vertical map in 2.3.6 is of the form GV⊕V (t∧ τ): the two copies
of V in GV⊕V are not permuted.
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Let X be a finite discrete G-set, let V be an Euclidean space and let K be an
OV -space. Then G acts on K∧X and on

∏
xOV by permuting factors. The group

G ×OV ⊕X acts on the space OV ⊕X+ ∧
∏

x OV
K∧X by letting G act on OV ⊕X by right

multiplication of permutation of summands and letting OV ⊕X act on itself by left multi-
plication. Considering V ⊕X as an Euclidean space, we obtain an orthogonal G-spectrum
G
V ⊕X (OV ⊕X+ ∧

∏
x OV

K∧X). Notice that G acts trivially on the Euclidean space V ⊕X

in G
V ⊕X .
Since permutations of a finite set X are generated by transpositions, iterated appli-

cation of the 2.3.6 gives:

Proposition 2.3.7. Let X be a finite discrete G-set, V an Euclidean space and K an
OV -space. There is a natural isomorphism of G-spectra

GV ⊕X (OV ⊕X+ ∧
∏

X OV
K∧X)

∼=
−→ (GVK)∧X ,

where G acts on the spectrum (GVK)∧X by permuting factors.

Proposition 2.3.8. Let X be an orthogonal spectrum and let K be an OV -space. The
structure map K∧XW

∼= (GVK)V ∧XW → (GVK∧X)V ⊕W for the smash-product induces
a natural isomorphism

OV⊕W+∧OV ×OW
K∧XW

∼= (GVK∧X)V ⊕W

of OV⊕W -spaces. If the dimension of V ′ is smaller than the dimension of V , then
(GVK∧X)V ′ is a one-point space.

Proof. Considered as functors of X both sides commutes with colimits. By 2.3.3 we can
representX as a colimit of semi-free spectra so we can reduce to the case whereX = GUL
is semi-free. In this case the asserted isomorphism is a consequence of Proposition 2.3.4
since OV⊕W+∧OW

O(U,W ) is isomorphic to O(V ⊕ U, V ⊕W ).

By functoriality and naturality, the T -functors GV and ev′V associated to the Eu-
clidean space V promote to adjoint GT -functors GV : GOV T → GOT and ev′V : GOT →
GOV T . Since the isomorphisms in 2.3.4 and 2.3.8 are natural, they also hold for semi-
free orthogonal G-spectra.

Often actions will occur through the semi-direct product G ⋉ϕ OV of the inner
automorphism of a representation ϕ : G → OV . Recall that G ⋉ϕ OV has G ×OV as
underlying set and multiplication given by the rule

(g, α)(h, β) = (gh, αϕ(g)βϕ(g−1)).

Definition 2.3.9. Let V be an Euclidean space, let ϕ : G→ OV be a group homomor-
phism and let f : G×OV → G⋉ϕ OV be the isomorphism f(g, α) = (g, αϕ(g−1)). We
define the semi-free orthogonal G-spectrum GϕVK by

GϕVK = GV f
∗K.
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Note that there is an isomorphism of G×OV -spaces of the form

f∗K ∼= O(V, V ) ∧OV
K, k 7→ idV ∧k,

where G×OV acts on O(V, V ) ∧OV
K by the rule (g, α) · (γ ∧ k) = αγϕ(g−1) ∧ gk.

Lemma 2.3.10. Let V be an Euclidean space and let K be a G×OV -space. The unit
of adjunction gives an isomorphism

OT (GVK,GVK) ∼= OV T (K, ev
′

V GVK) ∼= OV T (K,K)

of topological monoids. Since G acts on K, this isomorphism provides an action of G
on GVK. The levelwise orbit spectrum [GVK]G is naturally isomorphic to GV (KG).

Proof. The claimed isomorphism of monoids comes from the unit isomorphism K ∼=
ev

′

V GVK. To check the statement about orbits we note that on levels W we get the
isomorphisms

[GVKW ]G = [O(V,W )∧OV
K]G ∼= [O(V,W )∧K]OV ×G

∼= O(V,W )∧OV
(KG).

2.4 Families of Representations

Traditionally a G-universe is used to define the various stable model structures of or-
thogonal G-spectra. However we will find it convenient to have the flexibility of choosing
compatible universes consisting of an indexing category of H-representations for each
subgroup H of G. The G-typical families of representations introduced in this section
form a way to encode this.

Let H be a subgroup of G and let V ∈ HL be a representation of H, that is, V is
an object of L together with a homomorphism ϕ : H → OV ⊆ L(V, V ). As explained
below, the subgroup H and the homomorphism ϕ can be recovered from the subgroup
PV of G×OV consisting of pairs (h, ϕ(h)) for h in H.

Given an object V of L and a subgroup P of G × OV , let pr1 : P → G be the
restriction of the projection G×OV → G to P through the inclusion P ⊆ G×OV .

Definition 2.4.1. Let V be an object of L and let P be a subgroup of G×OV such that
pr1 : P → G is injective with image H = pr1(P ). The H-representation V (P ) = (V, ϕ)
has underlying vectorspace V and H-action ϕ : H → OV given as the composition

H
pr−1

1−−−→ P ⊆ G×OV
pr2−−→ OV .

There is an isomorphism

G×OV /P
∼=
−→ OV (P ), (g, α)P 7→ αϕ(g−1) (2.4.2)

of G×OV -spaces, where ϕ : G→ OV is the action of G and OV (P ) is the space OV with
G × OV acting via multiplication by elements of OV from the left and multiplication
from the right by ϕ(g−1) for elements g of G.
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Lemma 2.4.3. For each inner product space V the assignment P 7→ V (P ) is a bijection
between the set of closed subgroups P of G ×OV with the property that pr1 : P → G is
injective and the set of representations (V, ϕ) of (closed) subgroups H of G with V as
underlying vector space.

Proof. Let B be the set of pairs (H,ϕ) where H is a subgroup of G and ϕ : H → OV

is a continous homomorphism. There is an obvious bijection between B and the set of
representations (V, ϕ) of any subgroup of G with underlying vector space V .

Let A be the set of closed subgroups P of G×OV with the property that pr1 : P → G
is injective. Given (H,ϕ) ∈ B, the inclusion i : H → G together with ϕ : H → OV gives
an injective homomorphism (i, ϕ) : H → G × OV , and thus the pair (H,ϕ) yields a
closed subgroup, namely the image P = (i, ϕ)(H) of G × OV with the property that
pr1 : P → G is injective. This gives a function f : B → A.

Conversely, if P ∈ A, we obtain a pair (H,ϕ) ∈ B by letting H = pr1(P ) and letting
ϕ be the composition of pr−1

1 : H → P and the homomorphism P → OV obtained from

the projection G × OV
pr2−−→ OV . This gives a function g : A → B, and f and g are

inverse bijections.

Definition 2.4.4. Given Euclidean spaces V and W and subgroups P ⊆ G × OV

and Q ⊆ G ×OW with the restriction of pr1 to P and Q injective, we define P ⊕ Q ⊆
G×OV⊕W to be the inverse image of P×Q under the diagonal inclusion G×OV ×OW ⊆
G×OV ×G×OW , where we consider OV ×OW as a subgroup of OV⊕W in the usual
way.

Notice that in the above situation V (P ⊕ Q) is the representation V (P ) ⊕ V (Q) of
pr1(P ) ∩ pr1(Q).

Definition 2.4.5. A G-typical family of representations consists of a sequence H =
(H V )V indexed over the objects of L such that for each Euclidean space V and W :

(i) H V is a family of subgroups of G×OV

(ii) for each P ∈ H V the composition pr1 : P → G of the inclusion P ⊆ G×OV and
the projection G×OV → G is injective.

(iii) There is a non-zero U such that H U contains G× {idU}.

(iv) H is closed under sum in the sense that if P ∈ H V and Q ∈ H W , then the
isotropy groups of elements of the G×OV⊕W -space

OV⊕W ×OV ×OW
((G ×OV )/P × (G×OW )/Q)

are in H V⊕W . Here the group G acts on (G ×OV )/P × (G ×OW )/Q through
the diagonal embedding G→ G×G.

(v) For every P in H V , there exist Q ∈H W and R ∈H V⊕W with pr1(Q) = pr1(P )
and pr1(R) = G such that P ⊕Q = (pr1(P )×OW ) ∩R.
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In the above definition condition (i) allows us to use standard methods from equi-
variant homotopy theory. Condition (ii) gives a firm connection to representations of
subgroups of G. Condition (iii) is needed for the stable model structure on orthogonal
G-spectra to be stable in the sense of model categories [H, Definition 7.1.1]. Condition
(v) is of a more technical nature related to cofinality of index categories in homotopy
colimits used in a construction of fibrant replacement. It is a consequence of (v) that
H is closed under direct sum in the sense that if P and Q are in H , then so is P ⊕Q.

Given g ∈ G and a subgroup H of G we write cg : H → gHg−1 for the conjugation
isomorphism with cg(h) = ghg−1.

Proposition 2.4.6. Let H be a G-typical family of representations. The set V of
isomorphism classes of representations of the form V (P ) for P in H is closed under
conjugation and restriction, that is, if g ∈ G and i : K → gHg−1 is an inclusion of sub-
groups of G and if an H-representation W is in V, then the K-representation i∗(c−1

g )∗W
is in V.

Proof. Choose P ∈ H with an isomorphism W ∼= V (P ). The representation (c−1
g )∗W

of gHg−1 is then isomorphic to (c−1
g )∗V (P ) ∼= V (cg(P )), where cg(P ) consists of the

elements of the form (g, id)p(g−1, id) for g ∈ G and p ∈ P . The subgroup cgP of G×OV

is in H because H is closed under conjugation. Since i : K → gHg−1 is an inclusion of
subgroups of G, we have i∗V (cgP ) = V (Q) for the subgroup Q = pr−1

1 (K) of cgP .

Note that if P ∈H has pr1(P ) = H and Q = (g, α)P (g, α)−1 for some α ∈ OV and
g ∈ G, then α is an isomorphism α : V (P )→ c∗gV (Q) of H-representations.

Definition 2.4.7. We say that H is closed under retracts if it has the property that if
V is a retract of an H-representation V (P ) for some P in H , then V is isomorphic to
V (Q) for some Q in H .

Note that every G-typical family of representations H = (H V )V has a closure H ,
that is, a smallest G-typical family of representations closed under retracts containing
it.

Example 2.4.8.

(i) There is a maximal G-typical family of representations consisting of all subgroups
P of G × OV satisfying that pr1 : P → G is injective. We need to explain why
those satisfy the sum-axiom (iv): Every element of the G×OV⊕W -space

OV⊕W ×OV ×OW
((G×OV )/P × (G ×OW )/Q)

is represented by an element of the form x = (α, [gV , IV ], [gW , IW ]) for some
gV , gW ∈ G and α ∈ OV⊕W . If (g, β) is in the isotropy group (G × OV⊕W )x
of x for some g ∈ G and β ∈ OV⊕W , then β is of the form β = βV ⊕ βW , and
(g, βV ) ∈ gV Pg

−1
V and (g, βW ) ∈ gWQg

−1
W . Since pr1 : P → G is injective, this

implies that pr1 : (G×OV⊕W )x → G is injective.

Every representation of any subgroup of G is in this family. This G-typical family
of representations is closed under retracts.
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(ii) The argument of the above example also shows that there is a minimal G-typical
family of representations which is closed under retracts consisting of all subgroups
of G considered as subgroups of G × OV . The representations in this G-typical
family of representations are the trivial representations.

(iii) There is a G-typical family of representation with the representations in H given
by the representations of subgroups of G containing the one-dimensional trivial
representation. That is, all representations of a subgroup H of G containing a non-
zero H-invariant element. This G-typical family of representations is not closed
under retracts. This kind of G-typical families are important for the construction
of “positive” model structures on the category of commutative orthogonal G-ring-
spectra.

2.5 Level model structure

In this section H is a fixed but arbitrary G-typical family of representations. Given V
in O, we can consider the (H V ,H V )-model structure on (G×OV )T .

Definition 2.5.1. An H -model structure M consists of a sequence M = (MV )V ∈L of
cofibrantly generated model structures, where each MV is a GT -model structure on
the category (G × OV )T , considering (G × OV )T as enriched and tensored over GT
via the isomorphism (G × OV )T ∼= OV (GT ). Writing JV for the set of generating
acyclic cofibrations of MV , the sequence M of model categories is required to satisfy the
following four conditions:

(i) All cofibrations in MV are hurewicz cofibrations.

(ii) For every V and W in L we have that for every generating acyclic cofibration
j ∈ JV the map (GV j)W is a weak equivalence in MW .

(iii) The class of weak equivalences in MV is the class of H V -equivalences.

(iv) For every V ∈ O, the class of cofibrations in the (H V ,H V )-model structure on
(G×OV )T is contained in the class of cofibrations in MV .

In the above definition condition (i) is of a technical kind used to ensure that homo-
topy groups have associated cofibration sequences. Condition (ii) is needed to obtain a
level M-model structure on the category of orthogonal spectral Condition (iv) is used to
identify the stably fibrant orthogonal spectra as a kind of Ω-spectra. Together with the
other conditions, condition (iii) determines the stable M-model structure on orthogonal
spectra. Condition (iv) implies that every fibration f in MV is an H V -fibration in the
sense that fP is a fibration for every P in H .

Definition 2.5.2. Let M be an H -model structure. Writing IV for the set of generating
cofibrations for MV we say that M satisfies the pushout-product axiom if it is so that
given i ∈ IV and j ∈ IW , the map OV⊕W+ ∧OV ×OW

i�j is a cofibration in MV⊕W , and
if in addition one of the former maps is a weak equivalence, so is the latter.
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Definition 2.5.3. Let M be an H -model structure and let f : X → Y be a morphism
of orthogonal G-spectra.

(i) f is a level M-equivalence if fV is an MV -equivalence for all V in L.

(ii) f is a level M-fibration if fV is a fibration in MV for all V in L.

(iii) f is an M-cofibration if it satisfies the left lifting property with respect to all maps
that are both level M-equivalences and level M-fibrations.

Definition 2.5.4. Given an H -model structure M, we write GIM = ∪V GIV , where
GIV is the set of all maps of the form GV i for i in the set IV of generating cofibrations
for MV . Similarly we use the notation GJM = ∪V GJV , where GJV is the set of all maps
of the form GV j for j in the set JV of generating acyclic cofibrations for MV .

Theorem 2.5.5. If M is an H -model structure, then the M-cofibrations, level M-
equivalences and level M-fibrations give a left proper cofibrantly generated G-topological
model structure on the category GOT of orthogonal G-spectra. The set GIM is a set of
generating cofibrations, and the set GJM is a set of generating acyclic cofibrations for
this model structure.

Proof. We use the Assembling Theorem 6.2.7. Proposition 6.2.9 shows that the resulting
structure is G-topological. To apply Theorem 6.2.7 we need to know that the maps in
GJV are actually level equivalences. However, if j ∈ JV , then by part (ii) of Definition
2.5.1 (GV j)W is a weak equivalence in MW .

In order to see that the level M-model structure on GOT is left proper we note that
(i) of Definition 2.5.1 implies that if f : A → X is a level M-cofibration in GOT , then
fV : AV → XV is a hurewicz cofibration for all V . Now left propernes is a consequence
of part (iii) of Definition 2.5.1.

Definition 2.5.6. The model structure of Theorem 2.5.5 is the level M-model structure
on GOT .

Theorem 2.5.7. If an H -model structure M satisfies the pushout-product axiom, and
H 0 contains all subgroups of G × O0, then the level M-model structure on GOT is
monoidal.

Proof. Since H 0 contains all subgroups of G×O0 the zero sphere S0 is cofibrant in M0,
the unit S = G0S

0 for the monoidal product is cofibrant. Thus we only need to verify
the pushout product axiom. It is a direct consequence of the natural isomorphism

GV i�GW j = GV⊕W (OV⊕W+ ∧OV ×OW
i�j)

and Definition 2.5.2.
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2.6 Mixing pairs

Given a G-typical family of representations H and a sequence G = (G V )V ∈L of families
of subgroups of G ×OV with H V contained in G V for all V ∈ L, we will consider the
(H V ,G V )-model structure on (G×OV )T from Theorem 1.3.8. Recall that the closure
H of a G-typical family H is its closure under retracts.

Definition 2.6.1. A G-mixing pair (H ,G ) consists of a G-typical family of representa-
tions H and a sequence G = (G V )V ∈L of families G V of subgroups of G×OV satisfying
the following conditions for each Euclidean space V and W :

(i) H V is contained in G V

(ii) H
V
∩ G V is contained in H V

(iii) G is closed under sum in the sense that if P ∈ G V and Q ∈ GW , then the isotropy
groups of elements of the G×OV⊕W -space

OV⊕W ×OV ×OW
((G ×OV )/P × (G×OW )/Q)

are in G V⊕W . Here the group G acts on (G×OV )/P × (G×OW )/Q through the
diagonal embedding G→ G×G.

Example 2.6.2. For every G-typical family H of representations, (H ,H ) is a G-
mixing pair.

Example 2.6.3. If H is closed under retracts and G V is the family of all subgroups of
G×OV , then (H ,G ) is a G-mixing pair.

Example 2.6.4 (Positive mixing pair). The positive mixing pair for G is defined as
follows: For V 6= 0, the family G V consists of all subgroups of G×OV , and H V consists
of the subgroups P of G ×OV with the property that pr1 : P → G is injective. When
V = 0, the families G V and H V are empty.

Recall from Theorem 1.3.8 that for a G-mixing pair (H ,G ), the (H V ,G V )-model
structure on G × OV is cofibrantly generated, with the set IG V of maps of the form
(i × (G × OV )/P )+ for i ∈ I a generating cofibration for U and P ∈ G V , as set of
generating cofibrations. The set JH V ,G V of generating acyclic cofibrations is the union
of the set of JG V of maps of the form (j × (G×OV )/P )+ for j ∈ J a generating acyclic
cofibration for U and P ∈ G V and the set consisting of maps of the form i�kP for
i ∈ I a generating cofibration for U and a specific H V -equivalence kP = sP (G/e) for
P ∈ G V −H V .

Definition 2.6.5. The set IV is the set IG V of generating cofibrations for the (H V ,G V )-
model structure on G × OV and the set JV is the set JH V ,G V of generating acyclic

cofibrations for the (H V ,G V )-model structure on G×OV .
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Recall that a map f : X → Y of orthogonal spectra is a level H -equivalence if and
only if for each Euclidean space V , the map fV is an H V -equivalence. We can formulate
this in terms of the genuine model structure on GT 1.3.10. by noting that fV is an H V -
equivalence if and only if for every P ∈H V , the map fV is an a genuine equivalence of
P -spaces. Writing H = pr1(P ), the map fV is a genuine equivalence of P -spaces if and
only if the map fV (P ) is an genuine equivalence of H-spaces.

Recall that given a subgroup P of a group A and an element a of A, the conjugation
homomorphism ca : P → aPa−1 is defined by ca(p) = apa−1.

Lemma 2.6.6. Let P and B be subgroups of a compact Lie group A, let a ∈ A and let X
be a B-space. If a−1Pa is contained in B, then the map f : c∗a−1X → PaB+ ∧B X with
f(x) = [a ∧ x] is a isomorphism of P -spaces. If a−1Pa is not contained in B, then the
space of P -fixed points of PaB+ ∧B X is the one-point space. In particular, the P -fixed
subspace of A+ ∧B X is the one point space unless P is subconjugate to B.

Proof. If (PaB/B)P is non-empty, then paB = aB for all p ∈ P , so a−1Pa ⊆ B. Thus,
if a−1Pa is not contained in B, then the space of P -fixed points of PaB+ ∧B X is the
one-point space. Now suppose a−1Pa is contained in B. Then

f(a−1pax) = [a ∧ a−1pax] = [aa−1pa ∧ x] = [pa ∧ x] = p[a ∧ x] = pf(x),

so f is a P -map. Multiplication with a−1 gives an inverse

PaB+ ∧B X → c∗a−1(a
−1PaB+ ∧B X) = c∗a−1(B+ ∧B X) ∼= c∗a−1X

to f . The statement about the P -fixed subspace of A+ ∧B X now follows from the fact
that A is the disjoint union of subspaces of the form PaB.

Proposition 2.6.7. Let (H ,G ) be a G-mixing pair. For each Euclidean space V let
MV be the (H V ,G V )-model structures on (G × OV )T . The model structures MV

form an H -model structure M with the property that if i ∈ IV and j ∈ IW , then
OV⊕W+∧OV ×OW

i�j is a cofibration in MV⊕W . If H is closed under retracts, then M

satisfies the H -pushout-product axiom, and S is cofibrant in the level M-model structure
on GOT . Letting IM = IV from 2.6.5 and JM = JV from 2.6.5, the sets GIM and GJM
are sets of generating cofibrations and generating acyclic cofibrations respectively for the
level M-model structure.

Proof. By design, the weak equivalences in MV are the H V -equivalences. The generat-
ing cofibrations for the (H V ,G V )-model structure are Hurewicz cofibrations, and thus
so are all cofibrations, and (i) of Definition 2.5.1 holds.

We need to work harder to verify part (ii) of Definition 2.5.1, that is, that the maps
in GJ are actually H -level equivalences. So let j : X → Y be a generating acyclic
(H V ,G V )-cofibration. Then (GV j)W is the map

O(V,W )∧OV
j : O(V,W )∧OV

X → O(V,W )∧OV
Y.
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We have to show that this is an H W -equivalence. Suppose there exists an isometric
embedding ϕ : V → W . Otherwise O(V,W ) is the one-point space and (GV j)W is
obviously a weak equivalence. Let A = G ×OW and B = G ×Oϕ⊥ ×Oϕ(V ). Using ϕ
we identify O(V,W ) ∧OV

j with the map

A+ ∧B (Sϕ
⊥

∧X)
A+∧B(id∧j)
−−−−−−−−→ A+ ∧B (Sϕ

⊥

∧ Y ).

Given P ∈H W Lemma 2.6.6 says that the P -fixed points of the above spaces consist
of just the base point unless P is subconjugate to B.

Consider A as a P × Bop-space with (p, b) ∈ P × Bop acting on a ∈ A by the rule
(p, b)a = pab. By Illmans’s Theorem 1.2.2, the space A is an P ×Bop CW-complex. By
Lemma 1.2.5 the cells of this P×Bop CW-complex are isomorphic to products PaB×Dn

of an orbit in A and a disc. Lemma 2.6.6 would imply that ((PaB × Dn)∧B(id∧j))
P

and ((PaB×Sn−1)∧B(id∧j))
P are weak equivalences if we knew that (id∧j)a

−1Pa were
a weak equivalence, whenever a−1Pa ⊆ B. An induction on the cells using the Cube
Lemma [H, Lemma 5.2.6] would then give that (A+ ∧B (id∧j))P is a weak equivalence.

In order to finish the verification of part (ii) of Definition 2.5.1 it thus suffices to
show that if P ∈ H W is a subgroup of B, then (id∧j)P is a weak equivalence. Let P1

be the image of P under the projection

B = G×Oϕ⊥ ×Oϕ(V ) → G×Oϕ(V )
∼= G×OV .

Then by Proposition 1.1.2 we have (id∧j)P = id∧jP1 , and sinceX and Y are cofibrant in
the mixed (H V ,G V )-model structure, it suffices to show that jP1 is a weak equivalence.

Note that V (P1) is a subrepresentation of V (P ), so the group P1 is in H
V
. If P1 ∈H V ,

then jP1 is a weak equivalence in T . Otherwise P1 is in the complement of H V in H
V
.

In part (ii) of Definition 2.6.1 we require that H
V
∩ G V ⊆H V , so this implies that P1

is not in G V . Since both source and target of j are cofibrant in the mixed (H V ,G V )-
model structure this implies that both source and target of jP1 are the one-point space.
In particular jP1 is a weak equivalence.

Next we show that if i ∈ IV and j ∈ IW , then OV⊕W+∧OV ×OW
i�j is a cofibration.

Let

i = (
[
Sn−1 → Dn

]
× (G×OV )/P )+ and j = (

[
Sm−1 → Dm

]
× (G×OW )/Q)+

be maps in IV and IW respectively. Then OV⊕W+∧OV ×OW
i�j is isomorphic to:

(
[
Sn+m−1 → Dn+m

]
×OV⊕W ×OV ×OW

(G×OV )/P × (G×OW )/Q)+.

Since as a left adjoint, taking the product with a space preserves colimits, it suffices by
Illman’s Theorem 1.2.2 to note that in part (iii) of Definition 2.6.1 we require that the
isotropy groups of the smooth G×OV⊕W manifold

OV⊕W ×OV ×OW
((G×OV )/P × (G ×OW )/Q)
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are in G V⊕W .
Suppose that H is closed under retracts. We show that if XV is a cofibrant ob-

ject in MV and f is an H V -equivalence of cofibrant objects of MW , then the map
OV⊕W+ ∧OV ×OW

XV ∧ f is a weak equivalence in MV⊕W . Since the generating acyclic
cofibrations for MW are weak equivalences of cofibrant objects and source and target of
the generating cofibrations are cofibrant this implies the statement about acyclic cofi-
brations in the pushout-product axiom. Let A = G×OV⊕W and let B = G×OV ×OW .
Given P ∈ H V⊕W it suffices by cell induction to show that (PaB+ ∧B (XV ∧ f))

P is
a weak equivalence. As above, we may without loss of generality assume that a−1Pa is
contained in B. Let P1 be the image of a−1Pa under the projection

B = G×OV ×OW → G×OV

and let P2 be the image of a−1Pa under the projection

B = G×OV ×OW → G×OW .

By Lemma 2.6.6 (PaB+ ∧B (XV ∧ f))
P can be identified with XP1

V ∧ f
P2 . Since X is

cofibrant in M, the space XP1
V is cofibrant, and likewise the P2-fixed points of the source

and target of f are cofibrant. Thus it suffices to show that fP2 is a weak equivalence.
However, since V (P2) is a subrepresentation of V (P ) and H is closed under retracts,
we have that P2 ∈ H W , and thus fP2 is a weak equivalence because f is an H W -
equivalence.

Finally, we verify that if H is closed under retracts, then S = G0S
0 is cofibrant.

For this it is enough to know that S0 is cofibrant in M0. However, since the zero
representation is a retract of every representation, there exists P ∈ H 0 with V (P )
equal to the zero-dimensional of G. Since P ⊂ G ×O0 this implies that P = G ×O0,
and thus H 0 consists of all subgroups of G×O0. Since H 0 ⊆ G 0 this implies that S0

is cofibrant in M0.

Definition 2.6.8. Let (H ,G ) be a G-mixing pair. The level M model structure on
GOT with M as in Proposition 2.6.7 is the level mixed (H ,G )-model structure. Let
f : X → Y be a morphism of orthogonal G-spectra.

(i) f is a level (H ,G )-fibration if for each V in L the map fV : XV → YV is a fibration
in the (H V ,G V )-model structure on (G×OV )T .

(ii) f is an (H ,G )-cofibration if f satisfies the left lifting property with respect to all
maps that are both level H -equivalences and level (H ,G )-fibrations.

Note that unless H is closed under retracts, the sphere spectrum is not cofibrant in
the level (H ,G )-model structure.

Lemma 2.6.9. Let P ∈ H V with pr1(P ) = H and let C be a cofibrant replacement of
the sphere spectrum S in the (H ,G )-model structure. The H-space CV (P ) is H-homotopy

equivalent to the representation sphere SV (P ).
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Proof. The map CV → SV is an H V -equivalence. Since P ∈ H V , it is a weak equiv-
alence of cofibrant P -spaces. Thus it is a P -homotopy equivalence. Finally, H acts
through the isomorphism pr1 : P → H.

Note that since the mixed (H V ,G V )-model structures are left proper and cellular
in the sense of Hirschhorn [HirL, Definition 12.1.1], the level (H ,G )-model structure is
also left proper and cellular. The following theorem is a recollection of results in this
section.

Theorem 2.6.10. Let (H ,G ) be a G-mixing pair. The level (H ,G )-model structure on
GOT is a left proper and cellular G-topological model structure. The weak equivalences
in this model structure are the level H -equivalences. The fibrations are the level (H ,G )-
fibrations and the cofibrations are the (H ,G )-cofibrations. If H is closed under retracts,
then the level (H ,G )-model structure on GOT is monoidal.

We have seen that f is a level H -equivalence if and only if for all V in L and all
P ∈ H V , the map fV (P ) is an FP -equivalence of H = pr1(P )-spaces for the family

FP = {pr1(Q) ∩ pr1(P ) |Q ∈H V } of subgroups of H.
Note that if (H ,G ) and (H ,G ) are G-mixing pairs with G ⊆ G , then the identity

functor is a left Quillen functor from the level (H ,G )-model structure to the level
(H ,G )-model structure on GOT . In fact this is the left Quillen functor in a Quillen
equivalence.

Given a G-mixing pair (H ,G ) and a subgroupH of G with inclusion homomorphism
iH : H → G we let (i∗HH , i∗HG ) be the H-mixing pair with i∗HH V consisting of the
subgroups of H×OV obtained by intersecting members of H V with H×OV . Similarly
i∗HG V consists of the subgroups of H × OV obtained by intersecting members of G V

with H ×OV .

Lemma 2.6.11. Given a G-mixing pair (H ,G ) and a subgroup H of G with inclusion
homomorphism iH : H → G the functor i∗H : GOT → HOT is a right Quillen functor of
level mixed model structures with respect to (H ,G ) and (i∗HH , i∗HG ) respectively.

Proof. This is a direct consequence of Lemma 1.3.12.

2.7 Stable equivalences

In this section we work with a fixed H –model stuctureM satisfying the pushout-product
axiom.

Given an Euclidean space V and a subgroup P of G×OV , we define the G×OV -space

S̃P := (G×OV )+ ∧P S
V .

Here P acts on SV through the action of G ×OV where G acts trivially and OV acts
via functoriality of the one-point compactification.

We let
λP : GV S̃

P → S
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be the adjoint to action map

S̃P = (G×OV )+ ∧P S
V → SV = SV .

Given an orthogonal G-spectrum X, we let

λXP : GV S̃
P ∧X → X

be the composition of λP ∧X and the structure isomorphism S∧X ∼= X. Note that for
X of the form X = GWC for C a G×OW -space, the map λXP is the composition of the
isomorphism

GV S̃
P ∧ GWC

∼= GV⊕W (OV⊕W+ ∧OV ×OW
S̃P ∧ C)

and the map
GV⊕W (OV⊕W+ ∧OV ×OW

S̃P ∧ C)→ GW (C).

Using a shear map, we obtain an isomorphism of (G×OV )-spaces

S̃P = (G×OV )+ ∧P S
V ∼= (G×OV )/P+ ∧ S

V , (g,A) ∧ x 7→ (g,A) ∧Ax

where G×OV acts on SV in the same way as described above.
In the situation where the projection pr1 : P → G is an isomorphism, we can interpret

the G × OV -space as follows: let ϕ : G → OV be the composition of the inverse of
pr1 : P → G, the inclusion of P in G × OV and the projection pr2 : G × OV → OV .
Let OV (P ) be the space OV with G ×OV acting via multiplication by elements of OV

from the left and multiplication from the right by the inverse of the action elements of
G. There is an isomorphism (G ×OV )+ ∧P S

V ∼= OV (P )+
∧ SV (P ), of G ×OV -spaces

taking an element of (G × OV )+ ∧P S
V represented by (g, α) ∧ x ∈ (G × OV )+ ∧ S

V

to αϕ(g−1) ∧ ϕ(g)x ∈ OV ∧ S
V . In 2.2.3 this orthogonal G-spectrum GV S̃

P is denoted
FV S

V (P ) and in [MM] it is denoted FV (P )S
V (P ), or FWS

W for W any representation of
G.

Definition 2.7.1. Let P be a subgroup of G × OV and let X be an orthogonal G-
spectrum.

(i) The negative P -shifted V -loop spectrum of X is the orthogonal G-spectrum

RPX := homOT (GV S̃
P ,X)

(ii) The positive P -shifted V -loop spectrum of X is the orthogonal G-spectrum

R+P := GV S̃
P ∧X

Definition 2.7.2. An orthogonal G-spectrum X is an M-Ω-spectrum if it is fibrant
in the level M-model structure and for every subgroup P of G × OV in H V with
pr1(P ) = G, the map homOT (λP ,X) : X → RPX induced by λP : GV S̃

P → S is a level
M-equivalence.
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Definition 2.7.3. A morphism f : X → Y of cofibrant G-orthogonal spectra in the level
M-model structure is an M-stable equivalence if for every M-Ω spectrum E, the map
GOT (f,E) : GOT (Y,E) → GOT (X,E) is an weak equivalence in T . More generally,
a morphism of arbitrary orthogonal G-spectra is an M-stable equivalence if the induced
map of cofibrant replacements is an M-stable equivalence.

The proof of [MMSS, 8.11] gives the following result.

Lemma 2.7.4. Every M-stable equivalence between M-Ω-spectra is a level M-equivalence.

The proof of [MM, III.3.4.] gives the following result.

Lemma 2.7.5. Let F be the G-typical family of representations consisting of the trivial
representations of G. A morphism between M-Ω-spectra is a level H -equivalence if and
only if it is a level F -equivalence.

Proposition 2.7.6. If P is in H with pr1 : P → G an isomorphism, then λXP is a
M-stable equivalence for every cofibrant spectrum X in the level M-model structure.

Proof. We have to show that for all M-Ω-spectra E the map

GOT (λXP , E) = GOT (X,homOT (λP , E))

is a weak equivalence. However homOT (λP , E) is a level equivalence of level fibrant
objects. Since X is cofibrant, the map GOT (X,homOT (λP , E)) is a weak equivalence.

Definition 2.7.7. Let V be an Euclidean space, let P be a subgroup of G ×OV such
that pr1 : P → G is an isomorphism and let X be an orthogonal G-spectrum.

(i) The P -loop spectrum of X is the orthogonal G-spectrum

ΩPX := homOT (G0S
V (P ),X).

(ii) The P -suspension spectrum of X is the orthogonal G-spectrum

ΣPX := G0S
V (P ) ∧X.

Note that the category of orthogonal G-spectra is enriched over the category of G-
spaces, and that ΣPX = SV (P ) ⊗ X is the tensor of SV (P ) and X, and that ΩPX
is the cotensor of SV (P ) and X. Since the M-level model structures on the category
of orthogonal G-spectra is a GT -model structure we can conclude that (ΣP ,ΩP ) is a
Quillen adjoint pair of endofunctors of the category of orthogonal G-spectra.

Lemma 2.7.8. A map f : X → Y of orthogonal G-spectra is an M-stable equivalence if
and only if for every M-Ω spectrum E, the induced map f∗ : [Y,E]→ [X,E] of morphism
sets in the level M-homotopy category is a bijection.
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Proof. One direction is easy since for M-level cofibrant Y and fibrant E, we have that
[Y,E] is the set of components of GOT (Y,E). Conversely, suppose that for every M-Ω
spectrum E, the induced map f∗ : [Y,E] → [X,E] of morphisms sets in the level M-
homotopy category is a bijection. Since M-level equivalences are M-stable equivalences
we may without loss of generality assume that X and Y are cofibrant in the level M-
model structure. Given an M-Ω spectrum E′ we show that the map

homOT (f,E
′) : homOT (Y,E

′)→ homOT (X,E
′)

is a level equivalence. Since X and Y and cofibrant, this implies by evaluating at level
0 and taking G-fixed points that

GOT (f,E′) : GOT (Y,E′)→ GOT (X,E′)

is a weak equivalence. In order to show that homOT (f,E
′) is a level equivalence, it

suffices to show that for every source or target C of a generating cofibration for the level
M-model structure, the morphism [C,homOT (f,E

′)] in the level M-homotopy category
is an isomorphism. However, this map is isomorphic to the adjoint [f,homOT (C,E

′)],
and since C is cofibrant, the spectrum homOT (C,E

′) is an M-Ω-spectrum.

Lemma 2.7.9. Let V be an Euclidean space. For every member P of H V the G×OV -
space (G×OV /P )+ is cofibrant in the MV -model structure.

Proof. Since the isotropy groups of the G × OV -CW-complex (G × OV /P )+ are sub-
conjugate to P it is cofibrant in the mixed (H V ,H V )-model structure. By part (iv) of
2.5.1 this implies that it is cofibrant in the MV -model structure.

Corollary 2.7.10. If P ∈H V , then S̃P is cofibrant in MV .

Definition 2.7.11. Let P be a subgroup of G × OV such that pr1 : P → G is an
isomorphism and let X be an orthogonal G-spectrum.

(i) The negative P -shift of X is the orthogonal G-spectrum

s−PX := homOT (GV (G×OV /P )+,X)

(ii) The positive P -shift of X is the orthogonal G-spectrum

s+PX := GV (G×OV /P )+ ∧X

Using we get the following: Using we get the following:

Lemma 2.7.12. Let P be a subgroup of G×OV such that pr1 : P → G is an isomorphism
and let X be an orthogonal G-spectrum.

(i) There are isomophisms

s−PX ∼= homOT (GVOV (P )+
,X) and s+PX ∼= GVOV (P )+

∧X.

In particular (s−PX)W ∼= XW⊕V (P ).
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(ii) The P -shifted V -loop spectrum RPX (cf. 2.7.1) is naturally G isomorphic to both
ΩP s−PX and s−PΩ

PX.

Proof. Part (i) is a consequence of the isomorphism G × OV /P ∼= OV (P ) from 2.4.2.
Part (ii) is a direct consequence of Lemma 2.7.12 and the isomorphisms

S̃P ∼= SV (P ) ∧OV (P )+
∼= OV (P )+

∧ SV (P ).

Lemma 2.7.13. For every G-typical family of representations H and every subgroup
P of G×OV in H with pr1(P ) = G, the functor RP preserves level H -equivalences.

Proof. This is a consequence of the fact that in the level (H ,H )-model structure GV S̃
P

is cofibrant and every object is fibrant.

Proposition 2.7.14. Let X be a level M-fibrant orthogonal G-spectrum. If P ∈H with
pr1(P ) = G, then the map i = homOT (λP ,X) : X → RPX is an M-stable equivalence.

