Chapter IV. Generalized Equivariant Cohomology

In this chapter we show how to construct generalized equivariant cohomology theories, using G-spectra. We then show how any generalized theory is connected by a spectral sequence to the "classical" theory of Chapter I.

Equivariant cohomology via G-spectra

We work with the category of spaces with base points in this section. Let Y be a G-spectrum. Then for any G-space X we have homomorphisms

$$n_k : [[S^{k-n}X;Y_k]] \stackrel{\S}{\to} [[S^{k-n+1}X;SY_k]] \stackrel{\varepsilon_{k\#}}{\longrightarrow} [[S^{k-n+1}X;Y_{k+1}]].$$

Thus, with these maps, the groups $[[S^{k-n}X;Y_k]]$ form a direct system and we define

$$(1.1) \quad \tilde{H}_{G}^{n}(X;\underline{Y}) = \lim_{k} [[S^{k-n}X;Y_{k}]] = \lim_{k} [S^{k}X;Y_{m+k}]].$$

Note that if \boldsymbol{X} is locally compact then this is the same as

(1.2)
$$\pi_{-n}(\underline{E}(X,\underline{Y})) = \lim_{k} \pi_{k-n}(E(X,Y_k)).$$

Note that $[[S^kX;Y_{n+k}]] \approx [[X;\Omega^kY_{n+k}]]$. If $A \subseteq X$ is invariant under G, then for any G-space W there is the exact sequence

$$[[X \cup C_{\Delta}; W]] \rightarrow [[X; W]] \rightarrow [[A; W]]$$

of (2.1) in Chapter III. If (X,A) is a pair of G-complexes, then $X \cup C_A$ has the same equivariant homotopy type as does X/A. Thus, taking $W = \Omega^k Y_{n+k}$, and passing to the limit over k, we obtain the exact sequence

$$(1.3) H_G^n(X/A;\underline{Y}) \to \tilde{H}_G^n(X;\underline{Y}) \to \tilde{H}_G^n(A;\underline{Y})$$

on the category \mathcal{L}_0 of G-complexes with base point.

Using the natural homeomorphism $S^{k-n}X \approx S^{k-(n+1)}SX$ we obtain a natural isomorphism $s_k \colon [[S^{k-n}X;Y_k]] \xrightarrow{\approx} [[S^{k-(n+1)}SX;Y_k]]$. These commute with the n_k and hence define a natural isomorphism

$$S^*: \widetilde{H}_G^n(X;\underline{Y}) \rightarrow \widetilde{H}_G^{n+1}(SX,\underline{Y}).$$

We have shown that $\tilde{H}_{G}^{*}(X;\underline{Y})$ defines an equivariant cohomology theory on \mathcal{B}_{0} .

2. Exact couples

In this section we provide some background from the theory of exact couples. Let

$$(2.1) D \xrightarrow{i} D$$

be an exact couple where E and D are bigraded, k has total degree 1 and i and j have total degree 0. Note that $(jk)^2 = 0$ and let H(E) be the homology of E with respect to the differential jk. The derived couple of (2.1) is

where i' = i|iD, j' is induced by ji^{-1} and k' is induced by k. Let $D_1 = D$ and $E_1 = E$. Iterating the above procedure we obtain the (r-1)st derived couple

where $E_r = H(E_{r-1})$ and $D_r = iD_{r-1} = i^{r-1}D$.

We shall now assume that

(2.2)
$$\begin{cases} deg \ i = (-1,1) \\ deg \ j = (0,0) \\ deg \ k = (1,0) \end{cases}$$

and it is then easy to check that

(2.3)
$$\begin{cases} \deg i_r = (-1,1) \\ \deg j_r = (r-1,1-r) \\ \deg k_r = (1,0) \end{cases}$$

We let $d_r = j_r k_r$ which has degree (r, 1-r). The system $\{E_r^{p,q}\}$ together with the differentials d_r then form a spectral sequence.

