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188 J .M, BOARDMAN

introduced the dual Hopf algebra A,. For this section we shall assume X
finite for simplicity, so that H,X and H*X have finite total dimension and
are strict duals. (In §7 we gencralize to arbitrary X.}

We contemplate the mandala

cohomoloygy

left right (1.1)

homology

The vertices represent the steps of our Eightfold Way, which are, in clockwise
order from the top,
1. Right action, on cochomology, dh:H*X © A* o [I*X;

o

. Right coaction, on cohomology, wR:H*X > X ® AL
HLX 8 A% = H X;
HX - HX® A;

- Right action, on homology, ¢R

Right coaction, on homology, YR
Left coaction, on homology, b tH X > AL ® HX;
Left action, on homology, ¢L:A* ® H. X + H.X;
L:H*X + A, ® H*X;

8. Left action, on cohomology, ¢L;A* ® H*X -+ H*X.

b 2~ AT 72 SRR -y Y

. Left coaction, on cohomology, ¢

The lines in the diagram represent two-headed arrows, which arise from the
various functors discussed below.

We first need some notation and conventions. We recall that the tensor
product V® W of graded vector spaces over the field F_ is associative and
has F, as unit, by isomorphisms (U@ V)¢ WX U® (Ve W) and
11)9 Vivive Fp that we shall suppress from our notation. It is also com-
mutative, by the isomorphism T:Ve W= We V defined by
T(xe y) = (_)deg(x)deg(y) Y @ x. The standard sign convention applies through-
out, under which one introduces a sign whenever the written order of two sym-
bols of odd degree is reversed. For example, if a:V + V' apd siw + W' are

linear maps of nonzero degree, their tensor product o ® B:V® W = V' @ W' is
defined by

(@® B)(x® y) = (-)9e8(BNee(x), o o

[ R,
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The dual graded vector space V* of V is equipped with the evaluation
map e:V*® V ~» Fp’ which we write e(f ® X) = <f,x> = fx. For each x eV,
the formula

<x,f> = (_‘)deg(x)deg(f)(f-,x>

defines a linear map V* +—Fp, that is, an element of V**, The resulting map
V > V** is an isomorphism if V is finite-dimensional in each degree, and
allows us to identify V** with v. Similarly, the formula

<@ g,x®y> = (-)4BEEX) g yoich vs (x e v,y e WE e VhLg e W)

defines a canonical homomorphism V* @ W* + (Vv ® W)* which is an isomorphism
if V or W has finite total dimension, or in certain other aases.

We next introduce the functors that appear in (1.1), to prepare for
Theorem 1.2. We usually start either from a left A*-module V with action
¢ ;A*® V *V or a left A,-comodule V with coaction ¥V > A, @V, in which
case we write wLx = Ziai ® X; . The definitions for right modules and
comodules are similar, often with a sign adjustment, and are omitted. Through-
out, V and W will be graded vector spaces of finite total dimension. We
take typical elements x €V, feV* and a e A*,

Conjugation, C. If V is a left A*-module with action ¢. we define_the
right A*-module CV as V with the action xa = (_)deg(x)deg(a) (ca)x,

where we use the canonical antiautomorphism ¢ of the Hopf algebra A*.

Equivalently, C %; is the composite

® K e —p
TN Te T Ve AT A Y Y,

If W is another left A*-module, so is V ® W, and T:C(Ve W) Zcwe cv is .
an isomorphism of right A*-modules. Similarly for right A*-modules and left
and right A,-comodules.The functors C give the horizontal lines in (1.1).
Daality, D. This is simply an alternative notation, DV = V*, If V is
a left A*-module with action ¢L:A:® V+V, then DV = V* is the left
A,-¢omodule with coaction D¢L = ¢L:V* + A, ® V*, (Note that the dual of
V® W is V* @ W* rather than W*® V*, because Milnor and Moore [8, p.222]
declared it to be so. The distinction is important precisely when V = W.)
The functors D give the vertical lines in (1.1).
Partial duals, D' and D", We do not have to dualize completely. For D'
we just dualize A* (or A). If V is a left A, -comodule, we make D'V = V
a left A*-module with action

L - -
(D wL)(a ® x) = zi <ca,a;> x; = Zi <a,ca,> X; -

The inclusion of ¢ is necessary to make D' an action. Equivalently, D'wL
is the composite




190 - J.M. BOARDMAN

B ik e
A*®Vc@wLA*® A @V oT V.

If W is another left A,-comodule, sc is V& W, and the identity map
D'(V®W) = D'Ve® D'W becomes an isomorphism of left A*-modules. Similarly

for right A, -comodules.
If instead V is a left A*-module, the coaction D'¢L:V + A, ® V that
makes D'V = V a left A ,-comodule has to be defined indirectly, by

(¢ ® 1)(D' ¢L)x = ¢L(c a®x) for all a € A*,

vhere a ® l:A,©® V ~> Fp ® V = V. Again, if W is another left A*-module,

the identity map D'(V® W) = D'V® D'W is an isomorphism of left A*-comodules.
Alternatively, we can dualize just V. Given a left A*-module V, we

define the left A*-module D"V to be V* with action D"ﬂ‘ defined by

é(D||¢L) (Q ® f)’ x> = (_)deg(u)deg(f) <f, ¢L(ca® x)>.

Given a left A,-comodule V, the left A, -comodule D"V = V* has coaction
D"wL:V* + A, ® V* defined indirectly by
?
@ " = =)
(1@ x)(D ¢L)f L (-)° <f,x;> ca,,
where we write 1 @ x:A,® V* ~ A, ® Fp = A, by identifying V with V**.
If we dualize both we find D'D"V = DV in all variations, as expected.

Shuffles, S' and S'" {for want of a better name). These are very similar

to D! and D" except that conjugation ¢ is not required, at the cost of
changing sides. If V is a left A*-module we define the right A*-module
S"V = V* as having the action S“¢L:V*(3 A* - V* given by

<(Sn¢L) (f ® a), x> = <f, ¢L(u ® x)>.

In simpler notation, this takes the very appealing form <fua,x> = <f,ax>; we
simply shuffle the action from V to V*. Given a left comodule V, the

right A,-comodule S'V = V* has coaction determined by
?
e 1" = =)'
(x® 1)(S wL)f Zi () <f,xi> a.
Also, if V 1is a left A,-comodule, we define the right A*-module S'V =V
as having the action given by
?
(S'¢L)(X9 a) = k. (-) <a,a.> x,
i i” i

where ¢;x = I, a, ® x,. If V 1is a left A*-module, the right A, -comodule

S'V = V has coaction defined indirectly by

1@ a) (S'ch)x = ¢L(a ® x).

SUMMARY. We start from the A*-module H*X and apply the various functors,
There are three aspects or variances to watch, namely left/right,
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A*-module/A,-comodule, and homology/cohomology. Each may or may not be
reversed by the above functors.

C reverses left/right;

D teverses module/comodule and homology/cohomology;

B' reverses module/comodule;

D" reverses homology/cohomology;

S' reverses left/right and module/comodule;

S" reverses left/right and homology/cohomology.
Yes, there is a missing functor (besides the identity), the conjugate dual €D.

It reverses everything. It corresponds to the missing diagonals in (1.1).
THEOREM 1.2. (a) The diagram (1.1) commutes;
(b) any of the eight structures determines all the others;

(c) all functors respect tensor products.

If we start from the usual left action on cohomology, A* ® H*X + H*X,
{d) the Kinneth isomorphisms H*(X Y) 2 H*X ® H*Y and

H, (X Y) 2 HX® H,Y are isomorphisms for all the structures;

(e) all four coactions are ring homomorphisms.
PROOF. There is less to this theorem than meets the eye. If we take C, D

and S$' as the generating functors, all the others can be expressed in terms
of them. Specifically, one has to check that S" = CD", D' = cs', D = D'D”
(already done), and that the squares of C, D and S' are the identity

functor. The diagram commutes because C, D and S' commute with each other.
Then (c) has to be verified only for C, D and S' (or D'). Because the
comultiplication on A* is defined to make H*(X Y) % H*X® H*Y an iso-
morphism of left A*-modules, (d) and (e) follow..

Since all eight structures are equivalent, one may well wonder why bother
with them all. Classically, H*X is by definition an A*-module, and Milnor
passes to the right coaction on cohomology by using S' = DS". His major con-
tribution is the observation that the multiplicativity of the coaction on
cohomology is far more transparent than the original Cartan formula, which here
takes the form that the cup product multiplication H*X® H*X - H*X 1is a
homomorphism of A*-modules. We also find in 56 that the equivalence tends to
break down when we generalize. Nevertheless, the left/right symmetry persists
and one could just as well do everything using only the left structures. How-
ever, it is a historical fact that this was not done . (Perhaps the absence of
conjugation in S' does make it more natural than the partial dual D* ?)
As we shall see in §7, §8 and §9, Milnor and virtually everyone since has

studied A, by means of the right coaction on cohomology.
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§2. SPECTRA WITH COEFFICIENTS. In this section we introduce spectra with
coefficients, which are the main tool for our theory. Many of the definitions
can obviously be generalized enormously; at this time, however, we shall
refrain.

Let E be a commutative ring spectrum, by which we understand a
spectrum E equipped with a commutative and associative multiplication map
pw:E.E + E and a unit map 1i:S » E, where the necessary diagrams commute in
the homotopy category. To abbreviate, we shall write @ for a,E, a commuta-
tive graded ring (with the usual sign, yx = (_)deg(x)deg(y) xy). Given right
r-module M, we wish to extend E to a spectrum M @n E, which we call E
with coefficients M. Since all tensor products in this section are taken
over T, we generally write them simply as @.

In fact, we shall be slightly more general. Given a spectrum F, we
define a m-action on F exactly as in any graded additive category.

DEFINITION 2.1. A m-action on F consists of a map W(k):F +»F for
each k ¢ m, subject to the usual identities W(k+k') = W(k)+W(k'), W(1) =1,
and W(kk') = W(k)oW(k'). (It follows that deg(W(k)) = deg(k).)

In other words, a homomorphism = - {F,F}, of graded rings. Because
is commutative, there is no distinction between left actions and right actioms.

EXAMPLES of actions.

1. E, with action W(k) = wo(k 1):E =S E +~ E E + E.

2. If F has a m-action, so does U(F) for any additive functor U,
namely U(W(k)); for instance F Y and Y F.

3. The cohomology E*X and homology E_X have n-actions, naturally
in X, by regarding them as functors of E. A m-action on a graded group is
exactly a left n-module structure.

4. E, with action W(k) = po(l k):E = E,S + EE -+ E. This looks
like the right counterpart to the first example, but is in fact identical.

5. Any E-module G, with action W(k) = ¢o(k_1):G = S G + E.G +~ G,
where ¢:E.G -G is the E-action on G. An obvious generalization of the
first example.

DEFINITION 2.2. Given a free right n-module M with basis elements m
T

in degree d(r) and a spectrum F with w-action, we define the tensor product

spectrun M@ F = Vr Zd(r)F, equipped with the injections of summands
ir:F + M ®n F of degree d(r). In case F = E, we call this the spectrum E
with coefficients M, as suggested by Lemma 2.3, below.

EXAMPLE. m@_ F = F.

LEMMA 2.3. The homotopy groups of M e F are given by
T(M® F) =M  mF. Inparticular, r,(M @ E) M.
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PROOF. Ve have =, M@ F) ¥ o urue wF.