Proof. If E is an M-Ω-spectrum, that is, i : E → RPE is a level M-equivalence, then so is
and RPE. Let X be a M-level fibrant orthogonal G-spectrum. There is a commutative
diagram of morphism sets in the level M-homotopy category:

[X,E]
RP

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

i∗ // [X,RPE]

[RPX,E]

i∗

OO

i∗ // [RPX,RPE],

i∗

OO

where both of the functions labeled i∗ are bijections. It follows that

RP : [X,E]→ [RPX,RPE]

is a bijection. Hence
i∗ : [RPX,E]→ [X,E]

is a bijection. Now we apply Lemma 2.7.8.

Corollary 2.7.15. If P is in H V and pr1 : P → G is an isomorphism, then for every
orthogonal G-spectrum X, the map i = homOT (λP ,X) : X → RPX is an M-stable
equivalence.

Proof. Let X → Y be a level M-equivalence with Y level M-fibrant. Thus X → Y
is a level H -equivalence, and by 2.7.13 the morphism RPX → RPY is also a level
H -equivalence. Since level H -equivalences are stable M-equivalences the result is a
consequence of Y → RPY being an M-stable equivalence by 2.7.14 and the commutative
square

X //

≃
��

RPX

≃
��

Y
∼ // RPY.
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2.8 Homotopy Groups

We fix a G-typical family of representations H and an H -model structure M. We
introduce a T -functor

λ̃G : (GL)op → GOT ∼= OGT

whose value at an object V of GL is the functor λ̃G(V ) : O→ GT taking an Euclidean
space W to the G-space λ̃G(V )W = O(V,W )∧SV with G acting diagonally on O(V,W )
and SV .

Recall from Definition 2.1.3 the untwisting G-isomorphism

τV,W : O(V,W ) ∧ SV → L(V,W ) ∧ SW

taking an element in O(V,W ) ∧ SV of the form (f : V → W,w ∈ f(V )⊥, v ∈ V ) to the
element (f,w + f(v)) in L(V,W ) ∧ SW . The functoriality of λ̃G is described via a T -
functor l : (GL)op∧O→ GT defined on objects by l(V,W ) = λ̃G(V )W = O(V,W )∧SV .
The map

l : (GL)op(V, V ′) ∧O(W,W ′)→ GT (O(V,W ) ∧ SV ,O(V ′,W ′) ∧ SV
′

)

is adjoint to the G-map

GL(V ′, V ) ∧O(W,W ′) ∧O(V,W ) ∧ SV → O(V ′,W ′) ∧ SV
′

given as the composition

GL(V ′, V ) ∧O(W,W ′) ∧O(V,W ) ∧ SV → GL(V ′, V ) ∧O(V,W ′) ∧ SV

→ GL(V ′, V ) ∧ L(V,W ′) ∧ SW
′

→ L(V ′,W ′) ∧ SW
′

→ O(V ′,W ′) ∧ SV
′

,

where the first map is induced by composition in O, the second map is induced by the
untwisting map τV,W ′, the third map is induced by composition in L and the last map
is the inverse of τV ′,W ′. Given

f ∧ (g, x) ∧ (h, y) ∧ z ∈ GL(V ′, V ) ∧O(W,W ′) ∧O(V,W ) ∧ SV

with f : V ′ → V , g : W → W ′ and h : V → W embeddings and with x ∈ W ′ in the
orthogonal complement of g(W ), y ∈ W in the orthogonal complement of h(V ) and
z ∈ V we have

l(f ∧ (g, x) ∧ (h, y) ∧ z) = (ghf,w) ∧ v,

where v ∈ V ′ and w ∈W ′ are uniquely determined by requiring ghf(v)+w = x+gy+ghz.
It is a consequence of Lemma 2.1.5 that this defines a functor l : (GL)op ∧O→ GT . We
write λ̃ : (GL)op → GOT for the adjoint functor.

Lemma 2.8.1. If P ∈H V has pr1 P = G, then λP = λ̃(0→ V (P )).
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We say that an element P in H V is H -irreducible if pr1 : P → G is an isomorphism
and P is not of the form Q ⊕ R for Q ∈ H W and R ∈ H W ′

with both W and W ′

non-zero Euclidean spaces. Observe that if V is a non-zero Euclidean space, then every
member H V is a direct sum of H -irreducible elements of H .

Let B be a set containing one representative for each conjugacy class of H -irreducible
elements of H . We write B∗ for the free monoid on the set B. Given two words
b = P1 . . . Pm and b′ = P ′

1 . . . P
′
n in B∗, we write b ≤ b′ if there is an increasing sequence

i1 < · · · < im such that Pj = P ′
ij

for j = 1, . . . ,m, that is, if b can be obtained from b′

by removing some letters. This is a partial order, and we consider B∗ = (B∗,≤) as a
category.

The morphisms λb for b ∈ B give us a functor λ∗B : (B∗)op → GOT taking b =

P1 . . . Pm to λB(b) =
∧m
i=1 GV (Pi)

S̃Pi . Consider the free commutative monoid N{B} as a

filtered partially ordered set with
∑
nbb ≤

∑
mbb if and only if nb ≤ mb for all b ∈ B.

Choosing a total order on B, there is an order-preserving function N{B} → B∗ taking
n1P1 + . . . nrPr with P1 < · · · < Pr to Pn1

1 . . . Pnr
r . Given b = n1P1 + . . . nrPr ∈ N{B}

with P1 < · · · < Pr we define V (b) = V (P1)
⊕n1 ⊕ · · · ⊕ V (Pr)

⊕nr , and we define Ωb =
(ΩPr)◦nr ◦ · · · ◦ (ΩP1)◦n1

Definition 2.8.2. The functor λB : N{B}op → GOT is the composition of the functors
N{B}op → (B∗)op and λ∗B : (B∗)op → GOT .

Definition 2.8.3. Given an orthogonal G-spectrum X, the orthogonal G-spectrum
QH X whose value on an Euclidean space V is the homotopy colimit

hocolim
b∈N{B}

homOT (λB(b),X)V ∼= hocolim
b∈N{B}

ΩbXV (b)⊕V

in the category of G-spaces. The spectrum QX is the fibrant replacement of QH X in
the level M-model structure.

Lemma 2.8.4. The natural map X → QX given by the inclusion of X ∼= homOT (λB(0),X)
in the homotopy colimit defining QX is an M-stable equivalence.

Proof. Let X̃ be a cofibrant replacement of the functor b 7→ homOT (λB(b),X) in the
model structure on the category of N{B}-diagrams in the level M-model structure on
GOT . In particular, given a morphism β : b→ b′ in N{B}, the map X̃β : X̃b → X̃b′ is a
map between cofibrant objects and hocolimb∈N{B} X̃

b is a cofibrant replacement of QX.
Let E be anM-Ω-spectrum and let β : b→ b′ be a morphism in N{B}. By Proposition

2.7.15 the map X̃β is an M-stable equivalence. Given an Euclidean space V and P in
H V , the G-orthogonal spectrum GV (G × OV /P+) is cofibrant in the level M-model
structure, and thus

homOT (X̃
β , E)PV

∼= GOT (GV (G×OV /P+) ∧ X̃
β , E)

is a weak equivalence. That is, homOT (X̃
β , E) is a level M-equivalence. Now, since

hocolimβ∈N{B} X̃
β is a cofibrant replacement of QX, the isomorphism

homOT (hocolim
β∈N{B}

X̃β , E) ∼= holim
β∈N{B}op

homOT (X̃
β , E)
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shows that X → hocolimβ∈N{B} X̃
β is an M-stable equivalence.

Proposition 2.8.5. For every orthogonal G-spectrum X, the orthogonal G-spectrum
QX is an M-Ω-spectrum.

Proof. It suffices to show that for every P ∈ H with pr1 : P → G an isomorphism the
map

homOT (λP , QX) : QX → RPQX

is a level M-equivalence. Since spheres are compact, the canonical mapRPQX → QRPX
is a level M-equivalence. Thus it suffices to show that the map

Q homOT (λP ,X) : QX → QRPX

is a level M-equivalence. Given b in N{B}, we write Xb = homOT (λB(b),X), and given
a morphism β in N{B}, we let Xβ = homOT (λB(β),X). We have to show for every
Euclidean space W the map iX : X → RPX induces a H W -equivalence

hocolim
b∈N{B}

Xb
W → hocolim

b∈N{B}
(RPX)bW .

Choose an isomorphism V (P ) ∼=
⊕k

i=1 Vpi for some not necessarily distinct p1, . . . , pk ∈

B and let p =
∑k

i=1 pi ∈ N{B}. We let N{P} ⊆ N{B} be the partially ordered subset
consisting of elements of the form np for n ∈ N, and we let BP ⊆ B be the complement of
{p1, . . . , pk} in B. The sum in N{B} induces a cofinal inclusion N{P}×N{BP} → N{B}
of partially ordered sets. Therefore it suffices to show that the map iX : X → RPX
induces an H W -equivalence

hocolim
n∈N

Xnp
W → hocolim

n∈N
(RPX)npW .

We thus have to show that for every k ≥ 0 and every Q in H W (and for all choices of
base point in (hocolimn∈NX

np
W )Q), the homomorphism

πk(hocolim
n∈N

Xnp
W )Q → πk(hocolim

n∈N
(RPX)npW )Q

is an isomorphism. By compactness of Sk ∧ (G ×OW/Q)+, this is an isomorphism if
and only if the homomorphism

colim
n∈N

πk(X
np
W )Q → colim

n∈N
πk((RPX)npW )Q

is an isomorphism. We consider diagrams of the form

Xnp iXnp //

(iX )np

��

RPX
np

RP (iX)np

��
(RPX)np

i(RPX)np

//

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
RP (RPX)np,
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where the diagonal arrow is induced by the morphism shifting a factor of GV S
P from

the front to the back. The outer square in the above diagram commutes, as does the
upper triangle, but the lower triangle does not. However, by Schur’s Lemma, the space
GL(V (P ), V (P ) ⊕ V (P )) is path connected, so the lower triangle commutes up to ho-
motopy. From the commutative diagram

πk(X
np
W )Q

iXnp //

(iX )np

��

πk(RPX
np
W )Q

RP (iX )np

��
πk((RPX)npW )Q

i(RPX)np

//

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
πk(RP (RPX)npW )Q,

we conclude that the homomorphisms

colim
n∈N

πk(X
np
W )Q → colim

n∈N
πk((RPX)npW )Q

are isomorphisms. (For all choices of base point in one of the spaces (Xnp
W )Q.)

Corollary 2.8.6. A map X → Y of orthogonal G-spectra is an M-stable equivalence if
and only if QX → QY is a level M-equivalence.

Proof. If X → Y is an M-stable equivalence, then by Lemma 2.8.4 and Proposition 2.8.5
the induced map QX → QY is a stable equivalence of M-Ω-spectra, and by Lemma 2.7.4
it is a level M-equivalence. Conversely, if QX → QY is a level M-equivalence, then it is
also a stable equivalence, and X → Y is an M-stable equivalence by Lemma 2.8.4.

Corollary 2.8.7. All H -model categories M have the same class of stable M-equiva-
lences as the (H ,H )-model structure. In particular, the class of M-stable equivalences
only depends on the closure H of the G-typical family of representations H .

Proof. Let B be a set containing one representative for each conjugacy class of H -
irreducible elements of H . Then N{B} is cofinal in N{B}, so for every Euclidean space
V , the canonical map QH X → Q

H
X is a level H -equivalence, and these are both level

M-equivalent to QX.

In view of the above result, we say that a morphism of orthogonal G-spectra is a H -
stable equivalence if it is a M-stable equivalence for some (and hence every) H -model
structure M.

Corollary 2.8.8. If X → Y → Z is a fibration sequence in the level (H ,H )-model
structure, then so is QX → QY → QZ.

Proof. Let b ∈ N{B}. If X → Y → Z is a fibration sequence in the level (H ,H )-
model structure, then so is the sequence homOT (λB(b),X) → homOT (λB(b), Y ) →
homOT (λB(b), Z). From [HirH, Theorem 14.19] we conclude that QX → QY → QZ is
a fibration sequence in the level (H ,H )-model structure.
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Definition 2.8.9. Let k be an integer, let X be an orthogonal G-spectrum and let H
be a subgroup of G. The homotopy group πHk (X,H ) is defined as the following abelian
group:

πHk (X,H ) :=

{
πk(QX)H0 k ≥ 0

π0(QX)H
Rk k < 0.

By compactness, there are isomorphisms

πHk (X,H ) ∼=

{
colimb∈N{B} πk(Ω

VbXVb)
H k ≥ 0

colimb∈N{B} π0(Ω
VbXVb⊕Rk)H k < 0.

Proposition 2.8.10. A map f : X → Y of orthogonal G-spectra is an H -stable equiv-
alence if and only if the induced homomorphism πHk (f,H ) is an isomorphism for every
subgroup H of G and for every integer k.

Proof. Let F be the G-typical family of representations consisting of the trivial repre-
sentations of G. If the induced homomorphism πHk (f,H ) is an isomorphism for every
subgroup H of G and for every integer k, then the map Qf : QX → QY a level F -
equivalence. Since it is a map of M-Ω-spectra, Lemma 2.7.5 implies that it is a level
M-equivalence. Thus f is an M-stable equivalence.

Conversely, if f is an M-stable equivalence, then Qf is an level M-equivalence, and
also a level F -equivalence. Thus the induced homomorphism πHk (f,H ) is an isomor-
phism for every subgroup H of G and for every integer k.

The infinite dimensional G-representation U = colimn∈N
⊕

b∈B V
n
b is a universe of G-

representations in the sense of Mandell and May who define equivariant stable homotopy
groups as follows:

πHk (X,U) =

{
colimU⊆U πk(Ω

UXU )
H k ≥ 0

colimU⊆U π0(Ω
UXU⊕Rk)H k < 0.

Here the colimits are taken over the partially ordered set of finite dimensional represen-
tations in U. Since N{B} is cofinal in this partially ordered set, the groups πHk (X,H )
and πHk (X,U) are isomorphic. If i : H → G is the inclusion of a subgroup, then by part
(v) of 2.4.5, the groups πHk (X,H ) and πHk (i∗X, i∗H ) are isomorphic. We could have
used the universe U in the construction of QX. Working with N{B} we are keep our
presentation close to the one of [MMSS].

Most of the following crucial result is taken directly from [MMSS, Theorem 7.4].

Theorem 2.8.11. Let H be a G-typical family of representations.

(i) For every G-CW complex A, the functor −∧A preserves H -stable equivalences of
orthogonal G-spectra.

(ii) A morphism f of orthogonal G-spectra is an H -stable equivalence if and only if
its suspension Σf is an H -stable equivalence. Moreover, the natural map η : X →
ΩVΣVX is an H -stable equivalence for all orthogonal G-spectra X for all V in
H .
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(iii) The homotopy groups of a wedge of orthogonal G-spectra are the direct sums of the
homotopy groups of the wedge summands, hence a wedge of H -stable equivalences
is an H -stable equivalences.

(iv) Cobase changes of maps that are H -stable equivalences and levelwise h-cofibrations
are H -stable equivalences.

(v) The generalized cobase change and cube lemmas (6.1.4,6.1.6) hold for all orthogonal
G-spectra, levelwise h-cofibrations and H -stable equivalences.

(vi) If X is the colimit of a sequence of h-cofibrations Xn → Xn+1, each of which
is an H -stable equivalence, then the map from the initial term X0 into X is an
H -stable equivalence.

(vii) For every morphism f : X → Y of orthogonal G-spectra, there are natural long
exact sequences

· · · → πHk (Ff,H )→ πHk (X,H )→ πHk (Y,H )→ πHk−1(Ff,H )→ · · ·

and

· · · → πHk (X,H )→ πHk (Y,H )→ πHk (Cf,H )→ πHk−1(X,H )→ · · · ,

where Ff and Cf denote the levelwise homotopy fiber and cofiber of f , that is, in
each level it is given be the homotopy fiber and cofiber. The natural map Ff → ΩCf
is an H -stable equivalence.

Proof. Part (i) is [MM, Theorem III.3.11]. For part (ii), note that a map f induced
an isomorphism on homotopy groups if and only Ωf is so. Thus f is an H -stable
equivalence if and only if Ωf is so. Now, the arguments used in the proof of Proposition
2.8.5 give the statements of (ii). For the rest of the statements, the arguments in the
proof of [MMSS, Theorem 7.4] carry over to our situation.

Corollary 2.8.12. Let V a Euclidean space and let P ∈H V . A map f : X → Y is an
H -stable equivalence if and only if its V (P )-suspension ΣV (P )f : ΣV (P )X → ΣV (P )Y is
an H -stable equivalence.

Proof. Note that SV (P ) is a G-CW-complex. Thus (i) of 2.8.11 implies that is f is an H -
stable equivalence, then so is ΣV (P )f . Conversely, if ΣV (P )f is an H -stable equivalence,
then so is ΩV (P )ΣV (P )f . Now use (ii) of 2.8.11.

2.9 The stable model structure

Let M be an H -model structure.

Definition 2.9.1. Let f : X → Y be a map of orthogonal G-spectra. We say that f is:
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(i) a stably M-acyclic cofibration if it is an H -stable equivalence and a level M-
cofibration;

(ii) an M-stable fibration if it satisfies the right lifting property with respect to stably
M-acyclic cofibrations;

(iii) stably M-acyclic fibration if it is an H -stable equivalence and a level M-fibration.

Recall from Definition 2.5.4 that the level M-model structure has the set GI of
generating cofibrations and the set GJ of generating acyclic cofibrations.

Definition 2.9.2. We let S(M) be the set consisting of the morphisms

G/H+ ∧ λ
X
P : G/H+ ∧ GV S̃

P ∧X → G/H+ ∧X

where H is a subgroup of G, where P ∈H V for some V ∈ O and where X = GWC for
C a cofibrant replacement of either a source or a target of a generating cofibration in
one of the categories MW .

Note that the map λXP is the composition of an isomorphism

GV S̃
P ∧X

∼=
−→ GV⊕W (OV⊕W+ ∧OV ×OW

S̃P ∧ C)

and a map of the form

GV⊕W (OV⊕W+ ∧OV ×OW
S̃P ∧ C)→ GW (C).

Definition 2.9.3. Given λ in S(M), we let Mλ be the mapping cylinder of λ. Then λ
factors as the composite of a level M-cofibration

kλ : GV⊕W (OV⊕W+ ∧OV ×OW
S̃P ∧ C)→Mλ

and a deformation retraction

rλ : Mλ→ GW (C).

We let Kλ be the set of maps of the form kλ�i, where i ∈ I is a generating cofibration
for T . Let K be the union of GJ and the sets Kλ for λ ∈ S.

Definition 2.9.4. An S(M)-fibration is a level M-fibration, say g : Z → W , of orthog-
onal G-spectra with the property that for every morphism λ : A → B of S(M), the
square

GOT (B,Z)
g∗ //

λ∗

��

GOT (B,W )

λ∗

��
GOT (A,Z)

g∗ // GOT (A,W )

is a homotopy pullback square in T .
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Example 2.9.5. Let us take a look at the S(M)-fibrations in the situation where M is
the level (H ,G )-model structure for a G-mixing pair (H ,G ). The set GI of generating
cofibrations consists of maps of the form

GV (i ∧ (G×OV )/P+)

for i : Sn−1
+ → Dn

+ a generating cofibration for T and P a member of G V . Since we work
with model categories enriched over T , the S(M)-fibrations do not change if replace

S(M) by the set of maps of the form λ
GV C
W where C is a transitive (G ×OV )-spaces of

the form (G ×OV )/P+ for P ∈ G V . In this situation we write KG ,H for the set K of
generating stably acyclic cofibrations.

The arguments proving [MMSS, Proposition 9.5] give:

Proposition 2.9.6. A map p : E → B of orthogonal G-spectra satisfies the right lifting
property with respect to K if and only if it is an S(M)-fibration.

Corollary 2.9.7. The map F → ∗ satisfies the right lifting property with respect to K
if and only if F is an M-Ω-spectrum.

Corollary 2.9.8. If p : E → B is an H -stable equivalence that satisfies the right lifting
property with respect to K, then p is a both a level H -equivalence and a level M-fibration.

Proof. Since GJ is contained inK, we only need to prove that p is a level H -equivalence.
Let F = p−1(∗) be the fiber over the basepoint. Since p satisfies the right lifting property
with respect to K, so does the map F → ∗, and thus by 2.9.7 the orthogonal G-spectrum
F is an M-Ω-spectrum. Since p is an H -stable equivalence, the corollaries 2.8.8 and 2.8.6
imply that F → ∗ is also an H -stable equivalence. By the level long exact sequences of
homotopy groups, for each pV : EV → BV and each P in H V and each k ≥ 1, the group
homomorphism πPk (pV ) is an isomorphism. To see that πP0 (pV ) is a bijection, note that
πP0 (pV ) = πH0 (pV (P )) for a subgroup H = pr1(P ) of G. By part (v) of 2.4.5 we may
assume that pr1(P ) = G. By part (iii) of 2.4.5 we may choose a Euclidean space W and
Q ∈H W so that V (Q) is a trivial representation of G. The homotopy pullback diagram

of Definition 2.9.4 associated to the map λ = λ
G
S̃P

Q is of the form

EV (P )

pV (P ) //

λ∗

��

BV (P )

λ∗

��
ΩV (Q)EV (P )⊕V (Q)

ΩV (Q)pV (P )⊕V (Q)// ΩV (Q)BV (P )⊕V (Q).

The map ΩV (Q)pV (P )⊕V (Q) depends only on basepoint components and is a weak equiv-
alence of G-spaces. Therefore pV (P ) is a weak equivalence of G-spaces. In particular it

is a weak equivalence of H-spaces and H V -equivalence as required.

The following theorem can be proved as in Section 9 of [MMSS].
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Theorem 2.9.9. The category GOT of orthogonal G-spectra is a cofibrantly generated
proper G-topological model category with respect to the H -stable equivalences, M-stable
fibrations and level M-cofibrations.

Remark 2.9.10. Actually it is a compactly generated model category, and thus also
cellular.

In the main part of this paper we work with the following S-model structure taken
from Shipley’s paper [Sh04].

Definition 2.9.11 (The S-model structure). The S-model structure on GOT is the
model category obtained in Theorem 2.9.9 from the positive mixing pair (H ,G ). For
V 6= 0, the family G V consists of all subgroups of G × OV , and H V consists of the
subgroups P of G×OV with the property that pr1 : P → G is injective. When V = 0,
the families G V and H V are empty.

We call the cofibrations and fibrations in this model structure S-cofibrations and
S-fibrations respectively. Moreover we use the notation SI = GI and SJ = GK for the
sets of generating cofibrations and generating acyclic cofibrations respectively for this
model structure. We shall also write stable equivalence or π∗-isomorphism instead of
H -stable equivalence.

Lemma 2.9.12. If P is in H , then the endofunctors s+P and s−P of GOT from 2.7.12
form a Quillen adjoint pair with respect to the stable M-model structure.

Proof. The functors s+P and s−P form a Quillen adjoint pair with respect to the level M-
model structure. Therefore it suffices to show that s+P (λ

X
Q ) is a stable equivalence for all

elements λXQ of S(M). However Y = GV (G×OV /P )+∧X is cofibrant and s+P (λ
X
Q ) = λYQ,

so by Proposition 2.7.6 the morphism s+P (λ
X
Q ) is a stable equivalence.

Lemma 2.9.13. For every cofibrant G-space A, the endofunctor X 7→ A ∧X is a left
Quillen functor on GOT with respect to both the level M-model structure and the M-
stable model structure.

Proof. Use the isomorphisms A∧GV (f)
∼= GV (A∧ f) and A∧λ

C
P
∼= λA∧CP together with

Proposition 2.7.6 and the assumption that MV is a GT -model structure.

Theorem 2.9.14. Let V be an Euclidean space and let P ∈ H V with pr1 : P → G an
isomorphism. The pairs (s+P , s−P ) and (ΣV ,ΩV ) are Quillen equivalences of GOT in
the M-stable model structure.

Proof. By definition, for every M-Ω-spectrum E, the map

homOT (λP , E) : E → RPE

is a level equivalence. In particular it is a stable equivalence, and thus the right derived
functor of RP is naturally isomorphic to the identity. Since by 2.7.12 RP ∼= s−PΩ

V ∼=
ΩV s−P , the right derived functors of s−P and ΩV are inverse equivalences of categories.
Thus both ΩV and s−P are right adjoint functors in Quillen equivalences.
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Corollary 2.9.15. The stable M-model structure is a stable model structure in the sense
that the homotopy category is a triangulated category (cf. [H, Chapter 7].)

2.10 Ring- and Module Spectra

Let us fix a G-mixing pair (H ,G ). We use Theorem [SS, 4.1] to lift the (H ,G )-model
structure to categories of modules and algebras. First we need to verify the monoid
axiom.

Proposition 2.10.1. Cofibrant spectra in the (H ,G )-model structure are flat, in the
sense that for any (H ,G )-cofibrant spectrum X, the functor X∧− preserves stable
equivalences.

Proof. Since smashing with any spectrum preserves level h-cofiber sequences, and by
the long exact sequence for homotopy groups 2.8.11 (vii), it suffices to show that if Z is
an orthogonal spectrum with π∗(Z) = 0, then also π∗(X∧Z) = 0. Since smashing with
Z preserves the cell complex construction, we can further reduce to the case where X
is either the source or the target of one of the generating (H ,G )-cofibrations, i.e., X is
of the form GV

[
(G×OV )/P+∧S

k
+

]
or GV

[
(G×OV )/P+∧D

k
+

]
for P in G V . Since, for

every spaceK, the spectrum GV
[
(G×OV )/P+∧K+

]
is equal to GV

[
(G×OV )/P+

]
∧K+

and since we know from 2.8.11 (i) that smashing with a cofibrant G-space preserves H -
stable equivalences it suffices to show that if Z has trivial homotopy groups, then also
the spectrum GV

[
(G×OV )/P+

]
∧Z has trivial homotopy groups.

In order to simplify notation, we let GV = G×OV . Recall that
(
GV
[
GV /P+

]
∧Z
)
V⊕W

= OV⊕W+∧OV ×OW

(
GV /P+∧ZW

)

∼= GV⊕W /P+∧OW
ZW ,

where the structure maps are the composites:

GV⊕W/P+∧OW
ZW∧S

U id∧σ // GV⊕W/P+∧OW
ZW⊕U

p◦inc

��
GV⊕W⊕U/P+∧OW⊕U

ZW⊕U ,

where σ is the structure map of Z, the map inc is induced by the standard inclusion
OV⊕W → OV⊕W⊕U and p is the projection from OW -orbits to OW⊕U -orbits.

Recall that {Vb}b∈B is a totally ordered set of representatives of H -irreducible rep-
resentations of G. Let us represent elements of the free commutative monoid N{B}
as functions f : B → N with finite support. We will take the liberty to use the sym-
bol W to denote both an element W = f ∈ N{B} and the G-representation V (f) =⊕

P∈B V (P )⊕f(P ) associated to f . The homotopy groups πHk (GV
[
GV /P+

]
∧Z) are there-

fore isomorphic to the colimit:

colim
W∈N{B}

πHk (ΩW (GV⊕W /P+ ∧OW
ZW ))H .
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The projection

GV⊕W/P+∧OW
ZW⊕U

p◦inc // GV⊕W⊕U/P+∧OW⊕U
ZW⊕U

is the identity when U is zero, so it induces a surjective homomorphism from

colim
W∈N{B}

colim
U∈N{B}

πHk (ΩW⊕U(GV⊕W /P+ ∧OW
ZW⊕U ))

H

to
colim
W∈N{B}

πHk (ΩW (GV⊕W /P+ ∧OW
ZW ))H .

Let us write s−WZ = s−PW
Z for PW ∈H with W = V (PW ). The group G×OW acts

on the orthogonal spectrum s−WZ since (s−WZ)U = ZW⊕U and with structure maps
inherited from Z. The colimit

colim
U∈N{B}

πHk (ΩW⊕U(GV⊕W /P+ ∧OW
ZW⊕U ))

H

is the homotopy groups of the orthogonal spectrum GV⊕W /P+∧OW
s−WZ. Thus if we

show that spectra of this type have trivial homotopy groups, we are done.
Since G acts on W = V (PW ) and P is contained in OW , we can consider the space
GV⊕W /P as a G×OW -space. Since OV (PW )

∼= (G ×OW )/PW , the isotropy groups of
this G×OW -space are all subconjugate to PW . Therefore GV⊕W/P has G×OW -cells
of the form Dp

+ ∧ (G ×OW )/Q+ for Q ⊆ PW . Writing H = pr1(Q) and i : H → G for
the inclusion, there are isomorphisms

(G×OW )/Q+
∼= G+ ∧H OV (Q)

∼= G/H+ ∧OV (PW )

of G×OW -spaces, and there is an isomorphism

(G×OW )/Q+ ∧OW
s−WZ ∼= G/H+ ∧ (s−WZ).

Suppose that ∗ = X0 → X1 → . . .→ Xl is the cellular filtration of GV⊕W/P+. Both
levelwise smash product with spaces and taking levelwise OW -orbits commute with
(levelwise) colimits hence with the cell complex construction. From the cell structure
we get the gluing diagrams of spectra of the form:

Sp−1
+ ∧(G×OW )/Q+∧OW

s−WZ //

��

Xi∧OW
s−WZ

��
Dp

+∧(G×OW )/Q+∧OW
s−WZ // Xi+1∧OW

s−WZ,
p

that is, of the form

Sp−1
+ ∧G/H+∧(s−WZ) //

��

Xi∧OW
s−WZ

��
Dp

+∧G/H+∧(s−WZ) // Xi+1∧OW
s−WZ.

p
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Then as Z was H -acyclic, and by 2.7.15 so is RPW
Z ∼= ΩPW s−WZ. Since ΣPW and

s−W = s−PW
commute (i) and (ii) of Theorem 2.8.11 imply that s−WZ is H -acyclic.

Thus the two spectra in the left column of the square are H -acyclic by part (i) of
Theorem 2.8.11. Assume that Xi∧OW

s−WZ is stably H -acyclic, so the top horizontal
maps are H -stable equivalences, hence so are the bottom maps since the left vertical
maps are h-cofibrations. Thus Xi+1∧s−WZ is H -acyclic, and it follows by induction
that Xl∧s−WZ is H -acyclic.

Following [MMSS, Proposition 12.5] we obtain the following crucial result:

Proposition 2.10.2. If i : A→ X is an acyclic cofibration in the stable (H ,G )-model
structure and Y is any orthogonal G-spectrum, then the map i ∧ Y : A ∧ Y → X ∧ Y is
a stable equivalence.

Proof. Let Z = X/A. There is a Hurewicz cofiber sequence A∧Y → X∧Y → Z∧Y . By
part (vii) of 2.8.11 it suffices to show that Z∧Y is acyclic. Let j : Y ′ → Y be a cofibrant
approximation of Y . By Proposition 2.10.1, the map Z∧ j is a stable equivalence. Thus,
it is enough to show that Z ∧ Y is acyclic when Z is acyclic and both Z and Y are
cofibrant. Now Proposition 2.10.1 implies that the map ∗ = ∗ ∧ Y → Z ∧ Y is a stable
equivalence because Y is cofibrant and ∗ → Z is a stable equivalence.

Proposition 2.10.3. The stable (H ,G )-model structure is monoidal.

Proof. It follows from Proposition 2.6.7 that if i : A→ B and j : X → Y are cofibrations,
then also i�j is a cofibration. Now, suppose that j is an acyclic cofibration. Then the
cofiber Y/X of j is acyclic, and there is a cofibration sequence

A ∧ Y ∪A∧X B ∧X
i�j
−−→ B ∧ Y → B/A ∧ Y/X.

By stability it suffices to show that the spectrum B/A∧ Y/X is acyclic. However, since
B/A is cofibrant and Y/X is acyclic, this is a consequence of Proposition 2.10.1. We have
now shown that the push-out-product axiom holds in the stable (H ,G )-model structure.
The criterion for being a monoidal model category concerning cofibrant replacement of
the sphere spectrum is a direct consequence of 2.10.2.

Now [SS, Prop. 4.1] gives the following:

Theorem 2.10.4. Let R be an orthogonal ring G-spectrum.

(i) The category of left R-modules is a compactly generated proper model category with
respect to the H -stable equivalences and the underlying (H ,G )-stable fibrations.
The sets of generating cofibrations and acyclic cofibrations are R∧FI and R∧K.

(ii) If R is cofibrant in GOT , then the forgetful functor from R-modules to orthogonal
spectra preserves cofibrations. Hence every cofibrant R-module is cofibrant as an
orthogonal G-spectrum.
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(iii) Let R be commutative. The model structure of (i) is monoidal and satisfies the
monoid axiom.

(iv) Let R be commutative. The category of R-algebras is a compactly generated right
proper model category with respect to the stable H -equivalences and the underlying
(H ,G )-fibrations. The sets of generating cofibrations and acyclic cofibrations are
R∧AFI and R∧AK.

(v) Let R be commutative. Every cofibration of R-algebras whose source is cofibrant
as an R-module is also a cofibration of R-modules. In particular, every cofibrant
R-algebra is cofibrant as an R-module.

All the above model structures are Quillen equivalent to the one obtained from the
(H ,H )-model structure, that is the classical one from [MM, III.7.6] with respect to
the G-universe U = colimn∈N

⊕
b∈B V

n
b , via the identity functor.

We will deal with the lift to commutative algebras in a separate section (4.2).
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Chapter 3

Filtering smash powers

In this chapter we work with the positive model structure on orthogonal G-spectra from
Definition 2.9.11, and we let (H ,G ) be the positive mixing pair from Example 2.6.4.

3.1 Fixed Points of Cells

We start our study of fixed points of smash powers of orthogonal spectra by considering
what happens in the simplest cases. As a matter of fact, the basics of this study is es-
sential for even setting up our model structure for commutative equivariant ring spectra,
but it turns out that a slightly deeper investigation reveals structure that will be used
critically in later chapters. Since we want to work with the S-model structure (4.2.14)
for commutative orthogonal ring spectra we will have to extend the classical results to
a bigger class of (cofibrant) spectra throughout the following sections.

For ease of reference, we allow ourselves to introduce the following notation for
smash powers: if X is a finite set with group of automorphisms ΣX and L an orthogonal
spectrum, then

∧

X

L := L∧ . . .∧L, smash factor indexed by X,

considered as a ΣX-spectrum. This notation will reappear crucially in 4.3.7 where we
will extend the functoriality of X in the case when L is a commutative orthogonal ring
spectrum.

3.1.1 Cellular Filtrations

For reference we list some easily checked facts about “cellular filtrations” which hold for
any closed symmetric category C with all small colimits (most of the facts do not need
all this structure). In particular we show:

Theorem 3.1.2. Let (C,∧) be closed symmetric monoidal with all small colimits. Let
I and J be sets of morphisms in C and let f : A→ X and g : B → Y be relative I- and
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J-cellular, respectively. Then their pushout product f�g is relative (I�J)-cellular.
In particular, if λ and µ are partially ordered indexing sets for cells of f and g, respec-
tively, then λ× µ is a partially ordered indexing set for cells of f�g.

It seems hard to actually find a proof of the above theorem explicitly spelled out in
the literature. Since we are going to have to work with such filtrations in more detail
later, we give them below.

Pushouts and Pushout Products

Lemma 3.1.3. Consider the following commutative diagram in C:

A //

��

B //

��

C

��
D // P // Q.

(i) If both the left and the right subsquare of the diagram are pushout diagrams,
then so is the outer rectangle.

(ii) If both the left subsquare and the outer rectangle are pushout diagrams, then
so is the right subsquare.

Lemma 3.1.4. Let C have all pushouts. Consider a commutative cube in C, where either
the top and bottom faces or the left and right faces are pushouts:

A0
//

��

��⑧⑧
⑧

X0

��

��⑧⑧
⑧

Y0 //

��

P0

��

A1
//

��⑧⑧⑧
X1

��⑧⑧⑧

Y1 // P1

. (3.1.5)

Then the induced square
X0
∐
A0
A1

//

��

X1

��
P0
∐
Y0
Y1 // P1

is again pushout.

Lemma 3.1.6. Consider two pushout squares

Ab
gb //

��

Xb

��

Bb
hb //

��

Yb

��
Af gf

// Xf

p
Bf

hf
// Yf .
p
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Their row-wise pushout product is also a pushout square

(Ab∧Yb)
∐
Ab∧Bb

(Xb∧Bb)

��

gb�hb // Xb∧Yb

��
Af∧Yf )

∐
Af∧Bf

(Xf∧Bf )
gf�hf

// Xf∧Yf .
p

Relative Cellular Maps

We will use Lemma 3.1.6 to recognize a relative cellular structure on the �-product of
relative cellular maps. Recall the following definition (e.g., [H, 2.1.9]):

Definition 3.1.7. Let I be a class of morphisms of C. Then a morphism f : A → X
in C is relative I-cellular, if it is a transfinite composition of pushouts of coproducts of
elements of I.

Remark 3.1.8. Let f : A→ X be a relative I-cellular map, and let A = X0 → X1 → . . .
be a λ-sequence that exhibits this structure, i.e., λ an ordinal and for any α ≤ λ we have
pushout diagrams

Sα
σα //

iα

��

colim
β<α

Xα

fα
��

Dα
// Xα,

p

where iα is a coproduct
∐
c∈Cα

ic, with all the maps ic in I, and Cα empty whenever α

is a limit ordinal. Then the union of the Cα is partially ordered, with ic ∈ Cα smaller
than id ∈ Cβ if and only if α < β. In this situation, we say that

⋃
α≤λ Cα indexes the

attached cells of f in the λ-sequence.

The following lemma helps with keeping the “length” of the transfinite composition
in check when the domains of the morphisms in I are sufficiently small:

Lemma 3.1.9. Let f : A → X be an I-cell complex and assume that the domains of
the maps in I are κ-small. Then there is a κ-sequence of maps exhibiting f as relative
I-cellular.