We shall now assume that, for some integer N,

(2.4)
$$\begin{cases} E^{p,q} = 0 & \text{for } p < 0 \text{ and for } p > N \\ D^{p,q} = 0 & \text{for } p < 0. \end{cases}$$

From the exact sequence

... +
$$D^{p,q} \xrightarrow{j} E^{p,q} \xrightarrow{k} D^{p+1,q} \xrightarrow{i} D^{p,q+1} \xrightarrow{j} E^{p,q+1} + ...$$

we see that

i:
$$D^{p+1,q} \xrightarrow{\approx} D^{p,q+1}$$
 for $p > N$.

For n = p+q we let J^n be a group which is isomorphic to $D^{p,q+1}$ for p > N and let $\theta^{p,q+1} \colon J^n \to D^{p,q+1}$ be some isomorphism chosen so that

commutes. Following θ by iterates of i we have homomorphisms $\theta^{p,q+1} \colon J^n \to \mathbb{D}^{p,q+1}$ defined for all p (with n = p+q) such that (2.5) commutes.

If r > N we see that $d_r = 0$, since $E_r^{p,q} = 0$ for p < 0 and for p > N. Thus

$$E_{\mathbf{r}}^{\mathbf{p},\mathbf{q}} \approx E_{\mathbf{r}+1}^{\mathbf{p},\mathbf{q}} \approx \dots$$

for r > N and we let $E_{\infty}^{p,q}$ denote the common value. The (r-1)st derived couple has the form

$$\dots i^{r-1}D^{p,q} \xrightarrow{j_r} E_r^{p,q} \xrightarrow{k_r} i^{r-1}D^{p+r,q-r+1} \xrightarrow{i} i^{r-1}D^{p+r+1,q-r} + \dots$$

Now $i^{r-1}D^{p,q} \subset D^{p-r+1,q+r-1} = 0$ for r sufficiently large and $i^{r-1}D^{p+r,q-r+1} = \text{Im } \theta^{p+1,q} \subset D^{p+1,q}$ for r sufficiently large.

Thus, for r large, this exact sequence has the form

$$(2.6) 0 \to E_{\infty}^{p,q} \to I_{m} \theta^{p+1,q} \xrightarrow{i} I_{m} \theta^{p,q+1} \to 0.$$

That is, we have an exact sequence

(2.7)
$$0 \to E_{\infty}^{p,q} \to \frac{J^{p+q}}{\ker^{p+1,q}} \xrightarrow{i} \frac{J^{p+q}}{\ker^{p,q+1}} \to 0$$

Put

(2.8)
$$J^{p,q} = \ker\{\theta^{p,q+1}: J^{p+q} + D^{p,q+1}\}$$

so that (2.7) provides the isomorphism

(2.9)
$$E_{\infty}^{p,q} \approx J^{p,q}/J^{p+1,q-1}$$
.

Thus we have that the spectral sequence $E_{\mathbf{r}}^{\mathbf{p},\mathbf{q}}$ converges to the graded group associated with the (finite) filtration

$$\dots \supset J^{p,q} \supset J^{p+1,q-1} \supset \dots$$
 of $J^{p+q} = D^{M+1,p+q-M}$ for $M \geq N$.

3. The spectral sequence of a filtered G-complex

Let K be a G-complex and let $\{K_{\mathbf{r}}\}$ be a sequence of G-subcomplexes such that

(3.1)
$$\begin{cases} K_{\mathbf{r}} \subset K_{\mathbf{r}+1} \\ K_{-1} = \emptyset \\ K_{N} = K \end{cases}$$

where N is some given integer.

Let $\{\mathcal{H}^{*}, \delta^{*}\}$ be <u>any</u> equivariant cohomology theory and put

(3.2)
$$\begin{cases} E^{p,q} = \mathcal{N}^{p+q}(K_p, K_{p-1}) \\ D^{p,q} = \mathcal{H}^{p+q-1}(K_{p-1}). \end{cases}$$

Then the exact cohomology sequence of the pair (K_p, K_{p-1}) provides an exact couple

as in section 2.

