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Abstract. For a “genuine” equivariant commutative ring spectrum R, π0(R)

admits a rich algebraic structure known as a Tambara functor. This algebraic
structure mirrors the structure on R arising from the existence of multiplica-

tive norm maps. Motivated by the surprising fact that Bousfield localization

can destroy some of the norm maps, in previous work we studied equivariant
commutative ring structures parametrized by N∞ operads. In a precise sense,

these interpolate between “naive” and “genuine” equivariant ring structures.

In this paper, we describe the algebraic analogue of N∞ ring structures.
We introduce and study categories of incomplete Tambara functors, described

in terms of certain categories of bispans. Incomplete Tambara functors arise

as π0 of N∞ algebras, and interpolate between Green functors and Tambara
functors. We classify all incomplete Tambara functors in terms of a basic struc-

tural result about polynomial functors. This classification gives a conceptual

justification for our prior description of N∞ operads and also allows us to
easily describe the properties of the category of incomplete Tambara functors.

1. Introduction

Much of the richness and subtlety of equivariant stable homotopy theory arises
from the complexity of the notion of a commutative ring spectrum (i.e., multiplica-
tive cohomology theory) in this context. Although one can define an equivariant
commutative ring spectrum as an equivariant spectrum with a homotopy-coherent
multiplication parametrized by an E∞ operad (regarded as a G-trivial equivariant
operad), much more power comes from considering multiplications parametrized by
“genuine” equivariant E∞ operads. Such commutative ring spectra have a coherent
collection of multiplicative norm maps, studied extensively first by Greenlees and
May [4] and utilized to great effect in the work of the second author, Hopkins, and
Ravenel [7] resolving the Kervaire invariant one problem.

One of the most surprising observations emerging from the recent renewed inter-
est in equivariant stable homotopy is the discovery that Bousfield localization does
not necessarily preserve the existence of these multiplicative norms [5, 6]. Suc-
cinctly, Bousfield localization does not necessarily take genuine equivariant com-
mutative ring spectra to genuine equivariant commutative ring spectra. For for-
mal reasons, the localization of a genuine equivariant commutative ring spectra is
equipped with a homotopy-coherent multiplication, but the question of which norm
maps survive is considerably more complicated.

In order to understand exactly what kinds of structures are preserved, in previous
work we introduced the more general notion of an N∞ operad, an operad in G-
spectra which interpolates between the naive E∞ operads which parameterize a
coherently homotopy commutative multiplication and the genuine G-E∞ operads
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whose algebras are genuine equivariant commutative ring spectra [2]. Algebras
in spectra over N∞ operads are equivariant commutative ring spectra that admit
families of multiplicative norms. One of the most surprising results in our study of
N∞ operads and their algebras was that homotopically, the entire story is essentially
discrete. The homotopy type of an N∞ operad is completely determined by an
“indexing system”, a coherent collection of finite H-sets for each subgroup H of G.
In addition to their role classifying N∞ operads, indexing systems also parameterize
exactly which norms arise in algebras over an N∞ operad. For example, the trivial
N∞ operad gives only a coherently commutative multiplication, while a G-E∞
operad gives compatible norm maps for all pairs of subgroups H ⊂ K.

Definition 1.1. A symmetric monoidal coefficient system is a contravariant
functor

C : OrbopG → Sym
from the opposite of the orbit category of G to the category of symmetric monoidal
categories and strong symmetric monoidal functors.

The prototype of a symmetric monoidal is Set, the functor which assigns to
G/H the category of finite H-sets, viewed as a symmetric monoidal category under
disjoint union. The functoriality here is most easily seen by replacing SetH with
the equivalent category of finite G-sets over G/H, and we will implicitly work in
this formulation. An indexing system is a sub coefficient systems of this coefficient
system which has properties analogous to closure under composition.

Definition 1.2. An indexing system is a full symmetric monoidal sub-coefficient
system C of Set that contains all trivial sets and is closed under

(1) finite limits and
(2) “self-induction”: if H/K ∈ C(H) and T ∈ C(K), then H ×K T ∈ C(H).

To reduce clutter, we write C(H) for C(G/H).

The set I of indexing systems forms a poset under inclusion, and one of the basic
results in [2] is that there is a fully-faithful functor

C : Ho (N∞-Operad)→ I.
We conjecture there that this functor is in fact an equivalence of categories.

The purpose of this paper is to study the analogous story in algebra, which
provides a conceptual explanation of the homotopically discrete behavior of N∞
operads. Via π0, the structure of the equivariant stable category is mirrored in
the abelian category of Mackey functors. Mackey functors which have a commu-
tative multiplication, typically referred to as commutative Green functors, mirror
the structure of a homotopy-coherent multiplication on an equivariant spectrum.
Mackey functors that admit a commutative multiplication and in addition multi-
plicative norm maps, known as Tambara functors, mirror the structure of a genuine
equivariant commutative ring spectrum. Although the theory of these sorts of al-
gebraic equivariant ring objects is well-developed, there has not been any study of
the algebraic analogue of the algebras over the intermediate N∞ operads, namely
commutative Green functors which have some, but not necessarily all, multiplica-
tive norm maps. This paper introduces these “incomplete Tambara functors” and
explores their basic properties.

Tambara originally defined his TNR-functors as product-preserving functors
from a category of “bispans”, now called “polynomials”, of finite G-sets into the
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category sets [14]. Here, a “bispan”, is an isomorphism class of diagrams of the
form

(1) X
h←− A g−→ B

f−→ Y,

where isomorphisms are isomorphisms of diagrams which are the identity on X
and on Y . The set of all such isomorphisms forms the morphisms from X to Y in
the category of bispans, and in this category, disjoint union of finite G-sets forms
the product in this category. Category theorists have generalized this approach,
describing the category of polynomials in a wide variety of contexts such as locally
Cartesian closed categories or categories with pullbacks. Any arrow in the category
of polynomials in a category C can be decomposed as Tf ◦ Ng ◦ Rh, where the
definitions of these maps are reviewed below. The choices of letters reflect the
underlying structure: R gives the restriction in a Mackey functors, T the transfer,
and N the norm, a generalization of the Evans transfer in group cohomology. Our
incomplete Tambara functors arise by restricting the map g in Equation 1 to live
in a particular subcategory. The fact that such a restriction is well-defined comes
from the following theorem, which holds for polynomials in any of the contexts
normally studied.

Theorem 1.3. Let C be a locally Cartesian closed category or more generally a
category with pullbacks, and let D be a wide, pullback stable subcategory of C. Then
the subgraph of the category of polynomials in C with all objects and with only
morphisms of the form

X
h←− A g−→ B

f−→ Y,

where g ∈ D, is a subcategory.

We call this subcategory the “polynomials in C with exponents in D”. This the-
orem shows that we can find interesting generalizations of Tambara’s construction
by considering the wide, pullback stable subcategories of the category of finite G-
sets. We have a complete classification of the wide, pullback stable subcategories
which are of most interest to us, and this is the major result of Section 3.

Theorem 1.4. There is an isomorphism between the poset of indexing systems and
the poset of wide, pullback stable, finite coproduct complete subcategories of SetG.

Loosely speaking, an indexing system describes all of the norm maps which arise
in the study of algebras over an N∞ operad, and this theorem shows that from a
categorical point of view, these are all that we should have expected.

Functors out of the category of polynomials in SetG with exponents in vari-
ous wide, pullback stable subcategories gives our notion of incomplete Tambara
functors.

Definition 1.5 (See Definition 4.1). For an indexing system O, the category of
O-Tambara functors is the category of functors from polynomials with exponents in
O to abelian groups.

In Sections 4 and 5, we describe the basic constructions and explores some of the
properties of the category of incomplete Tambara functors. In particular, we de-
scribe also the result of localization in the category of incomplete Tambara functors,
building on work of Nakaoka [12].

Next, in Section 6 we study “change” functors and in particular focus on the
analogue of the norm-restriction adjunction in this context.
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Finally, we explain the connection between O-ring spectra and O-Tambara func-
tors, forO an N∞ operand. We have the following theorem, proved as Theorem 4.14
below.

Theorem 1.6. Let O be an N∞ operad and R an O-algebra in orthogonal G-
spectra. Then π0(R) is an O-Tambara functor.

In fact, the functor π0 translates the G-symmetric monoidal structure on the
equivariant stable category associated to an N∞ operad O (as in [1]) to the G-
symmmetric monoidal structure on Mackey functors specified by O. However, to
be precise about this, we need to study the homological algebra of O-Tambara
functors. More generally, because they are central to the behavior of localization
on commutative rings in equivariant stable homotopy theory, we expect that the
theory of the homological algebra of O-Tambara functors will be an important
aspect of developing equivariant derived algebraic geometry. We intend to carry
out this work in a subsequent paper.

Remark 1.7. We work in this paper in an additively complete setting, meaning
that all of our flavors of Tambara functors will have an underlying Mackey functor.
This is motivated by our goals in equivariant spectra, where our objects of study
are multiplicative structures put on genuine G-spectra. Allowing additive incom-
pleteness as well adds very interesting consequences, and we will return to this in
a future paper.