Proof. Assume that f is the transfinite composition of a λ-sequence {Xα}α≤λ that ex-
hibits the a cellular structure, i.e., for α < λ there are pushout diagrams

Sα
σα //

iα

��

colim
β<α

Xα

fα
��

Dα
// Xα,

p
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such that iα is the identity of the initial object for α a limit ordinal, and a coproduct of
maps in I otherwise. For γ ≤ κ, define sets C<γ and Cγ as well as commutative diagrams

colim
δ<γ

Xδ
//

��

colim
δ<γ

Yδ

�� ""❊
❊❊

❊❊
❊❊

Xγ ::// Yγ , // X

(3.1.10)

by
by transfinite induction: Let C0 := 0 and Y0 := X0 = A. Continuing, for µ a limit
ordinal let Cµ be empty.Otherwise define the set

C<γ := {α ≤ λ, σα factors through Yγ−1}.

Furthermore, let Cγ := C<γ \
⋃
δ<γ C

<
δ . Finally, define Yγ as the pushout

∐
α∈Cγ

Sα

��

// colim
δ<γ

Yδ

��∐
α∈Cγ

Dα
// Yγ

p

Define a map Yγ → X on the attached cells Sα → Dα by going through the Xα. Note
that σγ : Sγ → X factors through colimδ<γ Xδ, hence we get a map Xγ → Yγ which fits
into the diagram 3.1.10. Finally, note that since Sα is κ-small, all attaching maps σα
for α ≤ λ factor through some Xγ , hence through Yγ . the union

⋃
γ≤κCγ contains all

α ≤ λ. Therefore there are canonical maps in both directions between the colimits

colim
α≤λ

Xα
∼= colim

γ≤κ
Yγ ,

which are isomorphisms by cofinality.

Remark 3.1.11. Note that attaching cells via coproducts, gives a partial order on the
set of cells. Every such partially ordered set can be linearly ordered as in [H, 2.1.11],
which corresponds to giving a λ-sequence in which the cells are attached one at a time.
Lemma 3.1.9 gives us a much more convenient way to revert this process, than simply
forgetting the extra information. Returning to a closed symmetric monoidal category
(C,∧), observe that taking coproducts interacts distributive with the smash product,
hence also with the �-product. We therefore allow ourselves to switch freely between
attaching cells one at a time or in bigger groups via the coproduct.

Proof of Theorem 3.1.2. We assume without loss of generality (cf. 3.1.11) that λ and µ
are ordinals linearly indexing the cells of f and g, respectively. That is for each α ≤ λ
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we have a pushout diagram

Sα

��

iα∈I // Dα

��
colim
γ<α

Xγ
fα

// Xα,
p

such that the λ-sequence A = X0 → Xλ = X is the map f , and and analogous for g.
Chose the product partial order on λ × µ, i.e., (γ, δ) < (α, β) if and only if γ < α and
δ < β. Let E : λ× µ→ C be the sequence defined by the pushout diagrams

A∧B //

��

Xα∧B

��
A∧Yβ // Eα,β,

p

and note that Eλ,µ is the source of f�g. We claim that the desired filtration is then
given by {Fα,β}, the (pointwise) pushout of λ× µ-sequences in the diagram:

Eα,β //

��

Xα∧Yβ

��
Eλ,µ // Fα,β,

p

(3.1.12)

where Eλ,µ is the constant sequence. To prove the claim, note that the transformation
E → X(−)∧Y(−) of sequences factors through the sequence P , given pointwise as the
pushout

colim
γ<α,δ<β

Xγ∧Yδ //

��

colim
δ<β

Xα∧Yδ

��
colim
γ<α

Xγ∧Yβ // P(α,β)

p fα�gβ // Xα∧Yβ.

(3.1.13)

That is, Pα,β is the source of the map fα�gβ . We apply the cobase change as in 3.1.12
to this factorization to get the diagram

E //

��

P
f(−)�g(−) //

��

X(−)∧Y(−)

��
Eλ,µ // P ∐E Eλ,µ

p
// F.

p

(3.1.14)

Now comparing the colimits pointwise, cofinality lets us identify Pα,β ∐E Eλ,µ as the
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following pushout:

colim
γ<α,δ<β

Fγ,δ //

��

colim
δ<β

Fα,δ

��
colim
γ<α

Fγ,β // Pα,β ∐E Eλ,µ
p

// Fα,β .

In particular we have
P ∐E Eλ,µ ∼= colim

(γ,δ)<(α,β)
Fα,β ,

and the map
colim

(γ,δ)<(α,β)
Fγ,δ → Fα,beta

is a cobase change of fα�gβ. Therefore to show that F is indeed a filtration by I�J-
cells, it suffices by 3.1.14 to show that fα�gβ is the attaching of a I�J-cell. This is a
consequence of Lemma 3.1.6, which implies that there are pushout diagrams

S(α,β)

��

iα�jβ∈I�J // D(α,β)

��
P(α,β)

fα�gβ // Xα∧Yβ.
p

Note that as in Remark 3.1.11 we can extend the partial order on λ× µ to a linear one,
finishing the proof.

Remark 3.1.15. In a lot of cases of interest, for example C = T , with I and J the sets of
generating (acyclic) cofibrations, we will actually have that I�J ⊂ J(−cell), such that
the above proposition also gives f�g the structure of a relative J-cellular map.

Remark 3.1.16. In categories where we can think of the maps in I, J and I�J as
inclusions, and of the filtered colimits as unions of subobjects, the intuition behind the
filtration in the theorem simplifies significantly. In particular the cellular maps then give
a λ-sequence of inclusions of subobjects

A →֒ X1 →֒ . . . →֒ X,

and similar for B →֒ Y . Note that f�g is the inclusion

f�g : X∧B ∪A∧B A∧Y = X∧B ∪A∧Y →֒ X∧Y,

and the filtration given by the theorem is through objects

Fα,β = X∧B ∪Xα∧Yβ ∪A∧Y.

Corollary 3.1.17. The monoidal product X∧Y of an I-cellular X object with a J-
cellular object Y is I�J-cellular.

62



3.1. FIXED POINTS OF CELLS

Corollary 3.1.18. In the situation of Theorem 3.1.2, the map f∧g is relative (I�J)∪K-
cellular, where K is the set of maps I∧B∪A∧J . In particular, if A and B are themselves
respectively I-cellular and J-cellular, then f∧g is even I�J-cellular.

Proof. Use the theorem on the maps ⋆→ A→ X and ⋆→ B → Y which are respectively
I ∪ {⋆→ A}-cellular and J ∪ {⋆→ B}-cellular. Note that the indexing of the filtrations
is shifted, and the new filtration factors through F1,1 = A∧B. All the later cells are then
of type (I�J) ∪K.

Corollary 3.1.19. Since the �-product is associative, Theorem 3.1.2 immediately gives
specific filtrations for iterated �-products of maps. The indexing set for the cells of the
iterated � is always given by the product of the indexing sets with some (linear) order
that is compatible with the product partial order.

3.1.20 Fixed Point Spectra

For a closed normal subgroup N of G, consider the short exact sequence E of compact
Lie-groups:

E : 1→ N → G
ǫ
→ J → 1,

where ǫ denotes the projection on N -orbits.
Similar to the case of equivariant spaces 1.1.2, where N -fixed points of G-spaces inherit
J-actions, can consider the categorical fixed point functor GOT → JOT taking X to
its N -fixed spectrum XN .

Remark 3.1.21. Note that for subgroups H that are not necessarily normal, we can first
restrict the G-actions to the normalizer NH of H in G before taking fixed points, to get
a functor

GOT → NHOT →WHOT ,

to spectra with actions of the Weyl group WH := NH/H.

Let H be a G-typical family of representations as in 2.4.5. We now explain an
alternative “geometric” way of forming N -fixed points. It depends on H and makes use
of an intermediate category:

Definition 3.1.22. In the above situation denote by OH
E the J-category with G-

representations of the form V (P ) for P ∈H as objects and with morphism spaces

OH
E (V,W ) := O(V,W )N

given by the N -fixed points of the morphism space with G acting by conjugation.

Definition 3.1.23. Let OJ be the JT -category consisting of J-objects in O. The JT -
functor φ : OH

E → OJ is given on objects by

φ : OH
E → OJ

V 7→ V N

63



CHAPTER 3. FILTERING SMASH POWERS

and on morphisms by

O(V,W )N → OJ (V
N ,WN ).

(g, t) 7→ (gN , t)

Here, the isometry g as above indeed maps the N -fixed points of V into those of W .
Similarly t is indeed in WN .

Given an orthogonal G-spectrum X and V ∈ O, we write tV ∈ OJ for V considered
as an object of OJ with trivial action of J .

Definition 3.1.24. Let X be an orthogonal G-spectrum. The geometric N -fixed point
spectrum of X is the orthogonal J-spectrum ΦN

H
X defined by letting ΦN

H
XV be the

coend
∫W∈OH

E OJ(W
N , tV ) ∧XN

W . The maps φ : OH
E (W,V )→ OH

E (WN , V N ) induce a
map

XN
V
∼=

W∈OH
E∫
OH
E (W,V ) ∧XN

W →

W∈OH
E∫
OJ (W

N , V N ) ∧XN
W .

Specializing to the situation where V is a trivial G-representation, we obtain a map
γ : XN → ΦN

H
X of orthogonal J-spectra.

Note that if U is in OJ , the J-space ΦN
H
XU is the coend

∫W∈OH
E OJ (W

N , U)∧XN
W .

Before going into more detail, we will list properties of the fixed point functors and study
their interaction with free spectra, which form the basis for computations on fixed points
of smash powers.

Proposition 3.1.25. [MM, III.1.6] The geometric fixed point functor ΦN
H

preserves
coproducts, pushouts along h-cofibrations, sequential colimits along h-cofibrations and
tensors with spaces.

Proof. The functor from GOT to the category of J-functors from OH
E to JT taking

X to W → XN
W preserves these by 1.1.2. So does the continuous prolongation functor

Y 7→
∫W∈OH

E OJ(W
N , (−)N ) ∧ YW from OH

E -spaces to OJ -spaces.

Proposition 3.1.26. [MM, IV.4.5] For any finite dimensional G-representation V in
H and any G-space K, the map

KN → OJ(V
N , V N ) ∧KN ∼=

W∈OH
E∫
OJ(W

N , V N ) ∧OH
E (V,W ) ∧KN = (ΦNH FVK)V N

induced by idV N in OJ (V
N , V N ) is adjoint to a natural isomorphism

FV NK
N → ΦNH FVK

of free J-spectra.
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Proof. Recall that FVK is given in level W by O(V,W )∧K where G acts diagonally
on the smash product, by conjugation on the morphism space and on K via its G-
space structure. Thus (FVK)NW = O(V,W )N∧KN . The result now follows from the

isomorphism
∫
O

H
E OJ(φ(−), U) ∧OH

E (V,−) ∼= OJ(φ(V ), U) = O(V N , U) and the fact
that coends commute with smash products.

Let H N be the J-typical family of representations corresponding to representations
of the form V (P )N for P in H .

Corollary 3.1.27. cf. [MM, IV.4.5] The geometric fixed point functor ΦN
H

takes (H ,H )-
cofibrations to (H N ,H N )-cofibrations and stably acyclic (H ,H )-cofibrations to stably
acyclic (H N ,H N )-cofibrations.

Proof. Recall the generating cofibrations and acyclic cofibrations from 2.9.5. By 3.1.26
ΦN

H
sends GIH cells to GJH N cells. Since it also preserves the mapping cylinder con-

struction and hence sends the maps kV,W in the definition of the generating acyclic
cofibrations in GOT to their counterparts in JOT . Note that kV,W�i is mapped to
kV N ,WN�iN , which is KJ -cellular by Theorem 3.1.2. By 3.1.25, ΦN

H
preserves the cell

complex construction.

Given orthogonal G-spectra X and Y and P,P ′ ∈ H , the monoidal structure of O
and the G-maps XV (P ) ∧ YV (P ′) → (X ∧ Y )V (P )⊕V (P ′) give maps

O(V (P )N , V ) ∧XN
V (P ) ∧O(V (P ′)N , V ′) ∧ Y N

V (P ′)

��
O((V (P )⊕ V (P ′))N , V ⊕ V ′) ∧ (X ∧ Y )NV (P )⊕V (P ′),

and these maps induce a map ΦN
H
X ∧ ΦN

H
Y → ΦN

H
(X ∧ Y ).

Proposition 3.1.28. [MM, IV.4.7] The functor ΦN
H

is lax monoidal and for (H ,H )-
cofibrant orthogonal G-spectra X and Y the natural (equivariant) morphism of J-spectra

α : ΦNH X∧ΦNH Y → ΦNH (X∧Y ),

is an isomorphism.

Proof. (Cf. [MM, 4.7]) The natural map α is J-equivariant by definition. It is an isomor-
phism for X and Y free G-spectra by 3.1.26. This implies that α induces a bijection of
sets along which we identify as ΦN

H
(GIH �GIH ) and (ΦN

H
GIH )�(ΦN

H
GIH ). Abbrevi-

ate this set as Î. Let now X and Y be GIH -cellular, and chose specific cellular filtrations
with indexing sets C respectively D for the attached cells. Then by Proposition 3.1.25,
ΦN

H
X is ΦN

H
(GIH )-cellular with the cells still indexed by the same set C, and similar

for ΦN
H
Y . Theorem 3.1.2 then gives explicit filtrations of ΦN

H
X∧ΦN

H
Y and (ΦN

H
X∧Y )

as Î-cellular objects with the same indexing set C × D, and α exactly transports one
filtration diagram into the other. Since retracts are preserved by any functor, this proves
the proposition.
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The examples of G-spectra where we are most interested in calculating geometric
fixed points, are smash powers of orthogonal spectra. We begin with studying the fixed
points of free and semi-free spectra before we move to more general spectra 3.2.1, and
general cofibrant spectra in Section 4.4.

3.1.29 Free Cells

Let us begin by investigating what happens in the case of free spectra. For X a finite
discrete set with an action of a discrete group G, the smash power

∧
X sends an or-

thogonal spectrum A to its X-fold smash power
∧
X A = A∧X . Using the smash-power

K 7→ K∧X of pointed spaces, this smash power can be constructed just as we defined
the smash product. Since K∧X is a quotient of the mapping space F (X,K) we do not
need a total order on X in this definition. The action of G on X induces an action by
permuting the smash factors using the symmetry isomorphism for the smash product in
OT .

Lemma 3.1.30. For X a finite discrete G-set, K ∈ T a space and FVK a free orthog-
onal spectrum, the structure map of the smash power (FVK)∧X gives a map

KX ∼= ((FVK)V )
∧X → ((FVK)∧X)V ⊕X

adjoint to a natural isomorphism of G-spectra

FGV ⊕XK
∧X ∼=
−→ (FVK)∧X .

Here G acts on the vector space V ⊕X by permuting summands and on the spectrum
(FVK)∧X and the space K∧X by permuting smash factors.

Proof. Let τ be the various twist maps. The proof can be reduced to showing that for
pointed spaces K and L, the diagram

FV⊕W (K ∧ L)

Fτ (τ)

��

∼= // FVK ∧ FWL

τ

��
FW⊕V (L ∧K)

∼= // FWL ∧ FVK

commutes. Here the horizontal isomorphisms are provided by Proposition 2.3.4 by not-
ing that FVK

∼= GV (OV + ∧ K). However, by the universal property of F , this is a
consequence of the fact that given orthogonal spectra X and Y , the following diagram
commutes:

XV ∧ YW //

τ

��

(X ∧ Y )V⊕W
τV ⊕W // (Y ∧X)V ⊕W

(X∧Y )τ
��

YW ∧XV
// (Y ∧X)W⊕V

id // (Y ∧X)W⊕V ,

where the non decorated arrows are structural morphisms for the smash product.
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In combination with 3.1.26 we get:

Proposition 3.1.31. For X a finite discrete G-set, N a normal subgroup of G, K ∈ T
a space and A = FVK a free orthogonal spectrum, the maps of Proposition 3.1.26 and
Lemma 3.1.30 induce natural isomorphism of J-spectra

ΦNH (A∧X)
∼=
←− FJ

V ⊕XN
K∧XN

∼=
−→
∧

XN

A,

where XN is the orbit J-space of X factoring out the N -action.

Proof. The only thing left to do is that the N -fixed point spaces of V ⊕X and K∧X are
indeed J-isomorphic to V ⊕XN respectively K∧XN .

Remark 3.1.32. This proposition serves as a good starting point for calculating geometric
fixed points of smash powers of general (H ,H )-cofibrant orthogonal spectra. This has
for example been studied in the special case of G a cyclic group by Kro in [Kr, 3.10.1]
and Hill, Hopkins and Ravenel in [HHR, B.96]. However, we are ultimately interested in
smash powers of commutative ring spectra, and (H ,H )-cofibrant approximation does
not preserve strictly commutative ring spectra. To remedy this, we first study smash
powers of semi-free spectra and later generalize to (H ,G )-cofibrant spectra.

3.1.33 Semi-Free Cells

Fixed Points of Semi-Free Cells

The result for semi-free spectra analogous to Proposition 3.1.31, is somewhat more in-
volved.

Theorem 3.1.34. Let V be an inner product space, let P be a subgroup of OV , let X
be a discrete set with action of a discrete group G and let K be a pointed space. Let N
be a normal subgroup of G with factor group J and let A = GV (G×OV /P+)∧K. If the
permutation representation V ⊕X is in H , then the composition

A∧XN → (A∧X)N → ΦNH (A∧X)

of the map induced by the diagonal embedding of A∧XN in A∧X and the map γ from
Definition 3.1.24 is an isomorphism of J-spectra.

Proof. First note that for every orthogonal G-spectrum X and G-space L, there is an
isomorphism ΦN

H
(X∧L) ∼= ΦN

H
(X)∧LN . Thus we can without loss of generality assume

that K = S0. By 2.3.7 there is an isomorphism

A∧X ∼= GV ⊕X (OV ⊕X+ ∧
∏

X OV
(OV /P+)

∧X) ∼= GV ⊕X (OV ⊕X/
∏

X

P+).

Now, by 1.1.21, there is a natural isomorphism

O(V ⊕X ,W )N/(
∏

X

P )N → (A∧X)NW
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we can finish the proof by proceeding as in the proof of 3.1.26 and observing that orbits
commute with coends.

This finishes the proof of Theorem 3.1.34. As mentioned before, 3.1.34 will form the
basis for the identification of the geometric fixed points of smash powers of general S-
cofibrant spectra in 3.2.16. We need one more crucial inputs, namely Kro’s observation
on the interaction of the geometric fixed point functor with induced spectra from [Kr,
3.8.10]. Since we will in particular need analogous results for the functors restricting to
H-spectra for H a subgroup of G to lift our results into to the case of G a compact Lie
group, we will go into more details in the next section.

3.1.35 Fixed Points and Change of Groups

For the whole section, let G be a compact Lie-group and H a closed subgroup of G with
inclusion map i : H → G. We consider the restriction functor

i∗ : GOT → HOT ,

and its left adjoint induction functor

G+∧H(−) : HOT → GOT .

The following lemma will be helpful later, it is a direct consequence of 1.1.5.

Lemma 3.1.36. For an orthogonal H-spectrum X and an orthogonal G-spectrum Y ,
there is a natural isomorphism:

(G+∧HX)∧Y ∼= G+∧H(X∧i
∗Y ).

We recollect material from [Kr, 3.8.2], both for completeness and to adapt notation
to our conventions. Afterwards we expand the results to the restriction functor.

At first we need to give Kro’s Definition of the change of sequence functors for the
categories OH

E T (cf. [Kr, 3.8.7]). The main point of difficulty stems from the fact that,
contrary to the case of G-spectra, the change of universe does not necessarily give an
equivalence of categories.

Let j : E0 → E be the morphism of short exact sequences of compact Lie groups:

E0 :

j
��

1 // N // H //

i
��

J0

i1
��

// 1

E : 1 // N // G // J // 1

, (3.1.37)

where N is normal in G and hence in H, and J and J0 denote the respective quotients.
Now for H a G-typical family of representations, let i∗H be the induced H-typical
family with i∗H V consisting elements of H V contained in H ×OV .

There is a J0-functor i
∗ : i∗1O

H
E → Oi∗H

E0
taking a G-representation V to its re-

stricted H-representation i∗V . On morphism spaces it is the identity i∗1O(V,W )N =
O(i∗V, i∗W )N of subspaces of O(V,W ).
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Definition 3.1.38. The change of sequence functor j∗ : OH
E T → Oi∗H

E0
T is given by

sending an OH
E -space X to the Oi∗H

E0
-space given by

(j∗X)i∗V := i∗1XV .

The structure maps are transported directly, using O(i∗V, i∗W )N = i∗1O(V,W )N for
G-representations V and W .

Lemma 3.1.39. [Kr, 3.8.2] Let L be an H-space. The natural morphism

J+ ∧J0 L
N → (G+ ∧H L)N

is a homeomorphism of J-spaces.

Definition 3.1.40. Let Y be a Oi∗H
E0

-space, then the induced OH
E -space J+∧J0Y is

given by
(J+∧J0Y )V := J+∧J0Yi∗V

The (J-equivariant) structure maps are given as the composite

O(V,W )N∧(J+∧J0Yi∗V )
∼= J+∧J0(i

∗
1O(V,W )N∧Yi∗V )

= J+∧J0(O(i∗V, i∗W )N∧Yi∗V )

→ J+∧J0Yi∗W ,

where is isomorphism is from 3.1.36

Induced Spectra and (Geometric) Fixed Points

We give a recollection of [Kr, 3.8.3] before giving further results in the same spirit needed
in particular when dealing with infinite groups. Fix a G-typical family of representations
H that is closed under retract. Let as in (3.1.37) j : E0 → E be a morphism of short
exact sequences of compact Lie groups:

E0 :

j
��

1 // N // H //

i
��

J0

i1
��

// 1

E : 1 // N // G // J // 1

,

The following condition is an important prerequisite already in Kro’s exposition, and
will be important for us as well:

Condition 1. For every orthogonal N -representation W in i∗H there exists an orthog-
onal G-representation U in H and an N -linear isometric embedding W → U inducing
an isomorphism on N -fixed spaces, i.e., UN ∼=WN .

Lemma 3.1.41. Let F : (Oi∗H
E0

)op ∧ Oi∗H
E0

→ T be given by F (W,W ′) = O(WN , V ).

Given morphisms γ : W0 → W1 and f0 : W0 → W ′
0 in Oi∗H

E0
there exist morphisms

g′ : W ′
0 → W ′

1 and g1 : W1 → W ′
1 in Oi∗H

E0
so that g1γ = g′g0 and so that the map

F (g1,W ) is a homeomorphism for every object W of Oi∗H
E0

.
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Proof. Recall that the morphism γ : W0 → W1 in OiH
E0

is of the form (γ̃, xγ) where
γ̃ : W0 → W1 is a linear isometry and xγ is in the one-point compactification of the
orthogonal complement of γ̃(W0) in W1. Consider the pushout of underlying real vector
spaces

W0
γ̃ //

f̃0
��

W1

g̃1
��

W ′
0

g̃′ //W ′
1.

Note that there is exactly one inner product on W ′
1 so that this becomes a diagram

of linear isometries. Since i∗H is closed under retract g1 = (g̃1, g̃
′(xf0)) and g′ =

(g̃′, g̃1(xγ)) are morphisms in Oi∗H
E0

with the desired property.

Lemma 3.1.42. Suppose Condition 1 is satisfied. For every G-spectrum X and every
Euclidean space U , the inclusion i∗ : i∗1O

H
E → Oi∗H

E0
induces a homeomorphism.

W∈i∗1O
H
E∫
O(WN , U) ∧XN

W
i
−→

W∈Oi∗H
E0∫

O(WN , U) ∧XN
W .

Proof. Using the zero section L(V,W ) → O(V,W ) Condition 1 implies that for every
object W0 of Oi∗H

E0
there exista an object V of i∗1O

H
E and a morphism f : W0 → V so

that O(V N , U) → O(WN
0 , U) is a homeomorphism for every Euclidean space U . Let

F : (Oi∗H
E0

)op∧Oi∗H
E0
→ T be the functor F (W,W ′) = O(WN , U)∧ (XW ′)N . By Lemma

3.1.41 and Lemma 5.2.44 the inclusion i∗ : i∗1O
H
E → Oi∗H

E0
is F -cofinal. Thus Proposition

5.2.45 implies that the map i is a homeomorphism.

Lemma 3.1.43. If N is of finite index in G, then Condition 1 is satisfied.

Proof. As Kro already states in [Kr, 3.8.11], it suffices to look at the irreducible subrep-
resentations of V one at a time. If V is the trivial representation of N , there is nothing
to do. If V is an irreducible and non trivial representation of N , then both V N and
(G×N V )N are the zero vector space, so the induced representation (which is still finite
dimensional) extends V in the desired way.

Remark 3.1.44. We prove that Condition 1 holds for all finite subgroups of tori in 4.4.20.
Since the extension problem is transitive, this covers a big class of configurations for N
and G. Note that the case where N is finite suffices for all applications of the theory we
give, so a proof that Condition 1 holds for N a maximal torus of a compact Lie group
G would immediately be very fruitful. (cf. 4.4.25).

Proposition 3.1.45. [Kr, 3.8.10] Suppose Condition 1 holds. Then for orthogonal H-
spectra X, there is a natural isomorphism of J-spectra

J+∧J0(Φ
N
i∗H X)

∼=
−→ ΦNH (G+∧HX).
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Proof. By 3.1.42, there is an isomorphism

(J+ ∧J0 Φ
N
i∗H X)V = J+ ∧J0

W∈Oi∗H
E0∫

i∗1O(WN , V ) ∧XN
W

∼= J+ ∧J0

W∈i∗1O
H
E∫
i∗1O(WN , V ) ∧XN

W .

By 1.1.5 applied to the coequalizer diagram representing the coend, there is an isomor-
phism

J+ ∧J0

W∈i∗1O
H
E∫
i∗1O(WN , V ) ∧XN

W
∼=

W∈OH
E∫
O(WN , V ) ∧ (J+ ∧J0 X

N
W ).

Finally, 3.1.39 gives an isomorphism

W∈OH
E∫
O(WN , V ) ∧ (J+ ∧J0 X

N
W ) ∼=

W∈OH
E∫
O(WN , V ) ∧ (G+ ∧H XW )N

= ΦNH (G+ ∧H X)

Restricted spectra and (Geometric) Fixed Points

Let as in (3.1.37) E and E0 be exact sequences of groups. For orthogonal G-spectra Y ,
taking categorical N -fixed points commutes with the restriction to H-spectra, i.e., there
is a natural isomorphism of J0-spectra

i1
∗(Y N ) ∼= (i∗Y )N .

The following proposition is similar in spirit to Kro’s 3.1.45 from above. We will use it
when passing from finite groups to compact Lie groups 4.4.25.

Proposition 3.1.46. If Suppose Condition 1 holds, then taking geometric N -fixed points
commutes with the restriction to H-spectra, i.e., there is a natural isomorphism of J0-
spectra

i1
∗ΦNH Y

∼=
−→ ΦNi∗H (i∗Y ).

Proof. Since the functor i∗1 : JT → J0T preserves colimits, there is an isomorphism

(i∗1Φ
N
H Y )V = i∗1

W∈OH
E∫
O(WN , V ) ∧ Y N

W

∼=

W∈i∗1O
H
E∫
i∗1O(WN , V ) ∧ i∗1Y

N
W .
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Using the isomorphism

i∗1Y
N
W
∼= (i∗Yi∗W )N

and Lemma 3.1.42 we obtain an isomorphism

W∈i∗1O
H
E∫
i∗1O(WN , V ) ∧ i∗1Y

N
W
∼=

W∈Oi∗H
E0∫

O(WN , V ) ∧ Y N
W = (ΦNi∗H Y )V .

3.2 Cellular filtrations of smash powers

While much of the contents of this section is well known, we need some additional
control of how smash powers of orthogonal spectra can be assembled. In Section 3.2.13
we construct the cellular structures that form the technical heart of our constructions.
We generalize Kro’s approach from [Kr, 2.2], correcting some minor mistakes along the
way. In particular we drop the assumption that all λ-sequences are N-sequences in
order to be able to attach cells one at a time, and work in general categories. This
allows us to apply the theory in a lot of different contexts, cf. 4.2.2, 3.1.27 and 3.1.28,
but also for a potential extension of our results to multiplicative norm constructions
(cf. Remark 4.4.19).

3.2.1 Induced Regular Cells

We go back to finite discrete groups G for this subsection. The class of semi-free G-
spectra is too big to fully control the geometric fixed point functor. Our studies of the
smash powers of semi-free non equivariant spectra has given us a specific example of a
class where such control is possible. Now we will define classes of regular spectra, and
induced regular spectra which the smash powers are examples of.

Definition 3.2.2. Let ϕ : G → OV be a G-representation and let P be a G-invariant
subgroup of OV . Given a finite free G-set X, we consider the group G ⋉

∏
X P , where

G acts on the product by the action corresponding to conjugation of functions from X
to P . Let ψ : G→ OV ⊕X be the direct sum representation. Given a G⋉

∏
X P -space L,

we say that the induced G⋉ψ OV ⊕X -space OV ⊕X+ ∧
∏

X P L is V ⊕X-regular.
Given a G-representation ρ : G→ OW containing the direct sum representation ψ : G→
OV ⊕X , we say that a G⋉ρOW -space K is W -regular if it is isomorphic to an OW ⋉G-
space of the form OW ∧O

V ⊕X
K ′ for a V ⊕X-regular space K ′.

A semi-free G-spectrum is called H -regular if it is of the form GρWK for ρ : G→ OW a
G-representation in H and a W -regular OW ⋉ρ G-space K.

Remark 3.2.3. Free spectra are regular, since we can choose V = 0.

Note that since
∏
X P ⊆ OW is G-invariant, there are inclusions of N -fixed subgroups

(
∏
X P )

N ⊂ (OW )N for all subgroups N of G.
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Remark 3.2.4. Let Q =
∏
X P and suppose that the image of G⋉Q in G ×OW under

the isomorphism G×OW
∼= G⋉ρOW is a member of G and that the complement of the

sub representation V ⊕X of W is a representation in H . Since all the involved functors
preserve colimits and since inducing up preserves (H ,G )-cofibrations by (iii) of 2.6.1
the regular semi-free spectrum GρWK

∼= GW (O(W,W )+∧QL) is (H ,G )-cofibrant if L is
genuinely G⋉Q-cofibrant. More generally, if i : L→ L′ is a genuine G⋉Q-cofibration,
then GV (O(W,V )+∧Qi) is an (H ,G )-cofibration.

Example 3.2.5. The most important example of a regular semi-free G-spectrum is the
smash power

(GϕVK)∧X ∼= G
ψ
V⊕X [OV⊕X+∧

∏
XOV

K∧X ],

where X is a finite free G-set.

The following proposition is proved completely analogous to 3.1.34, using that Propo-
sition 1.1.21 is slightly more general than was needed there.

Proposition 3.2.6. Let N be a normal subgroup of G with quotient group denoted by
J . Let ρ : G → OW be a G-representation in H , let GρWK be a regular semi-free G-
spectrum and let ρ : J → OWN be the induced representation of J . Then there is a
natural isomorphism of J-spectra

Gρ
WNK

N ∼= ΦNH (GρWK).

Combining this result with Proposition 3.1.45 for induced spectra motivates the
following definition.

Definition 3.2.7. A semi-free G-spectrum A is called induced H -regular if there is an
isomorphism of G-spectra

A ∼= G+∧HB,

for H a subgroup of G and B an H -regular semi-free H-spectrum.

Note that by Lemma 3.1.43 Condition 1 holds in the case of finite groups, so we
get the following characterizations of geometric fixed points for induced regular spectra
which is analogous to Kro’s Lemma 3.10.8:

Theorem 3.2.8. Let G be a finite group and H and N subgroups with N normal. The
geometric fixed points of an induced regular semi-free G-spectrum G+∧HGWK are given
by the natural isomorphism:

ΦNH (G+∧HGWK) ∼=

{
G/N+∧H/N [GWNK

N ] if N ⊂ H

∗ otherwise.

Proof. The first part is a direct consequence of 3.2.6 and 3.1.45. For the second part,
note that already for H-spaces A we have (G+∧HA)

N ∼= ⋆ if N is not contained in H,
hence the functor (G+∧HGWK)NV

∼= ⋆ for all V (cf. [Kr, 3.10.8]).
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Note that induction G+ ∧H − takes level (i∗H , i∗G )-cofibrations to level (H ,G )-
cofibrations. Thus we get the following:

Lemma 3.2.9. For V an H-representation, X a finite free H set, P an H-invariant
subgroup of OV , for Q = ΠXP and i a genuine cofibration of H ⋉Q-spaces, the map

f := G+∧HG
H
W [OW+∧Qi]

of G-spectra is an (H ,G )-cofibration for every G-representation W containing V ⊕X .
Denote the class of (H ,G )-cofibrations of this form by SG

reg.

Remark 3.2.10. For SG
reg-cell complexes, Theorem 3.2.8 allows us to easily compute the

geometric fixed points via a cell induction. This could be used to define a class of
cofibrations very much in the spirit of Kro’s induced cells ([Kr, 3.4.4]) and orbit cells
([Kr, 3.4.6]), but more general than both. Since we are not going to construct model
structures or even replacement functors for any of these classes, we will not go into this
generality. Instead we will focus on the type of cells that will appear in the cell structure
for the smash powers.

Finally we give a name for the cells that we will use in the equivariant filtration
theorem:

Definition 3.2.11. Let j : e→ G be the inclusion of the trivial subgroup. An (H ,G )-
cofibration f of orthogonal G-spectra is an induced regular cell if it arises from a gener-
ating (j∗H , j∗G )-cofibration i of orthogonal spectra via

f = G+∧Hi
�H ,

for H a normal subgroup of G, and � the pushout product construction from 5.2.30.
We denote the class of all induced regular cells by Indreg

G
.

The significance of the pushout product will become more obvious in the next section,
when we give details on equivariant filtrations (cf. in particular Lemma 3.1.6). The
following remark, however, is immediate:

Remark 3.2.12. Both source and target of an induced regular cell are induced regular in
the sense of 3.2.7. For the target this is obvious, since if i is the map

GV
(
OV /P+∧[S

n−1 → Dn]
)
,

then the formula 2.3.4 together with the fact that inducing up preserves colimits yield
that i�H is isomorphic to the map

ı�H ∼= GV⊕H

(
OV⊕H/ΠHP+∧[S

|H|n−1 → D|H|n]+

)
,

where |H| is the order of H. In particular it is represented by the inclusion of the
boundary sphere of the H⋉ΠHP space D|H|n, where ΠHP acts trivially, and H acts by
permuting coordinates blockwise.

74



3.2. CELLULAR FILTRATIONS OF SMASH POWERS

3.2.13 Equivariant cellular filtrations of smash powers

We finally give the equivariant cellular structure for smash powers of orthogonal spectra.
All our applications are to the positive structure and for concreteness is this the version
we write out.

If Q is a Lie group, G a finite group and X a finite G-set, then the Lie group
QX = Map(X,Q) has a G-action by precomposition: gf(x) = f(g−1x) for f : X → Q,
g ∈ G and x ∈ X.

Given a subgroup Px ⊆ Q × OVx for each x ∈ X, we consider P =
∏
x∈X Px as a

subgroup of QX × OV for V =
⊕

x∈X Vx. We let H (G,X) be the smallest G ⋉ QX-
typical family of representations so that if every Px is in H and H is any subgroup of
G, then H⋉P ⊆ G⋉ (QX ×OV ) = (G⋉QX)×OV is a member of H (G,X). (Here we
use the trivial action of G on V . Later, when some of the factors Vx are identical, we will
also make use of the non-trivial actions of subgroups of G on V given by permutation of
identical factors.) We let G (G,X) be the smallest collection of families of subgroups of
(G⋉QX)×OV for V in O so that (H (G,X),G (G,X)) is a G⋉QX-mixing pair, and
so that if every Px is in G and H is any subgroup of G, then H⋉P ⊆ G⋉ (QX ×OV ) =
(G⋉QX)×OV is a member of G (G,X).

We will give a filtration of the map

(⋆→ L)�X ∼= (⋆→ L∧X)

by G (G,X)-cofibrations using Theorem 3.1.2.

When X is G-free it will follow from the construction that all the attaching maps
are G (G,X)-cofibrations between induced regular G (G,X))-cofibrant G ⋉ QX-spectra.
Our methods are inspired by [Kr, 3.10.1], where a similar filtration is given for the case
that X = G = Cq a finite cyclic group.

If λ is an ordinal, and X a set, we define a partial order on the product λX : for
α = {αx}x∈X , β = {βx}x∈X ∈ λX we say that β ≤ α if for all x ∈ X we have that
βx ≤ αx. If a group G acts on X it acts on λX by letting (gα)x = αg−1x. This induces a
partial ordering on the set (λX)G of G-orbits by declaring for u, v ∈ (λX)G that u ≤ v
if there exist α ∈ u and β ∈ v such that α ≤ β.

As in Remark 3.1.16, since the maps in GIG are levelwise inclusions, we lose no
generality by assuming that a given relative GIG -cell complex is an inclusion.

Consider a λ-sequence K = L0 ⊆ L1 ⊆ . . . ⊆ L of Q-spectra, exhibiting K ⊆ L as
relative GIG -cell complex, i.e., if a ∈ λ is a limit ordinal, then La =

⋃
b<a Lb, and if a ∈ λ

is not a limit ordinal, there is an object Va of O, a member Pa of G Va and a pushout
diagram Da of Q-spectra

GVa(S
na−1 × (Q×OVa)/Pa)+

��

ia // GVa(D
na × (Q×OVa)/Pa)+

��⋃
b<a

Lb // La,
p
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with the inclusion ia an element in the generating cofibrations GIG .

Theorem 3.2.14. Let Q be a compact Lie group and let K ⊆ L be a relative GIG -cellular
inclusion of orthogonal Q-spectra with cells indexed by the ordinal λ. Let G be a finite
group and let X be a finite G-set. Then the smash power

K∧X ⊆ L∧X

is a relative GIG (G,X)-cell complex with (λX)G indexing the GIG (G,X)-cells in the following

sense: Let α ∈ λX with orbit u = [α] and stabilizer group Gα ⊆ G and let L∧X
u be

the G⋉QX -subspectrum of L∧X defined as the union L∧X
u =

⋃
β∈u L

∧X
β with L∧X

β =∧
x∈X Lβx so that

colim
u∈(λX )G

L∧X
u
∼=

⋃

u∈(λX )G

L∧X
u = L∧X .

