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In these lectures I hope to trace the development of a subject which has 
grown up during the past ten years or so and which is now generally 
known as K-theory. As my starting point I have chosen the periodicity 
phenomenon in the homotopy of the classical groups which it was my 
good fortune to discover in 1957. This starting point is partly justified 
because these lectures traditionally deal with some aspect of the lecturer’s 
work, and thereafter the subject was essentially taken out of my hands: 
first, by Milnor and Kervaire, [27], [52] who independently used my 
results to settle an old question on division algebras over the reals, 
and then quite methodically by Atiyah-Hirzebruch [14] who, using a 
very general point of view which goes back on the one hand to Eilenberg- 
Steenrod and on the other hand to Grothendieck, transformed my naive 
computations into a powerful tool in algebraic topology. 

Amongst the achievements of this topological K-theory we may now 
also count (1.) the solution of the vector-field problem on spheres, due to 
Adams [2]; (2.) an amazingly short solution of the Hopf conjecture, to the 
effect that amongst the spheres the 1, 3, and 7 spheres are the only 
groups in the sense of homotopy theory, due to Adams and Atiyah [6]; 
and finally the index theorem of Atiyah-Singer which not only generalizes 
the whole Riemann-Roth question to elliptic differential equations but 
also gives a completely new slant on the whole periodicity phenomenon 
[17], [18], and [19]. 

However, the main justification for starting with my essentially naive 
computations of twelve years ago, is that by tracing the subject from this 
point we will have to touch on many of the central concepts of modern 
algebraic topology in their historic order. 

* This is an expanded version of the Colloquium Lectures given at the University of 
Oregon, Eugene, Oregon on the occasion of the summer meeting of the American 
-Mathematical Society. 

+ This research was partially supported by National Science Foundation grant GP-6585. 
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1. THE NAIVE PERIODICITY THEOREM 

The homotopy group n,(X, 3) of a space X at the point x has as its 
underlying set the homotopy classes [P, XJ, , of maps of an n-sphere 
with base point, (P, *), into (X, *).I Alternatively we may think of this 
set as the homotopy classes of maps of the pair (In, fn) to (X, *) where In 
is the unit cube in Rn and In is its boundary, and in this version the 
group structure is described by joining two cubes along standard faces 
and then reidentifying the resulting parallelepiped with the cube. This 
model for 7rk(X) ( we will suppress base points whenever possible) also 
has the virtue that it leads directly to yet a third definition of nTTlr(X). 
Namely, let 52X denote the space of maps: (I, i) + (X, *); I = [O,l]; 
in the compact open topology. By singling out one coordinate in I”, 
one then obtains an obvious correspondence between r,(X) and 
~n-.l(QX), n >, 2, h h w ic is easily seen to be an isomorphism. Thus one 
can-as was already pointed out by Hurewitz when he first defined these 
groups-define r,(X) purely in terms of the fundamental group n1 , 
by the formula 

?TJX) = ,(Q * l2 ... .QX), K31; Qtakenk--times. U-1) 

For K = 0, n,(X, *) denotes the set of arc-components of X with the 
component of * singled out.2 

In short then, homotopy groups are very easy to define, and quite 
obviously give rise to a covariant functor from topological spaces to 
groups: Thus every map f : (X, *) -+ (Y, *) induces a homomorphism 
f* : Z-~(X) --t nk( Y), which is the identity when f is the identity, and for 
the composition g 0 f we have 

k of)* = g* of* * (1.2) 

1 Two maps f, g : X -+ Y are called homotopic if there is a l-parameter family of 
maps F, , t E [0, I] such that F, = f and Fl = 8. The set of homotpy classes of maps 
from X to Y is then often denoted by [X, Y] and if X and Y are equipped with base 
points then [X, yl, denotes the homotopy classes of basepoint preserving maps. Recall 
also that two spaces X, Y are of the same homotopy type if there exist maps!: X --f Y, 
g : Y - X so that both f 0 g and g 0 f are homotopic to the identity. 

2 QX is naturally a pointed space, the point path ~1: I + * playing the role of base 
point. By going one step further one can equally well identify xk(X) with the set of arc 
components: T,(@X). 
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The simplest first properties of these functors are the following three: 

?Tk(X x Y) = 772(X) x Trk(Y) U-3) 

rk(X) is abelian for k > 1 (1.4) 

7rk(&!P) = 0 for k < n. (1.5) 

The first of these is very easy, the second uses the fact that really only 
one coordinate is used in the group law of TV and then exploits the 
freedom in at least one other coordinate whenever k > 2. The third is 
based on the fact that any map Sk -+ Sn can be smoothed in its homotopy 
class, and smooth maps of Sk -+ S”, whether we interpret smooth as 
polyhedral or as differentiable, cannot be onto for K < n. Thus any 
f : Sk --f Sn with k < n will be homotopic to a map which avoids one 
point P of S” and so can be shrunk to the antipode of P along the great 
circles through P. 

A very important, but really no harder to prove, extension of (1.5) is 
now the following one: Suppose Y is a space and N : fi -+ Y is a map. 
We then form a space 

x= YVI” U-6) u 

called “Y with an n-cell attached” by first taking the disjoint union 

x= YVZ” (1.7) 

and there identifying the points p E in with the points a(p) E Y. The 
topology on X is the usual identification topology. It turns out that most 
of the reasonable spaces one meets in geometry can-up to homotopy- 
be thought of as being formed by successive adjunctions of such cells: 
For instance, 

S” = p v In, with 01 :1,-p (l-8) a 

the unique map. 

(1.9) 

and more generally every polyhedron-i.e., a subset of Rn which the 
finite disjoint union of affine simplexes, which with a simplex contains 
all its faces-is in a very definite and obvious manner obtained by succes- 
sively attaching the various simplexes. 



356 BOTT 

Now the extension of (1.5) alluded to earlier is simply this: 

PROPOSITION (1.10). The inclusion Y -+ Y V, In induces isomorphisms 
inrkfork<n-2andisontofork=n-1. 

There is also a fundamental extension of the property (1.3) to “twisted 
products” of various types. The twisted products which occur most 
often in geometry are of the following sort. We are given a space E 
together with a map rr : E -+ X of E onto another space X, such that 
F’(X) is homeomorphic to a fixed space F in the following uniform sense: 
There exists a covering {Uor} of X and homeomorphisms 

such that the diagrams: 

U, x F * +( U,) 

1 1 
77 

u, -L u, 7 

where the vertical map on the left is the projection on the first factor, 
commute. In such a situation we refer to E as a twisted product of X and 
F. Examples of these abound; for instance if G is a Lie group and H C G 
is a closed subgroup then the coset projection G ---f G/H gives rise to a 
twisted product structure on G, that is, G becomes the twisted product 
of G/H with H. More generally if K C H are closed subgroups of G, 
then the natural map G/K 4 G/H defines G/K as a twisted product 
of G/H with H/K. 

Now then, from the homotopy point of view the fundamental property 
for a twisted product projection 7~ : E + X is the following covering 
homotopy theorem which goes back to Whitney, Eckmann, Steenrod [68]: 

PROPOSITION (1.11). (C overing homotopy property.) Given 7~ : E + X 
as above, and a map f : P ---t E, together with a homotopy fi of the map 
f = rr 0 f : P ---f X. Then there exists a homotopy fi off such that 

Note that for a genuine product this proposition is trivial-one simply 
leaves the fiber coordinate alone. In the general case, however, one has to 
proceed with care and ingenuity to make compatible choices in overlap- 
ping product structures. 
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A rather immediate consequence of this covering homotopy property, 
is now the extension of (1.3) w ic h h is called the exact homotopy sequence of 
a twisted product: 

PROPOSITION (1.12). Let 7~ : E -+ X have the covering homotopy 
property, let * be a base point in E, and let F = rr-l(r*) be the jiber of TT 
through *. Then there is an exact sequence of homotopy groups: 

where i* and VW are induced by the natural maps i : F --f E and rr, while 
the dejinition of 8 uses the covering homotopy property of T. 

To obtain a clue as to the construction of a consider the case a: ni(X) --+ 
n-,(F). If 01 E ri(X) is represented by p : (I, i) -+ (X, 7r*) we may think 
of p as a homotopy of the map of a point into rr~r, and * E E as a lifting 
of this map. Hence by the covering homotopy property there exists a 
cover p : [O, I] -+ E of this homotopy. Thus the value of F at 1 E [0, l] 
will be in the fiber F through *. Now then, a simply assigns to cy the 
component of fi( 1) in r,(F). 

Several other comments are in order here. First of all, recall that a 
sequence of groups and homomorphisms is called exact if the image of 
every incoming homomorphism is the kernel of the outgoing homomor- 
phism. For pointed sets, e.g., when k = 0 in (1.12), the definition is 
extended in the obvious way: the image set must map into the singled 
out element under the outgoing map. Secondly, a comment on termino- 
logy: Maps E + X with the covering homotopy properly play such a 
fundamental role in the body of algebraic topology that they are called 
fiber maps or “fiberings in the sense of Serre” or, simply, fiberings. 
Fiberings turn out to be the appropriate generalization of twisted 
products in homotopy theory, and this insight due to Serre, has revolu- 
tionized the subject in the last nineteen years. I will have more to say 
on this score later on. 

With these fundamental first results of homotopy theory reviewed we 
may move on to the periodicity theorem for the classical groups. The 
classical groups are associated to the three basic complete topological 
fields over the real numbers R, which we denote by R, C, and H for 
the quaternions of Hamilton. If F is any one of these, GL(n, F) denotes 
the group of automorphisms of Fn considered as a right module over F, 
and is referred to as the full linear group of dimension n. All of these 
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topological groups are easily seen to be locally compact Lie groups and 
topologically they are homeomorphic to a product of their maximal 
compact subgroups (denoted by 0, , U, , and Sp,) and a Euclidean 
space. From the point of view of homotopy we may therefore consider 
these compact groups rather than the linear groups themselves. 

A first consequence of Propositions (1. IO), (1.12) is then the following 
stability theorem: 

PROPOSITION (1.13). The homotopy group: rk{GL(n, F)} is independent of 
n ifn is large enough. Moreprecisely, the inclusion GL(n, F) + GL(n + 1, F) 
induces isomorphisms in rk for k < n. 

To prove this theorem in the real case, say, one only has to observe 
that the homogeneous space 0,+,/O, is homeomorphic to an n-sphere 
S”. Hence, using the exact sequence (1.12) for this twisted product, 
one obtains the exact sequence: 

n,+l(Sn) - Tc(OJ - %(On+J - r&(Sn)- 

By (1.5) the outside terms disappear for k + 1 < n so that the result 
follows. 

We will denote the stable values of these groups by nk(0), rk( U) and 
,,(SP) respectively, and with this understood the periodicity theorem 
states the following: 

PERIODICITY THEOREM: The homotopy groups of 0, U, and SP satisfy 
the recursion relation: 

Thus Z-J U) has period 2, while r.+(O) and z-,(SP) have period 8. 
The first few homotopy groups of these spaces can be computed without 
much trouble and were in any case known in 1957. It then follows from 
these computations that the period of rr.+ is given by: 

0, z for 7r.J U) 

0, 0, 0, z z, z, 0 z for 7r,(SP) and (1.15) 

z~z~ozoooz for n*(O). 
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I think it is fair to say that the regularity of these homotopy groups 
came as a great surprise to all of us. The reason for this was that by 1957 
we had already accepted the fact that the homotopy groups of spaces 
which one encounters in geometry are very difficult to compute, and 
quite irregular in structure. By some divine justice the rTTx.‘s of geometric 
finite objects such as polyhedra or manifolds seem to be as difficult to 
compute as they are easy to define. To gain some insight into this pheno- 
menon let me digress here for a moment, in order to discuss the general 
problem of computing the homotopy groups of a polyhedron. 

In the last twenty years tremendous advances have been made on this 
question, for instance it is known that if the fundamental group of a 
polyhedron is abelian, then all the homotopy groups of P are computable 
in the technical sense of recursive functions from the combinatorial 
information describing P. On the other hand this existence theorem- 
which was proved in its full generality by E. Brown, in 1957 [30] and 
depends on all the basic advances made by Serre, Cartan, Postnikov, 
Moore, and many others, is much too elaborate to be followed in practice. 
One can, however, approximate this procedure in important special cases. 
The main principles involved are then roughly the following ones: First 
of all one has the following basic theorem going back to Hurewicz: 

THEOREM 1.16. If 7r0 ,..., 7rI;-i of a space Y all vanish; k 2 2; then 
7~~( Y) N HJ Y), where Hk denotes the k-th singular honzotopy group of Y 
with integer coeficients. 

