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Chapter II., Equivariant Obstruction Theory

In this chapter we shall assume that the reader is
reasonably familiar with obstruction theory on CW-complexes.
We shall attempt to strike a reasonable balance between giving
no details on the one hand and developing the theory from
scratch on the other by making use of the results, without proof,
of the classical theory.

1. The obstruction cocycle

In this section n > 1 will be an integer, fixed throughout
the discussion. Let K be a G-complex and L a G-subcomplex. Let
Y be a G-space. We shall assume, for simplicity, that the set
v of stationary points of H on Y is non-empty, arcwise connected
and n-simple for each subgroup H € G, (We note here that the
theory could be generalized to relative CW-complexes (K,L)
with no trouble.)

Assume that we are given an equivariant map

%: K"UL + Y. Let o be an (n+1)-cell of K and let f£_: S" » K
[+

n
be a characteristic map for o (note that the characteristic maps
may be chosen equivariantly).

The subgroup Go leaves K(o), and hence Im fc, stationary.

It follows that G° leaves Im(q’Ofo) stationary. That is,

(£ Xs™) <Y ©.
g G

Thus 9’°f° defines an element cga(o)e wn(Y o), and clearly
€e (0) = 0 if o is in L. But, with Gn(Y) defined as in example
(3) of Chap. I, 54, this defines a cochain

"k, Lse ),

csPGC
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G gGog

L,y 89 -y and

Now c ¢, (go) is represented by c?ofgoz S

‘Fofgo = ?ogcfo = go:pvfo so that co (go) = gy(cqe (0)). This

means that c, is an equivariant cochain (by the defintion of
Gn(Y)), that is

n+l

cp€Cq (K, L;a_(Y)).

It is called the obstruction cochain.

(1.1) Proposition. écq, = 0.

Proof. Let t be an (n+2)-cell and consider the compu-

tation of (8ce ) (7). To calculate this, one "pushes" the coeffi-
G
cients to those on 1; that is to nn(Y T), and calculates the

classical coboundary. But c, restricted to K(t) and with
G
coefficients pushed to nn(Y T) is just the obstruction cochain,

in the classical sense, to extending «[K"NnK(t) to K"*ln K(1).
Thus (ch,)(r) = 0 is a fact from the classical theory.

(1.2) Proposition. ¢, = 0 iff ¢ can be extended equi-
variantly to Kn+1lJL.

Proof. 1If ¢ (o) = 0 then clearly we may extend % to

G
K" ULUo in such a way that ¢ (o) C Y 9. Define, for geG

and xeo, -1
G gG g

¥(gx) = gr(x)eg(y 9) =Y 7 = v
If gx = g'x then g' = gh for some he G, so that g' £(x) = ge(x)
(since </(x)e YG"), which shows that this definition is valid.
The proof is completed by taking an (n+l)-cell from each orbit

of G on the (n+l)-cells and following the procedure above.
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Now suppose that ¢ and @ are equivariant maps K" uL » Y
and let F: (K“'lu L)xI + Y be an equivariant homotopy between
?IKn-lLIL and OIKn'IL)L. Define an equivariant map ¢ #.0: (kx1)™

U(LXI) + Y by

(¢ #.90)(x,0) = @ (x)
(% #:8) (x,1) = 8(x)
(¥ #.0)(x,t) = F(x,t),

If Cf|Kn'1LJL = OIKn'lLJL and F is the constant homotopy # will

denote #F.

The deformation cochain d
‘,"”Fsg

€ Cg(K,L;&n(Y)) is defined by
Yo,F,009) = oy gloxD).

It is clear that

(1.3) é6d = c, - ¢C

¥,F,0 0 ¢

# = . . . =
If #. = #, that is if F is constant, then we put 4,0 = 9%,F,0°

(1.4) Proposition. Let ¢: K*UL + Y be equivariant and

let diicg(K,L;&n(Y)). Then there is an equivariant map

0: K*uL » Y, coinciding with < on Kn'lLlL, such that d =d.