If αx is a limit ordinal for some x ∈ X, then L∧X
u =

⋃
v<u

L∧X
v . Otherwise there is an

Euclidean vector space V , a closed subgroup P of (G⋉QX)×OV in G (G,X)V and a
pushout diagram of G⋉QX-spectra of the form

GV (S
n−1 × ((G⋉QX)×OV )/P )+

kα

⊆
//

��

GV (D
n × ((G⋉QX)×OV )/P )+

��⋃
v<u

L∧X
v

⊆ // L∧X
u .

p

In particular, extending the partial order (λX)G to a total order λ′, the smash power
K∧X ⊆ L∧X is a GIG (G,X)-cell complex with indexed by λ′.

Furthermore:

(i) The �-product (K ⊆ L)�X is in this notation given by
⋃
u L

∧X
u ⊆ L∧X , where

u varies over the orbits in (λX)G whose representatives take the value 0 at least
once, and both the inclusions K∧X ⊆

⋃
u L

∧X
u ⊆ L∧X are relative GIG (G,X)-cell

complexes.

(ii) If X is a finite free G-set, then the top inclusion kα of the pushout of G ⋉ QX-
spectra is isomorphic to one on the form G+∧Gα(k

�Gα) with k ∈ GIG .

Proof. Let K = L0 ⊆ L1 ⊆ . . . ⊆ L be the λ-sequence exhibiting L as GIG -cellular,
using the names Va, Pa, na, ia and Da for each a ∈ λ as in the comment just above
the statement of the theorem. Let α ∈ λX . If αx is a limit ordinal for any x ∈ X,
then L∧X

u =
⋃
v<u

L∧X
v . Suppose now that non of the αx are limit ordinals. Taking the

row-wise �-product over x ∈ X of all the diagrams Dαx as displayed just before the
start of the theorem, we get by 3.1.6 a pushout diagram of Gα ⋉QX-spectra whose top
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map is �x∈Xiαx , which we by 2.3.4 may identify with the following pushout diagram Dα

GVα(S
nα−1 × (QX ×OVα)/Pα)+

��

iα

⊆
// GVα(D

nα × (QX ×OVα)/Pα)+

eα

��⋃
γ<α

L∧X
γ

⊆ // L∧X
α ,

p

where Vα =
⊕
x∈X

Vαx , nα =
∑
x∈X

nαx and Pα =
∏
x∈X

Pαx considered as a subgroup of

QX ×OVα via the inclusion

(QX ×
∏

x∈X

OVαx
) ⊆ QX ×OVα ,

and where Gα acts by permuting the X-coordinates on each of these ingredients of Dα.
Via the shear isomorphism Gα ⋉OVα

∼= Gα ×OVα we change the Gα-action so that Gα
acts trivially on OVα , and so that the above diagram is a pushout of (Gα ⋉QX)×OVα-
spaces.

If α ∈ λX and g ∈ G, then conjugation yields an isomorphism cg : Gα ∼= Ggα,
cg(h) = ghg−1. Furthermore, α 7→ Dα is natural in the sense that acting by g (i.e.,
permuting the coordinates in each of the vertices of the square) defines an isomorphism
between Dα and Dgα, and even a Gα-isomorphism Dg : Dα

∼= c∗gDgα.

Fixing the orbit u, we write Du
α for what we just called Dα, and for γ ∈ λX with

[γ] < [α] we let Du
γ be the pushout diagram

pt

��

// pt

��
L∧X
γ

// L∧X
γ .

p

The assignment γ 7→ Du
γ is functorial on the partially ordered set consisting of those

γ ∈ λX with [γ] ≤ u. Taking the colimit of the pushout diagrams Du
γ we obtain a

pushout diagram

∨
β∈u

[
GVβ (S

nβ−1 × (QX ×OVβ)/Pβ)+

]

��

∨iβ //
∨
β∈u

[
GVβ(D

nβ × (QX ×OVβ)/Pβ)+

]

∑
eβ

��⋃
v<u

(L∧X)v // (L∧X)u
p

of G ⋉ QX-spectra where g ∈ G acts by taking factors of the form Snβ−1 and Dnβ to
Sngβ−1 and Dngβ respectively and by the permutation action on QX .
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Fixing one α in the orbit u and using the isomorphisms translating between the
different iβs and our iα we can rewrite this diagram on the form

G+∧Gα

[
GGα
Vα

(Snα−1 × (QX ×OVα)/Pα)+

]
kα //

��

G+∧Gα

[
GGα
Vα

(Dnα × (QX ×OVα)/Pα)+

]

��⋃
v<u

L∧X
v

// L∧X
u ,

p

where the top map is kα = G+∧Gαiα
We claim that the inclusion kα is a G (G,X)-cofibration of G⋉QX-spectra. To see

this consider the inclusion Snα−1 ⊆ Dnα of Gα-spaces. This is a genuine Gα-cofibration
(as can be seen by viewing Dnα as a cone on the barycentric subdivision of an (nα− 1)-
simplex), and so iα is a relative cell complex with cells of the form

GVα((S
m−1 ×Gα/Hα)× (QX ×OVα)/Pα)+ ⊆ GVα((D

m ×Gα/Hα)× (QX ×OVα)/Pα)+

for Hα a subgroup of Gα, and thus kα is a relative cell complex with cells of the form

GVα((S
m−1 ×G/H) × (QX ×OVα)/Pα)+ ⊆ GVα((D

m ×G/H) × (QX ×OVα)/Pα)+

for H a subgroup of Gα. Thus it suffices to show that this is a GIG (G,X)-cell. This is

seen by first noting that since Pα is a Gα-invariant subgroup of QX ×OVα , there is an
isomorphism

Gα/H × (QX ×OVα)/Pα → (Gα ⋉ (QX ×OVα))/(H ⋉ Pα)

of (Gα ⋉ QX) × OVα-spaces sending (gH, (A, q)Pα) to (g, q,A)(H ⋉ Pα). Here we use
that since Gα acts trivially on OVα , the groups (Gα⋉Q

X)×OVα and Gα⋉ (QX ×OVα)
are identical. The projection (G⋉QX)×OVα → G induces an isomorphism between

((G⋉QX)×OVα)×(Gα⋉QX)×OVα
(Gα/H × (QX ×OVα)/Pα)

and
G×Gα (Gα/H × (QX ×OVα)/Pα)

∼= G/H × (QX ×OVα)/Pα

of (G ⋉ QX) × OVα-spaces. Thus inducing up the action of (Gα ⋉ QX) × OVα to an
action of (G⋉QX)×OVα we obtain an isomorphism

G/H × (QX ×OVα)/Pα → (G⋉ (QX ×OVα))/(H ⋉ Pα)

of (G⋉QX)×OVα-spaces. By design, the subgroup H⋉Pα is in G (G,X). We conclude
that kα is a relative GIG (G,X)-cell complex.

The statement about the �-product is immediate from the construction.
Lastly, we treat the special case when X is free as a G-set. Recall that the inclusion

iα in the diagram Dα was given by the iterated �-product �x∈Xiαx , with the Gα-action
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permuting �-factors that are identical. Since G acts freely on X, so does Gα. Therefore,
choosing any system of representatives R for the Gα-orbits of X and letting k ∈ GIG be
the inclusion

GQVR(S
nR−1 × (Q×OVR)/PR)+ ⊆ G

Q
VR

(DnR × (Q×OVR)/PR)+,

where VR =
⊕
r∈R

Vr, nR =
∑
r∈R

nr and PR =
∏
r∈R

Pr, we get a Gα-equivariant isomorphism

iα ∼= k�Gα .

Example 3.2.15. Consider the case when G = Σn acting on X = {1, . . . , n}, and
K ⊆ L is obtained by attaching a single i : s→ t ∈ GIG . Then we can think of the map
⋆ → K as another single cell as in Corollary 3.1.18, i.e., think of λ = {0 < 1 < 2} with
L0 ⊆ L1 ⊆ L2 being ∗ ⊆ K ⊆ L. Then all �-product summands containing ∗ are trivial,
so we consider the αs with only 1 and 2 as values. The stabilizer group Gα is isomorphic
to Σm × Σn−m where m = |α−1(2)|, and we get a pushout diagram of the form

A∧K∧α−1(1) i�α−1(2)∧K∧α−1(1)
//

��

L∧α−1(2)∧K∧α−1(1)

��⋃
γ<α

L∧X
γ

⊆ // L∧X
α ,

p

where A is the source of i�α
−1(2). Hence, the the cell attached to reach L∧X

[α] is of the
form

Σn∧Σm×Σn−mi
�m∧K∧n−m.

Varying m from 1 to n we run through all the conjugacy classes [α] of such αs and get
the n cells needed to build L∧X from K∧X .

Together with Theorem 3.2.8, we can now calculate the geometric fixed points of
smash powers of S-cofibrant spectra. Let as above

1→ N → G
ǫ
→ J → 1,

be a short exact sequence of finite discrete groups, and X a finite free G-set.

Theorem 3.2.16. If L is an S-cofibrant orthogonal spectrum and X a finite free G-set,
then there the diagonal map ∆(X,L) in 4.4.3 is a natural isomorphism of J-spectra

∆(X,L) : L∧XN
∼=
−→ ΦN (L∧X).

Proof. This is again quite similar in spirit to the analog theorem [Kr, 3.10.7]. It suffices to
look at SI-cellular L, since retracts are preserved by any functor. We keep the notation
from the proof of Theorem 3.2.14 as far as possible. We let σ be the set of J-orbits
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of λ×X and we let σ′ be the J-orbits of λ×XN . The projection X → XN induces a
“diagonal” J-map

ǫ∗ : λ×XN → λ×X ,

{κ[x]}[x]∈XN
7→ {κ[x]}x∈X

which descends to orbits to give a map ǫ∗ : σ′ → σ. Note that in the cell structure for
L∧X , cells that are not indexed by ǫ∗[σ′] do not contribute to the geometric fixed points:
By induction over the cellular filtration, assume that for all [β] < [α] in σ we have

ΦN (
⋃

[δ]≤[β]

L∧X
[δ] )
∼= ΦN (

⋃

[ǫ∗κ]≤β

L∧X
[ǫ∗κ]),

then the same is true for β replaced by α: In the case α ∈ ǫ∗σ′ there is nothing to
do, otherwise note that for [α] 6∈ ǫ∗σ′, the group N is not contained in Stabα, hence
in the attaching diagram D[α], the top row has trivial geometric fixed points by 3.2.8.
Since taking geometric fixed points commutes with the cell-complex construction, we
therefore get colimit diagrams for ΦNL∧X and L∧XN of exactly the same shape, with
attaching diagrams indexed by ǫ∗σ′ ∼= σ′. Then again by induction [κ] ∈ λXN we show
that the J-spectra L∧XN

[κ] and ΦN (L∧X
ǫ∗[κ]) are isomorphic. Herefore compare the attaching

diagrams:

⋃
[γ]<[κ]

ΦN (L∧X )[ǫ∗γ]

∼=

��

ΦN
(
G+∧H [GV (Sn−1

× OV /P )+]�H
)oo //

∼=

��

ΦN
(
G+∧H [GV (Dn

× OV /P )+]∧H
)

∼=

��
⋃

[γ]<[κ]

(L∧XN )[γ] J+∧J0
[GV (Sn−1

× OV /P )+]�J0oo // J+∧J0
[GV (Dn

× OV /P )+]∧J0

where the vertical maps are isomorphisms by 3.2.8, hence induce an isomorphism on
pushouts. Naturality is after the discussion so far only obvious for cellular morphisms.
For all morphisms between S-cofibrant orthogonal spectra and for all isomorphisms of
finite free G-sets naturality follows from the construction in 4.4.3, cf. Remark 4.4.7.
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Chapter 4

Smash Powers

4.1 Introduction

4.1.1 Hochschild Homology

In [HH], Hochschild defined a cohomology theory for bimodules of algebras over a field,
mirroring the definition of group homology in terms of the bar complex. Hochschild
cohomology and its dual, Hochschild homology, have proven valuable tools in a wide
variety of mathematical disciplines, spanning from algebra and topology to mathematical
physics and functional analysis.

For future comparison, we will very briefly recall some basics, not touching on most
of the rich theory that follows. For further details, the reader should consult Loday’s
book [L] which provides a very readable and thorough introduction.

Hochschild Homology, since it was defined by Hochschild for the case of algebras over
fields in 1944 ([HH]), was adapted to various more general contexts and has proven a
valuable tool both in algebra, topology and geometry. We will be very brief in recalling
some basics, not touching on most of the rich theory that follows. A very readable and
thorough introduction can for example be found in Loday’s book on Cyclic Homology
[L], where in particular everything that follows here can be extracted from. We shall
focus on the commutative setting, and will always assume that the coefficients are the
commutative algebra itself. Let for the whole section R denote a commutative unital
ground ring, and denote the tensor product over R simply by ⊗.

Definition 4.1.2. Let A be a commutative R-algebra. Hochschild Homology of A is the
homology HH(A) of the simplicial commutative R-algebra Z(A)

...

��
A ⊗ A

�� �� ��

⊗ A

A ⊗

�� ��

OOOO

A

A

OO
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with Z(A)n = A⊗n+1 and with face maps bi : Z(A)n → Z(A)n−1 given by

bi(a0, . . . , an) := (a0, . . . , ai.ai+1, . . . , an),

for i < n and
bn(a0, . . . , an) := (an.a0, a1 . . . , an−1).

The degeneracy operators si : Z(A)n → Z(A)n+1 are given by si(a0, . . . , an) = (a0, . . . , ai, 1, ai+1, . . . , an).

Loday realized that this definition could be seen as a special case of a functorial
construction on R-algebras (cf. [L89, 4.2]):

Definition 4.1.3. Let Fin be the category of finite sets and RCAlg the category of
commutative R-algebras. Define the algebraic Loday Functor

⊗
(−)

(−) : Fin×RCAlg → RCAlg,

on objects as the iterated tensor product
⊗

X
(A),

that is, taking X,A) to the coproduct of X copies of A in the category RCAlg. The
Loday Functor takes a morphism (f, φ) : (X,A)→ (Y,B) to the A-linear map given by

(f, φ)(ax)x∈X :=



∏

f(x)=y

φ(ax)




y∈Y

,

where the product over an empty indexing set is to be understood as the unit in R.

Remark 4.1.4. Note that we really use that A is a commutative R-algebra when defining
the functor from Fin. If we would restrict to the category of finite sets and isomorphisms,
the same formulas would give a functor with input mere R-modules. Extending to
non surjective maps requires a unit map of some sort, and non injective but at least
monotonous maps between ordered sets would only require an associative multiplication.

It is this formula that we emulate in the topological setting of commutative orthog-
onal ring spectra, where we construct a continuous analog to the Loday functor. One
application of this topological Loday functor, is a convenient definition of topological
Hochschild homology in the same spirit as the following definition:
The algebraic Loday functor gives an explicit example of functors for which we can define
Hochschild homology:

Definition 4.1.5. Let F : Fin → RAlg be a functor. Define its Hochschild homology
HH(F ) as the homology of the simplicial algebra

∆op S1

→ Fin
F
→ RAlg.

Then immediately, inspection of the defining chain complex yields that Hochschild
homology of commutative algebras is the same as Hochschild homology of the Loday
functor:

HH(A) = HH(Λ(−)A). (4.1.6)
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4.2 Commutative Ring Spectra

In this section, we define a convenient model structure on the category of commutative
orthogonal ring G-spectra. We mainly work in the S-model structure on GOT 2.9.11

Lemma 4.2.1. Let Y be an orthogonal G-spectrum and let X be the semi-free orthogonal
G-spectrum GV (G×OV /P )+ ∧K from 2.3.1, for K a based CW -complex, V 6= 0 in O
and P ⊆ G×OV . Then the map

q :
(
EΣi+∧ΣiX

∧i
)
∧Y → X∧i

Σi
∧Y

induced by EΣi+ → ∗ is a π∗-isomorphism. Indeed, if W in O is of dimension at least
i times the dimension of V the map qW is a G-equivalence.

Proof. We prove that q is a G-equivalence in all levels W = V⊕i ⊕ V ′. Let Γ := G ×
(Σi ⋉ P×i)×OV ′ and let p : Γ→ Σi be the projection onto the second factor. The space
p∗EΣi+ is Γ-homotopy equivalent to EF , where F is the family of subgroups of Γ whose
image under p : Γ→ Σi is trivial. Since V 6= 0, the homomorphism (Σi ⋉O×i

V )→ OV ⊕i

sending (σ, (α1, . . . , αi)) to (α1 ⊕ · · · ⊕ αi)σ is injective. We let Σi ⋉ (G×OV )
×i act on

G×i ×OV ⊕i via this homomorphism on the second factor and via the standard action
of Σi ⋉G×i on G×i on the second factor. Observe that this action is free. In particular
G×i ×OW is a free (Σi ⋉ P×i)×OV ′-space and, by 1.2.2 it is an F -complex.

The target and source of qW may be identified as the Σi×OV ′-orbits of Σi×OV ′ ×
G×OW -spaces of the form

J ∧OW+∧O×i
V

((G×OV )/P )∧i+ ∧K
∧i∧YV ′

where J = S0 for the target and J = EΣi+ for the source. This Σi×OV ′×G×OW -space
is isomorphic to

J ∧G×i ×OW+∧(G×OV )×i(G×OV )
×i/P×i

+∧K
∧i∧YV ′

and to
(J ∧G×i ×OW )+ ∧P×i K∧i∧YV ′ .

Under these isomorphisms

j ∧ α ∧ (g1, . . . , gi) ∧ k ∧ y ∈ (J ∧G×i ×OW )+ ∧P×i K∧i∧YV ′

corresponds to the element j ∧ α ∧ g1P ∧ · · · ∧ giP ∧ k ∧ y in

J ∧OW+∧O×i
V

((G×OV )/P )
∧i
+ ∧K

∧i∧YV ′ .

Using this identification, we can rewrite the source and target of qW as

(J ∧G×i ×OW )+ ∧(Σi⋉P×i)×OV ′
K∧i∧YV ′ .

Since G×i ×OW is an F -complex, the map EF+ ∧ G
×i ×OW → S0 ∧G×i ×OW is a

Γ-homotopy equivalence, and thus qW is a G-homotopy equivalence.
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Lemma 4.2.2. Let (H ,G ) be a G-mixing pair (2.6.1) with G 0 empty. Suppose that
for every W in O and every P in GW and every n ≥ 0, the orthogonal G-spectrum
Y = Sn+ ∧ GW ((G×OW/P )+) has the following property: for every j ≥ 1, the spectrum

Y ∧j
Σj

is G -cofibrant. Then for every G -cofibrant X the quotient map

q : EΣi+∧ΣiX
∧i → X∧i

Σi

is a π∗-isomorphism.

Proof. We proceed by induction on i and a G-equivariant cellular filtration of X. For
the induction start i = 1, the statement is trivially true. Hence let us assume it holds
for all j < i and for a G -cofibrant spectrum A such that X is built from A by attaching
a single cell GW

[
(Sn−1 ⊆ Dn)+∧(G×OW/P )+

]
. Then, as explained in Remark 3.2.15,

Theorem 3.2.14 states that X∧i is built from A∧i by attaching induced cells of the form

Σi+∧Σj×Σi−j

(
GW (Sn−1 ⊆ Dn)+∧(G×OW/P )+

)�j
∧A∧(i−j),

with cofiber Σi+∧Σj×Σi−j

(
GWS

n
+∧(G×OW/P )+

)∧j
∧A∧(i−j). Note that since G 0 is

empty we have W 6= 0. For ease of notation, we let Y = Sn+∧GW (G×OW/P )+. Thus,
for the induction step, it suffices to show that the projection

EΣi+∧Σj×Σi−jY
∧j∧A∧(i−j) →

[
Y ∧j∧A∧(i−j)

]
Σj×Σi−j

is a π∗-isomorphism. We use that EΣi is Σj × Σi−j-equivariantly homotopy equivalent
to EΣj × EΣi−j to factor this projection as:

EΣj+∧ΣjY
∧j∧EΣi−j+∧Σi−jA

∧i−j

q̂∧ id

��

Y ∧j
Σj
∧EΣi−j+∧Σi−jA

∧i−j

id∧q̂∧ id
��

Y ∧j
Σj
∧A∧i−j

Σi−j

Here the first map is a level homotopy equivalence by Lemma 4.2.1. For j > 0 the second
map is a π∗-isomorphism by the induction hypothesis using that Y ∧j

Σj
is G -cofibrant. For

j = 0 the second map is a π∗-isomorphism by assumption on A.

Definition 4.2.3. The functor E : GOT → ScAlg from orthogonal G-spectra to com-
mutative orthogonal G-ring spectra is left adjoint to the forgetful functor. Explicitly
EY =

∨
i Y

∧i
Σi

.

Proposition 4.2.4. For V 6= 0, let G V be the family of all closed subgroups of G×OV ,
and let G 0 be empty. The family (G V )V satisfies the assumptions in Lemma 4.2.2. That
is, if P is in G V for some 0 6= V ∈ O and Y = Sn+ ∧ GV ((G × OV /P )+), then the
orthogonal spectrum Y ∧i

Σi
is G -cofibrant. As a consequence the inclusion S → EY is a

G -cofibration.
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Proof. Then the Σi-orbits of the i-fold smash power of Y are isomorphic to the spectrum

GV ⊕i(((S
n)×i ×G×i ×OV ⊕i/Σi ⋉ P×i)+),

where G×OV ⊕i acts on ((Sn)×iG×i ×OV ⊕i/Σi ⋉ P×i) through the diagonal inclusion
G→ G×i and multiplication on the left with P×i acting trivially on (Sn)×i. By Illman’s
Theorem 1.2.2 the manifold (Sn)×i×G×i×OV ⊕i is a G×OV ⊕i×Σi⋉P

×i-CW-complex,
and thus the orbit space (G×i ×OV ⊕i/Σi ⋉ P×i) is a G×OV ⊕i-CW-complex.

Corollary 4.2.5. Let P be a subgroup of G×OV for some 0 6= V ∈ O and let Y = K+∧
GV ((G ×OV /P )+) for some G-manifold K. Then the functor EY ∧(−) on orthogonal
spectra preserves stable equivalences.

Proof. Given a stable equivalence of orthogonal spectra f : Z → Z ′ it is enough to show
that each summand YΣi

∧f is a weak equivalence. By Lemma 4.2.1 it is enough to show

that EΣi+∧Σi(Y
∧i∧f) is a stable equivalence. Since EΣi is a free Σi-cell complex it is

enough to show that Y ∧i∧f is a stable equivalence, which is a consequence of 2.10.2.

Corollary 4.2.6. The functor E preserves stable equivalences between S-cofibrant or-
thogonal spectra. In particular, each map in ESJ is a stable equivalence.

Proof. Iterated use of the pushout product axiom for the S-model structure 2.9.9 implies
that the i-fold smash power of an acyclic cofibration between S-cofibrant spectra is an
acyclic cofibration. Both EΣi+∧Σi(−) and taking wedges preserve π∗-isomorphisms,
that is, stable equivalences. Hence Ken Brown’s Lemma gives the result.

We will need to calculate realizations of simplicial objects and some other specific
colimits in the category of commutative orthogonal ring spectra. Recall Proposition 4.3.4
and the following lemma from [MMSS], that allow us to do so in the underlying category
of spectra:

Lemma 4.2.7 ([MMSS, 15.11]). Let {Ri → Ri+1} be a sequence of maps of commuta-
tive orthogonal ring G-spectra that are h-cofibrations of orthogonal G-spectra. Then the
underlying orthogonal G-spectrum of the colimit of the sequence in commutative orthog-
onal ring G-spectra is the colimit of the sequence computed in the category of orthogonal
G-spectra.

The following Proposition is inspired by Lemma 15.9 in [MMSS]. It deals with the
other part of the cofibration hypothesis for ESI and brings us closer to the convenience
property 4.2.15.

Proposition 4.2.8. Let f : X → Y be a wedge of maps in SI and let EX → R be a map
of commutative orthogonal ring spectra. Then, considered as a map in GOT , the cobase
change j : R→ R∧EXEY is an h-cofibration. If smashing with R additionally preserves
S-cofibrations, j is even an S-cofibration.
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Proof. As in the proof of [MMSS, 15.9], we identify the inclusion Sn+ → Dn+1
+ of spaces

with the realization of the inclusion of the Sn+ summand in the 0-simplices of the two-
sided bar construction B∗(S

n
+, S

n
+, S

0) of the monoid Sn+ with respect to the monoidal
structure given by wedge sum: Sn+ ∨ S

n
+ → Sn+ (cf. 6.1.36). Its q simplices are given by

a wedge of q + 1 copies of Sn+ with S0, with degeneracy maps the inclusions of wedge
summands and face maps induced from folding maps Sn+ ∨ S

n
+ → Sn+, respectively the

collapse map Sn+ ∨ S
0 → S0 for the last face in each simplicial level. Note that both the

smash product with an OV -orbit and the semi-free functors GV preserve colimits and
tensors, hence the simplicial realization. Thus we can express f analogously as the in-
clusion a summand of the 0-simplices of the simplicial orthogonal spectrum B∗(X,X, T ),
where X =

∨
i GViS

ni
+ ∧ (G×OVi/Pi)+ and T =

∨
i GViS

0∧ (OG×Vi/Pi)+. Applying E

takes coproducts to smash products, fold maps to multiplication maps, and inclusions
of the basepoints to unit maps of commutative orthogonal ring spectra. It also pre-
serves tensors over U , i.e., sends X∧A+ to X ⊗ A, hence it sends the realization of
B∗(X,X, T ) to the realization of the bar construction B∗(EX,EX,ET ). Finally, since
we can compute geometric realizations in terms of the underlying spectra (4.3.4), and
since smashing with R commutes with this realization, we can identify

R∧EXEY ∼= R∧EXB(EX,EX,ET ) ∼= B(R,EX,ET ). (4.2.9)

We look at B∗(R,EX,ET ) in more detail: R includes into the 0-simplices R∧ET as a
wedge summand, i.e., via an h-cofibration. All the other wedge summands are of the
form

R∧
(
GViS

0∧(G×OVi/Pi)+
)∧k
Σk
,

hence they are S-cofibrant if smashing with R preserves S-cofibrations by 4.2.4. Then in
particular R∧ET is S-cofibrant and the inclusion of R is an S-cofibration.
The degeneracy maps are given by inclusions

R∧(EX)∧q∧ET = R∧(EX)∧r∧S∧(EX)∧q−r∧ET −→ R∧(EX)∧q+1∧ET.

Therefore the inclusion of degenerate simplices (6.1.42) is in each level q given by the
map

R∧(S→ EX)�q+1∧ET,

which is an h-cofibration because S → EX is an inclusion of a wedge summand. Fur-
thermore 4.2.4 states that S → EX is an S-cofibration. Hence by the pushout product
axiom, the inclusion of degenerate simplices is an S-cofibration if smashing with R pre-
serves S-cofibrations. Hence the bar construction is h-proper, and even S-proper for the
stronger assumption on R. The result then follows using Proposition 6.1.46.

Remark 4.2.10. Note that the sphere spectrum S is an important specific example of a
ring spectrum that preserves S-cofibrations under the smash product.

Corollary 4.2.11 ([MMSS, 15.9]). The set ESI of maps of commutative orthogonal ring
spectra satisfies the cofibration hypothesis 6.1.30. Since it consists of ESI-cell complexes,
so does ESJ .
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Lemma 4.2.12 ([MMSS, 15.12]). Let i : R → R′ be an S-cofibration of commutative
orthogonal ring spectra. Then the functor (−)∧RR

′ on commutative R-algebras preserves
stable equivalences.

Proof. Assume inductively that i is a cobase change of a wedge of maps in ESI. Then
as in 4.2.9 we can identify (−)∧RR

′ with an appropriate B(−,EX,ET ). This functor
preserves stable equivalences by 6.1.47, since the bar construction is h-proper.

Finally we get the analog of [MMSS, 15.4], using the same proof as in the classical
case (cf. [MMSS, p. 490]):

Proposition 4.2.13. Every relative ESJ-cell complex is a stable equivalence.

This once more allows us to use Lemma [SS, 2.3], and we obtain the S-model structure
for commutative orthogonal ring spectra:

Theorem 4.2.14. The underlying S-fibrations and stable equivalences give a compactly
generated proper topological model structure on the category of commutative orthogonal
ring G-spectra. The generating (acyclic) cofibrations are given by the sets ESI and ESJ ,
respectively.
Again the identity functor gives a Quillen equivalence to the classical model structure
from [MMSS, 15.1].

We call cofibrant objects in this model structure simply S-cofibrant, inspired by the
following Theorem, which is implied by the second statement of Proposition 4.2.8, and
provides the main motivation for the constructions in this section:

Theorem 4.2.15. The S-model structure on commutative orthogonal ring spectra is
“convenient” in the sense that if A is a commutative orthogonal ring G-spectrum that is
S-cofibrant, it is already S-cofibrant as an orthogonal G-spectrum.

Even slightly more is true:

Theorem 4.2.16. Let f : R → R′ be a map of commutative orthogonal ring G-spectra,
that is a cofibration in the model structure of Theorem 4.2.14. If the smash product with
R preserves S-cofibrations of orthogonal G-spectra, then f is an underlying S-cofibration.

Proof. Reduce to the case of a ESI-cell complex. Induction on the cellular filtration and
the stronger second statement of Proposition 4.2.8 give the result.

Theorem 4.2.17. For a commutative orthogonal G-ring spectrum R, the S-model struc-
ture induces a compactly generated proper topological model structure on commutative
R-algebras. This R-model structure is convenient with respect to the R-model structure
on R-modules from Theorem 2.10.4(i).
The identity functor on commutative R-algebras induces a Quillen equivalence to the
classical model structure one would get by applying [DS, 3.10] to the structure from
[MM, III.8.1].
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Proof. We can use [DS, 3.10]. An analog of Theorem 4.2.15 is then immediate, since
the free commutative R-algebra functor ER satisfies ER(−) ∼= R∧E(−), and thus any
cofibration of commutative R-algebras is an underlying R-cofibration.
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The functor category GOT is tensored and cotensored over GT . Since the functor
adding a disjoint basepoint is monoidal, it is also tensored and cotensored over the
category GU . That the associated categories of modules, algebras and commutative
algebras, i.e., orthogonal ring spectra, commutative ring spectra as well as modules and
algebras over such are topological, is an entirely categorical argument given in [EKMM,
VII 2.10] and [MMSS, 5.1]. Using [EKMM, II.7.2] and [MMSS, 5.2] this can be used to
show the following:

Proposition 4.3.1. Let R be an orthogonal ring spectrum and let G be a compact Lie
group.

(i) The category of R-modules with action of G is topologically bicomplete with limits,
colimits, tensors and cotensors calculated in the category GOT .

(ii) If R is commutative (e.g., R = S), then the category of (commutative) R-algebras
with action of G is topologically bicomplete with limits and cotensors created in
R-modules with action of G.

For the case of tensors, the result that will be most useful to us is the analog to
[EKMM, VII.3.4]. In the following let always R denote a commutative orthogonal ring
spectrum as above, and let C denote either one of the categories of G-objects in R-
modules, R-algebras or commutative R-algebras. We refer to 6.1.37 for the notion of
geometric realization.

Theorem 4.3.2. Let A be an object of C and X∗ a simplicial space. There is a natural
isomorphism

A⊗C |X∗| ∼= |A⊗C X∗|

in C. Here the realization on the right side is to be understood in the category of orthog-
onal spectra.

This is a consequence of the following two results, which are the orthogonal spectrum
versions of [EKMM, VII.3.2, VII.3.3]:

Proposition 4.3.3. [EKMM, VII.3.2] Let A be an object of C and X∗ a simplicial space.
There is a natural isomorphism

A⊗C |X∗| ∼= |A⊗C X∗|C,

where the realization on the right side is in C.

Proposition 4.3.4. [EKMM, VII.3.3] Let A∗ be a simplicial object of C, then we have
a natural isomorphism

|A∗|C ∼= |A∗|.
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Proof. We should first describe how the realization |A∗| = |A∗|GOT is an object of C
again. We treat the case of commutative orthogonal ring spectra over R = S, all the
others are similar. For the unit morphism S → |A∗| view S as |S∗|, the realization of
the constant simplicial spectrum, and use that since the simplicial structure maps of
A∗ are ring maps, the collection of unit maps of the Aq gives a map of simplicial ring
spectra S∗ → A∗ which induces a map on realizations. For the multiplication, first recall
that the geometric realization is defined as a coend (6.1.37). Since coends and tensors in
orthogonal spectra are defined levelwise, we have a natural isomorphism |A∗|V ∼= |(A∗)V |
in each level V . Recall the coend definition of the smash product of orthogonal spectra
and the fact that for simplicial spaces the realization commutes with both the smash
product and the inducing up functor. The Fubini theorem for coends ([McL, IX.8]) then
implies a natural isomorphism of spectra

|A∗|∧|A∗| ∼= |A∗∧A∗|.

Here the latter smash product is calculated separately in each simplicial level. Hence
the multiplication maps of the Aq induce multiplication maps on the realization. It
is tedious, but not too hard to verify the associativity, unitality, commutativity and
coherence conditions, and we omit more details here.
Going back to the proof, we continue as in case of (commutative) S-algebras in the
EKMM setting. For (commutative) orthogonal G-ring spectra A and B and a G-space
X we claim that a morphism A⊗CX → B of G-ring spectra determines and is determined
by a morphism of G-spectra

A⊗X = A∧X+ → B,

such that for all points x ∈ X the map

A ∼= A∧S0 A∧ix−→ A∧X+ −→ B

is a map of G-ring spectra. To see this, let CG be the GT -category with G acting by
conjugation on morphism spaces, and take a look at the defining adjunctions

C(A⊗C X,B) ∼= GU(X,CG(A,B)) −→ GU(X,OTG(A,B)) ∼= GOT (A∧X+, B),

where the middle arrow is induced by the faithful (!) forgetful functor CG → OTG. Note
that this is the point where the enrichment over GU instead of GT proves handy, since
otherwise we would have to be very careful with trivial maps here.
Given a simplicial object A∗ in C a morphism ĝ ∈ C(|A∗|, B) is completely determined
by a morphism of spectra f̂ ∈ GOT (|A∗|, B), which by 6.1.38 is adjoint to a morphism
of simplicial spectra f ∈ sGOT (A∗,∆OT B). For each simplicial level q, the morphism
fq is adjoint to a morphism of G-spectra f̂q : Aq ⊗OT ∆q → B that is pointwise a mor-
phism of ring spectra. As we saw above, these exactly correspond to algebra morphisms
ĥq : Aq ⊗C ∆q → B, whose adjoints fit together into a map of simplicial ring spectra
h ∈ sC(A,∆CB). Altogether we defined a natural isomorphism

C(|A∗|, B) ∼= sC(A∗,∆CB),
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i.e., we showed that |A∗| and |A∗|C have the same right adjoint. This proves the propo-
sition.

The immense usefulness of Theorem 4.3.2 stems from the fact that, for discrete spaces
X, tensors A⊗C X are easily computable in any topologically enriched category:

Proposition 4.3.5. Let D be a category which is enriched and tensored over GU . Let
A be an object of D and X a discrete space in GU . Then there is a continuous natural
isomorphism

A⊗X ∼=
∐

X

A.

Proof. We use the defining universal properties of tensors and coproducts. Let B be
some object of D, we have natural isomorphisms

D(A⊗X,B) ∼= GU(X,D(A,B)) ∼=
∏

x∈X

D(A,B) ∼= D(
∐

X

A,B).

Hence the topological Yoneda lemma gives the desired continuous natural isomorphism.

In the case we are most interested in, using Lemma 5.1.17, we get

Corollary 4.3.6. Let A be a commutative orthogonal ring spectrum, X a discrete space
in GU . There is a (continuous) natural isomorphism

A⊗X ∼=
∧

X

A,

between the tensor of A with X and the X-fold smash power of A, i.e., the X-fold smash
product of A with itself.

This is the main point of motivation for the translation from the algebraic case which
we present in the next subsection.

4.3.7 The Loday Functor

Remember from 5.1.17 that the coproduct in the category of commutative monoids in
a symmetric monoidal category (C,⊗, e) is nothing but ⊗ itself. In particular, with the
considerations in 5.1.10 we get

Corollary 4.3.8. Let (C,⊗, e) be a symmetric monoidal category. Then the category
of commutative monoids in C is tensored over the category of finite sets, sending a
commutative monoid M and a finite set S to

⊗
SM =M⊗S.

As discussed in 5.1.10, M⊗{1,...,n} = (. . . (M ⊗M)⊗ . . . )⊗M , while the functoriality
in S given by sending a function of finite sets f : S → T to the composite

⊗

S

M ∼=
⊗

t∈T

⊗

f−1(t)

M →
⊗

T

M,
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where the isomorphism is a (uniquely given by f) structure isomorphism in (C,⊗, e) and
the morphism is the tensor of the maps

⊗
f−1(t)M →M induced by multiplication (the

unit if f−1(t) is empty).

In particular, if R is a commutative orthogonal ring spectrum (i.e., a commutative S-
algebra in OT ), A a commutative R-algebra, and X a finite set, considered as a discrete
space. Then Corollary 4.3.8 gives a natural isomorphism

A⊗RCAlg
X ∼= A∧R . . .∧RA

(|X|-fold smash). Recall from 5.1.10 that the right hand side is functorial in bijections
even if A is only an R-module, and in injections if A is an R-module under R.

Since tensors commute with colimits we get that if X is a set considered as a discrete
space, then A⊗RCAlg

X is the filtered colimit of S 7→ A⊗RCAlg
S, where S varies over the

finite subsets of X. A priori, this colimit is in RCAlg, but is created in RMod. Note that,
since the colimit is over inclusions, this makes no use of the multiplication, and applies
to any R-mudule under R.

Definition 4.3.9. The discrete Loday functor applied to an R-module M under R and
set X is given by ∧

X

R
M = colim

U⊆X

∧

U

M

(functorial in injections). The Loday functor applied to a commutative R-algebra A and
space X is given by ∧

X

R
A = A⊗RCAlg

X.

As commented above, if A is a commutative R-algebra and X a set, then the two
potential interpretations of the discrete Loday functor as modules under R are naturally
isomorphic.

