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Abstract. We give an expository account of the development of the Ker-
vaire invariant and its generalizations with emphasis on its applications to
surgery and, in particular, to the existence of stably parallelizable manifolds
with Kervaire invariant one.

1. Introduction

As an expository device we describe the development of this subject
in chronological order beginning with Kervaire’s original paper ([10]) and
Kervaire-Milnor’s Groups of Homotopy Spheres ([11]) followed by Frank
Peterson’s and my work using Spin Cobordism ([5], [7]), Browder’s applica-
tion of the Adams spectral sequence to the Kervaire invariant one problem
([3]), Browder-Novikov surgery ([16]) and finally an overall generalization
of mine ([6]). In a final section we describe, with no detail, other work and
references for these areas. We do not give any serious proofs until we get
to the “overall generalization” sections where we prove the results about
the generalized Kervaire invariant and Browder’s Kervaire invariant one
results.

2. Cobordism Preliminaries.

We make RN ⊂ RN+1 by identifying x ∈ RN with (x, 0). Then BOk =⋃
Gk,l, where Gk,l is the space of k dimensional linear subspaces of Rk+l

and the universal bundle ζk → BOk is the space of all pairs (P, v), where
v ∈ P ∈ Gk,l for some l. A vector bundle is assumed to have a metric on
its fibres. Hence if ξ is a k-plane bundle over X, it has associated disc and
sphere bundles, Dξ and Sξ, a Thom space Tξ = Dξ/Sξ, and a Thom class
Uk ∈ Hk(Tξ) (coefficients Z or Z/2Z as appropriate).

Throughout this paper “m-manifold” means a smooth, compact man-
ifold of dimension m, equipped with a smooth embedding into Euclidean
space, Rm+k, k large (k > 2m + 1). If M is such a manifold, its tangent
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and normal bundles are given by

τ(M) = {(x, v) ∈ M×Rm+k | v is tangent to M at x},
ν(M) = {(x, v) ∈ M×Rm+k | v is perpendicular to M at x}.

One associates to M a map t : Sm+k = Rm+k ∪ {∞}−→T (ν), the Thom
construction, as follows: For ε > 0 sufficiently small, e : Dε(ν(M)) →
Rm+k, given by e(x, v) = x + v, is an embedding. Let t(u) = (x, v/ε) if
u = e(x, v) and = {S(ν(M))} otherwise. If ξ is a k-plane bundle over X, a
ξ-structure on a manifold M is a bundle map f : ν(M)−→ξ; fM : M−→X
denotes the underlying map.

We define the mth ξ-cobordism group, Ωm(ξ), to be the set of pairs
(M, f), where M is a closed m-manifold with a ξ-structure f , modulo
the equivalence relation generated by the following to relations. If i : M ⊂
Rm+k and j : Rm+k ⊂ Rm+k+1 are their given inclusions, then M equipped
with i is equivalent to M equipped with ji. Also (M1, f1) and (M2, f2) are
equivalent if they are ξ-cobordant, that is, there is a (m + 1)-manifold
N with a ξ-structure F and an embedding N ⊂ Rm+k×[0, 1] such that
∂N = M1∪M2, N is perpendicular to Rm+k×{0, 1}, (N,F ) ∩ Rm+k×{i −
1} = (Mi, fi). Disjoint union of pairs (M1, f1) and (M2, f2) makes Ωm(ξ)
into an abelian group.

Theorem 2.1 (Thom [21]). Sending (M, f) to T (f)t : Sm+k−→T (ξ)
induces an isomorphism, Ψ : Ωm(ξ)−→πm+k(T (ξ)).

Sometimes when ξ is a bundle over a particular X, we denote Tξ by TX
and Ωm(ξ) by Ωm(X), or when X = BGk by Ωm(G).

3. Groups of Homotopy Spheres

Kervaire and Milnor ([11]) defined the group of homotopy m-spheres,
θm, to be the set of closed, oriented m-manifolds homotopy equivalent to
Sm (for m > 4, by Smale’s Theorem, homeomorphic to Sm) modulo the
relation of h-cobordism (for a cobordism N between M1 and M2, the in-
clusions of Mi into N are required to be homotopy equivalences). Addition
is defined using the connected sum operation. Using Bott’s computation
of π∗(BO) and results of Adams concerning the J-homomorphism, they
prove:

Theorem 3.1. If M is a homotopy m-sphere, ν(M) is trivial (k large).

For the remainder of this section we assume m > 4. Let 0k denote
the vector bundle Rk−→pt. Thus an 0k-structure on M is a framing of
ν(M). If M is a homotopy m-sphere, choosing a framing of ν(M) gives an
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element of Ωm(0k)≈πm+k(Sk) and a simple argument shows that changing
the framing adds to this element an element in the image of J . Thus we have
an induced map Ψ : θm−→πm+k(Sk)/ Im J . The Kervaire-Milnor paper is
mainly devoted to computing the kernel and cokernel of this map, both of
which turn out to be finite cyclic groups; the kernel is denoted by bPm+1

= homotopy spheres bounded by stably parallelizable (m + 1)-manifolds.