Acknowledgments. The authors would like to thank John Greenlees, Mike Man-
dell, and Peter May for helpful conversations. This project was made possible by the
hospitality of the Hausdorff Research Institute for Mathematics at the University
of Bonn.

1.1. Notation. We will use the symbolO abusively to refer either to an N∞ operad
or to an indexing system; when O refers to an N∞-operad, we will use the same
symbol to describe the associated indexing system. If O is an indexing system,
then we say that an H-set T is “admissible for O” if T ∈ O(H).

If S is a G-set and s ∈ S, let Gs = Stab(s) denote the stabilizer subgroup.

2. Polynomials with restricted exponents

A polynomial (or bispan) in a category C is an isomorphism class of composites
X ← S → T → Y . The collection of polynomials forms a category with composition
given by pullback. Tambara functors can be described as certain Functors out of
this category. Given a subcategory D ⊂ C, a natural question when considering
incomplete Tambara functors is to consider polynomials in C with the “middle”
map S → T required to be in D. In this section, we discuss the basic theory
of polynomials with restricted exponents; we also establish some technical results
about polynomials with restricted exponents that we need in the remainder of the
paper. The main result of this section (Theorem 2.10) provides natural criteria on
D that describe when the resulting collection of polynomials itself forms a category.

2.1. Review of Polynomials. Much of the background material here is taken
from work of Gambino-Kock, although everything works in Weber’s context as well
[3, 15]. Following their conventions, we work in a locally Cartesian closed category
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C. In particular, this means that for any morphism f : X → Y , the pullback functor
f∗ : C/Y → C/X has both adjoints:

Σf a f∗ a Πf .

The left adjoint is called the “dependent sum” and the right the “dependent prod-
uct”. In the category of finite G-sets, the dependent sum is simply “disjoint union
of the fibers over y”, while the dependent product is the “product of the fibers over
y”.

In any locally Cartesian closed category C, we can define the category of poly-
nomials.

Definition 2.1. If C is a locally Cartesian closed category, let PC be the category
with objects the objects of C and with morphisms isomorphism classes of “bispans”

X ← S → T → Y.

Here isomorphisms of bispans are specified by isomorphisms S → S′ and T → T ′

such that following diagram commutes

S //

∼=
��

ww
T

∼=
��

''
X Y.

S′

gg

// T ′

77

Remark 2.2. In fact, we have a bicategory of polynomials in C, where the diagram
expressing an isomorphism defines a 2-cell provided the central square is a pullback.
In all of what follows, the statements remain true if we work in this Cat enriched
setting.

Composition of bispans in most easily expressed by choosing a convenient set of
generating morphisms.

Definition 2.3. If f : S → T is a map in C, then let

(1) Rf = [T
f←− S 1−→ S

1−→ S] ∈ PC(T, S),

(2) Nf = [S
1←− S f−→ T

1−→ T ] ∈ PC(S, T ), and

(3) Tf = [S
1←− S 1−→ S

f−→ T ] ∈ PC(S, T ).

We will refer to maps of this form as basic polynomials.

These maps generate the category PC . First, we have an identification

(2) [X
f←− S g−→ T

h−→ Y ] = Th ◦Ng ◦Rf .

We will say that the order of maps T , N , R given by Equation 2 is the “canonical
ordering”, and we need only show that any other composite of basic maps can be
brought into this form. We do this by establishing commutation relations. The
argument goes back to Tambara in the context of finite G-sets [14]. In the locally
Cartesian closed category context, these were shown by Gambino-Kock and in the
context of categories with pullbacks, by Weber. We summarize the commutation
relations in a series of propositions.



6 A. J. BLUMBERG AND M. A. HILL

Proposition 2.4 ([14, 3, 15]). We have

Ng ◦Ng′ = Ng◦g′

Th ◦ Th′ = Nh◦h′

Rf ◦Rf ′ = Rf ′◦f .

Proposition 2.5 ([14, 3, 15]). If

X ′
g′ //

f ′

��

X

f

��
Y ′

g
// Y

is a pullback diagram, then we have

Rf ◦Ng = Ng′ ◦Rf ′
Rf ◦ Tg = Tg′ ◦Rf ′ .

Proposition 2.6 ([14, 3, 15]). If

X

g

��

A
hoo X ×Y

∏
g A

g′

��

f ′oo

Y
∏
g Ah′

oo

is an exponential diagram, then we have

Ng ◦ Th = Rf ′ ◦Ng′ ◦ Th′ .

For our purposes, a key fact is that the outer rectangle of an exponential diagram
is actually a pullback diagram.

2.2. Polynomials with restricted exponents. We can now describe several nat-
ural subcategories of the category of polynomials. Recall that a subcategory of C
is wide if it contains all of the objects, and essentially wide if every object of C is
isomorphic to an object in the subcategory.

Definition 2.7. If D ⊂ C is a wide subcategory, then let PCD by the wide subgraph
of PC with morphisms the isomorphism classes of bispans

X ← S
f−→ T → Y,

with f ∈ D. We call this the polynomials in C with exponents in D.

The somewhat surprising result is that PCD is a subcategory of PC under the
hypothesis of pullback stability. We begin by recalling the notion of a pullback
stable subcategory.

Definition 2.8. If C is a category that admits pullbacks, then we say that a sub-
category D ⊂ C is pullback stable if whenever

A

f

��

// B

g

��
C // D
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is a pullback diagram and g ∈ D, the map f is also in D.

We have two elementary results which we use quite often.

Proposition 2.9. Let D be a pullback stable subcategory of a category C that admits
pullbacks.

(1) If A ∈ ob(D) and f : B → A is an isomorphism in C, then f is in D.
(2) If C contains a terminal object ∗, then D is a wide subcategory.

Proof. For the first part, observe that

B
f //

f

��

A

id
��

A
id
// A

is a pullback diagram. For the second, observe that

B //

id

��

∗

id

��
B // ∗

is a pullback diagram. �

With this, we can prove a surprising result that PCD is actually a subcategory
when D is pullback stable and wide.

Theorem 2.10. If D is a wide, pullback stable subcategory, then the subgraph PCD
is a subcategory of PC.

Proof. We show this using the generating morphisms Rf , Ng, and Th. Since by
assumption D is wide, for any f and h, Rf and Th are also in PCD, while Ng is if
and only if g ∈ D. Therefore, it suffices to show that the composite of any such
morphisms is again of the form

Th ◦Ng ◦Rf
where g ∈ D.

Since the maps f and h that specify Tf and Rh are arbitrary morphisms in C,
any composite involving only basic maps of this form will again be an element in
PCD. Thus, we need to show that composites with Ng for g ∈ D are again in PCD.
Since D is a subcategory, we have Ng ◦Ng′ is again in PCD provided g, g′ ∈ D.

Proposition 2.6 shows that Ng ◦ Tf can be written as Tf ′ ◦Ng′ ◦Rh′ , where g′ is
the pullback of g in the relevant exponential diagram. This shows that Ng ◦ Tf is
again in PCD.

Finally, Proposition 2.5 shows that Rf ◦Ng = Ng′◦Rf ′ , where g′ is the pullback of
g along f . This shows that Rf ◦Ng is again in PCD, and thus it is a subcategory. �

Corollary 2.11. If D1 ⊂ D2 ⊂ C are wide, pullback stable subcategories, then we
have an inclusion of subcategories

PCD1
⊂ PCD2

.

Proposition 2.12. If D is a wide, pullback stable, symmetric monoidal subcategory
of SetG, then PGD has finite products and the products are created in PG.
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Proof. The product in PG is induced by the disjoint union of G-sets: if S and T
are G-sets and iS : S → S q T and iT : T → S q T are the inclusions, then

S
RiS←−− S q T

RiT−−→ T

is a product diagram in PG. We must show that if F = Th◦Ng◦Rf is any morphism
in PG then RiS ◦ F,RiT ◦ F ∈ PGD if and only if F ∈ PGD .

By assumption, F is a polynomial of the form

A
f←− B g−→ C

h−→ S q T.
Since we are considering equivariant maps and since we are mapping into a disjoint
union, C decomposes as C0 q C1, where h(C0) ⊂ S and h(C1) ⊂ T . Our map h
is then the disjoint union of maps hi = h|Ci

. Similarly, B and g decompose as
B = B0 qB1, where g(Bi) ⊂ Ci and if gi = g|Bi

, then g = g0 q g1.
We now can directly compute RiS ◦ F :

RiS ◦ Th ◦Ng ◦Rf = Th0
◦RiC0

◦Ng ◦Rf = Th0
◦Ng0 ◦RiB0

◦Rf .

Thus RiS ◦ F is in PGD if and only if g0 ∈ D and similarly for RiT ◦ F . Since D is a
pullback stable symmetric monoidal subcategory, g = g0 q g1 is in D if and only if
g0, g1 ∈ D. �

Remark 2.13. Proposition 2.12 holds much more generally: if C is a disjunctive
category, then the same argument given goes through.