¢, 9

Proof. Let o be an n-cell of K, not in L, and choose a
characteristic map f : (Bn,Sn'l) + (K",Kn-l) for o. Let
G
J" = B™x{0} US" !x1 € B™xI and define ¥: J" » Y ° by ¥(x,t) =

¢(f°(x)). As shown in non-equivariant obstruction theory, ¥ may

G

be extended to a map V¥': a(anI) + v °
G

(or any element) d{c) € nn(Y °). It is clear that such extensions

representing the element

may be chosen equivariantly, since d is an equivariant cochain.
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n-1

Now @ can be defined by 6|K UL = ?lKn'liJL and, for an

n-cell ¢ and x«& g,

0(x) = \l"(f;I(x),l).
It is clear that d‘;‘,’9 = d,.
The cocycle cg © CE*I(K,L;GH(Y)) represents a cohomology
class
n+1 .
[C¢]€HG (KnL:wn(Y))

which depends, by (1,3), only on the equivariant homotopy class

of ?lKn-ILJL. Moreover, if [ce¢ ] = 0, then by (1.4) qIKn'ILJL
extends to 9: K"UL + Y such that Co = 0 (choose d with &8d = -c9a).

Hence, by (1.2), we have the following result:

(1.5) Theorem. Let ¢ KYUL + Y be equivariant. Then

n+l

VIKn-llJL can be extended to an equivariant map K UL » Y

_i_g_f_ [C(P] = 0.

Remark. Suppose that ¢,0: K * Y are equivariant and

n-1

that F: (K UL)xI - Y is an equivariant homotopy between the

restrictions of ¢ and 8 to Kn-llJL. As above we obtain an
equivariant map 90#F9= (Kn'lxI)LJQ + Y where Q = (LxI) VU (Kx3I).

Then the obstruction to extending <?#F0 to (KnXI)LIQ is
n+l L~
cqug €CG (KxI,LxIU KxaI,wn(Y)).
This group is isomorphic to Cg(K,L;&n(Y)) and this isomorphism

takes St o into d 0 (now a cocycle).
F

¥¢,F,
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2. Primary obstructions

At various points in this section we shall make one or
more of the following assumptions:
(1) YH is r-simple,non-empty and arcwise connected for all r and
HCG (e.g. aO(Y) = 0 = &I(Y)).

(2) HZTH(K,L;b_(Y))

0 for all r < n.

(3) Hé(K,L;&r(Y)) = 0 for all r < n.

(4) Hé'l(K,L;&r(Y)) 0 for all r < n.

Numbers appearing in each statement indicate which of these
assumptions are used. The results in this section are all easy
applications of §1 to the study of extensions of equivariant maps
and homotopies. The proofs will be omitted since they offer no
difficulties.

Suppose first that we are given an equivariant map f: L + Y.

(2.1) Lemma. (1,2) There exists an equivariant exten-

sion fn of f to K" UL.

(2.2) Lemma. (1,3) If fn and g, are equivariant exten-

sions of f to K> UL then [cf ] = [c_ 1.
_— = — g,

(Hint: Use (2.1) to find a homotopy fn-l ~ 8h-1 relative
to L.)

(2.3) Definition. (1,2,3) Let y"*!(f)e Hg*I(K,L;an(Y))

be the (unique) cohomology class [cf ] for any equivariant

n
Yn+1(f) is called the primary ob-

extension f of f to K"uL.

struction to extending f and is an invariant of the equivariant

homotopy class of f.
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(2.4) Proposition. If k: K' » K is cellular and equi-

n+l

variant then y" 1 (fek) = k (v }(£)) when this is defined.

(This is also true without cellularity but we have not

*
yet defined k in the general case.)

(2.5) Theorem (Extension). (1,2,3) If we also have

that HE+1(K,L;6r(Y)) = 0 for n <t < dim(K-L) then an equivariant

n+l

map f: L » Y has an equivariant extension to K iff v (f) = 0.

Now suppose that we are given two equivariant maps
£f,8: K * Y such that f|L = g|L. These induce an equivariant map
f#g: Q - Y where Q = (KX3I) U (LxI).

There is a natural isomorphism

Zs uptl(kx1,Q58, (1))

}

(2.6) A: HE(K,L;Gn(Y))

(induced by the obvious isomorphism on the cochain level). We

define, under conditions (1,3,4):

(2.7) W (£,8) = AT (Y™ Eeg))
and note that

(2.8) w"(£,g) + o' (g,h) = w"(£,h)
and

(2.9) w" (£ok,gek) = k (o (f,g))

(where k: (K',L') » (K,L) is cellular and equivariant) when this
is defined.