To see that this isomorphism and others are canonical, we have to get
away.from the given basis of =M.

LEMMA 2.4. (a) For each me M there is a map m® F:F » MG'1T F, with
the properties (i) (m*m') ® F = (m® F)+(m' ® F), (ii) mk ® F =(n®F)okW(k),

and (iii) mrfo F=i1

r
(b) Suppose given a map h(m):F - Y for each m e M, satisfying the

axioms (i) h(m)+h(m') = h(m+m') and (ii) h(mk) = h(m)oW(k). Then there

exists a unique map h:MdbTr F+Y such that ho(m® F) = h(m) for all m.

PROOF, Write m in terms of the basis as m = Zr mrkr’ where the sum
is of course finite. In (a) we are forced to take m® F = Zr iroW(kr), and
this works. Since M ® F is a graded wedge of copies of F with injections
ir = mre F, we are forced to défine h for (b) by hoir = h(mr) for all r,
and then the axioms on h(m) make ho(m® F)= h(m) true in general.

THEOREM 2.5. The spectrum M @n F is functorial in M as well as in

F, and is independent of the choice of basis of M. Given a homomorphism

g:M + N of free right n-modules, there is a unique map g ® F:M ®“F + N GNF
such that (g ® FlJo(m® F) = gmn® F for all m e M,

PROOF. Lemma 2.4(b) defines the map g® F, Functoriality and indepen-
dence of M ® F from the choice of basis follow.

CONVENTION. In forming the tensor product b!@" N, we insist on M being
a right m-module and N a left m-module, just as if = were not commutative.
It becomes a left w-module if M is a m-bimodule, and a right w-module if N
is a bimodule.

In view of the commutativity of =, there is no great algebraic distinc-
tion between left n-modules and right wn-modules: if M is a left w-module,
we can easily make it a right m-module by defining mk = (_)deg(k)deg(m) km,
and vice versa. However, it will be necessary to keep track of a large number
of different and unrelated w-module structures, often two or more on the same
group. We shall therefore declare or arrange some modules to be left modules
and others to be rignt modules. We shall make much use of w-bimodules, which
have a left action and a right action, usually unrelated (although we do insist
on (km)k' = k(mk'}).

Extra structure on M also passes to M & F.

LEMMA 2.6. Assume M is a w-bimodule that is free as a right w-module.
Then

(a) the spectrum M®_ F inherits a w-action;

(b) if N is a free right w-module, we have canonical associativity,
N® 1T(1\1691‘ F) = (N ® M) ®1T F. (In the future we shall simply write
N® M@_ F,)
mn m
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PROOE. We use the action W) = Lk) & F on M® F, where L(k):M->M
is the left action by k on the bimodule M. Let M have basis elements m
in degree d(r) as right n-module and let N have basis elements n in
degree e(s). Then N® M is also a free right nm-module with basis elements

ng ® m in degree d(r)+e(s). By construction,
: N e AN ORI
N@(M@F)-st M® F i F

and

N M) @ F =Vr ] d(r)ve(s)p

are visibly isomorphic. A double application of Lemna 2.4(b) defines the
canonical isomorphism a:N® (M®F) = (N® M) @ F by

won® (M® F)lom® F) = n®m)® F:F> (N&M&F

for all meM and n e N, and @ is in fact an isomorphism of decompositions,

By a right m-algebra M we shall understand a ring M with ring

homomorphism ™ + M that makes M an algebra over in the ordinary
sense. It is no different from a left m-algebra, except that we use n, to
make M a right m-module and reserve the right to endow M with a left
r-module structure unrelated to -

LEMMA 2.7. If M is a right n-algebra that is free as a right n-module

then M®_E is canonically a ring spectrum, and is commutative if M is.

Its multiplication map makes the diagram

EE CCRSRCUCRS) + (Me_E) (M® E)
s | s
E —=F —~Me_E

commute for all m, m' € M, and this property characterizes it.
PROOF. By distributivity of the smash product, (M® E}) (M® E) breaks

up as a graded wedge of copies of E_E, so that we can define the multiplica-
tion map on M® E by requiring the diagram to commute whenever m and m'
are basic elements. It follows from Lemma 2.4(a} and the structure on E
that the diagram commutes generally. The unit map is simply

(1® E)oi:S » E »M® E, and commutativity and the unit property are clear.
Associativity is easy, since (M® E),(M® E).(M® E) similarly breaks up as
a graded wedge of copies of E_E_E.

We give a substantial example of a tensor product spectrum. By the con-
ventiongin §3 it is appropriate to use the action on E to make X, E a
right m-module.

LEMMA 2.8. Suppose X,E is a free right n-module. Then we have a

: . . LY . - . .
canonical isomorphism X_.E = X*E‘Sﬂ E. It is an isomorphism of ring spectra
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if X is a ring spectrum.
PROOF. Given m ¢ X, E, that is, a map m:S » X E, we construct the map

h(m):E = SAE -—I-n—"—l—> XAEAE -—I:-ﬁ‘* XAE.

Lemma 2.4(b) constructs the desired map h:X,E® E -+ X E such that
ho(m ® E) = h(m) for all m. Since h induces the identity homomorphism
X,E -+ X,E on homotopy groups, it is an isomorphism.

If X is a ring spectrum, so is X E and X,E becomes a right
f-algebra. By Lemmas 2.4 and 2.7, we have only to check that h(1) 1is cor-
rect and that uo(h(m)ﬁh(m')) = h(mm')ou :E E » X E for all m,m' e X,E.

We obviously need to study the cohomology and homology theories defined
by the spectrum M @ F.

THEOREM 2.9. (a) (M®_ F)*xgma" (F,X) for all X;

(b) (M@ F)*X T Me_ (F*X) for all finite X; )

(¢) if F is highly connected and d(r) = = then (M ® F)*X = Me F*X,

where we complete in the sense of allowing infinite sums Zrmr<8 Yo

REMARK. So in (a) and (b) the parentheses are redundant. From now on we
shall simply write LIQHVF*X and M®_F*X whenever possible.

PROOF. For each me¢ M the map me& F:F » M@ F induces
F,X - (M® F),X. Hence a canonical homomorphism M ® (F. X} + (M® F) X, and
similarly in cohomology, M® (F*X) » (M@ F)*X. These are evidently isomor-
phisms when M 1is free on one generator, whatever X 1is. Then (a) follows
because both sides are strongly additive functors of M. The same holds for

(b), provided X is finite, since
* = =
Mo F)x = (X, {_M_@F*= 8 (XM ®FM,

where we write M as a direct sum & er of free modules of rank 1. The

hypotheses in (c) ensure that we have a product
M®F=Ver®F=IIer® F,

so that (M@ F)*X =1_M & (F*X).

REMARK. The right side of (a) is a homology theory even if M 1is only a
flat w-module. Then the Brown-Whitehead-Adams representation theorem [2]
defines a spectrum M® F to satisfy (a), uniquely up to isomorphism. Unfor-
tunately, the isomorphisms are not in general well defined and there may be
problems with functoriality and in making M ® E a ring spectrum as in
Lemma 2.7, although these problems disappear when the universal coefficient
theorem of §4 applies.

REMARK. A homomorphism g:M + 7 of right w-modules induces a map of
spectra g® FIM® F+ 7 ©F =F and therefore a homomorphism
(g® F),:(M® F)*X »~ F*X. The value of this homomorphism on a typical infinite
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element Er m, ® Y. in (c) is not in general obvious. We get an infinite
series Zr (gmr)yr in F*X that converges to the value with respect to the
usual filtration of F*X defined by the skeletons of X. The sum of the
series is well defined only if this filtration of F*X is Hausdorff; if not,
the homomorphisms (g ® F), define some extra structure on F*X.

CORCLLARY 2.10. lf_ X,E is free right w-module, then

7, (X_E.Y) = X, (E.Y) = (X.E),Y ¥ X,E ®_ EY

for any spectrum Y.
PROOF . Combine Lemma 2,8 with Theorem 2.9(a).

§3. TWO-FACED ALGEBRA. Here we collect various comments on left and right
modules. We work over the commutative groundring = = =, E, where E is a
commutative ring spectrum, and all tensor products are taken over w. As
mentioned in §2, it is desirable to declare some modules to be left modules
and others to be right modules.

CONVENTION (Adams). A m-action on F induces left n-module structures on
F,G and F*G, right n-module structures on G,F and G*F, and a w-pbimodule
structure (consisting of two essentially equivalent m-actions} on wF.

This convention makes E,X and E*X left n-modules, as before. Further,
for a space X (rather than a spectrum), E*(X,f) becomes a commutative left
malgebra (compare §2), and for a commutative ring spectrum F, E,F becomes a
commutative left w-algebra. This is our major supply of modules. Since we
insist on using one left module and one right module to form a temnsor product
over w, a certain amount of trading appears inevitable. This we organize as
follows.

DEFINITION 3.1. The formal conjugate cM of M 1is a copy of M having

an element cm for each me M. If M is a left n-module, we make ¢cM a
right m-module by defining (cm)k = (-)98(K)de&(™ Ly similarly, if M
is a right w-module, ¢cM becomes a left w-module by k(cm) = (-)deg(k)deg(m%m*l
So if M is a w-bimodule, ¢M is another n-bimodule with the twe actions in
effect interchanged.

The commutativity isomorphism c:F_G 2 G.F induces an isomorphism
F,G 2 G,F, which is also an isomorphism of rings if F and G are commutative
ring spectra. It is reasonable and consistent with the Adams convention to use
this isomorphism to identify the formal copy c(F*C) of F,G with G,F,
together with any module structures present. In particular, we have the im-
portant special case c(E_.E) = E_E, where we identify cm = cm {the cm on the
left is a formal copy of m, and the cm on the right is the image of m
under the automorphism c = ¢, .) Of course, nm is itself a bimodule and we

identity em with @ directly, by ck = k. Tensor products Lehave as
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expected: there is a canonical isomorphism c(M & N ¥ cN@® cM of groups,
together with left and/or right module structures if present.

It is in defining duals that we must part company with traditional algebra

Nevertheless, all proofs are elementary and largely omitted. %"
DEFINITION 3.2. Given a left mw-module M, we define the dual left :
n-module M* to be Homﬂ(M,n). We make it a left n-module by defining 3

kfm> = kefym> = ()98 (0IE M e s (oo M, £eMx, ke M.

If M is a bimodule, we make M* a bimodule with right m-module structure
defined by <fk,m> = (_)deg(k)deg(m)<f’mk>'

llere and elsewhere, Hom ( , ) will invariably denote the group of left

e ey

module homomorphisms. Thus the definition of M* is asymmetric and the two
duals M* and (cM)}* of a bimodule M are unrelated in general.

The interaction of duals and temsor products requires some care.

LEMMA 3.3. Let M be a r-bimodule and N a left m-module. Then

(a) there is a natural transformation 0:M* ® N* -+ (M®Tr N)* of left

modules (or of bimodules if N__is a bimodule) defined by

cqf® g)n® > = (-)08EEMer neg n>s

F )

(b) if L 1is another bimodule, the diagram

*
L* o Mr @ Nt gy (1O W7 O N

ll ® 0 }6
* *
L* ®_ Me N)*—~—p (L @n M N)
comnutes;
(c) both composites M* = M+ @“ 7 = M* ® ™ > (M@ =)* ¥ M* and
V)

Mr = ® MFo= O MY > (r ® M)* Y M* are the identity homomorphism.

