Chapter I. Equivariant Classical Cohomology

1. G-complexes
Let G be a finite group. By a G-complex we mean a CW

complex K together with a given action of G on K by cellular

maps such that

(*) For each ge G, {xeK|]g(x) = x} is a subcomplex of K.

Note that for each ge G, the fact that g: K > K and g'l: K + K
are assumed ‘to be cellular implies that, in fact, each g: K ~ K
in an automorphism of the given CW structure of K. Also it
follows from the condition (*) that if ge G leaves any point

x e K fixed then g must leave K(x) pointwise fixed. (K(A), for
any subset ACK, denotes the smallest subcomplex of K containing

A. It is a finite subcomplex iff A has compact closure.)

Let K be a G-complex and L a subcomplex invariant under G.
Then an easy inductive argument on the skeletons of K
shows that K has the equivariant homotopy extension property
with respect to L. That is, if f: K - X is an equivariant map
into any space X with a given G-action and if F': LxI + X is
any equivariant homotopy then there exists an equivariant
homotopy F: KxI + X extending F'.

Taking the case in which X = LxIU Kx{0} with f and F'
the obvious maps we obtain the fact that LxI U Kx{0} is an
equivariant retract of KxI, the retraction being F: KxI -+ LxIVU
Kx{0}. Let B C X be the set of points x such that F(x,1) €

LxI. Then B is a neighborhood of L in K and the composition



BXI—F—> LxIu Kx{0} » K

is an equivariant strong deformation retraction of B onto L.

Now apply these facts to the G-complex KxI and the sub-
complex A = LxIUKx{0}. Let U be a neighborhood of A possessing
an equivariant strong deformation retraction onto A. Let
f: K > I be a continuous function such that f(x) = 0 on some
neighborhood of L and f(x) = 1 unless xxI C U, By taking
x > inf{f(g(x))|ge€G} we can assume that f(g(x)) = f(x) for all
geG. Define

Ft: KxI -+ KxI
by Ft(x,s) = (x,s(1-tf(x))). This forms a deformation of KxI
into U which is equivariant and leaves A stationary. Following
this by the deformation of U into A we see that A = LxIUKx{0}
is an equivariant strong deformation retract of KXI.

Now identify LI} to a point, so that KxI becomes the
mapping cylinder M = KxI/Lx{1} of the collapsing map K + K/L.
Now our deformation becomes a deformation retraction of M onto
Kx{0} U LxI/Lx{I} =~ KlJCL (K with the cone CL on L attached). On
the other hand M can be deformed equivariantly into the face
KxI/ Lxf} = K/L. This shows that for any pair (K,L) of G-complexes,
the G-complex K/L is of the same equivariant homotopy type as
K UCL'

Let us recall a construction central to the cohomology
theory of CW complexes. Let K be a CW complex and pick an
orientation for each cell of K. (If K is a G-complex it may be
assumed that the operations of G preserve these orientations,

because of (*), but this is not important.) Let Cn(K) be the
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free abelian group generated by the n-cells of K. Cn(K) is

isomorphic to the singular homology group Hn(Kn/Kn'l;Z), or
to Hn(K",K“‘l;Z).
. n-1 n-1
Suppose that ¢ is an n-cell of K and let foz S + K

be a characteristic (attaching) map for o. Collapsing l(n-2 to

a point, we obtain an induced map
(1.1) sh-1l o gn-b o, Pl n-2 Vgt

where T ranges over the (n-1)-cells of K (T/; is an oriented
(n-1)-sphere and V denotes the one point union). For each
T there is a projection Vi/t + t/1 (collapsing all other spheres).
Let f; denote the composed map

T n-1

f : S

L]
->
o /T

The map (1.1) provides a singular homology class

-1, n-2
sc & = n
cec (K H (K /x5 )
and we clearly have that
g = ZT[T: o]t
where [Tt: 0] = 0 unless T is an (n-1})-cell and, for an (n-1)-
cell T in K,
[t: 0] = deg f;: st1 s 1/t

