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Introduction

The algebraic K-theory of ring spectra is intimately related to the geometry of high-
dimensional manifolds. In a series of papers in the 1970’s and 1980’s, Waldhausen es-
tablished the deep connection between the K-theory of the sphere spectrum and stable
pseudo-isotopy theory. The sphere spectrum has an infinite filtration called the chro-
matic filtration that forms a tower at each prime p. The layers in the chromatic tower
capture periodic phenomena in stable homotopy theory, corresponding to the Morava
K-theory “fields”. The chromatic viewpoint has organized the understanding of stable
homotopy theory over the last thirty years.

Applying algebraic K-theory to the chromatic tower of the sphere spectrum leads to
an analogous “chromatic tower” of algebraic K-theory spectra. Waldhausen conjectured
that this tower converges in the homotopy inverse limit to the algebraic K-theory of the
p-local sphere spectrum [10]. McClure and Staffeldt verified a closely related connective
variant of this conjecture [6]. The bottom layer of the chromatic tower is K(Q), the
algebraic K-theory of the rational numbers, which is intimately related to questions in
arithmetic. Thus, the K-theory chromatic tower can be viewed as an interpolation from
arithmetic to geometry.

In [2], Ausoni and Rognes describe an ambitious program for analyzing the layers in
the p-complete version of Waldhausen’s K-theory chromatic tower. The analysis is based
on descent conjectures coming from Rognes’ Galois theory of S -algebras [8], which relate
the layers of the tower to the K-theory of the Morava E -theory ring spectra En and
to the K-theory of the p-completed Johnson–Wilson ring spectra E(n)∧p . The spectrum
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E(n) is not connective, and no tools exist for computing the K-theory of non-connective
ring spectra. However, E(n) is formed from the connective spectrum BP 〈n〉 by inverting
the element vn in π∗(BP 〈n〉), and Rognes conjectured the following localization cofiber
sequence.

Rognes conjecture. The transfer map K(BP 〈n−1〉∧p )!K(BP 〈n〉∧p ) and the
canonical map K(BP 〈n〉∧p )!K(E(n)∧p ) fit into a cofiber sequence in the stable category

K(BP 〈n−1〉∧p )−!K(BP 〈n〉∧p )−!K(E(n)∧p )−!ΣK(BP 〈n−1〉∧p ).

In the case n=0, the statement is an old theorem of Quillen [7], the localization
sequence K(Z/p)!K(Z∧p )!K(Q∧p ). The conjecture implies a long exact sequence of
homotopy groups:

...−!Kq(BP 〈n−1〉∧p )−!Kq(BP 〈n〉∧p )−!Kq(E(n)∧p )−! ...

...−!K0(BP 〈n−1〉∧p )−!K0(BP 〈n〉∧p )−!K0(E(n)∧p )−! 0.

This in principle allows the computation of the algebraic K-groups of E(n)∧p from those
of BP 〈n〉∧p and BP 〈n−1〉∧p . Because the BP 〈n〉 are connective spectra, their K-theory
can be studied using TC, and the main purpose of [2] is to provide tools suitable for
computing TC(BP 〈n〉∧p ), and in particular to obtain an explicit computation of the
V (1)-homotopy in the case n=1.

The case n=1 is the first non-classical case of the conjecture and is of particular
interest. The spectra E(1) and BP 〈1〉 are often denoted by L and ` and are closely related
to topological K-theory. Here L=E(1) is the p-local Adams summand of (complex
periodic) topological K-theory, KU , and `=BP 〈1〉 is the p-local Adams summand of
connective topological K-theory, ku. The Rognes conjecture then admits a “global”
version in this case, namely that the transfer map K(Z)!K(ku) and canonical map
K(ku)!K(KU) fit into a cofiber sequence in the stable category

K(Z)−!K(ku)−!K(KU)−!ΣK(Z).

This version of the conjecture appears in [3], where the relationship between the alge-
braic K-theory of topological K-theory, elliptic cohomology, and the category of 2-vector
bundles is discussed.

The purpose of this paper is to prove both the local and global versions of the Rognes
conjecture in the case n=1. Specifically, we prove the following theorem.
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Localization theorem. There are connecting maps, which together with the
transfer maps and the canonical maps, make the sequences

K(Z∧p )−!K(`∧p )−!K(L∧p )−!ΣK(Z∧p ),

K(Z(p))−!K(`)−!K(L)−!ΣK(Z(p)),

K(Z)−!K(ku)−!K(KU)−!ΣK(Z)

cofiber sequences in the stable category.

Hesselholt observed that the Ausoni–Rognes and Ausoni calculations of THH(`)
and THH(ku) in [2] and [1] are explained by the existence of a THH version of this
localization sequence along with a conjecture about the behavior of THH for “tamely
ramified” extensions of ring spectra. A precise formulation requires a construction of
THH for Waldhausen categories. We will explore this more fully in a forthcoming paper.

The localization theorem above is actually a consequence of a “dévissage” theorem
for finitely generated finite stage Postnikov towers. For an S -algebra (A∞ ring spec-
trum) R, let PR denote the full subcategory of left R-modules that have only finitely
many non-zero homotopy groups, all of which are finitely generated over π0R. When R

is connective and π0R is left Noetherian, this category has an associated Waldhausen K-
theory spectrum. Restricting to the subcategory of S -algebras with morphisms the maps
R!R′ for which π0R

′ is finitely generated as a left π0R-module, we regard K(P(−)) as
a contravariant functor K ′ to the stable category.

We use the notation K ′ because of the close connection with Quillen’s K ′-theory, the
K-theory of the exact category of finitely generated left modules over a left Noetherian
ring. The analogous K-theory spectrum for chain complexes over the ring π0R is well
known to be equivalent to K ′(π0R) [9, Theorem 1.11.7]. The following theorem is the
main result of this paper.

Dévissage theorem. Let R be a connective S -algebra (A∞ ring spectrum) with
π0R left Noetherian. Then there is a natural isomorphism in the stable category

K ′(π0R)−!K ′(R),

where K ′(π0R) is Quillen’s K-theory of the exact category of finitely generated left π0R-
modules, and K ′(R) is the Waldhausen K-theory of the category of finitely generated
finite stage Postnikov towers of left R-modules, PR.

A longstanding open problem first posed explicitly by Thomason and Trobaugh
[9, §1.11.1] is to develop a general dévissage theorem for Waldhausen categories that
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specializes to Quillen’s dévissage theorem when applied to the category of bounded chain
complexes on an abelian category. We regard the theorem described in this paper as a
step towards a solution to this problem.

Acknowledgement. The authors would like to thank the Institut Mittag-Leffler for
hospitality while writing this paper.

1. The main argument

In this section, we outline the proof of the dévissage theorem in terms of a number of easily
stated results proved in later sections; we then deduce the localization theorem from the
dévissage theorem. Although we assume some familiarity with the basics of Waldhausen
K-theory, we review the standard definitions and constructions of Waldhausen [11] as
needed. We begin with some technical conventions and a precise description of the
Waldhausen categories we use.

Throughout this paper, R denotes a connective S -algebra with π0R left Noether-
ian. We work in the context of Elmendorf–Kriz–Mandell–May (EKMM) S -modules,
S -algebras, and R-modules [4]. Since other contexts for the foundations of a modern
category of spectra lead to equivalent K-theory spectra, presumably the arguments pre-
sented here could be adjusted to these contexts, but the EKMM categories have certain
technical advantages that we exploit (see for example the proof of Lemma 4.2) and which
affect the precise form of the statements below.