2.3. Adjunctions between categories of polynomials. We can determine suf-
ficient conditions for when adjunctions in the ambient categories give rise to adjunc-
tions in the polynomials with exponents in a suitable subcategory. Our motivation
is generalizing the classical result that adjoint pairxG

H
: SetH � SetG : i∗H

induces by pre-composition an adjoint pair on the categories of Mackey functors:

i∗H = (
xG
H

)∗ : MackeyG �MackeyH : CoIndGH = (i∗H)∗.

Strickland shows that this holds in the categories of Tambara functors, a result we
will generalize in Theorem 6.4 below. For now, we continue to work in the more
abstract context.

Definition 2.14. We say that a subcategory D ⊂ C is essentially a sieve if for
all f ′ : a′ → b in C and for all g : b→ c in D, there is an isomorphism a′ → a and
a map f : a→ b in D making a commutative diagram

a′

∼=
��

f ′ // b
g // c.

a

f

??

Remark 2.15. This is the strong form of the “not evil” version of a sieve. Instead
of asking that the maps form a kind of ideal under composition, we ask instead that
that it be closed under precomposition with an isomorphic map. In particular, it is
not a wide subcategory of the slice category in C over its objects, but it is essentially
wide.

The prototypical example comes from the category of finite G-sets.



INCOMPLETE TAMBARA FUNCTORS 9

Proposition 2.16. The image of the induction functor ↑GH is essentially a sieve
in SetG.

Proof. We must show that if f ′ : T ′ →
xG
H
S is any G-map, then there is an H-set

T , an H-map f : T → S, and an isomorphism T ′ →
xG
H
T such that the diagram

T ′
f ′ //

∼=
��

xG
H
S

xG
H
T

↑f

==

commutes. Let T be the pullback in H-sets

T //

��

S

��

i∗HT
′

f ′
// i∗H
xG
H
S,

where the map from S is the unit of the adjunction. Let f be the map T → S given
by the pullback, and then by construction, the desired diagram commutes. By
checking on orbits, we see that the natural map ↑GH T → T ′ is also an equivariant
isomorphism. �

With this definition, we can describe sufficient conditions for a pair of adjoint
functors on C to descend to a pair of adjoint functors on PCD.

Theorem 2.17. Let F : C � C′ : G be an adjoint pair with the following properties:

(1) The image of F is essentially a sieve,
(2) F and G both restrict to functors F : D → D′ and G : D′ → D, and
(3) F detects maps in D: for any f ∈ C, F (f) is in D′ if and only if f is in D.

Then F and G induce an adjoint pair:

G : PC
′

D′ � PCD : F.

Proof. We first describe the natural transformations on Hom objects.
If

G(X)
f←− A g−→ B

h−→ Y

is in PCD, then we take this to

X
f∗←− F (A)

F (g)−−−→ F (B)
F (h)−−−→ F (Y ).

Since F descends to a functor D → D′, this is a morphism of PC′D′ .
For the other direction, since the image of F is essentially a sieve, any morphism

of the form

X
f ′←− A′ g

′

−→ B′
h′−→ F (Y )

can be rewritten as

X
f←− F (A)

F (g)−−−→ F (B)
F (h)−−−→ F (Y ).

We take this arrow to

G(X)
f∗←− A g−→ B

h−→ Y.
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Since g ∈ D if and only if F (g) ∈ D′, this is a morphism in PCD.
These constructions are natural and clearly inverses to each other. �

Remark 2.18. We note that we only require that F and G descend to functors
between D and D′, not that they give an adjoint pair. In particular, we will see below
(Proposition 6.2) that these conditions are satisfied by restriction and induction for
certain subcategories of finite G-sets, even when these functors are not adjoint.

3. Pullback stable subcategories of SetG

Our incomplete Tambara functors are controlled by suitable subcategories of the
category SetG of finite G-sets. In this section, we develop the basic properties of
pullback stable subcategories of SetG that we will need for our subsequent work.
In particular, we show that there is an equivalence of posets between the poset of
pullback stable subcategories of SetG and the poset of indexing systems; this clas-
sification result gives a “span-theoretic” explanation for the importance of indexing
systems in our work on N∞ operads.

3.1. Basic properties of pullback stable subcategories. We now restrict at-
tention to pullback stable subcategories of SetG. This ambient category is very
well-behaved, and we will see that simple assumptions give surprisingly strong re-
sults. Many of the results in this subsection work more generally; for clarity we
restrict ourselves to this basic case, and leave the (easy) generalizations to the inter-
ested reader. Additionally, motivated by our study below of incomplete Tambara
functors, we restrict attention to those pullback stable subcategories of D which
are symmetric monoidal subcategories. (Here recall that the symmetric monoidal
structure on SetG is given by the coproduct, disjoint union.) In particular, we
are assuming that given maps f : X → Y and g : X ′ → Y ′ in D, then D con-
tains the map X

∐
X ′ → Y

∐
Y ′. Restricting to this setting has a very surprising

consequence.

Proposition 3.1. If D is a pullback stable, symmetric monoidal subcategory of
SetG that contains ∅ → ∗, then D contains all monomorphisms.

Proof. Since D contains the terminal object and is pullback stable, by Proposi-
tion 2.9 we conclude that it is wide. Next, any monomorphism S → T can be
written as

∅ q S → (T − S)q S ∼= T.

Since D is pullback stable, for any finite G-set S, pulling back the map ∅ → ∗ along
the terminal map T −S → ∗ implies that the initial map ∅ → T −S is in D. Using
the fact that D is symmetric monoidal, we now conclude that any monomorphism
is in D. �

The pullback stable subcategories D of finite G-sets we consider will have an
additional property: they have all finite coproducts and the coproducts are created
in SetG. We will refer to this property by saying that D is a finite coproduct
complete subcategory of SetG. Note that any a coproduct complete subcategory of
SetG is in fact a symmetric monoidal subcategory, since the coproduct in SetG is
the symmetric monoidal product. From the point of view of the resulting Tambara
functors, we will see that this is a very natural condition due to the following simple
lemma.
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Lemma 3.2. Let D be a pullback stable subcategory of SetG. Then the following
are equivalent:

(1) The category D is a wide and finite coproduct complete subcategory of SetG.
(2) The category D is a symmetric monoidal subcategory that contains the maps
∅ → ∗ and ∗ q ∗ → ∗.

Proof. If D is wide and finite coproduct complete as a subcategory of SetG, then
in particular, ∅ → ∗ and ∗ q ∗ → ∗ are in D.

For the converse, all monomorphisms are in D by Proposition 3.1. In particular,
empty coproducts are in D. Next, for any finite G-set T , the coproduct T q T in
SetG is the coproduct in D. To see this, consider the following pullback diagram

T q T //

��

T

��
∗ q ∗ // ∗.

Pullback stability implies that the fold map T q T → T is in D. Moreover, the
two maps T → ∗ → ∗ q ∗ induce the canonical inclusions i1, i2 : T → T q T in D.
Moreover, it is clear that this holds for arbitrary finite coproducts of T . Finally,
for an arbitrary finite coproduct, we can write the required universal map out as
a composite of iterated fold maps and the symmetric monoidal product of maps.
That is, given T q S, the universal map to Z given T → Z and S → Z can be
expressed as the composite S q T → Z q Z → Z. �

Pullback stability itself implies a partial converse to this sort of result.

Proposition 3.3. Let D be a pullback stable subcategory of SetG and assume that∐
i Ti is the coproduct in D. If f : S →

∐
i Ti is in D, then so are f |Si

, where
Si = f−1(Ti).

Proof. The restrictions to these summands are just the pullbacks along the inclu-
sions of Ti into the coproduct. �

In particular, the conditions of being a wide, pullback stable, and finite coproduct
complete subcategory of SetG are extremely stringent: we can completely recover
any subcategory of SetG of this form out of a subcategory of the orbit category of
G.

Definition 3.4. Let D be a subcategory of SetG. We define OrbD to be the full
subcategory of D obtained by restricting the objects to the orbits G/H (for H ⊂ G)
that are contained in D.

Remark 3.5. When D = SetG, this is the ordinary orbit category, so we can
rewrite OrbD as D ∩Orb.

Proposition 3.6. For D as above, D is the finite coproduct completion of OrbD
in SetG; it is the smallest subcategory of SetG containing OrbD that has all finite
coproducts.

Proof. Let f : S → T be a map in D. Decomposing T into orbits, we write
T =

∐
G/Hi, and let Si = f−1(G/Hi). Since D is closed under pullbacks and

is symmetric monoidal, the restriction of f to Si is again in D if and only if f itself
is by Proposition 3.3. It therefore suffices to consider T = G/H is an orbit.



12 A. J. BLUMBERG AND M. A. HILL

Similarly, decomposing S into orbits we can write S =
∐
G/Hj , and since ∗q∗ →

∗ is in D, we see that f is in D if and only if f |G/Hj
is in D. In particular, any map

in D is a sum of maps in D between orbits. In particular, f is in D if and only if
it is in the finite coproduct completion of OrbD. �

Remark 3.7. This should be viewed as an analogue of the classical result that SetG
is the finite coproduct completion of the full orbit category Orb.

Proposition 3.6 provides a conceptual understanding of what our incomplete
Tambara functors look like; for this restricted class of pullback stable subcategories,
everything is determined by which maps are in OrbD.