Finally note that Proposition 4.3.2 implies the following lemma, which makes it
possible to realize

∧
|X|

RA concretely as a “smash power indexed over X” for simplicial
sets X:

Lemma 4.3.10. Given a simplicial space Y and A a commutative R-algebra, there is a
natural isomorphism ∧

|Y |

R
(A) ∼= |

∧

Y

R
(A)|,

where the realization on the right is in orthogonal spectra.

We will mostly be interested in the case where R is the sphere spectrum S, and for
simplicity of notation we restrict ourselves to that case in the following and omit R from
the notation.

A similar construction has been carried out in in [BCD, Section 4]. The construction
we give here is much simpler than the one presented in op. cit., so it will be crucial to
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study its properties in detail, so as to make sure, that we indeed capture all the desired
information. In particular the equivariant homotopy type, when X is equipped with an
action of some (compact Lie-) group G, will require some care. We admit that the choice
in [BCD] of Γ-spaces as a model for connective spectra was not optimal, but with very
minor rewriting the paper makes sense when based on symmetric spectra or simplicial
functors. This rewriting is necessary for applying [BCD] to commutative ring spectra
that do not have strictly commutative models in Γ-spaces [Law].

Remark 4.3.11. For a morphism ϕ : R → S of commutative orthogonal ring spectra,
we get adjoint pairs of functors between the categories of R-, respectively S-modules,
-algebras and commutative S-algebras. All the left adjoints are given by induction, i.e.,
using S∧R(−), which is strong monoidal and preserves tensors, hence commutes with
all versions of the Loday functor from above. The respective right adjoint functors do
in general not exhibit similar properties.

Note that since all group actions are through isomorphisms, a (continuous) action of
a (topological) group G on X induces (continuous) actions on the targets of the Loday
functor by precomposition as follows

G→ A(X,X) → C(
∧

X

R
A,
∧

X

R
A),

where (A, C) is any of the pairs of categories for which we defined the Loday functor
above and A ∈ C. In this light, we can for each of the above definitions and any
(topological) group G consider equivariant analogs

∧

(−)

R
(−) : [G,A]× C→ [G,C].

As already discussed in the Introduction, it is crucial to investigate the equivariant
properties of these Loday functors, to make sure that they are usable for our applications.
The next sections will be devoted to this topic.
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4.4 Fixed Points of Smash Powers

4.4.1 Fixed Points and the Loday Functor

The following proposition gives the important naturality property, which we will need
when generalizing the above result to infinite and non-discrete spaces. It is inspired by
Kro’s proposed “diagonal map” Lq → ΦCrLrq in the case of finite cyclic groups. The
definition given in [Kr, 3.10.4], however, seems to mix up the left and right adjoints
involved. We will instead define a natural zig-zag of maps, where the arrow in the
wrong direction becomes an isomorphism for S-cofibrant input.
In this section we work with the G-typical family H of all representations of subgroups
of G. Recall the categories OJ and OH

E from Section 3.1.20, and let OG be the GT -
category of G-objects in O. In this section we write OE instead of OH

E since H is fixed.
Before we give the construction, let Oreg

G ⊂ OG and Oreg
J ⊂ OJ be the full subcategories

of objects of the form V ⊕X and V ⊕XN respectively for V an object of O.

Let Oreg
E be the N -fixed category of Oreg

G , and note that the following diagram of
functors commutes:

OE

φ

��

Oreg
E

ioo

φreg

��
OJ Oreg

J ,
j

oo

where φreg is the restriction of φ sending a regular representation V ⊕X to V ⊕NN ∼=
(V ⊕X)N . The diagram then implies the following natural isomorphisms for the restric-
tion functors and their left adjoints:

PjP
reg
φ
∼= PφPi U

reg
φ Uj ∼= UiUφ. (4.4.2)

Let FixN be the functor from the category of orthogonal G-spectra to the category of
JT -functors from OE to JT taking a G-spectrum X to V 7→ (FixNX)V = (XV )

N . Then
PφFix

N is isomorphic to the geometric fixed point functor ΦN = ΦN
H

for the G-typical
family H consisting of all G-representations.

Proposition 4.4.3. For G a finite group and X a finite free G-space, and L any or-
thogonal spectrum there is a natural diagonal zig-zag of J-spectra

L∧XN

∆(X,L)

;;
PjUjL

∧XN
εjoo // PφPiUiFix

N (L∧X)
Pφ(εi) // ΦN (L∧X) .

For S-cofibrant spectra L, the first map is an isomorphism such that the pointed composite
∆(X,L) exists and is the natural isomorphism from 3.2.16, which we therefore call the
diagonal isomorphism.
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Proof. The maps εj and εi are the counits of the adjoint pair (Pj ,Uj), respectively
(Pi,Ui) and are hence natural. The second map requires more work. First note that by
(4.4.2) its target is naturally isomorphic to PjP

reg
φ UiFix

N (L∧X), so it suffices to define
a natural map of regular J-spectra

UjL
∧XN → P

reg
φ UiFix

N (L∧X),

to which we then apply Pj. We define the map levelwise, so let U = V ⊕XN be a regular
J-representation. By the coend definition of the smash products L∧X and L∧XN , as well
as the evaluation of Preg

φ , it suffices to give morphisms

∧
⊕
V[x]=U

LV[x] −→

W∈Oreg
E∫
Oreg
J (WN , UN ) ∧




⊕
Wx

∼=W∫
OW∧∏

X OWx

∧

x∈X

LWx




N

.

(4.4.4)
But since U is regular, W = V ⊕X gives a preferred point in the first coend, and for each
partition

⊕
V[x] ∼= U the choice Wx = V[x] gives a preferred point in the second coend,

so that we can map
∧

[x]∈XN
LV[x] to the copy of

∧
x∈X LV[x] indexed by the identities of

WN and W , via the diagonal map

∧

[x]∈XN

LV[x] −→
∧

x∈X

LWx.

{l[x] ∈ LV[x]}[x]∈XN
7→ {l[x] ∈ LWx})x∈X

Note that the map is obviously J-equivariant and maps into the coend of the fixed points,
hence into the fixed points of the coend. It is compatible with the structure maps of L
and natural with respect to all maps L→ K of orthogonal spectra.
To see that the instance of εj is an isomorphism for S-cofibrant L, note smash-powers of
semi-free orthogonal spectra are semi-free J-spectra of the form GVK with V regular and
that εj is an isomorphism for any semi-free J-spectrum of this form. By Theorem 3.2.14,
a cell induction then gives the result. Similarly it suffices to show that for semi-free
spectra the zig-zag yields the isomorphism from 3.1.34. For R a euclidean vector space
and L = GRK, the maps (4.4.4) are represented by the map of

∏
XN

OR-spaces out of

K∧XN determined on the level U = R∧XN . Since this map is adjoint to the unit map

ηφ : G
E
U

(
OR∧X∧∏

X OR
K∧X

)N
→ UφPφG

E
U

(
OR∧X∧∏

X OR
K∧X

)N
,

the result is implied by the Yoneda lemma and our description of the isomorphism
(3.1.34).

Corollary 4.4.5. Let L and L′ be S-cofibrant orthogonal spectra, then the natural map
α from 3.1.28 is an isomorphism

ΦN (ΛXL)∧Φ
N (ΛXL

′) ∼= ΦN (ΛXL∧ΛXL
′).
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Proof. Since ΛXL∧ΛXL
′ ∼= ΛX(L∧L

′) via a G-equivariant shuffle permutation the map
α is up to isomorphism the map

L∧XN∧L′∧XN ∼= (L∧L′)∧XN .

Corollary 4.4.6. Let L be an S-cofibrant orthogonal spectrum and let B be an Indreg-
cellular G-spectrum, then the natural map α from 3.2.8 is an isomorphism

ΦN (ΛXL)∧Φ
N(B) ∼= ΦN (ΛXL∧B).

Proof. First assume B is itself of the form B ∼= G+∧H(L
′)∧H . If N is not contained in

H, both source and target of α are trivial. Otherwise we have

L∧X∧B ∼= G+∧H(L
∧X∧L′∧H)

by 3.1.36. Hence Theorem 3.2.8 gives that α is J-isomorphic to a map

LXN∧G/N+∧H/NL
′∧N ∼= G/N+∧H/N (L

XN∧L′N ),

which is another instance of 3.1.36 The general result follows by a cell induction over
the cells of B.

Remark 4.4.7. Since the Loday functor for mere spectra is in the X-variable only defined
with respect to finite sets and isomorphisms between them, the best thing one can
hope for is that the diagonal zig-zag of 4.4.3 is natural in the X variable with respect
to isomorphisms of finite free G-sets. Then indeed, comparing the appropriate shuffle
permutations through which G and J act, naturality in X is immediate for semi-free
spectra, and can be followed through the coends in the proof of 4.4.3 with little more
effort.

Corollary 4.4.8. The diagonal isomorphism respects decompositions of X into G-orbits,
i.e., for X a finite free G-set and L an S-cofibrant orthogonal spectrum, we get a com-
mutative diagram of natural isomorphisms

(L∧G/N )∧XG

∆(G,L)∧XG

��

L∧XN

∆(X,L)

��

∼= //
∼=oo (L∧XG)∧G/N

∆(G,L∧XG)

��

(ΦNL∧G)∧XG

α

��
ΦN ((L∧G)∧XG) ΦNL∧X

∼=oo
∼= // ΦN ((L∧XG)∧G)

with the lower left vertical map an iterated version of the isomorphism α from 3.1.28.

96



4.4. FIXED POINTS OF SMASH POWERS

Proof. Note that for L S-cofibrant, a map out of L∧XN is completely determined by
its values on XN -regular levels by the universal properties of the semi-free spectra ap-
pearing in the cell decomposition of Theorem 3.2.14. On these levels the right rectangle
commutes by definition of the diagonal zig-zag. For the left rectangle, comparing the
universal property defining α from 3.1.28 to the definition of the middle map in the
diagonal zig-zag 4.4.3 gives the result.

Varying the Input Categories

In 4.3.7, we have defined several versions of the Loday functor, with the input categories
varying between finite discrete sets together with general orthogonal spectra, to general
spaces and commutative orthogonal ring spectra. In the above discussion we have re-
stricted the first input further, to finite free G-sets, to study the equivariant structure
induced on the output. Inspired by Remark 4.4.7, we will from now view the diagonal
isomorphism as a natural transformation of functors

∆(·,−) : Λ(·)N (−) −→ ΦN(Λ(·)(−)),

and study how we can vary the input categories.
Suppose that G is a finite group. We begin with checking naturality of the diagonal

isomorphism with respect to injections of finite free G-sets. As usual, we have to adapt
the cofibrancy condition.

Definition 4.4.9. An orthogonal spectrum L is S-cofibrant under S if it is equipped
with a S-cofibration S→ L.

Example 4.4.10. Every S-cofibrant commutative orthogonal ring spectrum is S-cofibrant
under S via its unit map by 4.2.8, which in particular says that the unit maps for the
commutative ring spectra appearing in the generating S-cofibrations is an S-cofibration.

Lemma 4.4.11. The diagonal map is natural with respect to finite free G-sets and
equivariant inclusions, and spectra S-cofibrant under S.

Proof. Let L be cofibrant under S, and let X → Y be an equivariant inclusion of finite
free G-sets. There is an SI-cellular structure for L such that the designated map S→ L
is an inclusion of a subcomplex. Then L∧X → L∧Y is an inclusion of an equivariant
subcomplex as in 3.2.14. Similarly L∧XN is an equivariant subcomplex of L∧YN and it
follows as from the proof of 3.2.16 that the diagonal isomorphism respects the inclusion
of subcomplexes.

Moving towards infinite free G-sets X, the Loday functor is defined in 4.3.9 as via
the colimit along inclusions of finite free G-subsets of X.

ΛX(L) := colim
F⊂X finite

ΛFL.

Note that by the proof of the previous lemma, this is a filtered colimit along h-cofibrations,
so that it is preserved by ΦN .
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Lemma 4.4.12. The diagonal isomorphism exists and is natural with respect to free
G-sets and equivariant inclusions, and spectra S-cofibrant under S.

Proof. We begin with the existence. Let L be cofibrant under S, and let X be a free G-
sets. The finite subsets ofXN are orbits of finite subsets ofX hence there is a natural map
ΛXN

L → ΦN (ΛXL) which is the colimit of isomorphisms hence an isomorphism itself.
Naturality follows since equivariant inclusions induce inclusions of indexing categories
for the colimits.

As an alternative proof, we can use Corollary 4.4.8: Let f : X → Y = X ∪ Z be an
equivariant inclusion of free G-sets. Then f respects the orbit decomposition, i.e.,

X ∼=G

⋃

XG

G, Y ∼=G

⋃

XG

G ∪
⋃

ZG

G,

and f corresponds to the obvious inclusion. Hence ΛfL is isomorphic to the map

ΛG(ΛXG
L) ∼= ΛG(ΛXG

∧ΛZG
S)→ ΛYG(ΛYGL),

i.e., it is the smash power of a map of S-cofibrant spectra, so 4.4.3 gives the result. In
particular, we even get that the map ΛXG

L→ ΛYGL is a (non equivariant) S-cofibration,
thus the induced map of smash powers is an S-cofibration of G-spaces by 3.2.9. To see
this, filter YG through finite sets Yi and let Xi = f−1Yi, Zi = Yi\f(Xi). As in 3.2.14, each
of the maps L∧Xi ∼= L∧Xi∧S∧Zi → L∧Yi is an S-cofibration, hence so is their colimit.
Finally we move towards S-cofibrant commutative orthogonal ring spectra, where we
want to work with the definition of the Loday functor in terms of the categorical tensor
with spaces, i.e., for X a space and A an S-cofibrant commutative orthogonal ring
spectrum, ΛXA = A⊗X, where the tensor is in the category of commutative orthogonal
ring spectra (cf. 4.3). As discussed in 4.3.5, the tensor specializes to the smash power
for discrete inputs X, so all the results from above still apply. Note that we can now
extend the naturality results to not necessarily injective maps:

Lemma 4.4.13. The diagonal isomorphism from 4.4.12 is natural with respect to free
G-sets and equivariant maps, and S-cofibrant commutative orthogonal ring spectra.

Proof. Let f : X → Y be an equivariant map between free G-sets. Similar to the above
discussion, we filter X and Y by finite free G-sets Xi and Yi and consider f as a colimit
of maps fi : Xi → Yi, where the transformations λfiA → fj for i ≤ j are along S-
cofibrations. Thus it suffices to check naturality for not necessarily injective equivariant
maps between finite free G-sets. Here we can once again use the splitting into orbits,
and the fact that the diagonal map is natural with respect to all morphisms between S-
cofibrant spectra. As in Corollary 4.4.8, we see that for X → Y an equivariant morphism
of free G-sets, the map on smash powers ΛXA→ ΛYA is the G-fold smash power of the
map ΛXG

A→ ΛYGA, hence the result follows.

We can finally move on towards non discrete spaces. We begin with spaces that are
geometric realizations of simplicial sets, since there we have Proposition 4.3.2, which
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makes computing the Loday functor much easier and in particular allows the following
extension of the diagonal isomorphism:

Proposition 4.4.14. For free G-simplicial sets X∗ and equivariant maps between them,
and S-cofibrant commutative orthogonal ring spectra A, the diagonal map exists and is
a natural isomorphism

Λ|(X∗)|NA
∼= ΦN (Λ|X∗|A).

Proof. By 4.3.2, for a free G-simplicial set X∗, and an S-cofibrant commutative orthog-
onal ring spectrum A, the tensor A ⊗ |X∗| is naturally isomorphic to the realization of
the simplicial orthogonal spectrum

q 7→ (A⊗Xq) ∼= A∧Xq ∼= ΛXqA.

By 6.1.44, the geometric realization of this spectrum is the colimit along the skeleton
filtration, which is along levelwise h-cofibrations since the simplicial spectrum is h-good
(cf. 6.1.49, 6.1.50 and 6.1.46): Every simplicial degeneracy map si is an injection of
free G-sets, hence as in the comment before Lemma 4.4.12, it induces an S- hence h-
cofibration under the Loday functor. In particular, taking the geometric fixed points
commutes with the geometric realization, since FixN does. Therefore the diagonal maps
∆(Xq, A) for each simplicial level induce an isomorphism on realizations. It is natural
since maps of free G-simplicial sets are levelwise maps of free G-sets.

Remark 4.4.15. For X the realization of a simplicial set, the diagonal map constructed
in 4.4.14, does not depend on the simplicial model. Given two simplicial sets X∗ and Y∗
such that |X∗| ∼= |Y∗|, there is a zig-zag of maps of simplicial sets between them, that
realizes to the isomorphism, e.g., via the singular complex of |Y∗|. Thus we can use the
naturality for simplicial maps.

We can continue this to work towards general cofibrant free G-spaces X, in particu-
lar since the generating näıve cofibrations are given by the inclusions G∧(Sn−1 → Dn),
which are the realizations of simplicial maps G∧(∂∆n → ∆n), we can write every cofi-
brant G-space as a colimit of pushouts of maps between spaces that are realizations of
free G-simplicial sets. Note that tensoring with A of course preserves this colimit, but
also maps it to a colimit along S-cofibrations since the S-model structure on commutative
orthogonal ring spectra satisfies the pushout product axiom. In particular particular we
can take geometric fixed points before going to the colimit, hence use the lemma for the
simplicial case and a cell induction to get the following:

Lemma 4.4.16. For näıvely cofibrant G-spaces X and equivariant maps between them,
and S-cofibrant commutative orthogonal ring spectra A, the diagonal isomorphism exists
and is natural with respect to morphisms X → Y that are realizations of simplicial maps.

Remark 4.4.17. Note that every equivariant map between näıvely cofibrant G-spaces is
homotopy equivalent to the realization of a simplicial map via the unit of the adjunction
between spaces and simplicial maps and the general Whitehead theorem for the näıve
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model structure. Since the Loday functor is continuous in both variables, this implies
that the diagonal isomorphism of 4.4.16 is natural with respect to all continuous equiv-
ariant maps up to homotopy equivalence. The homotopy equivalence can be seen as one
of orthogonal spectra which at each time is a morphism of ring spectra (cf. proof of 4.3.4).

This concludes our study of the case of a fixed finite group, since we have reached
the other end of the generality of the definition of the Loday functor from 4.3.7. So
far we have not touched upon functoriality of the Loday functor or naturality of the
diagonal map for changing the group, so let now φ : H → G be a homomorphism of
topological groups. As usual we can look at the restriction functor φ∗ : GT → HT , and
it is immediate, that it commutes with the Loday functor in the sense that for orthogonal
ring spectra A, there is a natural isomorphism of commutative H-ring spectra

Λφ∗XA ∼= φ∗ΛXA,

where on the right side φ∗ is the restriction functor on commutative ring spectra. Note,
that since φ∗ does not send free G-sets to free H-sets if φ is not injective, we have in
general no control over the diagonal map. Therefore we will only consider the case where
G is a finite group and φ is the inclusion i : H → G of a subgroup. For N ⊂ H, this
leads to the following:

Proposition 4.4.18. The restriction functor preserves the diagonal map.

Proof. Recall from Lemma 3.1.43 that we placed a representation theoretic condition
(1) on the subgroup N of G. When G is finite Lemma 3.1.43 gives that Condition 1
is satisfied. Hence as in the proof of Proposition 3.1.46 the restriction commutes with
Pφ. Therefore all the functors in the definition of the diagonal zig-zag commute with
the restriction, and so does the whole zig-zag. The restriction functor preserves the
colimit along the inclusions of finite subsets as well as the geometric realization and the
cell complex construction, which we used to extend the diagonal map from the case of
spectra above.

Remark 4.4.19. The relation of the Loday functor with the induction of an H-set X
along the inclusion i : H → G is more subtle. Intuitively the Loday functor itself should
be viewed as the ∧-induction of a spectrum with action of the trivial group to a spectrum
with G-action. If one wants to start with an H-spectrum instead, this generalizes the
study of multiplicative norm constructions, whereX is assumed to be a discrete subgroup
H of G. These norm functors have been famously put to use in the recent proof of
the Kervaire-invariant problem by Hill, Hopkins and Ravenel. An introduction can be
found in [HHR, A.3,4], or [S11, 8,9], both of which only became available very shortly
before the third author’s thesis (which very much is at the core of this paper) was
finished. The third author learned about the interplay from Stefan Schwede, during a
visit in Bonn in November 2010, where he presented the results of his thesis. As the
study of multiplicative norms of course has to address some of the same questions we
discussed here, we point out some similarities and differences to [HHR]. Due to the
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fact that the works are independent, the notation and viewpoint are rather different.
First of all one should note the difference in model structures. We worked with the
S-model structure instead of the classical q-model structure on commutative orthogonal
ring spectra, in order to get around the q-cofibrant replacement (cf. 3.1.32). [HHR]
address this problem by proving that the symmetric powers appearing in the generating
q-cofibrations are “very flat” (cf. [HHR, B.13,63]), which allows them to construct a
natural weak equivalence calculating geometric fixed points. Their method has the
advantage that it is more easily applicable to the general multiplicative norm case they
aim to study. Our method on the other hand allows us to recognize the diagonal map
as a natural isomorphism, strengthening their statement. Note that the “Slice Cells”
discussed in [HHR, 4.1] are special cases of generating SIG-cofibrations in our language,
and from this viewpoint the filtration given in [HHR, A.4.3] and our Theorem 3.2.14
achieve similar goals – an equivariant filtration of the smash power – with different
methods. Finally note that the change of the indexing of the smash power away from a
non discrete set we worked for in this section, is only addressed in the side note [HHR,
A.35]. Since all groups discussed there are finite, this is not a major point in [HHR],
but as we are going to move towards tori and more general compact Lie groups now, the
details become important.

Infinite Groups

We now leave the realm of finite groups and move back to the case of compact Lie groups
that is the main focus of our results. In particular to deal with (higher) topological
Hochschild homology and Cyclic homology, we are interested in the case where G is a
torus. The first thing we should address is that Condition 1 holds in these cases:

Lemma 4.4.20. Condition 1 holds when G is the n-torus and H is the kernel of an
isogeny of G, in particular for G ∼= S1 and H a finite subgroup.

Proof. Let G = S1× . . .×S1 = Tn. Observe that the group structure on Tn is inherited
from (Rn,+) via the isomorphisms

R/Z ∼= S1

a+ b 7→ [a][b]

k · a 7→ [a]k for k ∈ Z

Given an isogeny α of Tn, its kernel H is a finite subgroup. Note that there is a matrix
A = (ai,j) ∈Mn(Z)∩Gln(Q) such that α : Tn → T n is induced by (A·) : Rn → Rn. Under
this correspondence, the kernel of α is isomorphic to the projection of A−1Zn ⊂ Qn ⊂ Rn

to Rn/Zn. Note that A−1Zn is finitely generated by the columns c1, . . . cn of A−1. The
orders ρi of these generators in Rn/Zn are given by the least common multiple of the
denominators of entries ci,j of the respective columns ci. Let W be an H-representation
via φ : H → OW . We can restrict ourselves to irreducible representations W , hence
assume that dimW ≤ 2. (The orthogonal matrices φ(li) commute and hence can be
brought to normal form simultaneously). If W = R is the trivial L-representation, we
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can define V :=W as the trivial G-representation and are done. IfW is one dimensional,
define V := C ∼=R R2 with the standard metric and let W → V be the embedding as
the real line. We prolong φ to OV , by mapping the non-trivial element of OW to the
rotation of order 2. For W of dimension 2, note that no element of H can be mapped to
an element with negative determinant of OW – if it does it has two different eigenspaces
which have to be preserved by all other elements of φ(H), hence W could not have been
irreducible. The generators of H have to map to elements of OC of order that divides
their own. In particular φ(ci) acts on C by multiplication with a root of unity ζkiρi , such
that φ(ci)

x is well defined for x ∈ R. Define an action of Tn on V = C by:

Rn/Zn × V
A·×V // Rn/AZn × V

µ // V

[(x1, . . . , xn)], z
✤ //

∏
i
φ(ci)

xi · z

The definition of the lower map obviously gives an action of (Rn,+) on V , since the φ(ci)
commute. To see that it descends to an action of Tn, we have to show that it is trivial
on Zn. Let ej be one of the standard base vectors of Rn. Then multiplication with A
takes ej to the coordinate vector (a1,j , . . . , an,j). We need to check that

∏
i
φ(ci)

ai,j = 1

in C:
In H ⊂ Rn/Zn we can form the Z-linear combination Σiai,jci. Since the ci were the
columns of A−1 this gives back the standard basis vector ej which is congruent to 0
modulo Zn, i.e., the Z-linear combination Σiai,jli is equal to the unit in L. Since φ is
a group homomorphism this implies that

∏
i
φ(li)

ai,j = 1 in OC, i.e.,
∏
i
φ(ci)

ai,j = 1 in

C as desired. This action extends the action of W by construction, since a generator ci
of H maps to ei under the multiplication with A, hence acts via φ(ci) on V . The fixed
points of V under the Tn action are trivial, since no φ(ci) that is not trivial fixes a point
except the origin.

We will need some more properties of tori, we begin with the one dimensional case.

Lemma 4.4.21. Let Cn be a finite (cyclic) subgroup of order n in S1. There is a
simplicial Cn-set (Sn)∗ with a Cn-homeomorphism |(Sn)∗| ∼= S1.

Proof. This is easily done by hand, or by applying edgewise subdivision to the standard
simplicial model of S1.

Lemma 4.4.22. Let H be the kernel of an isogeny α of the torus Tn. There is a
simplicial H-set T∗ with an H-homeomorphism |T∗| ∼= Tn.

Proof. We combine the methods of the two lemmas above. For the intuition that under-
lies the following, it is best to think of Rn as the n-fold product of the infinite simplicial
complex R, which has vertices lying on the points in Z, and edges between them. We
identify the action of H on this complex, and then produce a finer complex where the
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action is simplicial. As above associate to α an integer matrix A ∈Mn(Z) ∩Gln(Q). In
the notation above, the action of an element H on an element [r] ∈ RN/ZN corresponds
to adding a linear combinations of columns of A−1 to r. All the columns of A−1 are in
det(A) · Zn by Cramer’s rule. Hence the difference of r to its image under the action of
any h ∈ H is in det(A) ·ZN as well. Thus let T∗ be the n-fold product of simplicial sets

T∗ = S∗ × . . .× S∗,

where S∗ is a CdetA-equivariant simplicial model of S1. The action ofH on the realization
corresponds to a simplicial action on the resulting simplicial complex, hence T∗ is the
desired H-simplicial set.

Finally, we can state the result about the diagonal map for our main case of interest:

Theorem 4.4.23. Let G = Tn and N the kernel of an isogeny (such that Condition 1
holds.) For an S-cofibrant commutative orthogonal ring spectrum A and a näıvely cofi-
brant G-space X, there is an isomorphism of G/N -spectra

ΛXN
A→ ΦNΛXA.

The isomorphism is natural, and restricts to the diagonal isomorphism under the restric-
tion of the G-action to any finite subgroup of G/N .

Proof. We begin with constructing the map and check equivariance afterwards. Restrict-
ing to an arbitrary finite subgroup K of G that contains N , Proposition 4.4.14 states
that there is a diagonal isomorphism

ΛXN
A→ ΦNΛXA

of K/N -spectra. For K1 and K2 two such subgroups, the two maps they define restrict
to the same map of K1 ∩K2/N -spectra, since the diagonal maps are preserved under
restriction (4.4.18). In particular all of these maps restrict to the same underlying map
of spectra. Note that for normal subgroups N ⊂ G an element [g] in the quotient
group G/N has finite order, if and only if the subgroup generated by g intersects N non
trivially, and in particular if and only if the subgroup generated by {g} ∪N contains N
as a subgroup of finite index. This implies that we constructed a map between spectra
with J-action, which is equivariant with respect to the action of all points in J that have
finite order. Since G/N is isomorphic to G, we know that the points of finite order are
exactly the rational points in G/N ∼= Tn. Since the rational points are dense in TN , and
the actions on J-spectra are continuous, the map is indeed J-equivariant.

Since every element of a compact Lie group lies in a maximal torus, and in particular
contains points of finite order in every one of its neighborhoods, this argument can be
used in more general settings, as soon as one knows that Condition 1 holds and a property
analogous to 4.4.22 is satisfied:
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Condition 2. Let H be a finite subgroup of a compact Lie group G. There exists a
simplicial free H-set G∗ with an H-equivariant isomorphism

|G∗| ∼= G.

Remark 4.4.24. As we have seen above, the tori Tn satisfy Condition 2 with respect
to all kernels of isogenies. To the knowledge of the authors, the general case when
G is a compact Lie group and H a closed subgroup is unknown. Note that Illman’s
triangulation theorem 1.2.2 constructs an H-equivariant triangulation of the smooth H-
manifold G, but since the usual methods that produce simplicial sets from simplicial
complexes fail for Illmans equivariant simplices ([Ill83, §3]), this is not enough.

Theorem 4.4.25. Let G be a compact Lie group, and N a normal subgroup. Assume for
all subgroups i : K → G containing N , such that N has finite index in K that Condition 1
holds and that G satisfies Condition 2 with respect to K. For an S-cofibrant commutative
orthogonal ring spectrum A and a näıvely cofibrant G-space X, there is an isomorphism
of G/N -spectra

ΛXN
A→ ΦNΛXA.

The isomorphism is natural, and restricts to the diagonal map under the restriction of
the action to any finite subgroup of G/N .

Before we end this section, let us briefly say something about the change of base
rings. Recall that we defined R-model structures for the categories of R-modules for R
a commutative orthogonal ring spectrum. In particular, the generating R-cofibrations
were given by smashing R with the generating S-cofibrations. Recall that the category of
R-modules is symmetric monoidal with respect to the monoidal product ∧R, defined via
the coequalizer diagram 5.1.16, and we defined the R-Loday functor using this product
in 4.3.7. We would like to state a result analogous to Theorem 3.2.16, but there is an
obstruction:

For an arbitrary, or even for an S-cofibrant commutative orthogonal ring spectrum R,
there is a priori no reason why the geometric fixed points of R equipped with the trivial
G-action should be isomorphic to R itself. Note that the sphere spectrum of course has
this property by 3.1.26, since S ∼= F0

S0 . Excluding this case, we still get the following

Theorem 4.4.26. Let G be a compact Lie group, and N a normal subgroup. Assume
for all subgroups i : K → G containing N , such that N has finite index in K that
Condition 1 holds and that G satisfies Condition 2 with respect to K. Let R be an S-
cofibrant orthogonal ring spectrum such that ΦNR ∼= R. There is a natural isomorphism

ΛRXN
A ∼= ΦN(ΛRXA),

if A is an R-cofibrant commutative R-algebra and X a näıvely cofibrant G-space, or if
A is a cofibrant R-module and X is a finite free G-set.
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Proof. For the spectrum case, since L is R-cofibrant, it is isomorphic to R∧K with K an
SI-cellular spectrum. Applying The smash power L∧RX is then isomorphic to R∧K∧X .
Here G acts trivially on R and in the usual way on the smash power of K. Then by
3.2.3 and 4.4.6 the result follows. For the algebra case we can follow the discussion for
R = S above.
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4.5 Homotopical Properties

We finally turn to investigating the homotopy theoretical properties of the Loday functor.
For one, this this will allow us to establish the comparison result to the BCD model. On
the other hand it is very good to know, that the S-model structures and in particular
the induced regular cells are sufficiently well behaved to allow for the standard tools
of equivariant stable homotopy theory to apply, without having to resort to q-cofibrant
replacements.

4.5.1 Homotopy Groups

The main point we want to establish is the characterization of geometric fixed points
for smash powers of 4.5.12. But before we can give precise statements, we have to once
again recall definitions from [MM, V.4], the first one being homotopy groups for OH

E -
spectra, geometric homotopy groups, and several homomorphisms between the different
homotopy groups associated to a G-spectrum. Here H is the maximal G-typical family
of representations. Let as usual

E : 1 // N // G
ǫ // J // 1

be an exact sequence of compact Lie groups.

Definition 4.5.2. Let ν : OJ → OH
E be given on objects by

ν : OJ → OH
E

W 7→ ǫ∗W

and on morphisms by

OJ (V, V
′) → OH

E (ǫ∗V, ǫ∗V ′),

(f, s) 7→ (ǫ∗f, ǫ∗s) = (f, s)

where f : V → V ′ is an isometric embedding and s an element in the orthogonal com-
plement of f(V ).

Recall from 4.4.1 that for a JT -functor X : OE → JT , the G-spectrum FixNX is
given by (FixNX)V = (XV )

N .

Definition 4.5.3. [MM, 4.8] Let Y a OH
E -spectrum and X an orthogonal G-spectrum.

Let H/N = K ⊂ J , with H a subgroup of G containing N .

(i) Define the homotopy groups of Y via

πKq Y :=

{
colimV ∈OH

E
πq(Ω

V N
YV )

K if q ≥ 0

colimRq⊂V ∈OH
E
π0(Ω

V N−Rq
YV )

K if q ≤ 0
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(ii) Define a natural homomorphism

ψ : πK∗ (XN )→ πH∗ (X),

by restricting the defining colimit system of πH∗ (X) to N -fixed V as above, using
that for these

(ΩVXN
V )K ∼= (ΩVXV )

H .

(iii) Define a natural homomorphism

ω : πH∗ (X)→ πK∗ (FixNX),

by sending an element of πHq (X) represented by anH-equivariant map f : Sq∧SV →

XV to the element of πKq (FixNX) represented by theK-equivariant map fN : Sq∧SV
N
→

XN
V for q ≥ 0 and similar for q ≤ 0.

(iv) A morphism of OH
E -spectra is a π∗-isomorphism if it induces isomorphisms on all

homotopy groups πK∗ , a morphism of orthogonal G-spectra is a π∗Fix
N -isomorphism

if it induces isomorphisms on all geometric homotopy groups πK∗ FixN .

Note that ψ is a natural isomorphism if X is a G-Ω-spectrum, in particular we can
use the fixed point spectra of a fibrant approximation of X to calculate the equivariant
homotopy groups of X. This implies the following characterization

Lemma 4.5.4. Let A be a closed family of normal subgroups of G. A morphism f
of G-Ω-spectra is an πA

∗ -isomorphism if and only if FixHf is a non equivariant π∗-
isomorphism for all H ∈ A .

For orthogonal J-spectra Z the homomorphism

ζ : πK∗ (Z) = πK∗ (UνUφZ)→ πK∗ (UφZ)

is an isomorphism by [MM, V.4.10]. This enables us to make the following definition:

Definition 4.5.5. For orthogonal G-spectraX, define the natural homomorphism η∗ : π
K
∗ FixNX →

πK∗ (ΦNX) as the composition

πK∗ FixNX
ηφ // πK∗ (UφPφFix

NX)
(ω◦ψ)−1

// πK∗ (PφFix
NX) = πK∗ (ΦNX),

where ηφ is the unit of the adjoint pair (Pφ,Uφ) from 3.1.23.

The following lemma is the first point where we have to adapt the argument to fit
our more general cells:

Proposition 4.5.6. cf. [MM, V.4.12] The map η∗ : π
K
∗ (FixNX) → πK∗ (ΦNX) is an

isomorphism for (Indreg ∪ F IG)-cellular orthogonal G-spectra X.
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Proof. As in the classical case, because ΦN preserves cofiber sequences, wedges, and
colimits of sequences of h-cofibrations, it suffices to check that η∗ is an isomorphism on
all objects of the form

X := G+∧H(GV (L)
∧H),

with L a genuine OV -cell complex. Note that if N is not a subgroup of H, then FixNX
is trivial, hence there is nothing to prove. Otherwise, as in the proof of Proposition
3.1.34 we get

FixNX = J+ ∧J1 GV⊕H

[
OV⊕H ∧∏

J1

OV
L∧J1

]
,

where J1 = G/H. Writing down the defining colimit systems, we see that η∗ is the map

colim
W∈ǫ∗OJ

colim
UN=W

πq

(
ΩW

[
J+∧J1O

H
E (V ⊕H , U)∧∏

J1

OV
L∧J1

])K

−→ colim
W∈ǫ∗OJ

πq

(
ΩW

[
J+∧J1OJ(V

⊕J1 ,W )∧∏
J1

OV
L∧J1

])K
.

Hence it suffices to prove that

p : hocolim
UN=W

OH
E (V ⊕H , U)→ OJ(V

⊕J1 ,W )

is a ΠJ1OV ⋊ J1-homotopy equivalence, where the map is induced by the restriction to
the N -fixed space V ⊕J1 ⊂ V ⊕H (cf. 3.1.23).
From the definition of OH

E (3.1.22), recall that OH
E (V⊕H , U) = O(V⊕H , U)N . Note that

any N -equivariant isometry has to preserve fixed spaces and isotypical factors. Hence
for W ⊕U ′ ∼= U and V⊕J1⊕V ′ ∼= V⊕H orthogonal decompositions where N acts trivially
on W and U ′ contains no summands with trivial N -action, there is an isomorphism

OH
E (V⊕H , U) ∼= OJ(V

⊕J1 ,W )×O(V ′, U ′)N .

Here O(V ′, U ′) is a sphere bundle over L(V ′, U ′) whose dimension depends linearly on
the dimension of U ′ and the map p is induced from the projection to the first factor. Thus
it suffices to prove that L(V ′, colimU ′)N → ∗ is a ΠJ1OV ⋊ J1-homotopy equivalence.
Since V ′ was the orthogonal complement of V⊕J1 , the ΠJ1OV action is trivial, so [LMS,
II.1.5] gives the desired result.

We continue following [MM, V.4]: Recall the definition of the universal A -space EA

for a closed family of subgroups of G from 1.3.11.

Definition 4.5.7. For N a normal subgroup, let N be the family of subgroups of G
that do not contain N . Let EN be the universal N -space, and let ẼN be the cofiber of
the quotient map EN+ → S0 that collapses EN to the non basepoint. For orthogonal
G-spectra X, the map λ : S0 → ẼN induces a natural map λ : X → X∧ẼN .
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Note that (ẼN )H = S0 if H contains N , and (ẼN )H is contractible otherwise.

Lemma 4.5.8. [MM, V.4.15] For orthogonal G-spectra X, the map

ΦNλ : ΦNX → ΦN (X∧ẼN )

is a natural isomorphism of orthogonal J-spectra.