The input for Waldhausen K-theory is a (small) category together with a subcat-
egory of “weak equivalences” and a subcategory of “w-cofibrations” satisfying certain
properties. Let PR denote the full subcategory of left R-modules that have only finitely
many non-zero homotopy groups, all of which are finitely generated over π0R. Although
PR is not a small category, we can still construct a K-theory spectrum from it that
is “homotopically small”, and we can find a small category with equivalent K-theory
by restricting the sets allowed in the underlying spaces of the underlying prespectra;
see Remark 1.7 below for details. In what follows, let P denote PR or, at the reader’s
preference, the small category Pk (for k large) discussed in Remark 1.7.

We make P a Waldhausen category by taking the weak equivalences to be the usual
weak equivalences (the maps that induce isomorphisms on all homotopy groups) and
the w-cofibrations to be the Hurewicz cofibrations (the maps satisfying the homotopy
extension property in the category of left R-modules). Specifically, a map i:A!X is a
Hurewicz cofibration if and only if the inclusion of the mapping cylinder

Mi=X∪i(A∧I+)
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in the cylinder X∧I+ has a retraction in the category of R-modules. Some easy conse-
quences of this definition are:

• The initial map ∗!X is a Hurewicz cofibration for any R-module X;
• Hurewicz cofibrations are preserved by cobase change (pushout);
• for a map of S -algebras R!R′, the forgetful functor from R′-modules to R-

modules preserves Hurewicz cofibrations.

Use of this type of cofibration was a key tool in [4] for keeping homotopical con-
trol; a key fact is that pushouts along Hurewicz cofibrations preserve weak equivalences
[4, Corollary I.6.5], and in particular Waldhausen’s gluing lemma [11, §1.2] holds.

Since we are thinking of P in terms of finite Postnikov stages, it makes more sense
philosophically to work with fibrations: Pop forms a Waldhausen category with weak
equivalences the maps opposite to the usual weak equivalences, and with w-cofibrations
the maps opposite to the Hurewicz fibrations (maps satisfying the covering homotopy
property). Although not strictly necessary for the dévissage theorem, the following the-
orem proved in §2 straightens out this discrepancy.

Theorem 1.1. The spectra K(P) and K(Pop) are weakly equivalent.

This result is essentially a consequence of the fact that P is a stable category, and
in particular follows from the observation that homotopy cocartesian and homotopy
cartesian squares coincide in P. As part of the technical machinery employed in the
proof of the dévissage theorem, we introduce a variant of Waldhausen’s S

�
construction,

using homotopy cocartesian squares where pushout squares along w-cofibrations are used
in the S

�
construction. We denote this construction by S′

�
. Theorem 1.1 follows from the

comparison of the S′
�

construction with the S
�

construction in §2.

Let Pn
m for m6n denote the full subcategory of P consisting of those R-modules

whose homotopy groups πq are zero for q>n or q<m. In this notation, we permitm=−∞
and/or n=∞, so P=P∞−∞. Define a w-cofibration in Pn

m to be a Hurewicz cofibration
whose cofiber is still in Pn

m, or, equivalently, a Hurewicz cofibration inducing an injection
on πn. This definition makes Pn

m into a Waldhausen category with the usual weak
equivalences; it is a “Waldhausen subcategory” of P [11, §1.2]. We prove the following
theorem in §3 and §4.

Theorem 1.2. The inclusion P0
0!P induces a weak equivalence of K-theory spectra.

Let E denote the exact category of finitely generated left π0R-modules (or a skele-
ton, to obtain a small category). This becomes a Waldhausen category with weak
equivalences the isomorphisms and w-cofibrations the injections. Waldhausen’s “S

�
=Q”

theorem [11, §1.9] identifies the Waldhausen K-theory K(E) as K ′(π0R). The functor
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π0:P0
0!E is an “exact functor” of Waldhausen categories: it preserves weak equiva-

lences, w-cofibrations and pushouts along w-cofibrations. It follows that π0 induces a
map from K(P0

0 ) to K(E)'K ′(π0R). We prove the following theorem in §4.

Theorem 1.3. The functor π0 induces a weak equivalence K(P0
0 )!K(E).

Theorems 1.2 and 1.3 together imply the dévissage theorem. For K-theoretic rea-
sons, we should regard K ′(π0R)!K(P) to be the natural direction of the composite
zigzag, as this is compatible with the forgetful functor PHπ0R!PR (induced by pullback
along the map R!Hπ0R). Although it appears feasible to construct directly a map of
spectra K ′(π0R)!K(P) using a version of the Eilenberg–MacLane bar construction, the
technical work required would be unrelated to the arguments in the rest of this paper,
and so we have not pursued it.

Next we deduce the localization theorem from the dévissage theorem. Let R be one
of ku, `, or `∧p , and let β denote the appropriate Bott element in π∗R in degree 2 or
2p−2. Then R[β−1] is KU , L, or L∧p , respectively. For convenience, let Z denote π0R;
so Z=Z, Z(p), or Z∧p , in the respective cases. Then for A=HZ, R, or R[β−1], let CA

be the category of finite cell A-modules, which we regard as a Waldhausen category
with w-cofibrations the maps that are isomorphic to inclusions of cell subcomplexes,
and with weak equivalences the usual weak equivalences, that is, the maps that induce
isomorphisms on homotopy groups. As explained in [4], the Waldhausen K-theory of
CA is the algebraic K-theory of A. When A=HZ, the K-theory spectrum K(CA) is
equivalent to Quillen’s K-theory of the ring Z [4, Theorem VI.4.3]. In the case of
A=HZ or A=R, the K-theory spectrum K(CA) is equivalent to two other reasonable
versions of the K-theory of A: the K-theory spectrum defined via the plus construction
of “BGL(A)” [4, §VI.7] and the K-theory spectrum defined via the permutative category
of wedges of sphere A-modules [4, §VI.6]. However, when A=R[β−1], the construction
K(CA) and its variants are essentially the only known ways to define K(A).

Let CR[β−1] denote the Waldhausen category whose underlying category is CR and
whose w-cofibrations are the maps that are isomorphic to inclusions of cell subcomplexes,
but whose weak equivalences are the maps that induce isomorphisms on homotopy groups
after inverting β. The identity functor CR!CR[β−1] is then an exact functor, because
the weak equivalences in CR are in particular weak equivalences in CR[β−1]. Let Cβ

R be
the full subcategory of CR of objects that are weakly equivalent in CR[β−1] to the trivial
object ∗, that is, the finite cell R-modules whose homotopy groups become zero after
inverting β. In other words, we consider CR with two subcategories of weak equivalences,
one of which is coarser than the other, and the category of acyclic objects for the coarse
weak equivalences. This is the situation in which Waldhausen’s “fibration theorem”
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[11, Theorem 1.6.4] applies. The conclusion in this case, restated in terms of the stable
category, is the following proposition.

Proposition 1.4. There is a connecting map (of spectra) K(CR[β−1])!ΣK(Cβ
R),

which together with the canonical maps makes the sequence

K(Cβ
R)−!K(R)−!K(CR[β−1])−!ΣK(Cβ

R)

a cofiber sequence in the stable category.

For the proof of the localization theorem, we need to identify K(Cβ
R) as K(π0R),

K(CR[β−1]) as K(R[β−1]), and the maps as the transfer map and the canonical map.
We begin with the comparison of K(CR[β−1]) with K(R[β−1]). The localization

functor R[β−1]∧R(−) restricts to an exact functor of Waldhausen categories

CR[β−1]−! CR[β−1].