4. Surgery

The process of doing surgery on an m-manifold with respect to an em-
bedding g : Sn×Dm−n−→M (Sq−1 and Dq are the unit sphere and disc
in Rq) consists of producing a new manifold M ′ and a cobordism N be-
tween M and M ′ as follows. Let N be a smoothed version of the iden-
tification space formed from M×I∪Dn+1×Dm−n by identifying (x, y) ∈
Sn×Dm−n with (g(x, y), 1). The boundary of N consists of three parts,
M = M×{0},M − g(Sn×Dm−n)∪Dn+1×Sm−n−1 and (∂M)×I. In what
follows M is closed or its boundary is a homotopy (m−1)-sphere which we
can cone off to form a topological closed manifold. Henceforth we ignore
∂M . Note M ′ has an embedding Dn+1×Sm−n−1−→M ′, namely the inclu-
sion, and applying surgery to it gives M . We define a ξ-surgery to be one in
which M, M ′ and N have ξ-structures making a ξ-cobordism. For our appli-
cations to bPm+1 we use ξ = 0k. The change in homology going from M to
M ′ can be easily computed from the homology exact sequences of the pairs
(N, M) and (N, M ′) and the observation that Hq(N, M)≈Hq(Dn+1, Sn).
If 2n < m − 1, Hq(M)≈Hq(M ′) for q < n and Hn(M ′)≈Hn(M)/{u},
where u is the homology class represented by g(Sn, 0). If 2n = m − 1
or m the outcome is more complicated. If m = 2n, M is oriented and if
there is a v ∈ Hn(M) such that the intersection number u·v = 1, then
Hn(M ′)≈Hn(M)/{u, v}.

Suppose M has a ξ-structure f and u is in the kernel of

(fM )∗ : Hn(M)−→Hn(X)

(X is the base of ξ). If X is simply connected, M can be made simply con-
nected by a sequence of n = 0 and 1 ξ-surgeries. The standard procedure
for killing u by ξ-surgery proceeds through the following steps:

(i) Represent u by a map g : Sn−→M such that fMg : Sn−→X is
homotopic to zero. If M and X are simply connected and πq(X,M)
is zero for q ≤ n, g exists. (If X = {pt}, M is (n− 1) -connected.)

(ii) Choose g so that it is a smooth embedding. If 2n < m or M is
simply connected and 2n = m, such a g exists.

(iii) Extend g to an embedding g : Sn×Dm−n−→M . Such an extension
exists if the normal bundle of Sn in M , ν, is trivial. Since fMg is
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homotopic to zero, ν is stably trivial. Hence ν is trivial if 2n < m,
or 2n = m = 4a and the Euler class of ν is zero, or 2n = m = 4a+2
and from the two possibilities for ν, trivial or τ(Sn), it is trivial.
This last case is what this paper is all about.

(iv) Extend the ξ structure over the cobordism N . This follows from
the hypotheses in (ii), except when m = 2n and n = 1, 3, 7.

5. Application of surgery to the calculation of bPm

Suppose M has an 0k-structure and the boundary of M is null or a
homotopy sphere. Starting in dimension zero, one can make it ([m/2]−1)-
connected by a sequence of 0k-surgeries. When m = 2n + 1, delicate
arguments show that 0k-surgery can be applied to produce an n-connected
manifold and hence, by Poincaré duality, an (m − 1)-connected manifold
which is either an m-disc or a homotopy m-sphere. Hence bP2n+1 = 0 and
coker Ψ = 0 in odd dimensions.

Suppose m = 2n and M is (n−1)-connected. We first consider the case n
even, which provides techniques and results which one tries to mimic when
n is odd. As we described above, we can kill u ∈ Hn(M ;Z) by 0k-surgery
if there is a class u ∈ Hn(M) such that u·v = 1 and, when u is represented
by an embedded n-sphere, its normal bundle, ν, is trivial; ν is trivial if
and only if its Euler class is zero if and only if u·u = 0. Thus one can kill
Hn(M) by surgery if and only if Hn(M) has a basis ui, vi, i = 1, 2, . . . , r,
such that ui·uj = vi·vj = 0 and ui·vj = δi,j , that is, a symplectic basis.
From this one can deduce that M can be made n-connected (and hence
m − 1 connected) if and only if the index of M , that is, the signature of
the quadratic form on Hn(M ;Z) given by the intersection pairing, is zero
([15]). For M closed, the Hirzebruch index theorem expresses the index
of M as polynomial in the Pontrjagin classes. But since M has an 0k-
structure, the Pontrjagin classes are zero. Thus the cokernel of Ψ is zero
in dimensions 4a, a > 1. Kervaire-Milnor also use the Hirzebruch index
theorem to calculate bP4a.

Now suppose M is as above with n odd, n 6= 1, 3 or 7. In the 1, 3, 7 cases
there is an obstruction to extending the 0k-structure over the cobordism
N . Although our function φ measures this obstruction, we do not treat
this case because of the difficulty of the surgery details required. Suppose
M is (n − 1)-connected. Let φ : Hn(M ;Z)−→Z2 = Z/2Z be defined as
follows: For u ∈ Hn(M ;Z), represent u by an embedded n-sphere and let
νu be its normal bundle in M . Let φ(u) = 0 or 1 according as νu is trivial
or isomorphic to τ(Sn) (the only two possibilities for νu).