3.2. Subcategories of SetG from indexing systems. In this subsection, we
explain how an indexing system determines a wide, pullback stable, and finite co-
product complete subcategory of SetG. Recall (see Definition 1.2) that an indexing
system is a full symmetric monoidal sub-coefficient system C of Set that contains
all trivial sets and is closed under finite limits and self-induction, in the sense that
if H/K ∈ C(H) and T ∈ C(K), then H ×K T ∈ C(H). (Recall also that we refer to
the sets specified by O as the admissible sets of O.)

Definition 3.8. For an indexing system O, let SetGO denote the wide subgraph of
SetG where f : S → T is in SetGO if and only if for all s ∈ S,

Gf(s)/Gs ∈ O(Gf(s)).

Consideration of orbits immediately gives an equivalent formulation of the con-
dition for maps to be in SetGO.

Proposition 3.9. A map f : S → T is in SetGO if and only if for all s ∈ S, we
have

Gf(s) · s ∈ O
(
Gf(s)

)
.

The fact that O is an indexing system implies that SetGO is in fact a category.

Theorem 3.10. The graph SetGO forms a category.

Proof. Since trivial sets are admissible for any subgroup of G, SetGO contains the
identity map for each object. Therefore, it suffices to show that given two mor-
phisms f1 : S1 → S2 and f2 : S2 → S3 in SetGO, f2 ◦ f1 is also in SetGO.

Let s ∈ S1 be any element. By assumption, Gf1(s)/Gs ∈ O(Gf1(s)), and
Gf2◦f1(s)/Gf1(s) ∈ O(Gf2◦f1(s)). Since admissible sets are closed under self-induction,
we conclude that

Gf2◦f1(s)/Gs ∼= Gf2◦f1(s) ×Gf1(s)
Gf1(s)/Gs ∈ O(Gf2◦f1(s)),

and therefore the composite is also in the category. �

Since the condition of being a map in SetOG is determined orbit-by-orbit and by
assumption ∅ ∈ O(H) for all H, the following is immediate.

Proposition 3.11. For any indexing system O, the category SetGO is a finite co-
product complete subcategory of SetG.

Finally, we show that SetGO is pullback stable. For this, we need to check that
the maps in SetGO are closed under induction, in the following sense.
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Proposition 3.12. A map f : S → T is in SetHi∗HO if and only if

G×H f : G×H S → G×H T ∈ SetGO.

Proof. We observe that the stabilizer of the points in G ×H S can be determined
by those of S:

G[(g,s)] = gGsg
−1.

If we let F = G×H f , then we have an identification

GF (g,s)/G(g,s) = gGf(s)g
−1/gGsg

−1 = g∗Gf(s)/Gs,

where g∗ : SetGs
∼=−→ SetgGsg

−1

is the multiplication by g map. In general, U is an
admissible Gs-set if and only if g∗U is an admissible gGsg

−1-set, from which the
result follows. �

Theorem 3.13. For any indexing system O, the subcategory SetGO is pullback
stable.

Proof. Consider a pullback diagram in SetG

U
h //

k

��

S

f

��
V

g
// T,

where the map f : S → T is in SetGO and where g is arbitrary. We will show that
k is a map in SetGO. First, we reduce to the case that T = G/G is the terminal
object.

Consider an element u ∈ U . By assumption, we have that

H := Gf◦h(u) = Gg◦k(u),

and by naturality, H contains Gu, Gh(u), and Gk(u). Proposition 3.9 shows that it
suffices to work H-equivariantly, and we need only look at the points which map
to t = g(k(u)) = f(h(u)) ∈ T . Hence we can replace our original diagram with an
H-equivariant one:

H · k(u)×H · h(u)
h //

k

��

H · h(u)

f

��
H · k(u)

g
// {t}.

We are therefore reduced to showing that if G/H is an admissible G-set and if
G/K is arbitrary, then G/K × G/H → G/K is in SetGO. However, the projection
map is isomorphic to the map

G×K (i∗KG/H → K/K).

Since G/H is an admissible G-set, i∗KG/H is an admissible K-set for any subgroup
K, and therefore by Proposition 3.12, this map is in SetGO. �

Remark 3.14. Roughly speaking, the preceding results imply that SetGO is essen-
tially the finite coproduct completion of the subcategory determined by objects iso-
morphic to the union of the essential images of the induction functors SetH → SetG
restricted to O(H).
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We close this subsection with an extremely important observation which we will
need in our study of the change of groups. Since the action map is the pullback of
G/H → ∗ along T → ∗, the following is immediate.

Corollary 3.15. If G/H is admissible for O, then for any T , the action map

εT : G×H i∗HT → T

is in SetGO.

3.3. An intrinsic formulation of indexing systems. The main result of this
subsection is that all wide, pullback stable, finite coproduct complete subcategories
of SetG are of the form SetGO for some O. This characterization provides an intrinsic
description of the data of an indexing system. We begin with a trivial observation.

Lemma 3.16. If O ⊂ O′, then we have an inclusion

SetGO ⊂ SetGO′ .

As a consequence of Lemma 3.16, SetG(−) is a functor from the poset of indexing

systems to the poset of wide, pullback stable, finite coproduct complete subcate-
gories of SetG.

Theorem 3.17. The functor SetG(−)

O 7→ SetGO
gives an isomorphism between the poset of indexing systems and the poset of wide,
pullback stable, finite coproduct complete subcategories of SetG.

We prove this by explicitly constructing an inverse to this functor in a series of
lemmas that constitute the remainder of the section. In the following discussion,
let D be a wide, pullback stable, finite coproduct complete subcategory of SetG.

Lemma 3.18. If D is as above, then there is a coefficient system of categories OD
specified at G/H by the assignment

OD(G/H) = D/G/H ,
where D/G/H denotes the overcategory of G/H in D.

Proof. First, the pullback stability of D implies that for any map of finite G-sets
f : S → T , pullback along f induces a functor

D/T → D/S .
Since the restriction maps in Set come from pulling back along maps of orbits, the
result follows. �

Next, we show that OD is a symmetric monoidal coefficient system. First, ob-
serve that since the forgetful functor D/T → D creates all colimits, the fact that

D is finite coproduct complete in SetG implies that the analogous result for D/T
holds.

Lemma 3.19. The slice categories D/T are all finite coproduct complete as subcat-

egories of SetG/T .

Since the coproduct is the symmetric monoidal product, this has the following
immediate consequences.
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Corollary 3.20. For any T , the slice category D/T is a symmetric monoidal sub-

category of SetG/T .

Corollary 3.21. For D as above, OD is a symmetric monoidal coefficient system
of Set.

Another consequence of the slice categories D/T being finite coproduct complete
is that when T is an orbit, D/T is a full subcategory. This is the only place in this

subsection where we use specific properties of the category SetG.

Proposition 3.22. The slice category D/G/H is a full subcategory of SetH .

Proof. Let T → G/H and S → G/H be two elements in the overcategory D/G/H .
These are isomorphic in the overcategory to maps of the form G ×H T ′ → G/H
and G ×H S′ → G/H, where T ′ and S′ are the respective corresponding H-sets.
A map of finite G-sets T → S over G/H is the same data (by the equivalence of
categories) as an H-map T ′ → S′. Choosing orbit decompositions of T ′ and S′

shows that any f : T ′ → S′ is isomorphic to one of the form∐
i

qfi,j :
∐
i

qjT ′i,j →
∐
i

S′i,

where T ′i,j and S′i are H-orbits for all i and j. It therefore suffices to show that
whenever G/K → G/H and G/J → G/H are in D, then every map of orbits

H/K → H/J

induces up to a map in D. Since any such map is H-isomorphic to a canonical
quotient H/K → H/J where K ⊂ J , without loss of generality, we may assume
our map of orbits is of this form.

Here is where the properties of finite G-sets appear. Consider the pullback

G/K ×G/H G/J → G/J

of the map G/K → G/H along the map G/J → G/H. By assumption, this map
is in D. However, G/K ×G/H G/J → G/J is isomorphic to the obvious map

G×J (i∗JH/K)→ G/J.

(The appearance of H here is made more transparent by considering instead the
equivalent H-equivariant isomorphism and inducing back up. This also shows that
this isomorphism takes place in the overcategory of G/H.) Since J/K is a summand
of i∗JH/K, G/K is a summand of G×J i∗JH/K, and the inclusion of this summand
is automatically in D. Composing these two maps shows that G/K → G/J is in D
as desired. �

Remark 3.23. This is a very surprising asymmetry in the argument here: at no
point did we actually use that S → G/H was in D. This indicates that maps in
OrbD are much weirder than expected at first blush. Thinking of this as the state-
ment “if T is admissible for H, then its restriction is admissible for any subgroup
of H” makes this phenomenon less confusing.

Lemma 3.24. For any D as above, the symmetric monoidal coefficient system OD
is an indexing system.
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Proof. We verify the conditions from Definition 1.2. Proposition 3.22 shows that
this is a full symmetric monoidal sub-coefficient system, so we need only verify that
it is closed under finite limits and under self-induction.