An application of (2.5) to this situation yields:
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(2.10) Theorem (Homotopy) (1,3,4) If we also have that

HE(K,L;&r(Y)) =0 for n < r < dim(K-L) and if f,g: K + Y are

equivariant with f|L = g|L, then f and g are equivariantly homo-

topic (relative to L) iff w"(f,g) = 0.

A standard argument now proves the following result:

(2.11) Theorem (Classification), Assume that (1) holds

and also that

T L~ _ _ ,r-1 L~

HG(K,L,wr(Y)) = 0 = HG (K,L,wr(Y)) for r < n
T - _ _ I+l -

HG(K,L,wr(Y)) = 0 = HG (K,L,wr(Y)) for r > n,

Let f: K - Y be an equivariant map. Then the equivariant homotopy

classes (relative to L) of maps g: K + Y (with g|L = f£|L) are in

one-one correspondence with the elements of

n =
HG(K,L,Nn(Y))

and g » wn(g,f) is such a correspondence.

As a matter of notation, we shall use double brackets:

[[X3Y]], where X and Y are G-spaces, to denote the equivariant

homotopy classes of (equivariant) maps X - Y. Thus, for L = §,
the conclusion of (2.11) states that [[g]] <+ wn(g,f) is a
one-one correspondence

Ar n P
[[K;Y]] = HG(K;a (Y)).
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3. The characteristic class of a map

In this section we assume that Y is a G-space with base
point Yo eYG such that
Gq(Y,yO) = 0 for q < n,
for a given integer n > 1. If n = 1, we assume that ml(Y,yO)
(that is, each wl(YH,yO)) is abelian.
Let K be a G-complex and let 0 denote the constant
(equivariant) map 0: K ~» Yo €Y. For any equivariant map

f: K+ Y we define the characteristic class of f to be
(3.1) X" (£) = o (£f,0)€ Hg(x;mn(Y)).

If k: K' = K is cellular and equivariant then by (2.9)
X"(£ok) = Kk (x"(£)).
(The cellularity condition is unnecessary as will follow from
later facts.)
The following four results are standard and immediate
consequences of the definitions and of §2. We shall omit their

proofs:

(3.2) Proposition. If H;(K;& _(Y)) = 0 for r > n then

two maps f,g: K + Y are homotopic iff xn(f) = xn(g).

(3.3) Theorem. If (K,L) is a G-complex pair and f: L + Y

is given with characteristic class xn(f)e HE(L;mn(Y)), then the

primary obstruction to extending f to K equivariantly is
n+l *..on
y (f) =8 (x (£))

*
where & : HR(L;a_(Y)) + Hg*l(x,L;mn(Y)) is the coboundary.
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(3-4) Corollary. 1 H§+1(K,L;mr(Y)) = 0 for r > n then

an_equivariant map f: L -~ Y has an equivariant extension to K iff

x"(£) €Im[i": HE(K;E (Y)) + HE(L;3, (V)]

(3.5) Theorem. If f,g: K + Y are equivariant and if

f|L = g|L, then

PE) = X ) = 5 " (f,8))-

(Here xn(f) and xn(g) are in chx;mn(v)), un(f,g) is in
HZ(K,L;&R(Y)) and j* is induced by (K,¢) -+ (K,L).)

We conclude this section with some remarks on the case
in which Y is,itself, a G-complex. These remarks will not be
used in any essential way elsewhere in these notes. The identity
1: Y * Y yields a class

X"(¥) = x"(1) = w"(1,0) € HE(Y;E (V)),

which is the primary obstruction to equivariantly contracting Y
and is called the characteristic class of Y.

For any f: K + Y we obviously have
*
(3.6) X"(£) = £ (x"(N)).

By Chap. I, (10.5) we have that
Hg (Y;a_(Y)) = Hom(a_(Y),&_(Y))

and it can be shown that under this isomorphism xn(Y) corresponds
to the identity homomorphism. (Perhaps the easiest way to prove
this is to note that Y has the equivariant homotopy type of a
G-complex which has no cells in dimensions between 0 and n, and
then to prove the result in this case. See §7.) This is, of
course, an important result since it allows the computation of

the characteristic class.
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4. Hopf G-spaces

Let Y be a G-space with base point Yo+ Let G act diago-
nally on YxY, that is, g(y,y') = (gy,gy'). Such a space Y

together with a base point preserving equivariant map @: YxY » Y

is said to be a Hopf G-space if the restriction YVY =+ Y of ©
is equivariantly homotopic to 1V 1. This obviously implies that
YH, for H € G, is a Hopf-space.