Waldhausen developed a general tool for showing that an exact functor induces a weak
equivalence ofK-theory spectra, called the “approximation theorem” [11, Theorem 1.6.7].
In the case of a telescopic localization functor like this one, the argument of [10] adapts
to show that the hypotheses of Waldhausen’s approximation theorem are satisfied. This
then proves the following proposition.

Proposition 1.5. The canonical map K(R)!K(R[β−1]) factors as the map

K(R)−!K(CR[β−1])

in Proposition 1.4 and a weak equivalence

K(CR[β−1])−!K(R[β−1]).

Next we move on to the comparison of K(Cβ
R) and K(π0R). Since finite cell R-

modules that are β -torsion have finitely generated homotopy groups concentrated in a
finite range, Cβ

R is a subcategory of PR. Cellular inclusions are Hurewicz cofibrations, so
the inclusion Cβ

R!PR is an exact functor of Waldhausen categories. On the other hand,
since the cofiber of β is a model for the Eilenberg–MacLane R-module Hπ0R, an induc-
tion over Postnikov sections implies that every object in PR is weakly equivalent to an
object in Cβ

R. Standard arguments (e.g., [4, Theorem VI.2.5] and the Whitehead theorem
for cell R-modules) apply to verify that the inclusion Cβ

R!PR satisfies the hypotheses
of Waldhausen’s approximation theorem [11, Theorem 1.6.7], and thus induces a weak
equivalence of K-theory spectra.
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The cofiber sequence of Proposition 1.4 is therefore equivalent to one of the form
(cf. [3, Proposition 6.8ff])

K(P)−!K(R)−!K(R[β−1])−!ΣK(P).

Applying the dévissage theorem, we get a weak equivalence

K(HZ)'K ′(Z)'K(P)'K(Cβ
R).

To complete the proof of the localization theorem, we need to identify the composite
map K(HZ)!K(R) with the transfer map K(HZ)!K(R) induced from the forgetful
functor. We begin by reviewing this transfer map.

The transfer map arises because HZ is weakly equivalent to a finite cell R-module;
as a consequence all finite cell HZ-modules are weakly equivalent to finite cell R-modules.
To put this into the context of Waldhausen categories and exact functors, let MR (resp.
MHZ) be the full subcategory of R-modules (resp. HZ-modules) that are weakly equiv-
alent to finite cell modules. We make MR and MHZ Waldhausen categories with w-
cofibrations the Hurewicz cofibrations and weak equivalences the usual weak equivalences.
Then the forgetful functor from HZ-modules to R-modules restricts to an exact functor
MHZ!MR. The inclusions CR!MR and CHZ!MHZ are exact functors. Again, a
standard argument [4, Proposition VI.3.5] with Waldhausen’s approximation theorem
shows that these inclusions induce weak equivalences of K-theory spectra. The transfer
map K(HZ)!K(R) is the induced map

K(HZ)'K(MHZ)−!K(MR)'K(R).

The Waldhausen category PR is a Waldhausen subcategory of MR, and the exact
functor Cβ

R!MR lands in PR as does the exact functor MHZ!MR. We therefore
obtain the following commutative diagram of exact functors:

CHZ

��

Cβ
R

//

��

CR

��

MHZ
// PR

//MR.

This induces the following commutative diagram of K-theory spectra, with the arrows
marked “'” weak equivalences (see also Remark 1.7):

K(HZ)

'
��

K(Cβ
R)

'
��

// K(R)

'
��

K(MHZ) '
// K(PR) // K(MR).
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Here the lower left map K(MHZ)!K(PR) is a weak equivalence by the dévissage theo-
rem above, since MHZ =PHZ . This proves the following proposition.

Proposition 1.6. The transfer map K(HZ)!K(R) factors in the stable category
as a weak equivalence K(HZ)!K(Cβ

R) and the map K(Cβ
R)!K(R) in Proposition 1.4.

Finally, the localization theorem of the introduction follows immediately from
Propositions 1.4, 1.5 and 1.6. We close this section with a remark on smallness.

Remark 1.7. The Waldhausen categories PR and MR discussed above can be re-
placed by small Waldhausen categories with equivalent K-theory spectra. For any cardi-
nal k, let Pk and Mk be the full subcategories of PR and MR (respectively) consisting of
those objects M such that the underlying sets of the underlying spaces of the underlying
prespectrum of M are subsets of the power-set of k. Then Pk is a small category. When
k is bigger than the continuum and the cardinality of the underlying sets of R, then Pk

and Mk contain a representative of every weak equivalence class in PR and MR, respec-
tively. Furthermore, PR and MR are closed under pushouts along Hurewicz cofibrations
and pullbacks along Hurewicz fibrations, and closed up to natural isomorphism under
the functors (−)∧X and F (X,−) for finite cell complexes X.

Let CPk be the Waldhausen category whose objects are the objects M of Pk together
with the structure of a cell complex on M , whose morphisms are the maps of R-modules,
whose w-cofibrations are the maps that are isomorphic to inclusions of cell subcomplexes,
and whose weak equivalences are the usual weak equivalences. Let CMk be the analogous
category for Mk. When k is bigger than the continuum and the cardinality of the
underlying sets of R, then, for any cardinal λ>k, the functors CPk!Pλ and CMk!Mλ

are exact and satisfy the hypotheses of Waldhausen’s approximation theorem. It follows
that these functors induce equivalences of K-theory spectra. The reader unwilling to
consider the K-theory of Waldhausen categories that are not small can therefore use
K(Pk) in place of K(PR), K(Mk) in place of K(MR), etc.

2. The S′
�

construction and the proof of Theorem 1.1

For the Waldhausen categories Pn
m, the condition of being a w-cofibration consists of both

a point-set requirement (HEP condition) and a homotopical requirement (injectivity
on πn). It is convenient for the arguments in the next section to separate these two
requirements. We do that in this section by describing a variant S′

�
of the S

�
construction

defined in terms of “homotopy cocartesian” squares instead of pushouts of w-cofibrations.
For a large class of Waldhausen categories including P, Pop, and the categories Pn

m, the
S′
�
construction is equivalent to the S

�
construction and can therefore be used in its place
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to construct algebraic K-theory. In fact, since the notions of homotopy cocartesian and
homotopy cartesian agree in P, Theorem 1.1, which compares the algebraic K-theory
of P (defined in terms of cofibrations) with that of Pop (defined in terms of fibrations),
then follows as an easy consequence.

The hypothesis on a Waldhausen category we use is a weak version of “functorial
factorization”. The Waldhausen category C admits functorial factorization when any
map f :A!B in C factors as a w-cofibration followed by a weak equivalence

A // //

f

55Tf
' // B,

functorially in f in the category Ar C of arrows in C. In other words, given the map φ of
arrows on the left (i.e., the commuting diagram),

A
f
//

a

��

φ

B

b

��

A // //

a

��

Tf
' //

Tφ

��

B

b

��

A′
f ′
// B′ A′ // // Tf ′ '

// B′,

we have a map Tφ that makes the diagram on the right commute and that satisfies
the usual identity and composition relations, T idf =idTf and T (φ′�φ)=Tφ′�Tφ. For
example, the Waldhausen categories P and Pop admit functorial factorizations using the
usual mapping cylinder and mapping path-space constructions

Mf =(A∧I+)∪AB for P, Nf =BI+×BA for Pop. (2.1)

Functorial factorization generalizes Waldhausen’s notion of “cylinder functor satisfy-
ing the cylinder axiom”, but is still not quite general enough to apply to the Waldhausen
categories Pn

m for n<∞, where a map is weakly equivalent to a w-cofibration only when
it is injective on πn. This leads to the following definition.

