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Topological resolutions in K(2)-local homotopy
theory at the prime 2

Irina Bobkova and Paul G. Goerss

Abstract

We provide a topological duality resolution for the spectrum E
hS12
2 , which itself can be used to

build the K(2)-local sphere. The resolution is built from spectra of the form EhF
2 where E2 is the

Morava spectrum for the formal group of a supersingular curve at the prime 2 and F is a finite
subgroup of the automorphisms of that formal group. The results are in complete analogy with
the resolutions of Goerss, Henn, Mahowald and Rezk (Ann. of Math. (2) 162 (2005) 777–822) at
the prime 3, but the methods are of necessity very different. As in the prime 3 case, the main
difficulty is in identifying the top fiber; to do this, we make calculations using Henn’s centralizer
resolution.
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Chromatic stable homotopy theory uses the algebraic geometry of smooth one-parameter formal
groups to organize calculations and the search for large scale phenomena. In particular, the
chromatic filtration on the category of the p-local finite spectra corresponds to the height
filtration for formal groups. The layers of the chromatic filtration are given by localization
with respect to the Morava K-theories K(n), with n � 0. Thus, to understand the homotopy
type of a finite spectrum X we begin by addressing LK(n)X for all prime numbers p and all
0 � n < ∞. A useful and inspirational guide to this point of view can be found in the table in
[22, Section 2].

If n = 0, K(0) = HQ and L0X is the rational homotopy type of X. For n � 1, the basic
computational tool in K(n)-local homotopy theory is the K(n)-local Adams–Novikov spectral
sequence

Hs(Gn, (En)tX) =⇒ πt−sLK(n)X.

Here Gn is the automorphism group of a pair (Fq,Γn) where Fq is a finite field of characteristic
p and Γn is a chosen formal group of height n over Fq. Then En is the Morava (or Lubin–Tate)
E-theory defined by (Fq,Γn). We will give more details and make precise choices in Section 1.

First suppose that p is large with respect to n. (To be precise, we may take 2p− 2 >
max{n2, 2n + 2} or p > 3 if n = 2.) Then the Adams–Novikov spectral sequence for X = S0
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collapses and will have no extensions, so the problem becomes algebraic, although by no means
easy. See for example, [6, 27, 35], for the case n = 2 and p > 3. However, if p is small with
respect to n, the group Gn has finite subgroups of p-power order and the spectral sequence will
usually have differentials and extensions, so the problem is no longer purely algebraic. At this
point, topological resolutions become a useful way to organize the contributions of the finite
subgroups. The key to unlocking this idea is the Hopkins–Miller theorem, which implies that
Gn, and hence all of its finite subgroups, act on En and that LK(n)S

0 � EhGn
n . See [11] for

this and more.
The prototypical example is at n = 1 and p = 2. Adams and Baird [9], and Ravenel [31]

showed that here we have a fiber sequence

LK(1)S
0 → KO

ψ3−1−−−→ KO

where KO is 2-complete real K-theory. For a suitable choice of a height one formal group Γ1

we can take E1 = K, where K is 2-complete complex K-theory. Then G1 = Aut(Γ1,F2) ∼= Z×
2

is the units in the 2-adic integers, and C2 = {±1} ⊆ Z×
2 acts through complex conjugation. We

can then rewrite this fiber sequence as

LK(1)S
0 = EhG1

1 −→ EhC2
1

ψ3−1−−−→ EhC2
1 ,

and ψ3 is a topological generator of Z×
2 /{±1} � Z2.

For higher heights the topological resolutions will not be simple fiber sequences, but finite
towers of fibrations with the successive fibers built from EhFi where Fi runs over various finite
subgroups of Gn.

In [16] the authors generalized the fiber sequence of the K(1)-local case to the case n = 2
and p = 3. One way to say what they proved is the following. Let us write E = E2 to simplify
notation. First we have a split short exact sequence of groups

{1} → G1
2−→G2

N−→ Z3 → {1}
where N is obtained from a determinant (see (1.7)) and hence a fiber sequence

LK(2)S
0−→ EhG1

2
ψ−1−−−→ EhG1

2 ,

where ψ is any element of G2 which maps by N to a topological generator of Z3. Then, second,
there exists a resolution of EhG1

2

EhG1
2 → EhG24 → Σ8EhSD16 → Σ40EhSD16 → Σ48EhG24 .

Here resolution means each successive composition is null-homotopic and all possible Toda
brackets are zero modulo indeterminacy; thus, the sequence refines to a tower of fibrations

The maximal finite subgroup of G2 of 3-power order is a cyclic group C3 of order 3; it is
unique up to conjugation in G1

2. The group G24 is the maximal finite subgroup of G2 containing
C3. The subgroup SD16 is the semidihedral group of order 16. Because of the symmetry of this
resolution, and because G1

2 is a virtual Poincaré duality group of dimension 3, this is called a
duality resolution. This resolution and related resolutions were instrumental in exploring the
K(2)-local category at primes p > 2. See [5, 13–15, 17, 21, 27]. The latter paper makes a
thorough exploration of what happens at p > 3.

The main theorem of this paper provides an analog of the duality resolution at n = 2 and
p = 2. The prime 2 is much harder for a number of reasons. First, the maximal finite 2-subgroup
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of G2 is not cyclic, but isomorphic to Q8, the quaternion group of order 8. Second, every finite
subgroup of G2 that we consider contains the central C2 = {±1} of G2; therefore, the homotopy
groups of the relevant fixed point spectra EhF are much more complicated. This means that
the strategy of proof of [16] will not work and we need to find another way.

We now state our main result. As our chosen formal group Γ2 we will use the formal
group of a supersingular elliptic curve over F4. The curve will be defined over F2, so that
G2

∼= S2 � Gal(F4/F2) where S2 = Aut(Γ2/F4) is the group of automorphisms of Γ2 over F4.
Once again we have fiber sequence

LK(2)S
0−→ EhG1

2
ψ−1−−−→ EhG1

2 .

We have EhG1
2 = (EhS1

2)hGal where Gal = Gal(F4/F2) and S1
2 = S2 ∩ G1

2. For many computa-
tional applications, the difference between EhG1

2 and EhS1
2 is innocuous. See Lemma 1.37. Then

our main result is this:

Theorem 1. There exists a resolution of EhS1
2 in the K(2)-local category at the prime 2

EhS1
2 → EhG24 → EhC6 → Σ48EhC6 → Σ48EhG24 .

The spectrum EhC6 is 48-periodic, so EhC6 � Σ48EhC6 ; this suspension is there only to
emphasize the symmetry in the resolution.

Once again resolution means each successive composition is null-homotopic and all possible
Toda brackets are zero modulo indeterminacy; thus, the sequence again refines to a tower of
fibrations. This result has already had applications: it is an ingredient in Agnès Beaudry’s
analysis of the chromatic splitting conjecture at p = n = 2. See [4].

The apparent similarity of Theorem 1 with the prime 3 analog is tantalizing, especially the
suspension factor on the last term, but we as yet have no conceptual explanation. The proof at
the prime 2 can be adapted to the prime 3 but in both cases it comes down to a very specific,
prime dependent calculation.

A very satisfying feature of chromatic height 2 is the connection with the theory of elliptic
curves. The subgroup G24 ⊆ S2 is the automorphism group of our chosen supersingular curve
inside the automorphisms of its formal group. Appealing to Strickland [37] we can use this
to get formulas for the action of G24 on E∗, a necessary beginning to group cohomology
calculations. Furthermore, we know that

EhG48 � (EhG24)hGal � LK(2)Tmf

where Tmf is the global sections of the sheaf of E∞-ring spectra on the compactified stack
of generalized elliptic curves provided by Hopkins and Miller. See [12]. Similarly, EhC6 is the
localization of global sections of the similar sheaf for elliptic curves with a level 3 structure. See
[28]. We will not need anything like the full power of the Hopkins–Miller theory here, although
we do use some of the calculations that arise from this point of view. See Section 2.

We will prove Theorem 1 in three steps.
First we prove, in Section 3, that there exists a resolution

EhS1
2 → EhG24 → EhC6 → EhC6 → X

where

E∗X ∼= E∗EhG24

as twisted G2-modules. This resolution and the necessary algebraic preliminaries were
announced in [20], and grew out of the work surrounding [16]. The algebraic preliminaries
are discussed in detail in [3].
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Second, in Section 4 we examine the Adams–Novikov Spectral Sequence

H∗(G24, E∗) =⇒ π∗X.

Using a comparison of our resolution with a second resolution, due to Henn, we show, roughly,
that certain classes Δ8k+2 ∈ H0(G24, E192k+48) are permanent cycles — which would certainly
be necessary if our main result is true. The exact result is in Corollary 4.7. These calculations
were among the main results in the first author’s thesis [8] and the key ideas for the entire
project can be found there. This ratifies a comment of Mark Mahowald that there is a class in
π45LK(2)S

0 which supports non-zero multiplications by η and κ and the only way this could
happen is if Δ2 is a permanent cycle. This insight was, we think, the result of long hours of
contemplation of the results of Shimomura and Wang [34] and, indeed, one reason for this
entire project is to find some way to catch up with those amazing calculations. We will have
more to say about this element of Mahowald’s in Remark 4.8.

Third and finally, in Section 5 we use a variation of this same comparison argument to
produce the equivalence Σ48EhG24 � X. See Theorem 5.8. At the very end we add a remark
about the possibility or impossibility of resolutions for LK(2)S

0 itself. See Remark 5.10.
There is a number of sections of preliminaries. Section 1 provides the usual background on

the K(n)-local category as well as some more specific information on mapping spaces. Section 2
pulls together what we need about the homotopy groups of various fixed point spectra. This
draws from many sources, and we try to be complete there.

An essential ingredient in our argument is the existence of the other topological resolution
for EhS1

2 , Henn’s centralizer resolution from [20, § 3.4]. We have less control over the maps
in this resolution, but, as has happened before ([14]; see also [13]), this resolution provides
essential information needed to solve ambiguities in the duality resolution. It is also much closer
to being an Adams–Novikov-style resolution as it is based on relative homological algebra. We
cover some of this material at the end of Section 3.

1. Recollections on the K(n)-local category

We begin with the standard material on the K(n)-local category, the Morava stabilizer group,
and Morava E-theory, also known as Lubin–Tate theory. We then get specific at n = 2 and
p = 2, discussing the role of formal groups arising from supersingular elliptic curves. We review
some material on the homotopy type of the spectrum of maps between various fixed point
spectra derived from Morava E-theory and then spell out some details of the K(n)-local
Adams–Novikov Spectral Sequence. Finally, we discuss the role of the Galois group.

1.1. The K(n)-local category

Fix a prime p and let n � 1. Let Γn be a formal group of height n over the finite field Fp of p
elements. Then for any finite extension i : Fp ⊆ Fq of Fp, we form the group Aut(Γn/Fq) of the
automorphisms of i∗Γn over Fq. We fix a choice of Γn with the property that any extension
Fpn ⊆ Fq gives an isomorphism

Aut(Γn/Fpn)
∼=−→ Aut(Γn/Fq). (1.1)

The usual Honda formal group satisfies these criteria: this has a formal group law which
is p-typical and with p-series [p](x) = xpn

. However, if n = 2, then the formal group of a
supersingular elliptic curve defined over Fp will also do, and this will be our preferred choice
at p = 2. Define

Sn = Aut(Γn/Fpn). (1.2)
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If we choose a coordinate for Γn, then any element of Sn defines a power series φ(x) ∈ xFpn [[x]],
invertible under composition, and the assignment φ(x) 
→ φ′(0) defines a map

Sn−→ F×
pn .

This is a split surjection and we define Sn to be the kernel of this map; this is the p-Sylow
subgroup of the profinite group Sn. We then get an isomorphism Sn � F×

pn
∼= Sn.