For example, if Y is any G-space with base point, then
the loop space QY is a Hopf G-space, where the action of G on
a loop, or generally on a path, f: I + Y, is defined by g(f)(t) =
g(f(t)).

Let us denote the product 8(y,y') by yoy' in a given
Hopf G-space Y. Let (K,L) be a pair of G-complexes and let
P, K*UL + Y be equivariant, where Y is (also) as in §1.
We have the map

sov: KTUL » Y

defined by (¥ O ¥)(x)

¢ (x)T ¢¥(x). Since addition in the
homotopy groups of a Hopf-space is induced by the Hopf-space
G

operation, as is well-known, and since each Y ° is a Hopf-space,
it follows immediately that
in ¢®™l(k,L;8_ ()

G > "n :

It follows immediately that in the situation of (3.1),

with Y a Hopf G-space and f,f': K - Y equivariant, we have

(4.1) x"(ETf) = X" () + x"(£).
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*
5. Equivariant deformations and homotopy type

In this section we shall prove some elementary facts
concerning equivariant deformation. These results could be
encompassed in an obstruction theory of deformation (which con-
tains the obstruction theory of extensions) but we have chosen
not to do so.

Let Y DO B be a pair of G-spaces and assume that

(5.1) mq(Y,B) = 0 for all 0 < q <n,

in the sense that, for every subgroup H C G, every map
(Bq.Sq-l) b (YH,BH) is deformable, through such maps, to a map

into BH. (We allow the case n = *.)

(5.2) Lemma. Let (K,L) be a pair of G-complexes with

dim(K-L) <n and let ¢: K,L * Y,B be an equivariant map. Then

¥ is equivariantly homotopic relative to L to a map into B.

Proof. Consider KXI. We wish to extend the map
?leI(Jqﬂx{O} on LxIUKx{0} to KxI such that Kx{1} goes into B.
The extension is defined inductively on the K"xI and proceeds

much as in the proof of (1.2). The details are omitted.

As above,double brackets [[X3Y]] denote the set of equi-
variant homotopy classes of equivariant maps X + Y, where X and Y

are G-spaces,

(5.3) Corollary. Inclusion i: B + Y induces a one-one

correspondence

i,: [[K;B}1 = [[K;Y]]

for every G-complex K with dim K < n.
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Proof. i# is onto by (5.2). If f: K » B can be equi-
variantly deformed, through Y, to g: K - B, then by (5.2) the
homotopy may be deformed, relative to the ends, into B. This

shows that i# is one-one.

(5.4) Theorem. Let f: Y - Y' be an equivariant map of

G-spaces such that f#: mh(Y)fx mq(y') for all q > 0. Then
£,: [[K3Y]] ~ [[K3Y']]

is a one-one correspondence for every G-complex K.

Proof. Let Mf be the mapping cylinder of f, with the

natural G-action. Mf and Y' have the same equivariant homotopy
type so that f may be replaced by the inclusion i: Y =~ Mf. The
hypothesis implies easily that &q(Mf,Y) = 0 for all q > 0. Thus

the result follows from (5.3).

(5.5) Corollary. If ¢: K + K' is an equivariant map

between two G-complexes such that Put mq(x)-e mq(x') for all

q > 0 then ¢ is an equivariant homotopy equivalence.

Proof. ¢,: [[K';K]] & [[K';K']] by (5.4). Let
y: K' » K represent 99;1(1). That is, ¢ $: K' + K' is equi-
variantly homotopic to the identity. Clearly y, = 9’;1 is
bijective so that there is (similarly) a 0: K » K' with ¢ ~ 1
(equivariantly). Then 0 ~ ¢ Y0 v ¥ so that y# ~ y6 ~ 1 as

was to be shown.

1 * K

between two G-complexes is equivariantly homotopic to a cellular

(5.6) Proposition. Every equivariant map f: K

map. An equivariant homotopy between cellular maps may be
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deformed equivariantly, relative to the ends, into a cellular

homotopy.

