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Derived Koszul duality and involutions in the algebraic
K-theory of spaces

Andrew J. Blumberg and Michael A. Mandell

Abstract

We interpret different constructions of the algebraic K-theory of spaces as an instance of derived
Koszul (or bar) duality and also as an instance of Morita equivalence. We relate the interplay
between these two descriptions to the homotopy involution. We define a geometric analog of
the Swan theory GZ(Z[π]) in terms of Σ∞

+ ΩX and show that it is the algebraic K-theory of the
E∞ ring spectrum DX = SX+ .

1. Introduction

Associated to a space X are two ring spectra: Σ∞
+ ΩX, the free suspension spectrum on the

based loop space of X, and DX = SX+ , the Spanier–Whitehead dual of X. Waldhausen [31]
defined the algebraic K-theory of X, A(X), as the K-theory of the ring spectrum Σ∞

+ ΩX. This
theory has deep geometric content: when X is a manifold, A(X) contains the stable pseudo-
isotopy theory of X, and when X is a finite complex, A(X) is a receptacle for ‘higher torsion
invariants’ [10] and closely related to transfers [18]. On the other hand, the unstable homotopy
theory of X is encoded in the E∞ ring spectrum DX (see [20]). Recent work by Morava [24]
conjectures the structure and properties for a category of homotopy theoretic motives in terms
of the stabilization of a category of correspondences; one candidate construction put forward
is built from algebraic K-theory of ring spectra of the form DX.

Based on computations in THH motivated by string topology, Cohen conjectured a duality
between K(DX) and A(X) as modules over K(S) (see [6]). Although the non-connectivity
of DX means that trace methods fail to apply to K(DX), in this paper we construct such a
duality in terms of derived Koszul duality when X is a simply connected finite CW complex.

In differential graded algebra, derived Koszul duality (or bar duality) concerns the contra-
variant adjunction between the category of augmented differential graded algebras and itself
[16, 23] (named for the special case of Koszul algebras [1, 2, 25]). The dual of an augmented
differential graded k-algebra A is an augmented differential graded k-algebra E that models
the A-module endomorphisms of k, EndA(k, k). Under mild hypotheses, A � EndE(k, k);
the contravariant functors HomA(−, k) and HomE(−, k) form an adjunction on the module
categories and an equivalence between various thick subcategories of the derived categories.

In our context, Σ∞
+ ΩX forms an augmented S-algebra, and we can identify the augmented

S-algebra of Σ∞
+ ΩX-endomorphisms of S as the augmented S-algebra DX (see [8, Section

4.22]). In fact, the coherent Σ∞
+ ΩX-module equivalence S ∧ S � S makes the endomorphism

ring spectrum naturally commutative, compatible with the natural commutative S-algebra
structure on DX. Interpreting ExtΣ∞

+ ΩX(−, S) and ExtDX(−, S) as contravariant adjoints on
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derived categories

DΣ∞
+ ΩX

�� DDX ,��

we get equivalences upon restricting to certain subcategories. For example, the subcategory
Dc

Σ∞
+ ΩX of compact objects of DΣ∞

+ ΩX is the thick subcategory generated by Σ∞
+ ΩX and is

equivalent under this adjunction to the thick subcategory TDX(S) of DDX generated by S.
This is reminiscent of Waldhausen’s comparison of the stable category of ΩX-spaces with the
stable category of retractive spaces over X. WritingMDX(S) for the subcategory of the model
category of DX-modules that are isomorphic in DDX to objects in TDX(S), we prove the
following theorem. In the following theorem and all theorems in this section, we understand X
to be a simply connected finite CW complex.

Theorem 1.1. In the notation above, K(MDX(S)) is weakly equivalent to A(X) =
K(Σ∞

+ ΩX).

On the other hand, the subcategory Dc
DX of compact objects of DDX is the thick subcategory

generated by DX and is equivalent under the adjunction above to the thick subcategory
TΣ∞

+ ΩX(S) of DΣ∞
+ ΩX generated by S. The category TΣ∞

+ ΩX(S) is a geometric analog of the
category of finite rank projective π1X-modules, whose K-theory GZ

i (Z[π]) was studied by
Swan [28]. We call the K-theory of the category MΣ∞

+ ΩX(S) the geometric Swan theory of
the space X and denote it as G(X). We prove the following theorem.

Theorem 1.2. In the notation above, G(X) = K(MΣ∞
+ ΩX(S)) is weakly equivalent to

K(DX).

In fact, both G(X) and K(DX) are commutative ring spectra, and the equivalence is a weak
equivalence of ring spectra. Likewise, A(X) is a module spectrum over G(X) and K(MDX(S))
is a module spectrum over K(DX); the equivalence in Theorem 1.1 is a weak equivalence of
module spectra. In fact, we have the following more precise result.

Theorem 1.3. The weak equivalence G(X)→ K(DX) is a map of E∞ ring spectra. The
weak equivalence K(MDX(S))→ A(X) is a map of G(X)-modules.

Because X is a finite CW complex, the Σ∞
+ ΩX-module S is compact, and so we can interpret

the map on K-theory induced by inclusion of the thick subcategory generated by S into the
thick subcategory of compact Σ∞

+ ΩX-modules in terms of Waldhausen’s fibration theorem. We
obtain a localization sequence of K-theory spectra

G(X) −→ A(X) −→ K(CΣ∞
+ ΩX/ε), (1.4)

where CΣ∞
+ ΩX/ε is the Waldhausen category of compact Σ∞

+ ΩX-modules but with weak
equivalences the maps whose cofiber is in TΣ∞

+ ΩX(S). (We typically do not have a corresponding
transfer A(X)→ G(X) because S is not usually a compact DX-module when X is a finite
complex.) We intend to study this sequence further in a future paper.