(for fixed o this is non-zero for only a finite number of cells
T
T, in fact f; is a trivial map except for a finite number of
cells T). The correspondence ¢ + 30 generates a homomorphism
9: Cn(K) -+ Cn_l(K)
which, in fact, is just the singular homology connecting homo-
n-1 n-Z

morphism of the triple K", K , K . That is, 9 is equivalent

to the composition



3 j
n n-1 * n-1 * n-1 ,n-2
Hn(K ,K )—— Hn_l(K ) — Hn_l(K »K ).
We have that az = 0 since the composition
j ]
1 * n-1 n-2 * n-2

n-
Ho (KT —— H (K"K —— H

n-1 n-2

(part of the homology sequence of the pair x"-1,km

“2yy is
zero. Note that 32 = 0 is equivalent to the equation

J[wst][ts0] = 0 for given w,o.
T

2. Equivariant cohomology theories

Let G be a finite group and let % denote the category
of G-complexes and (continuous) equivariant maps. Let /50
denote the category of G-complexes with base point and base
point preserving equivariant maps (base points are always
assumed to be left fixed by each element of G and, in the
case of G-complexes, to be a vertex). Let 222 be the category
of pairs (K,L), L C K a subcomplex, of G-complexes.

We use the abbreviation "Abel" to stand for the category
of abelian groups.

An equivariant (generalized) cohomology theory on the

category X is a sequence of contravariant functors
Fn. 212 -+ Abel (ne 2)
together with natural transformations
" FTw,0) » ¥k, L),

such that the following three axioms are satisfied (we put
Br) = #"(L,0):

(1) If fo, f1 are equivariantly homotopic maps (in 212)
then U™ (£) = ¥"(£,).
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(2) The inclusion (K,KNL) ¢ (KUL,L) induces an isomor-
phism
¥OP(KUL,L) —=— WP(K,KNL)
(3) If (K,L)e 532 then t&e sequence*

cee > WK, L) A W) A Wn(L)L N lk,Ly) > ...

is exact.

Remark. If G is abelian then the operations by elements
of G are morphisms v S & (i.e. they are equivariant). Thus,

in this case, each ﬂJn(K,L) has a natural G-module structure.

There are functors )JZ > 210 and /gfo > 32 defined by

(K,L) » K/L and K » (K,xo) where x, is the base point of K,

0
L/L is the base point of K/L (taken to be a disjoint point if

L =@, in which case k* denotes K/@#). Standard arguments can

be used to translate the above axioms into an equivalent set

of axioms for a "single space'" theory on 270. (See, for example,
G. W. Whitehead, Generalized homology theories, Trans. A. M. S.
102 (1962), pp. 227-283.)

In fact for Ke/(ffo let SK = SAK (with the obvious G
action, trivial on the "circle factor" S) denote the reduced
suspension of X. Then an equivariant cohomology theory on 5%
is a sequence of contravariant functors

"2}’“: /yo + Abel
together with a sequence of natural transformations of functors o
" (K): ¥ (K) »FH" (s
satisfying the following three axioms

(1') 1If fo, f. are equivariantly homotopic (in ,%0) then

1
Frg) = F .
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(2') on(K) is an isomorphism for each n and K.
(3') The sequence
NK/L) » NP » AT

is exact.

Most of the material of Chapter I of Eilenberg-Steenrod
goes over directly to these generalized theories. Later on in
these notes we shall show how to construct such theories using
rather standard methods and shall consider some special cases
of interest. We shall not concern ourselves with these matters
at present, but shall confine ourselves to a discussion of
"coefficient groups".

In non-equivariant theories the "coefficients'" of the
theory are defined to be ﬂ*(pt) (or ﬁ*(pt*')) and these (graded)
groups are the primary distinguishing feature between different
cohomology theories. In fact for (non-equivariant) "classical"
theory (= cohomology theory + dimension axiom) the knowledge
of the coefficient group (ﬁ}o(pt) in this case) allows computa-
tion of the cohomology of any finite simplicial complex. Essen-
tially this is true because homotopy points (i.e. contractible
objects such as simplexes) form the basic building blocks of
all complexes.

For equivariant theory the situation is slightly more
complicated, for now the "building blocks'" are essentially the
orbits (in an appropriate sense) of G. That is, the coset
spaces G/H, where H ranges over the subgroups of G (not neces-

sarily normal), form a representative set of building blocks.
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Thus a "coefficient system'" should contain all the
groups ‘H*(G/H) (or i;*((G/H)+))). But this is not enough,
for we must specify how the building blocks "fit together".
That is, we must consider the equivariant maps G/H + G/K and
a "coefficient system" must incorporate the induced homomorphisms

U7 (6/K) > H (6/H)
in its structure.

In the following sectioms we define precisely what we
mean by a coefficient system.