PROOF. (a) In terms of diagrams, 8(f® g) is the composite

MQNWM®ﬂ=M-f—*ﬂ.

Then (c¢) follows trivially, and in (b) both composites evaluated on £® g® h

reduce to

e of = = —
L® M©N ie1eh L® M® L@M-Tgi»LOﬂ L £ .

REMARK. The formula «<f,m><g,n> we used in §1 makes no sense here, be-
cause £® g:M® N+ 1 ® 7 is undefined uniess f is a homomorphism of
r-bimodules. Our formula for 6(f® g) evades such a hypothesis.
REMARK. There is no commutativity statement in Lemma 3.3.
We may use this to dualize coalgebras, in a sense. g

LEMMA 3.4. Let R be a two-faced coalgebra in the sense of a w-bimodule

R equipped with homomorphisms y:R * R 0“ R and e:R > of bimodules that

make the diagrams
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R®_ R'T,’@T—T’Raﬂ R®_R

commute. Then
(a) the dual R* is a ring with unit ring homomorphism e*:m - R*, and

the bimodule structure on R* 1is given by multiplication with e* on either

side;
{b) if the left m-module M 1is a left R-comodule with coaction

¥:M > R® M that is a homomorphism of left w-medules, then M* becomes a

left R*-module.
PROOF. We use Lemma 3.3 to construct the multiplication

R*@ R* > (R® R)*""—"w* R*
on R* for (a) and the action
R* @ M* ~» (R ® M)*-—E;+ M*

on M* for (b). To verify the axioms we need parts (b) and {c) of Lemma 3.3.

REMARK. We need all the stated module structures on R, ¥ and ¢ 1in
order to form the diagrams at all.

REMARK. The ring R* 1is not a m-algebra in the ordinary sense because
the image of e*:w + R* will not in general be central, so that the left and
right m-module structures on R* are in general quite different. In particu-
lar, multiplication in R* 1is not =-bilinear. The identity element of R* is

the counit homomorphism e€:R -+ m, regarded as an element of R*.

§4. A UNIVERSAL COEFFICIENT THEOREM. While the universal coefficient
theorem 2.9 is completely satisfactory for the homology (M» E), X, the
cohomology version for (M® E)}*X has some disadvantages. Unless X is finite,
we had to restrict M. In this section we discuss a different kind of univer-
sal coefficient theorem in which we impose conditions on X but not on M.

An element y ¢ (M® E)*X is by definition a map y:X - M® E. We use

it to induce a homomorphism of right r-modules

. ~
X*E‘-y—*—*MQ E.E m""“@‘ﬂ=M (4.1}

where we use the usual augmentation e:E,E > 7 defined as p,:%,(E_E) » nE.
We use the formal conjugation 3.1 to produce a homomorphism of left w-modules.
THEOREM 4.2, (Universal coefficient theorem) For suitable E,X and M

the homomorphism (4.1) induces an isomorphism Hi@ﬂ E}*X < Hom (E X, cM).

REMARK. If we take M = m the assertion becomes
4"
E*X = Homﬂ(E*X,w) = (E,X)*, which is usually quite false. This gives some in-

dication of when the result might be valid.
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PROOF. The standard method is due to Atiyah. We compare the Atiyah-

Hirzebruch spectral sequences

*
E;’ = H>(X; M) converging to (M@ E)*X
and
Ei . = H (X; ™) converging to E,X.
3

We apply the functor Hom (-,cM) to the second to obtain another spectral

sequence
S,
2

There is a natural map from the first spectral sequence to this one, to which

E Y- H°mn(H5(X; 1) ,cM) converging to Hom"(E,x, cM) .

we apply the comparison theorem.

There are clearly difficulties with the method. The third spectral se-
quence will not he a spectral sequence in general unless M is an injective
r-module or everything in the second spectral sequence is projective. There
are convergence questions to settle. To apply the comparison theorem at all we
need an isomorphism of Ez—terms, HS(X; M) = Hom“(Hs(X; n), cM), which may or
may not occur. However, the method works often enough for our purposes.

REMARK. The cases that suffice for our present purposes are:

1. E H(Fp), the mod p Eilenberg-MacLane spectrum, and any X;
2. E = MU, with H,(X; Z) free abelian;
3. E = BP, with H_(X; Z(p)) free over Z(p)'

In all these cases all differentials vanish and convergence is satisfactory.
For further details see Adams [l, Lemma 4.2 on p.48]. The theorem is
then universal to the extent that we place no restrictions on the module M

(other than freeness).

§5. UNIVERSAL OPERATIONS. As before we take a commutative ring spectrum E
with coefficient ring = = r,E. All tensor products in this section are taken
over .

It is natural to look for operations that preserve the three kinds of ele-
mentary structure on the cohomology E*X and homology E,X. First, they are »
abelian groups; but every operation automatically preserves the additive
structure, as does any natural transformation of additive functors. Second,
they are left w-modules. Obviously the module actions themselves preserve the
module structure (v being commutative), but in the typical situation one soon
finds that they are the only such operations. (The exception is ordinary
(co)homology with coefficients FP, where the module structure is so trivial
that any operation is forced to preserve it. In some ways, ordinary cohomology
is a most extraordinary cohomology theory.) Third, we have multiplicative

structure consisting of pairings E*X x E*Y » E*(X.Y) etc., that make E*(X,8)
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an algebra when X 1is a space. We therefore seek merely additive operations
and multiplicative operations.

Any map E + E of spectra induces a cohomology operation on [E*(-) and
a homology operation on E,(-). Since cohomology is by definition represent-
able, cvery cohomology operation is induced by a unique map. The Brown-
Whitehead-Adams representation theorem [2] gives the same result for homology,
except perhaps for uniqueness. We shall therefore confuse maps and operations,

It is often extremely convenient to handle many operations at once. One
map [ +M® E induces a whole collection of operations, by composition with
the maps g® EXM® E » 1t ®FL 2 E for the various right n-module homomorphisms
g:M + 7. The main idea of this section is that a proper choice of M will
give all possible operations.

DEFINITION 5.1. Let R be a free right n-module. We call an operation

v, :E +R ® L[ a universal additive operation if given any o eration
L T 3 p

8:E > M E with M a free right r-module, there exists a unique homomor-

phism g:R + M of right 7-modules that makes the diagram

E -~ R & L
Y his
L
g ®k
S~
M® E
m

commute, Similarly, we call ¢  a universal multiplicative operation if R

L
and M arc also commutative right w-algebras (sce Lemma 2.7}, wL and 8 are

maps of ring spectra, and g 1is required to be a homomorphism of right
n-algebras.

In particular, by taking M = n, we recover the general (additive or
multiplicative) operation on E. Either kind of universal operation is of
course unique up to isomorphism if it exists. Existence already implies much

structure.

THEOREM 5.2. If wL:E +R@ E is a universal multiplicative opcration,

then R is a "two-faced Hopf algebra' with commutative multiplication.

PROOF. We mean that R is both a two-faced coalgebra (in the sense of
Lemma 3.4) and a commutative ring, such that ¢ and ¢ arec ring homomorphisms.
Further, therc are left and right unit homomorphisms (in ceneral distinct)

n,:n" + R and nR:n + R that induce the left and right w-module structures on

L

R.
By hypothesis R 1is a commutative right n-algebra, with right unit MR

If we apply Y, to the sphere spectrum S we obtain the ring homomorphism

¢L53E*S + R® E,S 2 R, which will serve as np- Since R is commutative,

R & R is again a ring, and by the universal property we fill in homomorphisms

of right n-algebras y:R - R® R and ¢:R ~ n that make the diagrams

B L —
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E —— —+R®E Ee———>R®E
YL ¥, ®

@ J"’L l‘pco 1 ) 1- le 1 (5.3)
R@EWE@R@E E——-—=——'+7r®E

commute. If we apply these diagrams to S, we see that ¢ and e are also
homomorphisms of left w-modules. Further use of the universal property shows
that ¢ and € satisfy the two-faced coalgebra axioms of Lemma 3.4.
Construction of universal operations is also easy if we assume enough.
The universal coefficient theorem 4.2 classifies the maps from E to M® E
by the group Hom (E,E, cM). This suggests a candidate.
THEOREM 5.4 Assume that A = E.E is a free right w-module. Then

a\ .
wL:E = EAS"T:'{" EE=ELE ®1r E = A@nE (using Lemma 2.8)

is both the universal additive operation and the universal multiplicative

operation, provided the universal coefficient theorem 4.2 holds for
M ®TT EY*E for all M.

PROOF., Theorem 4.2 sets up a 1-1 correspondence between maps &E + M@E

of spectra and homomorphisms g = g(8}:A + M of right modules by
4
g =g(8):A=EEgE " M®EE 1—;®—-€> M®“'rr= M.

If we define ‘J’L:E +A®E by g(tPL) = 1, in other words,

N
A= E*E—JI"E—_"AGD ELE T e A® "=A (5.5)
is the identity, then naturality shows that q;L is the universal additive
operation. But the stated map fulfills this condition. That is, the compos-

ite homomorphism

A= EJE = (ES),E—gqy (EELE = EE® EEygy EE® T XA
is the identity. This is easy to see once we recognize the composite
(EE),E~+A as 1 w),:n,(E EE) > v (EE). Further, wL also serves as the
universal multiplicative operation because §E and hence g(€ are multi-
plicative whenever @ is.

Theorem 5.2 provides all the standard structure on A for free, except
for the internal conjugation antiautomorphism c. Closer examination shows
that our definitions are not really very different from those of Adams. The
identity element of A is clearly i,i:S$ = $ S -+ E.E. Right m-module
structures were used all along, to build A® E. We can identify.nR with
i E:m = S,E + E,E = A, since this is a homomorphism of right w-modules that

takes 1 to 1. Our left unit homomorphism is by construction

N~ N
AL = ¥ Sim = E,S = (BS)S 4y (B.ELS SA®ES A,

which we may identify with E,i:E,S + E,E; it therefore induces the same left
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r-module structure on A = E,E we had before.
We can similarly recognize the structure maps v and € in Theorem 5.2.
LEMMA 5.6. We have ¢ = wLE:A = E,E » A®n ELE = A®n A and

¢ = piA = m (EE) »m,E=m.
PROOF. We have from (5.3a) the commutative diagram

3 S " A‘“ =
E,E ————-—-———‘—"’wLE l?@ EE & ¢ A® A
i D 1
leE lw@ l¢
.__.____—v_——-_.+ = ®
A@E*EWAQI\@E*E T®1® ¢ A®@ A T A A

in which (5.5) identifies the top and bottom rows with identity homomorphisms.
Hence ¢ = wLE. A similar diagram handles e.

The one structure that Theorem 5.2 does not define is the conjupation ¢
in A. The standard llopf algebra definition [8, §8] makes no sense in this
context. Instead, it is defined as induced by the commutativity switch
isomorphism, L E = E_E, as in §3. Its properties are obvious.

LEMMA 5.7. The conjugation ¢ in A = E,E has the properties:

¢ is a ring automorphism, cocC = 1, cong = Nps canp =, goc = g€, and the

identification cA = A gives ¢y = YA > A®Tr A.