Define the (big) Morava stabilizer group Gn as the automorphism group of the pair (Fpn ,Γn).
Since Γn is defined over Fp, there is an isomorphism

Gn
∼= Aut(Γ/Fpn) � Gal(Fpn/Fp) = Sn � Gal(Fpn/Fp). (1.3)

We will often write Gal = Gal(Fpn/Fp) when the field extension is understood.
We next must define Morava K-theory. There are many variants, all of which have the same

Bousfield class and define the same localization; we will choose a variant which works well with
Morava E-theory. Let K(n) = K(Fpn ,Γn) be the 2-periodic ring spectrum with homotopy
groups

K(n)∗ = Fpn [u±1]

and with associated formal group Γn. Here the class u is in degree −2. The group F0 = F×
pn �

Gal(Fpn/Fp) acts on K(n) and

Fp[v±1
n ] ∼= (K(n)hF0)∗ = K(n)F0∗

where vn = u−(pn−1). The spectrum K(n)hF0 is thus a more classical version of Morava
K-theory.

We will spend a great deal of time working in the K(n)-local category and, when doing so,
all our spectra will implicitly be localized. In particular, we emphasize that we often write
X ∧ Y for LK(n)(X ∧ Y ), as this is the smash product internal to the K(n)-local category.

We now define the Morava spectrum E = En = E(Fpn ,Γn). (We will suppress the n on En

whenever possible to help ease the notation.) This is the complex oriented, Landweber exact,
2-periodic, E∞-ring spectrum with

E∗ = (En)∗ ∼= W[[u1, . . . , un−1]][u±1] (1.4)

with ui in degree 0 and u in degree −2. Here W = W (Fpn) is the ring of Witt vectors on Fpn .
Note that E0 is a complete local ring with residue field Fpn ; the formal group over E0 is a
choice of universal deformation of the formal group Γn over Fpn . (We will be specific about
this choice at n = p = 2 below in Subsection 1.2.) The group Gn = Aut(Γn) � Gal(Fpn/Fp) acts
on E = En, by the Hopkins–Miller theorem [18] and we have (see Subsection 1.5) a spectral
sequence for any closed subgroup F ⊆ Gn,

Es,t
2 = Hs(F, πtE) =⇒ πt−sE

hF . (1.5)

We will collectively call these by the name Adams–Novikov Spectral Sequence. See also
Lemma 1.29. If F = Gn itself, then EhGn � LK(n)S

0 and we are computing the homotopy
groups of the K(n)-local sphere.

Various subgroups of Gn will play a role in this paper, especially at n = 2 and p = 2. The
right action of Aut(Γn) on End(Γn) defines a determinant map det : Sn = Aut(Γn/Fpn) → Z×

p

which extends to a determinant map

Gn
∼= Sn � Gal(Fpn/Fp)

det×1−−−−→ Z×
p × Gal(Fpn/Fp)

p1−→ Z×
p . (1.6)

Define the reduced determinant (or reduced norm) N to be the composition

(1.7)
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where C ⊆ Z×
p is the maximal finite subgroup. For example, C = {±1} if p = 2. There are

isomorphisms Z×
p /C

∼= Zp and we choose one. Write G1
n for the kernel of N , S1

n = Sn ∩ G1
n,

and S1
n = Sn ∩ G1

n. The map N : Sn → Zp is split surjective and we have semi-direct product
decompositions for each of the groups Gn, Sn, and Sn; for example, there is an isomorphism

S1
n � Zp

∼= Sn.

If n is prime to p, we can choose a central splitting and the semi-direct product is actually a
product, but that is not the case of interest here.

1.2. Deformations from elliptic curves

Here we spell out what we need from the theory of elliptic curves at p = 2; this will give us
a preferred formal group and a preferred universal deformation. Choose Γ2 to be the formal
group obtained from the elliptic curve C0 over F2 defined by the Weierstrass equation

y2 + y = x3. (1.8)

This is a standard representative for the unique isomorphism class of supersingular curves
over F2; see [33, Appendix A]. Because C0 is supersingular, Γ2 has height 2, as the notation
indicates. Following [37] let C be the elliptic curve over W(F4)[[u1]] defined by the Weierstrass
equation

y2 + 3u1xy + (u3
1 − 1)y = x3. (1.9)

This reduces to C0 modulo the maximal ideal m = (2, u1); the formal group G of C is a choice
of the universal deformation of Γ2.

Again turning to [33, Appendix A], we have

G24
def= Aut(C0/F4) ∼= Q8 � F×

4 (1.10)

where F×
4
∼= C3 acts on Q8 as the 3-Sylow subgroup of Aut(Q8). Define

G48
def= Aut(F4, C0) ∼= Aut(C0/F4) � Gal(F4/F2). (1.11)

Since any automorphism of the pair (F4, C0) induces an automorphism of the pair (F4,Γ2) we
get a map G48 → G2. This map is an injection and we identify G48 with its image.

Remark 1.12. Let C0[3] be the subgroup scheme of C0 consisting of points of order 3; over
F4, this becomes abstractly isomorphic to Z/3 × Z/3. The group G48 acts linearly on C0[3]
and choosing a basis for the F4-points of C0[3] determines an isomorphism G48

∼= GL2(Z/3).
This restricts to an isomorphism G24

∼= SL2(Z/3).

Remark 1.13. The following subgroups will play an important role in this paper.

(1) C2 = {±1} ⊆ Q8.
(2) C6 = C2 × F×

4 .
(3) C4, any of the subgroups of order 4 in Q8.
(4) G24 and G48 themselves.

The subgroup C4 is not unique, but it is unique up to conjugation in G24 and in G2. In
particular, the homotopy type of EhC4 is well defined.

Remark 1.14. We have been discussing G24 as a subgroup of S2, but it can also be thought
of as a quotient. Inside of S2 there is a normal torsion-free pro-2-subgroup K which has the
property that the composition

G24−→ S2−→ S2/K
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is an isomorphism. Thus we have a decomposition K � G24
∼= S2. See [3] for details. The group

K is a Poincaré duality group of dimension 4.

1.3. The functor E∗X

We define

E∗X = π∗LK(n)(E ∧X).

Despite the notation, E∗(−) is not a homology theory, as it does not take arbitrary wedges to
sums, but it is our most sensitive algebraic invariant on the K(n)-local category.

Here are some properties of E∗(−). See [24, § 8, Appendix A] for more details. Let m ⊆ E0

be the maximal ideal and L = L0 be the 0th derived functor of completion at m. Recall that
an E0-module is L-complete if the natural map M → L(M) is an isomorphism. If M = L(N),
then M is L-complete; that is, L(N) → L2(N) is an isomorphism for all N . Thus the full
subcategory of L-complete modules is a reflexive sub-category of all continuous E0-modules.
By [24, Proposition 8.4], E∗X is L-complete for all X.

If N is an E0-module, there is a short exact sequence

0 → lim1
k TorE0

1 (E0/m
k, N) → L(N) → limk N/mkN → 0 . (1.15)

Hence if M is L-complete, then M is m-complete, but it will be complete and separated
only if the right map is an isomorphism. See [16, § 2] for some precise assumptions which
guarantee that E∗X is complete and separated. All of the spectra in this paper will meet these
assumptions.

Since Gn acts on E, it acts on E∗X in the category of L-complete modules. This action is
twisted because it is compatible with the action of Gn on the coefficient ring E∗. We will call
L-complete E0-modules with such a Gn-action either twisted Gn-modules, or Morava modules.

For example, let F ⊆ Gn be a closed subgroup. Then there is an isomorphism of twisted
Gn-modules

E∗EhF ∼= map(Gn/F,E∗) (1.16)

where map(−,−) denotes the set of continuous maps. On the right-hand side of this equation,
E∗ acts on the target and the Gn-action is diagonal. This needs a bit of care, as the proof of
this result given in [11] is given for the Honda formal group and it may not be true in general.
However, in analyzing the proof of the crucial Theorem 2 of [11] we see that the isomorphism
of (1.16) follows from the more basic isomorphism

E0E ∼= map(Gn, E0) .

The standard proof of this isomorphism for the Honda formal group (see [36, Theorem 12], for
example) requires only that our formal group be defined over Fp and satisfy the stabilization
requirement of (1.1).

Remark 1.17. We add here that [24, Theorem 8.9] implies that the functor

X 
→ E∗X = π∗LK(n)(En ∧X)

detects weak equivalences in the K(n)-local category. Given a map f : X → Y , the class of
spectra Z so that LK(n)(Z ∧ f) is a weak equivalence is closed under cofibrations and retracts;
hence if E is in this class, then LK(n)S

0 is in this class.

1.4. Mapping spectra

We collect here some basics about the mapping spectra F (EhF1 , EhF2) for various subgroups
F1 and F2 of Gn.
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Remark 1.18. Let F ⊆ Gn be a closed subgroup. We begin with the equivalence

E ∧ EhF � map(Gn/F,E) (1.19)

from the local smash product to the localized spectrum of continuous maps. It is helpful to
visualize this map as sending x ∧ y to the function gF 
→ x(gy). We will continue this mnemonic
below: using point-wise defined functions to indicate maps of spectra which cannot be defined
that way. We hope the readers can fill in the details themselves; if not, complete details can
be found in [16, § 2].

The action of Gn on E in (1.19) defines the Morava module structure of E∗EhF ; under the
isomorphism of (1.19) this maps to the diagonal action on the functions

(hφ)(g) = hφ(h−1g).

Note that

(E∗EhF )Gn = mapGn
(Gn/F,E∗) ∼= (E∗)F .

By [11, Theorem 2], this extends to an isomorphism

H∗(Gn, E∗EhF ) ∼= H∗(F,E∗).

See also Lemma 1.29.

Remark 1.20. We now recall some results from [16]. If X = lim Xi is a profinite set,
let E[[X]] = lim E ∧X+

i where the + indicates a disjoint basepoint. Then if F1 is a closed
subgroup of Gn, we have an equivalence

E[[Gn/F1]] � F (EhF1 , E) (1.21)

defined as follows. Let FE denote the function spectrum in E-modules. Then

E[[Gn/F1]] � FE(map(Gn/F1, E), E)

� FE(E ∧ EhF1 , E)

� F (EhF1 , E).

Next note that the equivalence of (1.21) is Gn-equivariant with the following actions: in
F (EhF1 , E) we act on the target and on E[[Gn/F1]] we act as follows:

h
(∑

aggF1

)
=

∑
h(ag)hgF1.

We can now make the following deductions. First suppose F1 = U is open (and hence closed),
so that Gn/F1 = Gn/U is finite. Let F2 be finite. Then we have equivalences∏

F2\Gn/U

EhFx � E[[Gn/U ]]hF2

� F (EhU , E)hF2

� F (EhU , EhF2). (1.22)

The product in the source is over the double coset space, and for a double coset F2xU ,

Fx = F2 ∩ xUx−1 ⊆ F2.

Since it depends on a choice of x, the group Fx is defined only up to conjugation, but the fixed
point spectrum EhFx is well defined up to weak equivalence.
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The first map of (1.22) sends a ∈ EhFx to the sum∑
gFx∈F2/Fx

(ga) gxU.

We say a word about the naturality of the equivalence of (1.22). Suppose U ⊆ V ⊆ Gn is a
nested pair of open subgroups. Then for each double coset F2xU we get a double coset F2xV ,
a nested pair of subgroups

Fx = F2 ∩ xUx−1 ⊆ F2 ∩ xV x−1 = Gx,

and a transfer map

trx : EhFx−→ EhGx

associated to this inclusion. Then we have a commutative diagram

(1.23)

where the map tr is the sum of the transfer maps and the map g induced by the quotient
Gn/U → Gn/V .