To show that OD(H) is closed under finite limits, we show it is closed under
subobjects and under products. Both of these follow immediately from pullback
stability. Proposition 3.1 shows that if T1qT2 → G/H is in D, then the restrictions
T1 → G/H and T2 → G/H are both in D as well, showing closure under subobjects.
For products, if S, T → G/H are in D, then the map S ×G/H T → S → G/H is a
composite of maps in D and hence in D.

Closure under self-induction is actually just the statement that D forms a cate-
gory, since induction along a map G/H → G/K is just post-composition. Stipulat-
ing that T → G/K and G/K → G/H are both in D is equivalent to the statements
that T ′ ∈ OD(K), where T ′ is the inverse image of eK, and H/K ∈ OD(H). Then
the composite T → G/K → G/H is in D, which is equivalent to the fact that
H ×K T ′ ∈ OD(H). �

Corollary 3.25. The assignment

D 7→ OD
gives a functor from the poset of wide, pullback stable, coproduct complete subcate-
gories of SetG to the poset of indexing systems.

To complete the proof of Theorem 3.17, it suffices to show that the functor
constructed in Corollary 3.25 is an inverse to SetG(−) on objects; since the categories

in question are posets, functors inducing a bijection on objects participate in an
equivalence of categories. The next two lemmas complete this verification.

Lemma 3.26. For any D as above,

D = SetGOD .

Proof. Since for any indexing system O, SetGO is always satisfies the conditions on
D, Proposition 3.6 applies. However, K/H ∈ OD(K) if and only if G/H → G/K
is in OrbD. By definition, K/H ∈ OD(K) if and only if G/H → G/K is in OrbO,
so we see that OrbD = OrbO, proving the result. �

Lemma 3.27. For any indexing system O,

O = OSetGO .

Proof. Consider the slice category over G/H of SetGO. Any object T → G/H in
the slice category over G/H is isomorphic in the slice category to an object of the
form G ×H T ′ → G/H, where T ′ → ∗ is the canonical map. By Proposition 3.12,
T → G/H is in SetGO if and only if T ′ → ∗ is in SetHi∗HO. However, it is immediate

from the definition that T ′ → ∗ is in SetHi∗HO if and only if T ′ ∈ i∗HO(H) = O(H),

proving the desired result. �

4. Incomplete Tambara Functors

In this section, we use the work of the preceding sections to define incomplete
Tambara functors in terms of indexing systems. Specifically, we construct a cate-
gory of incomplete Tambara functors that corresponds to any indexing system O
via the functor SetG(−) described above.
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Using Theorem 2.10, we can in fact define D-Tambara functors for any wide,
pullback stable, symmetric monoidal subcategory of SetG.

Definition 4.1. Let D be a wide, pullback stable, symmetric monoidal subcategory
of SetG. A D-semi-Tambara functor is a product preserving functor

PGD → Set.
A D-Tambara functor is an D-semi-Tambara functor that is [abelian] group val-

ued.
When D = SetGO, then we will call D-[semi]-Tambara functors simply O-[semi]-

Tambara functors.

In PGD , the morphism sets have a natural commutative monoid structure given
by disjoint union:

[X ← S → T → Y ] + [X ← S′ → T ′ → Y ] = [X ← S q S′ → T q T ′ → Y ].

Following Tambara, we can therefore group complete this category by group com-
pleting each of these morphism sets [14]. This is analogous to the passage from the
category of spans of finite G-sets to the Burnside category. Using Tambara’s orig-
inal argument, we then obtain a characterization of D-Tambara functors in terms
of the group completion.

Proposition 4.2 ([14]). For any D-semi-Tambara functor T , there is a unique
D-Tambara structure on the group completion of T .

An D-Tambara functor is an additive functor from the group completion of PGD
to abelian groups.

The definition of D-Tambara functors in terms of polynomials with exponents
in a wide, pullback stable subcategory of SetG makes proving structural theorems
remarkably straightforward. However, a priori, it is not clear how to understand
the structure on D-Tambara functors in terms of the structure of D. We now
explain how properties of D give rise to familiar structures on D, culminating in a
characterization of O-Tambara functors as Green functors with additional structure
in Theorem 4.13.

We begin by looking at the consequence of the simple observation that every
wide, pullback stable subcategory of SetG contains SetGIso, the category of finite
G-sets and isomorphisms.

Proposition 4.3. A SetGIso-Tambara functor is a Mackey functor.

Proof. Any bispan of the form

X ← S
∼=−→ T → Y

is canonically isomorphic (via the isomorphism S → T ) to one of the form

X ← S
Id−→ S → Y.

The category of such bispans is the ordinary category of spans of G-sets. �

This implies that for D-Tambara functors are Mackey functors with extra struc-
ture.

Corollary 4.4. For any wide, pullback stable subcategory D of SetG, a D-Tambara
functor has an underlying Mackey functor.
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The next simplest case is when D is the collection of finite G-sets and monomor-
phisms. This situation was analyzed by Hoyer in his thesis, so we just cite the
result here.

Proposition 4.5 ([8]). A SetGMono-Tambara functor is a “pointed Mackey functor”:
a Mackey functor M together with a map A→M .

The pointedness of SetGMono-Tambara functors arises from the fact that SetG has
an initial object ∅, and hence for any T , there is a distinguished morphism ∅ → T
in the category of polynomials with exponents in SetGMono, namely

∅ ← ∅ → T
=−→ T.

The canonical map from the empty set, together with the isomorphisms, gener-
ates all of SetGMono as a symmetric monoidal category. To build the rest of SetG,
we need to also include the projections G/H → G/K for H ⊂ K and the fold maps
T q T → T .

First, we study the consequences of including the fold map in D; the proof of the
following proposition is exactly the same as that given by Tambara, so we omit it.

Proposition 4.6 ([14, 2.3]). Let D be a wide, pullback stable subcategory such that
for some T , the fold map T q T → T is in D. Then the following hold for any
D-[semi-]Tambara functor R:

(1) For all S → T , R(S) is a non-unital, commutative [semi-]ring,

(2) For all S1
f−→ S2 → T , the restriction map Rf is a non-unital, commutative

[semi-]ring map,

(3) For all S1
f−→ S2 → T , the norm map Nf is a map of multiplicative monoids,

and

(4) For finite G-sets over S1
f−→ S2 → T , the Frobenius relation holds:

a · Tf (b) = Tf (Rf (a) · b).
If moreover ∅ → T is in D, then the all of the results in the previous list are instead
for unital [semi-]rings.

Corollary 4.7. If ∅ → ∗ and ∗q ∗ → ∗ are in D, then any D-Tambara functor R,
has an underlying Green functor.

This last corollary gives us a description of O-Tambara functors as enhanced
Green functors, which parallels the situation with N∞ ring spectra.

Corollary 4.8. Let O be any indexing system. A O-Tambara functor has an
underlying Green functor.

Remark 4.9. Strickland’s “green” condition on maps in his formulation of Green
functors is exactly the condition that the map be in the wide, pullback stable sym-
metric monoidal subcategory of SetG containing ∅ → ∗ and ∗ q ∗ → ∗. This is
equivalent to being in SetGOtr , where Otr is the indexing system of trivial sets.

At this point, we have almost all of the structure present in aO-Tambara functor.
We only need to understand the effect of the inclusion of the maps G/H → G/K in
D. For this, it can be helpful to recall an alternative formulation to the axioms for
the norms in a Tambara functors (analogous to the Weyl double coset formulation
of the compatibility of transfers and restrictions). This has been described in detail
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in work of Mazur, but we reproduce it here for clarity [10, Theorem 3.1]. The
compatibility with addition was proved by Tambara to show that certain formulae
relating transfers and the Evans norm hold universally.

Proposition 4.10 ([14], [10, Theorem 3.1]). There is a universal formula express-
ing the norm of a sum:

NK
H (a+ b) = Tfs ◦Ngs ◦Rhs

(a⊕ b),

where hs is the composite of

G×K
(
K/H ×Map(K/H, ∗ q ∗)

) ∆×1−−−→ G×K
(
K/H ×K/H ×Map(K/H, ∗ q ∗)

)
with the evaluation map

G×K
(
K/H ×K/H ×Map(K/H, ∗ q ∗)

) 1×eval−−−−→ G/H qG/H,

where

gs : G×K (K/H ×Map(K/H, ∗ q ∗)→ G×K Map(K/H, ∗ q ∗)

is the canonical quotient and where

hs : G×K Map(K/H, ∗ q ∗)→ ∗

is the canonical map.
In particular, this formula depends only on H ⊂ K.

Proof. The compositeNK
H ◦(−+−) is the compositeNπK/H

◦T∇, where πK/H : G/H →
G/K is the canonical quotient and ∇ : G/H qG/H → G/H is the fold map. Since
the composite in question is the pullback along the map G/K → G/G of the case
where K = G, it suffices to consider only this case. Here, it is not difficult to check
from the definition that

G/H

πG/H

��

G/H qG/H∇oo G/H ×Map(G/H, ∗ q ∗)haoo

gs

��
∗ Map(G/H, ∗ q ∗)

hs

oo

is an exponential diagram, and this gives the required formula by Proposition 2.6.
�

We pause here to stress that since we are assuming that our exponents be drawn
from a category that is pullback stable, the compatibility of norms with sums is
automatically satisfied.