Definition 2.2. Let C be a Waldhausen category. Define a map f :A!B in C to be
a weak w-cofibration if it is weakly equivalent in Ar C (by a zigzag) to a w-cofibration.
We say that C admits functorial factorization of weak w-cofibrations (FFWC) when weak
w-cofibrations can be factored functorially (in Ar C) as a w-cofibration followed by a weak
equivalence.

Recall that a full subcategory B of a Waldhausen category C is called a Waldhausen
subcategory when it forms a Waldhausen category with weak equivalences the weak equiv-
alences of C, and with w-cofibrations the w-cofibrations A!B in C (between objects A
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and B of B) whose quotient B/A=B∪A∗ is in B. In particular, it is straightforward to
check that a full subcategory of a Waldhausen category that is closed under extensions is
a Waldhausen subcategory; examples include the subcategories Pn

m of P. We say that the
Waldhausen subcategory B is closed if every object of C weakly equivalent to an object
of B is an object of B. The advantage of the hypothesis of FFWC over the hypothesis of
functorial factorization is the following proposition.

Proposition 2.3. If B is a closed Waldhausen subcategory of a Waldhausen cat-
egory C that admits FFWC , then B admits FFWC. Moreover , a weak w-cofibration
f :A!B in C between objects in B is a weak w-cofibration in B if and only if the map
A!Tf in its factorization in C is a w-cofibration in B.

Proof. Let f :A!B be a weak w-cofibration in C between objects in B. Then f is
weakly equivalent by a zigzag in B to a w-cofibration f ′:A′!B′ in C,

A′
��

f ′

��

' // A1

f1

��

...'oo An
'oo ' //

fn

��

A

f

��

B′ '
// B1

...
'
oo Bn'

oo
'
// B.

Applying functorial factorization in C, we get weak equivalences

B′/A′ Tf ′/A′
' //'oo Tf1/A1 ...'oo Tfn/An

'oo ' // Tf/A,

which imply that the map A!Tf is a w-cofibration in B if and only if f :A!B is a weak
w-cofibration in B.

In general, the weak w-cofibrations do not necessarily form a subcategory of C; the
composition of two weak w-cofibrations might not be a weak w-cofibration. However, in
the presence of FFWC the weak w-cofibrations are well-behaved.

Proposition 2.4. Let C be a Waldhausen category that admits FFWC. If f :A!B
and g:B!C are weak w-cofibrations in C, then g�f :A!C is a weak w-cofibration in C.

Proof. Applying functorial factorization in C, we can factor f and g as the composites

A // // Tf
' // B and B // // Tg

' // C.

The composite map h:Tf!B!Tg is a weak w-cofibration, as it is weakly equivalent in
Ar C to g. We can therefore apply the factorization functor to h to obtain a w-cofibration
Tf!Th and a weak equivalence Th!Tg. The composite w-cofibration A!Tf!Th is
then weakly equivalent to g�f .
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A square diagram in a Waldhausen category (for example) is called homotopy co-
cartesian if it is weakly equivalent (by a zigzag) to a pushout square where one of the
parallel sets of arrows consists of w-cofibrations. The corresponding set of parallel arrows
in the original square then consists of weak w-cofibrations. When a Waldhausen cate-
gory admits FFWC, there is a good criterion in terms of the factorization functor T for
detecting homotopy cocartesian squares. We state it for a Waldhausen category that is
saturated, i.e., one whose weak equivalences satisfy the “two-out-of-three property” (see,
for example, [11, §1.2]). The proof is similar to that of Proposition 2.3.

Proposition 2.5. Let C be a saturated Waldhausen category admitting FFWC with
functor T . A commutative diagram

A
f
//

��

B

��

C // D

with f a weak w-cofibration is homotopy cocartesian if and only if the map Tf∪AC!D
is a weak equivalence.

Likewise, for saturated Waldhausen categories admitting FFWC, homotopy cocarte-
sian squares have many of the usual expected properties. We summarize the ones we
need in the following proposition; its proof is a straightforward application of the previous
proposition.

Proposition 2.6. Let C be a saturated Waldhausen category admitting FFWC.
(i) Given a commutative cube

A′ //

��

  B
BB B′

��

!!C
CC

A //

��

B

��

C ′ //

  B
BB D′

!!C
CC

C // D

with the faces ABCD and A′B′C ′D′ homotopy cocartesian, if the maps A′!A, B′!B,
and C ′!C are weak equivalences, then the map D′!D is a weak equivalence.

(ii) Given a commutative diagram

A //

��

B

��

// X

��

C // D // Y
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with the square ABCD homotopy cocartesian, if either A!C is a weak w-cofibration
or both A!B and B!X are weak w-cofibrations, then the square AXCY is homotopy
cocartesian if and only if the square BXDY is homotopy cocartesian.

We use the concept of weak w-cofibration and the previous propositions to build a
homotopical variant of the S

�
construction. First, we recall the S

�
construction in detail.

Waldhausen’s S
�

construction produces a simplicial Waldhausen category S
�
C from a

Waldhausen category C and is defined as follows. Let Ar[n] denote the category with
objects (i, j), for 06i6j6n, and a unique map (i, j)!(i′, j′), for i6i′ and j6j′. Then
SnC is defined to be the full subcategory of the category of functors A: Ar[n]!C (where
we write Ai,j for A(i, j)) such that the following conditions are satisfied:

• Ai,i=∗ for all i;
• the map Ai,j!Ai,k is a w-cofibration for all i6j6k;
• the diagram

Ai,j //

��

Ai,k

��

Aj,j // Aj,k

is a pushout square for all i6j6k.
The last two conditions can be simplified to the hypothesis that each map

A0,j −!A0,j+1

is a w-cofibration and that the induced maps A0,j/A0,i!Ai,j are isomorphisms. This
becomes a Waldhausen category by defining a map A!B to be a weak equivalence
when each Ai,j!Bi,j is a weak equivalence in C, and to be a w-cofibration when each
Ai,j!Bi,j and each induced map Ai,k∪Ai,jBi,j!Bi,k is a w-cofibration in C.

Definition 2.7. Let C be a saturated Waldhausen category that admits FFWC. De-
fine S′nC to be the full subcategory of functors A: Ar[n]!C such that the following con-
ditions are satisfied:

• the initial map ∗!Ai,i is a weak equivalence for all i;
• the map Ai,j!Ai,k is a weak w-cofibration for all i6j6k;
• the diagram

Ai,j //

��

Ai,k

��

Aj,j // Aj,k

is a homotopy cocartesian square for all i6j6k.
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We define a map A!B to be a weak equivalence when each Ai,j!Bi,j is a weak
equivalence in C, and to be a w-cofibration when each Ai,j!Bi,j is a w-cofibration in C
and each induced map Ai,k∪Ai,jBi,j!Bi,k is a weak w-cofibration in C.

The following theorem in particular allows us to iterate the S′
�

construction.

Theorem 2.8. Let C be a saturated Waldhausen category that admits FFWC. Then
S′nC is also a saturated Waldhausen category that admits FFWC.