For a more general closed subgroup F1 write F1 = ∩iUi where Ui ⊆ Gn is open. Then, for
F2 finite we get a weak equivalence

holimi

∏
F2\Gn/Ui

EhFx � F (EhF1 , EhF2) (1.24)

where the product is as before and

Fx = F2 ∩ xUix
−1 ⊆ F2

depends on i and, as in (1.23), there may be transfer maps in the transition maps for the
homotopy limit. As F2 is finite and the product in (1.24) is finite, this implies that the image
of ∏

F2\Gn/Uj

π∗EhFx−→
∏

F2\Gn/Ui

π∗EhFx

is independent of j for large j. It follows that there will be no lim1 term for the homotopy
groups of the inverse limit and hence there is an isomorphism

limi

∏
F2\Gn/Ui

π∗EhFx ∼= π∗F (EhF1 , EhF2) (1.25)

1.5. The K(n)-local Adams–Novikov Spectral Sequence

This is the main technical tool of this paper, and we give a few details of the construction and
some of its properties. We begin with some algebra from [24, Appendix A].

Let m ⊂ E0
∼= W[[u1, . . . , un−1]] be the maximal ideal. An L-complete E0-module M is pro-

free if any one of the following equivalent conditions is satisfied:

(1) M ∼= L(N) ∼= N∧
m for some free E0-module N ;

(2) the sequence (p, u1, . . . , un−1) is regular on M ;
(3) TorE0

1 (Fpn ,M) = 0;
(4) M is projective in the category of L-complete modules.
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Proposition A.13 of [24] implies that a continuous homomorphism M → N of pro-free
modules is an isomorphism if and only if M/mM → N/mN is an isomorphism.

If F ⊆ Gn is a closed subgroup, then E∗EhF is pro-free, by (1.16).
By [24, Proposition 8.4], if X is a spectrum with K(n)∗X concentrated in even degrees, then

E∗X is pro-free, concentrated in even degrees. Furthermore, if E∗X is pro-free and concentrated
in even degrees, then

K(n)∗X ∼= Fpn ⊗E0 E∗X ∼= (E∗X)/m.

Remark 1.26. We now come to the Adams–Novikov Spectral Sequence in the K(n)-
local category. As in [36], Proposition 15, this spectral sequence is obtained by the standard
cosimplicial cobar complex for E = En in the K(n)-local category. Thus we have

Es,t
2

∼= πsπt(E• ∧X) =⇒ πt−sLK(n)X.

The smash products are in the K(n)-local category. It is a consequence of the proof of [36,
Proposition 15] that this spectral sequence converges strongly and has a horizontal vanishing
line at E∞.

We would now like to rewrite the E2-term as group cohomology, at least under some
hypotheses. For any group G, let EG be the standard contractible simplicial G-set with
(EG)s = Gs+1. This is a bar construction. If G is a topological group, then EG is a simplicial
space.

Let M be an L-complete Morava module. We define

Hs(Gn,M) = πsmapGn
(EGn,M)

where mapGn
(−,−) denotes the group of continuous Gn-maps. Since there is an isomorphism

mapGn
(Gs+1

n ,M) ∼= map(Gs
n,M), we have that H∗(Gn,M) is the sth cohomology group of a

cochain complex

M −→ map(Gn,M) −→ map(G2
n,M) −→ · · ·

Proposition 1.27. Suppose X = Y ∧ Z where K(n)∗Y is concentrated in even degrees and
Z is a finite complex. Then we have an isomorphism

πsπt(E• ∧X) ∼= Hs(Gn, EtX)

and the K(n)-local Adams–Novikov Spectral Sequence reads

Hs(Gn, EtX) =⇒ πt−sLK(n)X.

Proof. If Z = S0, then E∗X is pro-free in even degrees. The result can be found in [1,
Theorem 4.3]. The authors there work with the version of Morava E-theory obtained from the
Honda formal group, but they need only the isomorphism E0E ∼= map(Gn, E0), which holds
in our case. See the remarks after (1.16). The key idea is that this last isomorphism can be
extended to an isomorphism

E∗(E∧s ∧X)−→ map(Gs
n, E∗X)

for any spectrum X with E∗X pro-free and in even degrees. For more general Z, the
isomorphism on E2-terms follows from the five lemma. �

In some crucial cases, it is possible to reduce the E2-term to group cohomology over a finite
group. Let F ⊆ Gn be a finite subgroup and N an L-complete twisted F -module. Define an
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L-complete module N ↑Gn

F as the set of continuous maps φ : Gn → N such that φ(hx) = hφ(x)
for h ∈ F . This becomes a Morava module with

(gφ)(x) = φ(xg)

with g ∈ Gn and there is an isomorphism

mapGn
(Gs+1

n , N ↑Gn

F ) ∼= mapF (Gs+1
n , N)

of groups of continuous maps. Let Hs(F,N) = πsmapF (EF,N).

Lemma 1.28 (Shapiro Lemma). Let F ⊆ Gn be a finite subgroup and suppose N is an
L-complete twisted F -module with the property that N/mN is finite dimensional over Fpn .
Then there is an isomorphism

H∗(Gn, N ↑Gn

F ) ∼= H∗(F,N)

and, under these hypotheses on N , there is an isomorphism

H∗(F,N) ∼= limk H∗(F,N/mkN).

Proof. Since N is L-complete and N/mN is finite, the short exact sequence of (1.15) implies
N ∼= N∧

m.
Choose a nested sequence Ui+1 ⊆ Ui ⊆ Gn of finite index subgroups of Gn with the property

that ∩Ui = {e}. Then for all s � 0 we have

mapGn
(Gs+1

n , N ↑Gn

F ) ∼= mapF (Gs+1
n , N)

∼= limk mapF (Gs+1
n , N/mkN)

∼= limk colimi mapF ((Gn/Ui)s+1, N/mkN).

The last isomorphism follows from the fact that N/mkN is discrete and finite. Since F is finite,
we have F ∩ Ui = {e} for all i greater than some i0. Then for i > i0 it follows that (Gn/Ui)•+1

is a contractible simplicial free F -set and, thus, we have an isomorphism

πsmapF ((Gn/Ui)•+1, N/mkN) ∼= Hs(F,N/mkN) .

Again since F is finite, Hs(F,N/mkN) is a finite abelian group. Both isomorphisms of the
lemma now follow. �

Lemma 1.29. Let Y be a spectrum equipped with an isomorphism of Morava modules

E∗Y ∼= map(Gn/F,E∗) ∼= E∗EhF

where F ⊆ Gn is a finite subgroup. Then for all finite spectra Z, there is an isomorphism

H∗(Gn, E∗(Y ∧ Z)) ∼= H∗(F,E∗Z).

Proof. We have an isomorphism of Morava modules

E∗(Y ∧ Z)
∼=−−−−−→ map(Gn/F,E∗Z)

where the action of Gn on the target is by conjugation: (gφ)(x) = gφ(g−1x). There is an
isomorphism of Morava modules

map(Gn/F,E∗Z) ∼= (E∗Z)↑Gn

F

adjoint to evaluation at eF . The result follows from the Shapiro Lemma 1.28. �
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Remark 1.30. Suppose Y = EhF . Then Lemma 1.29 follows from the variant of [11,
Theorem 2] appropriate for our formal group; indeed, we need only require that F be closed.
However, the proof relies on the construction of EhF given in that paper and does not a priori
apply if we only know E∗Y ∼= E∗EhF — as will be the case in our application.

Remark 1.31. There is a map of Adams–Novikov Spectral Sequences

but it takes a little care to define. Let G(x, y) ∈ E0[[x, y]] be the formal group law of the
supersingular elliptic curve of (1.9); since G is the formal group of a Weierstrass curve, it
has a preferred coordinate. Let G∗(x, y) = uG(u−1x, u−1y) ∈ E∗[[x, y]]. Then G∗ is a formal
group over E∗ with coordinate in cohomological degree 2 and, therefore, is classified by a
map Z(2) ⊗MU∗ → E∗. Since G∗ is not evidently 2-typical, it need not be classified by a map
BP∗ → E∗. However, over a Z(2)-algebra, the Cartier idempotent gives an equivalence between
the groupoid of all formal group laws and the groupoid of 2-typical formal group laws; hence
we have a diagram of spectral sequences as needed:

We will use this below in the section on the cohomology of G48.

1.6. The action of the Galois group

We now turn to analyzing EhS2 as an equivariant spectrum over the Galois group. As above,
we will write Gal = Gal(Fpn/Fp), so that Gn

∼= Sn � Gal.
We begin with the following elementary fact: the map Zp → W is Galois with Galois group

Gal; thus, it is faithfully flat, étale, and the shearing map

W ⊗Zp
W → map(Gal,W)

sending a⊗ b to the function g 
→ ag(b) is an isomorphism. In fact, this shearing map is certainly
an isomorphism modulo p; then the statement for W follows from Nakayama’s lemma. Faithfully
flat descent now implies that the category of Zp-modules is equivalent to the category of twisted
W[Gal]-modules under the functor M 
→ W ⊗Zp

M ; the inverse to this functor sends N to NGal.
This extends to the following result.

Lemma 1.32. Let K ⊆ Gn be a closed subgroup and let K0 = K ∩ Sn. Suppose the canonical
map

K/K0−→ Gn/Sn
∼= Gal
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is an isomorphism. Then for any twisted Gn-module M we have isomorphisms

H∗(K,M) ∼= H∗(K0,M)Gal

H∗(K0,M) ∼= W ⊗Zp
H∗(K,M).

Proof. The subgroup Sn acts on E0 through W-algebra homomorphisms; hence it acts on M
through W-module homomorphisms. It follows that we can write the functor (−)K of invariants
as a composite functor

twisted Gn-modules
(−)K0−−−−→ twisted W[Gal]-modules

(−)Gal

−−−−→ Zp-modules.

As we just remarked, the second of these two functors is an equivalence of categories and in
particular it is an exact functor. The first equation follows. The second equation follows from
the first and the fact that the inverse to (−)Gal is the functor M 
→ W ⊗Zp

M . �

We now give a fact seemingly known to everyone, but hard to find in print. Drew Heard was
the first to point out an error in our original argument; others followed quickly. We learned
the following replacement from Mike Hopkins, Agnès Beaudry, and the referee. We extend our
thanks to everyone.

Lemma 1.33. For all p and all n � 1 we have isomorphisms

H0(Gn, E0) ∼= Zp

H0(Sn, E0) ∼= W = W (Fpn).

Furthermore, H0(Gn, Et) = H0(Sn, Et) = 0 if t �= 0.

Proof. By Lemma 1.32 we need only do the case of Sn.
It is also sufficient to prove this when Γn is the Honda formal group over Fpn . Any other

height n formal group becomes isomorphic to the Honda formal group over the algebraic closure
of Fp, and the general result could then be deduced from Galois descent.

Write φ for lift of Frobenius to Witt vectors W. For the Honda formal group, Sn is the group
of units in the endomorphism ring

End(Γn) ∼= W〈S〉/(Sn − p)

where W〈S〉 is non-commutative polynomial ring over W on a variable S with Sa = φ(a)S
when a ∈ W. Thus we have an inclusion W× ⊂ Sn. Every k ∈ Z×

p ⊆ Sn corresponds to an
automorphism Γn → [k]Γn

of Γn; in particular Z×
p acts trivially on E0 and if u ∈ E−2 is the

invertible generator, we have k∗u = ku. If follows that H0(Z×
p , Et) = 0 if t �= 0.

This leaves the case t = 0. Write K = W[p−1]. Since all elements of Sn fix the constants
W ⊆ E0 there is an inclusion

W ∼= H0(W×,W) → H0(W×, E0).