Terminology: A cohomology theory on 4 or 2?6 will be
called "classical" (="equivariant classical cohomology“but

# %classical equivariant cohomology"as defined, for example, in

Steenrod and Epstein, Cohomology Operations) if it satisfies

the additional "dimension" axiom:
(4) % ™(G/H) = 0 for n # 0 and all H,
or, for a single space theory,
(4") %ﬁ "(6/H)Y) = 0 for n # 0 and all H.
Later on, we shall prove existence and uniqueness theorems (of

the Eilenberg-Steenrod type) for such '"classical'" theories.

3. The category of canonical orbits.

The category of canonical orbits of G, denoted by (9b,
is defined to be the category whose objects are the left coset
spaces G/H and whose morphisms are the equivariant (with respect

to left translation) maps G/H » G/K.
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For future reference we shall classify the equivariant
maps G/H + G/K. Suppose f is any map
f: G/H » G/K
and put
f(H) = ak where a eG.

Then f is equivariant iff f(gH) = gaK for all ge G. Conversely,
the formula f(gH) = gaK defines a map (which must be equivariant)
provided that

f(ghH) = f(gH)
for allhe H. That is, we must have ghaK = gaK for all heH.
This is equivalent to haK = aK and hence to

(3.1) a lha c k.

Thus we have the following result: Let a€G be such
that a lHa C K. Define

a: G/H -~ G/K
by
d(gH) = gak.

Then a is equivariant, that is, a € hom(G/H,G/K) and every equi-
variant map has this form. Also, clearly, 4 = b iff aK = bK,
that is, iff a b e K.

Suppose that (3.1) is satisfied. Then the inclusion

-1 1

a "Ha € K induces a natural projection G/a "Ha + G/K (equivariant)

and, similarly, the inclusion HC aka~! induces G/H + G/aKa'l.

Now right translation by a induces an equivariant map Ra: G/H »
G/a'IHa (given by gH + gHa = ga(a'IHa)) and also R_: G/al(a'1 ->

G/K. Clearly the diagram



G/H — G/aKa

Ay
-~

(3.2) R

G/a "Ha ————— G/K
commutes. Thus equivariant maps are precisely those maps induced
by inclusions of subgroups and by right translations.
In particular hom{G/H,G/H) consists of the right trans-
lations by elements of the normalizer N(H) of H (i.e. a e N(H)

yields gH » gHa = gaH). Since R_R, = R__, and generally ab = Dba,

b

the correspondence a -+ R;l yields an isomorphism
(3.3) N(H)/H = hom(G/H,G/H).

For example, let G = Zp’ where p is prime. Then Cn;
consists of the objects G/G and G/{e} (that is essentially of
a point P and of G) together with the following morphisms

P>P
G+ P
a: G + G for each a€G

(where here a2 = R, takes g into ga).

4, Generic coefficient systems

(4.1) Definition. A (generic) coefficient system (for G)

is defined to be a contravariant functor &G - Abel.

If M,N: C}G — Abel are coefficient systems, a morphism
T: M =+ N is a natural transformation of functors. With this

definition, the (generic) coefficient systems for G form
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* *
an abelian category C; = Dgram((?G,Abel). (6 denotes the
dual category to 0’6 and the fact that CG is an abelian cate-

gory is a special case of a result of Grothendieck; see Maclane,

Homology, IX, 3.1, p. 258.)

Examples:

(1) Let % be an equivariant cohomology theory and let
q be an integer. Define

hl: @ » Abel

by h9(G/H) = B Y(G/H) and if f: G/H + G/K is equivariant, let
hiee) = #9H): #/x) » ¥/,

(2) Let A be a G-module. Define

M: C?G + Abel

AR (the set of stationary points of

1

as follows: Let M(G/H)

H in A). For ge G with HC gKg~ ~ note that the operation by

g: A > A takes AK into AH, (for ae AK implies that

Hga C.gKg-lga = gKa = ga). Denote this map AK + AH by BH K*
2

If g = g' so that g'1

- L
g' €K, then clearly gH,K = gH,K' Thus,
for g: G/H + G/K we let
M(g) = gH,K: A" > A,
(3) Let Y be a G-space with a base point Yor Define

Gq(Y)G eG’ that is &q(Y): 6 . - Abel, as follows:

G

- H
5 (V) (6/H) = n (Y',y()

- K H
6 (N (8) = gyt w (Y,y0) » 7 (X,y)

1, so that g maps YK -+ YH (see

where ge G satisfies H c gKg~
example 2). (In this example we assume each nl(YH,yo) to be

abelian when q = 1.)
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Remark. Since hom(G/H,G/H) = N(H)/H we have that, for

any coefficient system Me (4 M(G/H) possess a natural N(H)/H-

G’

module structure.