Proof. The proof that S′nC is a saturated Waldhausen category follows the same
outline as the proof that SnC is a saturated Waldhausen category, substituting Proposi-
tions 2.5 and 2.6 for the homotopy cocartesian squares in place of the usual arguments
for pushout squares. To show that S′nC admits FFWC, we construct a factorization func-
tor T as follows. Given a weak w-cofibration f :A!B in S′nC, let (Tf)i,j =T (fi,j). This
then factors f as a map A!Tf followed by a weak equivalence Tf!B; we need to check
that the map A!Tf is a w-cofibration. Since, by construction, the maps Ai,j!Tfi,j

are w-cofibrations, we just need to check that the maps Ai,k∪Ai,j Tfi,j!Tfi,k are weak
w-cofibrations. Since, by hypothesis, f is a weak w-cofibration in S′nC, it is weakly
equivalent (by a zigzag) to a w-cofibration f ′:A′!B′ in S′nC. It follows that the maps

Ai,k∪Ai,j Tfi,j −!Tfi,k and A′i,k∪A′
i,j
Tf ′i,j −!Tf ′i,k

are weakly equivalent (by the corresponding zigzag). Since A′i,j!B′i,j is a w-cofibration,
the canonical map

A′i,k∪A′
i,j
Tf ′i,j

��

' // A′i,k∪A′
i,j
B′i,j

��

Tf ′i,k '
// B′i,k

is a weak equivalence. The map A′i,k∪A′
i,j
B′i,j!B′i,k is a weak w-cofibration by hypothe-

sis, and so the maps A′i,k∪A′
i,j
Tf ′i,j!Tf ′i,k and Ai,k∪Ai,j Tfi,j!Tfi,k are therefore weak

w-cofibrations.

Both S
�
C and S′

�
C become simplicial Waldhausen categories with face map ∂i deleting

the ith row and column, and degeneracy map si repeating the ith row and column. For
each n, we denote the nerve of the category of weak equivalences in SnC by w

�
SnC. As n

varies, w
�
S
�
C assembles into a bisimplicial set, and we denote the geometric realization

by |w
�
S
�
C|. By definition, the algebraic K-theory space of C is Ω|w

�
S
�
C|. The algebraic

K-theory spectrum is obtained by iterating the S
�
construction: its nth space is |w

�
S

(n)
� C|.

The following theorem therefore implies that algebraic K-theory can be constructed from
the S′

�
construction.
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Theorem 2.9. Let C be a saturated Waldhausen category that admits FFWC. The
inclusion of S

�
C in S′

�
C is an exact simplicial functor and the induced map of bisimplicial

sets w
�
S
�
C!w

�
S′
�
C is a weak equivalence.

Proof. The fact that S
�
C!S′

�
C is an exact simplicial functor is clear from the def-

inition of the simplicial structure and the weak equivalences and w-cofibrations in each
category. To see that it induces a weak equivalence on nerves, it suffices to show that
for each n, the map w

�
SnC!w�

S′nC is a weak equivalence. We do this by constructing a
functor Φ:S′nC!SnC and natural weak equivalences relating Φ and the identity in both
S′nC and SnC. In S′nC, we construct a zigzag of natural weak equivalences of the form

Φ Θ
q

'
oo ε

'
// Id,

and in SnC, we construct a weak equivalence Φ!Id.
We define the functor Θ inductively as follows. Given an object A in S′nC, let

Θ0,0A=A0,0 and let ε0,0: Θ0,0A!A0,0 be the identity map. Given Θ0,jA and

ε0,j : Θ0,jA−!A0,j ,

define Θ0,j+1A to be Tf and ε0,j+1:Tf!A0,j+1 to be the canonical weak equivalence,
where f : Θ0,jA!A0,j+1 is the composite of ε0,j with the map A0,j!A0,j+1 in the struc-
ture of the functor A. As a consequence of the construction, we have w-cofibrations
Θ0,jA!Θ0,j+1A. Next we construct the diagonal objects Θi,iA; given Θj,jA and

εj,j : Θj,jA−!Aj,j ,

define Θj+1,j+1A to be Tf and εj+1,j+1:Tf!A0,j+1 to be the canonical weak equiva-
lence, for f : Θj,jA!Aj,j!Aj+1,j+1. Finally, for 0<i<j, let

Θi,jA=Θ0,jA∪Θ0,iAΘi,iA

and let εi,j : Θi,jA!Ai,j be the map induced by the universal property of the pushout.
By Proposition 2.6, the maps εi,j are weak equivalences. Thus, Θ defines a functor from
S′nC to itself, and ε defines a natural transformation from Θ to the identity.

We define Φ and q by setting Φi,iA=∗,

Φi,jA=Θi,jA/ΘAi,i,

and letting qi,j : Θi,jA!Φi,jA be the quotient map. Since the initial map ∗!Θi,iA is a
weak equivalence, so is the final map Θi,iA!∗, and thus each qi,j is a weak equivalence.
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The construction of Θi,jA as a pushout for 0<i<j implies that the induced map from
the quotient Φ0,jA/Φ0,iA to Φi,jA is an isomorphism. It follows that Φ defines a functor
from S′nC to SnC and a natural weak equivalence q in S′nC from Θ to Φ.

Finally, if A is an object of SnC, then Ai,i=∗ for all i, and the map ε: ΘA!A factors
through the quotient ΦA. This defines a natural weak equivalence from Φ to the identity
in SnC.

Theorem 1.1 is an easy consequence of Theorem 2.9: because a square in P is
homotopy cocartesian if and only if it is homotopy cartesian (homotopy cocartesian
in Pop), the categories S′nP and S′nPop are (contravariantly) isomorphic, for each n, by
the isomorphism that renumbers the diagram by the involution (i, j) 7!(n−j, n−i). The
bisimplicial sets w

�
S′
�
P and w

�
S′
�
Pop then only differ in the orientation of the simplices,

and the spaces Ω|w
�
S′
�
P| and Ω|w

�
S′
�
Pop| are homeomorphic. Comparing iterates of the

S′
�

construction and the suspension maps, we obtain an equivalence of K-theory spectra.

3. A reduction of Theorem 1.2

The purpose of this section is to reduce Theorem 1.2 to Theorem 3.10 below. That
theorem is similar in spirit to Theorem 1.3, and both are proved with closely related
arguments in the next section.

We begin by reducing to the subcategory of connective objects.

Lemma 3.1. The inclusion P∞0 !P induces an equivalence of K-theory.

Proof. Since P=colimm P∞−m and S
�
P=colimm S

�
P∞−m, it suffices to show that the

inclusions P∞−m!P∞−m−1 induce equivalences of K-theory. Suspension gives an ex-
act functor P∞−m−1!P∞−m. The composite endomorphisms on P∞−m and P∞−m−1 are
the suspension functors, which on the K-theory spectra induce multiplication by −1
[11, Proposition 1.6.2], and in particular are weak equivalences.

We also have P∞0 =colimn Pn
0 and S

�
P∞0 =colimn S�

Pn
0 , which give the following

proposition.

Proposition 3.2. The spectrum KP∞0 is equivalent to the telescope of the sequence
of maps KP0

0!...!KPn
0!KPn+1

0 !... .

