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THE KERVAIRE INVARIANT OF 8k + 2-MANIFOLDS. 

By EDGAR H. BROWN, JR. and FRANKLIN P. PETERSON.1 

1. Introduction. The main results of this paper were announced in [6]. 
Let Qn,(e), Q??(SU), and &Q7(Spin) denote the n-th framed, SU, and Spin 
cobordism groups respectively (see [7] and [11].). In [8] Kervaire defined 
a homomorphism (D: Q,k+2 (e) -> Z2, Ic O, 1, 3, which is the obstruction to a 
framed 4k + 2-manifold being framed cobordant to a homotopy sphere ([9]). 
Kervaire showed that =0 O for k = 2, 4. In [4] a homomorphism Sf: 

f28k+2(Spin) ->Z2 was defined such that 4 =-p where p: Qn (e) --&Q2(Spin) 
is the obvious map. The obvious map of i2. (SU) into 12, (Spin) defines a 
homomorphism of Qsk+2 (SU) into Z2 which we also denote by f. This latter 
map is the main object to the investigated in this paper. In an appendix 
we briefly discuss i: f28k+2 (Spin) -* Z2. 

The main results of this paper are as follows: 

THEOREM 1. 1. 1: Q8k+2(e) - Z, is zero for k > 0. 

The following corollaries of (1. 1) are implied by the results of [9], 

[8] and [3]. 

COROLLARY 1.2. bP8k+2 zZ2, wvhere bP8,+2 is the group of homotopy 
spher-es which bound stably parallelizable 8k + 2-manifolds [9]. 

COROLLARY 1. 3. If K is the topological manifold obtained by plumbing 
two copies of the tangent disc bundle of S4k+1 together and then attaching an 
8k + 2-disc, then K does not admit a diffedentiable structure. 

(1. 3) follows from [8] if one has the result that a Co manifold with 
underlying topological space K is stably parallelizable. In Appendix 2 we 
give a proof of this due to John Milnor. 

COROLLARY 1.4. Every element of 0?8k+2(e) can be represented by a 
homotopy sphere, k > 1. 

COROLLARY 1.5. A finite, 1-connected COW complex has the homotopy 
type of a stably parallelizable 8k + 2-manifold if and only if there is a stably 
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816 EDGAR R. BROWN, JR. AND FRANKLIN P. PETERSON. 

spherical class m E H8k+2 (X) such that m nf: H (X; Z) H8k+2,q (X; Z) for 
all q and +p(X) =0 (see ?3 for a definition of A (X)) ([3], [12]). 

It is known that i2(SU) z Z2 [7]. Let ac be the generator. Define 
t: Q2(SU) ->Z2 by +t(a) =1. 

THEOREM 1. 6. If #&E C 8k+2(SU) and y E Q 8(SU), k _ 0, I > 0, then 

'I(Ay) =ifr(P)I(Y) 

where I (,y) is the index of y reduced mod 2. (I (y) = Euler characteristic of 
y mod 2 also.) 

In [7] it is shown that 016(SU) contain an element y16 with I(716)74+ 0 
mod 2. 

By (1.6) we have: 

COROLLARY.1. 7. (cy6) 1. 

In ? 2 we give some preliminary results about cohomology operations. 
In ?3 we define q: 08k+2(SU) ->Z2 and in ?4 we prove Theorems (1.1) 
and (1.6). 

2. Some cohomology operations. Throughout the remainder of the 
paper all homology and cohomology groups will have Z2 coefficients unless 
otherwise specified. m will denote an integer of the form 4k + 1, ki> 0. 
Below we show that various cohomology operations are equal. This will 
always mean equal modulo the largest indeterminacy involved. 

In [5] it is shown that the relation 

Sq2Sq-1 + Sql (Sq2Sqm-2) - 0 

on m-dimensional cohomology classes gives rise to a secondary operation 

(2.1) .p: H", (X) n Ker Sq1l n Ker Sq2Sqm-2 

-(> 12m (X) /SqlH2m-l (X) + Sq2H2m-2 (X). 