Lemma 5.1. φ is well defined and satisfies:

φ(u + v) = φ(u) + φ(v) + u·v.
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Since n is odd, u·u = 0, and therefore φ(2u) = 0. Hence we do not
lose anything by taking u in Hn(M ;Z2). For the remainder of this paper
Hn(M) = Hn(M ;Z2). As above, we may make M (m − 1)-connected by
0k-surgery if Hn(M) has a symplectic basis ui, vi such that φ(ui) = 0 for
all i. Arf associated to quadratic functions such as φ a Z2 invariant given
by

A(φ) =
∑

φ(ui)φ(vi).

He also proved that given the pairing, A(φ) classifies such quadratic func-
tions and Hn(M) has a symplectic basis ui, vi such that φ(ui) = 0, for all
i, if and only if A(φ) = 0. Thus, if A(φ) = 0, M can be made (2n − 1)-
connected. Starting with a closed 2n-manifold, n odd 6= 1, 3, 7 and 0k-
structure f on M , by a sequence of surgeries one can produce an (n − 1)
connected (M ′, f ′) and then a φM ′ . Then A(φM ′) is the Kervaire invariant
of M and the following was proved in [10]:

Theorem 5.2. Sending (M, f) to A(φM ′) induces a homomorphism

α : Ω2n(0k)−→Z2 .

An element z ∈ Ω2n(0k) can be represented by a homotopy sphere, if and
only if α(z) = 0.

Corollary 5.3. In dimensions 4a + 2, the kernel and cokernel of Ψ are 0
or Z2; ker Ψ = 0 if and only if α = 0 and coker Ψ = 0 if and only if α 6= 0.

The present state of knowledge on α is:

Theorem 5.4. α 6= 0 for 2n = 2, 6, 14 ([11]), 30 ([24]), 62 ([2]) and α = 0
for 2n = 10 ([10]), 8a + 2 ([7]), 6= 2j − 2 ([3]). α 6= 0 if and only if h2

j

lives to E∞ in the Adams spectral sequence for stable homotopy groups of
spheres. ([3]) (Should such an element exist it is called θj.)

We prove Browder’s results in section 8.
An (n− 1)-connected 2n-manifold M with 0k-structure, boundary a ho-

motopy sphere and A(φM ) = 1 may be constructed as follows: One plumbs
together two copies of Dτ(Sn) as follows: Let h : Dn−→Sn be a homeo-
morphism onto the upper hemisphere of Sn given by h(x) = (x,

√
1− |x|2)

and r : Dn×Dn−→τ(Sn) be a bundle map covering h. Let M be a
smoothed version of Dτ(Sn)×{0}∪Dτ(Sn)×{1} with (h(x, y), 0) identi-
fied with (h(y, x), 1) for all x, y. An easy cell decomposition of M shows
that its boundary is two n-discs glued together along their boundaries and
hence the boundary of M is a homotopy sphere Σ. Let N be M with Σ
coned off.
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Theorem 5.5. If Σ is diffeomorphic to S2n−1, N is smoothable and has
Kervaire invariant one; otherwise N is a topological manifold which does
not admit a differentiable structure ([10]) and Σ generates bP2n ≈ Z2.

The proofs of the results cited in theorem 5.4 follow a very orderly
path which we now outline. We switch from homology to cohomology,
Hn(M) = Hn(M ;Z2). Composing with Poincaré duality, φ becomes φ :
Hn(M)−→Z2. One wants to associate to a closed 2n-manifold M , n odd,
φ satisfying:

(5.6) φ(u + v) = φ(u) + φ(v) + uv([M ]) where uv denotes cup product.
(5.7) If the Poincaré dual of u can be represented by an embedded n-

sphere with stably trivial normal bundle ν and n 6= 1, 3, 7, then φ(u) = 0
if and only if ν is trivial.

In [10] Kervaire defines φ for an (n− 1)-connected M as follows. Recall
the loop space Ω = Ω(Sn+1) has cohomology generators ei in dimensions
ni and under the multiplication Ω×Ω−→Ω, e1 goes to e1⊗1+1⊗e1 and e2

goes to e2⊗1+1⊗e2 +e1⊗e1. For u ∈ Hn(M) there is a map fu : M−→Ω
such that f∗u(e1) = u; φ is then defined by φ(u) = f∗u(e2) and satisfies 5.6
and 5.7. Then it is shown that α : π2n+k(Sk) = Ω2n−→Z2, as above, is a
well defined homomorphism. Kervaire proves that α is zero for n = 5 using
knowledge of π10+k(Sk), namely, this group has a unique element a of order
two and a = bc, b ∈ πk+1(Sk) which represents a manifold S1 ×M ′ which
then can be surgered to a homotopy sphere. We remark that an equivalent
way of defining φ would be to represent u by a map F : SM −→ Sn+1

(S= suspension) and define φ(u) to be the functional squaring operation
Sqn+1

F (sn+1), sn+1 the cohomology generator.
In [5] α : Ω8a+2(Spin) −→ Z2 was defined as follows: Ωm(Spin) = Ωm(ξ),

where ξ −→ BSpink is the universal Spink vector bundle. For n = 4a + 1,
the Adem relation,

Sqn+1 = Sq2Sqn−1 + Sq1Sq2Sqn−2

gives a relation on Hn(M),

Sq2Sqn−1 + Sq1Sq2Sqn−2 = 0

which in turn gives a secondary cohomology operation on M with a Spin
structure,

φ′ : Hn(M) −→ H2n(M) .