Derived Koszul duality between categories of modules over differential graded algebras is
a contravariant phenomenon, but there is also an associated covariant Morita adjunction
switching chirality from left modules to right modules [8]. (For a survey on Morita theory
in stable homotopy theory, see [27].) In the presence of an anti-involution (for example,
commutativity), we can use the anti-involution to obtain a Morita adjunction between
categories of left modules. In the context of DX and Σ∞

+ ΩX, we get two covariant adjunctions

DΣ∞
+ ΩX

�� DDX��
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 329

given by the adjoint pairs

ExtΣ∞
+ ΩX(S,−),TorDX(−, S) and TorΣ

∞
+ ΩX(−, S),ExtDX(S,−).

The first restricts to an equivalence

TΣ∞
+ ΩX(S) � Dc

DX

(in fact, as S is compact as an Σ∞
+ ΩX module, the adjunction restricts to embed DDX as the

localizing subcategory of S in DΣ∞
+ ΩX). The second restricts to an equivalence

Dc
Σ∞

+ ΩX � TDX(S).

These equivalences give rise to equivalences on algebraic K-theory, akin to the equivalences
of Theorems 1.1 and 1.2. The composites are self-maps on A(X) and G(X). In Section 5, we
identify these self-maps as the standard homotopy involutions.

Experts will recognize that Theorems 1.1 and 1.2 fit into the framework of [8, 29]; the benefit
of the approach here is the description in terms of concrete models, which allow more direct
comparisons than in the abstract approach, and more precise results such as Theorem 1.3.

Readers may also wonder about the connection to the work of Goresky, Kottwitz, and
MacPherson on Koszul duality [14]. From our perspective, they study the ‘dual’ setting in which
G = ΩBG is compact and BG is infinite. Our techniques apply to recover (integral) liftings
of their equivalences of derived categories; in fact, this case was studied in [16]. Because this
example is not connected as closely to A-theory, we have chosen to omit a detailed discussion.

The paper is organized as follows. In Section 2, we review and slightly extend the passage from
algebraic structures on Waldhausen categories to algebraic structures on K-theory spectra,
using the technology developed in [12]. In Section 3, we introduce the concrete models for
Σ∞

+ ΩX and the endomorphism ring spectra, which allow a good point-set model for the
adjunctions in the remaining sections. Section 4 studies the contravariant adjunction and proves
Theorems 1.1–1.3. Finally, Section 5 studies the point-set model of the covariant adjunctions of
[8] and identifies the composite homotopy endomorphisms on A(X) and G(X) as the standard
homotopy involutions.

2. Algebraic structures on Waldhausen K-theory

Since even before the advent of the theory of symmetric spectra [15], experts have understood
that any algebraic structure on a Waldhausen category induces an analogous structure on
Waldhausen K-theory. Sources for results of this type in the literature include [12, 13,
Appendix A, 31, p. 342]. We briefly review the current state of the theory here.

We refer the reader to [31, Section 1.2] for the definition of a Waldhausen category
(called there a ‘category with cofibrations and weak equivalences’). Recall that Waldhausen’s
S• construction [31, Section 1.3] produces a simplicial Waldhausen category S•C from a
Waldhausen category C and is defined as follows. Let Ar[n] denote the category with objects
(i, j) for 0 � i � j � n and a unique map (i, j)→ (i′, j′) for i � i′ and j � j′. SnC is defined
to be the full subcategory of the category of functors A : Ar[n]→ C such that:

(i) for all i, Ai,i = ∗;
(ii) the map Ai,j → Ai,k is a cofibration for all i � j � k;
(iii) the diagram

Ai,j ��

��

Ai,k

��

Aj,j �� Aj,k

is a pushout square for all i � j � k;
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330 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

where we write Ai,j for A(i, j). The last two conditions can be simplified to the hypothesis
that each map A0,j → A0,j+1 is a cofibration and the induced maps A0,j/A0,i → Ai,j are
isomorphisms. This becomes a Waldhausen category by defining a map A→ B to be a weak
equivalence when each Ai,j → Bi,j is a weak equivalence in C, and to be a cofibration when
each Ai,j → Bi,j and each induced map Ai,k ∪Ai,j

Bi,j → Bi,k is a cofibration in C.
As S•C forms a simplicial Waldhausen category, the construction can be iterated to form

S•S• . . . S•C. For our purposes, it is convenient to have an ‘all at once’ construction of the
qth iterate S

(q)
•,...,•C. For this construction, we need the following terminology (see also [26,

Section 2]).

Definition 2.1. Let [n] denote the ordered set 0 � 1 � . . . � n. For a Waldhausen category
C, a functor C : [n1]× . . .× [nq]→ C is cubically cofibrant means that the following conditions
hold.

(i) Every map C(i1, . . . , iq)→ C(j1, . . . , jq) is a cofibration.
(ii) In every subsquare (1 � r < s � q)

C(i1, . . . , iq) ��

��

C(i1, . . . , ir + 1, . . . , iq)

��

C(i1, . . . , is + 1, . . . , iq) �� C(i1, . . . , ir + 1, . . . , is + 1, . . . , iq)

the induced map from the pushout to the lower-right entry

C(i1, . . . , ir + 1, . . . , iq) ∪C(i1,...,iq) C(i1, . . . , is + 1, . . . , iq)
−→ C(i1, . . . , ir + 1, . . . , is + 1, . . . , iq)

is a cofibration.
(iii) In general, in every m-dimensional subcube specified by choosing m distinct coordinates

1 � r1 < r2 < . . . < rm � n, the induced map from the colimit over the diagram obtained by
deleting Q = C(i1, . . . , ir1 + 1, . . . , ir2 + 1, . . . , irm

+ 1, . . . , in) to Q is a cofibration.