Furthermore, the following is proved: 

2.2) If + (u) and +p(v) are defined, ck(u+v) is defined and 

p(u+v) +qo(u) +O(v) +uv 

Let &? E Hm(K(Z, m); Z) be the generator and let a. be &Jm reduced mod 2. 
Let p: E -> K(Z, m) be the fibration with fibre K(Z2, 2rn -2) and k-invariant 
Sr/y'a^m. Then q (p*yrm) is defined since, by the Adem relations, 

Sq2Sqn,-2 - Sqm + Sqin-lSql - SqlSqm-1 + sqm-lsql 
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is zero on p%rrn. Choose an element z E 0 (p*tym). z defines a cohomology 
operation 

+: Hm (X, Z) n Ker Sqn-l> H2)n (X) /Sq2H2m-2 (X) 

The following is immediate. 

(2.3) If 12EH2(X;Z), Sqm-'i2O and u is u2 reduced mod 2, then 

$(i2() =q(u) . 

Let uE Hl(X;Z) be viewed as a map 2: X->K(Z, m). Then the 
following is proved in [13]. 

(2. 4) If Sqmfi t=:O, 

AQC) = Sq2_ (SqmlA) 

Let f:(X,A)-*(Y,B) and let g:X->Y be the map defined by f. 
We need a product formula for functional operations. 

(2.5) If uE Hq(Y,B), vE HP(Y) and g*v Sq2v Sqlu Sq2u O, 

then 
Sq2f(UV) - (f*U) (Sq2gV) 

(This formula is proved, in the absolute case, in [1].) 

Proof. Let h: A-> B be the map defined by f. Note that (X, A) is 
contained in the mapping cylinders (Cg, Ch) and that A =--h Cn X. Hence 
we may assume f is an inclusion map and A= X n B. Cup product with u 
maps the exact sequence of (Y, X) into the exact sequence of the triad 
(Y,X,B) giving the following commutative diagram: 

HP-: (X) >HP (Y., X) >HP(Y) - >HP (X) 

{Uf*u {Uu {uu I 

HP+o- (X, A) -> HP+(Y, X U B) -> Hp+o(Y, B) e HP+ (X, A) 

Since Sqlu = S,q2u =0, Sq2UZ = uSq2Z for any z. Hence Sq2 maps the above 
ladder into itself giving a large commutative diagram. (2. 5) now follows 
by chasing around this diagram. 

3. Definition of the Kervaire invariant. Throughout this section we 
view classes u C Hs (X) as maps u: X - K(Z2, q). Again, m =4k + 1, k > 0. 

Q2n (X;SU) will denote the n-th SU bordism group [7]. Recall, this 
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818 EDGAR H. BROWN, JR. AND FRANKLIN P. PETERSON. 

group is the set of equivalence classes, under an appropriately defined co- 
bordism relation, of triples (M,A, f) where MI is a closed, compact CI n- 
manifold, A is an SU reduction of the normal bundle of Mt embedded in 
Rn+k7 for large k and f: M-*X. D2o(SU) =2n (pt;SU). One may easily 
show that if X is connected, every element of " (X; SU) can be represented 
by (M,Ax, f) where M is connected. Hereafter we assume all spaces are con- 
nected. Also we assume all manifolds have an SU structure on their normal 
bundle, (M,X, u) will be denoted by (M, u) and vm: M -* BSUk will denote 
the map defined by this SU structure. 

LEMMA 3. 1. If { M., u} C DI.(K (Z2, m) ; SU), then {M, u} {M', u'} 
where M' is 1-connected. Furthermore, there is a cobordism (N, v) between 
(M, u) and (M',u') such that if i: M-*N and j: M`->N are the inclusion 
maps, 

i*: Hq(M) --Hq (N) for q > 2 

j*: H7(M') zH (N) for q=/2m- 1,2m- 2. 

Proof. We form M' by killing r1 (M) by surgery [10]. This pro- 
cess yields a manifold N with an SU reduction such that ON = l - M'. 
Furthermore N consists of M X I with handles D2 X Df2m-l attached by maps 
h: S' X D2m-l _> M X {O}. Up to homotopy type, N is M with 2-cells attached 
and N is also M' with (2m -1) -cells attached. (3. 1) now follows from these 
properties of N. 