The differential d_1 is the composition

(3.3)
$$E_1^{p,q} = \mathcal{H}^{p+q}(K_p, K_{p-1}) + \mathcal{H}^{p+q}(K_p) \stackrel{\delta}{\to} \mathcal{H}^{p+q+1}(K_{p+1}, K_p)$$

$$= E_1^{p+1,q}.$$

And the spectral sequence converges to the graded group associated with the filtration

$$J^{p,q} = \ker\{\mathcal{Y}^{p+q}(K) + \mathcal{Y}^{p+q}(K_{p-1})\}$$
of $J^{p+q} = \mathcal{Y}^{p+q}(K)$.

4. The main spectral sequence

Let $\{\mathcal{H}^*, \mathcal{S}^*\}$ be any equivariant cohomology theory and let K be a G-complex of dimension N < ∞ . If K is not finite then we shall assume that \mathcal{H}^* also satisfies the axiom:

(A) If S is a discrete G-set with orbits S_{∞} then $\prod i_{\infty}^* : \mathcal{H}^n(S) \to \prod \mathcal{H}^n(S_{\infty})$ is an isomorphism, where $i_{\infty} : S_{\infty} \to S$ is the inclusion.

Letting $K_p = K^p$, the p-skeleton of K, the preceding section provides a spectral sequence with

$$\mathbf{E}_{1}^{p,q} = \mathcal{H}^{p+q}(\mathbf{K}^{p},\mathbf{K}^{p-1}) \approx \mathcal{H}^{p+q}(\mathbf{K}^{p}/\mathbf{K}^{p-1}).$$

Now

$$K^{p}/K^{p-1} \approx S^{p}C_{p}^{+}$$

the p-th reduced suspension of the discrete G-set C_p^+ where C_p^- stands for the set of all p-cells of K. Thus

$$\mathbf{E}_{1}^{p,q} \approx \tilde{\mathcal{N}}^{p+q}(\mathbf{S}^{p}\mathbf{C}_{p}^{+}) \approx \tilde{\mathcal{N}}^{q}(\mathbf{C}_{p}^{+}) \approx \mathcal{N}^{q}(\mathbf{C}_{p}^{-}).$$

Now let $h^q \mathcal{EC}_G$ denote the coefficient system of Chapter I, section 4, example (1). That is

$$h^{q}(G/H) = \mathcal{H}^{q}(G/H) = \tilde{\mathcal{Y}}^{q}((G/H)^{+}).$$

We shall define an isomorphism

(4.1)
$$\alpha: \tilde{\mathcal{H}}^{q}(C_{q}^{+}) \stackrel{\text{def}}{=} C_{G}^{p}(K;h^{q})$$

as follows:

For $\sigma \in C_n$ let

$$i_{\sigma}$$
: $(G/G_{\sigma})^+ \rightarrow C_p^+$

be the equivariant map defined by $i_{\sigma}(gG_{\sigma}) = g\sigma\epsilon C_{p}$. Also let

$$j_{\sigma}: C_{p}^{+} \rightarrow (G/G_{\sigma})^{+}$$

be defined by $j_{\sigma}(g\sigma) = gG_{\sigma}$ and $j_{\sigma}(\tau) = base$ point if τ is not in the orbit of σ . Note that

$$\begin{cases} i_{g\sigma} = i_{\sigma}\hat{g} \\ j_{g\sigma} = \hat{g}^{-1}j_{\sigma} \\ j_{\sigma}i_{\sigma} = 1 \\ j_{\tau}i_{\sigma} = 0 \text{ (the base point) if } \tau \not\in G(\sigma), \end{cases}$$
where $\hat{g} = R_g$: $G/G_{g\sigma} = G/gG_{\sigma}g^{-1} + G/G_{\sigma}$. Also note that $i_{\sigma}j_{\sigma} = G/gG_{\sigma}g^{-1} + G/G_{\sigma}$.

where $\hat{g} = R_g$: $G/G_{g\sigma} = G/gG_{\sigma}g^{-1} \rightarrow G/G_{\sigma}$. Also note that $i_{\sigma}j_{\sigma}$ is the identity on $G(\sigma)$ and collapses everything else to the base point.