Furthermore, since E0 is torsion-free, it is sufficient to show H0(W×, E0[p−1]) ∼= K. By
[10], Lemma 4.3, there are power series wi = wi(u1, u2, . . . , un−1) ∈ K[[u1, . . . , un−1]] and an
inclusion

W[[w1, . . . , wn−1]]−→ K[[u1, . . . , un−1]]

onto a Gn-equivariant sub-algebra which becomes an isomorphism after inverting p in the
source. Thus it is sufficient to show that

H0(W×, J) = 0

where J = W[[w1, . . . , wn−1]]/W.
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By [10], Proposition 3.3, the action of W× on W[[w1, . . . , wn−1]] is diagonal: if a ∈ W×, then

a∗wi = φi(a)a−1wi.

Let ω ∈ W be a primitive (pn − 1)st root of unity and set a = 1 + pω. Then φ(1 + pω) =
1 + pωp. If some ij �= 0 it follows that

(1 + pω)∗wi1
1 . . . w

in−1
n−1 �= wi1

1 . . . w
in−1
n−1

as needed. �

Remark 1.34. Note that the proof of Lemma 1.33 actually shows we need only relatively
small subgroups of Gn to get the full invariants. Specifically, we have

Zp
∼= H0(W× � Gal, E0)

and if t �= 0, then H0(Z×
p , Et) = 0. We will not need this stronger result.

Remark 1.35. In the proof of Lemma 1.36 below we will use the following observation.
Suppose we have a spectral sequence {Es,t

r } that is multiplicative; that is, E∗,∗
r is a bigraded

ring which is commutative up to sign and dr satisfies the Leibniz rule, again up to sign. Further
suppose R ⊆ E0,0

r is a commutative subring of dr-cycles and R ⊆ S is an étale extension in E0,0
r .

Then every element of S is a dr-cycle. To see this, note that dr restricted to S is a derivation over
R and any such derivation must vanish; indeed, depending on your foundations, the vanishing
of such derivations may even be part of your definition of étale.

Lemma 1.36. For all p and all n � 1 there is a Gal-equivariant equivalence

Gal+ ∧ LK(n)S
0 → EhSn .

Proof. We first prove we have an injection W → π0E
hSn . We begin with the isomorphism

W ∼= H0(Sn, E0) of Lemma 1.33. Since Zp ⊆ W is an étale extension and the Adams–Novikov
Spectral Sequence for EhSn is a spectral sequence of rings, all of W survives to E∞ and the edge
homomorphism provides a surjection π0E

hSn → W of rings. The kernel of this map nilpotent as
an ideal because the spectral sequence has a horizontal vanishing line at E∞. See Remark 1.26.
We then have a diagram

Again since Zp ⊆ W is étale, the dashed arrow can be completed uniquely. This yields the
injection we need.

Now define ω : S0 → EhSn to be a representative of the homotopy class defined by a primitive
(pn − 1)st root of unity in W. We can extend ω to a Gal-equivariant map f : Gal+ ∧ S0 → EhS2

inducing the splitting W → π0E
hS2 ; here we use that the map Zp[Gal] → W∑

agg 
−→
∑

agg(ω)

is an isomorphism. The map f extends to an isomorphism of twisted Gn-modules

E∗f : E∗(Gal+ ∧ S0) ∼= map(Gal, E∗) ∼= map(Gn/Sn, E∗) ∼= E∗EhSn

thus completing the argument. �

The following result is a topological analog of Lemma 1.32.
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Lemma 1.37. Let K ⊆ Gn be a closed subgroup and let K0 = K ∩ Sn. Suppose the canonical
map

K/K0−→ Gn/Sn
∼= Gal

is an isomorphism. Then there is a Gal-equivariant equivalence

Gal+ ∧ EhK → EhK0 .

Proof. This follows from Lemma 1.36. Define a map EhSn ∧ EhK → EhK0 by the
composition

EhSn ∧ EhK → EhK0 ∧ EhK0 → EhK0 (1.38)

where the first map is given by the inclusion and the last map is multiplication. We have

E∗(EhSn ∧ EhK) ∼= map(Gn/Sn, E∗) ⊗E∗ map(Gn/K,E∗)

∼= map(Gn/Sn × Gn/K,E∗).

In E∗-homology, the map of (1.38) then becomes the map

map(Gn/Sn, E∗) ⊗E∗ map(Gn/K,E∗) ∼= map(Gn/Sn × Gn/K,E∗)

−→ map(Gn/K0, E∗)

induced by the maps on cosets

Gn/K0 → Gn/K0 × Gn/K0 → Gn/Sn × Gn/K

where the first map is the diagonal and the second map is projection. Since K/K0
∼= Gn/Sn,

this map on cosets is an isomorphism; therefore, the map of (1.38) is an E∗-isomorphism. By
Remark 1.17 this map is a weak equivalence. �

Remark 1.39. Combining Lemmas 1.32 and 1.37 yields an isomorphism of spectral
sequences

where the differentials on the top line are the W-linear differentials extended from the spectral
sequence for K.

Remark 1.40. At n = 2 and p = 2, Lemma 1.37 applies to the case of K = G48; then
K0 = G24. This implies that any of the spectra

X(i, j) def= Σ24iEhG48 ∨ Σ24jEhG48

has the property that E∗X(i, j) ∼= E∗EhG24 . But X(i, j) = Σ24iEhG24 if and only if i ≡ j mod
8. This means that in some of the arguments we give to prove our main result we will have to
produce two homotopy classes rather than one. See Theorem 5.8.

2. The homotopy groups of homotopy fixed point spectra

Here we collect what we will need about the homotopy groups of EhF , where F runs through
the finite subgroups of G1

2 of Remark 1.13. We will be working entirely at n = p = 2 and using
the formal group from the supersingular curve of (1.8). Much of what is needed is in the
literature and we will do our best to give references. However, much of what is written is for
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calculations over Hopf algebroids, which is not quite what we are doing, and the results need
translation. In addition, many of the results as written include some variant of the phrase ‘we
neglect the bo-patterns’. We make this thought precise with the following ad hoc definition.

Definition 2.1. Let F ⊆ G2 be any finite subgroup containing C2 = {±1}. Then we define
the bo-patterns L1(π∗EhF ) of π∗EhF to be the image of the map in homotopy

π∗EhF−→ π∗LK(1)E
hF .

We also define the pure K(2)-classes M2(π∗EhF ) to be the kernel of the same map.

Thus we have a short exact sequence

0 → M2(π∗EhF ) → π∗EhF → L1(π∗EhF ) → 0.

Note that the bo-patterns are defined as a quotient. In most cases, this sequence is not split as
sequence of modules over the homotopy groups of spheres.

Remark 2.2. The name bo-patterns is something of a misnomer, as KO-patterns would be
more accurate. Here KO is 8-periodic 2-complete real K-theory. In all our examples we will
have an isomorphism

R(F ) ⊗Z2 KO∗ ∼= π∗LK(1)E
hF

for some Z2-algebra R(F ) in degree zero. While R(F ) ⊗Z2 KO∗ is 8-periodic, L1(π∗EhF ) will
typically have 8k-periodicity for some k > 1. As a warning, we mention that this isomorphism
is simply as rings; we are not claiming LK(1)E

hF is a KO-algebra.

Remark 2.3. Here is more detail, to explain our thinking.
Let us write S/2n for the Z/2n-Moore spectrum. Then there is a weak equivalence

LK(1)X � holim v−1
1 (X ∧ S/2n)

and, if X is K(2)-local, a corresponding localized Adams–Novikov Spectral Sequence

lim v−1
1 H∗(G2, (E∗X)/2n) =⇒ π∗LK(1)X. (2.4)

This spectral sequence does not obviously converge.
Now suppose C2 = {±1} ⊆ F ⊂ G48. Then the spectral sequence (2.4) for X = EhF

becomes

lim v−1
1 H∗(F, (E∗)/2n) =⇒ π∗LK(1)E

hF . (2.5)

Using Strickland’s formulas [37] it is possible to show that

lim v−1
1 H∗(F, (E∗)/2n) ∼= lim v−1

1 H∗(C2, (E∗)/2n)F/C2

and that

v−1
1 H∗(C2, (E∗)/2n) ∼= W((u1))[u±2, η]

where W((u1)) = lim(W/2n)[[u±1
1 ]] and η ∈ H1(C2, E2) detects the class of the same name in

π1S
0. (See (2.6).) From this it follows that the spectral sequence (2.5) is completely determined

by the standard differential d3(v2
1) = εη3, where v2

1 = u2
1u

−2 and ε ∈ F4((u1))× is a unit. We
can conclude that the spectral sequence converges and

π∗LK(1)E
hF ∼= W((u1))F ⊗Z2 KO∗

and in particular, that π∗LK(1)E
hF and L1(π∗EhF ) are both concentrated in degrees congruent

to 0, 1, 2, and 4 modulo 8. It then remains to analyze the pure K(2)-local classes.
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Now, not much of what we just wrote is explicitly in print, and it would take quite a few
pages to prove in detail. But we will put together what we can from the existing literature to
cover the main points case-by-case below. See Propositions 2.7, 2.11, and 2.17.

2.1. The homotopy groups of EhC2 and EhC6

The standard source here is Mahowald–Rezk [28], which uses the Hopf algebroid approach, but
also uses the same elliptic curve we have chosen. So the translation is straightforward. Here is
a summary.

The central C2 ⊆ G2 acts trivially on E0 and by multiplication by −1 on u; hence

H∗(C2, E∗) ∼= W[[u1]][u±2, α]/(2α) (2.6)

where α ∈ H1(C2, E2) is the image of the generator of H1(C2,Z〈sgn〉) under the map which
sends the generator of the sign representation to u−1. Since

v1 = u1u
−1 ∈ H0(C2, E2/2)

and the class u1α ∈ H1(C2, E2) is the image of v1 under the integral Bockstein, the class
η ∈ π1S

0 is detected by u1α. We will also write η = u1α.

Proposition 2.7. The class b
def= u2

1u
−2 reduces to v2

1 in v−1
1 H∗(C2, E∗/2). There is an

isomorphism

W((u1))[b±1, η]/(2η) ∼= lim v−1
1 H∗(C2, E∗/2n).

The standard differential d3(v2
1) = η3 (see Lemma 2.21) forces a differential

d3(u−2) = εu1α
3

where ε ∈ F2[[u1]]×. Using the Mahowald–Rezk transfer argument [28, Proposition 3.5] we have
ν ∈ π3S

0 is non-zero in π3E
hC2 and detected by α3; this in turn forces a differential

d7(u−4) = α7 = αν2.

The spectral sequence collapses at E7 and we have the following result.

Proposition 2.8. The homotopy ring π∗EhC2 is periodic of period 16 with periodicity
generator e16 detected by u−8. The bo-patterns L1(EhC2) are concentrated in degrees congruent
to 0, 1, 2, and 4 modulo 8 and the group of pure K(2)-local classes M2(EhC2) is generated by
the classes

αiek16, k ∈ Z, i = 3, 4, 5, 6.

To get the homotopy of EhC6 , with C6 = C2 × F×
4 , we need to know the action of F×

4 . We
can use Strickland’s calculations [37] or interpret the Mahowald–Rezk results. Let ω ∈ F×

4 be
a primitive cube root of unity. Then, ω∗u = ωu and ω∗u1 = ωu1; it follows that ω∗α = ω−1α.
The next result can be deduced from these formulas and the fact that

π∗EhC6 ∼= (π∗EhC2)F
×
4 .