PROOF. We can write the comultiplication ¢ more symmetrically as

TI*(EAE) = ﬂ*(E“S“E)W ‘h'*(E“EAE) = w,(EE)® n, (E E),
At

where the second isomorphism is induced by

n,(EE) x n,(EE) » 7 (EEEE —yo1y— " (EEE).
- R A 1w 1), N

Al A

Then all properties are obvious.

§6. THE EIGHTFOLD WAY REVISED. In this section we assume that Theorem 5.4
applies to the commutative ring spectrum E, so that we have the two-faced Hopf
algebra A and the universal operation wL:E + A® E. (All tensor products
are taken over = = n,E.) We generalize (1.1) to this situation. We find that
all eight structures are still present in some shape or form, although it is
clear that any constructions that depend on inverting duality isomorphisms have
no place here. We also drop all restrictions on X,

Then Lemma 3.4 makes the dual A* into a ring with unit homomorphism
g*:m + A*, not central. On the other hand, the natural algebra for cohomology
operations is E*E = {E,El},, a ring under composition, <ontaining a copy of =
as the subring of all actions W(k):E » E.

LEMMA 6.1. The isomorphism E*E S A* given by the universal coefficient

theorem 4.2 is an isomorphism of rings and of bimodules.

PROOF. Given o:E - E, the corresponding element of A* is the homo-
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morphism

A = E,E

E*a+ E.E =T
of left n-modules. If « = W(k), this is the homomorphism that takes
deg(a)deg (k) " .
aeA to (-) g(ak). On the other hand, e*k € A* 1is the homomor-
phism that takes a to k.e(a). Since these agree, the two unit homomorphisms
into E*E and A* correspond.
Let « and B in E*E give rise to homomorphisms f and g in A*

respectively, The product of f and g in A* is defined as

ATA@A 1® 2

We have to show this agrees with

—*A@'ﬂ=A—f—*“.

E.E 55

These are the homomorphisms induced on homotopy groups by the composite maps

ELE -+ EE gl

E,a

= E o H ————) s —— —p —
EE-ESEyy EEETTa EEE T3 EE T EET E
and

A

respectively. These agree because ue(l _p)e(i 1) = B:E ~ E. We have an iso-
morphism of rings. It follows that we have an isomorphism of bimodules because .
the bimodule structure on E*E was defined in §2 as composition with the
nm-actions W(k) on either side.

We now list the eight structures as in §l, but in a different order.

1. The standard left action of A* = E*E on cohomology, E*X;

2. Left coaction on homology, xpL*:E,X + A® E,X, given by Theorem 5.4.
This is a genuine coaction according to (5.3).

3. Left coaction on cohomclogy, wL*:E*X -+ (A® E)*X, given by Theorem 5.4,
If X is finite, we can write (A ® E)})*X = A® E*X by Theorem 2.9(b) and we
also have a genuine coaction. Otherwise, provided 2.9(c) holds, we can write
A é E*X instead. Although no longer strictly a coaction, (5.3) still applies
and the structure is just as useful.

4. Left action of A* = E*EC on homology, E,X. This is one of the best-
kept secrets of stable homotopy theory, even in the classical case of ordinary
homology. We simply regard E,X as a functor of E also, and then a map
o:E > E induces the desired operation or natural transformation
a XiEX » EX.

The one construction that survives intact is conjugation, provided we use
the formal conjugation 3.1 consistently. This allows us to deduce the four
right structures from the left structures with no extra work.

5. Right coaction on homology, c(E,X) c(E,X) ® A, deduced from the left
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coaction by applying the canonical isomorphisms c(M® N) ¥cM® cN and
identifying cA = A. (We include the ¢ with E/X merely to maintain the
Adams convention; it is often ignored or omitted in practice.)

6. Right coaction on cohomology, c(E*X) - c((A® E)*X), where we can
often write the right side as c(E*X)é; A,

7. Right action on cohomology, E*X, by cA*, the opposite ring to A*,
with multiplication cas<cB = (-ydeeleldes(B) ¢ gy,

8. Right action on homology, E,X, by cA*,

One difference from the classical case is that because the dual A* is
defined asymmetrically and Ny # R in general, the conjugation ¢ in A is

not linear and does not pass to A*. In general, there is no antiautomorphism

of A* that preserves nim > A*.

EXAMPLE. Let = be a finite-dimensional commutative algebra over the
rationals Q, concentrated in degree zero, and take E = H(n), an Eilenberg-
MacLane ring spectrum. In this case we have an excellent grasp of the algebra
of cohomology operations: it is EndQ(n), with 7 embedded as the subring of
n-linear endomorphisms. One can show that there exists a w-preserving anti-
automorphism of EndQ(n) if and only if = is a Poincaré duality algebra over
Q.

CONJECTURE. For E = MU or BP, we conjecture that there exists no
antiautomorphism of the ring E*E that preserves . We have no proof at this
time, mainly for lack of interest. Note that these groups FE*E are large and
the statement is algebraic; we are not restricting to continuous antiautomor-
phisms, whatever they might be.

We next study what is left of the various constructions that form the
edges of the diagram (1.1). As already noted, conjugation C works perfectly,
provided we use cA* instead of A* for the right actions. Because it works
so well, we concentrate on the left structures.

As for duality D, E*X is no longer the dual of E.X 1in any generality.
However, the Kronecker product still gives a homomorphism K:E*X =+ (E.X)* of
n-modules. Given the left coaction of A on E/X, Lemma 3.4 constructs a
left action of A* on (E,X)*, which we may compare with the left action on
E*X.

LEMMA. 6.2. The Kronecker product homomorphism K:E*X - (EX)* 1is a

homomorphism of left A*-modules.

PROOF. We have to show that f(Ku) = K(au):E,X + 7, where u ¢ E*X and

f ¢ A* corresponds to a:E + E. By lLemma 3.4, f(Ku) is the composite

E,,X—WA@ EX —m—*l\@ E,E —IT@_T.:»AQH = A—f—* T.

We compare with
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K(uu):E*X ——E:l‘* E*E _E;? E*E —;’ .

By definition, f = e-E,a, and the required equality follows from the diagram

E X ~—e—— EE ————>

E,u = A
leX JWLE l=
A

A® EXTgEw A®EE Te o

which commutes by naturality and (5.5).

In favorable cases K is an isomorphism by Theorem 4.2, but in general
neither structure determines the other.

However, partial duality D', in which we dualize from A to A*, works
well by hypothesis of Theorem 5.4.

LEMMA 6.3. Given f e A* corresponding to a e E*E, the action of f

on E*X defined by

E*X v (A © E)*X —m—i—> (T ® E)*X = E*X
yx (RO TFe ), (v® E)

agrees with the standard left action of a on E*X. And similarly for homo-

logy, E.X.
PROOF. The action of f on homology or cohomology is induced by the map

of spectra

E=ES —TF*EAE—&-A—I»EAETE,
which simplifies to «a.

The necessity of having a homomorphism of right n-modules to form the
tensor product forced us to introduce the conjugate cf of £. It may well be
considered more natural to avoid conjugation by putting the coaction on the
other side, using the shuffle S' instead of D'. Our conventions require the
right module cE*X instead, but this conjugation is purely formal and often
omitted. For simplicity we assume X finite, although there is an obvious
extension when Theorem.z.g(c) applies, as it does in all our applications.

COROLLARY 6.41. Given £ € A* corresponding to a:E + E, the left action

of a on E*X may be recovered from the right coaction on cE*X as the

composite

Tk * = *
cC x—"‘i‘;)-(-'cE X@AWGE*X@‘N cE*X,

and similarly for homology.

The other partial duality D" is far less useful. For actions, in the
¢lassical case it involved conjugation in A*, which is not available here,
quite apart from the lack of duality between E*X and E/X. For coactions,

the following result expresses some relation between the coactions on E*X and

E,X, but its significance is obscure.
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LEMMA 6.5. For Kronecker products we have

<|pLu"pLx> = nL<u,x>
for all u e E*X and x e E,X. (The Kronecker product on the left between
(A® E)*X and A® EX is formed in the obvious way, and takes values in the

coefficient ring A.) .
PROOF. We have a map wL:E + A® E of ring spectra, with induced coef-

ficient ring homomorphism n, :m = A.
We summarize by revising (1.1). Dashed lines indicate relationships that

in general fail to deduce either structure from the other.

cohomelogy

4 %R

¥ ) ] ¥
L ¢ P R
\ | ] /
left A | ' / right (6.6)
\ 1 | 4
¢ Y\ ! L N
L < +>7
N7
YL VR
homology

REMARK. In summary, conjugation C works all the time and partial
duality D' half the time. Given the two left coactions on homology and cohomol-
ogy, we can readily recover all the other structures. This is the precise
sense in which the coacfions are preferable to the actions. The multiplicativ-
ity of the coactions is also very transparent and useful,

REMARK. Our notation definitely favors the left coactions, following
Adams [1]. Since conjugation works so well, one may well wonder why right
actions or coactions are ever used. llistorically, we find that all the major
work was done, presumably unknowingly, in terms of the right coaction on
cohomology. This is why our title is "eightfold way' rather than 'fourfold

way", quite apart from incidental connotations.

§7. THE CLASSICAL CASE, CONCLUDED. We return to the classical case [ = H(Fp),
the mod p Eilenberg-MacLane spectrum, to consider the rest of Milnor's paper
[7]. In 54 he explicitly introduced the right coaction on cohomology in study-
ing the Hopf aigebra A, and so must we. As before, we write the cohomology and
homology groups as H*X and H,X. However, X need no longer be finite, if
we use part (c) instead of part (b) of Theorem 2.9. Since @ = . E = Fp, all

r-module structures are forced and we may safely omit the formal conjugation c
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on H*X and H,X when dealing with right coactions.

First we take p = 2. The natural test space is infinite real projective
space P = P_(R). Its alsolute cohomology is the polynomial algebra
H*(P,9) = F [t] on one generator t € H (P,#), and we may identify the re-
duced group H*P with the ideal (t). Being multiplicative, the right coactlon
Vg (H*P + I*P & A is determined by Ypts which must have the form 2 tt® a;
for certain well-defined elements a. € A of degree i - 1. Since P is
an Eilenberg-Maclane space K(Fz,l), this formula must hold on any class
te u'x  for any space X. In particular, we take X = Px P, Then

wR(t+u) = th + wRu in H*(X,MH)

Fz[t,u] yields

i

Ei(t+u)i® a, = I, ttoa . r, W'® a,
in F [tlﬂ & A, which implies that a, = 0 unless i is a power of 2. We
therefore renumber, and proceed as in Mllnor s Lemma 6.

DEFINITION 7.1. We define elements Ei £ A of degree 2i - 1 for all
i >0 by the identity ]

vpt = I tzl ©¢, ¢ *X @ A

for any t € Hlx, for any space X.

Since (1@ c)th - t® 1 by (5.3b), the counit ¢ of A clearly satis-
fies £y = 1 and &£, = 0 for all i > 0.

THEOREM 7.2. (Milnor) A = Fz[gl,gz, 63, ...] and Eo =1

PROOF. This is Milnor's Theorem 2 for the case p = 2.

We break up w x according to the obvious monomial basis of A.