We have the induced maps

$$\begin{cases} i_{\sigma}^{\star} \colon \widetilde{\mathcal{Y}}^{q}(C_{p}^{+}) \to \widetilde{\mathcal{Y}}^{q}((G/G_{\sigma})^{+}) = h^{q}(G/G_{\sigma}) \\ j_{\sigma}^{\star} \colon \widetilde{\mathcal{Y}}^{q}((G/G_{\sigma})^{+}) \to \widetilde{\mathcal{Y}}^{q}(C_{p}^{+}). \end{cases}$$

Define, for $\lambda \in \widetilde{\mathcal{J}}^{q}(C_{p}^{+})$ and $\sigma \in C_{p}^{-}$,

(4.3)
$$\alpha(\lambda)(\sigma) = i_{\sigma}^{*}(\lambda).$$

To check that $\alpha(\lambda)$ is equivariant we compute

$$\alpha(\lambda)(g\sigma) = i \frac{*}{g\sigma}(\lambda) = (i_{\sigma}\hat{g})^{*}(\lambda)$$
$$= \hat{g}^{*}i_{\sigma}^{*}(\lambda) = \hat{g}^{*}(\alpha(\lambda)(\sigma))$$

as was to be shown. (See Chapter I, sections 5 and 6.)

We must check that α is an isomorphism. We shall show that its inverse is given by the map

$$\beta: C_G^p(K,h^q) \rightarrow \tilde{\mathcal{H}}^q(C_p^+)$$

defined as follows: Let $f \in C_G^p(K, h^q)$. Note that

$$j_{g\sigma}^*(f(g\sigma)) = (\hat{g}^{-1}j_{\sigma})^*(\hat{g}^*(f(\sigma))) = j_{\sigma}^*(f(\sigma)).$$

Let T \subset C be a system of representatives of the orbits of G on the set C and define

(4.4)
$$\beta(f) = \prod_{\sigma \in T} j_{\sigma}^{*}(f(\sigma)).$$

Now we compute

$$\alpha(\beta(f))(\sigma) = i_{\sigma}^{*}(\beta(f)) = i_{\sigma}^{*}(\prod_{\tau \in T} j_{\tau}^{*}(f(\tau)))$$
$$= i_{\sigma}^{*}j_{\sigma}^{*}(f(\sigma)) = (j_{\sigma}i_{\sigma})^{*}(f(\sigma)) = f(\sigma)$$

so that $\alpha\beta = 1$. Also

$$\beta(\alpha(\lambda)) = \prod_{\sigma \in T} j_{\sigma}^{*}(\alpha(\lambda)(\sigma))$$

$$= \prod_{\sigma \in T} j_{\sigma}^{*}(i_{\sigma}^{*}(\lambda)) = \prod_{\sigma \in T} (i_{\sigma}j_{\sigma})^{*}(\lambda) = \lambda$$

so that $\beta\alpha$ = 1. Thus α is an isomorphism as was to be shown.

Now we claim that under the isomorphism

$$E_1^{p,q} \approx \hat{\mathcal{H}}^q(C_p^+) \stackrel{q}{\rightarrow} C_G^p(K;h^q)$$

the differential d_1 becomes, up to sign, the coboundary.

We first remark that, up to sign, $d_1: E_1^{p,q} \to E_1^{p+1,q}$ may be identified with the homomorphism

$$\tilde{\mathcal{J}}^{p+q}(K^p/K^{p-1}) \stackrel{\epsilon}{\to} \tilde{\mathcal{J}}^{p+q+1}(S(K^p/K^{p-1})) \stackrel{\psi^*}{\longrightarrow} \tilde{\mathcal{J}}^{p+q+1}(K^{p+1}/K^p)$$