Proof. This is an easy consequence of (5.2) using (Y,B) =

n
(K,,K3).

This result can be used to extend the definition of the
induced cohomology homomorphism of an equivariant map Kl +> Kz
to arbitrary (non-cellular) maps. Another method of doing this

is given in §6.

6. Eilenberg-MacLane G-complexes

Let & be any element of the abelian category EG' A

G-space of type (&,n) is defined to be a G-space Y with

0 for q #n
wq(Y,yo) =

-

o for q = n,
where yOeYG # 0.
For such a space (2.11) provides a one-one correspondence
(6.1) [[K;Y]] = Hg(K;d)
for all G-complexes K, given by
[[£]1] < " (£,0) = x" ()
(where 0 denotes the constant map K -+ Yo and the notation on the

right is from §3). Moreover, if ¢: K + K' is cellular and equi-

variant then, by (2.9),

[(K'5Y]] —— HL(K';d)

(6.2) l_?# l?”

[[K;Y]) —=— H (K;a)
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commutes, where tr#([[f]]) [[fe®#]1]. Thus (6.1) is a natural
equivalence of functors.

Note that if Y is a G-space of type (&,n) then the loop
space 2Y (see §4) has type (&,n-1). This is an immediate conse-

quence of the obvious fact that (QY)H = Q(YH).

If Y is a Hopf G-space then we can define an addition in

[[K,Y]] by
(6.3) [[£f]] + [[f']] = [[£fBf']].

Then, by (4.1), the correspondence (6.1) preserves addition.
Thus, in this case, if we are given an equivariant map ¢: K »> K!
(not necessarily cellular) we can define ?*: HE(K';&) -+ HE(K;&)
by commutativity of (6.2), since 9’# is always defined. The
obvious additivity of ?# implies that '?* is a homomorphism.
Thus, in this way, we can dispense with the definitions of ?*

in Chap. I, §7 as well as Proposition (5.6) (used to extend the

*
definition of ¥ to non-cellular maps).

We shall now show how to construct a G-complex K of type
(d,n) for any pe @?G and n > 1. We shall restrict our attention,
for convenience only, to the case n > 1. This is not much loss
of generality since QK has type (&,1) when K has type (#,2).
The construction is based on the following two lemmas which use
the notation of Chap. I, §9, 10.

First we shall introduce some further notation. If T 1is
a G-set, T is T together with a disjoint base point, sT¥ is the
th

q reduced suspension of T (that is, the one point union of

q~spheres, one for each member of T), and cs9T? is the reduced
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cone of this (that is, the one point union of (q+l)-cells, one
for each member of T). Note that there are natural isomorphisms

(for q > 1)

(§.4) FT

~ wq( \ )" q( ) q( ’ )
of elements of 8 .

G

(6.5) Lemma. Let q > 1 and let Y be a G-space with base

point Yo and with aO(Y,yo) =0 = al(Y,yo). Then for any G-set T,

the assignment to an equivariant homotopy class [[f]] (of a map

£f: S4T% 5 Y) of the induced morphism f,0 Fpo = mq(SqT+) > mq(Y) in

T

(EG is a one-one correspondence

ap* %, -
[[S T sY]] Hom (FT’wq(Y))‘

In particular, every morphism a: FT > aq(Y) in Gb is represented

by an equivariant map f: sIT* » Y and f is equivariantly extendible

to CSqT+ + Y iff o = f# is trivial.

Proof. A direct proof of this should be fairly obvious.
However, we note that it is, in fact, a special case of the
equivariant homotopy classification theorem (2.11). That is, take
K = S1T%, let L be the base point, and let 0: K +» Y be the constant
map into Yo+ The conditions of (2.11) are satisfied for n = q
since, in fact, K has no cells in dimensions other than 0 and q.
The classification assigns to an equivariant map f: K - Y the
class mq(f,O) in

q.gq,.*. - ~ Qrt. oy =
Ho (ST ,wq(Y)) Hom(ﬂq(s T ,Z),wq(Y))

z'Hom(mq(SqT+),mq(Y))
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(see (9.5) of Chap. I). It is obvious from the definition of
wn(f,O) that the corresponding homomorphism Gq(SqT*) - mq(v) is

precisely the induced map f,.