DEFINITION 7.3. We define the Milnor operations Sq :H*X > H*X for each

multiindex o on any space or spectrum X Dby the identity

\bx=E qu@E H*Xé\A

In particular, the Steenrod squares are recovered as Sq Sql’o’o""

We have referred to YR (or was it ¢L ?) as the giant Steenrod square. One
of

can distinguish any two operations by evaluating on products tltz...tk
classes of codegree 1 on PxPx.. %P, since

- 2 4 8
Vptyta- ooty = Hi(ti® 1+ ti® £+ t.1® £, + tiﬁaﬁ3 + ...)

involves all monomials £* nontrivially as k varies. The {generalized)

Cartan formula is simply the statement that wR is multiplicative.

To find the comultiplication ¥ in A we simply evaluate the diagram

(5.3a) (conjugated) on the fundamental class t € HIP, since 7.1 defines Ei

in terms of th. We find
21 A i) 5l
(¢R® l)\DRt = (l,'JR® 1) Ei t @Ei = Zi (llJRt) @Ei =I. .t ®Ej ® .

and
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2k
(18 lb)\bRt =Tt ® YE -
Equating coefficients yields the standard coproduct formula,
i
2

£ = 3
w&k Zi+j___k E_.j ® *)i, (7.4)
just as in Milnor's Theorem 3. To compose Milnor operations we expand the

general identity (5.3a)}, (wR® l)wa = (1® tp)wa, by 7.3 to obtain

I g s¢® s®* x® P o® = 5, Sq' x® w? (7.5)

Then SqB Sq(Jl x is given by picking out all terms involving §B® Ea on the '
right with the help of (7.4), just as in Milnor's Theorem 4B.

Similarly we can deduce the conjugations in A and A*. We extend
\bR:H*XA-r H*X@ AA A-linearly in the obvious way to a (continuous) homomorphism
Y:H*X® A > H*X® A that is readily seen to be an isomorphism.

THEOGREM .7.6.  (a) The inverse ¢y l.psx @A > X ® A is the continuous
A-linear homomorphism given by \P'l(x ®1) =1 (SqM)xo¢t%;

(b) For t e WP we have ¥ '(t® 1) = z: 2@ o .

PROOF. For (a) we have

¥(z (cSa™)x® £%) = 1 sq®(esqhyx © £**F

]

a,B
XY(E

B a Y
a+B=y Sq (cSq )x) ®¢£°.

By the definition [8] of ¢ this reduces to x ® 1. For (b) we use
i k i
2

_ 2 2
©chy) = I th BL 5y 5y "oy = t®1.

‘i’(Zi t

For odd p there are some extra complications. The appropriate test
space is now the infinite lens space L = K(Fp,l), whose cohomology is
H*(L,p) = E(t) ® Fp[Bt], where E(t) denotes an exterior algebra and B8 is
the Bockstein operation. This time, \J;R is determined by its values on t and
Bt.

DEFINITION 7.7, .We define elements £, ¢ A of degree 2pi - 2 and
T € A of degree 2p1 -1 for all i > 0, also an element w € A of degree

0, by the identities

i i
- p ) - P )
Vet = t®w + I (B0 @ 15 wpst = I (B8O &gy

where t & Hlx and X 1is any space.

As before, the identity wR(t+u) = th + Ypu in H*(IxL,#) 6 A shows
that th must take this special form. Similarly for wRBt, except that
taking t € nlsl shows there can be no term in t. Again, we read off the co-
unit homomorphism as eEO =1, eEi =0 for i>0, et = 0 for all i, and
ew = 1.

THEOREM 7.8. (Milnor) We have £, =1 =w and

0
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A= Fp[gligzxgs!“'} ® E(TO,TI,TZ,... ).

PROOF. This is Milnor's Theorem 2 of [7].
Again, we may define the Milnor operations as the coefficients in wa
with respect to the monomial basis of A. Also, we compute the comultiplica-

tion in A. Evaluation of (5.3a) on t,

i i+j i
_ P p p
(¢R® 1)th =t® 1901 + Zi (BtY' ® ti® 1+ zi,j (8t) ® Ej ® T
and
pn
12 \b)th =t® 1® 1+ Zn (BtY)" ® wtn,

yields the second formula below,

i i
= p . = p
wEn = xi+j=n Ej 2 £i, wtn T 1+ xi+j=n Ej ® T (7.9)
and the first follows from (le® l)prBt = (1 ® w)wRBt exactly as for p = 2.
Hence composition of Milnor operations analogously to (7.5), and conjugations

as in Theorem 7.6.

§8. THE THOM SPECTRUM MU. In this section we study the universal operation on
the cohomology theory Mu*(-) defined by the unitary Thom spectrum MU, The
coefficient ring = = n MU is a well-known polynomial ring over Z and
Theorem 5.4 applies with A = MUMU. Since our purpese is to exhibit defini-
tions and structure, we refer to Adams [1] for detailed proofs.

We follow the same plan as §7. The appropriate test space is infinite
complex projective space P = P _(C), whose absolute cohomology MU*(P,p) is
the ring =[[x]] of formal power series in the Conner-Floyd Chern class
x = cl(y) of the complex Hopf line bundle y over P. We may identify MU*P
with the maximal ideal (x) in w{[x]]. Again we use the right coaction, so
that we need formal conjugation c¢ to keep the various w-module structures
straight.

DEFINITION 8.1. We define elements bi e A of degree 2i for i>0
by the identity

x =1 xlenb in CMU*P® A
YR i=0 i M

where x = cl(y) e MUZP.

We read off the augmentations ¢b
(5.3b).
THEOREM 8.2. (Adams) We have A

0 1 and e:b.1 =0 for i >0 from

it

"[bl’bZ’bS""] as ring and left
m-module, and b0 = 1.

We break up 2% according to the monomial basis of A,

DEFINITION 8.3. We define the Landweber-Novikov cohomology operation

Sq:MU*Y > MU*Y for each multiindex @ and any Y by the identity
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vpcy = B, o5y @ b in MUY ®_ AL (¥ € MU*Y)
The behavior of these operations on products is immediate from the multi-
plicativity of wR’ which leads to the usual Cartan formula. To determine the
comultiplication in A we apply (5.3a) to the Chern class x, conjugating of

course. We have
i+l

i+l ) j+l
= é . = L. (E. ®b. ® b..
(\pR® l)wR cx Zi (chx) ® b1 21 ( j cX J) i
Hence (5.3a) reduces to the identity
k+1 _ i+l i+l 3.4
Zk cX & prk = Zi(zj cX ® bj) ® bi (8.4)
from which we read off wbk by picking out the coefficient of cxk+l on the

right. Unlike ordinary cohomology, the resulting formula is not simple. To
compose Landweber-Novikov operations we proceed as for (7.5) by applying (5.3a)
to a general class Yy, using Definition 8.3, to obtain

B a Y y
® ® = ! 8.5
L, a c(sssuy) b b EY csyy<$ ¥b (8.5)

3

and picking out those terms for which b8<9 b* appears in wa.

Because the Hopf line bundle is universal, the formula of Definition 8.1
remains valid for the Chern class of any complex line bundle.

In §7, universality led to a simplification of the formula for vt but
here the effect is quite different. If g and w are two complex line
bundles over X with Chern classes x = cl(g) and v = cl(m), the Chern class
of the tensor product line bundle £® w 1is mot x +Y but a certain formal
MU,

. - iJ . -
power series F(x,y) Zi,j aijx y’ with coefficients aij € M)i42§-2

called the formal group law or formal product for MU. This follows from the

universal case, in which X = PxP with ¢ and » the two bundles induced
from Yy by the two projections Px P -~ P and MU*(P x P,B) = a[{x,yl]-
Applying ¢, to the equation ¢, (¢ ® w) = F(x,y) gives, after conjugating,

Yr i,j

By Definition 8.1 the left side is

i, j .
(wR cxX WR cy )wR a . in cMU*X‘@n A

cci(g ® w) =L j

k+1 _ i_j.k+1
Zk cF(x,Yy) ® bk = Zk c(zi,j iJ.x y7) ® bk’
which on expansion involves the ”Laij ¢ A after we transfer aij across the
® sign. On the right side we use the fact that ¥ is a right
m-homomorphism. The end result is more cleanly expressed by introducing the
. - i+l
formal power series b(z) = Zi biz for any z and working purely alge-

braically, as
i i, _ i j .
b(Ei’j nLaij xX'y’) = Zi,j nRaij b(x) b(y)J in A[[x,y]}. {8.6)

We 1 . : . . Ny
could write this more succinctly as b(FL(x,y)) = FR(b(x),b(y)), or yet
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b(x + y) = b(x) +, b(y). Equating the coefficients of X"y expresses
Yol inductively in terms of the 255 and the b.. Now Quillen proved{9]
(or see Adams [1]) that the elements aij generate the ring w, so that we

have expressed the homomorphism im + A in terms of n, and bi'

n
R

The generators aij of m are clearly not very practical. It is more
convenient to work rationally by using the rational Hurewicz map

h:MU = MU S = MU _H = MUH Kh

write I = 11{Q) for the rational Eilenberg-Maclane spectrum. On coefficient

H (we apply Lemma 2.8) of ring spectra, where we

groups it induces by definition the rational Hurewicz homomorphism

h,:7™ > MU, H. This is a rational isomorphism, which we use to identify MU,H

with the rationalization Wﬂ of 7. Then h induces the rational Hurewicz

natural transformations h:MUX = nﬂl@Q H,X and h:MU*X ~» g éh H*X, where
of course we are writing H*X and 1,X for cohomology and homology with °
rational coefficients. In homology h always induces an isomorphism

MUX), = T, ®
*7p #Q

X, and in cohomology we have a monomorphism when there is no
torsion.

Now hx remains a Chern class for vy, and "ﬂ‘gQ 1*(P,9) = nﬂ[[hx]].
But MU _H inherits another Chern class x!' = CT(Y) from ordinary cohomology,
which we therefore express in terms of hx. That is, we define elements

m, € "ﬂ of degree 2i for all i >0 by the identity

1 - il | 5
¢y () = log(he, (Y)) = E;_o m; ® he, (N in ny & HP, (8.7)

which defines the formal logarithmic series log z = Zi=0 mizl+1 over “ﬂ'

Closer examination of h and the Conner-Floyd Chern class reveals that

my = 1 and that ﬂ¢ is the polynomial ring Q[ml,mz,ms,...] . By the uni-
versality of v, (8.7) extends to any line bundle over any space. Then the
identity CY(E O w) = Jf@) + c?(w) in ordinary cohomology, combined with

(8.7) and the formal group law, yields the identity
log F(x,y) = log x + log ¥y in né[[x,y]].

This identity gives the logarithmic series its name and allows one- to solve for

the 25 in terms of the m s for example

=-2m a,1=-3m +4mf, a =-4m3+12m1m2-8mf, a22=-6m3+24m1m2-20mi,

2

(Here and later, the dots mean that one can compute as far as one wishes, not

a
11 1’ 31
that one can write down the answers in advance.)