Define φ(u) = φ′(u)(M). The Spin structure is used to ensure that φ′

is defined on all of Hn(M) with zero indeterminacy. For example, Sq1 :
H2n−1(M) −→ H2n(M) is given by Sq1(v) = w1v. Then φ satisfies 5.6
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and 5.7 and defines α. In [7] we showed that α was zero on the image of
Ω8k+2(0k) (framed cobordism) in Ω8a+2(Spin) using the result of Conner
and Floyd and Lashof and Rothenberg that if A ∈ Ω8k+2(SU) goes to zero
in Ω8k+2(U), then A = B2C, B ∈ Ω8k(SU).

In [3] Browder developed α : Ω2n(ξ) −→ Z2, n even or odd, ξ −→ X, as
follows: One may assume that X is a smooth closed N -manifold, N large,
with normal bundle in RN+k equal to ξ. Suppose M is a smooth closed
2n-manifold with ξ-structure f . One may assume fM is an embedding.
Then the normal bundle of M in X is trivial and trivializing and using the
Thom construction one obtains a map F : X −→ SkM (SkM , the k-fold
suspension of M). Then φ is defined by

φ(u) = Sqn+1
F (Sku).

In order for φ(u) to be defined, F ∗(Sku) must equal zero, and for there
to be no indeterminacy, Sqn+1 : HN−n−1(X) −→ HN (X) must be zero.
Sqn+1(w) = vn+1w for w ∈ HN−n−1(X), where vn+1 is the Wu class of ξ.
One restricts the choice of ξ to bundles with vn+1 = 0. Then φ : P −→ Z2

where P = {u ∈ Hn(M)|F ∗(Sku) = 0}. Where defined φ satisfies 5.6 and
5.7. One restricts α to those (M,f) such that φ is zero on all u ∈ P such
that uv(M) = 0 for all v ∈ P . The Arf invariant algebra then works to give
an integer mod 2. Then α is related to the Adams spectral sequence by
computing a Postnikov system, up to the relevant dimension of MO[vn+1].
We give the details in section 8.

6. Generalized Groups of Homotopy Spheres

Several people, most notably Novikov, discovered that the Groups of
Homotopy Spheres paper ([11]) could be generalized by the following two
step process. Replace 0k, the bundle Rk −→ pt, by Ok

m the bundle Sm ×
Rk −→ Sm. Then the coker Ψ question asks: “Which elements {M, f},
where fM has degree one, can be represented by {M,f}, where fM is a
homotopy equivalence?” (For there to be an (M, f) with fM of degree one,
the top homology class of T (ξ) must be spherical.) The bPm+1 question
asks, “If {M,f} = {Sm, id}, can the cobordism between them be chosen
to be an h-cobordism?” Now replace all occurrences of Ok

m with ξ −→
X, where X is a simply connected CW complex of finite type satisfying
Poincaré duality in dimension m, that is there a class x ∈ Hm(X;Z) such
that cap product with x gives an isomorphism, Hn(X) −→ Hm−n(X) for
all n. Then everything in Kervaire-Milnor goes through. Suppose {M, f} ∈
Ωm(ξ) and fM has degree one. The trick is to consider the commutative
diagram:
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Hn(M) ←−−−−
fM

∗
Hn(X)

y[M ]∩
yx∩

Hm−n(M)
fM∗−−−−→ Hm−n(X)

By Poincaré duality fM ∗ is an epimorphism and fM
∗ is a monomor-

phism. For 2n < m one can kill elements in the kernel of fM ∗ just as in
[11]. This material is thoroughly described in Browder’s book “Surgery on
Simply Connected Manifolds” ([4]). This material, when X is not simply
connected, is the subject of Wall’s book “Surgery on Compact Manifolds”
([22]), where the general pattern of the above is followed but surgery in
the middle dimensions is much more complicated and leads to Wall’s L-
groups, in which the obstructions to doing the middle dimension surgery lie.
Ranicki develops in “Exact Sequences in the Algebraic Theory of Surgery”
([19]) a completely algebraic approach to these surgery obstructions, replac-
ing manifolds by their chain complex analogs. Michael Weiss refines this
algebraic approach to surgery obstructions and makes it more calculable
([23], [24]).

7. A Further Generalization of φ

We state the main theorems of this section and then prove them.
In the remainder of this section most spaces have base points, M+ is M

with a disjoint base point, [X, Y ] is the homotopy classes of maps from X
to Y , {X, Y } = lim[SkX,SkY ] and η : [X,Y ] −→ {X, Y } sends [f ] to {f}.
Let s : Sn −→ Kn be the π∗ generator.