where $\psi_p \colon K^{p+1}/K^p \to S(K^p/K^{p-1})$ is an equivariant map defined as follows: If σ is a (p+1)-cell and $f_{\sigma} \colon S^p \to K^p$ is a characteristic map (chosen equivariantly) we follow f_{σ} by collapsing $K^p \to K^p/K^{p-1}$ and suspending $S^{p+1} \to S(K^p/K^{p-1})$ (unreduced on the left, reduced on the right). Then the cell $\sigma/\dot{\sigma} \subset K^{p+1}/K^p$ is identified with S^{p+1} in a canonical way (taking the base point into the north pole of S^{p+1}). The resulting maps $\sigma/\dot{\sigma} \to S(K^p/K^{p-1})$ are put together to form the map $\psi_p \colon K^{p+1}/K^p \to S(K^p/K^{p-1})$. The verification of this relies on the fact that in the Puppe sequence for the inclusion i: $K^p/K^{p-1} \to K^{p+1}/K^{p-1}$ the map $C_i \to S(K^p/K^{p-1})$ may be identified with ψ_{p+1} . The details will be left to the reader.

Now $K^{p+1}/K^p \approx S^{p+1}C_{p+1}^+$ and $S(K^p/K^{p-1}) \approx S^{p+1}C_p^+$ so that the map ψ_p is described by the induced maps $\sigma/\tilde{\sigma} \subseteq S^{p+1}C_p^+ + S^{p+1}C_p^+$ = $\bigvee_{\tau} S(\tau/\tilde{\tau}) + S(\tau/\tilde{\tau})$ (where $\sigma \mathcal{E} C_{p+1}, \tau \mathcal{E} C_p$). It is easy to see that, in fact, this map has degree $[\tau:\sigma]$ (see Chapter I, section 1).

Thus d_1 is induced, up to sign, by

$$\eta_p^*: \tilde{\mathcal{Y}}^{q+1}(SC_p^+) + \tilde{\mathcal{Y}}^{q+1}(SC_{p+1}^+)$$

where $\eta_p \colon SC_{p+1}^+ = \bigvee_{\sigma} S_{\sigma}^- \to \bigvee_{\tau} S_{\tau}^- = SC_p^+$ is an equivariant map such that the induced map $S_{\sigma}^- \to S_{\tau}^-$ has degree $[\tau \colon \sigma]$. (Here we use S_{σ}^- to stand for a copy of the circle indexed by the cell σ .)

We claim that the following diagram commutes

$$\widetilde{\mathcal{H}}^{q+1}(SC_{p}^{+}) \xrightarrow{\eta_{p}^{*}} \widetilde{\mathcal{H}}^{q+1}(SC_{p+1}^{+})$$

$$\downarrow_{\alpha}S^{-1} \qquad \qquad \downarrow_{\alpha}S^{-1}$$

$$C_{G}^{p}(K;h^{q}) \xrightarrow{\delta^{p}} C_{G}^{p+1}(K;h^{q})$$

where we use S to denote the suspension isomorphism. The proof is straightforward but will involve some cumbersome details. First, suppose σ is a (p+1)-cell and τ is a p-cell of K with $K(\tau) \subset K(\sigma)$. Then let θ_{σ}^{τ} denote the equivariant map G/G_{σ}^{+} G/G_{τ} induced by inclusion $G_{\sigma} \subset G_{\tau}$. Using $[\tau:\sigma]$ to denote maps of degree $[\tau:\sigma]$ we note that the diagram

$$S(G/G_{\sigma})^{+} \xrightarrow{Si_{\sigma}} SC_{p+1}^{+} \xrightarrow{\eta_{p}} SC_{p}^{+}$$

$$\bigvee [\tau \colon \sigma] \qquad \qquad \bigvee SG_{\sigma}^{+} \xrightarrow{V_{\sigma}} \bigvee_{\tau \in T} S(G/G_{\tau})^{+}$$

of equivariant maps commutes, where T is the set of all p-cells τ with $K(\tau) \subset K(\sigma)$.