Let M& e(? Since 5% contains, in particular, the

objects G = G/{e} and P = G/G with the morphisms

1: P> P
r: G+ P
a: G+ G

we have that M "contains" the abelian groups M(P) and M(G) with
the homomorphisms M(1) = 1 and

e = M(r): M(P) = M(G)

a, = M(a): M(G) + M(G)
which satisfy M(ab) = M(Pa) = M(4)M(B) and M(3)M(r) = M(rd) =
M(r); that is,

(ab), = a,b

k- &

a, e = €,

*
Thus we may consider M(G) to have a G-module structure defined
by (a,m) » a_,(m) and M(P) to have a trivial G-module structure
and ¢ : M(P) » M(G) to be an equivariant homomorphism (i.e.
e: M(P) + M(G)%).

0Of course, if G = Zp where p is prime, then this is all
of the structure of an M&'é%. That is, in this case, a coeffi-

cient system consists of an abelian group M an abelian group

0,
M1 with a G-module structure and an homomorphism ¢ : M0 -+ Ml'

Moreover, a morphism between two such systems M and M' is a

commutative diagram of G-module homomorphisms:
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Mo —> M,

[} [}
Mo Mi

For example, when G = Zp and Y is a G-space with base point,

_e—'}

&q(Y) consists of the group uq(YG), the group ﬂq(Y) on which G
acts by the induced homomorphisms gyt nq(Y) > nq(Y), and the
homomorphism ¢ : ﬂq(YG) > wq(Y)Gcz nq(Y)_induced by inclusion
Y*cv.

5. Coefficient systems on a G-complex.

Let K be a G-complex. From K we form a category X’ whose
objects are the finite subcomplexes of K and whose morphisms are
as follows: If L and L' are finite subcomplexes of K, then
hom(L,L') consists of all maps g: L » gLCL' for geG
(hom(L,L') may be empty). Note that we do not distinguish
between maps induced by different elements of G if they are the
same map.

Clearly the morphisms of X are just the inclusion maps
LC L', the maps a: L » aL induced by operations by elements of
G, and the compositions of these.

We should note that for most purposes only the objects
K(o) of 7% for cells ¢ of K are of importance, but for some
constructions one needs the more general subcomplexes.

We define a canonical contravariant functor

9:?{+O'G
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as follows: For LC K a finite subcomplex, let G
{geG|g leaves L pointwise fixed}. We put

o(L) = G/GL .
If gL € L' and f denotes the map L + L' induced by operation

by g€ G, then we see that

-1

g 6,,8€G

L L
and we put 0(f) = g: 6(L') *> (L), that is 0(f) is g: G/G,

3 ¥ 3 1]
G/GL which takes g GL' into g gGL.
In other words, if L € L' then GL' c GL and @(inclusion)

while if g: L = gL then
1

is the natural map G/GL + G/GL,

Gyp, = gGLg‘l and 0(g: L > gL): 0(gL) = 6/gG,g"" » G/G=0(L) is
right multiplication by g.
Now if M Eth is a generic coefficient system, that is,
if M: C?G + Abel is a contravariant functor, then
MOe: 72 = Abel

is a covariant functor and is called a (simple) coefficient

system on K. We generalize this as follows:
A local coefficient system on K is a covariant functor

XL : M > Abel,

Again by Grothendieck's result, the local coefficient systems
on K form an abelian category SCfK = Dgram(Jy, Abel).

The coefficient systems M@: Z( - Abel, for ME C{;,
clearly form a subcategory CK of XCK.

Notation. If IGJCCK and o is a cell we let X (o) =
ZL(K(o)) and for K(1)< K(v) we let X(t + o) denote
;f(inclusion: K(t) » K(o)). Note that if [T: o] # 0 then

K(t) € K(0) so that T + o is "in" X.
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6. Cohomology
Let Z: N+ Abel be in .fCK. Orient the cells of K

in such a way that G preserves the orientations and define
ct(x; L)

to be the group of all functions f on the q-cells of K with
f(o)e L(a).

Define & : cA(k; 2Z) » ¢ (k; L) by

(6.1) (6£)(o) = § [r: o] (v » o)f(1)

T

(which makes sense since K(1) € K(o) whenever [t: o] # 0). In
other words (6f) (o) is defined by "pushing" all coefficients to
;f(o) and then taking the usual coboundary. This remark shows
that 66 = 0 since to compute (86f)(w) we push coefficients to
Z (w) and then compute (classical) coboundaries twice which
necessarily gives zero. Of course, §6 = 0 also follows by direct
computation.