Let 

f2,. Qn(K (Z2, m) ; SU) _>Z2 

be defined as follows: Let p be the cohomology operation described in (2. 1). 
Let {M, u} C Qm(K(Z2, m); SU). Since Ml has an SU reduction, its Stiefel- 
Whitney classes w1 and w2 are zero. Therefore by the Wu formulas, 

SqlH2m-l (M) wjH2m-l (M) =0 and Sq2H2m-2 (M) W 12m-2 (M) =0. 

llence, q: Ho (M) n Ker Sqm-1 )H2m (M). If Sqn-lu =0, we let 

+{M, u}-= (u) ([M]) 

where [M] C H2m(M) denotes the fundamental class. By (3. 1) we may 
always choose M to be 1-connected and hence so that 

Sqm-lHm(M) C H2m-1(M) HH1(M) =0. 

Therefore + is defined on all of $2,m(K(Z2,m);SU). We show that it is 
well defined. Let f QE , (K(Z2,m r); SU) . Choose an (M1, u1) E ft such that 
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M1 is 1-connected. Let (M2, u2) be any representative of ,B such that Sqm-lu2 

=0. We show cP (U2) ( [M2]) (ul) ( [MJ]). Let (N, v) be a cobordism 
between (Ml, ul) and (M2, u2). By surgery we make N 2-connected. Let 

ji: M, -* N be the inclusion maps. H2m- (N, M2) 11 H2(N, M1)- 0 since 
H2(N) = Hi (Ml) - 0. Therefore j2* fH2m-1 (N) --* H2m-l (M2) is an injec- 
tion. j2*Sqmlv - Sqm-lu2 0. Hence Sqm-lv - 0 is zero. In a similar way 
one shows that ji*: H12m (N) -* 12m (M4) is an injection and hence that 
Sq2Sq-2v =0. Therefore + (v) is defined and, since p (u.) jj*4 (v), 

(ul) - 0 if and only if 4O(U2) = 0. Thus + is well defined. 

LEMMA. 3. 2. If {M, u} E &2(K (Z2, m); SU), Sqm-lu 0 and u is the 
reduction mod 2 of an integer class -C, then 

.({M, u} = Sq2 (Sqmlam) ([M]) 

Proof. By (2.3) and (2.4), 

4(u) =$Qt) Sq . (Sqm sm) . 

Thus the only thing to check is that the indeterminacy for each of these 
operations is zero. The indeterminacy of 4) is Sq2H2m-2 (M) - w2H2m-2 (M) 
=0. The indeterminacy of Sq2U is 

Sq 2H2m-2 (M) + U*H2m (K (Z m)i) 

Thus we must show that v = SqilSqi2. Sqilu = 0 if i1 + i2 + + il = m. 
By the Wu formulas v = zu where z is a polynomial in the Stiefel-Whitney 
classes of M. Therefore z = v*MZ' for z' E Hm (BSU). But m is odd and 

hence z' E Hm (BSU) =0. 
We next define the Kervaire Invariant IP: ?22m (SU) -* Z2. Let {M} 

E Om (SU). Choose a symplectic basis {u, v I i = 1, 2, . v} for Hm(M), 
that is, u,, * ,u,, v1, *,v, is a basis for Hm(M), uquj jvj=O, and 
wivv =- . Since M is orientable, U2 =0, u E Hm (M), and hence such a basis 
exists. Define 

v 

(3.3) q1{M} {M5, } *- {M, V4}. 
i=1 

We show that ip is a homomorphism and that it is well defined. By (3. 1) 
we may change M by surgery so that it is 1-connected. Furthermore, by 
(3. 1) {u,, vi} goes over, under this process, to a symplectic basis. Hence 
we may assume M is 1-connected. By (2. 2) 
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is a quadratic function whose associated bilinear form, namely, cup product, 
is non-singular. Therefore the right side of 3. 3 is independent of the choice 
of the symplectic basis [2]. One may easily check that the right side of 
3. 3 is additive with respect to the connected sum operation on manifolds. 
Thus q is a homomorphism and to show that it is well defined it is sufficient 
to show that the right side of (3. 3) is zero if M AN. We may make N 
2-connected by surgery. Recall, if j: M l- N is the inclusion map, u E Hm (N), 
v E HmI (N), then u - v 8 ( j (u) * v), where 8*: Hm (M) Hm+l (N, M). 
From this fact and Poincare duality one may obtain classes ui E H-m (N) and 
v Hm (M) such that {j*u,, vl is a symplectic basis for Han (M). Hl2m-1 (N) 