The induced diagram in cohomology is

$$\widetilde{\mathcal{H}}\left(S(G/G_{\sigma})^{+}\right) \xleftarrow{\left(Si_{\sigma}\right)^{*}} \widetilde{\mathcal{H}}\left(Sc_{p+1}^{+}\right) \xleftarrow{\eta_{p}} \widetilde{\mathcal{H}}\left(Sc_{p}^{+}\right)$$

$$\sum_{\tau} [\tau : \sigma] \qquad \qquad \qquad \qquad \qquad \sum_{\tau} (S\theta_{\sigma}^{\tau})^{*}$$

$$\sum_{\tau \in T} \widetilde{\mathcal{H}}\left(S(G/G_{\sigma})^{+}\right) \xleftarrow{\Sigma\left(S\theta_{\sigma}^{\tau}\right)^{*}} \sum_{\tau \in T} \widetilde{\mathcal{H}}\left(S(G/G_{\tau})^{+}\right)$$

Since $(S \varphi)^* = S \circ \varphi^* \circ S^{-1}$ we obtain from this diagram that

$$(4.6) \qquad (\mathrm{Si}_{\sigma})^* \eta_p^* = \mathrm{S} \left[\sum_{\tau} [\tau : \sigma] (\mathrm{i}_{\tau} \theta_{\sigma}^{\tau})^* \right] \mathrm{S}^{-1}.$$

Now let us verify that (4.5) commutes. Let $\lambda \in \widetilde{\mathcal{H}}^{q+1}(SC_p^+)$ and, as usual, let σ be a (p+1)-cell of K. Then

$$\alpha(S^{-1}(\eta_p^*(\lambda)))(\sigma) = i_{\sigma}^*(S^{-1}(\eta_p^*(\lambda)))$$

$$= S^{-1}(Si_{\sigma})^*\eta_p^*(\lambda)$$

$$= \sum_{\tau} [\tau : \sigma](i_{\tau}\theta_{\sigma}^{\tau})^*(S^{-1}\lambda).$$

(The last equality comes from (4.6).) On the other hand

$$\delta^{p}(\alpha S^{-1}(\lambda))(\sigma) = \sum_{\tau} [\tau : \sigma](\theta_{\sigma}^{\tau})^{*}(\alpha (S^{-1}(\lambda))(\tau))$$

directly from the definition of δ^{p} . This may be further simplified to

$$\sum_{\tau} [\tau : \sigma] (\theta_{\sigma}^{\tau})^* i_{\tau}^* (S^{-1}\lambda),$$

the same as in (4.7). This shows that (4.5) commutes and hence, finally, that $d_1 \colon E_1^{p,q} \to E_1^{p+1,q}$ becomes the coboundary under our isomorphism with $C_G^*(K;h^q)$. Thus we have

(4.8)
$$E_2^{p,q} \approx H_G^p(K;h^q)$$
.

As noted before, the spectral sequence converges (when dim K < ∞) to the graded group associated with some filtration of $\mathcal{H}^{p+q}(K)$.

5. The "classical" uniqueness theorem

Suppose that \mathcal{H}^* is an equivariant cohomology theory satisfying the dimension axiom (4) of section 2, Chapter I. Let $h \in \mathcal{C}_G$ denote the "coefficients" of this theory. That is $h(G/H) = \mathcal{H}^0(G/H)$, and so on. Let K be a finite dimensional G-complex. If K is infinite we assume that (A) of the last section is satisfied.

In this case the spectral sequence of the last section degenerates for ${\tt r}$ > 2. In fact

$$E_2^{p,q} = \begin{cases} H_G^p(K;h); & q = 0 \\ 0 & ; & q \neq 0 \end{cases}$$

It follows that, in fact,

(5.1)
$$\mathcal{H}^{p}(K) \approx H_{G}^{p}(K;h)$$

and naturality is not hard to verify. Thus this is the <u>only</u> equivariant classical cohomology theory having coefficients h. The reader should note that, for general $h \in \mathcal{C}_G$, h is indeed the coefficient system of the cohomology theory $H^*_G(K;h)$. That is, there is a natural isomorphism

$$h(G/H) \approx H_G^0(G/H;h)$$
.