HISTORY OF THE KERVAIRE INVARIANT PROBLEM

WILLIAM BROWDER

The history of this invariant could very well be considered to start with the
paper of Pontryagin in 1938, where he introduced Framed Bordism (as it is now
known) as a tool to calculate homotopy groups of spheres, using smooth manifolds.
He proved that the second stable homotopy group of the n-sphere was zero, but
this was soon shown to be incorrect by algebraic methods. The problem was the
absence of the Kervaire invariant.

For oriented closed manifolds of dimension 4k the middle dimensional intersec-
tion pairing defines a nonsingular symmetric bilinear form over the integers, whose
signature gives a famous algebraic invariant often called the index of the manifold.
For dimensions 4k+2 the intersection bilinear form is skew symmetric, and thus can
be put in canonical form, so no apparent such invariants exist. But if, in the mod
2 version, we can enrich the intersection form to be associated to a quadratic form,
that quadratic form has an invariant, called the Arf invariant after its discoverer.

I like to call this invariant the democratic invariant as it can be defined as follows:

Let V' be a vector space of finite dimension over the integers mod 2, and let
q:V — Z/2 be a quadratic form with associated bilinear form f (i.e., g(a +b) =
q(a) + q(b) + f(a,b)). Consider g to be a vote between 0 and 1 (the candidates)
among the elements of V' (voters) and the Arf invariant of ¢ is defined to be the
winner of the election. If the bilinear form f is nonsingular the election is decisive.
However, in the general case the election is a tie if and only if there is some element
r of V such that f(r,z) = 0 for all z in V, but ¢(r) = 1. (The election reaches a
clear result unless some radical element votes positively).

Pontryagin had failed to note that an underlying obstruction to the process he
was carrying out in dimension 2 was quadratic rather than linear, so that its Arf
invariant was an obstruction for his argument, but he corrected this mistake in a
later paper in 1955.

This might be considered the prehistory of the topological invariant, and in
my view the history properly begins with the paper of Kervaire in 1960 where he
constructed a PL 10-manifold which was not of the homotopy type of a smooth
manifold. In it he constructed a cohomology operation from dimension 5 to 10,
for a 4-connected closed 10-manifold which could be framed (stable tangent bundle
trivial) on the complement of a point, and this operation was quadratic. In his
example the Arf invariant was non trivial, while for any smooth manifold of that
type, he proved it would be trivial because of the vanishing of some homotopy.

Kervaire’s operation is defined in analogous circumstances for all dimensions and
in the famous 1962 paper of Kervaire and Milnor defined the middle dimensional
surgery obstruction in dimensions of the form 4k 4 2. It followed from the surgery
theory developed there that this defined a Framed Bordism invariant. You could
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do surgery on the framed manifold to make it 2k-connected to define the invariant
and do surgery on a framed bordism to make the bordism similarly connected to
prove it well defined.

If a PL manifold M has a trivial tangent bundle (or more properly microbundle)
over the complement of a point it is in fact smoothable away from that point, from
the theory of smoothing of PL manifolds of Mazur and Hirsch-Mazur. If M is of
dimension 2n and (n — 1)-connected, then its nt" homology has a basis of embedded
spheres, and the normal bundle of each of these spheres is stably trivial. When n =
1, 3 or 7 it is trivial, but in other dimensions there are nontrivial possibilities, and
if n is odd there is a single nontrivial possibility, namely the tangent bundle to the
n-sphere. The quadratic form in these cases is simply given by whether this normal
bundle is trivial or not. (For n = 1, 3 or 7, the definition of a quadratic form is
related to the framing and is not homotopy invariant). The cohomology operation
of Kervaire detects this non-triviality, and its model is actually the Thom complex
of this tangent bundle.

If the Arf invariant of this form is zero, one can find enough embedded products
S™ x R™ representing a basis of the middle cohomology to carry out surgery to
make M into a homotopy sphere, and otherwise you cannot.

Thus the question of whether or not a framed manifold could have a nonzero
Kervaire invariant then became a central question for differential topology, equiva-
lent to the calculation of the subgroup of homotopy spheres which bounded framed
manifolds in dimension 4k 4+ 1. The answer was yes for dimensions 2, 6 and 14 be-
cause of the parallelizability of the spheres of dimensions 1, 3 and 7, but remained
open for other dimensions of the form 4k + 2.

E. H. Brown in 1965 showed that for dimension 8% + 2 Spin manifolds, the co-
homology operation could be defined on the middle dimension without assuming
4k-connectivity, so that the Kervaire Invariant could be made a Spin bordism in-
variant, using surgery only to make the manifold simply connected. Subsequently,
he and F. P. Peterson in 1966 used this to show the Kervaire Invariant vanished on
Framed Bordism in dimension 8k + 2.

Then in 1968, I proved that the Kervaire Invariant vanished on Framed Bordism
in dimensions different from 2™ — 2, and related possible nonvanishing in those
dimensions to the existence of elements in the homotopy of spheres related to certain
elements in the Adams spectral sequence. It turned out that this element had
already been constructed by Mahowald and Tangora in dimension 30 and such an
element was later constructed in dimension 62 by Barratt, Jones and Mahowald.

My method was to define the quadratic form by means of a functional Steenrod
operation on a subgroup of the middle cohomology mod 2 which allowed me to define
the form on a manifold M which had been “oriented” in a theory in which the 2k+2
Wu class was zero, a condition satisfied by any 4k+2 manifold. (The Wu classes are
defined using the Steenrod operations in M and are directly related to the Stiefel-
Whitney classes). A subtlety was that everything depended on how you made this
Wu class vanish, how you chose the “orientation”. This definition allowed one to
define the Kervaire invariant immediately on the framed (or otherwise “oriented”)
manifold without doing any surgery or other geometrical operation, and so gave
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a definition in a purely homotopy theoretical context of spaces satisfying Poincaré
duality.

For a smooth manifold M, my definition can be translated into a condition on
extending vector fields on submanifolds of M representing the middle dimensional
mod 2 cohomology.

A simpler proof of my theorem on Framed Bordism was given by Jones and Rees,
and Jones gave a beautiful construction of the 30 dimensional manifold representing
the Mahowald-Tangora homotopy element.

After the results in dimensions 30 and 62, attention turned to dimension 126, the
first open case, but this has resisted concerted attempts by many strong homotopy
theorists and still is unknown. Many had tried to prove that all of these possible
elements (or manifolds) existed but, conscious of the Hopf invariant 1 results (only
three possible dimensions 1, 3 and 7), some began to try to prove that they did not
exist beyond some dimension. Now this has been carried out by Hill, Hopkins and
Ravenel for dimensions greater than 126.

Much other work has been done on the Kervaire Invariant because of its im-
portance in surgery theory, e.g., Sullivan (product formula), Ranicki (algebraic
surgery), and others.
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