Lemma 7.1. The Hopf construction h(λ) : S2n+1 −→ SKn on

λ : Sn × Sn s×s−−→ Kn ×Kn
µ−→ Kn

with µ the multiplication, gives a generator of {S2n,Kn}≈Z2.

Suppose M is a closed 2n-manifold (n even or odd). We form an abelian
group G(M) = Hn(M)×H2n(M) with addition

(u, v) + (u′, v′) = (u + u′, v + v′ + uu′).

Let j : Z2 −→ Z4 be the homomorphism sending 1 to 2. Then functions
φ : Hn(M) −→ Z4 satisfying φ(u + v) = φ(u) + φ(v) + j(uv([M ])) are in
one to one correspondence with homomorphisms h : G(M) −→ Z4 such
that h(0, v) = j(v([M ])). We will see that such functions occur in nature.
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Theorem 7.2. Let F : G(M) −→ {M+,Kn}, given by F (u, v) = η(u) +
h(λ)gv, where gv −→ S2n has degree one. Then F is an isomorphism.

Let ν be the normal bundle of M in R2n+k and ∆ : Tν −→ Tν ∧M+

be the diagonal map sending v to (v, p(v)), p : ν −→ M . Then S2n+k t−→
Tν

∆−→ Tν ∧ M+ is an S (Spanier-Whitehead) duality map ([20]). Then
{M+,Kn} ≈ {S2n, Tν ∧Kn} under the map sending SlM −→ SlKn to

S2n+k+l −→ SlTν −→ Sl(Tν ∧M+) = Tν ∧ SlM+ −→ Tν ∧ SlKn .

Let q(λ) ∈ {S2n, T ν ∧Kn} be the image of h(λ) under this map.

Lemma 7.3. If f : ν −→ ξ, the image of f∗(q(λ)) is non-zero if and only
if vn+1(ξ) = 0 and it is at most divisible by 2.

We call ξ a Wu-n spectrum if vn+1(ξ) = 0 in which case we can choose a
homomorphism ω : {S2n, T ξ∧Kn} −→ Z4 such that ω((f∗(q(λ))) = 2. Let
φ = φ(M, f, ω) be the composition Hn(M) = [M+,Kn] −→ {M+,Kn} −→
{S2n, T ν ∧Kn} −→ {S2n, T ξ ∧Kn} −→ Z4. Hence,

Theorem 7.4. φ = φ(M, f, ω) satisfies

φ(u + v) = φ(u) + φ(v) + j(uv([M ])).

Let BOk[vn+1] −→ BOk be the fibration with fibre Kn and k-invariant
vn+1 and let ξ[vn+1] be the pull back of the universal bundle over BOk.
Suppose M has a ξ[vn+1]-structure, Sn ⊂ M has normal bundle µ and
ν|Sn is trivial. Then Sn −→ M −→ BOk[vn+1] factors through Kn. Let
ε1 = 0 or 1 = degree of this map. Let ε2 = 0 or 1 according to whether
µ is trivial or τ(Sn). Let u be the Poincaré dual of the homology class
represented by Sn −→ M .

Lemma 7.5. If n is odd and 6= 1, 3, 7, then φ(u) = 2(ε1 + ε2).

Remark. If n is even, ε2 = Euler number of µ mod 4. If n = 1, 3, or 7 and
ε2 = 0, the element in π2n+k(Tξ ∧Kn) involves a map g : S2n+k −→ Sk

such that ε1 =Hopf invariant of g.

Let Sn × Sn −→ BOk[vn+1] be the composition of Kn −→ BOk[vn+1]
and s⊗ 1 + 1⊗ s. This lifts to a ξ[vn+1]-structure q. Then 7.5 gives

Lemma 7.6. The φ associated to (Sn × Sn, q). satisfies φ(s⊗ 1) = φ(1⊗
s) = 2.

The following gives an analog of the Arf invariant for these quadratic
functions.
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Definition 7.7. Let V be a finite dimensional vector space over Z2. A
function φ : V −→ Z4 is a (nonsingular) quadratic if it satisfies φ(u +
v) = φ(u) + φ(v) + jt(u, v) where j : Z2 −→ Z4 sends 1 to 2 and t is a
nonsingular bilinear pairing. If φi : Vi −→ Z4, i = 1, 2, are such functions
φ1 ≈ φ2 if there is an isomorphism T : V1 ≈ V2 such that φ1 = φ2T .
(φ1 + φ2) : V1 + V2 −→ Z4,−φ and (φ1φ2) : V1 ⊗ V2 −→ Z4 are defined
by (φ1 + φ2)(u, v) = φ1(u) + φ2(v), (−φ)(u) = −φ(u) and (φ1φ2)(u⊗ v) =
φ1(u)φ2(v).

A proof of the following appears in [6] and is straightforward. The first
part of the theorem is proved by showing that the Grothendieck group of
these functions is cyclic of order eight.