The proof of Theorem 1.2 will then be completed by showing that the maps

Pn
0 −!Pn+1

0

induce weak equivalences of K-theory spectra, which we do by studying the cofiber.
According to Waldhausen [11, Corollary 1.5.6], for a Waldhausen category C and a
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Waldhausen subcategory B, the spectrum-level cofiber of KB!KC is the K-theory spec-
trum of the simplicial Waldhausen category F

�
(C,B), defined as follows. The Waldhausen

category Fq(C,B) has as objects the sequences of q composable w-cofibrations in C

C0
// // ... // // Ci

// // ... // // Cq

such that the quotients Cj/Ci are in B for all 06i<j6q, and has commutative dia-
grams as morphisms. A map C!D is a weak equivalence when the maps Ci!Di are
weak equivalences in C for all i, and is a w-cofibration when the maps Ci!Di are w-
cofibrations for all i and the maps Cj∪CiDi!Dj are w-cofibrations for all i<j. The
face map ∂i deletes the object Ci and uses the composite w-cofibration Ci−1!Ci+1, and
the degeneracy map si repeats the object Ci, inserting the identity map. We use the
following variant of this construction.

Definition 3.3. For a saturated Waldhausen category C that admits FFWC and a
closed Waldhausen subcategory B, let F ′q(C,B) denote the category that has as objects
the sequences of q composable weak w-cofibrations in C,

C0−! ...−!Ci−! ...−!Cq,

such that for all 06i<j6q there exist an object Bi,j in B and a map Cj!Bi,j for which
the square

Ci
//

��

Cj

��

∗ // Bi,j

commutes and is homotopy cocartesian. A morphism C!D in F ′q(C,B) is a commutative
diagram

C0
//

��

... // Ci

��

// ... // Cq

��

D0
// ... // Di

// ... // Dq.

We make F ′q(C,B) into a Waldhausen category by declaring a map C!D to be a weak
equivalence when the maps Ci!Di are weak equivalences in C for all i, and to be a
w-cofibration when the maps Ci!Di are w-cofibrations for all i and the maps

Cj∪CiDi−!Dj

are weak w-cofibrations for all i<j.
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Note that in the above definition, the choice of “Bi,j” in B is not part of the structure
of the object C. The hypothesis involving the existence of the objects Bi,j is a precise
way of making sense of the condition that the “homotopy cofiber” of Ci!Cj lies in B for
an arbitrary Waldhausen category C. We assemble F ′

�
(C,B) into a simplicial Waldhausen

category just as F
�
(C,B) above: the face map ∂i deletes the object Ci and uses the

composite weak w-cofibration Ci−1!Ci+1; the degeneracy map si repeats the object
Ci, inserting the identity map. The inclusion F

�
(C,B)!F ′

�
(C,B) is an exact simplicial

functor.
We have stated the definitions of F and F ′ for general C and B, rather than just for

Pn+1
0 and Pn

0 , in order to apply a standard trick of Waldhausen [11] of commuting these
constructions past another construction, in this case the S′

�
construction. When C is a

saturated Waldhausen category that admits FFWC, the Waldhausen category S′pFq(C,B)
is isomorphic to Fq(S′pC, S′pB) and the Waldhausen category S′pF

′
q(C,B) is isomorphic to

F ′q(S
′
pC, S′pB). The argument for Theorem 2.9 also shows that the inclusion w

�
Fq(C,B)!

w
�
F ′q(C,B) is a homotopy equivalence of simplicial sets for all q. Since S′pC is also a

saturated Waldhausen category that admits FFWC and S′pB is a closed Waldhausen
subcategory of S′pC, it follows that the inclusion w

�
Fq(S′pC, S′pB)!w

�
F ′q(S

′
pC, S′pB) is

a homotopy equivalence of simplicial sets for all p and q. This proves the following
proposition.

Proposition 3.4. Let C be a saturated Waldhausen category that admits FFWC and
B be a closed Waldhausen subcategory. Then the inclusion F

�
(C,B)!F ′

�
(C,B) induces a

weak equivalence of K-theory spectra. Thus, we have a cofibration sequence

KB−!KC −!KF ′
�
(C,B)−!ΣKB

in the stable category.

The remainder of the proof of Theorem 1.2 is to show that w
�
S′
�
F ′
�
(Pn+1

0 ,Pn
0 ) is

weakly contractible for all n>0. The first step is to eliminate one of the simplicial
directions.

Definition 3.5. Let Un+1 be the subcategory of Pn+1
0 consisting of all objects and

those maps that induce an isomorphism on πn+1 and an injection in πn. Let uS′pPn+1
0

denote the subcategory of S′pPn+1
0 consisting of all objects and those maps f in S′pPn+1

0

such that fi,j is in Un+1 for all 06i<j6p.

To avoid a possible point of confusion, note that Un+1 and uS′pPn+1
0 are not cate-

gories of weak equivalences in the sense of Waldhausen. Rather, the point of the category
Un+1 is that a map f :A!B in Pn+1

0 has homotopy cofiber in Pn
0 if and only if f is a map
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in Un+1. Writing u
�
S′pPn+1

0 for the nerve of uS′pPn+1
0 , the set of q-simplices uqS

′
pPn+1

0 is
precisely the set of objects of F ′q(S

′
pPn+1

0 , S′pPn
0 ). The following lemma is a special case

of Waldhausen’s “swallowing lemma” [11, Lemma 1.6.5].

Lemma 3.6. The inclusion

u
�
S′pPn+1

0 =w0F
′
�
(S′pPn+1

0 , S′pPn
0 )−!w

�
F ′
�
(S′pPn+1

0 , S′pPn
0 )

is a weak equivalence for all p.

Proof. Let uwrS
′
p denote the category whose objects are the sequences of r compos-

able weak equivalences between objects in S′pPn+1
0 ,

A0
' // ... ' // Ai

' // ... ' // Ar,

and whose maps A!B are the commutative diagrams

A0
' //

u

��

... ' // Ai
' //

u

��

... ' // Ar

u

��

B0 '
// ...

'
// Bi '

// ...
'
// Br

with each map Ai!Bi in uS′pPn+1
0 . Then, for each r, wrF

′
�
(S′pPn+1

0 , S′pPn
0 ) is the nerve

u
�
wrS

′
p of the category u

�
wrS

′
p, and the map in question is the inclusion of u

�
w0S

′
p in

u
�
w

�
S′p. Thus, to show that it is a weak equivalence, it suffices to show that each iterated

degeneracy u
�
w0S

′
p!u�

wrS
′
p is a weak equivalence. The map u

�
w0S

′
p!u�

wrS
′
p is the

nerve of the functor that sends A to the sequence of identity maps A=...=A. This is left
adjoint to the functor uwrS

′
p!uw0S

′
p that sends a sequence A0!...!Ar to its zeroth

object A0. It follows that u
�
w0S

′
p!u�

wrS
′
p is a homotopy equivalence.

At this point we could state Theorem 3.10, although it would appear somewhat
cryptic. To explain the form it takes, consider the further simplification of replacing
the upper triangular diagrams of S′p with a sequence of composable maps (at the cost of
losing the simplicial structure in p). For a Waldhausen category C, let Fp−1C=Fp−1(C, C)
be the Waldhausen category whose objects are the sequences of p−1 composable w-
cofibrations in C. Then the functor wSpC!wFp−1C that sends (Ai,j) to A0,1!...!A0,p

is an equivalence of categories and therefore induces a weak equivalence of nerves. When
C is a saturated Waldhausen category that admits FFWC, we have the Waldhausen
category F ′p−1C=F ′p−1(C, C) and the analogous functor wS′pC!wF ′p−1C induces a weak
equivalence of nerves. This argument does not apply to the map

u
�
S′pPn+1

0 −!u
�
F ′p−1Pn+1

0 ,
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however. The reason is that when A1!A2 and B1!B2 are weak w-cofibrations in Pn+1
0

(maps that are injective on πn+1), and

A1
//

u

��

A2

u

��

B1
// B2

is a commutative diagram with the vertical maps in Un+1, then the induced map on
homotopy pushouts (with notation as in (2.1))

M(A1!A2)−!M(B1!B2)

is generally not a map in Un+1. The key is to look instead at the “weak fibration”
analogue: if we assume instead that A1!A2 and B1!B2 are maps in Pn+1

0 that induce
epimorphisms on π0, then for a commutative diagram as above, the induced map of
homotopy pullbacks

N(A1!A2)−!N(B1!B2)

is a map in Un+1 by the five lemma. This suggests the following definition.