Construction 2.2 (Iterated S• construction). Let Ar[n1, . . . , nq] denote the category
Ar[n1]× . . .×Ar[nq]. For a functor

A : Ar[n1, . . . , nq] = Ar[n1]× . . .×Ar[nq] −→ C,
we write Ai1,j1;... ;iq,jq

for the value of A on the object ((i1, j1), . . . , (iq, jq)). For a Waldhausen

category C, let S
(q)
n1,...,nqC be the full subcategory of functors A (as above) such that:

(i) whenever ik = jk for some k, Ai1,j1;... ;iq,jq
= ∗;

(ii) the subfunctor

C(j1, . . . , jq) = A0,j1;...;0,jq
: [n1]× . . .× [nq] −→ C

is cubically cofibrant;
(iii) for every object (i1, j1; . . . ; iq, jq) in Ar[n1]× . . .×Ar[nq], every 1 � r � q, and every

jr � k � nr, the square

Ai1,j1;... ;iq,jq
��

��

Ai1,j1;... ;ir,k;... ;iq,jq

��

Ai1,j1;... ;jr,jr;... ;iq,iq
�� Ai1,j1;... ;jr,k;... ;iq,iq

is a pushout square.

The subcategory wS
(q)
n1,...,nqC consists of the maps in Sn1,...,nq

C that are objectwise weak
equivalences. We understand S(0)C to be C and we see that S

(1)
n C is SnC.
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 331

Following Waldhausen [31, p. 330], we define the K-theory spectrum of a Waldhausen
category C to be the spectrum with qth space

KC(q) = N(wS
(q)
•,...,•C) = |N•(wS

(q)
•,...,•C)|,

the geometric realization of the nerve of the multisimplicial category wS
(q)
•,...,•C. The suspension

maps ΣKC(q)→ K(q + 1) are induced on diagrams by the projection map

Ar[n1]× . . .×Ar[nq]×Ar[nq+1] −→ Ar[n1]× . . .×Ar[nq].

Defining an action of Σq on KC(q) by permuting the simplicial directions, we see from the

explicit description of S
(q)
•,...,•C above that KC forms a symmetric spectrum.

We can encode an algebraic structure on a set of symmetric spectra using a symmetric
multicategory (also called colored operad). A symmetric multicategoryM enriched in (small)
categories consists of:

(i) a set of objects ObM;
(ii) a (small) category of k-morphisms Mk(x1, . . . , xk; y) for all k = 0, 1, 2, . . . and all

x1, . . . , xk, y ∈ ObM;
(iii) a unit object 1x inM1(x;x) for each x ∈ ObM;
(iv) for every permutation σ ∈ Σk, an isomorphism

σ∗ :Mk(x1, . . . , xk; y) −→Mk(xσ1, . . . , xσk),

compatibly assembling to an action of Σk on
∐
Mk(x1, . . . , xk; y);

(v) composition maps

Mn(y1, . . . , yn; z)× (Mj1(x1,1, . . . , x1,j1 ; y1)× . . .×Mjn
(xn,1, . . . , xn,jn

; yn))
−→Mj(x1,1, . . . , xn,jn

; z)

satisfying the analog of the usual conditions for an operad [22, pp. 1–2]; these are written out
in [12, Section 2]. The following definition is standard.

Definition 2.3. Let M be a symmetric multicategory enriched in small categories. An
M-algebra A in symmetric spectra consists of a symmetric spectrum A(x) for each x ∈ ObM
and maps of symmetric spectra

N(Mk(x1, . . . , xk; y)) ∧A(x1) ∧ . . . ∧A(xk) −→ A(y),

for all k, x1, . . . , xk, y, which are compatible with the composition maps and identity objects
of M. Here (as above), N(−) denotes the geometric realization of the nerve of the category.
When k = 0, we understand the map pictured above as N(M(; y)) ∧ S → A(y).

To define an M-algebra in Waldhausen categories, we first need to describe the kinds of
functors to which objects of Mk should map.

Definition 2.4. Let C1, . . . , Cn and D be Waldhausen categories. A functor

F : C1 × . . .× Cn −→ D

is multiexact if it satisfies the following conditions:
(i) F (X1, . . . , Xn) = ∗ if any of X1, . . . , Xn is ∗;
(ii) F is exact in each variable (preserves weak equivalences, cofibrations, and pushouts over

cofibrations in each variable, keeping the other variables fixed);
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332 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

(iii) given cofibrations Xk,0 → Xk,1 in Ck for all k, the diagram

A(i1, . . . , in) = F (X1,i1 , . . . , Xn,in
) : [1]× . . .× [1] −→ D

is cubically cofibrant.
We define the category of multiexact functors

Multn(C1, . . . , Cn;D),

to have objects the multiexact functors and maps the natural weak equivalences. For n = 0,
we define Mult0(;D) to be wD, the subcategory of weak equivalences in D.

Because multiexact functors compose into multiexact functors, the definition above makes the
category of small Waldhausen categories into a symmetric multicategory enriched in categories.
Following [12], we define an M-algebra in Waldhausen categories as a map of symmetric
multicategories enriched in categories.

Definition 2.5. Let M be a symmetric multicategory enriched in small categories. An
M-algebra C in Waldhausen categories consists of a Waldhausen category C(x) for each x ∈
ObM and functors

Mk(x1, . . . , xk; y) −→ Multk(C(x1), . . . , C(xk);D),

for all k, x1, . . . , xk, y, which are compatible with the permutations, composition maps, and
identity objects ofM.

Recalling the universal property of the smash product of symmetric spectra [15, 2.1.4], the
following theorem is immediate from inspection of the definitions above.

Theorem 2.6. Waldhausen’s algebraic K-theory functor naturally takes M-algebras in
Waldhausen categories toM-algebras in symmetric spectra.

In particular, as explained in [12, Section 9], the preceding theorem applies to describe
the algebraic structures on K-theory spectra induced by pairings on the level of Waldhausen
categories. Suppose that C is a Waldhausen category which is also a permutative category,
where the product ⊗ : C × C → C is a biexact functor; we will refer to C as a permutative
Waldhausen category. Recall that a permutative category is a rigidified form of a symmetric
monoidal category: a permutative category is a symmetric monoidal category where the product
satisfies strict associativity and unit relations (the associativity and unit isomorphisms are the
identity). If C is a permutative Waldhausen category, then a strict Waldhausen module over C
consists of a Waldhausen category Q and a biexact functor C × Q → Q satisfying the evident
strict associativity and unit relations.