Theorem 7.8. There is a unique function σ from quadratic functions as
in 7.1 to Z8 satisfying:

(i) If φ1 ≈ φ2 , then σ(φ1) = σ(φ2)
(ii) σ(φ1 + φ2) = σ(φ1) + σ(φ2)
(iii) σ(−φ) = −σ(φ)
(iv) σ(γ) = 1, where γ : Z2 −→ Z4 by γ(0) = 0 and γ(1) = 1.

Furthermore σ satisfies:
(v) If φ = jφ′, σ(φ) = 4 Arf(φ′).
(vi) If φ : V −→ Z4, σ(φ) = dim V mod 2.
(vii) σ(φ1φ2) = σ(φ1)σ(φ2).
(viii) If U is a finitely generated abelian group, τ : U ⊗ U −→ Z is a

symmetric unimodular form, Ψ(u) = τ(u, u) and φ : U/2U −→ Z4

is defined by φ(u) = Ψ(u) mod 4, then φ is quadratic and σ(φ) =
(signatureΨ) mod 8.

(ix) Suppose t is the bilinear form of φ : V −→ Z4, V1
ν−→ νV

δ−→ V2 is
an exact sequence and t′ : V1 ⊗ V2 −→ Z2 is a nonsingular bilinear
form such that t′(u, δv) = t(νu, v). If φν = 0, then σ(φ) = 0.

(x) With i =
√−1,

σ(φ) = (4i/π) ln(2(dim V )/2/(
∑

u∈V

iφ(u))).

Theorem 7.9. Sending (M,f) to σ(φ(M,f, ω)) induces a homomorphism
σω : Ω2n(ξ[vn+1]) −→ Z8 such that σω composed with

Ω2n(0k) −→ Ω2n(ξ[vn+1])

gives the Kervaire invariant.

We can apply σω to the general, simply connected surgery problem as
follows.
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Definition 7.10. For n odd, a 2n-Poincaré quadruple (X, ξ, β, ω) is a
connected finite CW complex X, a k-plane bundle ξ over X, ω a homo-
morphism as above and β ∈ πm+k(Tξ) such that

Sm+k β−→ Tξ
∆−→ Tξ ∧X+

is an S duality (which makes ξ a Wu bundle).

Theorem 7.10. Then by the Thom Theorem, β gives a 2n-manifold M
with a ξ-structure f such that fM has degree one and the surgery obstruction
to making fM a homotopy equivalence is σ(φ(X, idX , ω))− σ(φ(M, f, ω)).

Proof of 7.1 and 7.2. Let ι be the generator of Hn(Kn). Let E −→ Kn+1

be the fibration with fibre K2n+1 and k-invariant ι2n+1. Then Sιn −→ Kn+1

lifts g : Sιn −→ E and on homotopy groups πi πi(g) is an isomorphism
for i ≤ 2n + 1. Then since M is 2n dimensional {M, Kn} = [SM,SKn] ≈
[SM, E] ≈ [M, ΩE] = [M,Kn × K2n] = Hn(M) × H2n(M). The addi-
tive structure comes from the fact that under multiplication ΩE×ΩE −→
ΩE, ι2n goes to ι2n ⊗ 1 + 1⊗ ι2n + ιn ⊗ ιn. Applying this to M = Sn × Sn

gives 7.1.

Proof of 7.3. Let V (X) = {S2n+k+l, X ∧ Sl(Kn)}. We want to know the
image of V (Sk) in V (Tξ) and how divisible it is. We can assume Tξ is a
finite (k − 1)-connected CW complex and Sl(Kn) −→ Kn+l is a fibration
with fiber K2n+l and k-invariant Sqn+1ιn+l. Applying {S2n+k+l, T ξ∧( )},
this gives an exact sequence

−→ Hk+n+1(Tξ)
Sqn+1

−−−−→ Hk(Tξ) −→ V (Tξ) −→ Hk+n(Tξ) −→

and the same with Tξ replaced by Sk. For x ∈ Hk+n+1(Tξ) and U the
Thom class,

U(Sqn+1(x)) = χ(Sqn+1)(U)(x) = vn+1U(x) .

The two exact sequences make a ladder from which the desired result can
be read off.

Proof of 7.5. Note, applying the Thom construction and the Thom class
give maps Sn × Sn −→ Tτ(Sn) −→ Kn and the Hopf construction gives
S2n+1 −→ STτ(Sn) −→ SKn. Also the element a ∈ π2n+k(Tξ ∧Kn) such
that φ(u) comes from it is given by S2n+k −→ TνSn −→ Sk(Sn+)∧Tµ −→
Sk(Kn) ∧Kn = SkKn ∨ SkKn ∧Kn −→ Tξ ∧Kn. Combining these two
gives the desired result.
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Proof of 7.9. To show that σ(ω) is well defined suppose (M, f) = ∂(N, F ).
By virtue of 7.8(ix) and the exact sequence

Hn(N)
j∗−→ Hn(M) −→ Hn+1(N, M),

it is sufficient to show that φ(j∗(u) = 0. The element a ∈ π2n+k(Tξ ∧Kn)
such that φ(j∗(u) = ω(a) is

S2n+k+1 −→TνN/TνM −→ TνN ∧ (N/M) −→
TνN ∧ SM+ −→ TνN ∧ SN+ −→ Tξ ∧ SKn

But this is zero because N/M −→ SM+ −→ SN+ is zero.