Concerning homology let me say here only that it is a covariant, homo- 
topy invariant functor from spaces to abelian groups, which is harder 
to define than homotopy, but explicitly computable on polyhedra. In 
particular H,(P) = 0 when k > dim P. 

Our next theorem deals with the simplest nontrivial spaces from the 
point of view of homotopy [38]: 

THEOREM 1.17. (Eilenberg-MacLane). Suppose Y is a space with 
vanishing homotopy save in dimension n, and that: 

Then the homotopy type of Y, and in particular the homology of Y, is 
completely determined by the pair (n, n). 
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Conversely, given (VT, n) where r is an abelian group and n an integer > 1, 
there exists a space K( z-, n)-which can in fact be constructed by the 
successive attaching of cells-which has the property that 

0 
?lj{K(z-, n)} = 

1 

j#n 
77 j = n. 

Note. Properly speaking the uniqueness part of this theorem is only 
true when Y is itself a space obtained by the successive attaching of 
cells-a so-called CW-complex. Alternatively one can define two spaces 
Y and 2 to be of the same homotopy type if the functors P-F [P, Y], and 
P+[P,Z]wh’ h h IC t ey define on the category of polyhedra, are naturally 
isomorphic. 

This theorem immediately raises the question of determining the 
homology of K(n, n) purely in terms of (r, n) and this problem, which 
was initiated and partially solved by Eilenberg and MacLane [38], [42], 
was brought to a full solution by Serre, Moore and Cartan, using the 
methods initiated by Leray and Serre, Borel, Cartan, and the con- 
structions of Steenrod [33]. Th e answer is elaborate and can not really 
be surveyed here. However, even a cursory insight shows that the 
K(r, n) are only in very special instances finite polyhedra! In particular, 
the homology of K(Z, n), n > 2 has torsion of every type in arbitrarily 
high dimensions! To summarize, the K(r, n)-which should be thought 
of as the atomic spaces of homotopy theory-have a very complicated 
homology structure and are usually not encountered directly in geometry. 

Inviewof(l.3)and(1.17) one can build spaces with arbitrarily assigned 
abelian homotopy groups {nlc} simply by taking the product, & K(z-k,k), 
of the corresponding Eilenberg-MacLane spaces. Unfortunately, how- 
ever, not every space is of this homotopy type. On the other hand one 
does have a structure theorem of this sort if one allows the products to 
be “twisted”. More precisely this is expressed by the following [62], [71]: 

THEOREM 1.18. (P t k OS ni ov, Moore, Whitehead). Let Y be an arc- 
connected space with homotopy groups {rk}, k = I,... . Then there exists a 
sequence of $berings 

such that the fiber of 7-rk is a K(x, , k), and such that Y, is an (n - 1) 
approximation to Y in the sense that the functors P + [P, Y,] and 
P + [P, yl are naturally isomorphic for all P of dim < n - 1. 
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In the weak form in which I have just stated the Postnikovfactorization, 
this conceptually fundamental fact is quite easy to prove. The con- 
struction is as follows: Let Y, be the space obtained from Y by succes- 
sively adding cells of dim > n + 2 and such that nJ Y,) = 0 for 
k > n + 1. Using (1.10) t i is not hard to see that such a construction 
is possible. 

By construction and the fact that 7rk(Sk) = Z, as follows from the 
Hurewitz theorem, the inclusion Y --+ Y,- then induces isomorphism 
in nI for k < n. Having constructed Y, , let Y,-, be obtained by sim- 
ilarily “killing” the homotopy of Y, in dimension n and above. 
Thus the inclusion Y, A Y,-, induces isomorphisms in 7rTk for 
k<n-I. 

Now there is a trick for converting any inclusion A + X (in fact any 
map) into a$bering! Simply define L(A, X) as the space of paths 

p : [O, l] -+ x 

with ~(0) E A, and let 

a:L(A,X)-tX (1.19) 

be defined by 

The map o is then quite trivially seen to have the covering homotopy 
property. On the other hand the inclusion A C L(A, X) sending a E A 
into the “point path” a, is-also quite trivially-a homotopy equivalence. 
(One simply shrinks p to its initial value along itself.) 

Applying this construction to the inclusion 

yn - y,-1 , 

we obtain the fibering 

P, JL Y,-1 ) yn = L(Yn , yn-1) 

with Y, of the homotopy type of Y, , Now if we apply the homotopy 
sequence (1.12) it becomes apparent that the homotopy groups of the 
fiber F in (T are zero save in the one dimension n and then rr,(F) = rll( Y). 
Thus the fiber is a K(n, , n), Q.E.D. 
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The point we have reached now is that, as far as homotopy is con- 
cerned, every space is obtained from the basic Eilenberg-MacLane 
spaces by successive fiberings. Actually this philosophy, though re- 
assuring, would be of little computational help were it not for the so- 
called “Spectral sequence of a fibering.” In the 1940’s Leray discovered 
that if E is a twisted product of X and a fiber F, then a definite but very 
complicated algebraic relation existed between the homology of E, X, 
and F. In a sense his theorem may be thought of as a fundamental 
extension of the Kiinneth theorem describing H(X x F) in terms of H(X) 
and H(F). For a general twisted product one of course can not expect an 
explicit description of H(E) in terms of H(X) and H(F) because the 
twisting, which is hard to measure, must enter into the equation. How- 
ever, Leray found that the effect of the twisting nevertheless obeys 
certain quite general laws [54]. In particular, these laws, which we refer 
to as the “Spectral sequence of the twisted product”, are in certain cases 
sufficient to enable one to compute one of the variables H(E), H(X), and 
H(F) if the other two are known. In 1951 Serre [65] established the fact 
that these same laws also hold for his more general fiberings (as defined 
above earlier) and thereby made this powerful tool applicable to homo- 
topy theory. The results were spectacular. For instance: observe that 
the loop space QX may be thought of as the fiber of a fibering E Ir, X 
with E a contractible space. Indeed, simply set E equal to the space of 
maps 

p : [O, I] --)L x 

with p(O) = * E X, and define u by 

4tL) = CL(l)* 

This is trivially a fibering, indeed it is our earlier construction applied 
to the inclusion of a point in X, so that E is of the homotopy type 
of *. We may therefore apply the spectral sequence with H,(E) = 0, 
k > 0. When X is a sphere S”, it then turns out that these data and the 
well-known fact that 

/ 

Z k=O,n 
H&P) = 

0 otherwise 

lead to a unique solution for H(G,S”), namely: 

(1.20) 
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Computing further in the same vein Serre obtained some hold on the 
homology of the higher loopspaces of S”and so, by the Hurewitz theorem, 
on the higher homotopy of 5’“. For instance, he was able to show that the 
groups n,(S,) were all finite for k 3 2n. This same-really quite 
simple-minded fibering-also plays a crucial role in the computation of 
the homology of the K(r, n)‘s. Simply observe that if X is a K(n, n), 
then QX is a K(n, n - I)! Now N(K(n, 1)) is relatively easy to compute 
-and is in fact what we usually call the Eilenberg-MacLane homology of 
the group r--so that the spectral sequence yields an inductive procedure 
for passing from H(K(r, 1)) to H(K(n, n)), 

Equipped with the spectral sequence the Postnikov factorization now 
becomes a powerful tool for computation of homotopy. The computation 
proceeds roughly like a crossword puzzle. Starting from a thorough 
understanding of the homology of a space X one tries to fit K(n, n)‘s 
together so as to produce this homology. For instance, consider Sn, n >, 1. 
From the fact that H,(Sn) = Z we conclude that S” “starts” with a 
K(Z, n). Now if S* actually were a K(Z, n) the homology of K(Z, n) 
would have to vanish in dim > n. This happens for n = 1 and S1 is 
actually a K(Z, 1). H owever, as soon as n > 2 torsion appears in 
H{K(Z, n)}. Hence, looking at the first homology occuring in H{K(Z, R)) 
above dimension n one can determine the next constituent in the 
Postnikov system, etc. Of course, this procedure progressively leads to 
more and more ambiguities, and one can proceed further usually only by 
some new clue in the crossword puzzle. A clue which, by and large, 
must be found in some ad hoc manner! To refine this procedure to a 
foolproof computation one eventually has to descend from the purely 
homology level to a chain level. There, unfortunately, the computations 
become unmanageable-even for machines. 

So much for this short excursion into the art of computation in homo- 
topy. Using roughly the procedure described above, the stable homotopy 
groups of the classical groups had been computed in 1957 up to dim 10 
for U, and up to dim 7 or so for 0. As the homology of U,, is very regular 
and in particular has no torsion, there was really no expectation that U 
was made up entirely of K(Z, n)‘s. In fact, the early computations of the 
homotopy theorists yielded nr,( U) = Z, . This result was then called in 
question by computation of Bore1 and Hirzebruch who, inspired by 
quite different phenomena, predicted the value zero for this group, and 
it was this controversy which initially aroused my curiosity. 

The original proof of Theorem 1, is based on the Morse theory and 
avoids R(z-, n)‘s or spectral sequences entirely [26]. Instead, one uses the 



364 BOTT 

Morse theory to construct a CW-model for a component, Sz, , of the 
loopspace on U,, , which takes the following form: 

Q, = U,,/lJ, X U, V e, V e, V ... (1.21) 

with the dimension of the cells {ei} to be attached, bounded from below by 
2n+ 1. 

Now such a model for Q, implies the periodicity of n,(U) from 
principles we have already encountered: First of all z-~(Q,) = 7~~+r{ Ua,}, 
K > 0, per definitionem. Secondly, by (l.lO), this model implies that 

Tc(Q*) = ~dU3nlUn x Un) k < 2~2. (1.22) 

Finally applying the exact homotopy sequence to the fibering 

%JuTl- UmlU?l x un (1.23) 

with fiber (U, x U,)/U, = U, and keeping the stability theorem in 
mind one finds that 

?c(Un) = %+I( u,n/un x Un), k < n. (1.24) 

Combining all these equations, therefore yields the desired formula 

~&l(U) = %+1(U) k > 0. 

Let me now indicate how the Morse theory leads to the desired model 
for 52, . 

Recall first of all the main assertion of the elementary Morse theory. 
Here one is dealing with a (finite dimensional) P-manifold M, on 
which a C” function q~ is defined, and asks the question of how the 
“half-spaces of q”: 

M” = {P E af I v(P) < 4, 

evolve from one another. The nondegenerate Morse theory answers this 
question under the following assumptions on 9): 

y  is proper, (i.e., v-r (compact) is compact). (1.25) 

The critical points {p} of v  are nondegenerate in the sense that for 
every p E {p} the Hessian off at p is nondegenerate. 

(1.26) 

3 Recall that p is critical for CJJ if and only if all ipartials of pl relative to local coordinates 
near p vanish at p; also that the Hessian H,p is a quadratic form on the tangent-space to 
A4 at a critical point p, whose value of X E T,M is the second derivative of p in the 
direction X. 
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Under these assumptions the Morse theory asserts that: 

THEOREM (1.27) (Morse). Part.1. If ~JI has no critical point in the set 
‘p-l[a, b], then M” is difleomorphic to Mb: 

M” = Mb. (1.28) 

Part 2. If there are no critical points of q~ on v-‘(a) and q-‘(b) then 
up to homotopy Mh is obtained from 111” by attaching cells {e,} to MU 

Mb= Ma~e,lu.‘.Ve,k (1.29) 

where the (p,} are the criticalpoints of y in ~-~[a, b], and the dimension sfe,, 
is equal to the index of inertia4 of the Hessian H,*v: 

dim e, = index H,,qx (1.30) 

This theorem, though enunciated here in a more modern form, 
follows directly from Morse’s argument of the 1920’s, which carefully 
analyzes the deformations of M induced by the trajectories of a gradient- 
field of p) relative to a Riemannian structure on M [59]. 

We here only summarized the homotopy consequences of this analysis. 
A more refined conclusion is possible and leads one to the “handlebody 
theory” of Smale [66] h h w ic was the main tool in his fundamental work 
on the PoincarC conjecture in higher dimensions and his general study 
of the diffeomorphism types of manifolds. 

Our concern here is not with this refinement, but rather with Morse’s 
own extension of this theory to the loopspace on a manifold. The under- 
lying philosophy of this development is that a properly posed variational 
problem-such as minimizing the length of path on a complete Rieman- 
nian manifold for instance-should define a function ‘p on a properly 
defined loopspace GM to M, in such a manner that: 

The space fi = QM has the same homotopy type 

as the usual loopspace QM. 

The critical points of cp should correspond to 

the extremals of the variational problem. 

Theorem (1.27) should hold. 