Proposition 2.9. The homotopy ring π∗EhC6 is periodic of period 48 with periodicity
generator e3

16 detected by u−24. The bo-patterns L1(EhC6) are concentrated in degrees
congruent to 0, 1, 2, and 4 modulo 8 and the group of pure K(2)-local classes M2(EhC6)
is generated by the classes

e3k
16α

3 e3k
16α

6 e3k+1
16 α4 e3k+2

16 α5
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of degrees 48k + 3, 48k + 6, 48k + 20, and 48k + 37 respectively. Furthermore, the homotopy
class ν ∈ π3S

0 is detected by the class α3 and the class κ ∈ π20S
0 is detected by e16α

4.

2.2. The homotopy groups of EhC4

The standard reference for this calculation is Behrens–Ormsby [7, § 2.1], especially Theo-
rem 2.1.3 and Perspective 2, after Remark 2.1.9. See also their Figure 2. Again they use
Hopf algebroids. Here we hit another small problem: the supersingular elliptic curve they
use is different from the one we have chosen, and thus they have a different action of C4

on a different version of Morava E-theory. There are two possible solutions. One is to do
the calculations over again, using Strickland’s formulas. The other is to note that the two
supersingular curves become isomorphic over the algebraically closed field F2 and to use descent
to make the calculations. Using either method we obtain the following result. Let i ∈ C4 be a
generator and let

z = u1 + i∗u1 ∈ H0(C4, E0).

There are further cohomology classes

b2 ∈ H0(C4, E4) δ ∈ H0(C4, E8)

and

γ ∈ H1(C4, E6) ξ ∈ H2(C4, E8).

Let η ∈ H1(C4, E2) and ν ∈ H1(C4, E4) be the images of the like-named classes from the
BP -based Adams–Novikov Spectral Sequence (see Remark 1.31).

Proposition 2.10. There is an isomorphism

H∗(C4, E∗) ∼= W[[z]][b2, δ±1, η, ν, γ, ξ]/R

where R is the ideal of relations given by

2η = 2γ = 4ξ = 0

and

b22 ≡ z2δ mod 2

and

δη2 = b2ξ = γ2 b2γ = zδη

and

b2η = zγ γη = zξ

and the final relations involving ν:

ν2 = 2ξ 2ν = zν = ην = b2ν = γν = 0

Proof. This can be obtained from Perspective 2 (after Remark 2.1.9) of [7] by a three-step
process. First set γ̃ = γ, j̃ = z − 2, and β = δ−1ξ. Second, invert δ. Finally, complete at the
maximal ideal of H0(C4, E0). �

This result is displayed in Figure 1, presented in the standard Adams format: the x-axis is
t− s; the y-axis is s. In this chart, the square box � represents a copy of W[[z]], the circle ◦
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Figure 1. The cohomology of C4.

a copy of F4[[z]], and the crossed circle ⊗ a copy of W[[z]]/(4, 2z) generated by a class of the
form ξjδi. A solid dot is a copy of F4 annihilated by z; it is generated by a class of the form
ξjν. The solid lines are multiplication by η or ν, as needed, and a dashed line indicates that
xη = zy, where x and y are generators in the appropriate bidegree.

Note that H∗(C4, E∗) is 8-periodic with the periodicity class δ and that

×ξ : Hs(C4, E∗) → Hs+2(C4, E∗+8)

is onto for s � 0 and an isomorphism for s > 0. In fact δ−1ξ ∈ H2(C4, E0) is, up to
multiplication by a unit, the image of the periodicity class for the group cohomology of C4

under the inclusion of trivial coefficients:

Z/4 ∼= H4(C4,Z2) ∼= H2(C4,W) → Hs(C4, E0).

Proposition 2.11. Modulo 2 we have an equivalence b2 ≡ v2
1 and then an isomorphism

W((z))[b±1
2 , η]/(2η) ∼= lim v−1

1 H∗(C4, E∗/2n).

The differentials and extensions in this spectral sequence go exactly as in Behrens and
Ormsby [7, Theorem 2.3.12]. We end with the following result.

Proposition 2.12. The homotopy ring π∗EhC4 is periodic of period 32 with periodicity
generator e32 detected by δ4. The bo-patterns L1(EhC4) are concentrated in degrees congruent
to 0, 1, 2, and 4 modulo 8 and the group of pure K(2)-local classes M2(EhC4) is generated by
the classes ek32x where x is from the following table

Class Degree Order E2-name

a 1 2 δ−1ξν
aη 2 2 δ−2ξ2ν2

ν 3 4 ν
aν 4 2 δ−1ξν2

ν2 6 2 ν2

ε 8 2 δ−2ξ4

ν3 = ηε 9 2 κ2δ−5ξν
κ 14 2 δν2

b 19 4 δ2ν
κ 20 4 δξ2

ηκ 21 2 ηξ3

bν 22 4 δ2ν2

c 27 2 δ2γξ
cη 28 2 δ−1ξ6
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Figure 2. The pure K(2) classes in π∗EhC4 .

The pure K(2) classes in π∗EhC4 are presented in Figure 2: the horizontal bar is multiplica-
tion by ν, the diagonal bar is multiplication by η. Note that κη2 = 2bν. The horizontal scale
is the degree of the element, but the vertical scale has no meaning. Many of the additive and
multiplicative relations are given by exotic extensions in this spectral sequence and the meaning
of the original Adams–Novikov filtration becomes attenuated as a result; see Behrens–Ormsby
[7], especially figure 9, for details.

2.3. The homotopy groups of EhG24 and EhG48

Remarks 1.39 and 1.40 yield an isomorphism of spectral sequences

Therefore, we focus on the case of G48. Here the standard sources are [2, 12, 23] although it
requires some translation in each case to get the results we want.

The ring H0(G48, E∗) is isomorphic to the ring of modular forms for supersingular elliptic
curves at the prime 2. Then there are elements

c4 ∈ H0(G48, E8) c6 ∈ H0(G48, E12) Δ ∈ H0(G48, E24)

obtained from the modular forms of the same name for our supersingular curve. Since this
curve is smooth, Δ is invertible and the j-invariant of our curves j = c34/Δ ∈ H0(G48, E0) is
defined. Then we get an isomorphism

Z2[[j]][c4, c6,Δ±1]/
(
c34 − c26 = (12)3Δ,Δj = c34

) ∼= H0(G48, E∗).

Modulo 2 we get a slightly simpler answer:

F2[[j]][v1,Δ±1]/
(
jΔ = v12

1

) ∼= H0(G48, E∗/2).

Modulo 2 we have congruences

c4 ≡ v4
1 and c6 ≡ v6

1 . (2.13)

To describe the higher cohomology, we make a table of multiplicative generators. For each
x, the bidegree of x is (s, t) if x ∈ Hs(G48, Et). All but μ detect the elements of the same name
in π∗S0. Furthermore, all elements but κ are in the image of the map (see Remark 1.31)

Ext∗,∗BP∗BP (BP∗, BP∗) → H∗(G2, E∗) → H∗(G48, E∗).

Hence we also give the name (the ‘MRW’ is for Miller–Ravenel–Wilson) of a preimage. The
Greek letter notation is that of [30].
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Figure 3. The cohomology of G48.

Class Bidegree Order MRW

η (1,2) 2 α1

ν (1,4) 4 α2/2

μ (1,6) 2 α3

ε (2,10) 2 β2

κ (2,16) 2 β3

κ (4,24) 8 −

The class κ ∈ π20S
0 is detected by the image of β4 in H2(G2, E∗). The class μ has a special

role which we discuss in Lemma 2.21, but we would like to note right away that

v2
1η ≡ μ modulo 2. (2.14)

The following result is actually much easier to visualize than to write down. See the Figure 3.

Theorem 2.15. There is an isomorphism

H0(G48, E∗)[η, ν, μ, ε, κ, κ]/R ∼= H∗(G48, E∗)

where R is the ideal defined by

(1) the order of the elements of positive cohomological degree:

2η = 4ν = 2μ = 2ε = 2κ = 8κ = 0;

(2) the relations for ν:

ην = 2ν2 = ν4 = μν = 0;

(3) the relations for ε:

ηε = ν3, νε = ε2 = με = 0;

(4) the relations for κ:

ν2κ = 4κ, η2κ = εκ = κ2 = μκ = 0;

(5) the elements annihilated by modular forms

c4ν = c6ν = c4ε = c6ε = c4κ = c6κ = 0;
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Figure 4. The homotopy groups πiE
hG48 for 40 � i � 70.

(6) the relations between κ and modular forms;

c4κ = Δη4, c6κ = Δη3μ;

(7) and the relations indicated by the congruences of (2.13) and (2.14):

μ2 = c4η
2 c4μ = c6η c6μ = c24η.

This result is presented graphically in Figure 3. We present it as the E2 page of the Adams–
Novikov Spectral Sequence. The cohomology is 24-periodic on Δ, and the spectral sequence
fills the entire upper-half plane. In Figure 3, the square box � represents a copy of Z2[[j]],
the circle ◦ a copy of F2[[j]], and the crossed circle ⊗ a copy of Z2[[j]]/(8, 2j) generated by
a class of the form Δiκj . The solid bullet represents a class of order 2 annihilated by j and
the doubled bullet a class of order 4 annihilated by j; these last classes are always of the form
Δiκjν. The solid lines are multiplication by η or ν, as needed, and a dashed line indicates that
xη = jy, where x and y are generators in the appropriate bidegree.

Remark 2.16. (1) Many of the later relations can be rephrased as relations for multiplication
by j = c34/Δ. For example Theorem 2.15 (4) implies

jν = jε = jκ = 0

and (5) implies

jκ = c24η
4

and (6) implies

jμ = c24c6Δ
−1η.

These last two equations explain the dashed lines in Figure 4.
(2) Multiplication by κ : Hs(G48, Et) → Hs+4(G48, Et+24) is surjective and an isomorphism

if s > 0. In fact, up to a unit, Δ−1κ ∈ H4(G48, E0) is the image of the periodicity class in
group cohomology for Q8 under the inclusion of trivial coefficients:

Z/8 ∼= H4(Q8,W)G48/Q8 ∼= H4(G48,W) → H4(G48, E0).

The congruence (2.13) and the relations of Theorem 2.15 now give the following result. Note
that the class c4 becomes invertible in lim v−1

1 H∗(G48, E∗/2n) and we may define b2 = c6/c4.
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(Warning: This class b2 is related to, but not quite the same, as the class b2 of Proposition 2.10.
Both uses of b2 appear in the literature.)

Proposition 2.17. The class b2 reduces to v2
1 in v−1

1 H∗(G48, E∗/2). There are isomor-
phisms

Z2((j))[b±1
2 , η]/(2η) ∼= lim v−1

1 H∗(G48, E∗/2n).

and

F2((j))[v±1
1 , η] ∼= v−1

1 H∗(G48, E∗/2).

Under the reduction map H∗(G48, E∗) → H∗(G48, E∗/2) we have

c4 
→ v4
1

c6 
→ v6
1

c4κ 
→ v4
1κ = Δη4

μ 
→ v2
1η.

Under the localization map H∗(G48, E∗) → v−1
1 H∗(G48, E∗/2) we have

Δ 
→ v12
1 /j

κ 
→ v8
1η

4/j

and that ν, ε, and κ map to zero.

We have the following; see [2, 12, 23].

Proposition 2.18. The homotopy ring π∗EhG48 is periodic of period 192 with periodicity
generator detected by Δ8. The bo-patterns L1(EhG48) are concentrated in degrees congruent
to 0, 1, 2, and 4 modulo 8.

Remark 2.19. We will not try to enumerate the pure K(2)-classes of M2(EhG48); this
information is known (by the same references as for Proposition 2.18), but we will not need
that information in its entirety and it is rather complicated to write down. What we will
need can be read off of Figure 4, which is adapted from the charts created by Tilman Bauer
[2, Section 8].

This chart shows a section of the E∞-page of the Adams–Novikov Spectral Sequence

Es,t
2 = Hs(G48, πtE) =⇒ πt−sE

hG48 .