8. Proof of Theorem 5.4

Let B = BOk, Kn = K(Z2, n), vn+1 : B −→ Kn+1 represent the (n+1)-
th Wu class, C = {(b, a) ∈ B ×KI

n+1 | a(1) = vn+1(b)}, D = BOk[vn+1] =
{(b, a) ∈ C | a(0) = ∗}, i : B −→ C by i(b) = (b, ab) where ab(t) = vn+1(b)
and π : (C,D) −→ (B × Kn+1, B × {∗}) and π′ : C −→ B × Kn+1 by
(b, a) → (b, a(0)). The following is easily verified:

Lemma 8.1. The map i is a homotopy equivalence. π is a fibre map with
fibre Kn and in the Serre cohomology spectral sequence for π, Ep,q

2 = 0 for
q > 0 and p+q ≤ 2n+2 except En+1,n

2 ≈ Z2. Hence π∗ : Hp(B×Kn+1, B×
{∗}) ≈ Hp(C, D) for p ≤ 2n + 2 except it may have a kernel isomorphic to
Z2 for p = 2n + 2.

Lemma 8.2. The kernel of

π∗ : H2n+2(B ×Kn+1, B × {∗}) −→ H2n+2(C, D)

is generated by vn+1 ⊗ ιn+1 + 1⊗ ι2n+1.

Proof. Recall that via the inclusion map j : X −→ (X, A), H∗(X) acts
on H∗(X, A), and for u ∈ H∗(X, A), u2 = j∗(u)u. Note iπ′ sends b to
(b, vn+1(b)) and hence (iπ′)∗(1 ⊗ ιn+1) = vn+1. Thinking of 1 ⊗ ιn+1 ∈
Hn+1(B ×Kn+1, B × {∗}),

π∗(1⊗ ι2n+1) = π′∗j∗(1⊗ ιn+1)(1⊗ ιn+1)

= π∗(vn+1 ⊗ 1)(1⊗ ιn+1)

= π∗(vn+1 ⊗ ιn+1).

Under the map C −→ B sending (b, a) to b, the universal bundle over B
pulls back to bundles over C and D whose Thom spaces we denote by
TD, TC, and TB and whose Thom classes we denote by U . The map π
induces a map Tπ : TC ∧ TD −→ TB ∧Kn+1. And,
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Lemma 8.3. The kernel of Hq(Tπ) for q ≤ 2n + 2 + k is generated by

vn+1U ⊗ ιn+1 + U ⊗ ι2n+1 = χ(Sqn+1)U ⊗ ιn+1 + 1⊗ ι2n+1

=
∑

i>0

χ(Sqi)(U ⊗ Sqn+1−iιn+1).

The same Steenrod square manipulations yield:

Lemma 8.4. For j < n + 1, TB −→ TC −→ TC/TB −→ TC ∧ Kn+1

sends (U ⊗ Sqjιn+1) to

∑

k>0

(Sqk(vn+1vj−kU) + χ(Sqk)((Sqj+1−kvj)U)).

We very briefly describe the portion of Adams’ work on cohomology
operations ([1]) relevant to this proof. All the spaces we will deal with
will be approximately k-connected, and the results we state will be correct
in a range of dimensions up to about 2k. Suppose L and K are spaces
and F : L −→ K is a map, E is the space of paths in L starting at a
base point and P : E −→ L sends a path to its end point. Note E is
contractible and P is a fibre map with fibre the loops on K, Ω(K). Let
p : EF = F ∗E −→ L be the induced fibration. Suppose G1 : L1 ←− L2 is
an inclusion and F : L2 −→ L2/L1 is the quotient map. Then L1 = EF

and p = G. Suppose G2 : L2 −→ L3 and G2G1 is homotopic to the
constant map. Then G1 lifts to G′1 : L1 −→ EG2 and we form EG′1 .
There is a map G′2 : EG1 −→ Ω(L2) such that EG′2 = EG′1 . Call this
space E(G1, G2). We apply this to our situation by taking L1 = TB,
L2 = TB ∧ Kn+1, L3 = K2n+2+k, G1 : TB −→ TC/TD −→ TB ∧ Kn+1

and G2 : TB ∧ Kn+1 −→ K2n+2+k representing the cohomology element
in Lemma 8.3. The map TD = T (BOk[vn+1]) −→ T (BOk) = TB lifts to
h : TD −→ E(G1, G2), and

Lemma 8.5. πq(h) is an isomorphism for q ≤ 2n + k.

Proof. TC/TD −→ TB ∧ Kn+1 lifts to r : TC/TD −→ EG2 . Hq(r) is
an isomorphism for q ≤ 2n + 2 + k, hence πq(r) is an isomorphism for
q ≤ 2n + 1 + k and hence πq(h) is as an isomorphism for q ≤ 2n + k.