Now we define an operation of G on Cq(K;.'C) as follows:

If ge G and feCY(K; L) we put
(6.2) g(£) (o) = L(g) (£(g”1o)).

Here &(g) refers to XL (g: K(g'lo) + K(o)). Let us abbreviate
Z(g) = g,-

Replacing o by g(o) in (6.2) we obtain

(6.3) g(f) (go) = g, (f(0))

It is clear that the automorphism f + g(f) of C*(K;I)
defines an action of G on C*(K;:f) by chain mappings. Thus the

fixed point set
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clk; )% = (feclg(f) = £ for all geG}
is a subcomplex. It is also denoted by Cg(K;Ef). By (6.3)

*
c (K;;i)G consists precisely of the equivariant cochains f

(i.e. such that f(go) = g,(f(0))).

We define the equivariant cohomology group
(6.4) Hd(K; Z) = i’k )%,

If Me €G (so that Mo € €K c fex) we use the abbreviation
(6.5) Hg(K;M) = H%(K;MO).

If L is a subcomplex of K, invariant under G, then there
is a restriction map C*(K;;f) > C*(L;;E) whose kernel is the
relative cochain group C*(K,L;;ﬁ). There is a splitting homo-
morphism C*(L;;f) - C*(K;Jf) defined by extension of a cochain
by zero (not a chain map). This clearly commutes with operations
by G so that the sequence

0+c k)8 »c k)% » ;)% » o0
is exact. With the obvious definitions we obtain an induced
cohomology exact sequence
n+l

N HE(K,L;'I) + HE(K;;C) > HE(L;J’) + Hg  (K,L; L) »

7? Equivariant maps.

This section is not necessary to our main line of thought
and it is included merely for the sake of completeness.

Let G and G' be finite groups and let ¢: G + G' be a
homomorphism. Let K be a G-complex, K' a G'-complex and let

v : K > K' be a cellular map which is equivariant (i.e.
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v(g(x)) = ¥ (g)(¥(x))). The map ¢ (together with ¢ ) induces
a functor
Y : ¥ > X!
(between the categories associated with K and K' respectively)
as follows: If L C K, let ¥(L) = K'(y(L)) and if f is the com-

position L £ gL C L. then Y(f) is the obvious composition

1

K'(v(L)) » @(g)K'(¥(L)) = K'(# (g)¥(L)) = K'(v(gLl))  K'(v(L,)),

(By abuse of notation we might define ¥ on morphisms by writing
Y(g) = #(g).)

Let X': %' » Abel be a local coefficient system on K'.
Then X '¥: X -+ Abel is a local coefficient system on K. Sup-
pose that X: % - Abel is any local coefficient system on K.
Then we define a ¥Y-morphism A from X' to <L to be a natural
transformation

A: L'y » L

of functors on A. Now there is an obvious chain map C*(K;If'v) >
C*(K;Zf) induced by A and this is clearly equivariant with res-

pect to the actions by G. Thus A induces a homomorphism
* * *
(7.1) A HG(K; L'Y) > HL(K; L)
We shall define a canonical homomorphism
* * *
(7.2) L I HG,(K';:f') + HG(K;;f'W)

so that together with (7.1) we will obtain a homomorphism

* *

Ay e H;,(K';I') + HE(K;JC)
(also denoted merely by A*).

In fact note that the cellularity of ¢y implies that ¢

induces a map Kn/l(n"1 -> l('n/K'n'1 and hence induces a chain mep
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¥at C_(K) > C_(K").

Define
(7.3) vty ) > etk XY

by
¥ (£)(0) = £(¥,(0))

where the right hand side is shorthand for

Lng (K (r5) » K@) E(r,)e T (K (4(e)) = XY (o)
where ¥,(0) = In T &C_(K').

Now we compute

v (9 (8)(£)(0) = (¢ (&) (D)) (4.(0)) = L' (P (8)) (£(# (8) ¥, (o)):
(XY () (v, (8 10))) = (X9 () (¥ () (e o))
g(¥ (£))(0).
Thus, if (g)(f) = £ for all g& G, then

g(¥ (£)) = ¥ (¥ (2)(£)

Therefore (7.3) takes C (K'; )7 into ¢ (k;2'v)%. since

v' (£).