The commutative square of maps of ring spectra

MU = MU _S —————— MU MU

11
h 1l‘h

MUH=MJSU—"T"MJ MU H
~ AT a 111 A -

-~
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induces, by Lemma 2.8, Theorem 5.4 and the remarks above, the commutative

square of ring homomorphisms

Pl
. *
;\111*1’“——————--%P > NG M
lh 11 ® h (8.8)
B P s A D 1, B I*P T A, B P
"3 %®q e 1 = P Q O S

We may identify the bottom line with IHJ@ 1, where nl:ﬂ” > Aﬂ denotes the

rationalization of ng:m + A. We evaluate (8.8) on the MU-Chern class x. By
Definition 8.1, wLx = ¢b(x) = Zi cbi €»x1+1, so that by commutativity, wﬂle) 1
takes hx to cb(hx). It therefore takes log hx to log L cb(hx), where we

i+l

write formally log L2~ I. nm 2 =

. n
i L1 L
to 1®1® x', where x' ¢ H'P denotes the Chern class in ordinary cohomology,

log z, and it plainly takes 1 & x'

On each side we now use 1® x' = log hx. Then in Aﬂ(SQ H*P we find
logR hx = logL cb (hx), where similarly logR z = np log z. Finally, we replace

hx by the formal indeterminate =z and conjugate to obtain

logL z = logR b(z) in Aﬂ[[z]] (8.9)

; s + . . :
Equating coefficients of " ! then expresses UL inductively in terms of

the n m. and bi’ as required.

I; instead of conjugating logR z = logL cb(z) we replace =z by the
series b(z) and compare with (8.9), we see that logL cb(b(z)) = logL z and
hence cb(b{(z)) = z. In other words, cb(z) is the inverse series to b(z)
with coefficients

. 2 _ 3 _ 2 2 4
cbl -bl, cb2 -b2+b1, cbs— b3+5b1b2-5bl, cb4—-b4+6b1b3+3b2-21b1b2+14b1,

and we have the conjugation in A.

(8.10)

§9, THE BROWN-PETERSON SPECTRUM BP. In this section we study the universal
operation for BP-cohomology, where BP denotes the Brown-Peterson spectrum for
the prime p. The plan differs somewhat from §7. For the rest of this paper
all tensor products are taken over = = n,BP unless otherwise indicated.

We recall some elementary facts about BP. In [9], Quillen constructed it
as a summand of the localization at p of MU, and the canonical map MU -+ BP
takes m. ¢ H,MU to an element we call ms € H,BP if i = pj -1, o0orto 0
if i is not of this form, Then H,BP = Z(p)[ml,mz,... ]. The canonical map
equips BP-theory with a Chern class, whose formal logarithmic series is there-

fore
2 3
log z = z + mlzp + mzzp + m3zp + ..
The Hurewicz homomorphism embeds = ,BP. in H,BP. Hazewinkel constructed

[6] convenient polynomial generators v; € T.BP over Z(p) of degree 2(pi-1)
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for all i >0 by the formula
i

3

plogz=pz+3, lyog v.}"zp
i=] i

or, expanding and equating coefficients,

(9:1)
For example, for p =2 we find
_ - 3 ' _ : 3 “
v, = 2m1, Vg = Zmz-dml, ... and m, = VI/Z, m, = v2/2 + v1/4,

Quillen conbtructed a map of ring spectra r:BP -+ BP[t ..], where

1’ 2’
t. also has degree 2(p -1), by requiring 7T, :H,BP -+ H BP[t 2,...] to be

given by the formula

i
r, logz-= 2'2:0 log (zp ti), where t. = 1. (9.2)

0
He did not state whether this “coaction" of Z[tl,tz,...] was to be considered
a left coaction or right coaction.
On the other hand, Adams defined [1, Theorem 16.1, p.112] elements
t, A = BP,BP by the formula
o i
1ogR z = Zizo logL tizp in Aﬂ[{z]] (9.3)
where, just as in §8, we work ratiomally and extend the two unit homomorphisms
n, and np to HBP ¥ Ay to define. the series log z and :ng z, Of
course, he had to prove that ty actually lies in A rather -than Ag'

THEOREM 9.4. (Adams) A=ﬂ§tl,t2,t3,...] and t0= 1.

We have the obvious problem of reconciling the two different sets of tos
which lie in different groups. Consider the right coaction \}JR:H*BP + H_BP 8 A.
By (9.3) we have i

G'R log z = 10gR z = Ei 1ogL (1® ti)zp s
which we compare with (9.2).

COROLLARY 9.5. We can identify the right coaction p:BP + BP® A with
Quillen's map r:BP + BP®, Z{t .1 = BP@ 'n{t tos -.}. (We have of
course slightly extended the notatlon of §2 in allowmg tensor products the

other way round.)

From the map r, Quillen obtained cohomology operations by taking coef-
ficients of the monomials ta, and showed that they give rise to all operations
We recast these as in Definitions 7.3 and 8.3.

DEFINITION 9.6. For each multiindex - a we define the Qu111en cohomology

P i :BP* * tit
operation r, BP*X -+ BP*X by the identity . |
"’R cy = E c(r v} ® t® in cBP*X® A.

Just as in (7.5) and (8.5}, we can compose "Quillen operations as soon as

e LR
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we know the comultipiicétion v in A. This may be found by applying the bi-

moduie homomorphiém YA > A® A to (9.3), once we know T in terms of .

and the ti' Let us continue to write v, = nLv1 ¢ A and introduce the

notation wo = v. ¢ A. Then (9.1) and (9.3) express the wo in terms of

n
R'1
the v, and ti,,and for p = 2 we find

- Sv t. - Sv t + 2t, - 4t3 v , (9.7)

w, = v, + 2t W, =V 2 1

1 1 1’ 2 2 111 171
Alternatively, one sometimes needs Vo in terms of the w, and t., for

example (if p =2)

a B ' 2 2 3
vy 1" 2t1, v, = W, + Stlhl - 7t1w1 - 2;2 + 6%1, - (9.8)

For p = 2 the results for the comultiplication are

= W

liitl t ®l+l®t

t ®.1+t

"

v, ®t2-—v Dt 1@ty = 1@ 142t DL +3t1®t tDtw et

1 1 177171
Many more formulae are given by Giambalvo [5].

The conjugation ¢ in A may be computed by conjugating (9.3) to give
logL z = Ei log R (cti)zp1 and expanding. For p = 2 the results are

y _ 3 2 _ 3 2
Ctk = -1y, ct2 = —t2 -ty - vlt1 = t2 + ot - tiWys (5.10)
We shall need to apply the universal operation to Chern classes. Just -as

in Deflnltlon 8.1 for MU, we can define elements bi £ A by the identity

ex = = ettt e, in BP*X ® A,
i=0 i

YR (9.11)
valid for the BP-Chern class X = cl(g) of any line bundle ¢&. To express
bi ‘in terms of’thé'previous generators of A, it is convenient to introduce
the’conjugates h, ='ct, €A, following Bendersky [3]. X
LEMMA 0.12. We have logp b(z) = log, z = L, logy hizp , where
b(z) = £, b2t e '
PROOF The first equality is (8.9), which remains valid here. The
second is_the conjugate of (9.3).
' Flnally we read off thgxformulae for ¢ and c  on hi in case p = 2

from (9.9) and (9.10) as follows:

li:hl = h @ l+l®h
= - ) 2
whz = h @ 1 vy h @h +3h &)h +2h ®h +1®h = hzqg 1-hl®hlwl+hl®h1+1® h2‘
and
o o 3,02 . 3,2
ch1 = hl, chz hz + hl Vlhl = rhz - hl - hlwl' (9.14)

§10. UNIVERSAL UNSTABLE OPERATIONS. In this section we extend our theory of

universal operations to unstable cohomology operations, with emphasis on
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BP-theory. This work is of course based -heavily-on Ravenel-Wilson-{10]. -For:
future reference we begin more generally, with a commutative:ring ‘spectrum - E-
having coefficient ring v = w,E, and a second spectrum 'G.  Tensor products
are taken over m. Throughout this section X will denote a CW-space rather
than a spectrum.

On the homotopy category of based spaces, the cohomology group functor 6"x
of X is represénted by a space En’ G*x iy [X,_G_n], where the spaces "Gh form
the gq-spectrum corresponding to G. By the Yoneda lemma, cohomology
operations "X E*X correspond to elements of E*ﬁn. Since we no longer
have additive categories, unstable operations need not be additive (for
example, if o and g are additive operations, the operation vy defined by
Yx = ax*Bx is rarely additive). We need to know which elements of E*Q_n
correspond to additive operations.

We assume we have duality, E*_gn z (E*ﬁh)*' Slightly more generally, we
take a free right m-module M and consider operations GX -~ (M® E)*X, which
are classified by M ® E)*__Gn. We assume the universal coefficient theorem
4.2 applies, (M® E)*_Qn T Hom_ (E*g_n, cM) , and ask which homomorphisms
Lg;n + ¢cM correspond to additive cohomology operations.

Now addition in G"X is induced by a multiplication map u on _Qn that
makes _Qn an ll-space (indeed, an infini te loop space), and E*@_n,ﬁ) thus
becomes a T-algebra with units E_(o0,f) Z n inherited from the basepoint 0 of
G, Themap G~ o induces an augmentation E*(Qn,ﬂ) + 1 of whic‘h
E*Qn = E*(_Qn,o) is the augmentation ideal, which allows us to consider the
"indecomposables" QE*.(_;n = QE*(Qn,Q)) of the algebra E*Qn,b) as a quotient
of E.SG,-

LEMMA 10.1 . Under suitable hypotheses on _gn and E, in particular if
G=E = BP,
(a) the operation G"X -+ E*X corresponding to a homomorphism f:E*gn > 7

is additive if and only if f factors through QE.*gn, so that the additive

operations correspond to the dual (QE*(-;n)*;

(b} the operation "X - Me, E)*X corresponding to a homomorphism

fiEG » oM is additive if and only if f factors through QE.G , so that

the additive opecrations correspond to Homﬂ(QE*gn, cM).

PROOF. We prove (b}, of which (a) is a special case. Let
n
a:GX » (M ® E)*X be the operation, and assume given elements x, y € G X, that

is, maps of spaces x, y:X »_(_:n. The element a(x+y) is the composite

X XX > B By

where A is the diagonal map, while «x and ay are simply the composites

+ G — M@ E,
n o

aox and aey. The universal example is given by X = _angn with
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X"='Jp1:X - (_Sn and:- y-= ~p2:X +S8, the projections to the factors, and the
necessary and sufficient condition for additivity is therefore
aok = a9p, + aop.z:_(_;n«_(_}n + M@® E. If the universal coefficient theorem 4.2
holds also for (M® E)* (§nx_(_}n), the condition reduces to \
fou, = fop_l* + fopz*:E*(QnX_%) > ¢M. We further assume the Kunneth formula,
that the pairing E,(G,8) ® E,(G,.0) ~ E*@n"_gn,ﬁ’)\, is-an isomorphism (or at
least epic). By means of the splitting E*(gn,ﬂ) = E*gn ® ™, the condition
reduces to f(ab) = 0 for all a, be E*gn, as required. Results of Ravenel-
Wilson [10] show that all the assumptions we made hold if G = E = BP .

We extend our previous definition.5.1 of universal operations in the
obvious way to unstable operations.

DEFINITION 10.2. - Given an integer n and a free right n-module R, we

call a natural operation xJ;L:EnX + (R ®“ E)*X a universal unstable ‘operation
if given any operation BERX + (M® E)*X, where M is a free right r-module,
there exists a unique homomorphism g:R - M of right w-modules that makes

the diagram

EX m (R® E)*X
' L
8 (M® E)*X

commute. If vJ)L ijs additive and the condition is required only for additive

operations 8, we call !pL a universal additive unstable operation.