The following lemma is another point where we need to be careful about the type of
cofibrant objects:

Lemma 4.5.9. cf. [MM, V.4.16] Let K = H/N , with N ⊂ H. For Indreg∪F IG-cellular
orthogonal G-spectra X, the map

ω : πH∗ (X∧ẼN )→ πK∗ (FixN (X∧ẼN ))

is an isomorphism.

Proof. Note that Proposition [LMS, 9.3], which is essential for the proof given in [MM,
4.16] also holds for the weaker assumption of genuine G-cell complexes instead of G-
CW-complexes. In particular there are bijections

[A,B∧ẼN ]G ∼= [AN , B∧ẼN ]G ∼= [AN , B]G

between sets of G-homotopy classes for A any representation sphere and B a level of an
induced regular spectrum, which is a genuine G-cell complex by 3.2.9 and 1.2.4. Hence
as in the classical case, the map

ω : colim
V

πq

[
ΩV (XV ∧ẼN )

]H
→ colim

V
πq

[
ΩV

N
(XV ∧ẼN )N

]K

is a colimit of isomorphisms.

Recall the map γ from Section 3.1.24. Let K = H/N , with N ⊂ H. By [MM,
V.4.11], for an orthogonal Ω-G-spectrum X, the map γ∗ : π

K
∗ (XN ) → πK∗ (ΦNX) is the

composite

πK∗ (XN )
∼= // πH∗ (X)

ω // πK∗ (FixNX)
η∗ // πK∗ (ΦNX).

Finally we can state the main purpose of this excursion, with the classical proof applying
verbatim, using our modified results above:

Proposition 4.5.10. [MM, V.4.17] For Indreg-cellular orthogonal G-spectra X, the
diagram

R(X∧ẼN )N
γ
→ ΦNR(X∧ẼN )

ΦN (ξλ)
← ΦNX (4.5.11)

displays a pair of natural π∗-isomorphisms of orthogonal J-spectra, where R is a fibrant
replacement functor from the classical stable model structure.
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Remark 4.5.12. The significance of this proposition stems from the fact, that there are
alternative definitions for the geometric fixed points of a G-spectrum. Classically, one
would take the leftmost J-spectrum in the zigzag (4.5.11) as the definition. The propo-
sition then tells us that the homotopy type of the geometric fixed points of an Indreg-
cellular G-spectrum calculated in terms of Definition 3.1.24 is “correct”, even without
first applying a q-cofibrant replacement functor. Note that in the spirit of Remark 3.2.10,
we could use the same proofs to extend 4.5.6 and 4.5.9 and hence Proposition 4.5.10 and
Proposition 4.5.14 below to Sreg-cellular spectra. However the added generality makes
the notation in the proofs even more convoluted, and we only need the weaker result.

The importance of this remark stems from the fact that we want to be able to use
the “fundamental cofibration sequence”. It is the following homotopy-cofiber sequence
of (non equivariant) orthogonal spectra:

[R(X∧EN+)]
N // [R(X)]N // [R(X∧ẼN )]N , (4.5.13)

which arises from the defining cofiber sequence of ẼN by smashing with X, fibrant
replacement and passing to categorical fixed points. We saw above, that the homotopy
groups of the right spectrum are closely related to the homotopy groups of the geometric
fixed points of X. Together with Lemma 4.5.4 from above this implies the following
statement:

Proposition 4.5.14. Let A be a family of subgroups of G and let X and Y be Indreg ∪
F IG-cellular. Then for a morphism f : X → Y , the following are equivalent:

(i) The map f is a πA
∗ -isomorphism.

(ii) For all H ∈ A the map ΦHf is a (non equivariant) π∗-isomorphism.

Proof. Note that since Indreg consists of S-cofibrations, X and Y are levelwise genuine G-
hence N -complexes. We compare the maps induced on the homotopy cofiber sequences
for N ∈ A :

[R(X∧EN+)]
N

��

// [R(X)]N

��

// [R(X∧ẼN )]N

��
[R(Y ∧EN+)]

N // [R(Y )]N // [R(Y ∧ẼN )]N

(4.5.15)

We use induction on the size of the family A , which is possible since G is compact
(cf. [tD, 1.25.15]). For the trivial family, the result is true. We claim first, that both
(i) and (ii) imply that the left vertical map is a π∗-isomorphism, for (i) this is trivial
by 2.7.4. For (ii) we use the induction hypothesis which implies that f is an A ∩N -
equivalence. Since N is the family of subgroups not containing N , A ∩ N is the
family NN of all proper subgroups of N . Note that as an N -space, EN is a universal
NN -space. Thus R(X∧EN+) → R(Y ∧EN+) is a levelwise NN equivalence between
genuine NN -complexes, thus an N -homotopy equivalence and the claim follows. Finally
Lemma 4.5.4 and Proposition 4.5.10 finish the proof, since they show that property (i) is
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equivalent to the second vertical map in (4.5.15) being a π∗-isomorphism for all N , and
(ii) being equivalent to the third vertical map in (4.5.15) being a π∗-isomorphism.

This has the following immediate consequences:

Corollary 4.5.16. Let G = Tn be the n-torus and let A be the family of kernels
of isogenies. Let X be a free cofibrant Tn-space. Then the Loday functor ΛX(−)
sends π∗-isomorphisms between S-cofibrant commutative orthogonal ring spectra to πA

∗ -
equivalences of commutative orthogonal Tn-spectra.

Proof. Since the S-model structure on commutative orthogonal ring spectra is topo-
logical, we know that the tensor with a cofibrant space non equivariantly preserves
π∗-isomorphisms between cofibrant commutative S-cofibrations. By Theorem 4.4.23, it
therefore also induces non equivariant π∗-isomorphisms in geometric fixed points with
respect to all subgroups H ∈ A , so Proposition 4.5.14 gives the result.

Similarly for more general compact Lie groups Theorem 4.4.25 gives the following
analog:

Corollary 4.5.17. Let G be a compact Lie group and let A be a closed family of normal
subgroups that is closed under extensions of finite index, such for all inclusions i : H → G
with H ∈ H Condition 1 holds and G satisfies Condition 2 with respect to all H. Let
X be a free cofibrant G-space. Then the Loday functor ΛX(−) sends π∗-isomorphisms
between S-cofibrant commutative orthogonal ring spectra to πA

∗ -equivalences of commu-
tative orthogonal G-spectra.

Remark 4.5.18. Analogous results hold for the cases of mere S-cofibrant spectra and
finite free G-sets X as well as spectra S-cofibrant under S and infinite free G-sets X
(cf. Subsection 4.4.1).

4.5.19 Comparison to the Bökstedt-model

We compare the Loday functor of Section 4.3.7 to the model constructed in Section 4
of [BCD]. Since op. cit. is written in the language of Γ-spaces, respectively simplicial
functors, we cannot do so directly, but instead have to use comparison theorems such as
the ones given in [MMSS, §0] and [SS03, §7]. As mentioned in the introduction to [SS03,
§7] the corresponding comparisons of categories of commutative monoids do not extend
over the whole range of the comparison. We restrict our comparison to the underlying
spectra, respectively the equivariant structure. Since the weak equivalences considered
between commutative monoids are in both contexts created in the underlying category,
this seems satisfactory.
We begin with the non equivariant discussion. Recall the definition of a strong monoidal
Quillen equivalence from [SS03, 3.6]. The discussion in the introduction of [MMSS] and
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[SS03, 7.1] state that there is a diagram of strong monoidal Quillen equivalences

SF

PT

��
WT

U

??__ OT ,

P

��
(4.5.20)

where SF is the category of simplicial functors and WT is the category of continuous
functors from finite CW -complexes to spaces, respectively, and the model structure on
OT is the classical stable using the näıve- or projective model structure on the cate-
gories OV T . The functor T is geometric realization, and the instances of P and U are
prolongation and restriction functors. We displayed the strong monoidal left adjoints as
the top arrow.
Since these Quillen equivalences are not composable as such, we compare the two con-
structions of the Loday functor in WT . However, since it would take us too far to recall
the whole construction from [BCD], we will immediatel reduce our comparison to smash
powers with the help of the following lemma. We denote the Bökstedt version of the
Loday functor used in [BCD] by Λ̂.

Lemma 4.5.21. [BCD, 4.4.4] If A is cofibrant in WT and T is a finite set, then there
is a chain of stable equivalences between Λ̂TA and the T -fold smash product

∧
T A.

In particular the functor Λ̂T models the T -fold derived smash product of A with
itself. Since the Loday functor we defined for orthogonal spectra has the analogous
property, and since by (4.5.20) the homotopy categories of SF and OT are monoidally
equivalent, this could already be seen as a successful comparison. We can say a little bit
more: Recall that the identity functor on OT gave strong monoidal Quillen equivalences
between the absolute q-, positive q- and S-model structures:

OT

id

>>
OT +

id

  

id

~~
OT S.

id

``
(4.5.22)

Since the identity functors are in particular strong monoidal, the standard methods for
(monoidal) Quillen pairs (and [H, 1.3.13, (b)]) give:

Lemma 4.5.23. For A a cofibrant simplicial functor and X a finite set, there is a chain
of natural stable equivalences in WT connecting

PT(A∧X) ≃ P(( cof. U fib. PTA)∧X),

where fib. denotes a functorial fibrant replacement in WT , and cof. denotes a functorial
S-cofibrant replacement in OT .
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The comparison of the equivariant properties is similarly obstructed by the fact that
there seem to be no usable comparison results on model category level between equiv-
ariant orthogonal spectra and equivariant simplicial functors. Recall that prolongation
is a strong symmetric monoidal left Quillen functor from the positive model structure
on symmetric spectra to the category of simplicial functors. Thus, given a commutative
symmetric ring spectrum, we obtain a cofibrant commutative monoid in simplicial func-
tors. In other words, the homotopy type of every commutative ring spectrum can be
represented by a commutative monoid in simplicial functors. We therefore can compare
equivariant homotopy categories, making use of our results on the equivariant structure
of ΛXA surrounding Proposition 4.5.14 and the analogous result [BCD, 5.2.5]:

Lemma 4.5.24. Let G be a finite abelian group, X a free G-simplicial set and A a
commutative monoid in simplicial functors. The homotopy fiber of the map

[Λ̂XA]
G → holim

06=H⊂G

[
Λ̂XH

A
]G/H

(4.5.25)

induced by the restriction maps is connected by a chain of natural maps that are stable
equivalences to the homotopy orbit spectrum [Λ̂XA]hG.

There are two important translations to be made here. The first is identifying the
target of (4.5.25) with the geometric fixed points (defined in terms of ẼN , cf. Re-
mark 4.5.12) as in [HM, 2.1]. The second is the identification of the homotopy fiber
[ΛXA∧EN+]

H of 4.5.13 with the homotopy orbits [ΛXA∧EN+]H in the homotopy cat-
egory via the Adams isomorphism as in [MM, VI.4.6]. Then the two (co-)fiber sequences
in homotopy category exactly say, that ΛXA and Λ̂XA have the same equivariant struc-
ture, i.e., the same homotopy type on all fixed points with respect to (finite) subgroups.

4.6 THH, TC and covering homology

We finish the discussion of smash powers by identifying the structure necessary to define
higher dimensional versions of topological cyclic homology.

4.6.1 The one-dimensional situation

Topological Hochschild Homology

We follow Kro’s approach from [Kr, §5] for the one dimensional theory, and use it as
motivation and guideline for our treatment of the higher analogs in subsection 4.6.18.
Even though smashing over the circle allows non-commutative algebras as input, this
will cease to be true in higher dimensions, and we concern ourselves only with the
commutative case.

We do not try to give more of an overview over the existing theory in other settings
than was already attempted in the introduction, and instead redirect the interested
reader to [Sh] for the case of symmetric spectra, [MSV] for S-algebras in the sense of
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[EKMM] or [Mad] and [DGM] for a general overview over the classical approach and
applications towards TC and K-theory. As we already mentioned in the introduction,
we will use the following simple definition:

Definition 4.6.2. Let A be an S-cofibrant commutative orthogonal ring spectrum. De-
fine the topological Hochschild homology spectrum THH(L) to be the commutative or-
thogonal S1-ring spectrum

THH(L) :=
∧

S1

A = A⊗ S1.

A similar definition is possible for non-cofibrant commutative ring spectra, but for
the definition to have homotopical meaning, some such assumption is necessary. As
usual, we can always precompose with a cofibrant replacement functor for the S-model
structure. However, if we start with a cofibrant spectrum, we want not to cofibrantly
replace again, so we do not put the S-cofibrant replacement in the definition. We note
once more that, contrary to the classical model structure, the cofibrant replacement
takes place in the category of commutative orthogonal ring spectra, so that the tensor
definition still makes sense.
Note that Theorem 4.3.2, together with the standard simplicial model for S1, implies
the following lemma:

Lemma 4.6.3. For a commutative orthogonal ring spectrum A, the topological Hochschild
homology spectrum THH(A) is isomorphic to the geometric realization of the simplicial
commutative ring spectrum given by THH(A)q := A∧q+1, with the simplicial structure
maps given by

di =

{
id∧i ∧µ∧ idq−i−1 for 0 ≤ i < q

(µ∧ id∧q−1) ◦ Tq,1 for i = q

si = id∧i+1 ∧η∧ idq−i

where µ and η are the multiplication respectively unit map of A and Tq,1 is the action of
the shuffle permutation mapping

A∧q+1 = A∧q∧A
Tq,1
−→ A∧A∧q = A∧q+1.

Recall that, for A an orthogonal ring spectrum whose unit S→ A is a q-cofibration
(defined by the left lifting property with respect to all levelwise acyclic fibrations), Kro
[Kr, 5.2.1] defines topological Hochschild homology as an orthogonal spectrum in this
way. In particular, by 4.3.4 we get that Definition 4.6.2 yields a commutative orthogonal
ring spectrum THH(A) whose underlying spectrum is isomorphic to Kro’s.
For a ring spectrum A whose unit S→ A is only a closed inclusion of spectra, Kro further
defines a functor Γ in [Kr, 2.2.13], such that Γ(A)→ A is a map of ring spectra which is
a level acyclic fibration of orthogonal spectra. Denote the cofibrant replacement functor
in the S-model structure for commutative orthogonal ring spectra by E. The following
lemma shows that the homotopy type of the spectrum THH(A) does not depend on
which of the two cofibrant replacements we chose:
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Lemma 4.6.4. For a commutative orthogonal ring spectrum A whose unit S → A is a
closed inclusion of spectra, there is a π∗-isomorphism

THH(Γ(A))→ THH(E(A)).

Proof. Since acyclic S-fibrations of commutative orthogonal ring spectra are in particular
acyclic q-fibrations of underlying spectra, the lifting property of Γ gives a π∗-isomorphism
f : Γ(A) → E(A). We use the simplical spectrum from Lemma 4.6.3 to calculate THH.
Both of the resulting simplicial spectra are h-proper (in the sense of ref to the appendix
where it is defined - has no label now) by the same argument as in the proof of in 4.2.8.
Since both Γ(A) and E(A) are S-cofibrant as spectra, f induces a π∗-isomorphism f∧q

in each simplicial level by the pushout product axiom for the S-model structure. Hence
Proposition 6.1.47 implies, that the induced map on realizations is a π∗-isomorphism.

We also need to know that the equivariant homotopy type agrees, which will be an
immediate consequence of Lemma 4.6.11 below.

Definition 4.6.5. Let G = S1 be the circle and let A be the closed family of finite
(cyclic) subgroups. An morphism of orthogonal S1-spectra is called a cyclotomic π∗-
isomorphism if it is a πA

∗ -isomorphism, i.e., if it induces isomorphisms on πC∗ for all
subgroups C ∈ A .

Definition 4.6.6. For C ∈ A , let ρC : S1 ∼= S1/C be the orientation preserving group
isomorphism.

As usual, ρ∗C denotes the restriction functor from S1/C-equivariant orthogonal spec-
tra to S1-equivariant orthogonal spectra. The following result is similar to Kro’s Theo-
rem 5.2.5:

Theorem 4.6.7. Let A be an S-cofibrant commutative orthogonal ring spectrum, then
the diagonal map of Theorem 4.4.23 gives an isomorphism of S1-equivariant commutative
orthogonal ring spectra

THH(A) ∼= ρ∗CΦ
C THH(A).

For f : A→ B a π∗-isomorphism of S-cofibrant commutative orthogonal ring spectra,

THH(f) : THH(A)→ THH(B)

is a cyclotomic π∗-isomorphism of S1-equivariant commutative orthogonal ring spectra.

Proof. The first part is immediate from Theorem 4.4.23 and the fact that ρ∗
∧
X A

∼=∧
ρ∗X A as in the discussion before 4.4.18. The second part is the one-dimensional case

of Corollary 4.5.16

This exhibits THH(A) as an especially strong example of a cyclotomic spectrum. We
are going to give the explicit definition after the next construction:
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Construction 4.6.8. Let G = S1, and let C, D and E be finite subgroups such that
ρC(D) = E/C. In particular we have that for an S1-space X we have that (XC)E/C =
XE , and hence that (ρ∗C(X

C))D = XE . The same formulas hold for categorical fixed
points of an S1-spectrum L.
In other setups of equivariant stable homotopy theory and cyclotomic specta, one can
sometimes also identify

ρ∗DΦ
Dρ∗CΦ

CL = ρ∗EΦ
EL, (4.6.9)

see for example [HM, Definition 2.2]. However, care needs to be taken when adapting
this to the orthogonal case, since both the classical Definition of the geometric fixed point
functor Φ is different from the one we used here (cf. Remark 4.5.12 and [HM, p.32]), and
there are “spectrification” functors hidden in the classical notation. In our setting, the
equal sign in (4.6.9) is certainly not warranted. However, by Proposition 3.1.46 there is
a natural isomorphism

ρ∗DΦ
Dρ∗CΦ

CL→ ρ∗Dρ
D
E
∗
ΦE/CΦCL,

where ρDE : S1/D → S1/E is the isomorphism ρ−1
D ◦ ρE.

Using that a coend of fixed points maps into the fixed points of the coend one
constructs a natural map

ΦEL→ ΦE/CΦCL.

For induced regular semi-free spectra (3.2.7) this map is an isomorphism via the iden-
tifications of Theorem 3.2.8, hence the same is true for Sreg-cellular (3.2.10) and in
particular q-cofibrant or Indreg-cellular spectra by a cell induction argument.

This allows us to formulate the following definition:

Definition 4.6.10. (cf. [Kr, 5.1.3]) An orthogonal S1-spectrum L is cyclotomic, if for
each finite subgroup C ⊂ S1 there is a π∗-isomorphism

rC : ρ∗CΦ
CL→ L,

such that the diagrams

ρ∗DΦ
Dρ∗CΦ

CL

ρ∗DΦDrC
��

ρ∗EΦ
ELoo

rE

��
ρ∗DΦ

DL
rD // L

commute for all finite subgroups C, D and E such that ρC(D) = E/C. A map of
cyclotomic spectra is a morphism of orthogonal S1-spectra which commutes with the
cyclotomic structure maps rC for all finite C ⊂ S1.

Note that by the naturality of the diagonal map (4.4.14), the functor THH(−) ∼=∧
S1 (−) not only produces cyclotomic spectra, but also maps of cyclotomic spectra from

morphisms between S-cofibrant commutative ring spectra.
The following is a generalization of [Kr, 5.1.5]
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Lemma 4.6.11. Let L and L′ be Sreg-cellular S
1-spectra (e.g., q-cofibrant or Indreg-

cellular). A map f : L→ L′ of cyclotomic spectra is a cyclotomic π∗-isomorphism if and
only if it is a non-equivariant π∗-isomorphism.

Proof. The proof is immediate from Proposition 4.5.14 and the two out of three property
for cyclotomic π∗-isomorphisms.

Note that this looks weaker than [Kr, 5.1.3] on first glance, but Kro suppresses the
cofibrancy hypothesis, and in particular only provides proofs for the q-cofibrant case. As
a corollary we get that the cyclotomic homotopy type of the underlying spectrum of our
version of THH for commutative ring spectra agrees with the one Kro constructs:

Corollary 4.6.12. The non equivariant π∗-isomorphism THH(Γ(A))→ THH(C(A)) in
Lemma 4.6.4 is a cyclotomic π∗-isomorphism.

Topological Cyclic Homology

We finally discuss TC. As in the previous paragraph, we do not try to give an overview
over the existing theory or even recall results, but rather show how to adapt the def-
initions to the setting of orthogonal spectra in order to motivate the approach to the
higher theory. Better places to read about the classical constructions are for example
[BHM], [HM] and again [DGM] and [Mad]. We will again stay close to Kro’s exposition
from [Kr, 5.1].

Definition 4.6.13. (cf. [HM, 4.1]) Let I be the category with objects the natural num-
bers {1, 2, 3, . . .}. The morphisms of I are generated by the Restrictions Rr : rm → m
and the Frobenii F r : mr → m, subject to the following set of relations:

. (4.6.14)R1 = F 1 = idm

RrRs = Rrs

F rF s = F sr

RrF
s = F sRr.

Note that we were careful about the ordering of products mr versus rm in N. This
is of course not of consequence here, but will become important when passing to higher
dimensional analogs.

Construction 4.6.15. A cyclotomic spectrum L defines a functor I → OT by mapping
n ∈ I to the categorical fixed point spectrum LCn , where Cn is the cyclic subgroup with
n elements of S1. The actions of the Frobenius maps are then given by the inclusions of
fixed points

F r : LCmr = (LCm)
Cr
→ LCm ,

whereas the Restriction maps make use of the map γ from Section 3.1:

Rr : L
Crm = (LCr )Cm

γCm

−→ (ΦCrL)Cm
rCr−→ LCm .
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We suppressed several instances of maps ρ from the notation to keep the formulas read-
able. The appropriate relations can then be checked using the definition of cyclotomicity,
but since we will spend more time on these later (4.6.28), we omit the details for now.

Note that since the model structures on OT we discuss are topological in the sense
of 6.1.8, it is in particular simplicial via the Quillen equivalence between spaces and
simplicial sets. Hence there is a concrete model in OT for the homotopy limit (e.g.,
[HirL, 18.1.8]) in the following definition:

Definition 4.6.16. Let L be a cyclotomic spectrum, the topological cyclic homology
spectrum TC(L) is the orthogonal spectrum

TC(L) := holim
n∈I

TCn .

For a commutative orthogonal ring spectrum A, abbreviate TC(THH(A)) as TC(A), and
call TC(A) the topological cyclic homology spectrum of A.

Remark 4.6.17. Note that talking about cyclotomic commutative ring spectra here does
not gain a lot of benefits, even though our construction of THH(A) gives the structure for
free: Since the homotopy limit involves some objectwise fibrant replacement, we can only
hope for TC(L) to have the correct homotopy type if L is at least an Ω-spectrum. Since
we cannot guarantee, that the fibrant replacement functor in the S-model structure
preserves the ΦN , we have to use a q-fibrant replacement functor, which in general
destroys the strict commutativity. By [Kr, 5.1.10], the q-fibrant replacement functor
preserves cyclotomicity, so it seems most natural to use it here (at the price of losing
commutativity). However, the functoriality of the Loday functor

∧
X (A) will allow us to

identify the higher analog of the cyclotomic structure much easier than in the classical
setup, so it is still worthwhile to use it even when dealing with TC and not just THH.

4.6.18 Covering Homology

In this final section, we identify the structure on
∧
G (A), that is used when defining

higher topological cyclic homology or covering homology as in [CDD], respectively [BCD].

We fix a compact Lie group G such that for all kernels K of surjective isogonies of
G Condition 1 holds and G satisfies Condition 2 with respect to K. The main example
we have in mind is G = Tn the n-dimensional torus, with the family A of all kernels of
isogenies, since this is gives the higher analog of topological cyclic homology.

Definition 4.6.19. Let A be an S-cofibrant commutative orthogonal ring spectrum.
Define the iterated topological Hochschild homology spectrum to be the commutative
orthogonal S1-spectrum ∧

Tn

A = A⊗ Tn.

Note that by the defining adjunctions of the categorical tensor, A⊗Tn is isomorphic
to the n-fold iterated application of THH to A, and in particular one could study the
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S1-equivariant structure induced by each of these iterations separately. However the
current setup allows us to investigate much more intricate diagonal phenomena since we
have the whole Tn-equivariant structure available. We begin with a proposed definition
of the higher analog of cyclotomicity mentioned in [CDD, 2.1]:

Definition 4.6.20. Let G and A be as above. A morphism of orthogonal G-spectra is
called a cyclotomic π∗-isomorphism if it is a πA

∗ -isomorphism.

Definition 4.6.21. Let α : G→ G be a surjective isogeny with kernel Lα. Let

φα : G/Lα → G

be the isomorphism sending the class gLα to α(g) and let ρα : G→ G/Lα be its inverse.

Remark 4.6.22. Note that the notation is coherent with Definition 4.6.6, where the
isogeny α of S1 associated to a cyclic subgroup of order n is of course the map induced
by raising a complex number z to the nth-power zn. Since in the one-dimensional case
such (orientation preserving) isogenies and their kernels are in one to one correspondence,
there is no loss of information in the indexing.

Construction 4.6.23. For α and β isogenies we can form their composite α ◦β = αβ and
their kernels Lβ ⊂ Lαβ satisfy

ρβ(Lα) = Lαβ/Lβ.

Hence as in 4.6.8 there is a natural map

ΦLαβA→ ΦLαβ/LβΦLβA, (4.6.24)

which using Proposition 3.1.46 induces a natural map

ρ∗αβΦ
LαβA→ ρ∗αΦ

Lαρ∗βΦ
LβA,

and both of these become isomorphisms for Sreg-cellular G-spectra A.

Definition 4.6.25. A cyclotomic orthogonal G-spectrum is an orthogonal G-spectrum
A, together with cyclotomic π∗-isomorphisms

rα : ρ
∗
αΦ

LαA→ A,

for all isogenies α whose kernel Lα is in A , such that the diagrams

ρ∗αΦ
Lαρ∗βΦ

LβA

ρ∗αΦ
αrβ

��

ρ∗αβΦ
LαβAoo

rαβ

��
ρ∗αΦ

αA
rα // A

commute for all isogenies α and β with Lα, Lβ and Lαβ in A .
A map of cyclotomic spectra is a morphism of orthogonal S1-spectra which commutes
with the cyclotomic structure maps rα.
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One can choose to fix a collection I of isogenies instead of the family A of kernels and
get a similar definition. For example to get a complete analog of the one dimensional
case from Definition 4.6.10, one should restrict to orientation preserving isogenies of
S1. The analog of Theorem 4.6.7 uses our results 4.5.17 and 4.4.25 on the equivariant
structure of the smash powers over more general compact Lie groups:

Proposition 4.6.26. Let A be an S-cofibrant commutative orthogonal ring spectrum
then the underlying G-spectrum of

∧
GA is cyclotomic and

∧
G (−) sends π∗-isomorphisms

to cyclotomic maps that are cyclotomic π∗-isomorphisms.

We want to identify the Restriction and Frobenius maps that are used to define the
covering homology and in particular higher topological cyclic homology (cf. [CDD, 2.2]).
Since the indexing via isogenies and, in particular, the maps ρα complicate the notation
significantly, we start by defining relative versions, postponing the coordinate change
ensued by changing back to G-spectra to Definition 4.6.29:

Definition 4.6.27. Let X be a G-space, let N ⊂ H be normal subgroups of G, and let
ρNH : G/N → G/H be the projection. For A an S-cofibrant commutative orthogonal

ring spectrum, theG/H-spectrum (
∧
X A)

H becomes a G/N -spectrum via the restriction
along ρNH . The Frobenius map FHN is the morphism of G/N -spectra

FHN :
(∧

X
A
)H
→
(∧

X
A
)N

given by the inclusion of fixed points on on each level. The Restriction map RHN is the
natural map of G/H-spectra

RHN :
(∧

X
A
)H
∼=

((∧
X
A
)N)H/N γH/N

−→
(
ΦN
∧

X
A
)H/N

∼=
(∧

XN

A
)H/N

Note that FHN defines a natural transformation (−)H → (−)N . The following is the
first example of a higher (relative) version of the relations (4.6.14):

Proposition 4.6.28. The following diagram is commutative for all S-cofibrant orthog-
onal spectra A and normal subgroups N ⊂ H ⊂ J of G:

(
∧
X A)

J

F J
H

��

RJ
N //
(∧

XN
A
)J/N

F
J/N
H/N

��

(
∧
X A)

H

RH
N

//
(∧

XN
A
)H/N

Proof. We split the diagram into the following:

(
∧
X A)

J ∼= //

F J
H

��

(
(
∧
X A)

N
)J/N γJ/N //

F
J/N
H/N

��

(
ΦN

∧
X A

)J/N ∼= //

F
J/N
H/N

��

(∧
XN

A
)J/N

F
J/N
H/N

��

(
∧
X A)

H
∼=

//
(
(
∧
X A)

N
)H/N

γH/N

//
(
ΦN

∧
X A

)H/N
∼=

//
(∧

XN
A
)H/N
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The two right squares are commutative by the naturality of the Frobenius F
J/N
H/N . Com-

mutativity of the left square can be checked levelwise: Let B be any J spectrum, and
V a representation of J/N/H/N ∼= J/H, then the diagram of inclusions of fixed points
commutes:

(BV )
J

∼= //

��

(
BN
V

)J/N

��

(BV )
H

∼= //
(
BN
V

)H/N

Switching back to the isogeny notation, yields the following:

Definition 4.6.29. Let α and β be isogenies of G as above, and view (
∧
GA)

Lα as a
G-spectrum via ρα. Then define the Frobenius maps Fα as the natural morphism of
G-spectra

Fα := ρ∗β ◦ F
Lαβ

Lβ
◦ φ∗αβ : (

∧

G

A)Lαβ → (
∧

G

A)Lβ ,

and the Restriction maps Rβ as the natural morphism of G-spectra

Rβ := ρ∗α ◦ (ρ
∗
β)
Lα ◦R

Lαβ

Lβ
◦ φ∗αβ : (

∧

G

A)Lαβ → (
∧

G/Lβ

A)Lα ∼= (
∧

G

A)Lα ,

Corollary 4.6.30. The Restriction and Frobenius maps satisfy the following relations:

Fα = id for α invertible,

F βFα = Fαβ,

RβRα = Rβα,

RβF
α = FαRβ .

Proof. For the first one, use that ρNH = ρH ◦ φN . The second one is immediate in the
relative version and the third one uses the isomorphism (4.6.24). The last relation follows
from (4.6.28). Note that even though γ is the identity map between the categorical and
geometric {e}-fixed points, Rα is not usually trivial for α invertible because of the
coordinate changes ρ∗ involved.

For completeness we very briefly repeat the higher analogs of Definitions 4.6.13 and
4.6.16, for more details, see [CDD, 2.3]:
Denote by C be the category with one object and morphisms the isogenies α ∈ I,
respectively with Lα ∈ A .

Definition 4.6.31. Let ArC be the twisted arrow category of C, i.e., the category with
the isogenies as objects and morphisms α→ β given by diagrams

⋆

α

��

γ // ⋆

β
��

⋆ ⋆
δ

oo
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with composition given by horizontal concatenation of diagrams. Note that every such
morphism is represented by the equation α = δ ◦ β ◦ γ and factors as

⋆

α

��

id // ⋆
γ //

βγ
��

⋆

β
��

⋆ ⋆
δ

oo ⋆.
id

oo

Construction 4.6.32. For A an S-cofibrant commutative orthogonal ring spectrum, we
define a functor ArC → GOT , by sending the isogeny α to the categorical fixed point
spectrum (

∧
GA)

Lα , viewed as a G-spectrum via ρ∗α. Morphisms δβ = δ ◦ β ◦ id are sent
to the Frobenii F δ and morphisms βγ = id ◦β ◦ γ to the Restrictions Rγ . Functoriality
is a consequence of the relations from Corollary 4.6.30.

Definition 4.6.33. Let A be an S-cofibrant commutative orthogonal ring spectrum. The
covering homology associated to C is the functor from ArC to commutative orthogonal
G-ring spectra

α 7→ ρ∗α(
∧

G

A)Lα .

As in the the one dimensional case, the associated homotopy limit becomes homotopi-
cally meaningful only after applying a fibrant replacement to

∧
G (A) (cf. Remark 4.6.17).

There is even more structure on
∧
GA. In [CDD, 2.5,3.2], the authors define Ver-

schiebung maps for the general case and higher differentials for the special case of the
p-adic n-torus. Both the definitions and verifications of relations analogous to 4.6.30
rely heavily on a good understanding of the stable equivariant transfer:

Definition 4.6.34. [CDD, 2.4] Let G and I be as above. For α and β isogenies in I,
choose a finite dimensional orthogonal G-representation W and an open G-embedding

i : W ×G/Lβ →W ×G/Lαβ

over the projection ραβ ◦ φβ : G/Lβ → G/Lαβ . Applying the Thom construction to this
embedding yields a G-equivariant map

trα = trαββ : SW∧(G/Lαβ)+ → SW∧(G/Lβ)+

called the transfer, which does not depend on the choice of W or the embedding i up to
stable equivariant homotopy.

Proofs for both the existence and the properties of the transfer maps are spread
throughout the literature, the exposition in the original paper [KP] and its follow-up
[KP78] very helpful, since in particular the existence is treated nicely there, which is
usually omitted in later accounts. The exposition in [LMS, IV] is very thorough. A list of
properties needed for the treatment of covering homology is given in [CDD, Proposition
2.4] and since our notation agrees with the one used in op. cit., we omit further details.
Again we start with a version of the definition of the Verschiebung maps, that omits the
coordinate changes:
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4.6. THH, TC AND COVERING HOMOLOGY

Definition 4.6.35. Let N ⊂ H ⊂ G be a sequence of subgroups and let

trHN : SW∧(G/N)+ → SW∧(G/H)+

be a model for the transfer. Define for an orthogonal G-spectrum B the Verschiebung
map V H

N be the natural stable map terminology needs to be explained: shift seems to
have disappeared: can it come back again? F (?,X) is the cotensor induced by the
transfer on fixed points in the following way

BN ≃ //

V H
N

��

(F (SW , shW B))N

=

��
F (SW , shW B)N

∼=
��

F (SW∧G/N+, shW B)G

(trHN )∗
��

F (SW∧G/H+, shW B)G

∼=
��

BH
≃

// F (SW , shW B)H

The version including the instances of ρ is the following:

Definition 4.6.36. Let α and β be surjective isogenies of G as above, and view (
∧
G )Lα

as a G-spectrum via ρα. Then define the Verschiebung maps Vβ as the natural stable
morphisms of G-spectra

Vα := ρ∗αβ ◦ V
Lαβ

Lβ
◦ φ∗β : (

∧

G

A)Lβ → (
∧

G

A)Lαβ .

Again, there are various relations between the Verschiebung, Frobenius and Restric-
tion maps, and the authors of [CDD] develop the theory nicely. Since their methods are
sufficiently general to be applied to our setting, for instance, essentially the same proof
as in [CDD] gives that

Proposition 4.6.37. Restriction and Verschiebung commute, that is, for α and β in
I, VγRα = RαVγ in the homotopy category HoGOT .

We close our exposition by mentioning that for the case of G a (p-adic) torus, there
is a fourth kind of structure maps, the higher differentials, which are defined using a
stable splitting of S1

+ ≃ S
0 ∨ S1, which can again be defined in terms of the equivariant

transfer above (cf. [CDD, 3]). An exhaustive list of relations between these can be found
in [CDD, 3.22], but it would go too far to reformulate them here, since the indexing
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alone is intricate enough to require extensive study. However, we have already seen
above that the setting of orthogonal spectra, the smash power 4.3.9 is well equipped for
the study of covering homology and the higher structure surrounding it, while having
the advantage of being in some ways more concrete than the version using the Bökstedt
approach.
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Chapter 5

Category Theory

5.1 Some Category Theory

5.1.1 Categories

We recall some of the basics of category theory. We assume that the reader is familiar
with the notions in this chapter, but the explicit definitions allow for an easier transition
to monoidal and enriched categories in the next sections. The canonical reference and
source for these definitions is Chapter I of [McL], though we have allowed ourselves some
reformulations for the sake of uniformity when switching to the enriched setting.

Example 5.1.2. For any functor, there is an identity natural transformation, and com-
position of natural transformation is associative. Therefore the set of functors C → D,
denoted by Cat(C,D) is itself a category with morphisms the natural transformations.
A category arising in this way this is called functor category.

5.1.3 Monoidal Categories

Again we repeat the basic definitions as far as they will be used in the enriched setting
in the next section. Again the definitions are only slight reformulations of the ones in
[McL, VII], adapted to our needs.

Definition 5.1.4. A monoidal category consists of the following data:

• An underlying category C.

• A bifunctor (i.e., a functor out of the product category) ⊗ : C×C→ C, called
the monoidal product.

• A designated object I of C, called the identity object.

• Natural isomorphisms λ : (I⊗ id)→ id and ρ(id⊗I)→ id expressing that I is
a left and right identity object for the monoidal product.

• A natural isomorphism a : [(−⊗−)⊗−]→ [−⊗ (−⊗−)] expressing that the
monoidal product is associative.

The natural transformations have to satisfy the following two coherence conditions:
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• For all objects A and B of C, the following diagram commutes:

(A⊗ I)⊗B
aA,I,B //

ρA⊗idB &&◆◆
◆◆

◆◆
◆◆

◆◆
A⊗ (I⊗B)

idA ⊗λBxx♣♣♣
♣♣
♣♣
♣♣
♣

A⊗B

• For all objects A, B, C and D of C, the following pentagon commutes:

(A ⊗ (B ⊗ C)) ⊗ D

aA,B⊗C,D

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱

((A ⊗ B) ⊗ C) ⊗ D

aA,B,C⊗idD

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

aA⊗B,C,D

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

A ⊗ ((B ⊗ C) ⊗ D)

idA⊗aB,C,D

xxqqq
qq
qq
qq
qq
q

(A ⊗ B) ⊗ (C ⊗ D)
aA,B,C⊗D

//A ⊗ (B ⊗ (C ⊗ D))

Instead of the tupel (C,⊗, I, λ, ρ, a), we often just refer to the monoidal category as
(C,⊗, I) or even just to C, when it is clear which monoidal structure is meant.