H2 (N, M) =0 and H2m (N) H1(N, M) 0. Therefore ( (u,) is defined 
and equals zero. Therefore ( {M, j*u4}) = p (]j*u) ( [M]) j= * (Ui) ([Ml) 

0. Thus ip is well defined. 

Remark 3.4. The secondary operation 4, is not uniquely determined by 
the relation between primary operations from which it arises, that is, it is 
only determined up to the addition of a stable primary operation. (3. 2) shows 
that if: f28k+2 (SU) -> Z2 does not depend on the choice of ( since for any 
{M} E fl (SU), one may choose M 1-connected and with every element of 
Hm(M) the reduction of an integer class (See ? 4.). 

Let a be the generator of &22(SU) /Z2. We define /: f2 (SU) -*Z2 
by VI+(a) =1. 

Finally, to complete the statement of Corollary 1. 5, we define A (X) E Z2 

when X is a 1-connected, finite CW complex which has a stably spherical 
class m E HU8k+2 (X; Z) such that 

nfm: TH4(X;Z) -fH8k+2-q(X;Z) 

for all q. Since H8k+2 (X; Z) is generated by a stably spherical class, Sq' is 
zero on HJ8k+2- (X). Also 

Sq4kH4k+l (X) C H8k+1 (X) H1(X) ~ O 

Therefore p defines a quadratic function 

_ 4k+1 (X) H8k+2 (X) 

Let 
r 

+ (X) E. (P (ui) (m) - ( (vi) (m) 
j=1 

where {Wvi, v i 1, ,r} is a symplectic basis for H14k+l (X). 

4. Proofs of Theorems (1. 1) and (1. 6). We first prove (1. 6). Let 
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I3 E 8k+2(SU), k?0 and let 7yE081(SU), 1>0'. We wish to show that 

( (py) =/ (/) I (y) where I (y) is the index of y mod 2. 
Let M C /3 and NC Ey. Applying surgery to M and N we may choose 

them so that vm*: 7r (M) -->7ri(BSU) is an isomorphism for i <44k + 1 and 
VN*: 2ri(N) --Xr (BSU) is an isomorphism for i < 41. Then Hq (M1) 0 for 
q odd and q #44k + 1 and Hq(N) =-0 for q odd. Furthermore the elements 
of H4k+l (M) and H41 (N) are reduction mod 2 of integer classes because 
H4 1+(N; Z) - H4S1(N; Z) 0 and H4k+2(M; Z) - H4k(M; Z) - H4k(BSU; Z) 
which is free abelian. Note H4(k+l)+l(M X N) H4k+l(M) ? H 4(N). 

LEMMA 4.1. If uEH4k+l(M1) and vCH41(N), 

cu (u v)= (U) v2 if k > 0 

0 if k =0 and v2- 0. 

Proof. Let iuC H4k+l(M;Z) and vc EH41(N;Z) be classes which give 
u and v when reduced mod 2. Below we denote Sq2fu by Sq2 (f, U). 

(4.2) ( ( u0) ^v) 

(4.3) = Sq2 (42 0g , Sq4(k+ )J4( k+)+l) 

= Sq2 (,( X id) (&4k+1?C'), Sq4(k+L)&4(k+z)+l) 

(4. 4) Sq2 (U X id, Sq4(k+l) ((4k+1 0 V)) 

(4. 5) = Sq2 (u X id, Sq4k&4k+l ? v2) 

(4.6) = Sq2 (U, Sq4k&^4k+l) 0 v2 

(4.') < >(U) g V2 

(4.2) follows from (2.3), (4.2) and (4.7) from (3.2), (4.4) from the 
naturality of Sq2f, (4. 5) from the Cartan formula, and (4. 6) from (2. 5). 
In the case k = 0, one needs v2 =0, in order that q (u? 0v) be defined and 
(4. 5) yields p(u0( v) 0. 