(1.31) 

(1.32) 

(1.33) 

* This index counts the number of negative squares occurring in a diagonal presentation 
of the quadratic form. 
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Thus the halfspaces fi = {p E Q 1 y(p) < a} are to be of the same 
homotopy type for a E [a,, , a11 if no critical point of v exists in ~-~[a,, a,], 
and under a suitable nondegeneracy hypothesis on the extremals of the 
problem one should have a homotopy equivalence: 

Ob -Sja U e, V ... ek (1.34) 

whenever F has no critical points on y-‘(a) and ~-l(b). Finally these 
cells should be in one-to-one correspondence with the critical points of q 
on p?-l[a, b] and their dimension should be computable from local data near 
the critical points. 

This program was carried out by Morse and a slight technical variant 
of his method was later developed by Seifert and Threllfall [69]. Both 
these approaches use polygonal approximations to the points of b&l, 
and after a series of deformations, reduce the theorem to the finite 
dimensional case. More recently the theory of C”-locally Hilbertian 
manifolds has been greatly developed by Eells-Sampson, Palais, Smale, 
and others (see [37] for instance) and the above program can then be 
carried out directly in this framework. In my own work [26] I used a 
variant of the Seifert-Threllfall approach to establish a homotopy 
equivalence of the halfspaces J%M with the halfspace of the space iW, = 
Mx .** x IM, (z copies) n large, on which the function 

&1 >..., x,) = c d2(Xi ? %+1) (d = distance on A!) 

is less than b = (a”/n). Furthermore, under this homotopy equivalence the 
geodesics-(1 only treated the Riemannian case)-of fiA!f went over 
precisely into the points (x1 ,..., x,,) of M, which cosrresponded to equally 
spaced points on a geodesic segment joining the base point of &‘M to itself. 

This construction was carried out in the Seifert-Threllfall model for 
OM. That is, the points of fiM are piecewise smooth maps from [0, l] to 

M, subject to the boundary conditions: ~(0) = p( 1) = P, or more generally, 
boundary conditions of the form: v = (P, Q, h) which are defined by: 

p(O) = p, ~(1) = 8, p in a given homotopy class h of 

maps subject to the first conditions. 

This set is then made into a metric space Q, = 0, , via the metric: 

+, v) = m,ax 44th v(t)> + I L(u) - L(u)l. 
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Here d denotes the distance in the Riemannian metric on M, and L(u) 
the length of the curve u in this metric. 

The homotopy equivalence of SZVaM with the v-halfspace Mnb now 
enables one to carry out the Morse program directly by applying 
Theorem (1.10) to CJJ on M,“. 

In the Riemannian case the index of a nondegenerate critical point of v 
has a beautiful geometric interpretation, also essentially due to Morse. 
The assertion is the following one: 

THEOREM (1.34) (Morse). If on the geodesic segment s E !2,,M the 
endpoints are not conjugate, then the corresponding critical point of v is 
nondegenerate; furthermore, the index of such a critical point is then the 
number (counted with multiplicity) of conjugate points of one endpoint in the 
interior of s. 

The implications of this extended Morse theory are maybe best illus- 
trated by a concrete example. Consider S”, n > 2 in its usual Rieman- 
nian structure and let (P, Q) b e a pair of points on Sn which are not 
antipodal. The set O-(P, Q) of geodesics joining P to Q is then easily 
surveyed: Ordered by length they are in one-to-one correspondence 
with the integers, say s0 , sr ,... ,etc. The endpoints are never conjugate, 
furthermore, the index of sk is seen to be (n - 1) {the number of times 
sk contains the antipode of P in its interior}. Thus the index of sk is 
precisely h(n - 1). 

Applying the Morse theory one obtains a model for G’S” which is of 
the form 

LX? ‘v e, V en-, U e2(n--1) U ... 

where we have indexed the calls by their dimensions. 

(1.35) 

Using (1.35) and elementary properties of the homology functor it 
follows that the homology of J2Sn is given by: H,(J2P) = Z when 
q = 0, mod(n - 1) an d vanishes otherwise. Thus one confirms the answer 
mentioned earlier, as computed by the spectral sequence, and Morse had 
essentially arrived at this result thirty years ago by this technique. 
Having computed H,(SZ,!P) one may now turn the theory around, so 
to speak, and prove that for every Riemannian metric on Sn and every pair 
of points (P, Q) on 5’” there are an infinite number of geodesics joining P to Q. 

If all geodesics from P to Q are nondegenerate this is clear as otherwise 
SZS” would be constructable out of a finite number of cells which con- 
tradicts the existence of homology in arbitrary high dimensions. When 

607/4/3-11 
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certain geodesics joining P to Q are degenerate-i.e., P is conjugate 
along Q on them, one can still push this argument through, as even a 
degenerate critical point can only contribute a finite number of cells to 
the space. 

As my next illustration, consider S”, n > 2 again in its natural metric, 
but now let 8,Sn be based on an antipodal pair of points (P, P). Now 
the set of geodesics C(P, P) consists of a countable sequence of 
(n - 1)-spheres. Let 9-l C sZ,S” be the sphere consisting of geodesics 
of minimal length rr, so that the other spheres consist of geodesics of 
length 35r, 5z-, etc., and consider the half-space J2,aM with r < a < 3~. 

Now it is not difficult to show that the 52,“M is of the same homotopy 
type as SC-’ C OVUM. Further, note that on the geodesics of the sphere 
&y-l (akflJrr, the number of conjugate points of P in the interior of the 
geodesic segment is precisely (B - 1)k. Using this fact one can, by means 
of a function with just two critical points on P--l, perturb the function F 
in the vicinity of the higher “critical manifolds” so as to have only non- 
degenerate critical points, the sphere S(sk+l)n contributing two critical 
points of index (a - 1)rZ and (n - l)(R + 1). It follows that QnSn admits 
a model of the form 

SZS” = Sri-l U e2(n--1) U eznel U a-* . (1.36) 

Now the inclusion Sn-i L SS” induces a homomorphism i, in homo- 
topy which by (1.10) must be an isomorphism for dimensions <2n - 3. 
Combined with the isomorphism rl,(sZX) E .rrk+r(X) we conclude that i, 
induces an isomorphism: 

T?(sn--l) = Tc+1(S”) k <2n-3. (1.37) 

The homomorphism induced by i in this manner is called the “Sus- 
pension” and the isomorphism we have just established is precisely the 
weak ’ ‘Freudenthal Suspension Theorem”. 

Classically derived in quite a different manner this result was the 
most general homotopy theorem concerning spheres known before the 
advent of pectral sequences. I note in passing that armed with this 
result it is then quite easy to give an inductive proof of Hopf’s fun- 
damental theorem to the effect that n,(P) ‘v Z, n > 0. 

This last illustration is really the prototype of the proof of all the 
periodicity theorems. In the case of Us, the argument runs as follows. 
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We pick (P, Q, h) on U(2n) as P = identity, Q = -identity, h the homo- 
topy class of the path 

CL : LO, II- u,, 
which sends t into the diagonal matrix with entries 

(t?i”f, . . . e-i77t, &7t, . . . , e-inl). 

The set of minimal geodesics in the corresponding loopspace, Sz, , 
is then seen to consist of all the conjugate paths to p, i.e., all paths of the 
form t -+ m(t) x-l, x E U,,; this set is therefore homeomorphic to 

u,,/u, x KS * 
By perturbing the function y near the higher critical manifolds one 

then again estimates the dimension of the cells they contribute to Sz, 
and it then turns out that 

where the dots indicate cells of dimension > 2n + 2. This formula, 
as we have seen, then leads directly to the periodicity theorem. Q.E.D. 

Clearly this procedure only works when one has great control over the 
geometry of the space. In particular one needs an oversight over the set 
of all geodesics joining two points and the number of conjugate points on 
any such geodesic. By and large the only spaces where such complete 
information is available are the symmetric spaces, (see [24], [28]) and 
for our purposes only the compact ones are of interest. Recall that such a 
space is the coset space of a compact Lie group G by a closed subgroup K 
which has the same identity component as the fixed point set of an 
involution. These spaces include the groups-simply write G = G x G/A 
where d is the diagonal-the spheres, and for instance, the following 
spaces: SWU, , sP,lU,, p UN, , U2,lsP, , SPdSPn x SP, , etc. 

Now quite generally, one can show that if v = (P, Q, h) is a “base 
point” on a symmetric space M and L?,M is the corresponding loopspace 
then the set of geodesics C&M in .C?,M consist of a disjoint union of 
manifolds of geodesics all of which are naturally homogeneous spaces. 
Furthermore, the manifold of minimal geodesics in C&M is itself again a 
symmetric space. This phenomenon enables one to iterate the construc- 
tion of SZ,M, and it is this iteration which leads one naturally to the other 
periodicity theorems. For instance, the sequence of models: 

L$SO,, s {SO,,/U,} u e2n--2 V ... 

Q,SO,,/ uzi,, = Cu2,1SP,l u e4n--2 u “- (1.38) 

WJ4,1J3P2, = GP2,1SPn x SPA u e4n+4 v a*- 
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leads to the formula 

while the models 

(I .39) 

(1.40) 

lead to the equation 

r!40) = %fQ(SP) k 3 0. (1.41) 

Of course, the homotopy of all the intermediary spaces such as Sp,/ U, , 
etc., is also stable when n--t co as can be shown quite easily, so that our 
procedure clearly also computes these stable homotopy groups. 

Note that the last step in the derivation of (1.40) involves the iso- 
morphism 

~dSP,?LlSP* x SPA = %tdSPn) k<n 

which can be derived from an exact sequence argument-similar to the 
one we used for U, and which was in any case well-known. Alternatively, 
one can use the same method to obtain a model for Q,{Sps,/Sp, x Sp,} 
which starts with Sp, . 

The same remarks apply to the isomorphism 

%(%/Qa x On) = Tct1(O?J k < n. 

The formulas (1.39) and (1.41) give estimates of the dimensions in 
which our various models are applicable. By intelligently passing to 
7t = cc we can, however, express their main import by saying that an 
&fold iteration of the loop construction leads back to the same space. 
For reasons which will become apparent in the next section, the best 
place to start this iteration is with the space BO, which is defined as 
the direct limit of the sequence of spaces 

- Gkl0, x 0, - %4/0n+1 x on+1 -. (1.42) 

Keeping track of components, the maps implicit in (I .38) and (1.39) 
then can be interpreted as a map 

A,: BO x Z+sls(BO x Z) (1.43) 
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which induces an isomorphism in homotopy, and hence, as follows by 
an important but quite elementary theorem of J. H. C. Whitehead, 
a natural equivalence of the functors P + [P, Z x BO], and 
P+ [P, @Z x BO]. 

A similar construction is of course possible for the unitary group. 
Here one is led to the direct limit, BU, of the spaces Us,/ U, x U, , 
and to a map 

AC: BU x Z+G=BtJ x Z, 

which is also a homotopy equivalence in the above sense. 

(1.44) 

The implications of the periodicity theorem in this guise will be 
discussed in the next section. 

Let me just conclude here though, with a very cursory survey of the 
alternative proofs that the maps h, and hc induce homotopy equivalences 
which have been given since 1958. Toda was the first to construct hc and 
check its properties, by purely homotopy theoretical methods, i.e., 
without the Morse theory [70]. Thereafter, Cartan and Moore used the 
spectral sequence of a fibering and cohomology to yield the periodicity 
theorem [34]. Dyer and Lashoff also took a similar point of view [36]. 
In the early 1960’s, Atiyah and I produced an elementary proof of the 
periodicity for BU by a construction inspired by the linearization 
procedure in ordinary differential equations of higher order [15]. This 
point of view was then extended to BO by Wood [73]. Also in the early 
1960’s, A. Shapiro and I noticed a periodicity phenomenon in certain 
representations of the Spinor group and were thus able to actually 
identify generators for ~~(0) in terms of the Spinor groups. This point 
of view was developed greatly in the past few years by Karoubi and led 
to his theory of Banach categories and to a different proof of periodicity 
[50]. Finally, 1 a so in the past few years, Atiyah used the connection with 
the index theorem and the basic properties of Fredholm operators, to 
produce a very short proof of the periodicity. He also developed a theory 
of “complex bundles with involution” [12], from which the much more 
mysterious BO periodicity could be deduced from our elementary 
proof for BU. 

2. THE PERIODICITY THEOREM IN FUNCTORIAL FORM 

Before describing the periodicity theorem in its functorial form a few 
remarks on homology or rather cohomology are in order. Historically 
homology and cohomology were first defined for polyhedra by an explicit 
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algebraic construction depending on the combinatorial decomposition 
of the polyhedron. From this point of view the homotopy inveriance of 
these objects was then a difficult question which was only solved by 
Veblen and Alexander in the 1920’s [8]. 