(6.6) Lemma. Let q > 1 and let Y be a G-space with base

point Yo and with GO(Y,yO) = 0 = GI(Y,yO). Let f£: s9t% » v be

an _equivariant base point preserving map and let Y' = YlJf csar?

be the (reduced) mapping cone of f with the obvious G action.

Let i: Y + Y' denote the inclusion. Then we have the following

facts:

(1) i#: Gr(Y) -+ mr(Y') is an isomorphism for r < q.

(2) i#:ﬁq(Y) > ﬁq(Y’) is an epimorphism with Kernel i# =

In{f,: Fp = mq(sqr*) > a (D1

Proof. For HC G it is clear that Y'H is just the mapping

H
cone of (SATH)P 4 v Bur (sUHM - s9t™yt.  Thus i, (G/H): 7. (Y )
-+ wr(Y'H) is induced by the inclusion of YH

of the restriction of f: Sq(TH)+ > YH. Similarly

£, (6/H): nr((SqT+)H) > nr(YH) is induced by the restriction of f.

in the mapping cone

Since (1) and (2) are true iff the corresponding statements for
the values on each G/H € C}G are true, and since these correspond-

ing statements are known results (see Hu, Homotopy Theory, p. 168)

concerning (non-equivariant) attaching of cells, the lemma follows.

Using these two lemmas, the construction of K(&,n) complexes
is now quite straightforward. Thus let T and R be G-sets such that
there is an exact sequence

F. %+ F. £ &+ 0

R T
in @E (see Chap. I, §10). Let n > 1 and put K" = s™1tt.  Let
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£: s"RY - st

be an equivariant map inducing a (via FT £ mn(SnT*), etc.).

This exists by (6.5). Let K'*1 = k" U; cs"R*. By (6.6) we have
{ mn(K“*l) v @
&r(Kn+1) = 0 for r < n.

1f K% has been constructed to be a G-complex of dimension q

(@ 2 n + 1) such that

an(xq) x @
(6.7) q
mr(K ) =0 forr <nand n <1 < q

let V be a G-set such that there is an epimorphism

Fy L mq(xq).
Let v: SIv* » k9 pe an equivariant map inducing y and let Ka*1
KquSqV+. Then, by (6.6), Kq+1 satisfies (6.7) with q replaced
by q + 1. Let K = UqKq. This is clearly a G-complex of type
(éd,n).

*
7. n-connected G-complexes

The method of killing the groups aq used in the construction
of K(@,n) in the last section is, of course, an important tool.
We shall use it here in a rather straightforward way to prove the

following result:

(7.1) Proposition. Let K be a G-complex with mq(K) = 0

for all 0 < q < n. Then K has the same equivariant homotopy

type as a G-complex with no cells in dimensions q for 0 < q < n.
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Proof. Let L = Kn'l. Then the inclusion L + K is equi-

variantly homotopic to a constant map, by (2.10). That is, K is
an equivariant retract of KLJCL. But KUCL has the same equi-
variant homotopy type as K/L. Thus there exist equivariant maps
K L k/L &k
with ¥ equivariantly homotopic to 1. Clearly K/L has no
q-cells for 0 < q < n so that Eq(K/L) = 0 for q < n.
Suppose that for some q > n we have constructed a G-complex
Kq D K/L and an equivariant map wq: Kq -+ K with wq¢ = yg such
that (wq)#: ar(xq) + mr(K) is a monomorphism for r < q. Let T
be a G-set and
a: F.. + Ker{ : @ (K - o _(K)}
T (b)) gt B (K + 3 (K)
an epimorphism in (?G. Let
£: st - x
q
be an equivariant map inducing a. f may be assumed to be cellu-

lar by (5.6) (or merely because & (Kg) - mq(Kq) is an epimorphism).

q
= qr+ .
Let Kq+l = KqUf CS*T . By (6.5), wq extends to wq+1. Kq+1 + K
and, by (6.6), (wQ+1)#: ar(Kq+1) > mr(K) is a monomorphism for
r < q. Let (K',y') be the union of the (Kq,wq).

Thus we obtain a G-complex K' D K/L with no gq-cells for
0 < q < n and equivariant maps
kK 5ok A g
with y'¢ = yg# ~ 1. Also
Vpt B, (K') + @, (K),
being a monomorphism with ¢#‘?# = 1, must be an isomorphism and it
follows from (5.5) that K and K' have the same equivariant homotopy

type.