The cohomology of both TC = TB and TB∧Kn+1 are free modules over
the mod two Steenrod algebra A. If {ui} is a basis for H∗(TB) over A and
{vi} is a basis for H∗(Kn+1), {ui⊗vj} is a free A-basis for H∗(TB∧Kn+1).
Up to homotopy type TB =

∏
K|ui| and similarly for TB ∧Kn+1.

Let s : Sk −→ TD represent the generator of πk(TD). Then the map
of 2n-framed cobordism to 2nBOk[vn+1] cobordism corresponds to s∗ :
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π2n+k(Sk) −→ π2n+k(TD) ≈ π2n+k(E(G1, G2)). Let V : Kk −→ TB be
the map such that U , the Thom class pulls back to ιk. Then Sk −→ TD −→
TB factors through V : Kk −→ TB and hence Sk −→ TD −→ E(G1, G2)
factors through E(G1V, G2) giving a map t : Sk −→ E(G1V,G2). In [1]
Adams (with some refinements) that one may of viewing E(G1V, G2) is as
the beginning of a tower building Sk. This tower gives a spectral sequence
with E2 = ExtA(Z2,Z2) and a map S2n+k −→ E(G1V,G2) representing
an element of E2 is said to live to E∞ if it lifts all the way up the tower
giving a map S2n+k −→ Sk (more or less). At this two stage level, the
relevant elements of E2 have names “hihj”, i ≤ j. Adams proves that
if a map S2n+k −→ Sk −→ E(G1V,G2) is non zero, then G1V and G2

satisfy the following condition: The algebra A is generated by elements
Sq2i

. Let hi : A −→ Z2 be the linear map which is zero on decomposables
and hi(Sq2j

= δi,j . Let x, {yi} and z be A generators of H∗(Kk),H∗(TB∧
Kn+1) and H∗(Kk+2n+2). Then G∗2(z) =

∑
aiyi, and G∗1(yi) = bix. (Since

G2G1V is homotopic to zero,
∑

aibi = 0.)

Theorem 8.6 (Adams). If a map S2n+k −→ Sk −→ E(G1V, G2) is
non-zero, then for some s and t ≤ s,

∑
hs(ai)ht(bi) = 0.

Using the fact that χ(Sq2i

) = Sq2i

+ decomposables, and inspecting the
elements in 8.2 and 8.4, one sees that the condition in 8.6 is satisfied exactly
when n is of the form 2i−1. If a framed 2n-manifold has Kervaire invariant
one, it will be non-zero in Ω2n(BO[vn+1]). Conversely, if h2

i lives to E∞,
there is a non-zero map s : S2i−2+k −→ Sk −→ E(G1, G2). By an easy
Hopf invariant one type argument, it goes to zero in EG1 and hence must
be the π∗ generator of the fiber of E(G1, G2) −→ EG1 ,K2i−2+k. But this
generator corresponds to (S2i−1 × S2i−1, q) since by 7.6 this manifold has
Kervaire invariant one and the underlying map of q factors through Kn.
Hence,

Corollary 8.7 (Browder). There is a framed 2n-manifold with Kervaire
invariant one, if and only if n = 2i − 1 and h2

i lives to E∞ in the Adams
spectral sequence for π∗(S0).

9. Other Work

An amusing low dimensional application of the generalized Kervaire in-
variant is afforded by immersions of surfaces = closed, compact smooth
2-manifolds in R3. If f : S −→ R3 is such an immersion, associate to it
φ : H1(S) = H1(S;Z2) −→ Z4 as follows. Represent u ∈ H1(S) by an
embedded circle and let T be a tubular neighborhood in S of this circle.
Define φ(u) to be the number of half twists (by 180◦) of the twisted strip
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f(T ). This makes sense mod 4 and φ has the quadratic property with re-
spect to the intersection pairing on H1(S). Then the quadratic functions
associated to the intersection pairing are in one to one correspondence with
the regular homotopy classes of immersion of S in R3 and the Kervaire in-
variant gives an isomorphism of the cobordism group of such immersions
onto Z8 ([6]).

Ochanine has generalized the above to surfaces immersed in 3- manifolds
and to a (8a + 2)-manifold V immersed in a (8a + 4)-manifold and dual
to w2(M). He also related KO characteristic classes for Spin (8a + 2)-
manifolds to these issues ([18]).

A variant of the above is to take S with boundary S1 and f : S −→ R3

an embedding. Then f(∂S) is a knot. In this connection the Kervaire
invariant appears in a number of knot and link theory papers. For example,
Levine expresses the Kervaire invariant of a knot in terms of its Alexander
polynomial ([12]).

There are a number of papers in homotopy theory studying the existence
of framed manifolds having Kervaire invariant one, for example [13]. The
existence of such manifolds in dimensions 30 and 62 was first proved by
homotopy groups of spheres calculations ([2], [14]). In [8] Jones constructed
a stably framed 30-manifold with Kervaire invariant one and also proved
that a similar construction does not work in dimension 62. In [9] Browder’s
results for 2n 6= 2j − 2 are deduced from the Kahn-Priddy theorem.
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France 81, no. 5 (1980).
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