The modern approach is by and large in the opposite direction. One 
first defines a functor from spaces to abelian groups which is obviously 
homotopy-invariant and then checks that on the family of polyhedra, 
(or CW-complexes) P, the functor is computable by a combinatorial 
formula. Now the simplest manner of constructing a homotopy invariant 
functor on this category is to choose a fixed space Y with base point, and 
in terms of it define a contravariant functor F from P to the category of 
pointed sets by assignment 

F(X) = [X, Y]. (2-l) 

This F is contravariant because a map g : X --f X’ induces-by com- 
position-a map, F(g) : F(X’) + F(X), and it is a functor because one 
easily checks the characteristic identities 

F(identity) = identity, 

F(g 0 h) = F(h) 0 F(g). 

Further F is obviously homotopy invariant, that is, 

f - s * F(f) = %d. 

(2.2) 

(2.3) 

Functors of this simple type are called representabk; also one calls Y 
the classifying space for F, or says that F is represented by Y. 

Now suppose that Y is a topological group. The multiplication 

YxY--+Y 

then naturally induces a group structure on F(X) and if Y is commutative, 
then F(X) will be commutative. 

Actually, as stands to reason, Y need be only a “group-up-to-homotopy” 
for the corresponding functor to have values in groups, and such “group 
objects in homotopy theory”, usually called H-spaces, are very easy to 
construct. Indeed the composition of loops, i.e., distributing the para- 
meter first along the first and then along the second loop, defines a map 

p:L?xxax4szx 

on any loopspace, which induces an H-structure on OX, and it is this 
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H-structure which ultimately accounts for the group structure in nr(X) = 
xO(QX). Furth er if Y = QQX is a second loopspace, then this group 
structure is (homotopy) commutative. Thus any such Y furnishes one 
with a homotopy invariant functor from P to abelian groups. 

Consider now the case when Y is one of our atomic objects, i.e., a 
K(n, n), r abelian. From the fact that QK(n, n + 1) s K(T, n), it 
follows that the functor 

F : x---f [X, K(n, n)] 

naturally has values in abelian groups, and-by virtue of the simplicity 
of a K(n, n)-there is some hope that this F should be combinatorially 
computable on a polyhedron. This turns out to be the case--in fact one 
recaptures in this manner precisely the classical algorithm defining the 
nth-cohomology group Hn(F’; 7) of P with coefficients 7~. 

For those familiar with this algorithm let me sketch an argument 
which yields this identification. Let the vertexes of P be ordered, and let 
Ptk) C P be the K-skeleton of P, i.e., the sub-polyhedron consisting of 
simplexes of dim < k. 

Suppose now that f : P -+ K(-/r, n) is a map. Using the property that 
7-riri(K(7r, n)) = 0 f or i < n we can inductively deform f to a new map, fi , 
which sends P(n-l) into the base point of K(r, n). Consider now the 
restriction offi to the closure 6, of the n-simplex u with vertexes: 

u = (xg )..., xn), xi in their natural order. 

Because all the faces of u are mapped into the base point of K(n, n) 
under fr this map determines an element C!,(O) in z-,{K(r, n)] = T. 

In short cfl is a function from the n-srmplexes of P, to n, i.e., an 
n-cochain on P with values in 7~. 

Now the geometric fact that fr extends to Pln+l) is expressed by the 
following algebraic identity: 

Whenever (x,, ,..., x,+~) is an (n + 1)-simplex of P then 

c (-17 cr(xo ,..., ij ,..., a?,+& = 0. 

Here the hat over xi indicates that the vertex xi is to be deleted. The 
above identity is precisely the condition that cfl be a “cocycle” in the 
usual terminology. At this point we have, starting with f, constructed an 
“n-cocycle” on P. Next, one has to determine the ambiguity of the 
correspondence f + cfl . The construction depended on the manner 
in which f was shrunk to fr on P(+l), and it turns out that if cfl and cfz are 
the cocycles corresponding to two different shrinkings off then cfl - cfz 
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is a cocycle of special type-called a “cobo~ndary”. Thus one finally 
obtains a well defined function: 

F(P) + cocycles/coboundaries. 
The group on the right is the usual combinatorial nth-cohomology 
group of P with values in n-denoted by Hn(P; n)-and one can com- 
plete the above argument to show that our construction yields an iso- 
morphism (Eilenberg-MacLane) [38] : 

[P, K(T, n)] 51 H+yP; 7r). (2.4) 

The onto part of the construction uses the fact that v~{K(~, n)} = 0 
for i > n. This enables one to convert an n-cocycle, c, into a map, 
P -+ K(n, n) by sending P(+l) into the base point of K(n, n), mapping 
the n-simplexes by maps in the homotopy classes assigned to them by c, 
and then extending the map inductively over the skeletons of P. 

Thus (2.4) asserts that the classical nth-cohomology construction 
P -+ Hn(P; z-) is represented by K(r, n) and so in particular proves its 
homotopy invariance. 

Note furthermore that the family of spaces (K(r, n), n = 0, 1, 2,...} 
satisfy the condition: 

Lx(Tr, n + 1) ‘v K(7r, n). (2.5) 
An important consequence of (2.5) is now the following, 

EXACTNESS PROPERTY OF COHOMOLOGY. Let 7~ be afixed Abeliangroup, 
and let H’l denote the functor represented by K(n, n),n E Z.5 Also let (P, Q) 
be a pair of polyhedra and define the relative groups Hi(P, Q) by theformula 

Hi(P, Q) = @(P/Q) = ker{W(P/Q) -+ Hi(*)} 

where P/Q is the space obtained from P by identifring Q to a point C. Then 
there is an in$nite exact sequence: 

- H”(P) -H”(Q) 

which behaves naturally with respect to maps of pairs. 

5 For 11 = 0, K(s, 0) = T so that W(P; T) = locally constant functions from P to T. 
For n < 0 K(a, n) is simply a base point. 
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The horizontal maps of this sequence are of course induced by the 
natural map P --t P/Q and the inclusion Q C P respectively, while 6 is 
ultimately induced by the equivalence (2.5). 

There are many ways of proving this property and they all depend in 
one way or another on the regularity properties of pairs of polyhedra (or 
finite CW-complexes) and on the elementary geometry of homotopy 
theory, rather than the special properties of the K(n, n)‘s other than the 
recursive formula (2.5). 

For instance the exactness of our sequence at H”(P) follows directly 
from the following elementary 

HOMOTOPY EXTENSION THEOREM FOR POLYHEDRA: Let i : Q + P be 
the inclusion of a sub-polyhedron into P. Also let 

f:P+Y 

be a map into a space Y and let f be the restriction off to Q : f = f 1 A. 
Then for any homotopy ft off th ere exists a homotopy f t such that 

This property is clearly dual to the covering homotopy property (1.11) 
and maps i : Q ---f P satisfying this condition are therefore often called 
“co-fiberings”. The construction of 6 in this sequence also plays a 
corresponding dual role to the construction off in the sequence (1.12). 

Let us recapitulate this development in the following manner. A 
sequence F { }, * = F” n E 2, of contravariant functors from P to abelian 
groups will be called a cohomology theory if the Fn are homotopy invariant 
and satisfy the exactness property (2.6) where Fn(P, Q) is defined by 
&(P/Q) = ker{F”(P/Q) + Fn(*)}. 

With this understood, we see that the K(z, n)‘s furnish us with a 
cohomology theory H * = {H”f,6 which has the following two properties: 

H”(point) = 
I 
i 

n=O 
otherwise. (2.7) 

H”(P) II classical Hn(P; 7~). (2.8) 

Now historically the search for a good invariance proof of the classical 
groups Hn(P; V) led to the definition of many cohomology theories 

’ Here we set H”(X) = 0 for n < 0. 



376 BOTT 

subject to (2.7). Thus one has the singular and Tech theories-and many 
others. Each of these starts from a different geometric point of view and 
produces a theory with different properties on different categories of 
spaces. However they all trivially satisfy (2.7) and were all eventually- 
quite laboriously in some instance-shown to satisfy (2.8). 

This situation was finally cleared up by the following: [43]: 

UNIQUENESS THEOREM (Eilenberg-Steenrod). Any two cohomology 
theories subject to (2.7) g a ree with the classical theory of polyhedra.7 

In retrospect it seems quite natural that this theorem of the 1950’s 
should have initiated research in more general cohomology theories-i.e., 
theories not satisfying (2.7). However this development had to wait 
until the 1960’s (see for instance the work of Lima [55], and especially of 
G. W. Whitehead [72]) after Atiyah and Hirzebruch took this point of 
view with a particular theory [14], the so-called K-theory constructed 
out of vector-bundles over a space. 

From our present vantage point the description of this cohomology 
theory is actually quite easy. First recall that the ultimate reason why 
the K(r, n)‘s generate a cohomology theory in the recursion 

sz * K(x, n) = q-r, n - 1). (2.9) 

This suggests that if F is a functor represented by (Y, *) then the 
sequence of functors F+, n, 0, l,..., F” = F; defined by 

F”(P) = [P, LPY] (2.10) 

should generate a “partial” cohomology theory, i.e., one satisfying the 
exactness axiom in dim < 0. The functor F = F” of course only has 
values in pointed sets, but its “derived functors” F-” have natural group 
structure induced by the H structure of a loopspace. 

Observe finally that the partial theory generated by F in this manner, 
has for its values on a point precisely the homotopy groups of Y: 

F-“(point) = v&Q”Y) = rJY; *). (2.11) 

Let us now apply this quite general principle to the functor KO, 
represented by the space Z x BO, with base point 0 x p, p E BO: 

KO(P) = [P, z x BO]. (2.12) 

’ Note that the usual “excision axiom” of Eilenberg-Steenrod holds trivially in OUT 
context by the assumed &morphism F”(P, Q) N fi(P/Q). 
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The homotopy equivalence 

then induces an 8 foldperiodicity in KO-“: 

A,* : KO-n-s(P) E KO-“, 

and using this periodicity we may now extend the dejinition of KO-” to all 
n E 2. In short h, enables us to complete the partial theory generated by 
KO into a genuine cohomology theory KO* = {KOn); n E 2, which is 
periodic of period 8 and satisfies the point axiom: 

KO%(point) = (Z, Z, , Z, , 0, Z, 0, 0, 0} (2.13) 

for n = 0, -l,..., -8 mod 8. 
Similarly Xc induces a cohomology theory KU*, {KU”} with period 2 

and having the “point” values 

KUn(point) = {Z, 0} forn ~0, l,mod2. (2.14) 

The philosophy that the periodicity phenomenon can be used to 
construct periodic cohomology theories now has many consequences. 
First of all one can embark on a program of extending the classical 
constructions to these new theories, and in particular to compute the 
values of this theory on spaces other than the spheres. For instance 
consider the complex projective space CP, . Applying the exactness 
axiom to the inclusion CP,-, C CP, and recalling that CP,/CP,-, = S2n 
is immediately seen to compute KU of CP,: 

KUO(CP,) = Z @ ... @ Z(n + 1) copies 

KU1(CP,) = 0. 
(2.15) 

In fact a similar argument shows in general that any P which is obtained 
by successively attaching even dimensional cells, has a KU0 isomorphic 
to the direct sum of Z’s one for each cell, while KU1 = 0. 

A more systematic approach to the computability of these theories 
leads one to try to extend the uniqueness theorem in this context. This 
then naturally leads to a, by that time not unexpected, spectral sequence 
which was first written down for these K-theories by Atiyah and 
Hirzebruch [14], but which is clearly valid for all cohomology theories. 
Let me state it here, primarily for those acquainted with these concepts: 
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THEOREM 2.16. Let F” be a cohomology theory. Then there is a spectral 
sequence with E,-term: 

E~J = H”(P; F*(point)) (2.17) 

which converges to a graded group associated to F*(P). 

Note that here HP denotes the classical cohomology, and the qualitative 
content of the theorem is that from the computable termsHp(P;Fq(point)) 
one can, by a series of homology operations satisfying certain dimensional 
restrictions, arrive at the groups F*(P)-modulo certain extensions. 

This vague piece of information is nevertheless a powerful tool for 
computations in certain fortuitous cases. For instance when applied to 
a theory, F*, satisfying the Eilenberg-Steenrod axiom (2.7), the assertion 
of (2.17) immediately yields the uniqueness theorem. Thus (2.17) really 
is the proper generalization of that result. Applied to KU it also imme- 
diately yields the computation of KU(CP,). Other quite routine con- 
sequences are: 

PROPOSITION 2.18. Let Q denote the rationals. Then 

KU”(P) @ Q F 1 H”(P; Q) m = nmod2 

KO”(P) @ Q N C H”(P; Q) m = nmod4. 