The structure of a permutative Waldhausen category on C is equivalent to an algebra in
Waldhausen categories for the symmetric multicategory EΣ∗ (see [12, Section 3]), where the
unique object of EΣ∗ is taken to C. Then KC becomes an EΣ∗-algebra in symmetric spectra;
this is a particular type of E∞-algebra symmetric spectrum, which is an associative ring
symmetric spectra by neglect of structure (the symmetric multicategory of objects of EΣ∗
is the operad Σ∗ of sets). Similarly, the structure of a strict Waldhausen module over C on Q is
equivalent to specifying an algebra in Waldhausen categories for the symmetric multicategory
associated to EΣ∗ parameterizing modules, called E�MΣ∗ in [12, Section 9.1], such that the
‘ring object’ is taken to C and the ‘module object’ to Q. Then KQ becomes a KC-module in
symmetric spectra.
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 333

Corollary 2.7. Let C be a permutative Waldhausen category. Then KC is naturally an
EΣ∗-algebra symmetric spectrum, and in particular an associative ring symmetric spectrum.
Moreover, if D is a strict Waldhausen C-module, then KD is naturally a KC-module.

Working with a permutative product has the appealing consequence that the multicategory
that arises is a familiar one, namely, the categorical Barratt–Eccles operad EΣ∗. However, the
categories that we work with in this paper (and that tend to arise in practice) are symmetric
monoidal categories rather than permutative categories. This is no real limitation, as a standard
construction [17] rectifies any symmetric monoidal category into an equivalent permutative
category: the rectification of C is a category C′ with objects the ‘words’ in the objects of C,
where a word (X1,X2, . . . , Xr) corresponds to the product

λ(X1, . . . , Xr) = (. . . (X1 ⊗X2)⊗ . . .)⊗Xr

in C; we associate the empty word in C′ to the unit of the monoidal product. The morphisms
in C′ are precisely the morphisms in C between the associated products

C′((X1, . . . , Xr), (Y1, . . . , Ys)) = C(λ(X1, . . . , Xr), λ(Y1, . . . , Ys)).

Concatenation provides the permutative structure. Sending a word to the associated product
λ defines a strong symmetric monoidal functor C′ → C. The inclusion of C in C′ as the singleton
words is also a strong symmetric monoidal functor; the composite functor C → C is the identity,
whereas the composite functor C′ → C′ is naturally isomorphic to the identity via the map
corresponding to the identity map on the associated product. When C is a Waldhausen category
and ⊗ is biexact, we use the variant where we look at words in objects that are not ∗ together
with a distinguished zero object ∗, and force a concatenation in C′ with ∗ to result in ∗. The
resulting category C′′ becomes a Waldhausen category when we define the cofibrations and
weak equivalences to be those maps that correspond to weak equivalences and cofibrations
in C. The functors above remain strong symmetric monoidal equivalences, but now are exact
functors as well.

Alternatively, at the cost of complicating the multicategory in Corollary 2.7, we can work
directly with symmetric monoidal Waldhausen categories (that is, Waldhausen categories that
are symmetric monoidal under a biexact product). Specifying such a structure on C is equivalent
to specifying the structure of an algebra over a certain symmetric multicategory B enriched
in small categories, defined as follows: ObB is a single element. For k = 1, B1 is the category
with one object and the identity morphism. For k > 1, B is the category with objects the
labeled planar binary trees with k leaves, having a unique morphism between any two objects.
The permutation action permutes the labels. As above, there is a symmetric multicategory
parameterizing modules in this setting; an action of C on a Waldhausen category D through a
biexact functor endows (C,D) with the structure of an algebra over this module multicategory.
We have the following consequence.

Corollary 2.8. Let C be a symmetric monoidal Waldhausen category. Then KC is
naturally a B-algebra symmetric spectrum. Moreover, ifD is a symmetric monoidal Waldhausen
C-module, then KD is naturally a KC-module (parameterized by the multicategory of
E∞-modules associated to B).

3. Models for endomorphism S-algebras and the double centralizer condition

Classically, for a k-algebra R and an R-module M , the double centralizer condition for M is
the requirement that the natural map

R −→ EndEndR(M,M)(M,M)
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334 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

be an isomorphism. Dwyer, Greenlees, and Iyengar [8] studied the derived form of this
condition. They study the example of R = Σ∞

+ ΩX and DX � EndR(S, S) in [8, Section 4.22].
We review this example in this section in terms of specific models we use in the remainder of
the paper.

In our context, we are interested in the case when X is a finite CW complex. As we shall
see below, Dwyer’s results on convergence of the Eilenberg–Moore spectral sequence [7] imply
that the double centralizer map cannot be a weak equivalence unless X is simply connected
(as this is the only case in which π1X acts nilpotently on H0(ΩX)). Once we restrict to this
context, we can assume without loss of generality that X is the geometric realization of a
reduced finite simplicial set. Then we have a topological group model G for ΩX (given by the
geometric realization of the Kan loop group), and a free G-CW complex P whose quotient by
G is X (the twisted cartesian product G• ×τ X• for the universal twisting function τ ; see, for
example, [21, Chapter VI]).

Notation 3.1. Let X, P , and G be as above. Let R = Σ∞
+ G, regarded as an EKMM

S-algebra [11, IV.7.8]. Let SP = Σ∞
+ P and let E = FR(SP, SP ).