C*(K';.'C')G' c C*(K';f')v(G) we obtain a chain map
C*(K';Jf')G' + C*(K;::'W)G which induces our promised map (7.2)
upon passage to homology.

The situation with simple coefficient systems is slightly
more complicated, and we shall now discuss this case. We define
a functor

¢ <9G > &g,
by putting ®(G/H) = G'/¢ (H) and, if a lHa C K as in (3.1), so
that ¢(a) e (H) ¢(a) € ¢(XK) we put (d: G/H + G/K) =

N
¥(a): G'/¥L(H) » G'/® (K).
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The diagram

&

G G'

does not generally commute since

0'¥(L) = 6'(K'(¥(L))) = G'/Gj

v (L)
while

%9 (L) = ¢(G/G}) = G'/?(GL)

and ¢(GL)<: Gi(L) are not generally equal. However the projection

G'/“f’(GL) -+ G'/G“L(L)

is clearly functorial and provides a natural transformation

(7.4) %0 > 0'Yy

of functors. Let M'e Cb, be a generic coefficient system for

G'. Since M' is a contravariant functor Oh, + Abel, the trans-

formation (7.4) induces a natural transformation
(7.5) M'O'y > M'¢0
of functors 2{~+ Abel. In other words, (7.5) is a Y-morphism
(7.6) M'e*' -+ M'dg.
Thus we have an induced homomorphism
* *
(7.7) Hgo (K'3M') + Ho(K;M' @)

(where the 0 and @' have been dropped in accordance with our
pp

notation conventions).
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If Me fG and M'e lfG, we define a @ -morphism M' +» M
to be a natural transformation

M'¢ > M
of functors &G + Abel. Clearly, in combination with (7.7),

every ¥ -morphism M' + M induces a homomorphism

(7.8) H;(K';M') > H;(K;M).

8? Products
Suppose that K is a G-complex and K' is a G'-complex.
Then KxK' with the product cell-structure and the weak topology
is a GxG'-complex in the obvious way. If X and X' are local

coefficient systems on K and K' respectively then define

L@ Lre LC .,

by (X ® LHym = I(NIW) ® :E'(nZW) where w : KxK' + K
and T, KXK' + K' are the projections. The definition of
L& L on morphisms is obvious.
Suppose that fe cP(K; ) and f'ecY(K';X'). Define
gxfre cP*Akxkr; L& L)
by
(fx£') (oxt) = f(o) ® £'(7)
where o and T are (oriented) p and q-cells respectively (fxf'
vanishes elsewhere). (f,f') »+ fxf' is obviously bilinear.
If ge G and g'e€ G' then clearly
(gxg') (£x£') = g(f) x g'(f').
It is also clear that &(fxf') = (S8f)xf' + (-1)P£x8f'. Thus x

induces a chain map
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CB(K; X) ® cd, (k5 L) » By, (kxk'; L@ L)

and consequently, a '"cross-product':

HE(K; 2) @ W, (k' 1) » B2, (kxk'; T® L"),

If £ and X' are simple then so is L® L+ as the
reader can check.

An internal product, the "cup-product" can be derived
from the cross-product by means of equivariant diagonal approxi-
mations. However, we have not given the necessary background
for this since the definition of the cup product is more easily
obtained as a consequence of general facts which we shall

develop later in these notes.

¥
9. Another description of cochains.

We define an element

C (K;z)e CG

by gn(K;Z)(G/H) = Cn(KH;Z) together with the obvious values on
morphisms of C?G' These objects, for n = 0,1,2,..., form a
chain complex in the abelian category CG‘ We can form the
homology ﬂn(K;Z) = Hn(g*(K;Z))e <fG of this chain complex.
Clearly, this is just ﬂn(K;Z)(G/H) = Hn(KH;Z) together, again,
with the obvious values on morphisms. Similar considerations
apply to the relative case.

Let fe CE(K;M) where Me C’G. Then for an n-cell o,
f(o) & M(G/Go). Suppose that o e KH. Then H CZGc so that we have

an element

M(G/H + G/Gg) (o) € M(G/H).
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Denote this element by f(G/H)(c). This map clearly extends to

a homomorphism
(9.1) £(G/H) : Cn(KH;Z) > M(G/H).