Thus over the rationals nothing new can be expected from these 
theories, furthermore the same result would hold for any periodic theories 
with the prescribed values on points. 

The real power of these theories therefore ultimately rests in the geo- 
metric roots of the functors KO and KU, and we will turn to this 
geometric interpretation next. For this purpose a short review of the 
basic facts concerning vector bundles, as found in Steenrod’s book [68] 
of the 1950’s for instance, will be essential. 

Recall first of all that an n-dimensional vector bundle E over X is a 
twisted product E over X with fiber R w, for which the twisting preserves 
the vector-space structure of R”. Precisely, there must exist a covering 
(UJ of X and local product representations 

P)~ : U, x R” + T+( U,) 

such that on the overlaps U, n U, , the map 

d a P)a : U,n U, xR”-+U,n U, xR” 

restricts to a linear isomorphism of Rn on each fiber. 

(2.19) 
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Intuitively a vector bundle E is therefore best thought of as a locally 
trivial family of vector space E, = n-l(x), parametrized by the points 
of x. 

Two vector bundles E and E’ over X are called isomorphic if there 
exists a map 

which preserves fibers and induces a linear isomorphism yz : E, + E,‘, 
on the fibers over x E X. 

The simplest bundle is the product bundle X x Iin + X and a 
bundle isomorphic to it is called a trivial bundle. 

We let Vect,(X) denote the isomorphism classes of n-dimensional 
vector bundles with the trivial bundle as base point, and extend the 
function Vect,(X) to a contravariant functor from P to pointed sets by 
the “fibered product” construction: 

Given E over X and f : X’ -+ X, let f -lE be the bundle over X’ 
consisting of the pairs (x’, e) E X’ x E for which f(~‘) = n(e). 

Intuitively f -lE simply changes the parameter space-thus f-lE 
consist of the family {E,(,,,}, x’ E X’. 

The functor X -+ Vect,(X) is clearly rooted in geometry. Indeed the 
family of tangent planes T,,(M), m E M for a differentiable manifold M 
are easily seen to fit together into a vector bundle, T(M), the “tangent 
bundle of M”-and the “position” of T(M) in Vect,(M), n = dim M is 
of great interest in many geometric problems. 

Similarly if I’ C M is a smooth submanifold of M, the normal bundle 
of N(V) is well defined and has, as fiber over U, the vector-space 

In this example N( I’) can also be thought of as an abstract model for a 
tubular neighborhood of V in M. 

Quite generally one is led to vector bundles in geometry whenever one 
attempts to linearize nonlinear problems. 

Let us now consider the functors Vect, from the point of view of a 
cohomology theory. A first disappointing observation is that these 
functors seem to have no natural group structure. On the other hand 
one notes that the Vect,,‘s are related by a large number of natural 
transformations. 

This comes about because, as is easily seen, any natural construction on 
vector spaces naturally extends to vector bundles by performing the con- 
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struction on eachjber. Thus the construction of the dual of a vector space 
leads to the notion of the dual E* to a bundle E. Similarly one has the 
notion of the direct sum E OF, and the tensor product E @F of two 
bundles over a fixed space. Note that one therefore also has a natural 
definition of the exterior powers h”E, and the symmetric powers symn(E), 
of a vector bundle. In fact any representation 

p : GL(n, Ii) --f GL(m, Ii) 

extends to an operation p(X) from Vect,(X) to Vect,,(X) which is natural 
in the sense that if X L Y is a map, then 

p(Y) 0 f-1 = f-l 0 p(X). 

These quite immediate facts are nevertheless of great importance as 
will be seen later on. 

We turn next to the question of representability, and so, in particular, 
the homotopy invariance of Vect, on polyhedra. Here the fundamental 
result going back to Steenrod, is the following: 

THEOREM (2.20). The functors Vect, from P to pointed sets are 
represented by the injinite Grassmanian G, . Thus 

VecW’) = [P, GA 

where G, is the direct limit of the spaces 

%klOn x oh” c on+k+l/on x O&l k = 1, 2,... . 

In particular on polyhedra of dim < N, Vect, is represented by the jinite 
Grassmannians 

G - Qwnl0, x 0, 7 n,m - m > N. 

This theorem follows from a much more general theorem in fiber 
bundles, but can also be given a more direct and elementary proof. To 
sketch this in briefly, consider first of all the homotopy invariance 
question. This property may be derived from the homotopy covering 
property for twisted products with the aid of the following observation. 

If E and F are bundles of dimension n over X, we can construct a 
space Iso(E, F) as the set of pairs (x, v,), with x E X, and pz : E, + F, 
an isomorphism. This set is topologized by its obvious inclusion in the 
bundle Hom(E, F) = E* @F, and so also inherits a projection 
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7 : (x, v,) -+ x onto X. Furthermore, Iso(E, F) is now seen to be the twisted 
product of X and GL(n, R) un d er 7, and in terms of it an isomorphism 
CJI : E ‘v F precisely amounts to a section 

s : x + Iso(E, F), 

of 7, that is, a map s with the property T 0 s = 1. 
To return to the homotopy invariance question, consider the space 

X = P x I, let $ : P -+ P x I be the inclusion p + (p, 0), and 
77: X -+ P the natural projection. Also let E be an arbitrary bundle over 
X, and set F equal to: 

Finally let h, : P x I ---t P x I be the homotopy retraction of P x I 
to P x 0 given by 

MA 4 = (P, w, O<t<1. 

Then in the diagram: 

Iso(E, F) 

h, has a lifting (given by the identity map) and so by the covering homo- 
topy theorem h, has one also. 

This implies the isomorphism: 

and so leads to the homotopy invariance for Vect, . 
To explain why the Grassmanian classifies Vect, is also not difficult. 

Geometrically G,,, may be thought of as the set of m-dimensional 
subspaces in a Euclidean (n + m) space I’. 

Now consider the trivial bundle: 

p = V x G,,, 

over G,,, , and let S be the subset of P consisting of all pairs v E V, 

A E %n with VE A: 

s = {(v, A), v E A}. 
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The projection of (v, A) on A, then defines S as a vector bundle over 
G n,m which we call the universal sub-bundle of P. Similarly the subset 

Q = {(v, A); v E orthocomplement of A} 

defines the universal quotient bundle over G,,, and we clearly have the 
bundle formula: 

S@Q=8. (2.21) 

Now let E be an n-dimensional bundle over P. We claim that for m 
large enough (with respect to the dimension of P) there will be a map 
f:P --f G,.,, such that 

f -‘Q cz E. (2.22) 

Once this general fact is established it is not hard to see that the 
assignment [P, G,,,] -+ Vect,(P) which sends f : X -+ G,,, into f -‘Q 
is one-to-one-and onto when m is large enough. 

To construct f, we use the triviality of a vector bundle over any 
simplex of P (this follows from the homotopy invariance) together with 
a partition of one argument, to construct a finite number of sections 

so ,.“> %A+, of E with the property that the (s&x)) E E, span E, for every 
x E P. Now let I’ be the space generated by these sections over R and 
define a map f : P + G,,, by assigning to x E P, the subspace f (x) con- 
sisting of all v E I/ which vanish at x. Evaluating the section in the ortho- 
complement off(x) at x, then establishes an isomorphism of Qftz, with 
E, and so yields the desired formula (2.22). 

So much for a discussion of Theorem (2.20). Apart from establishing 
the basic cohomological properties of Vect, , note that Theorem (2.20) 
also connects this functor with our earlier homotopy groups. 

Indeed, using the exact sequence of the fibering 

%,l0, - On*nJOn x 0, 

with fiber 0, x 0,/O, = 0, , we see that, just as in (1.24), 

Now by Theorem 1 we know that as a pointed set 

Vect,(S”+l) = ~k+l(Gn,m), m > k. (2.23) 
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In short 

Vect,(S”+l) N nk(On), n>k (2.24) 

so that we may interpret the periodicity theorem as evaluating the 
functor Vect,(S”+l) for n large compared to k. 

At this point we are ready to geometrically construct the basic functor 
K,(P), of “stable bundles over P”. For this purpose define two bundles E, 
F over P to be stably equivalent: 

E’v F, -S (2.25) 

if and only if they become isomorphic after suitable number of trivial 
bundles is added to each of them, i.e., if and only if: 

E@l,=F+ IL, lk the trivial k-dimensional bundle R” x P. (2.26) 

Now define K,(P) simply as the stable equivalence classes of bundles 
over P. This functor is already very close to the functor KO introduced 
earlier. Indeed by fitting the representation spaces C, together intelli- 
gently it is not hard to see that: 

THEOREM (2.27). The functor K, is represented by the space BO 
introduced in Section I : 

K,(P) = [P; BO]. 

A first virtue of this “geometric” construction of K, is that K,(P), 
P E P, is easily seen to carry a natural abelian group-structure. Indeed 
the direct sum operation on bundles clearly induces an additive structure 
on K,(P), with the class of a trivial bundle playing the role of zero. 
On the other hand Equation (2.19) together with representability of 
Vect,(P) by a finite Grassmanian immediately implies that for every 
bundle E over P there exists a bundle El such that 

E + El = trivial bundle. (2.28) 

Thus in K,(P) every element has an inverse relative to addition, and 
so K,(P) is naturally an abelian group under the direct sum operation. 

There is a variant of this procedure, given by Grothendieck’s 
K-construction, [23] which he applied very successfully in several quite 
different algebraic contexts and which as we will see, naturally leads to 
our earlier functor KO over polyhedra. 

‘507/4/3-12 
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A sequence of bundles 

and maps v, # over X is called exact if each map preserves fibers, is 
linear on the fibers, and the induced sequence of maps at each x E X: 

is exact. 

O-E,‘%E,-%E,‘-0 (2.29) 

Now let 6?(X) denote the free group generated by the vector bundles 
over X,s and write [E] for the generator in a(X) determined by the 
bundle E. Next let R(X) be subgroup of G”(X) generated by elements of 
the forms [E] - [E’] - [E”], the triples (E’, E, E”) ranging over the 
exact sequences 0 -+ E’ + E 4 E” --f 0. Finally define KO(X) as the 
quotient group 

KO(X) ci G(X)/R(X). (2.30) 

The advantage of this definition is first of all that it yields a group 
for every space X, whereas the stabilizing construction KS only yields 
a group if every bundle over X has an inverse in the sense of (2.28). 
On P the two are trivially related though. To see this, let y(E) E KO(P) 
be the class of [El, and let y,(E) E K,(P) denote the stable class of E in 

KS(P). 
Also let 

dim : KO(P) --f H”(P; Z) 

be induced by the function which assigns to E its dimension over each 
component of P. 

Now then, the relation is question is simply that 

K,(P) 5 ker{dim : KO(P) + HO(P, Z)}, (2.31) 

and in fact 

l-CO(P) = K&J) g-3 HO(P, Z). (2.32) 

Over a connected P the isomorphism (2.32) is induced by the map 
which sends r(E) to rs(E) + dim E. 

8 Bundles may have different dimensions over different components of x. 
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In view of (2.27) this isomorphism now naturally leads to the desired 
identification 

KO(P) N [P, z x BO] Y KO(P). (2.33) 

Note. Actually the introduction of exact sequences is quite super- 
fluous in topology, because it is easily seen that over polyhedra every 
such exact sequence splits in the sense that the middle term becomes 
isomorphic to a direct sum of the two end terms. However, in algebraic 
geometry and many other contexts this is not the case. 

A first advantage of this geometric interpretation of the KO theory 
via the K-construction is now that the tensor product on bundles quite 
naturally defines a ring structures on KO(P). Using the obvious fact that 
dim : KO --f Ho is a ring homomorphism, and the identification (2.32), 
K,(P) of course also inherits a ring structure, however this multiplication 
is not so obviously apparent. 