There is a similar description for the norm composed with the transfer.

Proposition 4.11 ([10, Theorem 3.1]). There is a universal formula expressing
the norm of a transfer:

NG
KTr

K
H (a) = Tft ◦Ngt ◦Rht

(a),

where

ht : G/K ×MapK(G,K/H)→ G/H

is defined by ht(gK, σ) = gσ(g), where

gt : G/K ×MapK(G,K/H)→ MapK(G,K/H)
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is the canonical quotient and where

ft : MapK(G,K/H)→ ∗
is the unique map.

The following is then immediate from the construction.

Proposition 4.12. If G/H → G/K is in D, then a D-Tambara functor R has a
norm map

R(G/H)→ R(G/K)

that satisfies the universal formulae specified by Propositions 4.10 and 4.11.
If G/KqG/K → G/K is in D as well, then this norm is a map of multiplicative

monoids, and if ∅ → G/K is in D, then it is unital.

Putting this together, we can give an alternate formulation of a O-Tambara
functor. This is an extremely useful characterization, as it allows us to use the
proofs of many results in the literature on ordinary Tambara functors to deduce
results about O-Tambara functors.

Theorem 4.13. Let O be an indexing system. A O-Tambara functor is a commu-
tative Green functor R together with norm maps of multiplicative monoids

NK
H : R(G/H)→ R(G/K)

for each G/H → G/K ∈ OrbO that satisfy the Tambara reciprocity relations given
in Proposition 4.10 and 4.11.

Proof. Since SetGO is a wide, pullback stable, coproduct complete subcategory of
SetG, any O-Tambara functor is a Green functor plus norm maps. Proposition 4.12
shows that if H ⊂ K is such that G/H → G/K ∈ SetGO, then we have a norm map
satisfying the desired properties. Finally, any map in SetGO can be written as a
composite of iterated fold maps and disjoint unions of maps of the form G/H →
G/K, so by naturality, to such a composite we associate the corresponding product
of norm maps. These steps are clearly reversible, again using that any map in SetG
and in SetGO can be written as a coproduct of disjoint unions of maps of orbits. �

As a straightforward corollary of this result, we obtain the following consistency
result connecting O-Tambara functors to N∞ ring spectra.

Theorem 4.14. Let O be an N∞ operad and R an O-algebra in orthogonal G-
spectra. Then π0(R) is an O-Tambara functor.

We include one final example of an interesting kind of D-Tambara functor. Con-
sider the category SetGepi of finite G-sets and epimorphisms. This is visibly a wide,

pullback stable, and symmetric monoidal subcategory of SetG. Moreover, it con-
tains ∗q ∗ → ∗. On the other hand, it is notably missing ∅ → ∗, which means that
it is not one of the categories we have considered before. This lets us give what
may be the first elementary definition of a non-unital Tambara functor:

Definition 4.15. A non-unital Tambara functor is a SetGepi-Tambara functor.

Proposition 4.16. A non-unital Tambara functor R is a non-unital, commutative
Green functor R together with maps of multiplicative monoids

NK
H : R(G/H)→ R(G/K)

for all G/H → G/K that satisfy the relations of Proposition 4.10 and 4.11.
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5. Categorical properties of incomplete Tambara functors

In this section, we describe formal properties of the category of O-Tambara
functors. We begin by describing limits and colimits in O-Tambara functors. We
then turn to a study of “change” functors associated to changing the indexing
system. Finally, we conclude with discussions of ideals of O-Tambara functors and
localization phenomena.

5.1. Limits and colimits in O-Tambara functors. Since D-Tambara functors
are simply product-preserving functors into a complete and cocomplete category,
the category of all such functors is clearly complete.

Proposition 5.1. The category of D-Tambara functors has all limits, where(
limRi

)
(T ) = lim

(
Ri(T )

)
.

Moreover, since limits commute with filtered colimits in this setting, we imme-
diately deduce the existence of filtered colimits.

Proposition 5.2. The category of D-Tambara functors has filtered colimits which
are formed object-wise.

The case of arbitrary colimits is much more subtle, and it depends very heavily
only which (if any) fold maps are in D. The case that D = SetGIso is classical,
and here colimits are also formed objectwise. We restrict attention to O-Tambara
functors from now on. The following is immediate from work of Strickland.

Theorem 5.3. The category of O-Tamabra functors is cocomplete. The box product
is the coproduct of O-Tambara functors.

Proof. For coproducts, Strickland (following unpublished work of Tambara) shows
that there is a canonical way to define norms on the box product of two Tambara
functors in a way that is compatible with the norms on the factors [13, Proposition
9.1]. The proof proceeds by constructing explicit norm maps and verifying that they
satisfy the appropriate relations. Thus, by Theorem 4.13, the proof goes through
without change for our restricted class of norm maps, since all of the consistency
relations also take place in that category.

Next, Strickland’s argument for [13, Propositions 10.5, 10.6] makes no reference
of the forms of the polynomials, and hence holds in general to show that O-Tambara
functors have coequalizers. Since O-Tambara functors have infinite coproducts
constructed as filtered colimits of finite coproducts, the result now follows. �

Since [semi-]O-Tambara functors are a diagram category, there are enough “free”
objects. In particular, we can form a resolution of any O-Tambara functor by
particularly simply ones, which allows for more direct computation. However, these
are not immediately amenable to homological algebra constructions, as many of
these fail to be flat as Mackey functors (see Warning 5.5). Performing an analysis
similar to the passage from a rigid O-Tambara functor to a more homotopical
“N∞-algebra in Mackey functors” fixes this, but we will not focus on that in this
paper.

Definition 5.4. If H ⊂ G, let

AO[xH ] = PGO (G/H,−)

be the O-Tambara functor represented by G/H.
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The notation here is chosen to draw attention to the parallels with ordinary free
commutative rings.

By the Yoneda lemma, we have a natural isomorphism

O-T amb(AO[xH ], R) ∼= R(G/H),

so in particular, given any O-Tambara functor R, we can find a free Tambara
functor of the form

AO[xH1 , . . . ] := AO[xH1 ]� . . .

which maps surjectively onto R. In fact, by taking the generating set to be all of
R(G/H) as H varies, we can produce this functorially in R. This allows us to form
simplicial resolutions of any O-Tambara functor by frees.

Warning 5.5. If O is non-trivial, then in general, the underlying Mackey functors
for AO[xH ] will not be projective. An illuminating example is given by G = C2 and

O the complete coefficient system. Then we can describe AO[xG] = AO[x] as

AO[x](G/G)

res

��

Z[t]/(t2 − 2t)[x, nx]/t(nx− x2)

uuAO[x](G/e)

tr

@@

Z[x],

@@

where the restriction map takes nx to x2 and is the identity on x. The transfer map
is just multiplication by t. (The norm map is induced by x 7→ nx, together with the
Tambara relations). As a Mackey functor, this can be rewritten as⊕

n∈N
A⊕

⊕
j∈J

I,

where I is the augmentation ideal of A and where J is a Z-basis for the ideal
generated by nx− x2 in Z[nx, x]. This has infinite homological dimension.

5.2. O-Ideals. Just as in the commutative ring and classical Tambara cases, the
kernel of a map between O-Tambara functors has extra structure. We can define
an O-Tambara ideal in an O-Tambara functor, generalizing work of Nakaoka [11].

Definition 5.6. If R is a O-Tambara functor, then an O-ideal is a sub-Mackey
functor J such that

(1) The multiplication on R makes J an R-bimodule and
(2) If f : S → T is in SetGO and is surjective, then J is closed under Nf .

Remark 5.7. At first blush, the surjective condition is somewhat weird. When one
recalls that the norm associated to the unique map ∅ → T is the multiplicative unit
1 in R(T ), however, then we see that by excluding this map from our possible maps,
we are simply not requiring that J(T ) contain 1.

Example 5.8. If O is the trivial indexing system, then an O-ideal is simply the
obvious notion of an ideal in a Green functor.

Example 5.9. If O is the complete indexing system, then an O-ideal is a Tambara
ideal in the sense of Nakaoka [11].
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Example 5.10. If O is any indexing system, then a O-ideal is simply an ideal
in the underlying Green functor which is closed under all norms maps indexed by
elements in OrbO. In other words, it is an ideal in the underlying Green functor
which is simultaneously a sub-non-unital Tambara functor.

Tambara ideals have the feature that the quotient by them is automatically an
O-Tambara functor. The proof is identical to Nakaoka’s, so we omit it.

Proposition 5.11 (See [11, Prop 2.6]). If J is an O-Tambara ideal of R, then R/J
has an O-Tambara functor structure such that the natural map R→ R/I is a map
of O-Tambara functors.

Given any collection of subsets of R(T ) as T varies, we have a smallest O-ideal
containing them. Informally, it is the closure of these sets under all sums, products,
restrictions, transfers, and norms. Some of the most naturally occurring subsets
also result in the most pathological O-ideals, namely those subsets which are simply
the entirety of R(T ) for some collection of G-sets T .