If we have for each n a module R" and an operation \bL:EnX - (Rn® E)’X,
we -assemble th’esg;n toﬁ/ form the operation ‘PL?E,*X + (R*® E)}*X, where R*
is now bigraded (not the dual of anything) and ‘J)L preserves the new grading.
1f, further, R* is a ring (a right w-algebra in the terminology of Lemma 2.7},
R*® E becomes a ring spectrum and we can ask whether wL is multiplicative.

The definitions of the ypiversal multiplicative unstable operation and the

universal additive multiplicative unstable operation should now be clear.

As usual, cach of the four kinds of universal operation is unique up to
isomorphism if it exists. As in the stable case, existence is also easy if we
assume enough. From now on we concentrate on the case E = BP.

THEOREM 10.3. For BP we have the following universal unstable opera-
tions:

A
(a) U;L:BP“X -> CBP*-B—I)nQn BP*X is universal, for each n;

(b) wL:BPj‘X - cBP*_Bf*@TT BP*X is universal multiplicative, where BP_BP,

is endowed with the circle multiplication [10];

n n o . .
(c) wL:BP X + cQ, ®1r BP*X is universal additive, for each n, Where we
write Q7 = QBP,BP ;

* I\
(d) xpL:BP*X + cQ, @ﬂ BP*X is universal additive multiplicative.
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PROOF. Results of Ravenel-Wilson [10} show that: -BP BP ' and Q* are
free left w-modules of finite type, so that the target cohomology theorles are
defined and satisfy Theorem 2.9(c)}. In (a), given an operation :8; or -

map e:gfn + M® BP, the homomorphism of left n-modules:

2(0) :BPBP —p— BP, (M@ BP) = Y M@ BPBP ——r M® 7 = M = oM
(using two conJugatlon isomorphisms) sets up the 1-1 corresponderce between
operations 6 and homomorphisms g(8) for the universal coefficient
theorem 4.2. As in Theorem 5.4, we define wL by requiring g(wL) to be the
identity homomorphism of Bp*ggn, whence it follows by naturality that wL s
universal. As n varies, these are also multiplicative, because cup
products in BP*X are induced by maps of spaces JM%ﬁﬁPn +"BPm+n which
Ravenel and Wilson use to invest BP_BP, with the circle product structure.
Because g(#6 1is evidently multiplicative whenever ¢ 1is, we have (b).

Part (c) follows easily from (a), since Lemma 10.1 shows that everythiug
factors through Q? = QBP*EEH. Then (d) is similar to (b), since the circle
product on BP _BP, passes through to make Q: a bigraded algebra.

The nonadditive operations (a) and (b) appear difficult to use, and are
properly handled by the Hopf ring structure on BP_BP, that Ravenel and Wilson
set up. We shall say no more about them.

From now on we concentrate on the left coactions {(c¢) and (d) and the
relevant bigraded commutative algebra Q}, whose multiplication comes from the
circle product (the star product, induced by‘the H-space structure of ggn,
having disappeared from sight). We regard elements of Q? as having degree
i - n or, equivalently, codegree n - i. As usual, our machinery tends to
produce left n-modules, when our conventions require a right module to form'a
tensor product. ~We have chosen to conjugate Q: formally, but we could
equally well consider the right coaction wR.cBP X > cBP*XéS Q*, which differs’
only formally from V- '

As in Theorem 5.2 for the stable case, the universality of Q* already
implies much structure.

The left unit rlng homomorphlsm nyaw o> Q* is induced by ,

i, :BP,S » BP*BEO and gzves each Q* QBP BP 1ts usual free left w-module
structure, We clearly have ”L'" BP - Qn Slnce Q* has no torsion, we de-
log z over Q* rationalized, as in §8

n .
L * g i L ? 4 ¥
The right unit npim > Q, is defined as

fine the series logL z =

i

n = ¥ Stm BP Bp~"g f‘cQ;“e BP*S ¥ Q. ¥ Q" .

In fact, nR:"nBP + Qén, and we have a ring homombrphism as n varies, by the
. *
multiplicativity of wL. It is used to make’ Q* a right ﬂ-modu}e, and to

define the series log, z = n, log z.
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REMARK.- It is amusing to note that Q: is also a free right w-module,
but so far this is a-theorem in search of an application.

* .
The comultiplication w:Q? > Qi Q)Qf is defined by the universal property

of (c¢) to make the diagram

~
BPM'X 7 cQl ® BP¥X
l‘PL L j cp ® 1
n o noo A
¢Q, ® BP*Xoe—e—— cQ, ® cQ, ® BP*X
* 1® ¢L

commute. It involves only elements of the form x ® y with x ¢ Qg and
Yy € Q? for the same j. By the universality of (d), we find a ring homo-
morphism as n and i vary.

The éugmentation s:QE ~ m 1s defined to make the diagram

BP™X — Q" & BP*X
l L lceéa 1
BP*X ——— 1 @ BP*X

commute. Again a ring homomorphism as n varies. It is a left and right
counit for .
In the unstable case there is extra structure. We define the suspension

AN n+l . .
E.Qi - Qi+1 to make the diagram
~
BP"'X - cQl ® BP*X
I ¥ ic @1
A
Bl g x - QU1 & vz x ¥ oo™ B ppex
, L - :
commute. It is of course nat multiplicative, because £:BP"X ¥ pp*1 I X is

not. However, this may be regarded as an isomorphism of BP*X-modules, from
de
which it follows that I(a-b) = (g a)«b in Qi. Therefore ! 1is nothing but

multiplication by the suspension clement e = £ 1 ¢ Qi. Alternatively, ¢ 1is

the image of 1 under the homomorphism

Y
BP,S —— BP,BP, < BP, I BP( ~ BP,BP, ~ QBP,BP

0

where we use the structure map £ §20 +gﬁBl of the Q-spectrum BP..

1

Finally, we may regard any stable operation as an unstable operation on
BPX  for any n, which leads to the stabilization homomorphism
g:QE +A = BP,BP, defined to make the diagram

A
BPnXT QI @ BP*X
Nt

N
BPX —— A8 Bpex
L

commute, where of course we identify cA with A as usual. This too gives

*
a ring homomorphism ¢:Q, > A, which, by comparison of the definitions here
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with the stable definitions in §5 and repeated use of universal properties,
carries the structure of Q: into the corresponding structure of A, except
that oe = 1,

There is no internal conjugation in Q:, as will be obvious once we give
the structure of Q:.

We need generators for the algebra Q:. The llazewinkel generators vy
of 1w yield elements NV € Qgt that we continue to denote Vi and elements

*
e Q, (written [vi] in Ravenel-Wilson [10]). We already defined the

W, = n,v.
i R'1
suspension clement e € Qi . We define elements b.l £ Q%i+2 for 1 >0 as
in Definition 8.1 (except that now we work unstably and use the left coaction),
R i+1 25 cow
wLx = Zi=0 cbi ® x in cQ, ® BP*X (10.4)

where x = cl(E) is the BP-Chern class of any complex line bundle £ over X,
i *

and use them to define the formal power series b(z) = Zi bizl+1 over Q,.

- *
THEOREM 10.5. For Q, = QBR_BP, we have:
*
(a) Q, 1is the bigraded algebra with generators e, bi’ vy and Wy and
2

relations e2 log p 2= 1ogR b(z}, in particular, bo = g7

(b) c:QE + A is monic for all nj;

(c) we can define elements hi € Qﬁ (where n 2p1) for all i >0 by

ch. = h, = ¢ct. € A;
1 1 1

Q) o:Q: -+ A is the homomorphism of rings and of bimodules that carries

e to 1, h, to h,, v, to v.,w, to w,, and b, to b.;
e i - "1 i = i’ i — i =/ i = i
(e) QF is the bigraded algebra with generators e, hi, vy and ws and
2

. 2 o i . N
relations e logL z = zi=0 1ogR hizp , in particular, ho = e",

PROOF. This result is essentially due to Ravenel and Wilson [10]. They

show (b) and that Q: is torsion-free, so that we may safely work rationally.
The relation in (a) is the appropriate destabilization of (8.9), either by
using (b) or paralleling the proof of (8.9). Equating coefficients of zi*l
when i+l 1is not a power of p expresses bi in terms of other generators,
so that we need only those bi with 1 of the form pn-l, which we write
b(n)‘ Equating coefficients of .zP" gives

2 n p1
e Vh = Iiar Pha-iy™s

+ less interesting terms,
and Theorems 3.14 and 5.3 of [10] show in effect that these are sufficient
relations.

By using the.formal group law of BP, we can express logR b{z) in the
form Zi logR giz1+1 for well defined elements g; € Q§i+2’ given only that
b(z) is defined over Qf. However, comparison with (a) shows by induction
that g; = 0 unless i + 1 = pn for some n. We therefore relabel such g
as hn' Moreover, by construction b(i) = hi modulo decomposables, which shows
that (e) follows from (a). Comparison of (e) with Lemma 9.12 shows that the
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element’ hy just defined does indeed stabilize to h, = ct; in A. The restl
of the proof is now clear.

By the universal property, we may recover any additive unstable operation
on BP*(-) by composing 12 with a suitable homomorphism of left w-modules

*
f:Q, ~ m.
even

EXAMPLE. Let us define a ring homomorphism f£:Q, + ¥ on generators
by fb(z) = [plz, the usual p-series (defined by log [plz = p log z),fvi = Vi,
fw. = v,  and fe2 = p, which is consistent with (a), and extend additively to

ali of Q: by ffey) = fy for vy e vaen This defines Novikov's unstable
yP operation on BP*(-), such that ¥y < [p]1x on the Chern class x € BPZX
of any line bundle over X. It is multiplicative, except for an extra factor
p when two odd classes are multiplied.

REMARK.l In Theorem 10.5 it is not a matter of choice fhat we use the
elements hi rather than t,. One can show that t. does not desuspend to
Q® for i o0.

REMARK. Part (b) of Theorem 10.5 is extremely useful for computations.
To compute ¢ etc. in Q: we merely have to do (or quote) the calculations

in A and destabilize. For example, when p = 2 we find

_ _ 2
who = ho® hO’ whl = h1® ho + ho® hl’ (10.6)
_ 2 2 4 :
\phz = 112 ® h0 + hl ® hl - hohl ® hohlw1 + ho® hz,
Also, the counit e is read off directly as cho = 1, ev, = VT ew,, Ehi =0

for i > 0, ebi =0 for i >0, and ce = 1.

We pointed out in §6 that stably, the left coactions on homology and co-
homology wefe the only ones we neeaed to study because all the other structures
were reédily deducible from these two. We close this section by pointing out
that the left coaction on homology remains useful unstably.

C We consider ohly the simplest case where BP*X is a free n-module and
a free cdaigebra, so that it is sufficient to study the primitives, P(BP_X).
For any left A-comodule M, define U(M) as the subgrbup of A® M spanned
by all elements of the form h® ® m, where deg(m) > erar; M is called an
unstable comodule if its coaction wL:M +A® M factors through U(M).
THEOREM 10.7. For X as above, P(BP,X) is an unstable A-comodule.
PROOF. See §8 of Bendersky—Curtis~Miller [37.