A more striking example of the advantage of our new interpretation 
for KO is furnished by Grothendieck’s extension of the exterior power 
operations hk from bundles to KO(P). He first observes that if a function 
E -+ y(E) from vector bundles over P to an abelian group A is additive 
in the sense that for every exact sequence 

O+E’+E+E”-+O, 

y(F) + y(E”) = y(E), then 9 determines a unique homomorphism 

c$:KO(P)+A 

which induces 9 in the sense that 

(This is for instance the principle by which the dimension function 
induced the homomorphism dim.) Once this is granted, we may use the 
well known identity 

Xm(E + F) = c hQ(E) @ S(F) (2.34) 
P+P=w 

to define exterior powers in KO(P). Indeed let A(P) C KO(P)[[t]] be the 
multiplicative group of formal power series in t with coefficients in KO(P), 
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starting with (the trivial bundle) 1. Now given a vector bundle E let 
h,(E) E A(P) be defined by the formula 

h,(E) = f tiy(h%). (2.35) 
i=O 

The relation (2.34) immediately shows that E -+ h,(E) is additive and 
so induces an (additive!) homomorphism-also denoted by A, , 

A, : KO(P) + A(P) 

whose components, hi yield natural operations 

(2.36) 

hi : KO(P) + KO(P). (2.37) 

The existence of these operations, which play a crucial role in the 
theory, are not at all easy to see from the identification KO(P) = 
[P, z x BO]. 

In short, from various points of view the “geometric” KO(P) is a good 
functor with values in rings and carrying various operations deduced 
from linear algebra, whereas the functor represented by Z x BO 
naturally leads to an 8-fold periodic cohomology theory whose values 
on the spheres is given by the periodicity theorem. 

Let us now try and reconcile these two quite different personalities 
of the functor KO more directly than via the representability theorems 
for Vect, . 

To do this we need the notion of suspending a polyhedron. First of all, 
we define the cone CP on P, as the polyhedron obtained from P x I 
by identifying P x [l] with a point-the base point of the cone. Thus 
the cone on Sn is the n-disc. Now define the suspension SP, of P as the 
space obtained from two copies of CP by gluing them together along 
PxOCCP: 

SP= CP\;;CP. 

Thus the suspension of Sn is P+l: 

&y&y” = p+1. 

The suspension SP will be taken to have as base point one of the base 
points of CP and is thus considered as a pointed space. With this under- 
stood the suspension is now quite trivially seen to play an adjoint role to 
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the loop functor J2, in the sense that if Y is a space with base point and P+ 
denotes the disjoint union of P and a base point *:, then 

[P, QY] = [P’, SZY], N [sP+, Y]* . (2.38) 

This relation leads to a basic duality which prevades homotopy 
theory. For instance just as SZY is a group object, SP is always seen to 
form a “cogroup object,” and one can put this concept at the base of 
the group structures in homotopy theory. In particular, the partial 
cohomology theory derived from a functor F, represented by Y with base 
point *, can-by virtue of [2.381-b e reinterpreted by the formula: 

F-“(P) = [SnP+, Y]* . 

Thus, for instance, from this point of view the periodicity theorem 
asserts that 

KO(SnfsP) m KO(S”P). (2.39) 

Finally, one observes that the space S” x P is very closely related to 
S”P. Indeed if P is connected and p x q is a point of S” x P, then 
elementary geometry shows that 

S” x P/S” x qvp x PNFP. 

From this fact, and the fact that each of the subsets p x P, Sn x q 
are retracts of 5’” x p it finally follows that for any cohomology theory 
{F”}: 

P(S” x P) = @(Sn v P) @Fm(SaP), S” v P = 5’” x q up x P; (2.40) 

where flm(S” v P) is the kernel of the map Fm(Sn v P) -+ F”( p x q) 
induced by the map: p x q ---f Sn v P. 

Consideration of this type immediately lead one to the conclusion that 
a quite equivalent formulation of the real periodicity theorem is the formula 

KO(P x SE) N KO(P) @ KO(F). (2.41) 

Now for our geometric KO there is a natural map 

KO(P) @ KO(Q) + KO(P x Q) (2.42) 

induced by the tensor product of bundles: Given E over P and F over Q 
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simply send y(E) @ y(F) into y(,?? BE) where i? andp are the pull-backs 
of E and F under the natural maps on the factors. 

These remarks therefore naturally lead us to the following functorial 
form of the periodicity: 

THE REAL PERIODICITY THEOREM: The tensor product of bundles 
induces an isomorphism 

KO(P) @ KO(P) ci KO(P x se). (2.43) 

One can, of course, derive a completely parallel geometric interpreta- 
tion for KU-using complex vector bundles throughout-and then the 
corresponding periodicity takes the form: 

COMPLEX PERIODICITY THEOREM: The tensor product of complex 
bundles induces an isomorphism: 

KU(P) @KU(P) N KU(P x 9). (2.44) 

Originally it took quite a bit of work to translate the maps h, and hc 
into the formulas (2.43) and (2.44). H owever, the more modern approach 
is to try and prove these relations directly, and I would like to close this 
section with an outline of two such direct assaults on (2.44). 

Let me start with the elementary proof which Atiyah and I developed 
in 1964 [15]. 

The basic philosophy of this proof is that P x S2 is thought of as a 
family of 2-spheres S& p E P, parametrized by P, and one attempts to 
extend an elementary computation of KU(P) to describe KU(P x 9) 
as a module over KU(P). 

First note that every bundle on a polyhedron Q which is the union of 
two subpolyhedra: 

Q=AuB, AnB=C (2.45) 

can be constructed by the following clutching procedure: Given E on A, 
F on B, and an isomorphism 

Cp:EIC+FIC (2.46) 

one forms the bundle (E, v, F) over Q by simply using va: to identify 
E, with F, over C. Note also that it then follows from the homotopy 
invariance of Vect, that the isomorphism class of (E, 9, F) depends only 
on the isomorphism class of the clutching function q. 
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We now apply this procedure to construct bundles over P x S2, from 
bundles over P. For this purpose think of S2 as C UOO, and single out 
the subsets 

Do = (2 I I z I < I), D” = {z I I z I 3 11, z E s2. 

Also let n denote the projection P x S2 + P, and let rrO = 7~ 1 P x Do, 
i? - 7~ 1 P x D”. m- 

Our clutching data now consist of a bundle E on P, together with an 
isomorphism 

defined on P x Do n P x D” = P x S, and the bundle over P x S2 
resulting from such data will, for simplicity, be denoted by (E, q~, E). 

Note here, that g, amounts to a function which to each p E P, z E S = 
Do r\ D” assigns an automorphism 

v&4 : E, - E, . 

In particular, then the clutching function: 

(2.47) 

yP(.x) = multiplication by z” (2.48) 

is universally dejined on all E over P and yields bundles (E, zm, E) over 
P x 9. 

The bundle (1, z-l, 1) ( w h ere 1 denotes the trivial line bundle over P) 
is traditionally denoted by H, and with this understood the following 
identities are immediate: 

(E, 1, E) s wlE 

(E, z”, E) g n-‘E @ H-“. 
(2.49) 

Now when P reduces to a point it was well-known that KU(S2) is 
freely generated by [l] and [HI, or-as will be more convenient-by [I], 
and [H] - [I], H ence our task will be to show, in general, that as a 
module over KU(P), these elements freely generate KU(P x S2). Thus 
to every bundle F over P x S2 we have to find elements a,(F) and a,(F) 
in KU(P) such that in KU(P x S2) the decomposition 

is valid. 
[Fl = a,(F) + ~49 0 {[HI - PI>, (2.50) 
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First of all the constant term a,,(F) is easily disposed of. Indeed if 
sg : P * P x s2, is the section p + p x 4, q E S, then s;lH ‘u 1. 
Applying sir to (2.50) therefore evaluates a,,(F) as: 

are(F) = s,‘F. 

The difficulty is therefore in the construction of the element cur(F) 
which we will, for simplicity sake, from now on denote by a(F). 

Our solution of this problem proceeds in the following five steps: 

Step 1. One first remarks that for every F on P x S2 there exists a 
clutching function 9, so that 

F = (s,‘F, F, s,‘F). (2.51) 

This result follows from the homotopy invariance of Vect, because 
P x Do, P x D” both have sp(P) as a deformation retract. 

Step 2. One shows next that every (E, pl, E) is isomorphic to an 
(E, ‘p’, E) with ‘p‘ of the following “Laurent form”: 

%‘c4 = c ak(P) zk, 4~) E -‘WV (2.52) 
Ikl<N 

This assertion is proved by expanding vp(z) into a Fourier series and 
then approximating am by a sufficiently high finite Ceasaro sum q@“(z). 
The resulting qpN(z) will then be homotopic to ~~(2) and has the form 
(2.52). Due to the compactness of P there is no trouble in extending 
the approximation theorem from a fixed p E P to all of P. 

Step 3. By tensoring with a suitable power of H, it is first established 
that the crux of the matter lies in the construction of 01 for bundles 
F = (E, y, E), with CJI in the polynomial form: 

PZM = c O~k~n-l uk(p) xk; arc@‘) E Au%%), (2.53) 

andfor these, one now shows that 

F@(n- I)~-‘Ee(nE,az+b,nE) (2.54) 

by a procedure gleaned from the theory of ordinary differential equations. 
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Indeed in matrix form the linear clutching function az + b, acting on 
E @ E @ **a @ E (n times), is given by the expression 

az+b = (‘; a:’ :; :), 

and the isomorphism in question follows from the identity 

where the pi are inductively defined asp, = p, up,+, = pi,(x) - &(o) 
-after the nilpotent parts of the two matrices on the left and right are 
deformed to zero. 

At this stage we come to the most interesting point. By combining the 
above reductions we have arrived at a linear clutching function 

%A4 = 4P) z + b(P), 

whereas our final answer only involves the clutching functions z and 1. 
Hence it suggests -itself that the bundle E on which v acts, should 
decompose into two parts 

E g E, @ E- . 

so that v is deformable into x on E, and into 1 on E- . This actually can 
be arranged by the following construction which is familiar in spectral 
theory. 

Step 5. Let F = (E, CJJ’, E) be given by a linear clutching function 
v = ax+b.ForeachpEPlet 

be the endomorphism defined by the integral 

(2.55) 
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Then Qp is seen to be a projection operator Q,” = Qr, , which decomposes 
E into the direct sum of bundles 

E = E+ @ E- , E,, = Q,E, (2.56) 

corresponding to the subspaces where yJ.z) becomes singular with 
1 z / < 1 and with 1 z j > 1, respectively. By shrinking the constant 
form b to zero on E+ , and the linear term to zero on E- one then estab- 
lishes an isomorphism: 

F z rr-lE+ @ [H-l] @ +E- 

from which it follows that 

a(F) = -[E+]. (2.57) 

These steps carried out carefully now lead to the periodicity. Roughly 
speaking one has here replaced the deformations of the Morse theory 
by two types of elementary deformations. First the deformation fur- 
nished by the Fourier expansions to get into the realm of algebra, and 
then the deformations furnished by the finite dimensional spectral 
theorem. 

This proof has several advantages over my earlier one. First of all one 
notices, that the procedure just described extends, practically word for 
word, to two quite different generalizations of the periodicity theorem. 
The first of these extends the formula (2.44) to the case when Q -T+ P 
is a twisted product of P with S2 of the following type. Let L be a line- 
bundle, i.e., a l-dimensional complex vector bundle over P. Now from 
the direct sum L @ 1 over P, and finally let Q = P(L @ 1) be the 
projectivisation of L @ 1. Thus the fiber of Q at P consists of the one 
dimensional subspaces of L,, @ l,, . With this understood one has the 
following: 

THOM THEOREM IN KU-THEORY: As a module over KU(P), the ring 
KU{P(L + 1)) isgiven by: 

KU{P(L + 1)) CY! IqP)[t]/(t - l)([L] t - 1). (2.58) 

Another extension to which the same procedure is applicable but 
which I will not discuss here is when a fixed compact groups acts on all 
the spaces in sight [18]. 
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Let me now finally indicate the framework of ideas in which Atiyah 
has recently [12] constructed the most penetrating proof of this theorem. 
He was led to this point of view by his work with Singer on the general 
index problem for elliptic operators. In their final solution of this question 
K-theory and the periodicity played an essential role, so that he was led 
to try for a proof of the periodicity in this framework. The argument runs 
as follows. First of all recall that if 2 is an co-dimensional separable 
Hilbert space over C, then a bounded linear transformation 

is called a Fredholm operator if its kernel and cokernel are finite dimen- 
sional. 

