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Chapter III. Function Spaces, Fibrations and Spectra

In this chapter we shall gather some miscellaneous
items. The first and third sections contain some definitions
and terminology that will be used later.

1. Function spaces

In this section we work in the category of G-spaces

with base point. The group G is arbitrary and need not be

finite.
If X and Y are G-spaces we let
F(X,Y)
denote the space of all (base point preserving) maps from X
to Y in the compact-open topology. F(X,Y) is a G-space with
the following G-action: If f: X > Y and geG we put
g(£) (x) = g(£(g”'x)).
The set F(X,Y)G of stationary points of G on F(X,Y) is just the
set of equivariant maps from X to Y. Thus we put
(1.1) E(X,Y) = F(x,0)C.
Note that the reduced join
XAY = XxY/Xvy
of G-spaces has a natural G-action induced from the diagonal
action on XxY. Also recall that, for Y locally compact, there
is a homeomorphism
(1.2) F(XAY,2) % F(X,F(Y,2))

taking f into T defined by (f(x))(y) = f(xAy). Note that
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that is, g(f) = g(f), which means that (1.2) is equivariant.

In particular (1.2) induces a homeomorphism
(1.3) E(XAY,Z) = E(X,F(Y,2)),
when Y is locally compact.

If G acts trivially on X, so that X = XG, then clearly

E(X,Y) F(X,YG). In particular,

(1.4) E(X,F(Y,2)) = F(X,E(Y,Z)) when X = XC.
Now the reduced suspension SX = SA X is a G-space, the
action on the factor S = S1 being trivial. Similarly, the

loop space X = F(S,X) is a G-space, as above. Thus (1.2) pro-

vides the equivariant homeomorphism

(1.5) F(SX,Y) = F(X,QY).
The comultiplication SX » SXv SX and the loop multiplication on
QY induce Hopf G-space structures (see Chap. II, §4) on F(SX,Y)
and F(X,QY) and it is well-known, and elementary, that these
structures correspond under (1.5). In particular, passing to
sets of stationary points, we have the isomorphism
(1.6) E(SX,Y) = E(X,QY)
of Hopf-spaces.

It is easy to see that (1.6) preserves equivariant
homotopies. Thus, denoting equivariant homotopy classes by
double square brackets, as before, we have the one-one

correspondence
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(1.7) [[sX3Y]] > [[XgaY]]
which preserves addition.

F(SX,QY) possesses two Hopf G-space structures. Let us
denote the one induced by comultiplication in SX by o and that
inducedby loop multiplication by @. Then it is well-known,
and easily checked, that we have the identity

(feg)m (hek) =(fO0 h)e(gak).
This identity is, of course, also satisfied on the fixed point
set E(SX,QY), and also for the induced multiplications on
[[SX29Y]]. But the latter set has an identity e for both ¢
and 0 and we have

aIB = (eca)m (Bee) = (ecTB)e(ade) = Boa

and aB = (ace)d (eeB) = (ame)e(emB) = aeB so that
(1.8) a¢*B = Boa = aI R = BT a
on [[SX3:9Y]]. (The statement on E(SX,RY) is that the correspond-
ing maps are homotopic.)

It should be noted that when X is locally compact, we

can improve these remarks as follows. We have, by (1.3) and
(1.4),
E(SX,Y) = E(S,F(X,Y)) = F(S,E(X,Y)) = QE(X,Y),
Also [[X3Y]] = uOE(X,Y) so that we obtain
(1.9) fixsayj] = [[sX3Y]] = = (E(X,Y)).
Similarly,

(1.10) [[x:0"Y1] = [[S"X3Y]] = =_(E(X,Y)).



I11.4

*
2. The Puppe sequence

In this section we consider only spaces with base
points. Let f: X -+ Y be an equivariant map between two
G-spaces. Let Cf = CX UfY be the reduced mapping cone of f
with the obvious G-action, and let j: Y = Cf be the canonical
inclusion. It is cle;r that, fo; any G-space Z, the sequence
(2.1) [lcgrzll s (1vs211 & (ix521)
of sets with base points is exact. It can be shown that the
mapping cone Cj of j has the same homotopy type as does SX
(see Puppe, Math. Zeitschrift, 69 (1958) pp. 299-344). The
proof of this is sufficiently canonical to be equivariant and

we shall not give the details of this here. Thus Cj has the

equivariant homotopy type of SX.