It is easily checked that (9.1) is natural with respect to the

morphisms of O so that f: En(K;Z) + M is a natural transfor-

G’

mation of functors. That is,
(9.2) fe Hom(C_ (K;Z),M)

where Hom refers to the morphisms of the abelian category 66.
Conversely, suppose we are given an element feéHom(gn(K;Z),M).
Let o be an n-cell of K and regard o as an element of Cn(KGG;Z).
Define
£(o) = £(G/6 ) (o) € M(G/G )

so that f e Cn(K;M). Let us check that f is equivariant. Apply-
ing the fact that £ is natural to the morphism g: G/Ggo =
G/g(;qg"1 + G/G_ of 0@, we see that the diagram

c (KG";Z) ————»f(G/G") M(G/G )

n g

8 Ba = M(E)

G £6/6_ )
c (k 89,2y —RB% M(G/6G, )

commutes. Thus f(go)cf*(G/Ggo_)(ga)=g*(f(G/Go) (0)) = g, (£(a))
as claimed.
We have demonstrated an isomorphism

(9.3) Cg(K;M) ~ Hom(C, (K;Z),M)

given by £ » £, It is clear that this isomorphism preserves the
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coboundary operators. Thus we may pass to homology and obtain
the isomorphism
(9.4) Hg(K;M) = H" (Hom(C, (K;Z),M)).
Since Hom is left exact on CG we obtain a canonical homomorphism

(9.5) Hg(x;M) > Hom(H_(K;Z),M).

It is also easy to check that if K has no (n-1)-cells, so that

gn_l(K;Z) = 0, then (9.5) is an isomorphism (triviality of

ﬂn_l(K;Z), or even of ﬂq(K;Z) for 0 < q < n, is not sufficient

for this).

Remark. If A is a G-module and M€ EG is the correspond-
ing coefficient system as defined in §4, example 2, then an
equivariant homomorphism Cn(K;Z) + A must take Cn(KH;Z)t:
Cn(K;Z)H into AH = M(G/H). Thus it is clear that we have an

isomorphism

Hom, ¢y (C_ (K;2),A) = Hom(C, (K;Z),M) = Cg(K;M),

The left hand side is, by definition, the classical equivariant

cochain group with coefficients in the G-module A.

*
10, A spectral sequence.

We shall show that the abelian category 4?6 contains
sufficiently many projectives and injectives. However, pro-
jective resolutions of length one (or even of finite length) do
not generally exist, in contrast to the category Abel. Thus
instead of a universal coefficient sequence linking homology

and cohomology we obtain a spectral sequence.
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For a2 set S let F(S) denote the free abelian group based

on S. Suppose that S is a G-set. Define an element

S

together with the obvious values on morphisms of ¢9G (see §4,

Fg € €o by Fg(G/H) = F(s™)

example 2). For example, if S is the set of n-cells of a
G-complex K which are not in the G-subcomplex L, then

Fg = C (K,L;2Z).

(10.1) Proposition. F_ is projective.

S
Proof. Let
/FS
/,’ a
1.:/
A g + B + 0

be a diagram in @G with exact row and with y to be constructed.
Let S' C S be a subset containing exactly one element from each
orbit of G on S. Given se€ S', consider s as an element of

GS
F(S

) = FS(G/GS). Then a(s) € B(G/Gs). Define v(s) & A(G/Gs)
to be any element with B(y(s)) = a(s). For geG we let y(gs) =

g.v(s)e A(G/Ggs) (where g, = A(g: G/G__ -+ G/G.)). For HC G

gs
let j denote the projection G/H —'G/Gs. The element s represents
an element of F(SH) = FS(G/H), namely Fs(j)(s). We define
Y(Fg(3)(s)) = A(j)Y(s). Now y has been defined on a set of

free generators of FS(G/H) for every H C G. Thus there is a
unique extension to FS(G/H) for all H, This extension is clearly

a morphism FS + A with By = a, as claimed.

|
(10.2) Corollary. cg(K,L;M) ~ Hom(C_(K,L;Z),M).

Proof. The exact sequence

0~ C (L;Z) »~ C (K;Z) » C (K,L;Z) - 0



I-24

of projective objects in CG induces an exact sequence via the

functor Hom(* ,M) and the result follows.

(10.3) Corollary. CE(K,L;M) is an exact functor of M.

Proof. This is immediate from (10.2).

It follows from (10.3) that an exact sequence 0 > M' »
M > M" -+ 0 in eG induces a long exact cohomology sequence of
(K,L).

At the end of this section we shall show that @G con-

tains sufficiently many projectives. In fact if S is the

disjoint union of all of the G-sets G/H for HC G then FS is

a (projective) generator of the category @G. Since CEG
obviously satisfies Grothendieck's axiom AB5 (arbitrary direct
sums and exactness of the direct limit functor) it follows by

a result of Grothendieck that (96 possesses sufficiently many

injectives (see Mitchell: Theory of Categories).