Definition 5.12. If F is a family of subgroups of G, then let IOF be the O-ideal of
the Burnside ring generated by A(G/H) for H ∈ F .

Example 5.13. If O is the trivial indexing system, then IOF (G/K) is the subgroup
of A(G/K) generated by elements the form K/H where H ∈ F .

The quotients A/IOF show up as various left adjoints to the forgetful functor
applied to the zero Tambara functor, as described in Proposition 6.10 below. Sim-

ilarly, just as IO
tr

F is π0(EF+), when O is the indexing system associated to an

N∞ operad O, the rings A/IOF is π0 of the nullification functor killing all cells in-
duced up from elements in the family applied to the zero sphere in the category of
O-algebras.

5.3. Change of Structure. If D ⊂ D′, then applying Corollary 2.11 gives us an
inclusion

PGD ⊂ PGD′ .
We apply this in the case of O ⊂ O′ and to the obvious inclusion SetGIso ⊂ SetGO.
These gives us restriction functors.

Proposition 5.14. If O ⊂ O′, then there is a canonical forgetful functor

O′-T amb→ O-T amb
given by precomposition with the inclusion. This is strong symmetric monoidal.

Proof. The only statement requiring proof is that this is strong symmetric monoidal.
Here, though, we simply observe that the symmetric monoidal product is simply
the box product on the underlying Mackey functors. �

Remark 5.15. From the point of view of structure on the resulting underlying
Green functor, the forgetful functor simply forgets all norms in O′ that are not also
norms in O.

Proposition 5.16. For any O, there is a canonical, strong symmetric monoidal
forgetful functor

U : O-T amb→Mackey.
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Since the restriction is given by the inclusion of a subcategory, the left adjoint
to it is easy to determine.

Proposition 5.17. If O ⊂ O′, then the restriction

O′-T amb→ O-T amb

has a left adjoint given by Kan extension along the inclusion PGO ⊂ PGO′ , which we
write as

O′ ⊗O (−) : O-T amb→ O′-T amb.

The functor described in Proposition 5.17 has a simple conceptual description.
We freely adjoin norms corresponding to maps in O which are not in O′ and all
of their transfers, and then we impose relations reflecting the norms being multi-
plicative homomorphisms, norms factoring through the Weyl invariants, and the
universal “Tambara reciprocity” formulae reviewed in Propositions 4.10 and 4.11.

Corollary 5.18. If O is any N∞ operad, then the forgetful functor

U : O-T amb→Mackey

has a left adjoint SymO(−) given by left Kan extension along the inclusion PGIso ⊂
PGO .

Since SymO(−) is the left Kan extension, we know exactly what it does to
representable Mackey functors, the projective generators of the category of Mackey
functors. Following the notation of Definition 5.4, we let

A · {xH}

denote the Mackey functor represented by G/H. We then have a natural isomor-
phism

SymO(A · {xH}) ∼= A[xH ].

This makes it very easy to compute SymO(M) for any Mackey functor M .

Proposition 5.19. If P 1 → P 0 →M is the start of a projective resolution of M ,
then SymO induces an isomorphism

SymO(M) ∼= SymO(P 0)�SymO(P 1)A.

Remark 5.20. Here the observation in Warning 5.5 comes into play: the under-
lying Mackey functor for a free O-Tambara functor is essentially never projective.
This means care must be taken when performing homological algebra constructions.
These results should be seen as the algebra incarnation of the topological result
that the G-spectrum underlying an equivariant commutative ring spectrum is al-
most never cofibrant.

5.4. Localization of O-Tambara functors. The free O-Tambara functors of
Definition 5.4 allow us to invert arbitrary collections of elements in O-Tambara
functors.

Definition 5.21. Let R be a O-Tambara functor and let S = {(ai, Ti)|ai ∈ R(Ti), i ∈
I} be a collection of elements in the values of R at various finite G-sets. Then we
say that a map φ : R→ B of O-Tambara functors inverts S if for all i ∈ I

φ(ai) ∈ B(Ti)
×.
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It is clear that if φ : R→ B inverts S and if ψ : B → B′ is any map of O-Tambara
functors, then ψ ◦ φ inverts S. Thus the subgraph of the category of O-Tambara
functors under R is a subcategory provided it is non-empty. Luckily, the terminal
O-Tambara functor provides an example.

Proposition 5.22. The zero O-algebra inverts any set S for any R.

Theorem 5.23. Let R be a O-Tambara functor and let S = {(ai, Ti)|i ∈ I, ai ∈
R(Ti)} be a collection of elements in the values of R at various finite G-sets. Then
the category of maps φ : R → B of O-Tambara functors which invert S has an
initial object.

Proof. If the cardinality of I is infinite, then we simply consider the directed set of
finite subsets of I and form the colimit over this. It therefore suffices to show this
if |I| < ∞. By induction on |I|, it therefore suffices to show that we can invert a
single element a ∈ R(T ).

Consider the O-Tambara functor

RO[xT ] := R�AO[xT ].

In the category of O-Tambara functors under R, this represents the functor which
takes B to B(T ). Although in general the value of the box product on a finite G-
set is very difficult to understand, we need only describe several expected elements.
The unit of the norm-forget adjunction between O-Tambara functors and Mackey
functors has the form

AT ↪→ AO[xT ],

and the unit of this O-Tambara functor is a map A ↪→ AO[xT ]. Together, this gives
a map

A⊕AT ↪→ AO[xT ].

The reader should this of this as the inclusion of the unit and the degree 1-
monomials. In particular, there is a canonical element xT in AO[xT ](T ) given
by the span T ← T → T in AT (T ). The Yoneda lemma says that any map out of

AO[xT ] is completely determined by its value on this element.

Boxing AO[xT ] with R and evaluating at T then gives us an element ax ∈
RO[xT ], and this choice of element gives us a map of O-Tambara functors

RO[yT ]→ RO[xT ].

At this point, the construction is standard. Let a−1R be the pushout in O-Tambara
functors under R

RO[yT ]

��

// RO[xT ]

��
R // a−1R,

where the map from RO[yT ]→ R is the R-algebra map adjoint to the element 1 in
R(T ). By construction, a map from a−1R to a O-Tambara functor B under R is
an element b ∈ B(T ) such that φ(a)b = 1 ∈ B(T ). Thus a−1R satisfies the named
universal property. �

Inverting an element in a O-Tambara functor can be an extremely weird opera-
tion. For example, it can produce the zero ring for frustratingly many examples.
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Example 5.24. If a ∈ I ⊂ A is any element in the augmentation ideal of the
Burnside ring, then the localized Tambara functor a−1A is always zero.

Just as topologically, it can also be difficult to know whether the localization of
R in the category of R modules is the same as the localization described above for
the category of R-algebras. Consider a set S as above. If for each i ∈ I, Ti has a
trivial G-action, then we can copy the arguments of the second author and Hopkins
and of Nakaoka to show the following [5].

Theorem 5.25. Let a ∈ R(G/G). If for all π : G/H → G/K ∈ OrbO, the element
Nπ ◦ResGK(a) divides a power of ResGH(a), then the ordinary sequential colimit

R
a·−→ R

a·−→ . . .

compute the localization a−1R.

To make a similar statement for inverting elements in R(T ) for T not a trivial
G-set, we must consider the various change-of-group functors relating a O-Tambara
functor and an i∗HO-Tambara functor.

6. Change functors

In this section we study the adjunction induced on categories of O-Tambara
functors associated to a group homomorphism H → G; we are most interested in
the situation where H ⊆ G is a subgroup. As one would expect, the situation
is precisely analogous to the situation for O-algebras in spectra; there is a “norm-
forget” adjunction involving the admissible sets specified by O (see Proposition 6.18
below). The structure we describe here is in fact similarly an aspect of an incomplete
G-symmetric monoidal structure on Mackey functors, under which the commutative
monoids are precisely the O-Tambara functors. We intend to describe this structure
in detail in a subsequent paper.

6.1. Change of Groups. Observe that induction on SetH gives a faithful embed-
ding of SetH into SetG, and thus gives us a faithful embeddingxG

H
: PHi∗HO ↪→ P

G
O .

Since the product in polynomials is the disjoint union and since induction is strong
symmetric monoidal for disjoint unions, this is a product preserving embedding.
The following is then immediate.

Proposition 6.1. Precomposing with ↑GH gives the restriction functor

i∗H : O-T ambG → i∗HO-T ambH .

This functor always has a right adjoint. For this, we need to apply Theorem 2.17.
This requires a very basic analysis of the images of the restriction and induction
functors when applied to our categories SetGO.

Proposition 6.2. For any O, the image of
xG
H

restricted to SetHi∗HO is essentially

a sieve in SetGO.

Proof. Proposition 2.16 shows that in SetG, the image of ↑GH is essentially a sieve.
Since any map isomorphic to a map in SetGO is in SetGO, by Proposition 3.12, we
are done. �
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We have the analogous result for the restriction functors.

Proposition 6.3. The restriction functor i∗H : SetG → SetH restricts to give a
functor SetGO → SetHi∗HO.