Definition 3.7. Let F f
q Pn+1

0 be the category where an object is a sequence of q
composable maps A0!...!Aq in Pn+1

0 that induce epimorphisms on π0, and a morphism
is a commutative diagram. Let uF f

q Pn+1
0 denote the subcategory containing all objects

of F f
q Pn+1

0 , but consisting of only those morphisms A!B such that Ai!Bi is in Un+1

for all i.

For any object A=(Ai,j) in S′pPn+1
0 , the maps Ai,p!Aj,p induce epimorphisms on

π0 for all 06i<j6p−1, and so we get a functor φ:S′pPn+1
0 !F f

p−1P
n+1
0 that sends A to

A0,p!A1,p!...!Ap−1,p. Moreover, since the squares in A are homotopy (co)cartesian,
we can recover Ai,j from φA, up to weak equivalence, as the homotopy fiber of the
map Ai,p!Aj,p for all 06i<j6p−1. Likewise, for any object (Ai) in F f

p−1P
n+1
0 , the

homotopy pullback of each map Ai!Aj is an object of Pn+1
0 , and the mapping path-

space construction analogous to the construction in the proof of Theorem 2.9 con-
structs a functor Φ:F f

p−1P
n+1
0 !S′pPn+1

0 and natural weak equivalences relating φ�Φ
and Φ�φ to the identity functors in F f

p−1P
n+1
0 and S′pPn+1

0 . As mentioned above, the
five lemma implies that a morphism A!B in S′pPn+1

0 is in uS′pPn+1
0 if and only if

φA!φB is in uF f
p−1P

n+1
0 ; thus, φ and Φ restrict to functors φ:uS′pPn+1

0 !uF f
p−1P

n+1
0

and Φ:uF f
p−1P

n+1
0 !uS′pPn+1

0 . As a consequence, we obtain the following proposition.

Proposition 3.8. The functor φ:uS′pPn+1
0 !uF f

p−1P
n+1
0 induces a weak equiva-

lence of nerves for each p.
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For any object A of Pn+1
0 , the n-connected cover A〈n〉 is an Eilenberg–MacLane R-

module K(πn+1A,n+1), and the map A〈n〉!A is in Un+1. This suggests that the nerve
u
�
F f

p−1P
n+1
0 is weakly equivalent to the nerve of the full subcategory of sequences of maps

of K(π, n+1)’s (see Lemma 4.2 below for a precise statement). This further suggests that
we can understand u

�
F f

p−1P
n+1
0 , and therefore u

�
S′pPn+1

0 , in terms of πn+1. This leads
to the following definition.

Definition 3.9. Let Z=π0R. Let MpZ be the category whose objects are sequences
of p−1 composable maps of finitely generated Z-modules X0!...!Xp−1 and whose
morphisms are commutative diagrams. Let uMpZ be the subcategory of MpZ consisting
of all objects but only those mapsX!Y that are isomorphismsXi!Yi for all 06i6p−1.

We understand uM0Z to be the trivial category consisting of a single object (the
empty sequence of maps) with only the identity map. We then make uM

�
Z into a

simplicial category as follows: for 06i6p−1, the face map ∂i:MpZ!Mp−1Z is ob-
tained by dropping Xi (and composing), and the degeneracy map si:Mp−1Z!MpZ is
obtained by repeating Xi (with the identity map). The face map ∂p:MpZ!Mp−1Z

sends X0!...!Xp−1 to K0!...!Kp−2, where Ki is the kernel of the composite map
Xi!Xp−1. The last degeneracy sp−1:Mp−1Z!MpZ inserts 0 as the last object in the
sequence. With this definition, the functors ψp:uS′pPn+1

0 !uMpZ that take A=(Ai,j) in
S′pPn+1

0 to
πn+1(A0,p)−!πn+1(A1,p)−! ...−!πn+1(Ap−1,p)

in MpZ assemble to a simplicial functor ψ:uS′
�
Pn+1

0 !uM
�
Z. Note also that for each p,

the functor ψp factors as the composite πn+1�φ. We will exploit this factorization to
prove the following theorem in the next section.

Theorem 3.10. The simplicial functor ψ:uS′
�
Pn+1

0 !uM
�
Z induces a weak equiv-

alence of nerves.

Finally, to reduce Theorem 1.2 to Theorem 3.10, we need to show that the nerve
u
�
M

�
Z is weakly contractible. For this, consider the functors cp:uMpZ!uMp+1Z that

take the sequence X0!...!Xp−1 to the sequence 0!X0!...!Xp−1. These functors
satisfy the following formulas:

∂icp =
{

id, if i=0,
cp−1∂i−1, if i> 0,

sicp =
{
cp+1cp, if i=0,
cp+1si−1, if i> 0.

It follows that the functors c
�

specify a simplicial contraction of uM
�
Z, i.e., a retraction

C(uM
�
Z)!uM

�
Z of the inclusion uM

�
Z!C(uM

�
Z), where C(uM

�
Z) is the join of a

point with uM
�
Z (cf. [5, Definition 5.1 and Proposition 6.2]).
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4. The proof of Theorems 1.3 and 3.10

In this section we prove Theorem 1.3 from the introduction and Theorem 3.10 from the
previous section, completing the proof of Theorem 1.2. The heart of the argument is
Lemma 4.1 below that compares the nerves of topologized categories with the nerves of
the discrete categories obtained from forgetting the topology. This allows us to convert
nerves constructed out of sets of maps to nerves constructed out of the corresponding
spaces of maps. This facilitates the comparison of the categories of R-modules with the
corresponding algebraic categories in Theorems 1.3 and 3.10 because, when the domain
is nice (homotopy equivalent to a cell R-module), the space of maps between objects of
P0

0 (in the case of Theorem 1.3) and the space of maps from a K(π, n+1) R-module to
an object in Pn+1

0 (in the case of Theorem 3.10) are homotopy discrete with components
the appropriate corresponding sets of maps of π0R-modules.

Because the hypotheses for Lemma 4.1 are complicated, we state it only for the
categories F ′qP (and wF ′qP), but the proof uses few of the particulars of these categories
and works very generally for tensored topological categories. For the statement, let B
denote a fixed object of F ′qP, and consider the over-category F ′qP/B: an object is a
map α:A!B in F ′qP, and a morphism is a commutative triangle. A morphism α!α′

between objects in F ′qP/B is a weak equivalence if the underlying map A!A′ in F ′qP is
a weak equivalence; let w(F ′qP/B) denote the subcategory of weak equivalences. Let D
be a full subcategory of w(F ′qP/B) such that

(i) if α0:A!B is an object of D and α1:A!B is homotopic to α0 in F ′qP, then α1

is also an object of D;
(ii) if α:A!B is an object of D, then A∧I+!B is an object of D.
In (ii) we have in mind the map obtained by composing the projection A∧I+!A

with α, but, by (i), any map that restricts at some point on I to a map homotopic to
α:A!B is an object of D. Note that since In is homeomorphic to ∆[n], when A!B is
an object of D we can regard A∧∆[n]+!B as an object of D.