We regard S as an R-algebra via the augmentation R→ S (induced by the map G→ ∗). The
map SP → S (induced by the map P → ∗) is a weak equivalence of R-modules. Although SP
is not cofibrant, it is semi-cofibrant [19, 1.2], meaning that the functor SP ∧S (−) = P+ ∧ (−)
from S-modules to R-modules preserves cofibrations and acyclic cofibrations [19, 1.3(a)]. As
in EKMM S-module categories all objects are fibrant, E represents the correct endomorphism
algebra ExtR(S, S) (see [19, 6.3]).

These particular models show the strong parallel between the double centralizer condition
for Σ∞

+ ΩX and the bar duality theory of [16]. The diagonal map P → P × P → X × P induces
an X-comodule structure on SP

SP = Σ∞
+ P −→ Σ∞

+ (X × P ) ∼= X+ ∧ Σ∞
+ P = X+ ∧ SP.

This in turn endows SP with a left DX-module structure

DX ∧S SP −→ DX ∧S (X+ ∧ SP ) ∼= (DX ∧X+) ∧S SP −→ S ∧S SP ∼= SP.

This left DX-module structure commutes with the left R-module structure, and so defines a
map of S-algebras

DX −→ FR(SP, SP ) = E.

To see that this map is a weak equivalence, consider the following diagram:

DX

∼=
������������

�� FR(SP, SP )

��

FR(SP, S),

where the right-hand map is induced by the map SP → S (induced by the map P → ∗), and
the slanted map is the isomorphism induced by the isomorphism P/G = X. This diagram
commutes as the top-right composite is adjoint to the map DX ∧ SP → S induced by the
diagonal P → X × P followed by evaluation of DX on X and the trivial map P → ∗, whereas
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 335

the slanted map is induced by the map P → X followed by evaluation of DX on X:

DX ∧ P+
��

��

DX ∧X+ ∧ P+

��

DX ∧X+
�� S.

As the map FR(SP, SP )→ FR(SP, S) is a weak equivalence, the S-algebra map DX → E is
a weak equivalence.

We can obtain a model for the map R→ ExtE(S, S) as follows. First, it is convenient to
choose a cofibrant S-algebra approximation E′ → DX. Then the two-sided bar construction
SP ′ = B(DX,E′, SP ) is a semi-cofibrant DX-module approximation of SP . Furthermore,
E′-maps SP → SP induce DX-maps SP ′ → SP ′. By construction, the (left) action of R on
SP commutes with the (left) action of DX, making SP ′ an R-module in the category of
DX-modules, or equivalently, producing a map of S-algebras R→ FDX(SP ′, SP ′).

This constructs the S-algebra map; we need to show that this map is a weak equivalence.
Consider the cobar construction C•(∗,X, P ),

Cn(∗,X, P ) = X × . . .×X︸ ︷︷ ︸
n factors

×P,

with cosimplicial maps induced from the diagonal, the inclusion of the basepoint, and the map
P → X. The inclusion of G as the fiber of the fibration P → X induces a weak equivalence
G→ Tot C•(∗,X, P ). Likewise, we get a map

R −→ Σ∞
+ Tot C•(∗,X, P ) −→ Tot Σ∞

+ C•(∗,X, P ).

Results of Dwyer [7] and Bousfield [5] (for D∗ = πS
∗ ) show that this map is a weak equivalence,

as X is simply connected. Moreover, when X is not simply connected, the ‘only if’ part of
Dwyer’s results shows that no model of this map will be a weak equivalence. The map E′ → DX
induces weak equivalences

E′ ∧S . . . ∧S E′ −→ D(X × . . .×X).

Together with the weak equivalence of E′-modules SP → S, these induce weak equivalences

Σ∞
+ (X × . . .×X × P ) ∼= X+ ∧ . . . ∧X+ ∧ SP −→ FS(E′ ∧S . . . ∧S E′ ∧ S, SP )

−→ FS(E′ ∧S . . . ∧S E′ ∧ SP, SP )
∼= FDX(DX ∧S E′ ∧S . . . ∧S E′ ∧S SP, SP ).

These maps are compatible with the cosimplicial structure on the cobar construction and the
maps induced by the simplicial structure on the bar construction B(DX,E′, SP ), and induce
a weak equivalence on Tot. Finally, the weak equivalence of E′-modules SP ′ → SP induces a
weak equivalence FDX(SP ′, SP ′)→ FDX(SP ′, SP ). This describes the maps in the following
diagram:

R ��

��

FDX(SP ′, SP ′)

��

FDX(B(DX,E′, SP ), SP )

Tot Σ∞
+ C•(∗,X, P ) �� Tot FS(E′ ∧S . . . ∧S E′, SP ).

��

We have shown all maps but the top one to be weak equivalences, and so it suffices to
observe that the diagram commutes up to homotopy. At each cosimplicial level, the right-down
composite is adjoint to the map

R ∧S E′ ∧S . . . ∧S E′ ∧S SP −→ SP
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336 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

induced by the action of E′ and R on SP . The down-right-up composite is adjoint to the
composite map

R ∧S E′ ∧S . . . ∧S E′ ∧S SP −→ R ∧S S −→ SP

induced by the augmentation E′ → S, the weak equivalence SP → S, and the inclusion of
G in P . A contraction P × I → P onto the basepoint of P induces a homotopy from the
former map to the latter map.

4. Contravariant equivalences in algebraic K-theory and geometric Swan theory of spaces

We now turn to the adjoint functors

ExtR(−, S): DR
�� DDX�� : ExtDX(−, S)

and describe our point-set model for the Quillen adjunction on the model categories MR

and MDX . The easiest and most obvious point-set model for these functors would be to use
the adjunction FR(−, SP ) :MR →MDX as in the previous section, but instead we use an
equivalent functor with better multiplicative properties.