It is in the standard Adams bigrading (t− s, s).
Some additive and multiplicative extensions are displayed as well. The non-zero permanent

cycles are in black; some other elements, mostly built from patterns around elements of the
form Δjκi, have been left in gray for orientation, even though they do not last to the E∞-page.
Bullets with circles are elements of order 4; bullets with two circles are elements of order 8.
Vertical lines are extensions by multiplication by 2, lines raising homotopy degree by 1 are
η-extensions, lines raising homotopy degree by 3 are ν-extensions.

The lines 0 � s � 2 display the bo-patterns; the adorned boxes and circles all represent ideals
of either Z2[[j]] or F2[[j]]:

� ∼= Z2[[j]]

� ∼= (2) ⊆ Z2[[j]]
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� ∼= (4, j) ⊆ Z2[[j]]

◦ ∼= F2[[j]]

� ∼= (j) ⊆ F2[[j]].

Elements not falling into one of these patterns are annihilated by j. The η-extension from
(t− s, s) = (65, 3) entry is ambiguous. We mark it as non-zero because we may choose, as
Bauer does, the two generators of the group of pure K(2)-classes in π65E

hG48 to be

e[45, 5]κ and e[51, 1]κ

where e[45, 5] ∈ π45E
hG48 and e[51, 1] ∈ π51E

hG48 are generators detected by Δκη and Δ2ν,
respectively. The class e[51, 1]κ is detected on the s = 3 line by Δ2κν and e[51, 1]κη �= 0.

We now record, from Figure 4, some data about our crucial homotopy classes.

Lemma 2.20. There is an isomorphism

Z/2 ∼= π45E
hG48 .

The generator is detected by the class

Δκη ∈ H5(G48, E50).

The class Δκ2η2 ∈ H10(G48, E76) is a non-zero permanent cycle detecting a generator of the
subgroup π66E

hG48 of the pure K(2)-classes of that degree.

We close with some remarks on the role of μ in the d3 differentials.

Lemma 2.21. Let μ ∈ H1(G2, E6) be the image of the class

α3 ∈ Ext1BP∗BP (Σ6BP∗, BP∗).

Then in any of the Adams–Novikov Spectral Sequences

Hs(F,Et) =⇒ πt−sE
hF

and for any x ∈ H∗(F,E∗) we have

d3(xμ) = d3(x)μ + xη4.

In the spectral sequences

Hs(F,Et/2) =⇒ πt−s(EhF ∧ S/2) (2.22)

we have

d3(v2
1x) = d3(x)v2

1 + xη3 + y

where yη = 0. Finally, in the spectral sequence (2.22) we have

d3(v4
1x) = v4

1d3(x).

Proof. In the Adams–Novikov Spectral Sequence

ExtsBP∗BP (ΣtBP∗, BP∗) =⇒ Z(2) ⊗ πt−sS
0.

we have d3(α3) = η4. (In fact, by [30, Corollary 4.23], η4 �= 0 at E2 and E1,6
2

∼= Z/2 generated
by α3. The differential is then forced.) Since the fixed point spectral sequence is a module over
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this standard Adams–Novikov Spectral Sequence, the first formula follows. The second formula
follows because v2

1η = α3 in

ExtsBP∗BP (ΣtBP∗, BP∗/2).

The third formula follows from the fact that S/2 has a v4
1-self map. �

3. Algebraic and topological resolutions

In this section we review the centralizer resolution constructed by Hans-Werner Henn [20,
§ 3.4] and then begin the construction of the topological duality resolution. The details of
the algebraic duality resolution can be found in [3]. The two resolutions have complementary
features. While we will not try to make this thought completely precise, the duality resolution
reflects, in an essential way, the fact that the group S1

2 is a virtual Poincaré duality group of
dimension 3. The centralizer resolution on the other hand, is much closer to being an Adams–
Novikov tower as there is an underlying relative homological algebra in the spirit of Miller [29].
See Remark 3.24.

3.1. The centralizer resolution

Henn’s centralizer resolutions grew out of his paper [19] which used the centralizers of
elementary abelian subgroups of Sn to detect elements in the cohomology of Sn. At the prime
2, this approach needs a slight modification, as the maximal finite 2-group in S2 is Q8, which
is not elementary abelian.

Remark 3.1. In (1.10) we defined G24 ⊆ S1
2 as the image of a group of automorphisms of

a supersingular elliptic curve. The group S1
2 fits into a short exact sequence

1−→ S1
2 −→ S2

N−−−→ Z2−→ 1

where N is the reduced determinant map of (1.7). Let

π = 1 + 2ω

be an element of S2, where ω ∈ W× is a cube root of unity. Note that π is not an element of
S1

2 because N(π) = 3. Then we define G′
24 := πG24π

−1 ⊆ S1
2. This is a subgroup isomorphic to

G24, but not conjugate to G24 in S1
2.

Note that multiplication by π defines an equivalence EhG24 � EhG′
24 . For complete details

on this and more, see [3].

We now have the following result from [20, § 3.4]. This is the algebraic centralizer resolution.

Theorem 3.2. There is an exact sequence of continuous S1
2-modules

0 → Z2[[S1
2/C6]] → Z2[[S1

2/C2]] → Z2[[S1
2/C6]] ⊕ Z2[[S1

2/C4]]

→ Z2[[S1
2/G24]] ⊕ Z2[[S1

2/G
′
24]]

ε−→ Z2 → 0. (3.3)

The map ε is the sum of the augmentation maps.

We will call this a resolution, even though the terms are not projective as Z2[[S1
2]]- modules.

It is an F-projective resolution, an idea we explore in Remark 3.24.

Remark 3.4. Suppose we write

P0 = Z2[[S1
2/G24]] × Z2[[S1

2/G
′
24]]
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P1 = Z2[[S1
2/C6]] × Z2[[S1

2/C4]]

P2 = Z2[[S1
2/C2]]

P3 = Z2[[S1
2/C6]].

Then for any profinite S1
2-module M , we get a spectral sequence

Ep,q
1

∼= Extq
Z2[[S1

2]]
(Pp,M) =⇒ Hp+q(S1

2,M).

The E1-terms can all be written as group cohomology groups; for example

E0,q
1

∼= Hq(G24,M) ×Hq(G′
24,M).

We will call this the algebraic centralizer resolution spectral sequence. In many applications, the
distinction between the groups G24 and G′

24 disappears. For example, if M is a G2-module (such
as EnX for some spectrum X) then multiplication by π induces an isomorphism Hq(G24,M) ∼=
Hq(G′

24,M).

Remark 3.5. We can induce the resolution (3.3) of S1
2-modules up to a resolution of

G2-modules and obtain an exact sequence

0 → Z2[[G2/C6]] → Z2[[G2/C2]] → Z2[[G2/C6]] ⊕ Z2[[G2/C4]]

→ Z2[[G2/G24]] ⊕ Z2[[G2/G24]] → Z2[[G2/S
1
2]] → 0.

Since G′
24 is conjugate to G24 in G2, we have Z2[[G2/G24]] ∼= Z2[[G2/G

′
24]] as G2-modules and

we have made that substitution. If F is any closed subgroup of G2, then the equivalence of
(1.19) gives us an isomorphism of twisted G2-modules

HomZ2[[G2]](Z2[[G2/F ]], E∗) ∼= E∗EhF .

Combining these observations, we get an exact sequence of twisted G2-modules

0 → E∗EhS1
2 →

E∗EhG24

×
E∗EhG24

→
E∗EhC6

×
E∗EhC4

→ E∗EhC2 → E∗EhC6 → 0. (3.6)

We then have the following result; this is the topological centralizer resolution of [20,
Theorem 12].

Theorem 3.7. The algebraic resolution of 3.6 can be realized by a sequence of spectra

EhS1
2

p−→
EhG24

×
EhG24

→
EhC6

×
EhC4

→ EhC2 → EhC6

All compositions and all Toda brackets are zero modulo indeterminacy.

Remark 3.8. The vanishing of the Toda brackets in this result has several implications. To
explain these and for future reference we write, echoing the notation of Remark 3.4:

F0 = EhG24 × EhG24

F1 = EhC6 × EhC4

F2 = EhC2

F3 = EhC6 . (3.9)
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Then the resolution of Theorem 3.7 can be refined to a tower of fibrations under EhS1
2 :

(3.10)

Alternatively we could refine the resolution into a tower over EhS1
2 . Let us write

for a cofiber sequence (that is, a triangle) X → Y → Z → ΣX. Then we have a diagram of
cofiber sequences

(3.11)

where each of the compositions Fi−1 → Ci → Fi is the map Fi−1 → Fi in the resolution.
The towers (3.10) and (3.11) determine each other. This is because there is a diagram with

rows and columns cofibration sequences

(3.12)

Using the tower over EhS1
2 of (3.11) we get a number of spectral sequences; for example, if Y

is any spectrum, we get a spectral sequence for the function spectrum F (Y,EhS1
2)

Es,t
1 = πtF (Y, Fs) =⇒ πt−sF (Y,EhS1

2). (3.13)

Up to isomorphism, this spectral sequence can be obtained from the tower of (3.10); this follows
from (3.12).

Remark 3.14. It is direct to calculate E∗Cs and E∗Ys for the layers of the two towers. If
we define Ks ⊆ E∗Fs to be the image of E∗Fs−1 → E∗Fs, then E∗Cs

∼= Ks and, more, if we
apply E∗ to (3.11) we get a collection of short exact sequences:

Note that this implies that each of the dotted arrows of (3.11) has Adams–Novikov filtration
one. Finally, the cofibration sequence EhS1

2 → Ys → Σ−sCs+1 induces a short exact sequence

0 → E∗EhS1
2 → E∗Ys → Σ−sKs+1 → 0.
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3.2. The duality resolution, first steps

We have the algebraic duality resolution from [3]. The groups G24 and G′
24 are defined in

Remark 3.1.

Theorem 3.15. There is an exact sequence of continuous S1
2-modules

0 → Z2[[S1
2/G

′
24]] → Z2[[S1

2/C6]] → Z2[[S1
2/C6]] → Z2[[S1

2/G24]]
ε→Z2 → 0 (3.16)

where ε is the augmentation.

Remark 3.17. As in Remark 3.4 we get a spectral sequence. Suppose we write

Q0 = Z2[[S1
2/G24]]

Q1 = Q2 = Z2[[S1
2/C6]]

Q3 = Z2[[S1
2/G

′
24]]

Then for any profinite S1
2-module M , such as E∗X = (E2)∗X for some finite spectrum X, we

get a spectral sequence

Ep,q
1

∼= Extq
Z2[[S1

2]]
(Qp,M) =⇒ Hp+q(S1

2,M),

which we will call the algebraic duality resolution spectral sequence.

As in Remark 3.5 and (3.6) we immediately have the following consequence.

Corollary 3.18. There is an exact sequence of twisted G2-modules

0 → E∗EhS1
2 → E∗EhG24 → E∗EhC6 → E∗EhC6 → E∗EhG24 → 0.

The first of these maps is induced by the map on homotopy fixed point spectra EhS1
2 → EhG24

induced by the subgroup inclusion G24 ⊆ S1
2.

We would now like to prove the following result, paralleling Theorem 3.7; it also appears in
[20]. The main work of the next two sections and, indeed, the main theorem of this paper is
to identify X.

Proposition 3.19. The algebraic resolution of 3.18 can be realized by a sequence of spectra

EhS1
2

q−→EhG24 → EhC6 → EhC6 → X

with E∗X ∼= E∗EhG24 as a twisted G2-module. All compositions and all Toda brackets are zero
modulo indeterminacy.