We continue with the proof of (1. 6). Let v41 (N) C H41 (N) be the class 
such that Z2 zv41(N) for all zC H41(N). Recall, v41(N)2([N]) =indexN 
mod 2 (the proof of this is contained in the argument below). Let u C H41(N) 
be a class such that u =0 if v41(N) =O, U =v41(N) if v41(N)2#0 and 
uv41(N) #0 if v41(N) #0 and v41(N)2 0. Let V C H41(N) be the sub- 
space spanned by u and v41(N) and let U C H41 (N) be its orthogonal com- 
plement, that is, U- {z C H41(N) I zU =zv41(N) =0}. H4k+l(M) 0 U is the 
orthogonal complement of H4k+l (M) 01 V in H4(k+z)+1 (M X N) . Hence a sym- 



822 EDGAR H. BROWN, JR. AND FRANKLIN P. PETERSON. 

plectic basis for each of these subspaces will provide a symplectic basis for 
H4(k+l)+l (M X N). By (4. 1) H4k+1 (M) 0 U makes no contribution to 

b{M X N} as Z2 zv4z(N) 0 if z C U. Let {xi, yj} be a symplectic basis 
for H4k+1 (M). We now consider four cases. 

Case I. v41(N) =0. Then V =0 and {M XN} N 0 q{M}v412 (N). 

Case II. V42 (N) 0, v41(N) #0 O. A symplectic basis for H4k+1(M) ? V 
is given by {x1?V4t(N),yi?V41a(N)} as the first group of terms and 
{xi ? (v41(N) +u),y,?u} as the second group. By (4.1) p(xi?v4z(N)) 
- Y c(yi?v41(N))=- . Hence ip {MXN}=O. 

Case III. V412 (N) 7 O, k > O. {x, C V41(N), yi ? V41 (N) } is a symplectic 
basis for H4k' (M) ? V. Therefore by (4. 1), 

p{M X N} = cp(xi?v4 (N) ) ([M X N])(P(y ?v41(N)) ([M X N]) 

- (xI) ( [Ml ) (A (yi) ( [M] ) V412 (N) 

tI({M}) I ({N}). 

Case IV. v412 (N) #0, kc = 0. The generator of 02 (SU) is repre- 
sented by M = S' X S1 with the non-trivial SU reduction of its normal bundle. 
Let x E H' (S1) be the generator. {x 09 l?v41(N), 10 X ?v41(N)} is a sym- 
plectic basis for H' (M) ? V. Hence 

4'{M X N} ==#{M X N.x?l ?v41(N)} >{M X N, 1? (3xv41(N)}. 

By a symmetry argument -this equals 4{M X N, x ? 1 ? v41 (N) }. By Wu 
formulas v41(N) is a polynomial in the Stiefel-Whitney classes of N. There- 
fore V41(N) - VN* (Z41) where z41EH 4 (BSU). Z41 is the reduction mod.2 of 
an integer class Z41. Hence if DP9 S3 X N - N' 

(P, Vp*Z41) - (S1 X N,10 V41(N)) - (N', VN*z41) 

By (3. 1) we may choose N' to be 1-connected. Let y =vN *Z41. y2 EH81 (N') 
H1 (N') = 0. Therefore 4) (x 'g y) is defined. Let - IV*z4l and let 

xEH'(S';Z) be the generator. By (2.3) and (2.4), 
+{MXN}1 +(Ag9) ([Sl X Y]) 

$fi (S ' y ) = Sq2? -(Sq41Z41+1) 

Sq2ldXj7(Sq4' (X cr41)) 

= Sq2idXV^(X '0 q412) 

= X 0 Sq2^ (r412). 