The diagonal map G→ G×G induces a diagonal map R→ R ∧S R, which is clearly a map
of S-algebras. This endows the categoryMR of R-modules with a symmetric monoidal product,
given by ∧S on the underlying S-modules. As DX is a commutative S-algebra, the category
MDX has a symmetric monoidal product ∧DX . The diagonal map SP → SP ∧S SP on SP
makes SP a cocommutative coalgebra in the category of R-modules and the diagonal map
SP → SP ∧DX SP makes SP a cocommutative coalgebra in the category of DX-modules.
For our adjunctions, we need a version of SP that is a commutative algebra in both categories.

Notation 4.1. Let SP∨ = FS(SP, S) ∼= SP+ , a left (R ∧S DX)-module.

Here FS (and more generally FR and FDX , which we use below) denotes the function module
construction of [11, Section III.6.1]. The commuting left R-module and DX-module structures
on SP make FS(SP, S) naturally a right (R ∧S DX)-module, and we turn it into a left
(R ∧S DX)-module using commutativity of DX and the anti-involution R→ R induced
by the inverse map G→ G. Using the diagonal map on SP , we get now a map of left
(R ∧S DX)-modules

SP∨ ∧DX SP∨ −→ SP∨,

which is easily seen to be associative and commutative in the appropriate sense.
Moreover, we have a zigzag of weak equivalences of left (R ∧S DX)-modules relating SP

and SP∨:
SP∨ ←− SP∨ ∧S SP −→ SP,

where we make SP∨ ∧S SP a left (R ∧DX)-module using the diagonal R-module structure
and the DX-module structure on SP∨. The leftward map is induced by the map of R-modules
SP → S, and the rightward map is induced by the diagonal on SP and evaluation:

SP∨ ∧S SP = FS(SP, S) ∧S SP −→ FS(SP, S) ∧S SP ∧S SP −→ S ∧S SP ∼= SP.

This is clearly a map of R-modules as each map in the composite is, and it is a map of
DX-modules as the DX-module structure on SP∨ is adjoint to the map

DX ∧S SP∨ ∧S SP −→ DX ∧S SP∨ ∧S (X+ ∧ SP ) ∼= (DX ∧X+) ∧S (SP∨ ∧S SP ) −→ S

induced by the diagonal on SP and evaluation.
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 337

Using the commuting left R-module and DX-module structures on SP∨, we get adjoint
functors

FR(−, SP∨): MR
��MDX�� :FDX(−, SP∨)

between the (point-set) categories of R-modules and DX-modules modeling the ExtR(−, S)
and ExtDX(−, S) adjunction on derived categories. The unit maps of this adjunction are the
maps

X −→ FDX(FR(X,SP∨), SP∨) and Y −→ FR(FDX(Y, SP∨), SP∨)

adjoint to the (R-module and DX-module) maps

M ∧S FDX(M,SP∨) −→ SP∨ and N ∧S FR(N,SP∨) −→ SP∨

induced by evaluation. As fibrations and weak equivalences in EKMM module categories are
detected on the underlying S-modules, the functors FR(−, SP∨) and FDX(−, SP∨) convert
cofibrations and acyclic cofibrations to fibrations and acyclic fibrations. The adjunction above
is therefore a Quillen adjunction.

We note that these functors are lax symmetric monoidal. We have the natural transforma-
tions

FR(M1, SP∨) ∧DX FR(M2, SP∨) −→ FR(M1 ∧S M2, SP∨ ∧DX SP∨)
−→ FR(M1 ∧S M2, SP∨)

and

FDX(N1, SP∨) ∧S FDX(N2, SP∨) −→ FDX(N1 ∧DX N2, SP∨ ∧DX SP∨)
−→ FDX(N1 ∧DX N2, SP∨)

induced by the multiplication SP∨ ∧DX SP∨ → SP∨, which is both a map of R-modules and
of DX-modules. Note that because G is a CW complex, M1 ∧S M2 is in fact a cofibrant
R-module when M1 and M2 are cofibrant R-modules. The lax unit natural transformations

DX −→ FR(S, SP∨) ∼= FS(SP ∧R S, S) and S −→ FDX(DX,SP∨) ∼= SP∨

are induced by the identification P/G = X (for the first map) and the map of R-modules
SP → S (for the second map).

When M is a cofibrant R-module approximation to SP (for example, X = SP ∧ Sc for a
cofibrant S-module approximation of S), we have a weak equivalence of DX-modules

DX −→ E = FR(SP, SP ) −→ FR(M,SP ) � FR(M,SP∨).

It follows that the left derived functors of FR(−, SP∨) and FDX(−, SP∨) induce an equivalence
between the thick subcategories of the homotopy categories generated by S in DR and by DX
in DDX . The latter is the category of compact objects Dc

DX . As in Section 1, we denote the
former subcategory by TR(S).

Proposition 4.2. The derived functors ExtR(−, S) and ExtDX(−, S) induce inverse
equivalences between TR(S) and Dc

DX .

Likewise, when N is a cofibrant DX-module approximation to SP ′, we have a weak
equivalence of R-modules

R −→ FDX(SP ′, SP ′) −→ FDX(SP ′, SP ) � FDX(SP ′, SP∨) −→ FDX(N,SP∨).

It follows that the left derived functors of FR(−, SP∨) and FDX(−, SP∨) induce an equivalence
between the thick subcategories of the homotopy categories generated by S in DDX and by R
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338 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

in DR. The latter is the category of compact objects Dc
R. As in Section 1, we denote the former

subcategory by TDX(S).

Proposition 4.3. The derived functors ExtR(−, S) and ExtDX(−, S) induce inverse
equivalences between Dc

R and TDX(S).

We obtain Waldhausen category structures modeling each of the subcategories Dc
R, TR(S) in

DR and Dc
DX , TDX(S) in DR as follows. We consider the full subcategory of cofibrant objects in

the model category of R-modules or DX-modules whose images in the homotopy category lie in
the subcategory in question. (To make these categories small, we can fix a set X of sufficiently
large cardinality and restrict to objects whose point sets are subsets of X as in [4, 1.7].) We
denote these Waldhausen categories as Mc

R, MR(S), Mc
DX , and MDX(S), respectively. We

then get associated K-theory spectra, including Waldhausen’s algebraic K-theory of X and
the geometric Swan theory of X.