Such an operator therefore has a natural index attached to it: 

index(T) = dim ker T - dim coker T, (2.59) 

which is classically well known to be invariant under perturbations of T. 
This led Atiyah to interpret the index of T as the element 

[ker T] - [coker T] E K(point) 

and then to extend the classical invariance property of the index to 
construct a natural map from a family of Fredholm operators T = 
{T, , p E P> to an element index (T) E KU(P). Put differently, let F 
denote the subspace of Fredholm operators in the Banach algebra A 
of bounded linear transformations on Z. Then this extended index 
furnishes one with a map 

index : [P, 91 --f KU(P). (2.60) 

Actually one can push on now and using Kuiper’s theorem [53] that 
the unitary group of Xis contractible prove that 9 actually classi$es KU 
as was done by Palais [60], and Janich [49] so that this index JinulZy 
furnishes one with an isomorphism 

[P, F] N_ KU(P). (2.61) 

In this framework, Atiyah constructs the operation 01 of (2.50) in the 
following manner. We again start with a bundle F = (E, CJI, E) over 
P x Ss. Next let X be the Hilbert space of square integrable functions 
on the circle 1 z 1 = 1; let Z0 C Z be the closed subspace generated by 
the function xm, m 3 0, and write 

M:3?+~, 
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for the orthogonal projection of 2 on X0 . 
Now for each p E P, let 

(2.62) 

be defined as the composition 

T, = M 0 multiplication by am, 

The nonsingularity of q,(a) for 1 x / = 1 now leads to the result that 
T, is a Fredholm operator, so that the Tp constitute a family of Fredholm 
operators T(v) = {T,,} on the family of Hilbert spaces ED @ yi”o , p E P. 
Now the earlier index function is easily seen to extend to this situation 
also, to yield an element index (T) E KU(P). With this understood, 
simply set 

a(E, QJ, E) = index T. (2.63) 

Thereafter the proof follows quite easily from general properties of the 
index and KU. 

In short, within this framework one not only obtains the rather 
attractive model, 9, for BU; one also finds a more natural definition 
of the crucial operator 01 from KU(P x S2) to KU(P). 

There remains of course the question of how Atiyah was led to precisely 
this construction of cx To gain some insight into this, consider the case 
P = point, and let us compute a( 1, z, 1). In the basis for X0 furnished 
by the function {zi} i = 0, I,..., the operator T simply takes the form: 
Tzi = rzifl . Thus index (T) = - 1. Similarly one finds that the index of 
the operators T corresponding to (1, zm, 1) is m, and so by the invariance 
under homotopy, 

or(1, v(z), 1) = -winding number of v(z), IZI = 1. (2.64) 

Thus the general 01 may be considered as the natural generalization of 
the winding number of a curve in the plane, and this was in a sense also 
the guiding principle of our earlier elementary proof. 

3. SOME APPLICATIONS 

The state of the art in topology has traditionally been tested on 
certain problems which arise in geometry and I would now like to report 



PERIODICITY THEOREM 395 

briefly, but in some detail, on the performance of K-theory in this arena. 
Let me start then with parallelizability questions, for which K-theory 

is clearly pertinent because it is fashioned out of the functors Vect, . 
The general problem here is to determine the position of the tangent 
bundle T(M) in Vect,(M) when M is a connected compact differentiable 
manifold of dimension m. For instance, the vector field problem deals 
with the question of how many trivial bundles can be split off from T(M). 
Thus here one seeks to find the largest integer k so that 

T(A4)Nk.l @E, (3.1) 

with k . 1 denoting the k-fold direct sum of the trivial bundle 1. More 
generally one can ask for the existence of decompositions 

(3.2) 

with the Ej restricted in some specific manner. 
When T(M) trivializes completely we call M parallelizable so that a 

natural starting point is to decide which simple compact manifolds are 
parallel&able. Now if T = T(M), is to be trivial, then 

t = [T] - m[l] E RO(M) 

must be the zero element. Hence if both x0(M) and t can be computed, 
then this condition immediately furnishes nonparallelizability theorems. 
Of course, note that t might well be zero, without T being isomorphic to 
m * 1. Indeed t = 0 means simply that 

T~Z~l~(rn$Z)~l for some integer 1. 

For instance, in the case of the n-sphere, 9, the imbedding S” E R”+l 
with obviously trivial normal bundle immediately shows that 

T(P) 0 1 N (n + 1) . 1 

so that this method fails completely for the spheres. 
The situation is vastly different on the real projective space RP, . 

Indeed, let S denote the sub-bundle of RP, , which we already defined 
for all Grassmannians. In this case S is clearly a line bundle. Further- 
more, if 

o+s-tR~+LQ+o (3.3) 



396 BOTT 

is the exact sequence defining S, then it is not hard to check that 

T(RP,) ‘v S 0 Q. 

Tensoring with 5’ in (3.3) therefore yields the exact sequence 

O-,S2~SORnf1-tT(RP,)-,0. (3.4) 

On the other hand, S2 rs: 1 for every real line bundle, as is not hard to 
see-by choosing a Riemannian structure on the fibers, for instance. 

Hence the sequence (3.4) implies that in &(RP,) the tangent class is 
given by: 

[Tl = (n + 1) [Sl -PI, 

and therefore 

t = (n + l){[Sl - [ll>. (3.5) 

Now i?b(RP,) can be computed explicitly, and the answer is as 
follows: 

THEOREM 3.6. Let a, denote the dimension of the real Spin representa- 
tion of Spin(n). Thus the$rst 8 values of a, are 

U,2,4,4,8,8,8,81 

and an+8 = 16a, . Then 

&(RPn,_,) = Z/a,Z 

with generator 5 = [S] - [I]. 

(3.7) 

The proof of this theorem is not easy. The result was first noted by 
A. Shapiro and myself, in connection with our description of the gener- 
ators of Z-~(O) in the Spin-group [ 161, but a complete proof was only 
published by Adams [2] in his work on the vector field problem on the 
spheres. Essentially he threw the book at it, using the spectral sequence 
and comparison exact sequences linking KU and KO. 

Now granting (3.7) one sees immediately that t = 0 if and only if a, 
divides (n + 1). This occurs only for n = 1,2,4, 8. Hence one has the 
corollary: 
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COROLLARY (3.8). RP, is parallelizable only for n = 1, 3, 7. 

Note that this same computation also solves the question of the 
possible dimensions of division algebras over R. 

Indeed, if Rk is a division algebra over R the multiplication 

/L:R~ xR~+R”, 

when restricted to Sk-i x Rk yields a map 

p':Sk-l x Rk+Rk 

which clearly has the property that 

p’(-x, Y) = -P’(% Y) 

and is furthermore linear in y. This, after a little reflection, is seen to 
imply that 

?Z.SY?Z.l, over RP,-, . (3.9) 

Thus, again a, must divide n and so one arrives at the 

COROLLARY 3.10. Division algebras over R occur only in dimensions 
1, 2,4, 8. 

The original proofs, both of Kervaire and of Milnor, derived these 
theorems by a much more conceptually complicated route from the 
periodicity theorem for U. 

Let me now very briefly indicate other techniques which have led to 
results in these questions when the above most direct approach fails. 

We first ask quite generally, when an element x~-K(x) (here K denotes 
either KO or KU) is representable by an n-dimensional bundle: i.e., 
when does there exist a bundle E, with$ber-dimension n such that 

[El = x in K(X)? 

Now clearly hiE = 0 for i > n for such “honest” n-bundles. Hence an 
immediate necessary condition on x is that the Xi(x) = 0 for i > n. 

Put differently, if k trivial bundles can be split off E E Vect,(X), then 
in K(X): 

Xi{[E] - k[l]} = 0 for i > 71 - K. (3.11) 
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Now by the definition of the hi: 

and therefore 

h,k[l] = &[l]}” = (1 + qk 

&{[q - WI) = u-w1 + t>“, 

(3.12) 

so that the vanishing of the hi in high dimensions expresses a nontrivial 
condition on [T] in K(X). 

In this way the hi can be used to generate obstructions to splitting off 
trivial bundles from a bundle E whose K-class is known. More generally 
one can treat the following question. 

Let X : H + GL(n, R) be a homomorphism. One can then ask what 
the obstruction to reducing the structure group9 of a bundle E in Vect,(X) 
to H (relative to h) is. Now given any representation, say d, of H: 

d :H-+GL(m,R) 

such a reduction ,!? of E furnishes one with a new bundle, o(E), in 
Vect,(X), and one can-by purely representation theoretic means com- 
pute identities which link certain functions of d(e) with hi[E]. Thus 
knowing only [E] and the Ai[E] one may, in certain instances, conclude 
that there is no element at all in K(X) which satisfies these identities. 
In that case then, d(E) can not exist, that is, [E] cannot be represented by 
a bundle E which admits a reduction to H. 

A notable example of this procedure is, for instance, the following 
recent nonimmersion theorem of Feder [44]: 

THEOREM 3.13. Let a(n) denote the number of l’s in the diadic expan- 
sion of n. Then CP,, n > 3, n odd, cannot be immersed in R4n-2atn). 

Similar results were obtained earlier by Atiyah-Hirzebruch; however, 
there again the original approach was not purely K-theoretic but also 
involved the comparison of K(X) with H*(X). On the whole, a system- 
atic exploitation of these representation theoretic methods still seems to 
be missing. 

Before proceeding to our main application, a word is in order as to why 
these procedures apply to immersion problems. First recall that an 
immersion f : M -+ R” is a smooth map whose differential 

df : T(M)-+f-lT(R”) 

8 We refer the reader to Steenrod’s text of fiber bundles for a definition of this notion. 
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is injective at each point. Now because T(R”) = n * 1, it follows that an 
immersion produces an exact sequence 

over M with dim Q = n - m. Thus if an immersion in R” is possible, then 
the class [T(M)] - n[l] in K(X) must have a representative of dimension 
(n - m), and so one is back to the same sort of “desuspension question”. 

In conclusion I would now like to describe in greater detail how the 
KU functor leads to a solution of the Hopf conjecture. I have chosen 
this application, because the vector field problem is solved by similar 
though more elaborate techniques and the index problem is such a long 
and interesting story that I would hardly do it justice here. Rather, a 
whole set of these lectures should some day be devoted to it. 

The question is simply this: Which of the spheres, S”, m > 0 are group 
objects in homotopy theory ? Put differently, which Sm admit a law of 
multiplication 

f: S” x S”+S”‘, (3.14) 

which obeys the group axioms up to homotopy ? Note that one may also 
consider this question to be the natural extension of the R-division 
algebra problem to topology, because the law of multiplication of such 
an algebra in R” easily induces a homotopy group-law on F-l. 

Now an immediate consequence of the existence of a homotopy unit 
* E Sm. is that if 

are the inclusions p -+ ( p, *) and p ---f (*, p), respectively, then 

P-t@, *).P’(*,P) 

4 of -&Of-l. (3.15) 

Conversely it is not hard to show that if an f subject to (3.15) can be 
found, then it induces an H structure on Sm. 

A first stab at determining the values of n for which such f cannot be 
found is therefore simply to apply KU* to both (3.14) and (3.15) and 
see whether a contradiction arises for certain values of m. 

W4/3-13 
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Now recall that we have already found KU(S2n) to be Z @ 2, and we 
may choose as generators for this group the trivial bundle 1 and an “inter- 

esting” virtual bundle viz of dimension zero, generating fi((SZn). Thus 

KU(P) = z . 1 @ Z’ln . (3.16) 

Next consider KU(S2” x Szm). We of course have our tensor product 
map : 

KU(S2n) @ KU(S2m) + KU(P x S2”) (3.17) 

and I claim that by using the already alluded to fact that: 

s2n x SZrn/SZ” " f.pm = SZwn), (3.18) 

it follows directly from the periodicity theorem and the exact sequence 
of KU-theory, that (3.17) is an isomorphism. Thus 

KU(S2” x S2”) = Zl + Zl 0 ?ln + Z7,z 0 1 + Zq, 0 r]m , (3.19) 

and the sign of the qn , n = 1, 2 ,..., can be chosen so that under the map 

532” x S2rn 7,5-2(ez+m) 

induced by (3.18), 

T*%+m = rln 0 rim . (3.20) 

So much for the additive structure of the groups involved. To compute 
the ring structure of KU(S2) recall our generator H = (1, z-l, 1) of the 
previous section. 

Following out explicitly our Zinearkztion procedure for the bundle 
H-2 = (1, x2, 1) then easily yields the identity: 

([HI - I)2 = 0. (3.21) 

Thus if we choose Q = (H - l), we obtain 7: = 0. Hence by (3.20) 
and induction it follows that quite generally: 

$ = 0, yn E KNU(S2”). (3.22) 

Returning to our problem, assume first that n is even, m = 2n. 
Applying f * to (4.1) therefore must result in a formula of the type: 

f *%I = a%2 0 1 + b, 0 7% + 4n 0 rln 2 (3.23) 
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with a, b, c integers. On the other hand (3.15) and (3.20) clearly imply 
that a = b = 1. 

Let us next compute the square of f *TV . From the commutativity of 
the tensor product one immediately sees that the answer is abr), @ qn = 
qn @ vn # 0. On the other hand 7: = 0 and therefore f*q: = 0. 
Hence (3.23) is impossible and n cannot be even. 