*
Let M € @G and let M be an injective resolution of M.

Consider the double complex
*
Hom(C, (K,L;Z),M ).

Standard homological algebra applied to this double complex

yields a spectral sequence with
(10.4) ED: 1 = Extp(gq(K,L;Z),M)=>HE*“(K,L;M).

(This notation means that Eg’q converges to Eg’q which is the
graded group associated with a filtration of Hg+q(K,L;M). Also
Ext? refers to the pth right derived functor of Hom in the

category @G.)



I-25

By way of illustration we shall compute Extp(A,M) in two

rather elementary cases.

Example 1. Let A€ @G be defined by A(G) = Z, with
trivial G-operators, and A(G/H) = 0 for H # {e}. Let F, be a
2(G)-free resolution of Z. Then F,, defined by F,(G) = F, and
F,.(G/H) = 0 for H # {e}, is a projective resolution of A in

@(;. Clearly Hom(F,;M) x Hom M(G)) so that

Z(G)(F*;

ExtP(a,M) = HP(G;M(G)),
where the right hand side is the classical cohomology of G with
coefficients in the G-module M(G). If K is a connected G-complex
on which G acts freely and such that

Hq(K;Z) =0 for 0 < q <N

then in (10.4) we have Eg’qzngxtp(A,Mhzngp(G;M(G)) for q < N.
Consequently, we have an isomorphism

HE(K;M) ~ H™(G;M(G)) for n < N.

Example 2. Let B be an abelian group and let B & @h
be defined by B(G/H) = B and B(j) = 1 for all morphisms j in
é}G' Then, if M* is an injective resolution of M, we have
Hom(B,M") a Hom(B(P),M" (P)) = Hom(B,M (P))
where P is the point G/G. M*(P) is clearly an injective reso-
lution of M(P) in Abel. Hence
Ext?(B,M) = ExtP(B,M(P))

where the right hand side is Ext in Abel. That is

"Ext’(B,M) = Hom(B,M) = Hom(B,M(P))

Ext!(B,M) & Ext (B,M(P))

Extp(E,M) =0 for p > 1.
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In particular, if B is free abelian then Extp(E,M) = 0 for
p > 0, that is, B is projective in <2G if B is projective in
Abel. (0Of course, this also follows directly from (10.1) in
the case in which G acts trivially on S.)

Let us return to the general discussion. There is an
edge homomorphism

Hg (K, L3M) = Hom (H_(K,L;Z),M)

of (10.4) (coinciding with (9.5) when L = @#). Clearly this is

an isomorphism if each ﬂq(K,L;Z) is projective for q < n.

For example suppose that n > 1, that K possesses
stationary points (e.g. ko) and that
Bq(K,ko) = 0 for q < n.
The Hurewicz theorem, applied to each KH, shows that the (obvious)
Hurewicz homomorphism (in eG)
&q(K,ko) > Eq(K;Z)
is an isomorphism for 0 < q < n. Thus
(10.5) HE(K;M) = Hom(d_ (K,kgy),M)
in this case.

We shall now justify our earlier contention that there
are enough projectives in CG. For any G-sets S and T let
E(S,T) denote the set of equivariant maps S + T. For KC G,
the assignment f + f(K) clearly yields a one-one correspondence

E(G/K,S) = sK,
(It is of interest to reconsider the material of 53 and the
examples of §4 in this light.) Thus

K
Fo/u(6/K) = F((G/H)7) = F(E(G/K,G/H)).
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Now if o€ M(G/H) the map f +» M(f)(a) of

E(G/K,G/H) -+ M(G/K)
induces a homomorphism F(E(G/K,G/H)) +» M(G/K). This is clearly
natural in G/K and hence is a morphism

¢a: FG/H -+ M

in EG' It is also clear that the generator H/H GFG/H(G/H)
corresponds to 1€ E(G/H,G/H) and hence that ¢a maps it into
ae M(G/H) .

We shall now explicitly exhibit a projective which maps
onto a given M € GG. For ae M(G/H) let S be a copy of the

G-set G/H and let S(M) = U Sa be the disjoint union of these
o

for all ae M(G/H) and all HC G. Then FsMy = ) Fg . The
a a

homomorphisms ?’a: F + M yield a homomorphism

S
a

(10.6) ¢ =le,: Fsouy * M

which is clearly surjective.