Definition 5.1.5. A lax monoidal functor F : (C,⊗, I) → (D,×, J) between monoidal
categories consists of the following data:

• An underlying functor F : C→ D.

• A natural transformation µ : [F ×F ]→ F(−⊗−).

• A designated morphism ι : J→ F(I) in D.

These have to satisfy the following coherence conditions:

• For all objects A, B and C of C, the following diagram commutes in D:

(F(A)×F(B))×F(C)

µA,B×id

��

aD // F(A)× (F(B)×F(C))

id×µB,C

��
F(A⊗B)×F(C)

µA⊗B,C

��

F(A)× (F(B ⊗ C))

µA,B⊗C

��
F((A⊗B)⊗ C)

F(aC)
// F(A⊗ (B ⊗ C))

• For every object A of C, the following diagrams commute in D:

F(A)× J
ρD //

id×ιD
��

F(A) J×F(A)
λD //

ιD×id
��

F(A)

F(A) ×F(I) µA,I

// F(A⊗ I)

F(ρC)

OO

F(I)×F(A) µI,A
// F(I ×A)

F(λC)

OO
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A lax monoidal functor (F , µ, ι) is strong monoidal if µ and ι are (natural) isomorphisms,
it is strict monoidal if they are the identity (transformation).
Again we often only refer to F as the monoidal functor, suppressing µ and ι in the
notation, where they are not critical to the discussion.

Definition 5.1.6. Amonoidal category (C,⊗, I) is called cartesian, if ⊗ is the categorical
product and I is a terminal object.

Some monoidal categories have additional extra structure:

Definition 5.1.7. A monoidal category (C,⊗, I) is called closed, if for all objects A of C,
the functor (−⊗A) : C→ C has a right adjoint ([McL, IV.1]), denoted by Hom(A,−).
Objects of C the form Hom(A,B) are called internal Hom objects, the counits of these
adjunctions are usually called the evaluations Hom(A,B)⊗A→ B.

Lemma 5.1.8. If (C,⊗, I) is closed monoidal, then there is a natural isomorphism:

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)).

Construction 5.1.9. Note that for any locally small monoidal category (C,⊗, I), we get
a lax monoidal functor C(I,−) : C → Set, where the category of sets has the cartesian
monoidal structure. The unit morphism ι sends the terminal one-point set to the identity
morphism of I, whereas the natural transformation

µ : C(I, A) × C(I, B)
⊗
−→ C(I⊗ I, A⊗B) ∼= C(I, A⊗B),

uses the isomorphism λI : I⊗ I→ I. This functor assigns to objects of C their underlying
sets.
If C is additionally closed and A and B are objects of C, then the adjunction

(−⊗A) : C ⇄ C : Hom(A,−)

gives the following natural isomorphism:

C(I⊗A,B) ∼= C(I,Hom(A,B))

Since I⊗A is isomorphic to A via λA, this implies that

C(A,B) ∼= C(I,Hom(A,B)),

i.e., the underlying set of the internal Hom object Hom(A,B) is indeed naturally
isomorphic to the morphism set C(A,B).
Considerations in this spirit lead to the study of enriched categories. We will discuss
these further in Section 5.2.

For any monoidal category, there are categories ofmonoids and (left or right)modules
over such. Definitions can for example be found in [McL, VII.3,4], and will be omitted
here.
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5.1.10 Symmetric Monoidal Categories

We repeat more of the definitions from [McL, XI], adapted to our notation.

Definition 5.1.11. A symmetric monoidal category is a monoidal category (C,⊗, I, λ, ρ, a),
together with a natural isomorphism τ

τ : ⊗ → ⊗ ◦ twist,

where twist is the bifunctor that permutes the two inputs.
This data has to satisfy additional coherence conditions:

• The composition of τ with itself is the identity, i.e.,

τB,A ◦ τA,B = idA⊗B,

for all objects A and B of C.

• Compatibility with the unit, i.e.,

ρ = λ ◦ τ−,I.

• For all objects A, B, and C of C, the following hexagon commutes:

(A⊗B)⊗ C
a //

τ⊗idC
��

A⊗ (B ⊗C)
τ // (B ⊗ C)⊗A

a

��
(B ⊗A)⊗ C a

// B ⊗ (A⊗C)
idB ⊗τ

// B ⊗ (C ⊗A)

Example 5.1.12. All cartesian or cocartesian monoidal categories are symmetric, mak-
ing use of the universal properties of (co-) products and the projections to respectively
inclusions of coproduct factors.

Since the following definition is widely used, but is only implicit in [McL], we give a
few more details:

Definition 5.1.13. A commutative monoid in a symmetric monoidal category (C,⊗, I, τ)
consists of the following data:

• An object M of C.

• A morphism η : I→M in C, called the unit of M .

• A morphism µ :M ⊗M →M in C, called the multiplication of M .

Such that the following diagrams are commutative:
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• unit:

I⊗M
η⊗idM //

λ %%▲▲
▲▲

▲▲
▲▲

▲▲
▲

M ⊗M

µ

��

M ⊗ I
idM ⊗ηoo

ρ
yyrrr

rr
rr
rr
rr

M

• associativity:

(M ⊗M)⊗M

µ⊗idM
��

a //M ⊗ (M ⊗M)
idM ⊗µ//M ⊗M

µ

��
M ⊗M µ

//M

• commutativity:

M ⊗M

µ
$$■

■■
■■

■■
■■

τ //M ⊗M

µ
zz✉✉
✉✉
✉✉
✉✉
✉

M

Again we can define categories of commutative monoids and modules over such as
in the non-symmetric case. We work extensively with these in the case of C being the
category OT of orthogonal spectra. The following lemmas are well known, but it seems
hard to find explicit references:

Lemma 5.1.14. Let M be a commutative monoid, then the categories of leftM -modules
and right M -modules are isomorphic.

Proof. For V a right M module with action map ν : V ⊗M → V , define a left module
structure on V in the following way:

M ⊗ V
τ //

ν′ &&▲▲
▲▲

▲▲
▲▲

▲▲
▲

V ⊗M

ν
��
V

There are coherence diagrams to be checked:

V ⊗ I

��

η // V ⊗M

��

##●
●●

●●
●●

●●

V

ρ−1
<<②②②②②②②②②

λ−1 ""❋
❋❋

❋❋
❋❋

❋ V

I⊗ V η
//M ⊗ V

;;✇✇✇✇✇✇✇✇✇

The left triangle commutes by the unit axiom for the symmetric monoidal structure, the
middle square because the twist isomorphism is natural. Hence the lower composite is
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the identity since the upper one was. For associativity of the new multiplication map,
check commutativity of the outermost two ways around the following diagram. We omit
the categorical associativity isomorphisms, hence brackets, from the notation.

M1 ⊗ V

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

M1 ⊗ V ⊗ M2

ν

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢ // V ⊗ M2 ⊗ M1

µ

��

ν // V ⊗ M1

ν

��

M1 ⊗ M2 ⊗ V //

µ

��

66♥♥♥♥♥♥♥♥♥♥♥♥
V ⊗ M1 ⊗ M2

66♥♥♥♥♥♥♥♥♥♥♥♥

((PP
PP

PP
PP

PP
PP

M ⊗ V // V ⊗ M
ν

// V

Here the center triangle commutes because M was commutative, and the lower right
square does so because V was a right M -module. The center parallelogram is an in-
stance of the hexagon coherence. The other subdiagrams both commute because of the
naturality of the twist isomorphism.
An analogous argument gives a functor from left to right M -modules, and they are
obviously inverses to each other.

Lemma 5.1.15. Let M be a commutative monoid in the closed symmetric monoidal
category (C,⊗, I, τ). Assume that C has equalizers and coequalizers. Then the category
of (right) M -modules inherits a closed symmetric monoidal structure.

Proof. For M -modules V and W define the monoidal product V ⊗M W of as the co-
equalizer

V ⊗M ⊗W ⇒ V ⊗W → V ⊗M W, (5.1.16)

where one of the arrows uses the action map on V , and the other the action on W
precomposed with the twist V ⊗ τM,W . The internal Hom object HomM (V,W ) is the
equalizer

HomM (V,W )→ Hom(V,W ) ⇒ Hom(V ⊗M,W ),

where one of the arrows is induced by the action map of V , and the other one is induced
by the adjoint of the action map of W , using the isomorphism Hom(V ⊗ M,W ) ∼=
Hom(V,Hom(M,W )) (cf. 5.1.8). Checking coherence diagrams is then done using the
universal properties of (co-)equalizers as well as the corresponding diagrams in C together
with the same isomorphism 5.1.8.

Lemma 5.1.17. Let (C,⊗, I) be a symmetric monoidal category. Then ⊗ is the coprod-
uct in the category of commutative monoids in C.

Proof. The monoidal product of two commutative monoids M and N is again a com-
mutative monoid using the unit map

η : I
λ−1
−→ I⊗ I

ηM⊗ηN−→ M ⊗N,
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and the multiplication

µ :M ⊗N ⊗M ⊗N
id⊗τ⊗id
−→ M ⊗M ⊗N ⊗N

µM⊗µN−→ M ⊗N.

Then given maps of commutative monoids M → C and N → C, we get a map

M ⊗N → C ⊗ C
µC−→ C.

On the other hand given a map of commutative monoids M ⊗N → C, precomposition
with the units of N and M , respectively, yields maps M → C and N → C. These two
constructions are obviously inverse to each other, hence M ⊗ N satisfies the universal
property of the coproduct ([McL, III.3]).

We will discuss monoids, (commutative) algebras and modules over such in various
(symmetric) monoidal categories (C,⊗, I). Often we use that the forgetful functors to C

have left adjoints, and hence we recall how these adjoints are formed in general:

Lemma 5.1.18. Let R be a monoid in (C,⊗, I),

• the functor −⊗R is left adjoint to the forgetful functor from C to right R-modules.

• the functor R⊗− is left adjoint to the forgetful functor from C to left R-modules.

In both cases the action of R simply uses the multiplication R. If R is commutative, and
the category of R-modules has coproducts, then

• the functor A :=
∐
i∈N(−)

⊗Ri is left adjoint to the forgetful functor from R-algebras
to R-modules.

If the category of R modules is cocomplete, then

• the functor E :=
∐
i∈N[(−)

⊗Ri]Σi is left adjoint to the forgetful functor from com-
mutative R-algebras to R-modules.

In both cases multiplication is by simply concatenating coproduct factors and the unit
map is the inclusion of R as the factor indexed by 0.

Here (−)⊗Ri denotes the i-fold tensor power over R. Then [−]Σi is taking the orbits
of the action of Σi that permutes tensor factors, i.e., the action induces a functor from
Σi viewed as a one-object category (cf. 5.2.17) and [−]Σi denotes its colimit. We could
of course have given each of these functor in terms of the monads that the unit of the
adjunction induces on C.

Let Fin be the category of finite sets, and consider the skeleton Fin ⊆ Fin consisting
of the finite sets n = {1, 2, . . . , n} for n ∈ N. Disjoint union is modelled permutatively by
n+m = {1, . . . , n+m}. Choose, once and for all, an inverse strongly symmetric monoidal
equivalence Fin→ Fin (i.e., choose an ordering for each finite set; the associated natural
isomorphisms are forced). For convenience we choose this equivalence so that finite sets
of integers retain their order.
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Let Σ ⊆ I ⊆ Fin be the permutative subcategories of respectively bijections and
injections. Note that any injection φ : n→m can uniquely be factored as the inclusion
n ⊆m composed with a bijection m ∼= m.

Let C be a symmetric monoidal category with monoidal product ⊗ and neutral
element e. Let e/C be the category of objects under the neutral element e and ComC

the category of symmetric monoids in C.

Coherence for C amounts to saying that the assignment

(n, c) 7→ c⊗n = (. . . (c⊗ c)⊗ . . . c)⊗ c

(n copies of c with parentheses moved as far left as possible) defines functors that are
strong symmetric monoidal in each variable

Σ× C→ C, I× e/C→ e/C, Fin ×ComC → ComC.

Since this is central to our discussion we spell out some of the details, but for clarity
restrict ourselves to a permutative C (so that the units and associators are identities). If
σ ∈ Σn is a bijection, the commutator associated with σ is an isomorphism c⊗σ : c⊗n ∼=
c⊗n. This defines the first functor, which is strong symmetric monoidal in each factor
via c⊗(m+n) = c⊗m ⊗ c⊗n and the shuffle commutator (c ⊗ d)⊗n ∼= c⊗n ⊗ d⊗n. For the
second functor, the object (n, f : e → c) is sent to the composite f⊗n : e = e⊗n → c⊗n.
On morphisms in I we only lack the inclusions n ⊆ m which is sent to the morphism
id⊗n⊗f⊗{1,...,m−n} : c⊗n = cn ⊗ e⊗{1,...,m−n} → cn ⊗ c⊗{1,...,m−n} = cm under e.

Using our chosen equivalence Fin → Fin these functors extend to functors on the
bijections/injections in Fin.

If c is a symmetric monoid in C with structure maps µ : c ⊗ c → c and e → c, we
define a morphism c⊗f : c⊗m → c⊗n for any function f : m→ n ∈ Fin as the composite

c⊗m ∼= c⊗f
−1(1) ⊗ · · · ⊗ c⊗f

−1(n) → c⊗n,

where the isomorphism is the commutator and the second map is the tensor of the
multiplications µ : c⊗f

−1(j) → c (unit if f−1(j) is empty). Again, we extend to Fin.

Since small colimits can be chosen functorially, any category with finite coproducts
is tensored over Fin. In particular, the coproduct in ComC is ⊗, which can easily cause
a conflict of notation. Hence we retain the notation c⊗S (or

⊗
S c) for this coproduct

indexed over the finite set S, and let this be our choice of tensor.

In our applications, C is cocomplete and closed. Then we can extend Fin×ComC →
ComC to a functor (strong monoidal in each variable)

Set×ComC → ComC, S 7→
⊗

S

c = colim
T⊆S

⊗

T

c,

where T varies over the finite subsets of the set S, which agrees with the cotesor of
ComC over Set.
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5.2 Enriched Category Theory

5.2.1 Enriched Categories

Let (V,⊗, I) be a monoidal category.

Definition 5.2.2. A category C enriched over V, or a V-category [K, 1.2] amounts to
the following structure:

• A class Ob(C) of objects of C.

• For every two objects A and B of C an object C(A,B) of V called the Hom-
object of A and B.

• For every object A of C, a distinguished morphism idA : I → C(A,A) in V,
called the identity of A.

• For every three objects A, B and C of C a morphism γ : C(B,C)⊗C(A,B)→
C(A,C), called the composition in C.

This data has to satisfy the following two conditions:

• For all objects A,B,C and D of C, the following diagram commutes in V:

(C(C,D) ⊗ C(B,C)) ⊗ C(A,B)
a //

γ⊗id

��

C(C,D) ⊗ (C(B,C) ⊗ C(A,B))

id⊗γ

��
C(B,D) ⊗ C(A,B)

γ

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙
C(C,D) ⊗ C(A,C)

γ

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

C(A,D)

• For all objects A and B in C, the following diagram commutes:

I⊗ C(A,B)

idB ⊗ id
��

λ

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

C(A,B)⊗ I

id⊗ idA
��

ρ

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

C(B,B)⊗ C(A,B) γ
// C(A,B) C(A,B)⊗ C(A,A)γ

oo

Example 5.2.3. Note that the usual notion of a category generalizes to this context.
One checks easily that those are the same as categories enriched over the cartesian
monoidal category Set of sets.

Example 5.2.4. The trivial V-category ⋆ has one object C, and the morphism object
⋆(C,C) = I.

Definition 5.2.5. A functor enriched over V from D to C consists of the following data:

• A function F : Ob(D)→ Ob(C).
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• For each object A and B of D, a morphism FA,B : D(A,B)→ C(F(A),F (B))
in V.

These have to satisfy the following coherence conditions:

• (identity) For all objects A of D the following diagram commutes in V:

D(A,A)

FA,A

��

I

idF(A) &&▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

idA

88rrrrrrrrrrrr

C(F(A),F(A))

• (composition) For all objects A, B and C of D the following diagram com-
mutes in V:

D(B,C)⊗D(A,B)
γ //

F ⊗F
��

D(A,C)

F
��

C(F(B),F(C))⊗ C(F(A),F(B)) γ
// C(F(A),F (C))

Definition 5.2.6. For two functors F ,G : D → C enriched over V, an enriched natural
transformation α : F → G consists of morphisms I→ C(F(A),G(A)) in V for all objects
A of D, such that the following coherence diagrams commute in V for all objects A and
B of D:

I⊗D(A,B)
αB⊗F // C(F(B),G(B))⊗ C(F(A),F(B))

γ

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

D(A,B)

λ−1
77♣♣♣♣♣♣♣♣♣♣♣

ρ−1 ''◆◆
◆◆

◆◆
◆◆

◆◆
◆

C(F(A),G(B))

D(A,B) ⊗ I
G ⊗αA

// C(G(A),G(B))⊗ C(F(A),G(A))

γ

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

(5.2.7)

Remark 5.2.8. This definition gives the class [D,C]0(F ,G) of functors enriched over V

the structure of a category (one checks that there is an identity transformation and that
composition of natural transformations is associative). This makes the category V-Cat
of V-enriched categories and V-enriched functors into a 2-category, i.e., into a category
enriched over Cat.

Remark 5.2.9. Under more assumptions, one can also define a V-enriched functor cat-
egory [D,C]. Let V be closed and complete and D be equivalent to a small category.
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Then for two enriched functors F and G, the following end exists and forms the morphism
V-space [D,C](F ,G):

∫

d∈D

C(F(d),G(d))→
∏

d∈D

C(F(d),G(d)) ⇒
∏

d,d′∈D

Hom(D(d, d′),C(F (d),G(d′))).

As indicated it can be expressed as the equalizer along two maps adjoint to the two
ways around diagram (5.2.7) above. Composition and identities are then inherited from
C (cf. [K, 2.1]).

Construction 5.2.10. Note that if we have a lax monoidal functor (M, µ, ι) : (V,⊗, I) →
(W,⊠, J), any category C enriched over V gives a category enriched over W, by just
applyingM to all the Hom objects. The identity morphisms are defined as the composites

id′A : J
ι
→ M[I]

M[idA]
−→ M[C(A,A)].

The composition is given by

γ′ : M[C(B,C)]⊠M[C(A,B)]
µ
→M[C(B,C)⊗ C(A,B)]

M[γ]
−→M[C(A,C)].

One checks that the coherence diagrams still commute.
Also, in the same way V-enriched functors give W-enriched functors and V-enriched
natural transformations give W-enriched natural transformations via the lax monoidal
functor M. (One checks that M(F) still takes identities to identities and respects com-
position, and that the appropriate diagram for Mα still commutes using the structure
maps of M).

Remark 5.2.11. In the spirit of the above Remark 5.2.8, one can check that M induces a
Cat-enriched, or 2-functorM : V-Cat→W-Cat, i.e., that M takes the identity V-enriched
natural transformations to the identity W-enriched natural transformations, and that it
respects composition of enriched natural transformations.

Example 5.2.12. In this way, if V is a locally small monoidal category, every category
enriched over V has a canonical underlying “normal” category, i.e., one enriched over
Set, with the same objects. The morphism sets are obtained by using the monoidal
functor V(I,−) from 5.1.9 in the way described above.

Remark 5.2.13. For D and C categories enriched over V as in 5.2.9, the underlying
underlying Set-category of the functor V-category [D,C] is [D,C]0, if the former exists.

Example 5.2.14. Let (V0,⊗, I) be a closed monoidal category. Then there is a V0-
category V that restricts to V0 along the monoidal functor V(I,−).
Define V as having the same objects as V0 and for morphism objects set V(A,B) =
Hom(A,B). Then composition is adjoint to iterated evaluation, and the axioms for an
enriched category trivially hold. When discussing a specific category V0, we will often
identify V and V0 and therefore say that V is enriched over itself, but there are also
important cases where we explicitly keep the notation separate (e.g., 5.2.20).
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Remark 5.2.15. When viewing V as enriched over itself in this sense, Lemma 5.1.8 can be
reformulated to state that the adjunctions between −⊗A and Hom(A,−) are actually
enriched, i.e., imply natural isomorphisms even on morphism objects.

Example 5.2.16. Let V = Top the cartesian monoidal category of topological spaces.
Then a category C enriched over Top is a usual category, with a choice of topology on
each morphism set, such that the composition law gives continuous maps. More impor-
tant for us is the closed monoidal variation U , containing only the compactly generated
weak Hausdorff spaces.
For another example let V be the category T of based compactly generated weak Haus-
dorff spaces, i.e., objects of U with a distinguished basepoint. We will usually drop the
extra adjectives and just call these spaces.
Since T has products and coproducts, it is monoidal in several ways: with the cartesian
product × and unit a one point space {∗}, or, more importantly for us, with respect
to the smash product ∧ and unit S0, the 0-sphere. The latter choice makes T closed
monoidal, and we will denote the internal Hom spaces merely as T (−,−) in agreement
with 5.2.14. The identity functor (T ,∧, S0) → (T ,×, {∗}) is lax monoidal, just as the
functor T → U that forgets the basepoints. The monoidal structure maps are given by
the projections X × Y → X∧Y and the inclusion of {∗} as the non-basepoint of S0.
These functors give us a canonical way to view a category enriched over (T ,∧, S0) as
one enriched over (T ,×, {∗}), or U . The forgetful functor from U to Set preserves prod-
ucts and is therefore strict monoidal, indeed it is isomorphic to the functor described in
5.1.9. Hence a category enriched over either monoidal structure on T (or U) is a cat-
egory. In the other directions, including sets as discrete topological spaces and adding
disjoint basepoints to spaces in U give left adjoints to the forgetful functors and are also
(strong) monoidal. Hence together with 5.2.14 we can view U and T as enriched over
either themselves or each other. Generally, categories enriched over any of the above are
called topological categories. Enriched functors between both Top- U - and T -categories
are usually called the continuous functors.

Definition 5.2.17. For G a group, there is a category G associated to G. It consists of
one object ⋆, and the morphism set G(⋆, ⋆) is given as the group G. The neutral element
of the group is the identity morphism and the group multiplication gives composition of
morphisms. Often we use the group G and its associated category synonymously.

If G is a topological group, its associated category is canonically a topological cate-
gory. If G is in U , its associated category is canonically enriched over U , and adding a
disjoint basepoint, enriched over T .

Definition 5.2.18. We denote the category of functors G→ Set and natural transfor-
mations between them by GSet instead of [G,Set]0, its objects are called G-sets. Note
that a G-set is the same as a set with a (left) action of G, and a morphism of G-sets is
a G-equivariant map.
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Just like Set, the category GSet is a cartesian monoidal category with respect to
the usual cartesian product of sets, which is given the diagonal G-action. The unit
object is the trivial G-set consisting of only one point. Note that there are two obvious
monoidal functors GSet→ Set. One is the forgetful functor, which is obviously product
preserving, but this is not the functor described in 5.1.9. In fact, GSet(⋆,X) assigns to
a G-set X its set of G-fixed points XG, and this gives the second monoidal functor. We
distinguish this in language by saying X is a set, but has XG as its underlying set (of
G-fixed points).

Definition 5.2.19. Let G be a group, a G-category is a category enriched over GSet.
We call the elements of the morphism G-sets morphisms, whereas the elements of the
underlying G-fixed point sets are called G-maps. As above, every G-category is also a
category, and has an underlying G-fixed category.
A G-functor F : D → C between G-categories is an enriched functor of enriched cate-
gories, i.e., the induced maps on morphism G-sets

F : D(X,Y )→ C(FX,FY )

have to be G-equivariant.
Two types of natural transformations are important for us: A natural G-transformation
α : F → F ′ between two G-functors, is an enriched natural transformation of enriched
functors, i.e., it consists of a G-map αX ∈ C(FX,F ′X)G for every object X of D such
that the diagrams

FX

αX

��

Ff // FY

αY

��
F ′X

F ′f
// F ′Y

,

commute in C for all f ∈ D(X,Y ). These are the morphisms in the functor category
[D,C]0.
On the other hand, there are the natural tranformations, given as collections of maps
αX ∈ C(FX,F ′X). On the set of these transformations G again acts by conjugation.
Then as indicated in 5.2.13, the G-natural transformations are exactly the G-fixed nat-
ural transformations, so that the functor G-category [D,C] has the functor category
[D,C]0 as its underlying (G-fixed) category.

The following combination of the above definitions will be important in our studies
of equivariant orthogonal spectra. Let G be a (compactly generated weak Hausdorff)
topological group, respectively the associated one object T -category with morphism
space G+

Definition 5.2.20. The category of G-spaces GT , consists of functors G → T and
natural transformations between them. In particular, objects of GT are spaces with a
(left) action of G and morphisms are G-equivariant continuous maps.
Giving smash products the diagonal G-action, GT inherits a closed symmetric monoidal
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structure from T . Again this allows us to view GT as enriched over itself, and we shall
use the notation TG for the ensuing enriched category (5.2.14), as well as TG(−,−) for
the internal Hom-functor of GT . Then TG has G-spaces as objects, and morphisms are
(not necessarily G-equivariant) continuous maps.

Definition 5.2.21. A category CG is called a topological G-category if it is enriched over
GT . Such a CG has a G-fixed category GC that is obtained by applying the fixed point
functor to the morphism G-spaces.
The appropriate functors enriched over GT are called continuous G-functors. The appro-
priate enriched natural transformations are called continuous natural G-transformations.
([MM, p. 27] calls these natural G-maps between functors.) We will often drop the extra
adjective “continuous” in the future.

Remark 5.2.22. Note that the fixed point functor (−)G : GT → T has a left adjoint
giving a space the trivial G-action. As (−)G, this preserves (smash-) products and is
therefore strict monoidal.

Monoidal functors starting in GT allow us to transport enrichments as in 5.2.10.
Transportation along functors in the commutative diagram

T // U // Set

forget.

OO

(−)G

��

GT

OO

//

��

GU

OO

//

��

GSet

OO

��
T // U // Set,

(5.2.23)

as well as their left adjoints, and even variations only using subgroups of G (1.1.2)appears
at various points when doing equivariant homotopy theory.

Example 5.2.24. As it is defined, the GT -category TG has the underlying G-fixed
T -category GT , which is closed symmetric monoidal. Also, TG is closed symmetric
monoidal itself, when viewing it as a mere category using the upper way through diagram
5.2.23, using the same smash product and internal hom functor as in T . One choice of
internal Hom-functor for TG is TG(−,−), and we agree to use this choice.

5.2.25 Tensors and Cotensors

Detailed treatment of the concepts of (indexed) limits and colimits in V-enriched cate-
gories can be found in Chapter 3 of [K]. We will mainly be concerned with the special
case of tensors and cotensors, and for vonvenience we repeat the definition.

Definition 5.2.26. Let C be enriched over the closed symmetric monoidal category V.
Let V be an object of V and A an object of C. Then their tensor product V ⊗ A is an
object of C, such that for objects B in C, there is a V-natural isomorphism:

C(V ⊗A,B) ∼= Hom(V,C(A,B)),
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where Hom denotes the internal Hom-object in V.
Their cotensor product C(V,A) is an object of C, such that again for objects B in C,
there is a V-natural isomorphism:

C(B,C(V,A)) ∼= Hom(V,C(B,A)).

If all such (co-)tensor products exist we call C (co-)tensored. If we consider C as enriched
over different monoidal categories, we clarify the one used for (co-)tensors by saying it
is (co-)tensored over V.

Remark 5.2.27. Note that for V = Set, being tensored and cotensored over Set is equiv-
alent to having all small copowers

∐
X
A. Dually, being cotensored over Set is equivalent

to having all small powers
∏
X
A.

Example 5.2.28. Considering the closed symmetric monoidal category V as enriched
over itself (cf. Example 5.2.14), it is both tensored and cotensored over itself, by the
defining adjunction of the internal Hom-space 5.1.7.

Example 5.2.29. As mentioned in Remark 5.2.24, the category TG is enriched over
GT , but also over itself, i.e., Hom(X,Y ) = TG(X,Y ). This immediately implies that
TG is both tensored and cotensored over both itself and GT , where both are displayed
by the same natural isomorphisms, considered either in GT or TG:

TG(D,TG(A,B)) ∼= TG(D∧A,B) ∼= TG(A,TG(D,B)).

Since TG has GT as its underlying G-fixed category, this implies natural isomorphisms
in T :

GT (S,TG(A,B)) ∼= GT (S∧A,B) ∼= GT (A,TG(S,B)).

For S any object of T , i.e., with trivial G-action, this reduces to:

T (S,GT (A,B)) ∼= GT (S∧A,B) ∼= GT (A,TG(S,B)),

which shows that GT is tensored and cotensored over T .

The following construction is important for the compatibility of an enrichment and
the model structures on the involved categories, and also appears prominently in a lot
of our constructions of cellular filtrations:

Definition 5.2.30. Let (V,∧, I) be a closed symmetric monoidal category. Let C be
enriched and tensored over V, and have pushouts. For i : A → B a morphism in V,
j : X → Y a morphism in the underlying category C0 of C. Define the pushout product
i�j to be the dotted map in C0 from the pushout in the diagram:

A⊗X
id⊗j //

i⊗id
��

A⊗ Y

�� i⊗id

��

B ⊗X //

id⊗j //

P
p

i�j

%%
B ⊗ Y
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The dual construction is the following:

Definition 5.2.31. Let (V,∧, I) be a closed symmetric monoidal category. Let C be
enriched and cotensored over V, and have pushouts. For i : A → B a morphism in V,
p : E → F a morphism in the underlying category C0 of C. Define the map C(i∗, p∗) in
C0 to be the dotted map to the pullback in the diagram:

C(B,E)

p∗

''

i∗

��

C(i∗,p∗)

%%
Q

y
//

��

C(A,E)

p∗

��
C(B,F )

i∗
// C(A,F )

This again has an analog living in the category V:

Definition 5.2.32. Let (V,∧, I) be a closed symmetric monoidal category having pull-
backs. Let C be enriched over V. For j : X → Y and p : E → F be morphisms in the
underlying category C0 of C. Define the map C(j∗, p∗) in V to be the dotted map to the
pullback in the diagram in V:

C(Y,E)

p∗

''

j∗

��

C(j∗,p∗)

%%
R

y
//

��

C(X,E)

p∗

��
C(Y, F )

j∗
// C(X,F )

This construction can be used to characterize lifting properties in the enriched setting:

Lemma 5.2.33. In the situation of Definition 5.2.32, the pair (j, p) has the lifting
property in C0, if and only if the map of sets V(I,C(j∗, p∗))) is surjective.

Proof. Recall that morphisms X → Y in C0 correspond to elements of V(I,C(X,Y )) =
C0(X,Y ) from 5.1.9. Then the universal property of the pullback gives that elements of
V(I, R) correspond exactly to commutative diagrams

X //

j

��

E

p

��
Y // F

in C0. Then V(I,C(j∗, p∗))) sends maps f : Y → E in C0 to the diagram with f ◦ j as the
top and p ◦ f as the bottom horizontal arrow, so that surjectivity indeed corresponds
exactly to the existence of the lift.
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Given that all of the three above constructions are defined, there is the following
crucial relation between them:

Lemma 5.2.34. Let (V,∧, I) be closed symmetric monoidal and have small limits. Let
C be enriched, tensored and cotensored over V and have pullbacks and pushouts. Let
i : A→ B a morphism in V and j : X → Y and p : E → F morphisms in the underlying
category C0 of C. Then the following maps in V are naturally isomorphic:

C((i�j)∗, p∗) ∼= V(i∗,C(j∗, p∗)∗) ∼= C(j∗,C(i∗, p∗))

Proof. Note that for the middle map we considered V as enriched over itself as in 5.2.14.
By careful use of the universal properties of pushouts and pullbacks as well as the
defining adjunctions for tensors and cotensors 5.2.26, one observes that all three maps
are naturally isomorphic to the map from V(B,C(Y,E)) to the limit of

V(A,C(Y,E))

�� ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
V(B,C(Y, F ))

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
V(B,C(X,E))

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

��
V(A,C(Y,E))

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
V(A,C(X,E))

��

V(B,C(X,F ))

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

V(A,C(X,F ))

These two lemmas allow us to characterize lifting properties in C0 in terms of those in
V, which is of course of particular interest when C0 and V are model categories (cf. 6.1.8).

5.2.35 Kan Extensions

The discussion about enriched Kan extensions in [K, 4] is, due to its generality rather
technical. As in the case of enriched (co-) limits, extra care has to be taken in several
places. Since we do not need the full generality, we state a slightly simpler definition
and list only the explicit properties we make use of, without going into much detail. We
concentrate on the case of left Kan extensions, since the dual notion will not appear
outside of pure existence statements.
Let V be closed symmetric monoidal and consider the solid arrow diagram of V-categories
and V-functors:

C

LanKG

��

A

G
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

K
??⑧⑧⑧⑧⑧⑧⑧

B,

where A is equivalent to a small V-category and B is cotensored over V.
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Definition 5.2.36. In the above situation, a left Kan extension LanKG of G along K
is a V-functor C→ B, together with a V-natural isomorphism

[C,B](LanKG,S) ∼= [A,B](G,S ◦K).

The image of the identity transformation for S = LanKG is a V-natural transformation
φ : G→ LanKG ◦K and is called the unit of LanKG.

It is important to note, that in a situation where B is not cotensored, this definition
is not adequate, in that it does not describe the left Kan extension in the sense of Kelly,
but rather a weaker notion. For counterexamples see the discussion after [K, 4.43].

The following proposition will give us the existence of left Kan extensions in all the
cases that we will consider:

Proposition 5.2.37. [K, 4.33] A V-category B admits all left Kan extensions of the
form LanKG, where K : A → C and G : A → B and A is equivalent to a small V-
category, if and only if it is enriched cocomplete.

To check the required cocompleteness, we will generally be able to use the following
characterization, which is a combination of several statements in [K]:

Theorem 5.2.38. Let B be enriched over V:

(i) B is cocomplete in the enriched sense, if and only if is tensored and admits all
small conical (enriched) colimits.

(ii) B is complete in the enriched sense, if and only if is cotensored and admits all
small conical (enriched) limits.

(iii) Assuming B is cotensored, it admits all small conical colimits, if and only if its
underlying ordinary category B0 is complete.

(iv) Assuming B is tensored, it admits all small conical limits, if and only if its under-
lying ordinary category B0 is cocomplete.

In particular for tensored and cotensored B, the conical (co-)limits are the ones created
in B0.

Proof. The precise references in [K] are: Theorem 3.73 for (ii), dualize for (i). The
discussion between 3.53 and 3.54 for conical (co-)-limits in B or B0, and the discussion
between 3.33 and 3.34 for the connection to classical (co-)completeness,

Since it is not always the enriched functor category from 5.2.9 that is of interest for us,
we would also like a characterization of the left Kan extension in terms of the underlying
category of enriched functors and enriched transformations. Luckily our assumption that
B is cotensored allows us to use the following universal property from [K, 4.43] and the
discussion that follows it:
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Theorem 5.2.39. If B is cotensored, a V-functor L is a left Kan extension of G along
K, if and only if there is a natural bijection of sets

[C,B]0(LanKG,S) ∼= [A,B]0(G,S ◦K).

In particular a V-functor L equipped with a V-natural transformation φ : G→ L ◦K is
a left Kan extension of G along K, if and only if any V-natural transformation α : G→
L ◦K factors uniquely as α = β ◦ φ.

Hence in the case of B tensored, cotensored and cocomplete, the two characterizations
together with the existence result 5.2.37, allow us to state the following:

Proposition 5.2.40. If B is cotensored, precomposition with K defines a V-functor
K∗ : [C,B]→ [A,B]. The left Kan extension provides a left adjoint, both in the enriched
sense, and on underlying ordinary categories.

Finally, the following property helps to compute the Kan extensions in a lot of
interesting special cases:

Proposition 5.2.41. [K, 4.23] In the situation of Proposition 5.2.40, the V-functor K
is fully faithful if and only if the unit id[A,B] → K∗LanK− of the adjunction is a natural
isomorphism.

5.2.42 Cofinality for coends

Definition 5.2.43. Let i : D→ C be a full and faithfull functor of T -categories and let
F : Cop × C → T be a T -functor. We say that i is F -cofinal if the for all morphisms
γ : c0 → c1 and f0 : c0 → c′0 in C so that F (f0, c) is a homeomorphism for every object
c of C, there exists an object d of D and morphisms δ : c′0 → i(d) and f1 : c1 → i(d) so
that

(i) f1γ = δf0, that is, the following square commutes:

c0
γ //

f0
��

c1

f1
��

c′0
δ // i(d).

(ii) The map F (f1, c) is a homeomorphisms for every object c of C.

Lemma 5.2.44. Let i : D → C be a full and faithfull functor of T -categories and let
F : Cop ∧ C→ T be a T -functor. Suppose that

(i) for all morphisms γ : c0 → c1 and f0 : c0 → c′0 in C so that F (f0, c) is a homeomor-
phism for every object c of C, there exists morphisms g′ : c′0 → c′1 and g1 : c1 → c′1
in C so that g1γ = g′f0 and so that the map F (g1, c) is a homeomorphisms for
every object c of C.
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(ii) For every object c0 of C there exists an object d of D and a morphism f : c0 → i(d)
so that the map F (f, c) is a homeomorphisms for every object c of C.

Then i is F -cofinal.

Proof. This is a directe concequence of the definition by letting δ = fg′ and f1 = fg1.

In the rest of this subsection we work with a T -functor F : Cop∧C→ T and a functor
i : D→ C.

Note that if i is F -cofinal, then taking both of the maps in the F -cofinality condition
be the identity on an object c of C, we can for each c choose a morphism f : c→ i(d) so
that F (f, c′) is a homeomorphism for every object c′ of C.

Proposition 5.2.45. If i is F -cofinal, then the canonical map i :
∫ D

i∗F →
∫ C

F in-
duced by the functor i is a homeomorphism.

We prove the above result by constructing an inverse to the map i. Since
∫ C

F can
be described as the coequalizer of

∨

c0,c1

F (c1, c0) ∧ C(c0, c1) ⇒
∨

c

F (c, c),

where the pointed sums are indexed over objects and pairs of objects of C respectively.
The above maps take an element (c0, c1, x, γ), consisting of objects c0 and c1 of C, a point
x ∈ F (c1, c0) and a morphism γ : c0 → c1 in C, to F (γ, c0)x and F (c1, γ)x respectively.