Definition 4.4. In the notation above, A(X) = K(R) = K(Mc
R), G(X) = K(MR(S)),

K(DX) = K(Mc
DX).

The biexact smash product ∧S makes G(X) into an E∞ ring symmetric spectrum and
the biexact smash product ∧DX makes K(DX) into an E∞ ring symmetric spectrum by
Theorem 2.6. Likewise, the biexact functors ∧S and ∧DX make A(X) into a module over G(X)
and K(MDX(S)) into a module over K(DX). We next explain how the functors FR(−, SP∨)
and FDX(−, SP∨) induce weak equivalences of these E∞ ring symmetric spectra and modules.

Although the functors FR(−, SP∨) and FDX(−, SP∨) are not exact (and do not land in
the model Waldhausen categories), we do immediately obtain weak equivalences of spectra
K(DX)→ G(X) and K(MDX(S))→ A(X), using the S′

• construction, a homotopical variant
of the S• construction introduced in [4]. Rather than working with pushouts over cofibrations,
the S′

• construction depends on a theory of ‘homotopy cocartesian’ squares. The S′
• construction

replaces the cofibrations and pushouts in S• with homotopy cocartesian squares. Under mild
hypotheses [3, Appendix A], the natural inclusion S•C → S′

•C is a weak equivalence. To study
the products and pairings, we take a different approach that allows us to continue working
only with objects that are cofibrant.

First consider the categoriesMR(S) andMc
DX . For each q, n1, . . . , nq, consider the category

whose objects consist of an element A of S
(q)
n1,...,nqMR(S), an element B of S

(q)
n1,...,nqMc

DX , and
weak equivalences

φi1,j1;...;iq,jq
: Ai1,j1;...;iq,jq

−→ FDX(Bn1−j1,n1−i1;...;nq−jq,nq−iq
, SP∨),

making the Ar[n1]× . . .×Ar[nq] diagram commute. A map (A,B, φ) to (A′, B′, φ′) consists of
weak equivalences A→ A′, B → B′ such that the composite

A∗ −→ A′
∗

φ′
−→ FDX(B′

∗, SP∨) −→ FDX(B∗, SP∨)

is φ∗. This forms a multisimplicial category, where we use the opposite ordering in each
simplicial direction on S

(q)
•,...,•Mc

DX . Taking the classifying space, we obtain a sequence of
spaces T (q) with the structure of a symmetric spectrum.

The smash products on MR and MDX and the lax symmetric monoidal transformations
above induce maps

T (p) ∧ T (q) −→ T (p + q)

and a multiplication T ∧ T → T . We obtain a map T → G(X) dropping the Mc
DX data;

we also obtain a map T → K(DX) by dropping the MR(S) data and using the canonical
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 339

homeomorphism between the geometric realization of a simplicial set and its opposite. Both
maps preserve the E∞ structures; Lemmas 4.6 and 4.7 complete the proof of Theorem 1.1 and
the first part of Theorem 1.3 by showing that these maps are weak equivalences.

The analogous construction, with Mc
R and MDX(S) in place of MR(S) and Mc

DX ,
respectively, produces a symmetric spectrum U that is a module over T . The analogous maps
U → A(X) and U → K(MDX(S)) are T -module maps; again Lemmas 4.6 and 4.7 show that
these maps are weak equivalences and complete the proof of Theorem 1.2 and the remaining
part of Theorem 1.3.

Before stating Lemma 4.6, we abstract the construction used to build the pieces of T and
U . Consider the following construction.

Construction 4.5. Let C be a Waldhausen category, M be a pointed closed model
category, and M be a closed Waldhausen subcategory of cofibrant objects in M, that is, a
Waldhausen category under the cofibrations and weak equivalences from M, which is closed
under weak equivalences in M. Let F : C →M be a contravariant functor that takes ∗ to ∗,
cofibrations to fibrations, and weak equivalences to weak equivalences. Define MF to be the
following category. An object of MF consists of an object A of M, an object B of C, and a
weak equivalence φ : A→ FB. A map in MF from (A,B, φ) to (A′, B′, φ′) consists of weak
equivalences A→ A′ and B → B′ such that the composite map

A −→ A′ φ′
−→ FB′ −→ FB

is φ. We have canonical functors MF → wC and MF → wM obtained by dropping theM and
C data, respectively.

Lemma 4.6. With notation as above:
(i) if for every object A of C, FA is weakly equivalent in M to an object of M, then the

functor MF → wC induces a weak equivalence on nerves;
(ii) if C is a closed Waldhausen subcategory of cofibrant objects in a closed model category C

and F is a left Quillen adjoint that induces an equivalence between the full subcategories
of Ho C and HoM generated by C and M, respectively, then MF → wM also induces
a weak equivalence on nerves.

Proof. For the first statement, we apply Quillen’s Theorem A. For an object B of C, the
relevant category FM ↓ B has objects the maps φ : A→ FC, γ : C → B, where A is a cofibrant
object in M, C is an object in C, and φ and γ are weak equivalences. The nerve of this
category is equivalent to the nerve of the subcategory where C = B and γ is the identity.
This is the category of cofibrant approximations of the fibrant object FC; work of Dwyer–Kan
(cf. [9, 6.12]) shows that the nerve of this category is contractible.

For the second statement, let G denote the contravariant left adjoint of F . Then, under
the hypotheses of the second statement, a map A→ FB is a weak equivalence if and only
if the adjoint map B → GA is a weak equivalence. The second statement now follows from
the first.