Remark 3.20. A consequence of the last sentence of this result is that this resolution can
be refined to a tower of fibrations under EhS1

2

(3.21)
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or to a tower over EhS1
2

(3.22)

As in Remark 3.14 the dotted arrows have Adams–Novikov filtration 1. Examining this last
diagram, we see that X can be defined as the cofiber of D2 → EhC6 and it will follow, as in
Remark 3.14, that E∗X ∼= E∗EhG24 . Thus Proposition 3.19 is equivalent to the following result.
See also [8, 20].

Lemma 3.23. The truncated resolution

0 → E∗EhS1
2 → E∗EhG24 → E∗EhC6 → E∗EhC6

can be realized by a sequence of spectra

EhS1
2−→ EhG24 → EhC6 → EhC6

such that all compositions are zero and the one Toda bracket is zero modulo indeterminacy.

Proof. The map EhS1
2

q−→ EhG24 is the inclusion map on homotopy fixed point spectra
induced by the subgroup inclusion G24 ⊆ S1

2. To realize the other maps and to show that
the compositions are zero, we prove that the Hurewicz map

π0F (EhF , EhC6)−→ HomMor(E0E
hF , E0E

hC6)

to the category of Morava modules is an isomorphism for F = S1
2 or F = G24. To see this, first

note that there is an isomorphism

π0F (EhF , EhC6) = π0E[[G2/F ]]hC6 ∼= H0(C6, E0[[G2/F ]]).

This follows from (1.25) and the fact that π0E
hK = H0(K,E0) whenever K ⊆ C6; see § 2.1.

Then we can finish the argument by using (1.16) and (1.21) to show

H0(C6, E
0[[G2/F ]]) ∼= HomE0[[G2]](E

0[[G2/C6]], E0[[G2/F ]])

∼= HomMor(E0E
hF , E0E

hC6),

where HomE0[[G2]](−,−) is the group of continuous homomorphisms of profinite E0[[G2]]-
modules and HomMor(−,−) is the group of homomorphisms of Morava modules.

This leaves the Toda bracket. To see that it is zero modulo indeterminacy we show that the
indeterminacy is the entire group. To be specific, we show that the inclusion EhS1

2 → EhG24

induces a surjection

π∗F (EhG24 , EhC6)−→ π∗F (EhS1
2 , EhC6).

Using (1.21), we can rewrite this map as

π∗E[[G2/G24]]hC6−→ π∗E[[G2/S
1
2]]

hC6 .

Again using (1.21), the inclusion EhS1
2 → EhG24 induces a map of C6-spectra

E[[G2/G24]] � F (EhG24 , E) → F (EhS1
2 , E) � E[[G2/S

1
2]].

It is thus sufficient to show that the quotient map on cosets

G2/G24−→ G2/S
1
2
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has a C6-splitting. Since G2
∼= S2 � Gal(F4/F2), every coset in G2/S

1
2 has a representative of

form πiφεS1
2 where π is as in Remark 3.1, φ ∈ Gal(F4/F2) is the Frobenius, i ∈ Z2, and ε = 0

or 1. The splitting is then given by

πiφεS1
2 
−→ πiφεG24. �

3.3. Comparing the two resolutions

There is a map from the centralizer tower to the duality tower; we will not prove that here. In
the end we will only need a small part of the data given by such a map, and what we need is
in Remark 3.27.

Remark 3.24. The underlying algebra for the centralizer resolutions fits well the relative
homological algebra usually deployed in building an Adams–Novikov tower; this goes back to
Miller in [29], among other sources.

Here is more detail. Let F be the set of conjugacy classes of finite subgroups of S1
2. A

continuous S1
2-module P is F-projective if the natural map

⊕
F∈F

Z2[[S1
2]] ⊗Z2[[F ]] P−→ P

is split surjective, where F runs over representatives for the classes in F . The class of
F-projectives is the smallest class of continuous S1

2-modules closed under finite sums, retracts,
and containing all induced modules Z2[[S1

2]] ⊗Z2[[F ]] M , where M is a continuous F -module.
The class of F-projectives defines a class of F-exact morphisms, there are enough

F-projectives, there are F-projective resolutions, and so on. All of this and more is discussed
in [20, § 3.5].

Comparing the two towers now begins with the following result, see Remark (d) after [20,
Proposition 17].

Proposition 3.25. The centralizer resolution (3.3) is an F-projective resolution of the
trivial S1

2-module Z2.

Thus if we write P• → Z2 for the centralizer resolution (3.3) and Q• → Z2 for the duality
resolution (3.16), then standard homological algebra gives us a map of resolutions, unique up
to chain homotopy

The map g0 : Q0 → P0 can be chosen to be the inclusion onto the first factor

Q0 = Z2[[S1
2/G24]]

i1−→ Z2[[S1
2/G24]] ⊕ Z2[[S1

2/G
′
24]] = P0. (3.26)

Remark 3.27. This immediately gives a map from the centralizer resolution spectral
sequence of Remark 3.4 to the duality resolution spectral sequence of Remark 3.17. This map is
independent of the choice of g• at the E2-page. This can be lifted to a map from the centralizer
tower to the duality tower, although we do not need that here and will not prove it. We note
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that (3.26) implies there is a commutative diagram where the horizontal maps are the edge
homomorphisms of the two spectral sequences

and (g0)∗ is projection onto the first factor. This can be realized by a diagram of spectra, where
the map g0 is again projection onto the first factor

4. Constructing elements in π192k+48X

We now turn to the analysis of the homotopy groups of X, where Σ−3X is the top fiber
in the duality tower; see Proposition 3.19. We have an isomorphism of Morava modules
E∗X ∼= E∗EhG24 and hence, by Proposition 1.27 and Lemma 1.29, a spectral sequence

Es,t
2 = H∗(G24, E∗) =⇒ π∗X.

See also Remark 1.30. The cohomology if G24 is discussed in Theorem 2.15. In this section we
show, roughly, that Δ8k+2 ∈ H0(G24, E192k+48) is a permanent cycle — which would certainly
be necessary if our main result is true. The exact result is below in Corollary 4.7. In the
next section, we will use this and a mapping space argument to finish the identification of the
homotopy type X.

The statements and the arguments in this section have a rather fussy nature because the
spectrum X has no a priori ring or module structure and, in particular, the W-algebra structure
on H∗(G24, E∗) does not immediately extend to a W-module structure on π∗X.

The results of this section were among the main results in the first author’s PhD thesis [8]
and the key ideas for the entire project can be found there.

We begin by combining Remark 1.39 and Lemma 2.20 to obtain the following result. Note
that 45 ≡ 5 modulo 8, so there is no contributions from the bo-patterns in that degree. In
all degrees the bo-patterns lie in Adams–Novikov filtration at most 2. The following is an
immediate consequence of Lemmas 1.37 and 2.20.

Lemma 4.1. There is an isomorphism

F4
∼= π45E

hG24 .

We can chose an F4 generator detected by the class

Δκη ∈ H5(G24, E50).

The class Δκ2η2 ∈ H10(G24, E76) is a non-zero permanent cycle detecting an F4 generator
of the subgroup of π66E

hG24 consisting of the elements of Adams–Novikov filtration greater
than 2.
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Let p : EhS1
2 → EhG24 × EhG24 be the augmentation in the topological centralizer resolution

of Theorem 3.7. This is the same map as from the top to the bottom of the centralizer resolution
tower (3.10).

Lemma 4.2. Let k ∈ Z. The map

p∗ : π192k+45E
hS1

2−→ π192k+45(EhG24 × EhG24)

is surjective. If x ∈ π192k+45E
hS1

2 has the property that p∗(x) �= 0, then x has Adams–Novikov
filtration at most 5, xκη �= 0, and xκη is detected by a class of Adams–Novikov filtration at
most 10.

Proof. For the first statement we examine the homotopy spectral sequence of the centralizer
tower (3.13). In this case this spectral sequence reads

Es,t
1 = πtFs =⇒ πt−sE

hS1
2 .

The fibers Fs are spelled out in (3.9). We are asking that the edge homomorphism

p∗ : π192k+45E
hS1

2−→ π192k+45F0

be surjective. The crucial input is that

πkE
hC6 ⊆ πkE

hC2 = 0

for k = 45, 46, and 47 and that π45E
hC4 = 0. See Proposition 2.9 and Figure 2.

The final statement follows from Lemma 4.1. �

Now let q : EhS1
2 → EhG24 be the augmentation in the topological duality resolution of

Proposition 3.19. This is also the projection from the top to the bottom of the duality resolution
tower (3.21). Let i : Σ−3X → EhS1

2 be the map from the top fiber of the duality tower. Consider
the commutative diagram

(4.3)

The bottom row is short exact and induced by the map between the resolutions. See
Remark 3.27. The map r is defined by this diagram and the fact that the composition

π∗Σ−3X−→ π∗EhS1
2

q∗−→ π∗EhG24

is zero.

Proposition 4.4. The map

r : π192k+45Σ−3X → F4

is surjective. If y ∈ π192k+45Σ−3X is any class so that r(y) �= 0, then y is detected by a class

f
def= f(j)Δ8k+2 ∈ H0(G24, E192k+48) ∼= W [[j]]Δ8k+2.

Furthermore

fκη ∈ H5(G24, E192k+74)

is a non-zero permanent cycle in the spectral sequence for π∗X.
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Proof. In the diagram (4.3), the map p∗ is onto. Let x be any element in π192k+45E
hS1

2

such that p∗(x) �= 0 and q∗(x) = (g0)∗p∗(x) = 0. Then x must have filtration at least 1 in the
homotopy spectral sequence of the duality tower. Since πkE

hC6 = 0 for k = 46 and k = 47, by
Proposition 2.12, any such element must be the image of a class y ∈ π∗Σ−3X. This shows r is
surjective.

The map Σ−3X → EhS1
2 raises Adams–Novikov filtration by 3; see the diagram of (3.22) and

the remarks thereafter. If r(y) = p∗i∗(y) �= 0, then by Lemma 4.2, y must have Adams–Novikov
filtration at most 2; however, by Theorem 2.15 and the chart of Figure 3 we have that

H1(G24, E192k+49) = 0 = H2(G24, E192k+50).

Thus y must have filtration 0. Similarly 0 �= yκη must have filtration at least 5 and at most
7. Again we examine the chart of Figure 3 to find it must have filtration 5 and be detected in
group cohomology, as claimed. �

Recall that we are writing S/2 for the mod 2 Moore spectrum.

Proposition 4.5. Let y ∈ π192k+48X be detected by

f = f(j)Δ8k+2 ∈ H0(G24, E∗).

If r(y) �= 0, then f and fκη are non-zero permanent cycles in the spectral sequence

H∗(G24, E∗/2) =⇒ π∗(X ∧ S/2).

Proof. This follows from Proposition 4.4 and the fact that

H5(G24, E192k+74) → H5(G24, E192k+74/2)

is injective. This last statement can be deduced from the long exact sequence in cohomology
induced by the short exact sequence 0 → E∗ → E∗ → E∗/2 → 0. See Figure 3. �

The crucial theorem then becomes:

Theorem 4.6. Let y ∈ π192k+48X and let

f = f(j)Δ8k+2 ∈ H0(G24, E∗)

be the image of y under the edge homomorphism

π∗X−→ H0(G24, E∗).

If f(j) ≡ 0 modulo (2, j), then r(y) = 0.

Proof. We will show that if f(0) ≡ 0 modulo 2, then fκ = 0 in E∗,∗
4 (X ∧ S/2). We can then

apply Proposition 4.5 to obtain the integral statement.
Under the assumption f(0) ≡ 0 modulo 2 we have

f = jg(j)Δ8k+2 ∈ H0(G24, E∗/2).

We will show that in the Adams–Novikov Spectral Sequence for LK(2)(X ∧ S/2) we have

d3(v8
1g(j)Δ

8k+2μ) = fκ.