Hence we must show that Sq2- (cr412) # 0. 
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Let v be the normal bundle of N' embedded in R'l+2r for large r. Let gr 
be the canonical, real 2r bundle over BSU-. let x: v -> tr be the SU reduction 
of v, T(v) and T(gr) the Thom spaces, U C H2 (T(g-) ;Z) the Thom class, 
and let f: S81+2r -> T(v) be the map obtained by the Thom construction. Note 
T(A) f is homotopic to g- where -q is suspension of the Hopf map and 
g: S81+2r-l1> T(Cr) is the map obtained from N by the Thom construction. 
This is because N' and S1 X N are SU cobordant. 

Sq2- (64 12 ) Sq2N,P (Z,12) as =-Z 01?N'. 

Note Sq1U= w1U=O and Sq2U = W2U=O. 

f (Sq 2VN (Z4Z) T(X) *U) f*Sq2T(X) (Z412U) 

(4.8) Sq T(X)f (Z412U) 

= Sq 2gv (Z4Z2U) 

-Sq2n (g*z412U). 

But Sq2 is an isomorphism and g* (z412U) ([SSk+2r1])-v412 ([N]) #0. 
This completes the proof of (1. 6). 

We next prove (1. 1). Suppose y = {M}) C 8k+2 (SU) where M is stably 
parallelizable. We must show that VI (y) =0. Conner and Floyd [7] and 
Lashof and Rothenberg (unpublished) show that if ! C f22fl (SU) has all its 
Ohern numbers zero, then u = a,f where a C 02 (SU) is the generator and 
AEC 22-2(SU). ience y=f ai. By (1. 6) + (y) =,(a)I (f3) =I(/3) 
=V41(N) 2 ([N]) where V41(N) and N are as above. Suppose V4z2 (N) # 0. 
Then by (4. 3) in Case IV above, Sq2 0(Z412U) 740. 

Let 0 be the secondary cohomology operation associated with the relation 
Sq2Sq2 0 on integer classes. 

0: HE (X; Z) n Ker Sq2 ___ Hq+3 (X) /Sq2Hq+l (X). 

Let Of denote the associated functional operation. In [14] it is shown that 

(4.9) Oqqx = Sq2 Sq2 X. 

Sq2(Z4z2U) 0, hence 0(z412U) C H81+3+2r(T(C)) = 0 is defined and is zero. 

Sq2 Sq2' (Z4z2U) Sq2 Sq2 (g* (z4Z2U)) 

=0777 (g* (Z412U)) 

0g9p7 (Z44Z2U). 

We show that 0gr,71 (z412U) is zero and has zero indeterminacy. Since Sq27 is 
an isomorphism, this shows that Sq2gfq (z442U) = 0, which is the contradiction 
we seek. Note g9pq: Ss1+2+2r E> T(gr) is the map corresponding to S' X S' X N 
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under the Thom construction. By hypothesis, S1 X SI X N is SU cobordant 
to a stably parallelizable manifold. Hence g7r is homotopic to ih where 
i: S2r -> T (er) is the inclusion of a fibre and h S81+2+2r > S2r. Therefore, 

0g7 (Z4Z2U) Oh (i*Z412 U) 0. 

The indeterminacy of 0gX? (z412U) is 

(gq) * (H81+2r(T(Cr) ) ) +. H8(I1+2,-3 (S81+2r) ) 

+I- Sq2 (H81+2r-2 (S81+2r) ) + Sq2g,1(H8t+2-1(T(4r)) ) =O0. 

The above argument shows that if 18 E O?81 (SU) and f: S81+2+2r > T (gr) 
is the map associated with a4, then 

t (a3 ) Of (Z412 U) ( [S81+2+2r]) 

By examining how the operation Of is related to the Thom isomorphism one 
may prove: 

THEOREM 4. 10. If a CE 2((SU) is the generator and /38C E81(SU), then 

+ ( a:) =- WV.M (Z4Z2 ) ( [M ] ) 

where M is a 3-connected manifold representing c,8. 

Appendix 1. 

We state here, without proof, those parts of our results which go through 
for *1V: i28k+2(Spinl) -+Z2. 