We regard D as a discrete category, but there is a natural topology on both the
objects and the morphisms of D; let Dsing

�
denote the simplicial category obtained by

taking the total singular complex of the objects and morphisms. More concretely, an
object of Dsing

n is a map α:A∧∆[n]+!B in F ′qP that at each point of ∆[n] restricts to
an object of D (or, equivalently, that is itself an object of D). A map f :α!α′ in Dsing

n

is a map f :A∧∆[n]+!A′ in wF ′qP such that the composite

A∧∆[n]+
idA ∧4−−−−−−!A∧∆[n]+∧∆[n]+

f∧id∆[n]−−−−−−!A′∧∆[n]+
α′−−!B

is α. The category Dsing
0 is D, and so we get a simplicial functor D!Dsing

�
, regarding D

as a constant simplicial category.
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Lemma 4.1. With hypotheses and notation above, the inclusion D!Dsing
�

induces
a weak equivalence on nerves.

Proof. It suffices to show that the iterated degeneracy functor sn
0 :D!Dsing

n induces
a weak equivalence on nerves. This functor has a left adjoint U that takes an object
α:A∧∆[n]+!B in Dsing

n and regards it as an object of D, and takes a map f :α!α′ in
Dsing

n to the composite

A∧∆[n]+
idA ∧4−−−−−−!A∧∆[n]+∧∆[n]+

f∧id∆[n]−−−−−−!A′∧∆[n]+,

a map in D. The unit Id!sn
0 �U in Dsing

n is induced by the identity map in D: the
identity on A∧∆[n]+ in D specifies a map from α:A∧∆[n]+!B to

sn
0Uα: (A∧∆[n]+)∧∆[n]+−!B

in Dsing
n . The counit U �sn

0!Id in D is induced by the projection (−)∧∆[n]+!(−).

We now move on to the proof of Theorem 1.3. Recall that E is the exact category of
finitely generated left π0R-modules. Since the forgetful functor from wSpP0

0 to wFp−1P0
0

and the forgetful functor from wSpE to wFp−1E are equivalences of categories, it suffices
to show that the functor π0:wFp−1P0

0!wFp−1E induces a weak equivalence on nerves.
Let C0

0 be the full subcategory of P0
0 of objects homotopy equivalent to cell R-modules;

then C0
0 is a Waldhausen subcategory of P0

0 and Fp−1C0
0 is a Waldhausen subcategory of

Fp−1P0
0 . The following lemma allows us to work with Fp−1C0

0 in place of Fp−1P0
0 .

Lemma 4.2. The inclusion wFp−1C0
0!wFp−1P0

0 induces a weak equivalence of
nerves.

Proof. Applying Quillen’s Theorem A [7], it suffices to show that for every object
B in wFp−1P0

0 , the comma category D=wFp−1C0
0 #B is weakly contractible. Since the

functor in question is the inclusion of a full subcategory, the comma category D is the
full subcategory of w(Fp−1P0

0/B) of maps A!B, where A is an object in wFp−1C0
0 ,

and so is therefore also a full subcategory of w(F ′p−1P/B). Applying Lemma 4.1, it
suffices to show that the nerve of Dsing

�
is weakly contractible. Consider the functor π0

from Dsing
�

to the over-category wFp−1E/π0B. Because the constituent R-module Ai

of an object A of Fp−1C0
0 is homotopy equivalent to a cell R-module, the space of R-

module maps Ai!Bi has the correct homotopy type and so is homotopy discrete with
components HomZ(π0Ai, π0Bi). Moreover, since the constituent maps of A are Hurewicz
cofibrations, the space of maps A!B in wFp−1P0

0 is likewise homotopy discrete and with



178 a. j. blumberg and m. a. mandell

components wFp−1E(π0A, π0B); the natural topology on the set of objects of wFp−1C0
0 #B

is homeomorphic to the disjoint union over the objects A of Fp−1C0
0 of these spaces. The

natural topology on the set of all morphisms in wFp−1C0
0 #B decomposes into a disjoint

union over pairs of objects A,A′∈Fp−1C0
0 of the spaces wFp−1P(A,A′)×wFp−1P(A′, B)

with their natural topology. Again this is homotopy discrete with components the disjoint
union of wFp−1E(π0A, π0A

′)×wFp−1E(π0A
′, π0B). We conclude that the category Dsing

�

has a homotopy discrete simplicial set of objects, has a homotopy discrete simplicial set of
morphisms, has category of components equivalent to wFp−1E/π0B, and the induced map
on nerves is a weak equivalence. Since wFp−1E/π0B has a final object (namely, π0B), it
has a contractible nerve.

We can also apply Lemma 4.1 with D=wFp−1C0
0 (with B the final object). The

simplicial category Dsing
�

then has a homotopy discrete simplicial set of objects, has
a homotopy discrete simplicial set of maps, has category of components equivalent to
wFp−1E , and has nerve weakly equivalent to the nerve of wFp−1E . Since the composite
functor wFp−1C0

0!wFp−1E is π0, it follows that π0:wFp−1P0
0!wFp−1E induces a weak

equivalence of nerves, and this completes the proof of Theorem 1.3.

The proof of Theorem 3.10 is only slightly more complicated. By Proposition 3.8
in the previous section, it suffices to show that the functor πn+1:uF

f
p−1P

n+1
0 !uMpZ

induces a weak equivalence on nerves. Now let Cn+1
n+1F

f
p−1 be the full subcategory of

uF f
p−1P

n+1
0 consisting of those sequences A0!...!Ap−1 where each map Ai!Ai+1 is a

Hurewicz cofibration, each Ai is homotopy equivalent to a cell R-module, and πqAi=0
for q 6=n+1. In other words, the objects of Cn+1

n+1F
f
p−1 are the sequences of Hurewicz cofi-

brations between homotopy cell K(π, n+1) R-modules. In particular, any map between
objects of Cn+1

n+1F
f
p−1 is a weak equivalence, and so we can also consider Cn+1

n+1F
f
p−1 as a

full subcategory of wFp−1P. Then, as above, we have the following lemma.

Lemma 4.3. The inclusion Cn+1
n+1F

f
p−1!uF

f
p−1P

n+1
0 induces a weak equivalence of

nerves.

The proof is essentially the same combination of Lemma 4.1 and Quillen’s Theorem A
as in the proof of Lemma 4.2 above, using MpZ in place of Fp−1E : for an object B in
uF f

p−1P
n+1
0 , the space of R-module maps from a homotopy cellK(π, n+1) R-module into

the R-module Bi (which has zero homotopy groups above degree n+1) is homotopy dis-
crete with components HomZ(π, πn+1Bi), and for any object A of Cn+1

n+1F
f
p−1 the space of

maps A!B in uFp−1Pn+1
0 is homotopy discrete with components uMpZ(πn+1A, πn+1B).

As in the proof of Lemma 4.2, it follows that the functor πn+1 induces a weak equivalence
of nerves from Cn+1

n+1F
f
p−1#B to uMpZ/πn+1B, which is contractible.
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Applying Lemma 4.1 again with D=Cn+1
n+1F

f
p−1 and B the final object, we see that

the functor πn+1 from Cn+1
n+1F

f
p−1 to uMpZ induces a weak equivalence of nerves. It

follows that the functor πn+1 from uF f
p−1P

n+1
0 to uMpZ induces a weak equivalence of

nerves, and this completes the proof of Theorem 3.10.
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