The result will follow.
We appeal to Theorem 2.15, Remark 2.16, and the chart of Figure 3. We have

jκ = c24η
4 = v8

1η
4
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and, hence, that

fκ = jg(j)Δ8k+2κ = v8
1g(j)Δ

8k+2η4.

Since fκ is a d3-cycle, d3 is η-linear, and since

H0(G24, (E/2)192k+48)
η4

−→ H4(G24, (E/2)192k+56)

is injective we have that

d3(v8
1g(j)Δ

8k+2) = 0.

It now follows from Lemma 2.21 that

d3(v8
1g(j)Δ

8k+2μ) = v8
1g(j)Δ

8k+2η4 = fκ.

This is what we promised. �

The next result has a slightly complicated statement because we do not know yet that π∗X
is a W-module.

Corollary 4.7. There is a commutative diagram

where the bottom map is some possibly non-trivial isomorphism of groups and

ε(f(j)Δ8k+2) = f(0) mod (2, j).

There are homotopy classes xk,i ∈ π192k+48X, i = 1, 2 detected by classes

fi(j)Δ8k+2 ∈ H0(G24, E192k+48)

so that f1(0) and f2(0) span F4 as an F2 vector space.

Proof. This is an immediate consequence of Theorem 4.6. �

Remark 4.8. Lemma 4.4 produces classes f ∈ π45Σ−3X for which fκη �= 0. The image of
any such f in π45E

hS1
2 is non-zero and has Adams–Novikov filtration at least 3. It is natural to

ask what we know about these classes. In particular, does one of these classes come from the
homotopy groups of sphere itself under the unit map π∗S0 → π∗EhS1

2?
There are classes x ∈ π45S

0 detected in the Adams Spectral Sequence by h3
4 = h2

3h5. Note any
such class has filtration 3. There is a choice for x that seem to support non-zero multiplications
by many of the basic elements in π∗S0, including η and κ. It would be easy to guess that this
class is mapped to the class we have constructed, but we’ve not yet settled this one way or
another.

For more about this class in π45S
0, see the chart ‘The E∞-page of the classical Adams

Spectral Sequence’ in [26]. The fact that some class detected by h2
3h5 can have a non-zero κ

multiplication can be found in [25, Lemma 4.114]. See also table 33 of that paper. Note that
Isaksen is careful to label this lemma as tentative, as this is in the range where the homotopy
groups of spheres still need exhaustive study. In the [32, Table A.3.3], a related class is posited
to be detected in the Adams–Novikov Spectral Sequence by the class γ4, also of filtration 3,
but note the question mark there.
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5. The mapping space argument

We would like to extend the results of the Section 4 in the following way. Let ι : S0 → EhG48

be the unit and r the composition

π192k+48X ∼= π192k+45(Σ−3X) → π192k+45E
hG24 ∼= F4

defined in (4.3).

Theorem 5.1. The composite

π192k+48F (EhG48 , X) ι∗−−−→ π192k+48X
r−−→ F4

is surjective.

We can use this result to build maps out of EhG48 as follows. Recall from (1.21) that if
F ⊆ G2 is a closed subgroup, then there is an isomorphism E∗[[G2/F ]] ∼= E∗EhF of E∗[[G2]]-
modules. Also, Proposition 3.19 and the Universal Coefficient theorem give an isomorphism
E∗X ∼= E∗[[G2/G24]].

Consider the following diagram. Note we are using that E−48 = E48.

(5.2)

where the maps labeled H are the Hurewicz maps for E∗(−) and the map ε reduces mod (2, j).
By Corollary 4.7, the vertical composition on the right is r up to some automorphism of F4.
Proposition 4.4 and Corollary 4.7 then yield the following corollary to Theorem 5.1, using the
case when k = 0.

Corollary 5.3. Let f(j)Δ2 ∈ H0(G24, E48). Then there is a map

φ : Σ48EhG48 → X

so that ι∗(φ) ≡ f(0) modulo 2.

We will use this result to show that there is an equivalence Σ48EhG24 → X. See Theorem 5.8.
We now begin the proof of Theorem 5.1. Let p : EhS1

2 → EhG24 × EhG24 be the projection
from the top to the bottom of the centralizer resolution tower.

Lemma 5.4. Let k ∈ Z. The map

p∗ : π192k+45F (EhG48 , EhS1
2) → π192k+45(F (EhG48 , EhG24) × F (EhG48 , EhG24))

is surjective.
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Proof. We apply F (EhG48 ,−) to the centralizer tower and examine the resulting spectral
sequence in homotopy. See (3.13). The spectral sequence reads

Es,t
1 = πtF (EhG48 , Fs) =⇒ πt−sF (EhG48 , EhS1

2)

and the fibers Fs are described in (3.9). Thus we need to know

0 = π192k+45F (EhG48 , EhC6 ∨ EhC4)

= π192k+46F (EhG48 , EhC2)

= π192k+47F (EhG48 , EhC6).

We can use (1.24). Note that C2 is central, so all of the subgroups Fx contain C2. Therefore,
the crucial input is as before:

πkE
hC6 ⊆ πkE

hC2 = 0

for k = 45, 46, and 47 and that π45E
hC4 = 0. See Propositions 2.8, 2.9, and 2.12. See also

Figure 2. �

Let q : EhS1
2 → EhG24 be the projection from the top to the bottom of the duality resolution

tower. Using Remark 3.27 we now can produce a commutative diagram, where we have
abbreviated F (EhG48 , Y ) as F (Y ) and we are writing n = 192k + 45.

(5.5)

The maps labeled (g0)∗ are induced from the map g0 : EhG24 × EhG24 → EhG24 discussed in
Remark 3.27. It is projection onto the first factor. The lower two rows are split short exact, the
maps labeled ι∗ are all onto, and the maps p∗ and q∗ are onto. The map r is then defined by
the requirement that the upper right square commute. It is the analog of the map r of (4.3),
and in fact we have a commutative diagram

Since EhG24 is an EhG48 -module spectrum, the evaluation map

ι : F (EhG48 , EhG24) → EhG24

is split. Hence, Theorem 5.1 follows from the next result.

Lemma 5.6. The map

r : π192k+45F (EhG48 ,Σ−3X) → π192k+45F (EhG48 , EhG24)

is onto.
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Proof. The proof is an exact copy of the first part of the argument for Proposition 4.4,
generalized to mapping spaces; that is, we examine the homotopy spectral sequence built from
the duality tower for F (EhG48 , EhS1

2). In the diagram (5.5), the map p∗ is onto, and if

x ∈ π192k+45F (EhG48 , EhS1
2)

is any element so that p∗(x) �= 0 and q∗(x) = (g0)∗p∗(x) = 0, then x must have filtration at
least 1 in the homotopy spectral sequence of the duality tower. Since πkF (EhG48 , EhC6) = 0
for k = 46 and k = 47, using (1.24) and Propositions 2.8 and 2.9, any such element must be
the image of a class from π∗F (EhG48 ,Σ−3X). �

Remark 5.7. Note that all of these arguments would work with replacing EhG48 with
EhG24 .

The next result is our main theorem.

Theorem 5.8. There is an equivalence

Σ48EhG24 �−→ X

realizing the given isomorphism of Morava modules

E∗EhG24
∼=−→ E∗X.

Proof. We actually use the given isomorphism of Morava modules to produce a (non-
equivariant) equivalence

C+
2 ∧ Σ48EhG48 � Σ48(EhG48 ∨ EhG48) → X.

Here C2 = Gal = Gal(F4/F2). Then we will apply Lemma 1.37.
We begin with some algebra. Recall from Remark 1.14 that the 2-Sylow subgroup

S2 ⊆ S2 can be decomposed as K � Q8. Since G24 = Q8 � F×
4 and G48 = G24 � Gal we have

that E∗[[G2/G24]] and E∗[[G2/G48]] are free E∗[[K]] modules of rank 2 and rank 1, respectively.
Since K is a finitely generated pro-2-group, the ring E0[[K]] is a complete local ring with
maximal ideal mK given by the kernel of the reduced augmentation

E0[[K]]−→ E0−→ F4.

We will produce a map

f : Σ48(EhG48 ∨ EhG48) → X

so that the map of E0[[K]]-modules

E∗f : E48X−→ E48(Σ48(EhG48 ∨ EhG48))

is an isomorphism modulo mK . Then, by the appropriate variant of Nakayama’s Lemma
(see [16, Lemma 4.3]), it will be an isomorphism of E0[[K]]-modules and, hence, of
E0[[G2]]-modules, as required.

Since G24
∼= Q8 � F×

4 and G2
∼= ((K � Q8) � F×

4 ) � Gal, we have an isomorphism of K-sets
G2/G24

∼= K �Kφ where φ is the Frobenius in the Galois group. Then we have the following
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commutative diagram. It is an expansion of the diagram (5.2). In order to simplify notation,
here we write HomG for HomE0[[G]].

The top two horizontal maps are forgetful maps, remembering only the K action. The third
horizontal map is the composition

W[[j]] ⊆−−−→ W[[u1]]
1×φ−−−→ (W[[u1]])2

and the bottom map is x 
→ (x, φ(x)). The top vertical maps are induced by the map
E∗(EhG48) → E∗S0 given by the unit, the middle vertical map evaluates a homomorphism
at 1 ∈ E0[[G2/G24]]; note we are again using that E−48 ∼= E48. The final map is reduction
modulo the maximal ideals in both cases.

By Corollary 5.3 we can produce two maps

fi : Σ48EhG48 → X, i = 1, 2

so that (fi)∗(ι) ≡ ωiΔ2 modulo (2, j), where ω ∈ F4 is the primitive cube root of unity. We
now examine the fate of

E0(fi) : E0[[G2/G24]]−→ E−48[[G2/G48]]

as we work from the upper left to the bottom right of this diagram. Using the formulas of the
previous paragraph we have

E0(f1) 
→ (ω, ω2) and E0(f2) 
→ (ω2, ω).

Finally, let

f = f1 ∨ f2 : Σ48(EhG48 ∨ EhG48) → X.

If we apply E∗(−) to this map we get a map

E∗f : E0[[G2/G24]] → E−48[[G2/G48]] × E−48[[G2/G48]]

which yields a map of K-modules

E∗f : E0[[K]]2−→ E−48[[K]]2

which, modulo the maximal ideal mK , gives the map

F2
4−→ F2

4

given by the matrix (
ω ω2

ω2 ω

)

with determinant ω2 + ω = 1. Thus E∗f is an isomorphism, as needed. �
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We can now complete the proof of Theorem 1 and construct the topological duality resolution.
Proposition 3.19 and Theorem 5.8 imply the following. Recall from Theorem 2.9 that EhC6 is
48-periodic.

Corollary 5.9. There exists a resolution of EhS1
2 in the K(2)-local category at the

prime 2

EhS1
2 → EhG24 → EhC6 → Σ48EhC6 → Σ48EhG24 .

Remark 5.10. In [16], working at the prime 3, the authors were able to produce a
topological resolution for LK(2)S

0 = EhG2 itself by the same methods that produced the
resolution for EhG1

2 . The resolution for the sphere was essentially a double of that for EhG1
2 .

Not only do the methods of [16] not apply to the case p = 2, it is very unlikely that there is
a topological resolution of the sphere, or for EhS2 , which could be obtained by doubling the
resolution of EhS1

2 . There are any number of difficulties, but the first obstacle is that we have
only a semi-direct decomposition S1

2 � Z2
∼= S2 at p = 2, rather than the product decomposition

G1
2 × Z3

∼= G2 at the prime 3. This makes the algebra much harder, and it only gets worse from
there. Other short topological resolutions are possible, of course, and could be very instructive.
This is the subject of current research by Agnès Beaudry and Hans-Werner Henn.
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