The first difficulty in generalizing our results to the Spin case is that 

f2,: (K (Z2, m) ; Spin) -+ Z2 depends on the choice of the operation -P 

associated to the given relation among primary operations. One choice would 
be to choose p so that the third suspension of p is zero on all classes of dimen- 
sion m -3. This is possible and gives rise to two choices for p, each of 
which give the same 0. 

The only part of 1. 6 that we can prove is the case k = 0, namely: 

THEOREM Al. 1. If a E Q2 (Spin) is the generator and ,B C 8k (Spin), 

q/(a,#) 1I(P) 

-where I(/3) is the index of /3mod2. 
This theorem follows from the arguments used to prove (1. 6), except 

that one must use slightly more complicated cohomology operations. One 
.also sees that ip(afl) is independent of the choice of p. 
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Recall, quaternionic projective space PQn admits a Spin structure and 
has Euler characteristic 1 if n is even. Hence, 

COROLLARY Al.2. If a C722,(Spin) is the generator, 

1('{P`Q2k}) 1 

The proof of (1. 6) breaks down in the Spin case for k> 0 because 
Hl4(k+l)+1 (M X N) is very complicated even if M and N are simplified by 
surgery. Also, it is not clear whether an analogous theorem to 4. 5 goes 
through in the spin case. 

Appendix 2. 

In this appendix we give a proof, due to John Milnor, that a differentiable 
manifold of the same homotopy type as a Kervaire manifold ([8]) is stably 
parallelizable. 

Let n be odd and n+L 1,3, 7, let p: T - SIn be the tangent disc bundle 
of SI, let Dn be the closed n-disc, h: D1 -* Sn a homeomorphism into, 
kc: D X Dn ->T a bundle map covering h, T a copy of T and let L T U T 
with h (x, y) identified to h (y, x) for each (x, y) E DI X Dn. L is a manifold 
with boundary and 9L is homeomorphic to S2n-1. Let f: S2n-1 OL be a 
homeomorphism and let K2n - L U D'2f. K2n is the manifold constructed by 

f 
Kervaire. 

THEOREM A2. 1. If M is a differentiable manifold with the same homo- 
topy type as K2 , then M is stably parallelizable. 

Proof. Let Sn An and S1n C K2n be the zero cross-section of T, the zero 
cross-section of T and a cross-section of the associated sphere bundle of T, 
respectively. Clearly K2n has a cell structure Sn V Sn U e2- and hence, since 
Sn and S11 are isotopic, 

=2n Sln V n U e2n. 2n/S_n Sn U e2n. 2n/K2n- Int T 

is the Thom space of ir(Sn) which is Sn U e 2n. Consider the quotient map 

u: K2n/S,n - 2/2n - Int T 

u is of degree one on the n and 2n cells and hence is a homotopy equivalence. 
Therefore K2n/Sn - K2n/Sn Sn U e2n 

Let g: K2n _- 1M be a homotopy equivalence. We first show that M is 
almost parallelizable by showing that g*,r(M) is trivial on Sn V sn. Choose 
g so that g I Sn is a smooth embedding and let v be the normal bundle of 
g(Sn). Let T7(v) be the Thom space of v, t: M-> T(v) the usual map and 
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t: K2f -->K2n/Sn the quotient map. tg I Sn is homotopically trivial. Hence, 
up to homotopy, tg = gt for some g. One may easily check that g is a 
homotopy equivalence. Hence T (v) = Sn U e2n where a= [t, t]. Recall, 

= J (j38), /8E 7rn-, (O ) where /8 is the characteristic class of v. The stable 

J homomorphism on 7r-, (0) is a monomorphism and hence /3 is stably trivial. 
Hence v is stably trivial and therefore g*T (M) I Sit is trivial. The same argu- 
ment shows that g*r(M) i Sn is trivial. 

Recall, the obstruction to an almost parallelizable rn-manifold being 
stably parallelizable is in the kernel of J on 7r (0). J is a monomorphism 
on01211 (0). Hence M is stably parallelizable. 

BRANDEIS UNIVERSITY. 
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