Thus every element of
∫ C

F is represented by an element of the form (c, x), where c is
an object of C and x ∈ F (c, c).

In the rest of this section we suppose that i is F -cofinal.

Definition 5.2.46. For each object c of C we construct a continous map ϕc : F (c, c)→∫ D
i∗F as follows: Use F -cofinality to to choose a morphism f : c→ i(d) with d an object

of D so that F (f, c′) is a homeomorphism for every object c′ of C. Then ϕc(x) ∈
∫ D

i∗F
is defined to be the element represented by (d, F (i(d), f)F (f, c)−1x) ∈ F (i(d), i(d)).

Lemma 5.2.47. The map ϕc of Definition 5.2.46 is independent of the chosen f .

Proof. Let f ′ : c→ i(d′) be another morphism with F (f ′, c′) a homeomorphism for every
object c′ of C. We need to explain why

y = (d, F (i(d), f)F (f, c)−1x)

and
y′ = (d, F (i(d′), f ′)F (f ′, c)−1x)

represent the same point of
∫ D

i∗F . Use F -cofinality to choose a commutative square of
the form

c
f ′ //

f

��

i(d′)

ig
��

i(d)
ig′ // i(d′)′
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where F (ig, c′) is a homeomorphism for all c′ in C. Then y = F (ig′, i(d))F (ig′, i(d))−1y

represents the same element as F (i(d′)′, ig′)F (ig′, i(d))−1y in
∫ D

i∗F . However

F (i(d′′), ig′)F (ig′, i(d))−1y = F (i(d′′), (ig′)f)F ((ig′)f, c)−1x,

and since g′f = gf ′ this is equal to

F (i(d′′), (ig)f ′)F ((ig)f ′, c)−1x = F (i(d′′), ig)F (ig, i(d′))−1y′.

Reasoning as above we see that this element represents the same element as y′ in the
coend

∫ D
i∗F .

The maps ϕc assemble to a continuous map ϕ :
∨
c F (c, c) →

∨
d F (i(d), i(d)) with

ϕ(c, x) = ϕc(x).

Lemma 5.2.48. Given a T -functor F : Cop ∧ C → T and an F -cofinal i : D → C we
have that given x ∈ F (c1, c0) and γ ∈ C(c0, c1) the point ϕ(c0, F (γ, c0)x) is equal to the

point ϕ(c1, F (c1, γ)x) of
∫ D

i∗F .

The above lemma says that if c0 and c1 are objects of C and γ ∈ C(c0, c1), then the
diagram

F (c1, c0)
F (c1,γ)//

F (f,c0)

��

F (c1, c1)

ϕc1
��

F (c0, c0)
ϕc0 //

∫ D
i∗F

commutes.

Proof. First we use F -cofinality to obtain a morphism f0 : c0 → i(d0) with F (f0, c) a
homeomorphism for all objects c of C. Next we use the F -cofinality condition to obtain
a commutative square

c0
γ //

f0
��

c1

f1
��

i(d0)
iδ // i(d1)

with F (f1, c) a homeomorphism for all objects c of C. By Lemma 5.2.47 ϕ(c0, F (γ, c0)x) is
represented by (d0, F (i(d0), f0)F (f0, c0)

−1F (γ, c0)x) and ϕ(c1, F (c1, γ)x) is represented
by (d1, F (i(d1), f1)F (f1, c1)

−1F (c1, γ)x). However the diagram

F (c1, c1)

F (i(d1),f1)F (f1,c1)−1

��

F (c1, c0)

F (i(d1),f0)F (f1,c0)−1

��

F (c1,γ)oo F (γ,c0) // F (c0, c0)

F (i(d0),f0)F (f0,c0)−1

��
F (i(d1), i(d1)) F (i(d1), i(d0))

F (i(d1),i(δ))oo F (i(δ),i(d0)) // F (i(d0), i(d0))
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commutes. That is,

F (i(d0), f0)F (f0, c0)
−1F (γ, c0)x = F (i(d0), f0)F (f0, c0)

−1F (γ, c0)F (f1, c0)F (f1, c0)
−1x

= F (i(d0), f0)F (iδ, c0)F (f1, c0)
−1x

= F (iδ, i(d0))F (i(d1), f0)F (f1, c0)
−1x,

and this element represents the same element as

F (i(d1), iδ)F (i(d1), f0)F (f1, c0)
−1x = F (i(d1), f1)F (i(d1), γ)F (f1, c0)

−1x

= F (f1, i(d1))
−1F (c1, f1)F (c1, γ)x

= F (i(d1), f1)F (f1, c1)
−1F (c1, γ)x,

that is, it represents ϕ(c1, F (c1, γ)x) in
∫ D

i∗F .

Proof of Proposition 5.2.45. By Lemma 5.2.48 the continuous map ϕ :
∨
c F (c, c) →∨

d F (i(d), i(d)) induces a unique map ϕ :
∫ C

F →
∫ D

i∗F . Lemma 5.2.47 implies that

the composite ϕi is the identity on
∫ D

i∗F since if c = i(d), then we can choose f to

be the identity on c. Conversely, if (c, x) represents a point in
∫ C

F , then iϕ(c, x) is
represented by (d, F (i(d), f)F (f, c)−1x) and this element represents the same element

as (c, x) in
∫ C

F . Thus iϕ is the identity on
∫ C

F .

146



Chapter 6

Model Categories

We assume that the reader is familiar with the basic theory of model categories, an
introductory account can for example be found in [DS]. A more exhaustive source is [H]
or [HirL].

6.1 Recollections

Almost all of the model structures we will discuss are cofibrantly generated, we recall the
definition and state the main theorem we use to recognize such model structures from
[H, 2.1.3]:

Definition 6.1.1. Let C be a model category. It is called cofibrantly generated if there
are sets I and J of maps, such that:

(i) The domains of the maps of I are small with respect to I−cell,

(ii) The domains of the maps of J are small with respect to J−cell,

(iii) The class of fibrations is J−inj,

(iv) The class of acyclic fibrations is I−inj.

Theorem 6.1.2 (Recognition Theorem [H, 2.1.19]). Suppose C is a category with all
small colimits and limits. Suppose W is a subcategory of C and I and J are sets of
maps of C. Then there is a cofibrantly generated model structure on C with I as the set
of generating cofibrations, J as the set of generating acyclic cofibrations, and W as the
subcategory of weak equivalences if and only if the following conditions are satisfied:

(i) The subcategory W has the two out of three property and is closed under
retracts.

(ii) The domains of I are small relative to I−cell.

(iii) The domains of J are small relative to J−cell.

(iv) J−cell ⊂W ∩ I−cof.

(v) I−inj ⊂W ∩ J−inj.
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(vi) Either W ∩ I−cof ⊂ J−cof or W ∩ J−inj ⊂ I−inj.

The following lemmas are applicable in any model category. These are well known
and often used without further mention in the literature, but since they lie at the heart
of the homotopy theory we need, we recall the exact statements. Recall the following
definition from [GJ, II 8.5]):

Definition 6.1.3. A category of cofibrant objects is a category D with all finite coprod-
ucts, with two classes of maps, called weak equivalences and cofibrations, such that the
following axioms are satisfied:

(i) The weak equivalences satisfy the 2 out of 3 property.

(ii) The composite of two cofibrations is a cofibration. Any isomorphism is a cofibra-
tion.

(iii) Pushouts along cofibrations exist. Cobase changes of cofibrations (that are weak
equivalences) are cofibrations (and weak equivalences).

(iv) All maps from the initial object are cofibrations.

(v) Any object X has a cylinder object Cyl(X), i.e., a factorization of the fold map
∇ : X

∐
X → X as

X
∐

X
i
→ Cyl(X)

σ
→ X,

with i a cofibration and σ a weak equivalence.

In any model category, the cofibrant objects form a category of cofibrant objects. This
lets us apply the following two important lemmas:

Lemma 6.1.4 (Generalized Cobase Change Lemma (cf. [GJ, II.8.5])). Let C be a cate-
gory of cofibrant objects. Suppose

A

i
��

f // X

��
Y g

// P
p

(6.1.5)

is a pushout diagram in C, such that i is a cofibration and f is a weak equivalence. Then
g is also a weak equivalence.
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Lemma 6.1.6 (Generalized Cube Lemma (cf. [GJ, II.8.8])). Let C be a category of
cofibrant objects. Suppose given a commutative cube

A0
//

fA

��

i0

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X0

fX

��

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y0 //

fY

��

P0

fP

��

A1
//

i1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y1 // P1

(6.1.7)

in C. Suppose further that the top and bottom faces are pushouts, that i0 and i1 are
cofibrations and that the vertical maps fA, fX and fY are weak equivalences. Then the
induced map of pushouts fP is also a weak equivalence.

Note that not all examples of categories of cofibrant objects come from model struc-
tures, in particular we will want to apply Lemma 6.1.6 to cases where the cofibrations
and weak equivalences come from different model structures on the same category in
6.1.20. In the case of topological model categories (cf. 6.1.8), May and Sigurdsson pro-
pose a more general treatment in [MS, 5.4], using so called well-grounded categories of
weak equivalences. We will handpick some of the statements of [MS] in our Subsection
6.1.12 on topological model categories.

Definition 6.1.8. Let (V,⊗, I) closed symmetric monoidal category, that is also a model
category. Let C be a category enriched, tensored and cotensored over V. Further let
the underlying category C0 of C (cf. 5.2.12) have a model structure. Then this model
structure on C is called enriched over V, if the following two axioms hold:

(i) Pushout product axiom Let as in 5.2.30 i be a cofibration in V and let j be a
cofibration in C0. Then the map i�j in C0 is also a cofibration. If in addition
either one of i or j is acyclic, so is i�j.

(ii) Unit axiom Let q : Ic
∼
→ I be a cofibrant replacement of the unit object of V.

Then for every cofibrant object A in C, the morphism

q ⊗ id : Ic ⊗A→ I⊗A ∼= A

is a weak equivalence.

If C is equal to V, i.e., we consider V as enriched over itself (cf. 5.2.14), a model structure
satisfying the above axioms is called monoidal.

Note that the unit axiom is redundant, if the unit object of V is itself cofibrant, since
it is then implied by the pushout product axiom. For monoidal model categories, there
is an additional important axiom:
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Definition 6.1.9. A monoidal model category (C,⊗) satisfies themonoid axiom, if every
map in

({acyclic cofibrations} ⊗ C)−cell

is a weak equivalence.

The pushout product axiom has several adjoint formulations:

Lemma 6.1.10. In the situation of Definition 6.1.8, the pushout product axiom is equiv-
alent to both of the following formulations:

• Let p be a fibration in C0 and let j be a cofibration in V, then C(j∗, p∗) is a fibration
in C0, which is acyclic if either of p or j was.

• Let p be a fibration in C0 and let i be a cofibration in C0, then C(i∗, p∗) is a fibration
in C, which is acyclic if either of p or i was.

Proof. This is immediate from lemmas 5.2.33 and 5.2.34.

Example 6.1.11. Taking V to be the categories of simplicial sets, spaces, symmetric
spectra or G-spaces, yields, under the choice of the usual model structures, the well
known notions of simplicial, topological, spectral and G-topological model categories.

In particular the example of topological and G-topological model categories will
be very important for us. We discuss some of their distinct features in the following
subsection.

6.1.12 Topological Model Categories

In this subsection we have to discuss two different categories of topological spaces. We
distinguish between the category U of compactly generated weak Hausdorff spaces, and
the category T of such spaces with a distinguished basepoint. Alternatively one can
think of T as the under-category ∗ → U for ∗ any one-point object in U .
Let I denote the unit interval in U , as usual it comes equipped with the two inclusions
of the endpoints. For any category C enriched and tensored over U , we can then form
homotopies in C0 in terms of the tensor with I:

{0} ⊗X

��

∼= // X
h0

��❄
❄❄

❄❄
❄❄

❄

I ⊗X
h // Y

{1} ⊗X ∼=
//

OO

X

h1

??⑧⑧⑧⑧⑧⑧⑧⑧

Analogously for C enriched over T , we can add a disjoint basepoints and use the tensor
with I+ to define (based) homotopies.

150



6.1. RECOLLECTIONS

There are two classical model structures on U that are important for us, the Strøm- or
h-model structure and the Quillen- or q-model structure. Especially the cofibrations of
the former have very favorable properties, the defining one being the homotopy extension
property:

Definition 6.1.13. Let C be enriched and tensored over U . A map i : A→ X in C0 is a
free h-cofibration if it satisfies the free homotopy extension property. That is, for every
map f : X → Y and homotopy h : I ⊗A→ Y such that h0 = f ◦ i, there is a homotopy
H : I ⊗X → Y such that H0 = f and H ◦ (i⊗ id) = h.

The universal test case for this property is the mapping cylinder Y = Mi = X ∪i
(I ⊗A), with the obvious f and h. The exact statement is the following lemma.

Lemma 6.1.14. Let C be enriched and tensored over U and have pushouts. A map
i : A→ X in C0 is a free h-cofibration if and only if the canonical map Mi→ I×X has
a retraction.

Remark 6.1.15. This implies a variety of closure properties of the class of free h-cofibrations.
In particular any functor that preserves pushouts and the tensor with the interval also
preserves h-cofibrations, since any functor preserves retractions.

Theorem 6.1.16. [Str, Theorem 3], cf. [MS, 4.4.4] The homotopy equivalences, Hure-
vicz fibrations and free h-cofibrations give a proper model structure on U .

Note that Strøm originally works in the category of all topological spaces, but the
intermediate objects for the factorizations he constructs are in U if source and target
were. Properness is not mentioned in the original article, but is implied by the fact that
all objects are fibrant and cofibrant.

Definition 6.1.17. Let f be a map in U . Then f is a weak equivalence if it induces
isomorphisms on all homotopy groups. Call f a q-cofibration if it has the left lifting
property with respect to all Serre fibrations that are weak equivalences.

Remark 6.1.18. Recall that every Hurevicz fibration is a Serre fibration and every ho-
motopy equivalence is a weak equivalence. Hence in particular any q-cofibration is a free
h-cofibration.

Theorem 6.1.19. [Q, II.3.1], cf. [H, 2.4.25] The weak equivalences, Serre fibrations
and q-cofibrations give a proper model structure on U .

Again note that Quillen also works with general topological spaces, the transition to
U is well documented in [H, 2.4]. Properness is proved using that every object is fibrant
as well as the following lemma:

Lemma 6.1.20. The category U is a category of cofibrant objects (6.1.3) with respect to
the h-cofibrations and the weak equivalences. In particular the generalized cobase change
(6.1.4) and cube lemma (6.1.6) hold for these choices.
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Moving to the context of based spaces, we can for example follow the discussion
after Remark 1.1.7 of [H] to transport both model structures from U to T . This proves
satisfactory in case of the Quillen model structure:

Theorem 6.1.21. The category T is a proper model category using those based maps
that are q-cofibrations, Serre fibrations respectively weak equivalences in U , i.e., when
forgetting the basepoints. Similarly the underlying free h-cofibrations, Hurevicz fibrations
and (free) homotopy equivalences give a proper model structure on T .

Remark 6.1.22. We will often make use of the fact that the Quillen model structures on U
and T are cofibrantly generated. Generating sets of cofibrations and acyclic cofibrations
are given in the pointed case by:

I := {i : Sn−1
+ → Dn

+, n ≥ 0} and

J := {i0 : Dn
+ → (Dn × [0, 1])+, n ≥ 0.}

Remark 6.1.23. Note that not all spaces in T are cofibrant with respect to the second
model structure in the above theorem. In particular the theorem only implies pointed
analogs to the versions of the generalized cube and cobase change lemmas from 6.1.20
above for so called well based spaces:

Definition 6.1.24. An object X of T is called well based or well pointed if the inclusion
of the basepoint is a free h-cofibration.

We need a stronger version of the cube lemma when we work in the T -enriched
setting:

Definition 6.1.25. Let C be enriched and tensored over T . A map i : A→ X in C0 is
a based h-cofibration if it satisfies the based homotopy extension property. That is, for
every map f : X → Y and based homotopy h : I+∧A → Y such that h0 = f ◦ i, there
is a based homotopy H : I+∧X → Y such that H0 = f and H ◦ (id∧i) = h. In cases
where no confusion is possible, we will usually omit the adjective based.

Remark 6.1.26. Again there is a recognition lemma analogous to 6.1.14 in terms of a
reduced mapping cylinder, implying a similar closure property as in Lemma 6.1.14. Also
note that all (free or based) h-cofibrations are closed inclusions (cf. [M, § 6, Ex 1,],
[MMSS, 5.2 ff.]).

The following proposition is a combination of Proposition 9 in [Str] and the propo-
sition on page 44 of [M]. Both are proved by explicitly constructing the required homo-
topies, respectively retractions.

Proposition 6.1.27. Let f : X → Y be a map between well based spaces in T . Then f
is a based homotopy equivalence if and only if it is a free homotopy equivalence and it is
a based h-cofibration if and only if it is a free h-cofibration.

Note that being a weak equivalence in T and U is always equivalent, so we have the
following corollary:
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Corollary 6.1.28. If all involved spaces are well based, then the generalized cube lemma
and the generalized cobase change lemma hold for based h-cofibrations and homotopy
equivalences. Also, they hold for h-cofibrations and weak equivalences if all the spaces
Ai and Yi in the diagrams 6.1.5 and 6.1.7 are well based.

Finally we record the following property from [MMSS, 6.8(v)]:

Lemma 6.1.29. Transfinite composition of h-cofibrations that are weak equivalences are
weak equivalences.

The following condition on sets of maps in a topological category has proven very
helpful in several contexts. We use the formulation from [MMSS, 5.3], and hence use T
for the enrichment. Let A and C be categories enriched over T that are (enriched) bicom-
plete and in particular tensored and cotensored. Let A be equipped with a continuous
and faithful functor F : A→ C.

Condition 6.1.30. (Cofibration Hypothesis) Let I be a set of maps in A. We say that
I satisfies the cofibration hypothesis if it satisfies the following two conditions.

(i) Let i : A→ B be a coproduct of maps in I. Then F takes any cobase change of i
in A to an h-cofibration in C.

(ii) The colimit of every sequences A that F takes to a sequence of h-cofibrations in C

is preserved by F .

Remark 6.1.31. In particular F takes I-cell complexes in A to sequential colimits along
h-cofibrations in C.

The smallness conditions in the definition of a cofibrantly generated model category
are as lax as possible. In many of the topological examples, we can actually be more
strict, in order to get around having to deal with transfinite inductions as much as
possible. A convenient condition is the following, again taken from [MMSS, 5.6, ff.],
with A and C as above:

Definition 6.1.32. An object X of A is compact if

A(X, colim Yn) ∼= colimA(X,Yn),

whenever Yn → Yn+1 is a sequence of maps in A that are h-cofibrations in C.

Definition 6.1.33. Let A be a model category. Then A is compactly generated, if it is
cofibrantly generated with generating sets of (acyclic) cofibrations I and J , such that
the domains of all maps in I or J are compact, and I and J both satisfy the cofibration
hypothesis 6.1.30.
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6.1.34 Simplicial Objects in Topological Categories

In this section, we recall some basic simplicial techniques. A convenient reference for a
lot of the following discussion is [GJ, VII.3], but we need some rather specific technical
lemmas which to the author’s knowledge have not been formulated similarly before. We
start by reminding the reader of the basic definitions:

Definition 6.1.35. The simplicial category ∆ has the finite ordinal numbers as objects
and order preserving maps as morphisms between them.

To be more specific, we will denote objects of ∆ by n, i.e.,

n := {0 < 1 < . . . < n}.

Recall the generating morphisms si and di in ∆ and the relations between them from
[GJ, I.1.2].

Definition 6.1.36. Let C be a category. The category sC of simplicial objects in C is
the functor category [∆op,C].

Let from now on C be enriched, cocomplete and tensored over the category of sim-
plicial sets.

Definition 6.1.37. The geometric realization |X|C of a simplicial object X ∈ sC is the
coend

|X|C :=

k∈∆op∫
Xk ⊗∆k,

where ∆k is the simplicial n-simplex given by ∆k
n = ∆(n,k). With the obvious extension

on morphisms, this defines a functor | · |C : sC→ C.

We will often drop the subscript from | · |C when the category is clear. Note that any
functor C→ C′ that preserves colimits and tensors preserves the geometric realization.

Definition 6.1.38. If C is also cotensored over simplicial sets, the geometric realization
has a right adjoint given by the functor that assigns to an object Y of C the simplicial
object C(∆, Y ) which is given in level k by

C(∆, Y )k := C(∆k, Y ).

Remark 6.1.39. The most important special case for our applications will be when the
category C is actually enriched and tensored over T . In this case, we can first transport
the enrichment to U along the forgetful functor and then to simplicial sets via the
singular set functor as in 5.2.10 since both of these are (lax) monoidal. Then the defining
adjunctions immediately give an isomorphism

Xk ⊗sSet ∆
k ∼= Xk ⊗U |∆

k| ∼= Xk ⊗T |∆
k|+,

where the |∆k| denotes the topological k-simplex (with a disjoint basepoint on the right).
Classical realization of simplicial sets is then a special case of the above by viewing sets
as discrete objects of T .
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We want to filter the geometric realization, in analogy to the classical case where the
geometric realization admits a filtration via its structure as a CW -complex. For this
purpose consider for a natural number n the full subcategory ∆n of ∆ consisting of all
objects k with k ≤ n.

Definition 6.1.40. For X ∈ sC a simplicial object, define the n-skeleton skn |X|C as
the coend

skn |X|C :=

∫
k∈∆op

n

Xk ⊗∆k.

Again, we will often simplify notation and just write skX instead of sk |X|C when
the context does not allow confusion.

Lemma 6.1.41. The inclusions of categories ∆n → ∆n+1 → . . . → ∆ induce mor-
phisms of coends and we get

colim
n

sknX ∼= |X|.

We define an analog to the degenerate simplices, or rather the latching spaces in the
classical setting:

Definition 6.1.42. Let X ∈ sC be a simplicial object. The latching object LnX comes
together with a distinct map LnX → Xn and is defined inductively as follows: Let L0X
be the initial object of C. Assumw that LnX and LnX → Xn are already defined, and
that the following diagram commutes:

LnX //

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯

��✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

Xn

s0

��

· · · Xn

s1

""

· · ·

Xn
sn // Xn+1

(6.1.43)

We let Ln+1X be the colimit of the following solid part of the above diagram. The map
Ln+1X → Xn+1 is induced by the simplicial degeneracy maps si : Xn → Xn+1.

The importance of the latching objects lies in the following proposition:

Proposition 6.1.44. [GJ, VII.3.8] Let X ∈ sC be a simplicial object. Then for all
n ≥ 0 there is a pushout diagram in C:

Xn ⊗ ∂∆
n ∪LnX⊗∂∆n LnX ⊗∆n

��

// skn−1X

��
Xn ⊗∆n // sknX,

p
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where the left vertical map is the pushout product of LnX → Xn with the inclusion of
the boundary ∂∆n → ∆n.

Definition 6.1.45. Let C be a class of morphisms in C. We say that a simplicial object
X ∈ sC is C-proper, if all the maps LnX → Xn are in C.

We finally turn to the case of C being a topological model category, i.e., a model
category enriched over U in the sense of 6.1.8.

Proposition 6.1.46. Let C be enriched and tensored over U and let C be a class of
morphisms in I. Suppose that C is closed under cobase change and satisfies the pushout
product axiom with respect to the Quillen model structure on U (e.g., if C is the class
of cofibrations in a model category enriched over U in the sense of 6.1.8). Then for any
C-proper simplicial object X in sC, the skeleton filtration of |X|C consists morphisms in
C.

Xn ⊗ |∂∆
n| ∪LnX⊗|∂∆n| LnX ⊗ |∆

n|

��

// skn−1X

C−cof

��
Xn ⊗ |∆

n| // sknX,
p

The next proposition concerns interactions of simplicial objects with weak equiva-
lences.

Proposition 6.1.47. Let C be enriched and tensored over U , with a class C of cofibra-
tions and a class of weak equivalences, such that the cofibrant objects form a category
of cofibrant objects in the sense of 6.1.3. Assume that the cofibrations and weak equiv-
alences are compatible with the enrichment in the sense that the pushout product axiom
6.1.8(i) is satisfied. Let X and Y in sC be C-proper simplicial objects such that X0

and Y0 are cofibrant. If f : X → Y is a morphism of simplicial objects that is a weak
equivalence in each simplicial degree, then the induced map of realizations

|f |C : |X|C → |Y |C

is a weak equivalence.

Proof. We begin with showing that all the Xn, Yn and LnX and LnY are cofibrant.
L1X = X0 is cofibrant by hypothesis, so assume inductively that Ln−1X is cofibrant.
Since X is C-proper, the solid arrow part of diagram 6.1.43 consists only of cofibrations,
hence in particular Xn is cofibrant. Since Ln+1X is an iterated pushout of Xn along
cofibrations it is cofibrant itself. We continue by induction on the skeleton filtration
of 6.1.46 to show that the maps sknX → skn Y are weak equivalences. Note that the
tensor with a cofibrant space preserves weak equivalences between cofibrant objects by
[GJ, II.8.4]. Hence by the generalized cube lemma we only need to show that the maps

Xn ⊗ |∂∆
n| ∪LnX⊗|∂∆n| LnX ⊗ |∆

n| −→ Yn ⊗ |∂∆
n| ∪LnY⊗|∂∆n| LnY ⊗ |∆

n|

are weak equivalences between cofibrant objects. Again using the generalized cube
lemma on the defining diagram for the pushout product of LnX → X and ∂∆n → ∆n,
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this reduces to showing that LnX → LnY is a weak equivalence. As above this is proven
inductively, by comparing the diagrams 6.1.43 for X and Y and applying the generalized
cube lemma to each of the iterated pushouts.

Remark 6.1.48. A very obvious example for categories C which satisfy the requirements
of the above proposition is given by a model category enriched over U in the sense
of 6.1.8. However, we will in particular want to apply the proposition to (levelwise) h-
cofibrations and π∗-isomorphisms of orthogonal spectra, so the more general formulation
is necessary.

It can be hard to verify the properness of a simplicial object. Sometimes the following
is easier to check:

Definition 6.1.49. Fix a class C of morphisms called in C. We call a simplicial object
X ∈ sC C-good, if for all n all the degeneracy maps si : Xn → Xn+1 are in C.

In particular in T and U , there is Lillig’s Union Theorem [Li], which implies the
following helpful statement:

Lemma 6.1.50. For simplicial objects in the categories T or U , h-proper and h-good
are equivalent notions. Since colimits and tensors are computed levelwise, the same is
true for levelwise h-cofibrations of (equivariant) orthogonal spectra.

6.2 Assembling Model Structures

Given a model structure on a category C, one often wants to give corresponding struc-
tures to categories of functors D → C for some diagram category D. Theorems on the
possibility and methods to do this are well studied in many cases, examples can be found
in [HirL, 14.2.1] for cases of cofibrantly generated structures on C, in [H, Chapter 5] for
the case of D a Reedy category. More recently Angeltveit has studied the Reedy ap-
proach in an enriched setting ([A]). The result of this section is more in the direction of
the former, in particular as a special case we will get an enriched version of Hirschhorns
Theorem [HirL, 11.6.1]. However, the significant difference in our approach is, that we
lift not just a single model structure on the target category, but rather assemble a new
model structure from several given ones.
Hirschhorns method uses the evaluation functors that any diagram category is equipped
with; we give a short recollection: Let D be small. Consider the trivial category ⋆ with
one object ∗, and only one (identity) morphism. For each object d of D, there is an
embedding incd : ∗ → D sending the object ∗ to d. Then the evaluation functor evd
assigns to a functor X : D → C the precomposition evdX = X ◦ incd with the inclusion
incd. We have adjoint pairs:

Fd : C
∼= [⋆,C] ⇆ [D,C] : evd,

where Fd(−) is the left Kan extension. Then, given a cofibrantly generated model
structure on C with generating sets of (acyclic) cofibrations I and J , we can form the
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sets

F I :=
⋃

d∈D

FdI

and FJ analogous.

Theorem 6.2.1. [HirL, 11.6.1] Let D be a small category, and let C be a cofibrantly
generated model category with generating cofibrations I and generating acyclic cofibra-
tions J . Then the category [D,C] = [D,C]0 of D-diagrams in C is a cofibrantly generated
model category in which a map f : X → Y is

• a weak equivalence if evd(f) : Xd → Yd is a weak equivalence in C for every object
d ∈ D,

• a fibration if evd(f) : Xd → Yd is a fibration in C for every object d ∈ D, and

• an (acyclic) cofibration if it is a retract of a transfinite composition of cobase
changes of maps in F I (FJ).

Let us now move to an enriched setting. Let (V,∧, I) be a complete closed symmetric
monoidal category, and let C and D be enriched over V, such that D is V-equivalent to
a small category, hence the enriched functor category [D,C] exists (5.2.9). Consider ⋆ as
the trivial V-category, i.e., as the V-category with one object ∗ such that the morphism
object ⋆(∗, ∗) is unit in D. Then analogous to the discussion above, the inclusion of
⋆ at any object of D yields evaluation functors by precomposition. Under favorable
conditions on C, these have left adjoints which we again denote by Fd (e.g., if C is
tensored, cotensored and enriched cocomplete, cf. 5.2.37). However this time, we want
to consider an intermediate functor category: Given an object d ∈ D, denote by Ed the
full subcategory containing only that object. Then the inclusion of ⋆ at d ∈ D factors
in the following way

⋆

inc
�� evdX

��

Ed

incd
�� ev

′

dX &&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

D
X

// C,

(6.2.2)

and hence we have a factorization of evaluation functors

C [⋆,C]
∼=oo [Ed,C]oo [D,C]

ev
′

doo

evd

��
. (6.2.3)

Each of the functors in this factorization has an (enriched) left adjoint if and only if the
appropriate left Kan extensions exist (5.2.37), and in that case we denote them in the
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following way:

C
∼= // [⋆,C]

Fd

��
Ed⊗− // [Ed,C]

Gd // [D,C] . (6.2.4)

We call objects of the form GdX semi-free, in analogy to the term free for objects FdY .
Note that the notation Ed ⊗− is not accidental, as it is in fact given by the categorical
tensor with the endomorphism D-object of d if it exists.
Assume that for each d ∈ D, there is a cofibrantly generated model structure Md on the
underlying ordinary category [Ed,C]0 of [Ed,C], with generating (acyclic) cofibrations Id
and Jd, and classes of weak equivalences Wd, respectively. Assume further that each
[Ed,C] is tensored and cotensored over V, so that the semi-free functors Gd all exist.
Define the sets of maps GI and GJ in [D,C]0 as

GI :=
⋃

d∈D

GdId GJ :=
⋃

d∈D

GdJd. (6.2.5)

Define the class W of maps in [D,C]0 as

W := {f ∈ [D,C]0, s.t. ev
′

d(f) ∈ Wd ∀ d ∈ D}. (6.2.6)

Then the assembling theorem is the following

Theorem 6.2.7. Let V be a complete closed symmetric monoidal category and let C and
D be enriched over V such that D is equivalent to a small subcategory. Assume that each
of the functor categories [Ed,C] is tensored and cotensored over V and that we have a
family of cofibrantly generated model structures {Md} as above.
Assume that the domains of the maps in GI are small relative to GI-cell, the domains
of the maps in GJ are small with respect to GJ-cell and that GJ-cell ⊂W.
Then the underlying category [D,C]0 of [D,C] is a cofibrantly generated model category
where a map f : X → Y is a fibration, if and only if each ev

′

df is a fibration in the
model structure Md on [Ed,C]0, and a weak equivalence if and only if it is in W. The
generating cofibrations are given by GI and the generating acyclic cofibrations are given
by GJ .

Proof. We check the conditions from the recognition theorem 6.1.2. First of all, enriched
limits and colimits in [D,C] are calculated pointwise by [K, 3.3], i.e., the (co-)limit of
a diagram exists if and only if it does so after evaluating to the [Ed,C] or equivalently
to [⋆,C]. Since all the [Ed,C] had model structures, they were in particular bicomplete.
As they were also tensored and cotensored, they were enriched bicomplete hence so is
[D,C]. The class W is a subcategory satisfying the 2 out of 3 axiom since it is defined
by a levelwise property. By assumption, GJ-cell is in W, and since as a left adjoint
Gd preserves retracts and cell complexes, GdJd-cell ⊂ GdId-cof, hence GJ-cell ⊂ GI-cof.
Since Gd is left adjoint to ev

′

d, a map has the right lifting property with respect to GI if
and only if for each d its evaluation is an acyclic fibration, in particular if and only if it
is in W and has the lifting property with respect to GJ .
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Remark 6.2.8. Similarly to the argument for the bicompleteness of [D,C], [K, 3.3] implies
that the assumption, that each of the [Ed,C] is tensored and cotensored, is immediately
satisfied if C was so itself.

Proposition 6.2.9. In the situation of Theorem 6.2.7 assume that [D,C] is itself ten-
sored and cotensored over V. If each of the model structures Md satisfies the pushout
product axiom (6.1.8(i)), then so does the assembled model structure on [D,C]0.

Proof. As in [HSS, Prop. 5.3.4], by the adjoint formulations in 6.1.10, it suffices to
check the pushout product axiom for i a generating cofibration. But Gd commutes with
tensors and pushouts, hence j�Gdi

∼= Gd(j�i). Since Gd also preserves cell complexes
and retracts, j�Gdi is indeed a cofibration. The case of i or j being acyclic is exactly
the same.

Remark 6.2.10. Hence if we can guarantee the analogous proposition for the Unit axiom,
a family {Md} of enriched model assembles puzzles together to an enriched model struc-
ture on [D,C]. In particular if the unit object of V is cofibrant this is trivial. A common
other way to ensure this is demanding some sort of cofibration hypothesis, cf. 6.1.30 and
a sufficiently general version of the cube lemma 6.1.6.

Depending on the setting, the condition GJ-cell ⊂ W in can be hard to verify. A
way around this is using Schwede and Shipley ’s lifting lemma [SS, 2.3] instead of the
recognition Theorem 6.1.2. However, for that result to be applicable in our case, we
require another layer of constructions:
In the situation of Theorem 6.2.7, consider the subcategory ED of D, consisting of all
objects but only the endomorphisms. More precisely, define ED(d, d) := D(d, d) but let
E(d, e) be initial in D for d 6= e. Then the inclusions 6.2.2 factor through ED and hence
we get further factorizations of the evaluation functors from 6.2.3

C [⋆,C]
∼=oo [Ed,C]oo [ED,C]oo [D,C]

ev
′′

oo

ev
′

d

YY

evd

��
.

Let

C
∼= // [⋆,C]

Fd

��
Ed⊗− // [Ed,C]

Gd

EE

GE

d // [ED,C] // [D,C]

be the corresponding diagram of left adjoints 6.2.4. The induced functor pair [D,C]0 ⇆
[ED,C]0 induces a monad T on [ED,C]0 (cf. [McL, IV.1]) and we claim that the associated
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category of T -algebras is isomorphic to [D,C]0. To prove this we check the prerequisites of
Beck’s Theorem in its weak form from [B, Theorem 1] (cf. [McL, Ex. VI.7. 1-3]). Indeed,
since [D,C] is enriched cocomplete with colimits calculated pointwise by [K, 3.3], [D,C]0
has all coequalizers and they are preserved under evaluation to [ED,C]0. Furthermore
the evaluation reflects isomorphisms, since a V-natural transformation {αd}d∈D is an
isomorphism if and only if each αd is.
Further note that [ED,C]0 ∼=

∏
d∈D[Ed,C]0 since the V-naturality condition 5.2.7 is void

when ED(d, e) is initial. Hence given the family {Md}d∈D we get the product model
structure on [ED,C]0:

Proposition 6.2.11. In the situation of Theorem 6.2.7, there is a cofibrantly generated
model structure on [ED,C]0, where a map is a fibration, cofibration or weak equivalence
if and only if it is one in Md, for all d ∈ D. The generating sets of cofibrations and
acyclic cofibrations are given by the sets GEI and GEJ , respectively, which are defined
analogous to 6.2.5.

Definition 6.2.12. In the situation of theorem 6.2.7, an object P of [D,C] is a path
object of an object X of [D,C] if there is a factorization of the diagonal map

X

∆

��
w // P

p // X
∐
X,

with w ∈W and p a pointwise fibration, i.e., a fibration in Md after evaluating to [Ed,C]0
for all d ∈ D.

Then hypothesis (2) of [SS, 2.3] allows the following variation of Theorem 6.2.7

Theorem 6.2.13. The assembling Theorem 6.2.7 still holds if we replace the assumption
GJ-cell ⊂W, with the following:
In each of the model structures Md, every object is fibrant and every object of X ∈ [D,C]
has a path object.

As promised we study an enriched version of Theorem 6.2.1:

Proposition 6.2.14. Theorem 6.2.1 holds in the case of categories enriched over V, if
we additionally assume that the domains of the maps in F I are small relative to F I-
cell, the domains of the maps in FJ are small with respect to FJ-cell and that FJ-cell
consists of maps that are level weak equivalences.

The proof works entirely analogous to the one of 6.2.7. Note that we can reformulate
the extra assumptions slightly in the following way:

Lemma 6.2.15. If tensoring with morphism objects of D preserves cofibrations and
acyclic cofibrations, the extra assumptions in 6.2.14 are satisfied. In particular this is
true if there is a model structure on V, such that all the morphism objects of D are
cofibrant, and the model structure on C0 satisfies the pushout product axiom.
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Proof. This is immediate once one checks that for objects d and e in D, the composition
eve ◦ Fd is isomorphic to tensoring with D(d, e). Since colimits in [D,C] are calculated
pointwise ([K, 3.3]), maps in FJ cell are levelwise retracts of J-cell complexes, and the
same for I. Then all three extra assumptions follow immediately from the axioms of a
cofibrantly generated model category.

Corollary 6.2.16. Since in every model structure cofibrations and weak equivalences
are preserved under coproducts, in the case V = Set Theorem 6.2.14 reduces to 6.2.1.
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