§;1. AN APPLICATION TO DESUSPENSION. This section demonstrates that our
machinery can be used directly to produce concrete topological results. Our
application is due to Wilson [11] and the methods are in principle the same,
although our calculations arc independent (and not guaranteed). We apply

BP-theory for the prime p = 2, and all tensor products are taken over
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n = n BP,

THEOREM 11.1. The real stunted projective space X = Pfg(R) cannot

be desuspended 11 times: that is, there does not exist a space Y with

leY homotopy-equivalent to X.

Note that although X 1is in the stable range, Y 1is highly unstable.

To calculate BP*X we use various Atiyah-Hirzebruch spectral sequences
that all obviously collapse. We know BP*(Pm(C),ﬂ) = w{[x]], where x =’c1(yj
is the Chern class of the complex Hopf line bundle y. Naturality of the
spectral sequence identifies BP*P;(C) with the ideal (x8) in =#[[x]], and
BP*P;%C) with the quotient of this group by (x14). The map of spectral se-
quences induced by-the complexification map X - PéS(C) shows that the images
of the elements x' for 8 < i <13 pgenerate BP*X as w-module. We con-
tinue to denote these images by xi, even though products in BP*X are trivial.
Moreover, x8 generates a free summand in BP*X, while there are relations
in = 0 modulo higher filtration for i > 8.

To determine the exact relations in BP*X we first consider the complexi-
fication Pm(R) + Pw(C). On Pm(R), Y 1is the complexification of the real
Hopf line bundle and therefore cl(y<9 ¥) = 0. This leads to the relation
{2]x = 0 (see §10), where

_ 2 2.3 3.4
[2]x = 2x - vixT o+ 2v1x - (7v2+8vl)x + (SOvlvz

More spectral sequences show that as w-algebra, BP*(P“(R],ﬂ) is generated by

226v))x° + .

x with this the only relation, and P (R) + PT7(R) identifies BP*P:7(R)
with the ideal (xg} in BP*(PQ(R),ﬂ). Finally, the map X.+ P;7(R) shows
that the relations we seek in BP*X are precisely ([z}x)ix1 =0 for i > 8.
The results simplify as follows.

LEMMA 11.2. As n-module, BP*X is generated by the elements xi for

8 < i <13 subject to the following relations:

2x13 = 0, and BP26X = Z/2, generated by x13;

2x12 = vixls,ygggmgg. 4x12 =0 and BP24X = Z/4, generated by xlz;
2x11 = lelz, so that 8x11 = 0 and BP22X = 2/8, generated by xll;
2x10 = lell - vfx13 + vles, so that 16x10 = 0;

2x9 = lelc - vfx12 + 3v2x12, so that 32x9 = 0,

From now on we abbreviate by writing M = BP*X. Because everything in M
is defined (indirectly) in terms of 7 and Chern classes without.ambiguity,
(9.11), with the help of Lemma 9.12, gives complete information on the stable
operations in M. In other words, we can compute the stable coaction

M- AR M
11

¥
L
We concentrate on the 'bottom class' x8 in M. If X = £7Y, there is
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b BPTOX ¥ BPOY > cQ @ BPHY ¥ el @ M

which must stabilize under o:Qf + A to the known stable coaction on M.
Thus our first question is whether wLxs e A@ M lifts to cQE@ M; Sudsl a
lifting corrcspdnds to choosing values for the unstable operations on x  that
stabilize correctly. The condition turns out to be rather weak and liftings
do exist. )

There is much more structure, however., If X desuspends, there are co-
actions w :BP™X cQE 1 ® M for all n that respect all the structure in
§10, 1nc1ud1ng the comultiplication in Q*, this corresponds to choosing un-
stable operations on all generators of M that compose correctly. Unfortu-
nately, this is a nonlinear problem. We linearize it by composing the proposed
unstable operations on x8 with only the known stable operations on M.

LEMMA 11.3. (a) There is a coaction wL:QE > A® Q? that makes

n .
0:Q, » A a homomorphism of A-comodules;

{b) for any space Y, the diagram

BPMY - - cQl @ BP*Y
, ‘L A
173 1 cu, ®1
+n n )
* *
cQ, ® BP*Y 5, Q0 ® A® BPrY

conmutes;
(c) the coaction wL:BPnY + cQT(@ BP*Y factors through the cotensor
n n
product cQ*DA\ BP*Y CZcQ, ® BP*Y.
PROOF. The universal property of wL :BPUY + mQ ® BP*Y defines

% Q* > A @;Q* to make (b) true, and shows.that it is a coaction and stabi-
lizes to y:A > A@® A. The cotensor product is defined to make (c) equiva-
lent te (b).

We plan to prove Theorem 11.1 by showing that wL 8 is not in the image
of co[l: d) [JAM~*AE] M ¥ M. In this case the groups are small enough that
direct computation of the cotensor product is feasible, if unpleasant. To
have any prospect of generalization, we clearly need a better method. We write
CQS E]A M= Cotorz(cQE,M) and compute it by resolving QE (the reverse of the
usual approach in homological algebra).

We need only the first two terms of the resolution and we compute up to
stable degree 10 for this example. (Our results are of course applicabile
more generally, to give obstructions to the existence of a 4-connected
15-dimensional space of any known stable type.) The Ravenel-Wilson basis [10]
of Qf in these degrces (modified as in Theorem 10.5 by using h rather

than b( )) consists of the 9 elements:

ehohz, ehng, eh. h eh how eh Ilh W eh h W

2
eho, ehohl, eh 112 I N G172

1’

O —
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These stabilize to A in the obvious way  {see Theorem 10,5) except for’

o(ehng =V, ot 3v§hl’— 7v1h§ - 2112 + 6hf,
o(eghwy) = vyhy + 3vEh? - 7vnd - anny + 6nd,
o(ehghhyw,) = vihih, - 2n7h,,
o(ehghfwz) - vzhf . 3vfhf - 7v1hf - 2hfh2 + 6h§.
We use row reduction on the matrix of o over the local ring Z . to re-

(2) '

place these four basis elements by more convenient ones Qg+ 9g» 9y and 9
(subscripts denote degree), defined by their stabilizations (see Theorem 10.5).

4
1)

3 4 3 _ 5
1’ oq8 = 2h1 + Vihl’ cqlo = 2h1 + Vlh

The kind of resolution we need is a minimal w-split resolution of Qi by

1
aqg = 2h 699 = 2h2h .

cofree A-comodules,

5 - >
Qs n CO d =~ Cl
with splitting homomorphisms sO:CO -+ QE and sl:Cl + CO of w-modules such
that sgen =1 and 51°d + nosy = 1. We take Ci = A® Fi with the obvious

A-comodule structure, where Fi is a free n-module. Cofreeness means that
given any homomorphism u:N -+ Fi of n-modules, where N is an A-comodule,
there is a unique homomorphism u:N - Ci of A-comodules such that

0 = (e®@ l)eu, namely

0 and d:C0 -+ Fl'
We take F, to be w-free on generators f., f, and flo’ with

—- 5 0 0 76
n:Q, -~ F. defined by

Thus we need specify only H:QE +F

0
n(ehd) = £, ma = f., nq..=f
n 0’ 6 6’ 10 10°
and zero on the other basis elements. We use the comodule structure in Qf

(computed stably in A by (9.13)) and (11.4) to deduce n:Q> » A® F

basis elements:

0011

n(ehg) =1® f

.
n(ehgh)) = h ® £,
n(eh}) = nl @ £,
n(ehgh,) = h, ® £,
nqq = 2h§® fO +1® f6,
n(eh hy) = hh ®f, + hy @ £,
nqg = (2hj+v h3) ® £ + Sh ® £4»
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H

5 4 2
N4 (2h1+v1h1) ? fO - vlhl ® f6 + 16h1® f6 +1®f

'y, = th'hz © £, - 2vh & F o+ 9hf® £

We introduced the extra elements f() and flO precisely to allow a splitting

10°

St C0 -+ QE, given on the w-basis elements of . C by:

s,(1® £) = e O,s(h ® £,) = ehh ,s(h“@f)=eh2,so(h2®f =eh h

071 1 0) oz

2
= = ® =a.
so(1® £c) = q, si(hh,® £) = ehjhy, s,(h; ® £,) = qp/5, 5, (h®Ff). qN/Q,

1

3 4 5 2 o
50(1 ®. fm) = dpp» and zero on h1® fo, h1 ® fo, h1 ® fO and h1h2® fO.
Next we need d:C, +~C, = A® Fis where F

0 1 1

take care of the four basis elements of CO that s.0 kills. We take Fl

free on two generators g and gg, and specify d(h3® f ) 86 - and

must be large enough to

d(h ®f ) = gg- The requirement don = 0 forces the compiete specification

of dC 1 to be:

&"(hf@ £,) = g

d(1® f,) = -2g,,

A} © £) = gg

dhy ® £) = -(2/5)gg - (1/5)v g,

-2 _ 2
d(h] ® f() = -(4/45)v gy - (2/4S)v1g6,

d(1® £10) = -(31/45)v + (7/45)v>

188 186
and zero on.the other T-basis elements -of CO. ‘Then by (11.4},

3 -

4o Fy .

i

5 2

d(h1 ® fO) 10h1® g * Shl @ 8g»
2 _ 2

d(hlh2 ® fo) = —vlhl® g6 + 7h1 ® g6 + 2}11 ® g8'

These four elements may be extended to a m-basis of Cl’ on account of the

presence of the terms 1 ® fg> 1® gg: h1 ® gg and h%@ g respectively.
It follows that $y exists as required. Fortunately, we need no more of d.

The cofreeness of Ci implies an isomorphism CCiDA M= cFi@—' M, in-
duced by 1 ® xpL:cFi ® M > cFi & A M = cCi ® M. Hence

S Y
CQ*EL\ M= Ker(cle:cCOD\ M > cclgA M) = Ker(d*:cFO@ M+ cFl ® M),
where the homomorphism d, is defined as

CFo® Mg F ® A®MN—— cF. @ M.
0 1®y, cd® 1 !
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We really want the stabilization cd[]l:ch[]A M- A EBA M = M. In our bases,

O:QE + A factors very easily as

5 _ : -
G—5—Cy=A®F, Teq A" = A
where q:F0 -+ n is the m-module homomorphism given by qfo =1, qf6 =0 and

qflo = 0. Therefore in view of Lemma 11.2, candidates for the unstable wLxg
i1

have the form y = cf0® x& 4 <:f6 ® ax™ " + cf10® bxt® in cFq ® M, where a
and b are integer coefficients defined mod 8 and mod 2 respectively.
We use the stable coaction on M, computed by (9.11) and Lemma 9.12, to find:

8 12
d*(cfo® X) cg8® 2x77,

cg8® 2x12 + cg6® 4xu,

12, cg6® 4x11,.

dy(cf @x'h)
13
d*(cf10® x"7) = cg8® 2x

50 that d,y = cg66§ (4a+4b)x11 + cg8<8 (2+2a+2b)x12. Hence d,y =0
if and only if 4a + 4b =0 mod 8 and 2 + 2a+ 2b = 0 mod 4. These
evidently admit no solutions, which establishes Theorem 11.1.

REMARK. The space X is small enough to be accessible by various bare-
hand methods. For example, Theorem 11.1 can be proved by secondary operations
in ordinary cohomology. However, one should note in contrast how little
intelligence is used in our calculations, thanks to the richer structure of
BP*X. We use primary operations, and those only in an obvious way. We had
(and still have) no idea which operation is the one that works, so in effect

we computed all of them.
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