Proof. Let f : S → T be a map in SetGO, and let s ∈ S. When we consider the
H-orbit of s, the stabilizer of s in H is H ∩Gs, and similarly for f(s). We therefore
need to show that if Gf(s) · s is an admissible Gf(s)-set, then (H ∩ Gf(s)) · s is
an admissible H ∩Gf(s)-set. However, if we consider the restriction of Gf(s) · s to
H∩Gf(s), then (H∩Gf(s)) ·s is visibly a disjoint summand. Since the restriction of
admissible sets are admissible and since summands of admissible sets are admissible,
we conclude that (H ∩Gf(s)) is admissible. �

Theorem 6.4. For all subgroups H and for all indexing systems O, the functor
i∗K has a right adjoint, CoIndGH given by

CoIndGHR(T ) := R(i∗HT ).

Proof. We have an adjoint pair
xG
H
a i∗H on the category of finite G-sets. By

Proposition 6.2, we know that the image of the left adjoint
xG
H

is essentially a

sieve, so by Theorem 2.17, we know that we have an induced adjoint pair i∗H a
xG
H

on polynomials:

i∗H : PGO � PHi∗HO :
xG
H
.

Since both i∗H and
xG
H

are product preserving functors, the result follows. �

It is obvious that the functor CoIndGHR is a Green functor. The somewhat
surprising part of Theorem 6.4 is that we have norm maps. These are built in
the most näıve way possible: simply multiplying together copies. The example
of H = {e} shows this quite transparently, as we can build on the representation
theory story implicit in the underlying Mackey functor.

Example 6.5. If R is a commutative ring (which is an O-Tambara functor for the
trivial group for any O), then

CoIndGHR(T ) = Map(T,R)

with the coordinatewise addition and multiplication. Just as the transfer maps are
“sum over cosets”, the norm maps are “multiply over cosets”:

NG
H (f) =

∏
gH∈G/H

f(gH).

This example gives the intuition for the general case: the new norms are just
products over the orbits of the old ones. In other words, the heuristic is that when
we consider a norm N↑f arising by inducing up a map f of H-sets, then we just
multiply:

N↑f =
∏

gH∈G/H

gNf .

The composite ↑GH ◦i∗H is also readily determined, and this lets us also generalize
this functor.
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Proposition 6.6. The composite ↑GH ◦i∗H is isomorphic to the functor

mG/H(R) := RG/H ,

where RG/H(T ) = R(G/H × T ).

Corollary 6.7. For any indexing system O and for any finite G-set T , the assign-
ment

mT (R) := RT

gives an endofunctor of the category of O-Tambara functors.

Proof. Since RT1qT2
∼= RT1

×RT2
and since the category of O-Tambara functors is

closed under limits, it suffices to show this for T = G/H. This is Proposition 6.6.
�

The functor mT can also be described as the Kan extension along the functor
on polynomials given by T × −. For formal reasons, its left adjoint should be
the functor that is Kan extension along the internal Hom object F (T,−). Since

R 7→ RG/H is the composite CoIndGH ◦i∗H , then the left adjoint will be the composite
of i∗H with its left adjoint.

We now wish to build a left adjoint to the forgetful functor. Formally, such a
left adjoint will be given by the left Kan extension along the inclusion, and work
of Kelly-Lack shows that the left Kan extension of any product preserving functor
along ↑GH is again product preserving [9, Prop 2.5]. This shows the well-definedness
of the following definition.

Definition 6.8. Let

nGH : i∗HO-T ambH → O-T ambG

be the left Kan extension along the inclusion PHi∗HO ↪→ P
G
O .

By the universal property of the left Kan extension, the following is immediate.

Proposition 6.9. The functor nGH is the left-adjoint to the restriction functor i∗H .

In general, this is a very difficult functor to understand. We pause here to give
a short example that shows how pathological this can be. Let 0 be the zero Green
functor. This has a unique O-Tambara functor structure for any O.

Proposition 6.10. For any H ⊂ G and for any O, we have

nGH0 = A/IOF(H),

where F(H) is the family of subgroups of G subconjugate to H.

Proof. Both sides have the same universal property: the space of maps out of them
is either a point or empty, with the latter occurring exactly when the restriction to
H of the target is non-zero. �

We can use the functor nGH to give another formulation of inverting classes,
building a result analogous to the colimit formulation of inversion.
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Proposition 6.11. If R is an O-Tambara functor and a ∈ R(G/H), then a−1R is
isomorphic to the pushout in O-Tambara functors of the diagram

nGH i
∗
HR

ε //

nG
Hι

��

R.

nGH
(
a−1i∗HR

)
Proof. Both the pushout and the localization of R have the same universal property.

�

This allows us to refine Theorem 5.25.

Theorem 6.12. Let a ∈ R(G/H). If for all π : H/K → H/J ∈ Orbi∗HO, the

element Nπ ◦ resHK(a) divides a power of resHJ (a), then

(1) the sequential colimit R′

i∗HR
a·−→ i∗HR

a·−→ . . .

computes the localization a−1i∗HR, and
(2) a−1R is the pushout of the diagram

nGH i
∗
HR

ε //

nG
Hι

��

R.

nGHR
′

Proof. The first part is simply a restatement of Theorem 5.25. The second part
follows from the first from Proposition 6.11. �

6.2. Identifying nGH . In general, identifying the Mackey functor underlying nGHR
is difficult. We can single out, however, distinguished cases where such an identifi-
cation is possible. We being with a construction in Mackey functors, due to Mazur
for cyclic p-groups and Hoyer for all finite groups.

Definition 6.13 ([8, Def 2.3.2]). Let NG
H : MackeyH →MackeyG be the left Kan

extension along the coinduction map

SetH → SetG.

Remark 6.14. Since the coinduction functor FH(G,−) is a strong symmetric
monoidal functor for the cartesian product, this definition also gives a functor

NG
H : GreenH → GreenG.

We will therefore blur the distinction between which functor we mean at will.

Theorem 6.15. If G/H is admissible for O, then we have a natural isomorphism

U ◦ nGH(−) ∼= NG
H ◦ U(−).

Proof. Our proof closely follow’s Hoyer’s proof for the case of ordinary Tambara
functors. We include the details, since there is a single point where care must be
taken.
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Since nGH(T ) is built as a left Kan extension, we can think of an element as an
equivalence class of pairs

(Th ◦Ng ◦Rf ,m) ∈ PGO (G×H X,Y )× T (X).

The coend equivalence relations say that whenever a map like Ng is induced up
from H, then we can move it across:

(T↑f ′ ◦N↑g′ ◦R↑h′ ,m) =
(
1, Tf ′ ◦Ng′ ◦Rh′(m)

)
.

We use these to bring the bispan

G×H X
f←− S g−→ T

h−→ Y

into a more canonical form, giving a better spanning set for our coend.
Since any map to an induced object is isomorphic to an induced map, we can

replace our bispan with an equivalent one:

G×H X
↑f←− G×H S′

εT ◦↑g′−−−−→ T
h−→ Y,

where εT is the counit of the adjunction. Since G/H is admissible, Corollary 3.15
shows that εT is in SetGO, and in particular, the factorization ε◦ ↑ g′ takes place in
the category SetGO. This is the only point in Hoyer’s argument where the fact that
we were in SetGO arises. Now, any element

(Th ◦Ng ◦Rf ,m) ∈ PGO (G×H X,Y )× T (X).

is equivalent to one of the form

(Th ◦Nε, Ng′ ◦Rf ′m) ∈ PGO (G×H i∗HT, Y )× T (i∗HT ).

This shows that pairs (Th ◦Nε,m) for a spanning set for the coend defining nGHT .
A similar argument shows that any element

(Th ◦Rf ,m) ∈ PGIso(MapH(G,X), Y )×M(X)

can be brought into the form

(Th ◦Rη, Rf ′m) ∈ PGIso(MapH(G, i∗HS), Y )×M(i∗HS).

The natural transformation is defined by

(Th ◦Nε,m) 7→ (Th ◦Rη,m);

Hoyer shows that this is well-defined and an isomorphism of Mackey functors [8,
Thm 2.3.3]. �

Corollary 6.16. The composite NG
H ◦ i∗H is naturally isomorphic to the left Kan

extension along the functor F (G/H,−).

This motivates the following definition.

Definition 6.17. If T is a finite G set, then let

NT : MackeyG →MackeyG

be left Kan extension along the functor S 7→ F (T, S).

Since
F (T1 q T2, S) ∼= F (T1, S)× F (T2, S),

we have a natural isomorphism of functors

NT1qT2 ∼= NT1�NT2 .
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Proposition 6.18. For all admissible G-sets T , we have an adjoint pair of functors
on O-Tambara functors:

NT a mT .

Proof. The assignment T 7→ NT takes disjoint unions to categorical coproducts,
and similarly, T 7→ mT takes disjoint unions to categorical products. This reduces
the proposition to checking on orbits G/H. Now we have a natural isomorphism

NG
H ◦ i∗H ∼= NG/H

arising from the natural isomorphism FH(G, i∗H(−)) ∼= F (G/H,−). The result then
follows from Theorem 6.15. �
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