In the case considered above, we are looking at functors F of the form

S
(q)
•,...,•MDX(S) −→ Ar[•, . . . , •](MR) or S

(q)
•,...,•Mc

DX −→ Ar[•, . . . , •](MR),

where we have written Ar[•, . . . , •](C) for the category of functors from Ar[•, . . . , •] to C (where

Ar[n1, . . . , nq] is as in Construction 2.2). Both S
(q)
•,...,•MDX(S) and S

(q)
•,...,•Mc

DX are closed
Waldhausen subcategories of the cofibrant objects in Ar[•, . . . , •](MDX). As every map in
Ar[•, . . . , •](MR) is weakly equivalent to a cofibration, and a commuting square in MR is a
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340 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

homotopy pushout square if and only if it is a homotopy pullback square if and only if it is
weakly equivalent to a pullback square of fibrations, an easy inductive argument proves the
following lemma.

Lemma 4.7. The functor FDX(−, SP∨) induces equivalences between

(i) the full subcategory of the homotopy category of Ar[n1, . . . , nq](MDX) generated by

objects of S
(q)
n1,...,nqMc

DX ; and
(ii) the full subcategory of the homotopy category of Ar[n1, . . . , nq](MR) generated by

objects of S
(q)
n1,...,nqMR(S).

It also induces equivalences between

(i) the full subcategory of the homotopy category of Ar[n1, . . . , nq](MDX) generated by

objects of S
(q)
n1,...,nqMDX(S); and

(ii) the full subcategory of the homotopy category of Ar[n1, . . . , nq](MR) generated by

objects of S
(q)
n1,...,nqMc

R.

5. Covariant equivalences in algebraic K-theory and geometric Swan theory of spaces

Using the models described in Section 3, the generalized Morita theory of [8] admits a point-set
refinement into adjoint pairs of covariant functors

FR(SP,−): MR ��MDX
�� :(−) ∧DX SP

and

(−) ∧R SP ′: MR
��MDX�� :FDX(SP ′,−),

forming Quillen adjunctions. Here we switch between left and right modules at will using
the commutativity of DX and the anti-involution on R (induced by the inverse map on the
topological group G).

As S is compact in DR, the first adjunction induces an equivalence between the localizing
subcategory of DR generated by S and DDX , and, in particular, it restricts to an equivalence
between TR(S) and Dc

DX . In general, S is not compact in DDX , but nonetheless the second
adjoint pair yields an equivalence between TDX(S) and Dc

R. In this case, one of the functors
in each pair is exact, and so Waldhausen’s approximation theorem (or the more general
formulations of [3 or 29]) implies that these equivalences induce the equivalences

K(DX) −→ G(X) and A(X) −→ K(MDX(S)).

Combining these equivalences with the equivalences of the previous section, we obtain self-
homotopy equivalences on A(X) and G(X). We complete our analysis by identifying these as
the standard Spanier–Whitehead duality involution on A(X) and an analogous involution on
G(X). (Note that when X is a smooth manifold, this involution is generally not compatible
with the involution on pseudo-isotopy theory unless X is parallelizable [30].) Roughly, the
involution on A(X) is given by the functor that takes a left R-module M to the right R-module
ExtR(M,R), which we transform into a left R-module via the anti-involution R→ Rop. For
G(X), the involution is similar but with ExtS(M,S) instead.

Because the duality maps are contravariant, it is convenient to work with Waldhausen
categories, modeling the opposite categories of Dc

R and TR(S). As observed in [4, Section 1],
Mop

R has the structure of a Waldhausen category with weak equivalences the maps opposite to
the usual weak equivalences and cofibrations the maps opposite to the Hurewicz fibrations. Let
Mop,c

R be the full subcategory of objects that are opposite to compact objects in Dc
R, and let

Mop
R (S) be the full subcategory ofMop

R opposite to objects in TR(S) (again, we can make these
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DERIVED KOSZUL DUALITY AND INVOLUTIONS 341

latter two Waldhausen categories small by restricting to subsets of a set with high cardinality).
The argument for [4, 1.1] (see the discussion following [4, 2.9]) provides the weak equivalences

A(X) = K(Mc
R) � K(Mop,c

R ) and G(X) = K(MR(S)) � K(Mop
R (S)).

Essentially, the map on Sn sends A = {Ai,j} to A′ = {A′
i,j}, where A′

i,j � An−j,n−i and the
pushouts over cofibrations have been replaced by equivalent pullbacks over fibrations.

The functors FR(−, R) :Mc
R →M

op,c
R and FS(−, S) :MR(S)→Mop

R (S) are then exact.
Under the equivalences above, the induced maps on K-theory represent the canonical
involution. Thus, it now suffices to compare our composite functors to these functors.

In the case of A(X), the composite of our equivalences is the functorMc
R →M

op,c
R defined

as

M �−→ FDX(M ∧R SP ′, SP∨).

By adjunction, this is naturally isomorphic to FR(−, FDX(SP ′, SP∨)). The weak equivalence
R→ FDX(SP ′, SP∨) then induces a natural weak equivalence from the duality functor
FR(−, R).

For G(X), the argument above shows that the composite map on K(DX)→ K(Mop,c
DX )

is the functor FR(− ∧DX SP, SP∨) and is naturally weakly equivalent to the duality map
FDX(−,DX). On the other hand, FR(SP,−) :Mop

R (S)→Mop,c
DX is exact and the following

solid arrow diagram commutes up to natural isomorphism:

MR(S)
FS(−,S)

��Mop
R (S)

FR(SP,−)

��

Mc
DX

FDX(−,SP∨)

�������������������

FR(−∧DXSP,SP∨)

��

(−)∧DXSP

��

Mop,c
DX .

The composite of the dotted arrows is the functor FS((−) ∧DX SP, S). By the smash-function
adjunction, we see that this functor is naturally isomorphic to FDX(−, FS(SP, S)), which is
the diagonal arrow as SP∨ = FS(SP, S).

Acknowledgements. The authors would like to thank Ralph Cohen and Bruce Williams for
asking motivating questions, as well as Haynes Miller, John Klein, Jack Morava, and John
Rognes for helpful conversations.
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