Assume therefore m odd, m = 2n - 1. If one tries a similar argument 
in this case no contradiction is found and so at first sight all odd spheres 
seem to admit an H-structure, as far as the ring structure of KU theory 
is concerned. By the way the ring structure of the classical theory, 
H*, also only serves to eliminate the even case. 

To proceed further, in either case we have to make a geometrical 
construction which in some sense crystalizes the implication of (3.15) 
on f. This construction, which goes back to Hopf [47], converts f 
into a homotopy element h(f) E ~~+~(Safi) and was used by Hopf to 
describe the first known nontrivial elements in the higher homotopy of 
the spheres. The construction is best indicated by the diagram: 

csm x s”1 -k csm 

u u 

sm x Sm -f+ S”” (3.24) 
n n 

S” x CS” h_ csm 

where C denotes the cone as before. What is described here, is that the 
map f extends to a map h- : S” x C’S” -+ CS” by simply sending 

(P x (4 4)) to (4f’P x Q)? with t the parameter in [0, I] describing a 
point of CS”. Similarly f extends to h, above, and these two combine to 
give a map 

h(f) : pm+1 --f sm+1 (3.25) 

because CS” x Sm U Sm x CS” clearly yields S2m+1. 
Now Hopf’s brilliant conclusion concerning h(f) was, that the condi- 

tion (3.15) on f implies that inverse images of two generic points in Sn+r 
under h(f) “link” with “linking-number” 1. Note that when n = 1, then 

h(f) : s3+ s2 

and generic inverse images will be circles so that “linking” can in that 

607/4/3-13 * 
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case be understood in its most prosaic sense. Thereafter he showed that 
the linking number Z(g) of any map 

is a homotopy invariant of g which is zero on the trivial class. In fact 
g ---f Z(g) induces a homomorphism 

7r4,-l(S2n) - z 
called the Hopf invariant. 

In particular then the element h(f) has Hogf-invariant one, for any 
H-space structure f on Sn so that f generates an infinite cyclic subgroup 
of rr41L--1(S2n). For example, when n = 1, the group structure on S, thus 
shows that r3(S2) has an infinite cyclic subgroup, and similarly the 
group S3 of unit quaternions produces an element with Hopf invariant 1 
in 7r,( S4). 

Hopf’s linking argument was later translated into cohomology by 
Steenrod [68]. H is construction is as follows: 

Given a map g : S4+i -+ S2n, let 

X 9 = S2% 0 e4@ 
g 

be the space obtained from S 2n by attaching a cell of dimension 4n, 
via the attaching map g. We then clearly have Szn C XB and XJS2n = S4n. 
From this it follows via the exact sequence that 

IP”(X,) = z, fP”(X,) = z 

while all other cohomology in dimension > 0 vanishes. Now let x, y 
be generators of these groups, respectively. Steenrod showed that the 
ring structure of X, recaptures Hopf’s linking number, in the sense that 

x2 = &Z(g) . y. (3.26) 

At this stage then, one has the implication: If P-l is a group object, then 
there exists a 2-cell complex 

X = S2% V e 4n g 
(3.27) 

with cohomology generators x E H2n(X), and y E H4n(X), subject to 
the relation x2 = y. Thus the Hopf conjecture can be settled if one 
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shows that complexes X with the above cohomology ring simply do not 
exist unless n = 1, 2, or 4. 

A first big step in this direction was taken by Adem in the 1950’s, 
who showed that such complexes, X, could exist only if n is a power of 2. 
He was able to deduce this result from relations between the Steenrod 
operations {S$}. Roughly the story is this: In the 1940’s Steenrod made 
the fundamental discovery [67] that the squaring operation 
sqi : Hi(P; 2,) + H2<(P; 2,) sending x to x2, could be extended to a 
natural operation 

sqi : fP(P; Z,) -+ fP+yp; Z,) 

raising dimensions by i on all of H*(X; 2,). 
Thereafter Adem [7] h s owed that certain relations existed between 

these and in particular that the Sq2” generate all the Sqi under composition. 
It follows immediately that no X of our type can exist unless n is a 

power of 2. 
Adams finally settled the Hopf conjecture [6] by showing that even 

the Sq2’, with K > 3, are decomposable, but only by so called secondary 
operations. These are operations which are defined only on classes on 
which certain primary operations vanish, and have values in cosets of H* 
which can again be described by primary operations. His argument is 
very deep and difficult. 

Let us now tackle this same problem with the functor KU, and see 
whether the existence of a X of our type is compatible with the relations 
which exist between the operations Xi in KU. 

Now in principle it is easily seen that there exist universal relations 
expressing Xi 0 hj as a polynomial in the #,s. 

Indeed this is just a translation of the well known fact that the exterior 
powers of the standard representation of U(n) are the basic irreducible 
representations of U(n). However, the computation becomes rather 
involved. We will therefore switch to the slightly weaker but much more 
tractable operations tik , first defined by Adams. 

To define the $L’s, in terms of the Xi,s, let 

& = c tip, #O”(x) = dim x 

be defined in terms of our element X, E KU[[t]] by the formula: 

#t(x) = $O(x) - t $ h&L,(x)) x E KU(P). (3.28) 
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Since all coefficients in this power series are integers the $‘s are well 
defined by (3.28). Furthermore the logarithmic derivative changes the 
basic formula 

ux + Y> = Ux) . k(Y), 
into 

$@ + Y) = $w + Jrh(Y>. 

Thus the @ are additive! 
Let us next compute #1(~) when x = [L] with L a line bundle. Then 

clearly 

Qc) = 1 + tx, 
so that 

$&(X) = 1 + & = 1 + tx + tax2 + .‘* . 

In short: 

p(x) = Xk, when x = [L]. (3.29) 

Concerning the @ operations one now has the following basic result: 

PROPOSITION (3.30). For x,y~ KU(P) 

#“(x + Y) = #“(x) + P(Y) 

$4x BY) = #“(x) 0 #“(Y) (3.31) 

~“WW = ~““(4. 

If p is a prime then, *Q(x) = xP mod p. (3.32) 

If 7 E KU(Szn) has dim 7 = 0 then, 

#"(7> = @7. 
(3.33) 

All but the last of these properties are immediately apparent from the 
following fundamental splitting principle, which states that: 

Any two natural operations which agree on a direct sum 

of line bundles agree on all elements of KU(P). 
(3.34) 

Indeed, the additivity of the {@} together with (4.16) immediately 
yield the next two formulas of Proposition (4.18) on a direct sum of line 
bundles. Hence the relations are true generally. 
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Concerning the proof of this splitting principle let me only say that 
it follows from an extension of our “Thorn” Theorem (2.58) to twisted 
products, with projective space as fiber. This allows one to construct for 
every bundle E over P, a space Y(E) over P, SO that 

(1) KU(P) injects into KU{Y(E)} and 

(2) E pulled back to Y(E) splits into line bundles. 

This construction is again copied directly from a similar argument 
in the theory of characteristic classes, which was used with great success 
by Bore1 and Hirzebruch [20]-[22]. 

Finally note that when n = 1 the last formula follows directly from 
the formulas (3.21) and (3.29), that is from the relation: 

Indeed: 
VI= [HI - 1, ?g = 0. 

ip7)l = [HI” - [l]” 

= {[ff] - 1)(1 + [HI + ... + [fwl) 

= k([H] - 1). 

Finally, using induction on K and (3.20) yields the desired result. 
We are now nearly in a position to tackle the problem with KU-theory. 

First, however, the Steenrod translation of the linking number has to be 
translated further into KU-theory. This leads to the following result: 

Let X be of the “Steenrod type”: 

X = San V e 4n P g 

with linking number E(g) = 1. Let Xi -+ S4% be the collapsing map 
x + xjs2n = s4n, and let y E KU(X) be the element 

Y = j*772np 7Jzn E KWS4”) 

with 72n our earlier generator. 
Next, let i = ,Pn ---t X be the inclusion. From the exact sequence it 

then follows that there exists an element x E KU(X) such that 

i*x = ?jn ) Tyn E KU(S2”). 

The exact sequence further teaches one that 1, x, y now freely generate 
KU(X) and that i*y = 0. Thus x is well defined modulo a multiple of y. 
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Next consider the element x2. We have (i*~)~ = 0, whence, 

x2 = Hy 

for some integer H. Now the crucialpoint in the translation of the Steenrod 
argument to KU-theory, is that linking number 1 forces H to be an odd 
number. 

The stage is now set for the “Postcard proof” of Adams-Atiyah [6]. 
Consider the elements #“(x) and #“(x). By Proposition (4.17) we 

must have: 

qF(x) = 2”~ + ay, #“(x) = 3”~ + by. 

Further since #“(x) E x2 mod 2, a must be odd. Now from 3”(y) = 

j*PhJ = Jz2v we conclude that 

p(x) = J,.~~(!P~(x)} = 6”~ + (2”b + 32”a)y 

J)“(X) = t,b2{Y3(x)) = 6nx + (22Bb + 3%a)y. 

Hence 2”b + 32na = 22”b + 3”a or 2”(2” - 1)b = 3n(3” - 1)a. Finally, 
because a is odd, 2” must divide 3” - 1 which by elementary number 
theory can happen only if n = 1,2, or 4. Q.E.D. 

4. CONCLUDING REMARKS 

The penalty for starting at the beginning is that one rarely gets to the 
end. In the present instance this means that I will not be able to do 
justice to the “work in progress” aspect of the subject. 

Partly the difficulty is that by now K-theory is “standard equipment” 
for a topologist or a geometer and even of some enterprising analysts, so 
that interesting connections or applications crop up everywhere. The 
equivariant K-theory of Atiyah and Segal is a notable instance of this, 
with many connections of cobordism theory and its applications to 
transformation groups as studied so exhaustively by Conner and Floyd 
[35], Bredon [29], and others. 

One of course also has a growing list of spaces whose K-theory is 
completely determined-maybe the most notable instance being the 
simply connected Lie groups whose KU* ring is always an exterior 
algebra. This beautiful result is due to Hodgkins [45]. Anderson and 
Hodgkin have also studied the K-theory of the Eilenberg-MacLane 
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spaces [lo]. Here the results are rather negative, essentially there are 
no interesting or unexpected bundles on these spaces. 

Finally, K-theory also plays a role in some of the central questions 
of present-day topology-that is, questions concerning the various types 
of geometric structures which can be imposed on a manifold. (See for 
instance [9].) Thus in Sullivan’s “triangularability theorems at odd 
primes”, K-theory plays a vital role. For example, he asserts that in 
this world of odd primes, a complex P satisfying Poincare duality, 
admits a piecewise linear structure if and only if K*(P) also satisfies a 
duality condition quite analogous to Poincare duality. 

One may view these modern developments as concerning themselves 
with the structure groups of Sri-l, other than 0, . Thus one has the group 
PL, , of piecewise linear automorphisms of Sn--l, the group Top,, of 
topological automorphisms and finally the monoid G, of homotopy- 
equivalences of S n - l. Now in the same manner in which the sequence 
(0,) gave rise to KO-theory the other families just defined give rise to 
representable functors KPL, KTOP, and KG respectively, which are the 
basic objects in the obstruction theory of geometric structures. These 
theories are obviously linked by natural homomorphisms 

KO + KPL + KTOP + KG 

and the composition of these arrows 

J:KO+KG, 

is referred to as the J-homomorphism. Further, the image of KO(P) 
under J is denoted by J(P), and this object is of great interest in many 
ways. Thegroup J(P) is always finite and one of the most exciting recent 
endeavors has been the attempt to compute J(P) in terms of KO(P) as a 
JI” module. This work initiated and highly developed by Adams [3], 
[I] led him to the following: 

CONJECTURE (Adams). If x E KO(P), then 

km]{(x) - #“(.x)} = 0 

for m large enough. 

At the time of this writing the status of the Adams conjecture is a 
cloudy one. Certainly no proof accessible to an honest topologist has 
been published. What has happened is that in 1968 D. Quillen [63] 
published a most stimulating “plan of proof” which has its starting point 



the Frobenius automorphism in algebraic geometry, and leads to the 
Adams conjecture via voluminuous procedures which involve the Eta16 
Cohomology of Grothendieck on the one hand, and the localization theory 
of Artin-Mazur on the other. 

Quillen’s idea has since then been seriously developed by Sullivan, 
who steering his own course-influenced by Lubkin rather than 
Grothendieck-and using a more concrete form of localization than that 
of Artin and Mazur, seems now on the verge of writing down a proof of 
the Adams conjecture which at least some of us topologists might 
understand. 

In any case it seems clear that this framework of ideas will have a far 
reaching effect on topology in the years to come. 
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