As in [Puppe, loc. cit.] we combine (2.1) with the

similar sequence for y-4 c. - Cj A~ SX and continue this pro-

f
cess to finally obtain a long exact sequence
(2.2) ...+ [[8"Cgs2l] » [I8"Y32]] » [[s"x32]] ~
n-1

[s" tegsz1n -

3. G-spectra

In this section we work with the category of spaces

(or G-spaces) with base points. By a G-spectrum we mean a

collection Y = {YnlneZ} of G-spaces, together with equivariant
maps

(3.1) e, SY <+ Y

n n+l

or, by (1.6), of equivariant maps Yn -+ QYn+1' We note that
it is sufficient to have Yn defined for n > n, and let Yn be a

point for n «< ng.
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If Y is a G-spectrum and if X is a locally compact
G-space, then
E(X,Y)
denotes the G-spectrum consisting of the G-spaces F(X,Yn) and

the equivariant maps defined by the composition

F(X,Y ) » F(x,aeY  ,)— F(SX,Yn+1)—+ 9F(X,Yn+1).
In particular, QY is a G-spectrum.
Note that if Y is a G-spectrum then lG = {Yg} is a

spectrum. In particular, for X locally compact,
E(LY) = E(X,N°
is a spectrum consisting of the spaces E(X,Yn).
For a detailed treatment of spectra see G. Whitehead,
Generalized homology theories, Trans. A.M.S. 102 (1962),
pPp. 227-283.
We shall list below some examples of G-spectra:
(1) If Y is a G-space (with base point) and n is an integer,

k . .
let Yn = Y and Yn+k = S°Y with the obvious maps SYm + Y

This forms a G-spectrum S(Y,n).

m+1

(2) If p: G » O(r) is a representation of G on RY then
o @ 1 defines an action (with base point) on s* and thus
defines a G-space S;. We denote the G-spectrum i(sz,r) by S(e).
{(3) Let G = 22 and let P be the representation defined by
the antipodal map in RY¥. We denote the G-spectrum S(p) by
S(r). Here the n-th G-space in S(r), for n > r, is s" with a

standard involution which leaves Sn-r

stationary. Thus S(r)
may be called the spectrum of spheres with stationary points

of codimension r.
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(4) Let we @G and let Yn be a G-complex of type (w,n).

Since QY has type (w,n) there is a map n,: Y - QYn+1 whose

n+l n

characteristic class

-~

%" () eHy (Y .8 (9Y 1)) % Hom(&_ (Y ),d (Y _, 1))

n n+l
corresponds to the identity 1: w + w (via given isomorphisms
mn(Yn) 2 w and wn(QYn+1) = w). Thus we obtain a spectrum

denoted by K(w), the Eilenberg-MacLane G-spectrum of .

*
4. G-fiber spaces

Let n: X + Y be an equivariant map between two G-spaces,
where G is finite. We shall say that = is a G-fiber map if it
has the equivariant homotopy lifting property with respect to
G-complexes. That is, if K is a G-complex, f: K + X is equi-
variant and F: KxI » Y is equivariant with F(k,0) = wf(k), then
there exists an equivariant map

F': KxI » X with F = nF' and F'(k,0) = f(k).
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(4.1) Theorem. =x: X > Y is a G-fiber map iff

n|XH: x5y s a (Serre) fibration for every H C G.

Proof. 1If K is any complex then any map K -» XH has a
unique equivariant extension to f: Kx(G/H) -+ X (where the
action of G on K is trivial). Moreover, an equivariant map
Kx(G/H) + X must take Kx(H/H) into XH. It follows easily that

XH »> YH must be a fibration when X -+ Y is a G-fibration.

Suppose that each XH > YH is a fibration. Let K be a
G-complex, f: K + X equivariant and F: KxI + Y equivariant with
F(k,0) = nf(k) for each keK. We must construct F': KxI » X
equivariant with F = «F' and F'(k,0) = f(k). This will be
done by induction on the skeletons of K. Suppose F' is defined

on K" lx1 and let o be an n-cell of K. Let H = G_. Now

g
£: K(o) + X, F: k(o)x1 » Y! and F': (k" lnk(o))x1 » xb.
Since XH g YH is a fibration we may extend F' to a map
K(o)xI » XH covering F. There is then a unique equivariant
extension of F' to the cells goxl for geG. If this construc-
tion is repeated for each orbit of G on the set of n-cells
of K, we obtain the required extension of F' to K"'xI + X.

As an example, let Y be a G-space such that each YH is
arcwise connected and let yoeYG be a base point. Then the
space PY of paths on Y with initial point Yo is a G-space and
the canonical projection »: PY + Y is equivariant. Clearly

(PY)H = P(YH) and the restriction P(YH) > v

of ® is just the
path-loop fibration of YH. Thus 7 is a G-fibration.
Suppose now that »: X »- Y is a @-fibration. Let

erXG be a base point and put Yo = W(xo). The G-space
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F = 1 '(yy) is called the fiber of this fibration. As in the

non-equivariant theory, we have an exact sequence
i# Ty 8# i#
(4.2) R wn(F,xo)-—*mn(X,xo) — mn(Y,yo)-—* wn_l(F,x&'-*...

In fact, the exactness of this sequence follows from the exact-

ness of the homotopy sequences -of the fibrations XH + YH with

fiber FH. Of course one must show that i#, Ty and 3#, which

are defined so that their values on G/H are the corresponding
homomorphisms for the fibration xH + YH, are in fact morphisms

in GG. This is left to the reader.



